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Thermodynamically, as we have mentioned, there is a Trelation between
magnetic and gas-liquid systems. As we have just seen, this relationship
takes the form of precise identities for the lattice gas and Ising magnet, but
it goes without saying that these identities are not generally valid.

We conclude this section with a brief mention of the binary-alloy inter-
pretation of the Ising model.

For a binary alloy we take the parameters ¢, for the lattice gas to be

1 if site P is occupied by an A atom
(2.22)

tP =
0  if site P is occupied by a B atom.
Then if €44, &sn, and g,p denote the coupling (interaction) constants for
nearest-neighbor A atoms, nearest-neighbor B atoms, and nearest-neighbor

A and B atoms, respectively, the interaction energy is given by
E{t} = “PZQ* {eantