
A CENSUS OF PLANAR MAPS 

W. T. TUTTE 

1. Introduction. In the series of "Census" papers, of which this is the 
fourth, we attempt to lay the groundwork of an enumerative theory of planar 
maps (12, 13, 14). The maps concerned are rooted in the sense that some edge 
is fixed as the root, and a positive sense of description and right and left sides 
are specified for it. This device simplifies the theory by ruling out the possi­
bility of a map being symmetrical. 

In this paper formulae are obtained for the number of rooted maps (with 
n edges), the number of non-separable rooted maps, and the number of 3-
connected rooted maps without multiple joins (called c-nets). Some similar 
enumerations, supplementing the results of earlier papers, are given for tri­
angulations and bicubic maps. 

2. Maps. Let G be a topological graph in a 2-sphere or closed plane II. 
By this we mean that the edges and vertices of G are disjoint subsets of II, 
and that each edge is an open arc in II whose end-points determine its incident 
vertices. An edge is a loop if its end-points coincide, and a link otherwise. The 
complex \G\ of G, a subset of II, is the union of the edges and vertices of G. 

If G is a connected graph having at least one edge, but having only a finite 
number of edges and vertices, then the dissection of II which it determines 
is a planar map M, hereinafter called simply a "map." The edges and vertices 
of G are called edges and vertices respectively of M. The components of the 
complement of |G| are the faces of M. They are simply connected domains, 
finite in number. The vertices, edges, and faces of M are its cells. Two of 
them are incident if one is contained in the boundary of the other. 

A map is singular if it has either a loop or a face whose boundary is not a 
simple closed curve. The following properties of non-singular maps may be 
taken as axioms in combinatorial discussions: 

I. Each edge of a non-singular map is incident with just two faces. 
II. Let v be any vertex of a non-singular map M. Then v is incident with at 

least two edges and at least two faces. Moreover the edges and faces incident 
with v are the members of a cyclic sequence Sv with the following properties : 

(i) The elements of Sv are alternately edges and faces of My and no edge 
or face of M appears twice in Sv. 

(ii) Two distinct elements of Sv are incident in M if and only if they are 
consecutive in Sv. 
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Evidently Sv is unique, apart from reversal. 
A triangular map is a non-singular map in which each face is a triangle, 

that is has just three incident edges. 
A derivable map is a triangular map M' for which there is given an ordered 

partition {W, W*, W^} of the vertex-set V having the following properties: 
(i) No edge of M' has both ends in the same class W, W*, or W\. 

(ii) Each vertex W\ is incident with just four edges. 
It follows from (i) that each face of Mf has one vertex in each of the three 

sets W, W*, and W\. 
Given a derivable map M' we may construct from it a new map M as 

follows. The vertices of M are the members of W*. Its edges are in 1-1 corre­
spondence with the members of W"\, each being the union of a member of Wf, 
and the two edges of Ml joining it to members of W*. It is easily seen that 
these edges and vertices of M make up a connected topological graph. The 
faces of M are in 1-1 correspondence with the members of W. Each is the 
union of the corresponding member of W with the incident edges and faces 
of M'. 

We say that M' is a first derived map of M. 
Consider any two maps Mi and M2. A homeomorphism of Mi onto M2 is 

a homeomorphism of II onto itself which maps vertices, edges, and faces of 
M\ onto vertices, edges, and faces of M2 respectively. By the theory of sim-
plicial complexes (7, 8) two triangular maps are homeomorphic if and only 
if there is a 1-1 mapping / of the cells of one onto the cells of the other such 
that / maps vertices, edges, and faces onto vertices, edges, and faces respec­
tively, and such that both / and / - 1 preserve incidence relations. 

For derivable maps Mi and M2 we make the further requirement that a 
homeomorphism of Mi onto M2 must preserve each of the sets W, W*, and W\. 

In what follows we shall not count two homeomorphic maps as distinct. 
Accordingly we may say that each derivable map M' is the first derived map 
of just one map M. 

This is not the place to expound a rigorous theory of maps, both singular 
and non-singular. In this paper we often make statements about maps without 
proofs. It is believed, however, that the omitted proofs can in every case be 
constructed without difficulty by standard procedures of graph theory (1, 6, 
10) or point-set topology (9). In particular we make the following assertion: 

Each map M has a unique first derived map M'. 
Figure 1 shows a map M (solid lines) and its first derived map M'. 
Let v, A, and F be a vertex, edge, and face respectively of a map M. We 

write ri(A, v) = 0, 1, or 2 according as A is an edge not incident with v, a link 
incident with v, or a loop incident with v. We write 77(7% A) for the number of 
times F is incident with A, that is the number of faces of M' contained in F 
and incident with any specified edge of M' in A. This number is 0, 1, or 2, 
by I. We likewise write 77(Ff v) for the number of times F is incident with v, 
that is one-half the number of faces of M' contained in F and incident with 
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FIGURE 1. 

v. By the uniqueness of M' these incidence numbers rj(X, Y) are uniquely 
determined by the structure of M. 

An edge, as we say, has just two "sides," and it has just one face on each 
side. If the edge is contained in a simple closed curve in \G\ it follows from 
Jordan's Theorem that it is incident with two distinct faces, one in each 
residual domain of the curve. Hence any edge doubly incident with a face 
is an isthmus of G. 

The valency val(z>) or val(.F) of a vertex v or a face F is the sum of the 
numbers rj(A,v) or r}(F, A) respectively, taken over all edges A of M. 

Consider any derivable map Mf. Evidently we can repeat the construction 
for M with W and W* interchanged. The result is a map M* called the dual 
map of M. It is easily verified that M is the dual map of M*. The relation 
between M and M* can be partially summarized as follows. There is a 1-1 
correspondence 6 mapping vertices, edges, and faces of M onto faces, edges, 
and vertices of M* respectively, such that both 6 and B~l preserve incidence 
numbers. 

3. Rooted maps. To orient an edge A of a map M is to specify a direction 
of description. If in addition we specify one side of A as being on the right 
of A, and the other on the left, we obtain a complete orientation of A. 

If A is not an isthmus the left and right sides correspond to distinct faces 
of M. Otherwise they can be associated with distinct faces of M'. 

In a diagram the terms "left" and "right" have an accepted meaning with 
respect to a directed curve, and we shall draw our diagrams to conform with 
this convention. Should we wish to interchange right and left sides of A 
without altering its direction of description we would reflect the diagram of 
the map in some line of the plane. 

A map is rooted when some edge A is specified as the root, and a complete 
orientation of A is given. 

For rooted maps we adjoin the following requirement to the definition of 
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a homeomorphism. A homeomorphism of Mi onto M2 must preserve the root 
and its specified complete orientation. 

Consider a rooted map M, with root A. We can define some corresponding 
rootings of M' as follows. 

One of the two edges A / and A 2' of Mf in A can be specified as the first 
half of A, the direction of A being from Ax

f to A2'. Let T be the face of M' 
on the right side of A and incident with A^'. Let P and Q be distinct members 
of the class {W, W*, W\]. We define the (P, Q)-rooting of M' determined by M 
as follows. The edge of T with one end in P and one in Q is the root. It is 
directed from P to Q, and T is the face on its right. 

On the other hand suppose M' is rooted, the root being directed from P 
to Q. Evidently there is a unique rooting of M determining the given (P, Q)-
rooting of Mf. From the foregoing results we deduce: 

(3.1) The number of rooted maps with n edges is equal to the number of (P, Q)-
rooted derivable maps, P and Q being fixed, with n vertices in W]. 

We may use the triangle T to fix a rooting of the map M*. Its root is the 
edge corresponding to A. This root has T on its right, and its part in the 
boundary of T is directed from W to W\. The map M*, thus rooted, is the 
dual of the rooted map M. It is easily verified that M is also the dual of M*. 
Duality thus provides us with a 1-1 correspondence of the class of rooted 
maps onto itself. 

Rooting a map destroys its symmetry. More precisely we have: 

(3.2) Let h be a homeomorphism of a rooted map M onto itself. Then h maps 
each vertex, face, and oriented edge of M onto itself. 

Proof. Let U be the set of all faces F of M such that h maps F onto itself 
and at least one edge E incident with F onto itself without reversal of direc­
tion. Considering the cyclic sequence of edges and faces of M' contained in 
F we see that each edge and vertex incident with F must be mapped onto 
itself, without reversal of direction in the case of edges. It follows that if an 
edge E is incident with two faces F and Pi, F being in U, then Pi is also in U. 

Now U is not null, since it includes the faces incident with the root. Hence, 
by connection, it includes every face of M. 

4. Bicubic maps. A map is trivalent if the valency of each of its vertices 
is 3. A trivalent map is called bicubic if its vertex-set can be partitioned into 
two disjoint classes U and V so that each edge has one end in U and one 
in V. 

A bicubic map has no loop, and by simple graph-theoretical arguments it 
can be shown that it has no isthmus either. Since the map is trivalent, it is 
therefore non-singular. 

The faces of a bicubic map can be coloured in three colours so that no two 
of the same colour have a common edge. A proof of this result can be based 
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on the fact that a solution of HeawoocTs congruences is obtained by associa­
ting the numbers + 1 and —1 with the members of U and V respectively 
(5, 11). This 3-colouring is unique, apart from permutations of colours. For 
when the two faces incident with some edge A are coloured, the colour of 
the other faces incident with ends of A is determined. Hence, by connection, 
the entire 3-colouring is determined. 

Conversely any 3-colourable trivalent map is bicubic. A vertex can be 
assigned to U or V according as the cyclic order of colours around it agrees 
or disagrees with some fixed order, with respect to a fixed direction of rotation 
in n . 

Given an unrooted bicubic map M we consider the complement R in II 
of the union of the faces of a particular colour, red say. In the terminology 
of (14) R is a band. The edges of M not incident with red faces define an 
even slicing of R. Conversely by the definitions of (14) any even slicing is 
equivalent to a bicubic map, the *'exterior faces" being the members of a 
specified colour-class. 

When a bicubic map is rooted, a distinction is made between the three 
colours. Those on the left and right of the root are the left and right colours 
respectively, and the remaining colour is the root-colour. 

The main theorem of (14) may be restated as follows: 

(4.1) The number of unrooted bicubic maps in which the faces of one colour-
class J are distinguished as J i , J2, . . . , J*i and each face Jt has a specified 
(even) number 2nt > 0 of distinguishable vertices is 

( n - l ) l A (2n,)l 
(n-k + 2)il\nt\(ni-l)r 

where n = ni + n2 + . . . + nk. 

To make the vertices of Jt distinguishable we have only to specify one as 
the representative vertex of Jiy and to define a positive direction of description 
of the boundary of Jt. It is then possible to fix any vertex by its position 
with respect to the representative vertex. But a positive direction of description 
of Ji determines a consistent orientation of the map (8), and so fixes a positive 
direction of description for the boundary of any other face. The labelling of 
the vertices is thus equivalent to the specification of a representative vertex 
for each face Jf and the assignment of a positive direction of description to J\. 

When we root a bicubic map M we may consider that / is specified as 
corresponding to the root-colour. We fix Ji as the face of J incident with the 
negative end u of the root A, and take u as the representative vertex of Jx. 
The positive direction of description of J\ is fixed as that in which u is followed 
immediately by the points of the edge incident with Jx and the face on the 
left of A. We refer to Jx as the root-face. 

The labelling of the remaining k — 1 faces of J can be carried out in just 
(k — 1)! ways and the remaining representative vertices can be selected in 
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2k~ln2nz. . . nk ways. The fact that the 2k~l(k — 1)! n2nz. . . nk possibilities 
are topologically distinct follows from (3.2). Using (4.1) we deduce: 

(4.2) The number of rooted bicubic maps in which the root-face has valency 
2ty and there are just qs other faces of the root-colour with valency 2s (s = 1, 2, 
3, . . .), is 

( * - ! ) ! (20! f r / ( 2 s - l ) ! \ g ' 
(k - 1)! (» - k + 2)! t\ (t - 1)! l\ \s\ (s - 1)!J ' 

where 2n is the total number of vertices and k is the number of faces of the root-
colour. 

(4.3) The number of rooted bicubic maps in which there are just k faces of 
the root-colour, each of valency 4, is 

2(2&)!3* 
k\ (* + 2)!' 

Proof. For rooted bicubic maps of the kind specified we have 4& = 2n, the 
number of vertices. Substituting 2k for n in (4.2) we obtain (4.3). 

5. The number of rooted maps. Duality sets up a 1-1 correspondence 
between the (W, W*)-rooted derivable maps on the one hand and the rooted 
bicubic maps in which each face of the root-colour has valency 4 on the 
other. Under this correspondence right, left, and root-colours correspond to 
W, W*, and W\ respectively. Applying this result to (3.1) and (4.3) we 
obtain : 

(5.1) The number an of rooted maps with n edges is 

2{2n)\T 
»! (» + 2)!# 

We write 
oo 

Thus A (x) = 2x + 9x2 + 54x3 + 378x4 + . . . . Figure 2 shows the 2 rooted 
maps with 1 edge, and Figure 3 the 9 rooted maps with 2 edges. 

— o 
FIGURE 2. 

(5.2) A (x) is given parametrically by the equations 
{ = 1 + 3*$«, 

A(x) = i ( 3 - £ ) ( £ - ! ) . 
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FIGURE 3. 

Proof. By Lagrange's Theorem (15) the function A(x) defined by these 
equations satisfies 

"M-sS^^"*'4-*>•!* 
= ^ L ^ r - {4(2«)(2w - 1)„.(» + 2) - 2(2» + l)(2n)...(« + 3)} 

_ l f » ( 2 n ) ! (3*)» 

tA»!(» + 2)! * 

6. Non-separable rooted maps. A map M is called separable if its edge-
set E(M) can be partitioned into two disjoint non-null subsets 5 and 7" so 
that there is just one vertex v incident with both a member of 5 and a member 
of T. We then call v a cut-vertex of M. For example, any map having a loop 
and at least one other edge is separable. The maps of Figure 2 are non-separa­
ble, but all the maps of Figure 3 except the last are separable. 

(6.1) A vertex v of M is a cut-vertex if and only if there is a face F of M such 
that r](F,v) > 2. 

Proof. Suppose v is a cut-vertex and let {S, T] be a corresponding partition 
of E(M). By connection there is a face F of M incident with members of 
both S and T. Considering the cyclic sequence of faces of M' in F we find 
that ri(F,v) > 2. 

Conversely suppose ri(F,v) > 2 for some face F and vertex v. Then there 
is a simple closed curve J consisting of v, the vertex w of W in F, and two 
edges of M1 joining v and w. Each residual domain of / contains a vertex 
of W\ and therefore an edge of M. Hence v is a cut-vertex of M. 
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COROLLARY I. v is a cut-vertex of M if and only if it is joined to some w Ç W 
by two distinct edges of M'. 

COROLLARY II . M* is separable if and only if M is separable. 

A non-separable map of two or more edges has no loop. It therefore has 
no edge doubly incident with any face, by (6.1), Corollary II. So by (6.1) 
we have: 

6.2. A map of two or more edges is non-separable if and only if it is non-
singular. 

Now let M be a rooted map, with root A. Assign the corresponding (W*, W\)~ 
rooting to M'. 

An M'-lune is a simple closed curve made up of two distinct edges of M' 
with common ends in W and W*. Its residual domains are distinguished as 
its outside, containing the root A' of M', and its inside. It is a terminal M'-lune 
if its inside is not contained in that of any other ikf'-lune. It is clear that 
two distinct terminal AT-lunes have no common edge, and that their interiors 
are disjoint. 

Let Q(M') be the rooted map obtained from M' by rejecting the cells in 
the interiors of the terminal Af'-lunes, and then adopting these interiors as 
new faces, called lunes. 

Let N be any non-singular map. Let E be an edge of N with ends u and v 
and incident faces U and V. We split E by replacing it by two new edges 
Eu and Ev, each joining u and v, which together bound a new face F. U and 
V are replaced by new faces U\ and V\. In the new map, N\ say, Ev is incident 
with Ui and Ev with Vi, while the incidence relations not involving E are 
all retained. 

If N is rooted, and the root is not E, there is an obvious corresponding 
rooting of iVi. If E is the root of N we adjust the notation so that it is directed 
from u to v and has U on its right. Then we take the root of N\ to be EUt 

directed from u to v and having U\ on its right. Clearly N\ is non-singular. 
Moreover, if two rooted maps N± are derived from N by splitting the same 
edge £ , they are combinatorially equivalent, and therefore homeomorphic. 

In practice iVi can be obtained by joining u and v by an arc L in U. This 
separates U into two simply connected domains Z7i and F, the boundary of 
F being E\J L. We write E = Ev, L = EUy and V = Vx. 

Returning to Q(M') we observe that it is obtained from a (W*, Wrt)"rooted 
derivable map MQ' by splitting one or more edges joining W and W*. More­
over, there are no ikfo'-lunes and so MJ is the first derived map of a non-
separable rooted map M0, by (6.1), Corollary I. M0 is uniquely determined 
by M. We call it the (non-separable) core of M. 

If in M' we treat the exterior of any terminal M '-lune as a single new face 
we obtain a derivable map split along one edge, from W to W*, which we may 
regard as the root. We deduce that an is the number of ways in which we 

https://doi.org/10.4153/CJM-1963-029-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-029-x


A CENSUS OF PLANAR MAPS 257 

can select a (W*, Wt)-ro°ted derivable map M0', corresponding to a non-
separable rooted map M0, split it along one or more (W, W*)-edges, and fill 
the resulting lunes with (W, W*)-rooted derivable maps split along their 
roots, so that the resulting map has just n vertices in W. 

If we write bn for the number of non-separable rooted maps with n edges, 
and put 

* ( * ) = Êbnx
n, 

we can express the above result by the functional equation 

(6.3) A(x) = B(x{l+A(x)}*), 

for the number of splittable edges in MQ is twice the number of vertices of 
that map in TTf. 

To solve this equation we write 

u = *{1 + A(x))\ 

Letting £ be as in (5.2), and writing rj = 1 — f, we find 

27u= - ( 1 - 0 (4 -* )* , 

A(x) =B(u) = -Jn(2 + i,)f 

-27u 
* " (3 + T;)2 * 

Hence, by Lagrange's Theorem, 

R , , 2 ^ (-27*)" [ V - 1 / 1 2 Y\ 
B(X) = "3 èi ~ ^ ~ U^ 1(3 + a)2""1 _ (3 + a)2"/Ja.o 

_ 2 f , (27s)n / (2w- 1)(2«). . . ( 3w-3) 
zki n! I 33"-2 

2(2«)(2n + 1) . . . (3« - 2)\ 
gI5=I f 

Thus 

B(x) = 2x + x2 + 2xz + 6x4 + 22x5 + 91x6 + 408*7 + 1938*8 + 

Figure 4 shows the unrooted non-separable maps of from 3 to 5 edges. A 
number attached to an edge indicates in how many distinct ways the edge 
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can be rooted. If a map is symmetrical the number is attached to only one 
member of each equivalence class of edges. Beneath each map we give (in 
brackets) the total number of its rootings. 

A '0 
CD CD 

a) (D c+r 

V l ï ) ^ ( D (FT 

(5) CS) 
FIGURE 4. 

7. Extensions. Let Mi be a non-singular rooted map, with root A. Let 
Bx be another edge of Mi with an arbitrarily fixed complete orientation. Let 
it be directed from end #i to end bi and let the faces on its right and left 
be U\ and W\ respectively. Let M2 be a second non-singular rooted map with 
root B2. Let B2 be directed from a2 to b2, and let the faces on the right and 
left be U2 and W2 respectively. 

Let Mi and M2 be split along Bi and B2 respectively, so that new lunes 
Fi and F2 are introduced into Mi and M2. Let Fi be filled with the split map 
M2y by the following topological identification. The boundary of Fi is identified 
with that of F2, ai with a2, and bi with b2. The edge incident with Ui is identified 
with that incident with U2, and the edge incident with Wi is identified with 
the edge incident with W2. The exterior of F2 is identified with the interior 
of F\. Finally let Ui and U2 be united with their common incident edge to 
form a single new face U, and similarly for Wi and W2. This operation is 

1 
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illustrated in Figure 5. The resulting map M is an extension of Mi at B\ by 
Mi. It is readily seen to be non-singular. Its combinatorial structure, and 
therefore its homeomorphism class, is uniquely determined. 

FIGURE 5. 

If Mi and Bi are fixed, but M2 is required to have only n edges, the number 
of extensions of Mi at Bi is bn. Each extension increases the number of edges 
of Mi by n — 2. 

We may repeat the operation of extension, operating each time at a different 
edge of the original map Mi. The result is a multiple extension of M\. It is 
convenient to regard a single extension of Mi as a special case of a multiple 
extension, and even to count Mi as a multiple extension of itself. 

A 2-separator of a non-singular map M is defined by two distinct vertices 
a and b and two distinct faces U and W such that 

n(U, a) = V(U, b) = n(W, a) = V(W, b) = l. 

We write such a 2-separator as [a, b\ Uy W]. Joining a and b by arcs in U 
and W we obtain a simple closed curve J separating E{M) into two non-null 
subsets X and Y. We call the pair {X, F j , which is uniquely determined by 
the 2-separator, the corresponding 2-separation. The 2-separation is proper 
if both X and Y have more than one edge. A non-singular map with no proper 
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2-separation is called ^-connected. A 3-connected map with more than 3 edges 
is a c-net. 

It is clear that any 2-separator of M determines one of M*. Hence the 
dual of a c-net is a c-net. (See (6.2) and (6.1), Corollary II.) 

The map M constructed earlier in this section as an extension of Mx at 
Bi by M2 has a 2-separator [a, b\ U, W], where a is formed by identifying 
a\ and a2, and b by identifying b\ and ft2. (See Figure 5.) The corresponding 
2-separation is {E(Mi) — {2?i}, E(ikf2) — {52}}. Conversely any rooted map 
M with a 2-separator [a, b; U,W] and a corresponding 2-separation {X, F}, 
with the root in X, can be represented as such an extension. Mi and M"2 are 
obtained from M by replacing the edges in the appropriate residual domain 
of J by a single edge joining a and b. 

8. The number of rooted c-nets. We may use the notion of an exten­
sion to count the non-separable rooted maps of 3 or more edges in another 
way. We separate these maps into three "types" and deal with each type 
separately. In each case we denote the root of the map M by A. 

Type I. The map MA obtained from M by fusing A with its two incident 
faces; to form a single new face, is separable. 

Suppose the number of cut-vertices of MA is k. Simple graph-theoretical 
arguments show that the defining graph GA of MA is the union of k + 1 non-
separable graphs Glt G2, . . . , G*+i with the following properties: 

(i) If 1 < i < j < k + 1, then Gt and Gj have no common edge, 
(ii) If \i — j \ > 2, then Gt and Gj have no common vertex, 

(iii) If i = j — 1, then G< and Gj have just one common vertex vt. 
(iv) The ends of A can be denoted by v0 and z/A+i, so that vQ G V(Gi) — {vi} 

and vk+l e V(Gk+1) - {vk}. 

The vertices vi, v2, . . . , vk are the cut-vertices of GA. (See Figure 6.) 

FIGURE 6. 
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If we replace each Gt by a single arc At joining vt-i and vf we obtain a 
polygon with k + 2 edges A, Alt A2, . . . , Ak+1. It follows that the maps of 
Type I are the multiple extensions of the rooted maps defined by polygons 
of 3 or more edges, by rooted non-singular maps of three or more edges which 
are not of Type I. 

Let qn> n > 3, be the number of rooted non-singular maps of n edges which 
are not of Type I. Write 

Q(X) = Ë 1nX\ 

We can now write the foregoing result as follows: 

(8.1) B(x) = 2x + x2 + Q(x) + x £ {x + x~lQ{x)Y 

j X 

* + l - {x + x~lQ{x)Y 

(8.3) = xz + 3x4 + Hx5 + 4 0 / + . . . . 

The rooted maps of Type I are therefore enumerated by the generating 
function 

B(X) - 2x - x2 - Q(x) = {B^-_2f . 

Type II. The defining graph G of M is the union of three or more connected 
graphs such that the intersection of any two of them consists solely of the two 
ends of A. 

Let the ends of A be a and b. We define an (a, b)-arm of G as a minimal 
connected subgraph H which includes a and b and has no vertices, other than 
a and b, incident with edges of G not in H. The (a, &)-arms of G have G as 
their union, and the intersection of any two of them consists solely of a and b. 

We observe that M is of Type II if and only if the number of its (a, b)-arms 
is at least three. One (a, b)-arm consists solely of the root A and its two 
ends. By II the (a, b)-arms occur in a cyclic sequence, any two consecutive 
ones being separated by a face which is incident with both a and b and which 
has incident edges only in these two (a, £)-arms. 

If we replace each (a, b)-arm by a single edge joining a and b we obtain a 
map defined by two vertices and k > 3 edges joining them. We conclude 
that the rooted maps of Type II are the multiple extensions of the simple 
rooted maps of this kind. We may now repeat the argument for Type I, 
with qn redefined as the number of rooted non-singular maps with n edges 
which are not of Type II. All the steps in the proof remain valid. Hence the 
rooted maps of Type II are enumerated by the same function, 
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(B(x) - 2xf 
B{%) - x ' 

as those of Type I. We can explain this coincidence by proving that the maps 
of Type II are the duals of those of Type I. 

It is clear from the definitions that no rooted map belongs both to Type I 
and to Type II. 

Type I II . M belongs neither to Type I nor to Type II . 

Referring to Figure 4 we observe that a rooted map of Type III must have 
at least 6 edges. 

We write any 2-separation of a rooted map M of Type III as an ordered 
pair {X, Y\, with A G X. A terminal 2-separation, defined by a terminal 
2-separator, is a proper 2-separation {Xy Y] such that no other proper 2-
separation {X', Y'} satisfies Y C Y\ 

For rooted maps of Type III we have the following theorems: 

(8.4) If [a, b; U, W] is a terminal 2-separator of M, then a and b are not 
both ends of A. 

Proof. Otherwise there would be at least three (a, ô)-arms, one having the 
single edge A, and so M would be of Type II. 

(8.5) Let [a, 6; U, W] and [au bù Uu Wi] be distinct terminal 2-separators 
of M. Then the pairs {a, b} and {au bi} are distinct. 

Proof. Suppose a = &i and b = bu Let the given 2-separators determine 
2-separations {X, Y] and {Xlt YJ respectively. Let H be the (a, £)-arm 
containing A. Then H includes no edge of Y or Yu Using (8.4) we deduce 
that {E(H), E(M) — E(H)\ is a proper 2-separation of M, and that 
F U F i Ç E(M) - E(H). This contradicts the hypothesis that [a, b; U, V] 
and [au bù Uu Wi] are terminal. 

(8.6) Let [a, b; [/, W] and [au b\\ Uu Wi] be distinct terminal 2-separators 
of My determining 2-separations {X, Y] and {Xlt Yi] respectively. Then 
YC\ Yi = 0. 

Proof. Suppose Y C\ Y\ is non-null. If a\ and b\ are both incident with 
members of X, or both with members of F, then Y = Yi by (8.5) and the 
terminal condition. Otherwise the 2-separation {X P\ Xi, Y r\ Y\\ is improper 
and M is of Type I. 

In view of these results we may assert that M is a multiple extension of a 
rooted map Mo obtained from M by replacing the set Y in each terminal 
2-separation {X, Y) by a single edge joining the vertices of the corresponding 
terminal 2-separator. The map M0 is 3-connected since any cut-vertex or 
proper 2-separation of Mo would be converted by the operation of multiple 
extension into a cut-vertex or proper 2-separation of M. Moreover Mo has 

https://doi.org/10.4153/CJM-1963-029-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-029-x


A CENSUS OF PLANAR MAPS 2 6 3 

at least four edges since otherwise the extension would be of Type I or Type 
II. Thus Mo is a c-net. We call it the (3-connected) core of M. 

Conversely it is easily verified that any multiple extension of a rooted c-net 
Mo has Mo as its 3-connected core. 

Let cn, n > 4, be the number of rooted c-nets of n edges. Write 
oo 

C(x) = S cnx
n. 

Since any non-singular rooted map of 3 or more edges is of just one of the 
types I, II, and III we can combine the foregoing results into the following 
functional equation, in which U(x) denotes B(x) — 2x: 

(87) U(x)-x'+ 2Ui(x) + « C ( * " 1 ^ « ) ) 
(8.7) U(x) - x h x + u{x) + x-lu{x) . 

Writing z = x~lU(x) we obtain 

(8.8) coo = z2 - Y^rz - xz. 

To complete the determination of the function C(z) we must obtain x in 
terms of z. 

In the notation of Section 6 we have, putting y = u~1U(u), 

y = u^Biu) - 2 = u^Aix) - 2 

97,(2 + v) - » ( 3 + 2V) 

„(3 + „)2 (3 + „)2 ' 

9f j=-( i + l)(* + 3). 

Hence, by Lagrange's Theorem, 

But x is the same function of z as u is of y. Hence 

_ _ I V 2" t n*l J"1 h* + v)™ 2(3 + » ) w l 1 
~ 9 £ i n P } LHi=I\(Z + 2r,y (3 + 2,)" j J 

\2»+2 
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1 co n 

--J5.V-»" 
i^(n- lV-2) r(w + r - l ) ! +r+3 (2« + 2)! 

X l £ l \ r ) 3 B + r (»- l ) ! 6 (n + r + 3)! 

&(n-l\ (-2)'(n + r-l)l +r+2 (2n + 1)! \ 
£ o \ r ) 3B + r(n- l)! 6 (n + r + 2)\) 

ly> (-l)"(2n + l)!2B 

x i 2 7 f ï W _ 1 V - 2 ) ' ? » ± 2 
^V ' t foV r )K ^ (n + r)(n + r+l)(n + r + 2)(n + r + 3) 

~ 1 8 S \ f / ( _ 2 ) r (» + r)(» + r + 1)0 + r + 2)/ 

f, (-l)"(2«+l)!z" 
£i «!(«-!)! 
Jy(n-A(_2Y 2(2W - r) \ 

_ A (-l)"(2«+l)!2"r ^ /» - l V _ „ v / _ J L _ 
£ l n ! ( » - l ) l L£lA f /*• ; U + r 

" + 1 11 
« + r + 3J_l' 

3» + 1 , 3 » + 2 
M + r + 1 n + r + 2 

<89> *-£f^{»X'<1-<>'<'~,<2<-ir'* 

= - £ i?n2n, say. 

We denote the integral 

f tn+s(2t - l)ndt, n > 0, 

in the cases s = 0, 1, 2, and 3, by Jn, i£n, Lny Mn respectively. Using integra­
tion by parts we obtain the following identities, valid for n > 1: 

,,10, j^'.-iS^j, 

(8.11) K „ , - j L + ï / _ „ 
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(8.12) A , - 1 ~ 2 w 2n J" 

(8.13) Mn^ = 3w + 2 « + 2 /». 8w(» + 1) 8w 
Using these formulae we can express R„ in terms of Jn, as follows: 

(8.14) Xu = ( ^ } * ) ! {(27«2 + 9n - 2 ) / . - (9» - 2)}. 

We use this relation to define R0. Applying (8.10) we obtain a recursion for­
mula for Rn. The result is 

2(2»)! 
(8.15) SnRn-i + 25n_ii?n — 

(*!)" 
» > 1, 

where 5n = 27w2 + 9» - 2. By (8.8) we have also 

(8.16) cn+1 = 2 ( - l ) w + 1 + 2^, * > 3. 

It is easy to verify that J0 = 1 and i?o = 0. Formula (8.15) enables us to 
compute Rlt R2, Rz, and so on. In this way a table of values of cn has been 
constructed (see Table I). 

TABLE I 

n Cn 1 n 
Cn 

4 0 1 15 7,296 
5 0 16 24,460 
6 1 17 82,926 
7 0 18 284,068 
8 4 19 981,882 
9 6 20 3,421,318 
10 24 21 12,007,554 
11 66 22 42,416,488 
12 214 23 150,718,770 
13 676 24 538,421,590 
14 2,209 [ 25 1,932,856,590 

The c-nets of up to 11 edges are shown in Figure 7. The numbers are to 
be interpreted as for Figure 4. 

From (8.15) we obtain, for n > 2, 

K 1 i^-x _ (2») ! 1 
•S„ 2 5„_i (»!) 5n_i5n ' 
1 * - i + I .*-* _ i (2« ~ 2)! 1 
2 5„_1 ' 4 S„-2 2 ((» - l)!)2 5B_25„_1 ' 

JZ. 1 i?„-2 _ (2» - 2)! (25„_2.2w(2w - 1) - n2Sn) 
Sn 4 5n_2 2(«!)25re_25„_15n • 

_ n(2n - 2)! (189w3 - 891n2 + 1098n - 352) 
2(«!)25B_2SB_15B 
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* ay 

FIGURE 7. 

Applying Stirling's Theorem we find that for large » the expression on 
the right is asymptotically 

7»-9/24" 
8.729 V T * 

From these results we can deduce first that Rn/Sn —* °° as « —» » and then that 

R* ln 
Sn 8.729 ̂ { 1 + ? + ? + ?+- - ) = 

7n-9/24n 64 
8.729 V V 63 ' 

whence 

(8.17) Rn-l 
2n*'%* 

'243 V * 

9. Unrooted c-nets. The plausible, but unproved, assumption that 
almost all c-nets are unsymmetrical implies that the number of unrooted 
c-nets of n edges is asymptotically 

n~v\n 

4n 4 8 6 V * ' 
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c-nets have been studied in connection with the theory of simple perfect 
rectangles (2, 3, 4). Experience suggests that an unsymmetrical c-net nearly 
always gives rise to n simple perfect rectangles of order n — 1. As such a 
rectangle can be obtained from two (dual) c-nets, we can now conjecture 
with some confidence that the number of simple perfect rectangles of order n 
is asymptotically 

n-h,\n 

243 - \A* 

10. Simple triangulations. The triangulations studied in (12) are the 
rooted 3-connected triangular maps. Such a map is called simple if each 
simple closed curve made up of 3 edges is the boundary of a face. In (12) 
the number of simple triangulations with n + 3 vertices is denoted by 0n#o, 
and it is shown (12, § 7) that, for n > 0, 

(10.1) *n,o = ^ + 3 J - ( - I ) * ( 1 6 * * + 10) 

+ 
nn + W T1 ( 3 n + l - j ) l ( 3 i - 3 n - 4 ) l 
{Sn + 6h h j \ (3n - j + 4)! (2n + 1 - j)l) 

Here we discuss a simplification of this formula which was overlooked in (12). 
From (10.1) we have 

*».o = 2 ^ { - ( - D " ( 1 6 » + 1 0 ) 

(3w + 3 ) ! y (2n + l \ 3j - 3n - 4 \ 
+ ( 2w+l ) !£ fo \ j J (Sn-j + 4)(3n-j + Z)(3n-j + 2)} 

= 2 W i [ - ( - l ) " ( 1 6 « + 1 0 ) 

(3w + 3 ) ! y /2n + l \ / 3ra + 1 _ 6w + 5 3« + 4 \~| 
+ ( 2 w + l ) ! ^ o \ j Jhn-j + 2 3 » - j + 3 i " 3 » - j + 4 / J 

= 2 ^ w [ - ( - l ) " ( 1 6 » + 1 0 ) 

+ fzX% {(3w+4) J „ 1 ( 1 - ' ) V ( l + < ) 2 B + 1 * 
- 3 j \ l -t)tn(l + t)2n+1dt\\. 

Using integration by parts a recursion formula reminiscent of (8.15) can 
be obtained from this expression. This time we find, for n > 1, 

(10.2) ^n_i j05B + 40re,o5„_i = - /2M _i_ ^\j > 

where 5M is now 8» + 5. With the help of (10.2), <j>n,0 has been computed up 
to n = 21 as shown in Table II. 
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TABLE II 

n <t>n,0 n 4>n,0 

0 1 11 164,796 
1 1 12 897,380 
2 0 13 4,970,296 
3 1 14 27,930,828 
4 3 15 158,935,761 
5 12 16 914,325,657 
6 52 17 5,310,702,819 
7 241 18 31,110,146,416 
8 1,173 19 183,634,501,753 
9 5,929 20 1,091,371,140,915 

10 30,880 21 6,526,333,259,312 

11. A further discussion of bicubic maps. Let /„ denote the number 
of rooted bicubic maps of 2n vertices. Write 

F(x) = t,fnxn. 
7 1 = 1 

The value of fn can be obtained by summation from (4.2). We note that 

y W^1
 a 2d - ex)-"* 

^ ( 2 n - l ) ! x " _ 1 / 2 _ 

h »! (» - D! " 2U } '' 
Applying these results to (4.2) we obtain 

xj^f^}]. 
d_ 

dx 

j / ( l - 4 x ) - 1 / 2 -

-£<^(£)"[{ii-if^r' 
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Here ( T~ ) / i s interpreted as 

Vfdx. 
«Jo 

by 

(11.1) X(») = x + 4 ( 1 " 4 X ( 2 ) ) " 1 / 2 ~ 1 } = fll + (1 " 4XC,))-1'2}. 
Then by Lagrange's Theorem we have 

(ii.2) ± (**(*))={^^}2+i^f^}=^ -1. 

f o 

Let X(#) be defined implicitly by 

Now 

X^) = | { l + 2 ( l -4X( , ) ) - + r r ^ } 

= |{2 + 2(l-4X(,))--)+|{ï^i^-l} 

w v x2X(x) 
x\{x) H ^ -

1 - 4X(x) * 

Since X(x) is not identically zero this implies 
2 

x 
X(*)=* + r__4X(x), 

4X2(x) - (1 + 4x)X(x) + x(l + x) = 0, 

x , v 1 + 4x — \ / l — Sx 
M*) = g . 

since X(x) has a zero constant term. Hence 

32X2(x) = (1 + 4x)2 - (1 + 4x)(l - 8x)1/2 - 8* - 8x2 

= 1 + 8x2 - (1 + 4x)(l - 8x)1/2. 

Applying these results to (11.2) we obtain 

On integration we find 

F(x) = ̂ 2 {-1 + 12» - 24x2 + (1 - 8x)3/2} 

^ (2n + l ) ! „ re+1 

- b èo«!(n + 3)! 2 * 
= * + 3x2 + 12x3 + 56x4 + 288xB + 1584*6 + 9152a:7 

+ 54912s;8 + 339456a;9 + 
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The bicubic maps of not more than 8 vertices are shown in Figure 8. 

Each rooted bicubic map can be represented as a multiple extension of a 
3-connected bicubic core. If 

G(X) = E gnXn 

enumerates the rooted 3-connected bicubic maps of 2n vertices we can accord­
ingly deduce the functional equation 

F(x) = G(x(l + F(x))*). 

From this we find 

G(x) = x + x* + 3x* + 7x7 + 15x8 + 

But so far the coefficients are more easily obtained by actual counting. 
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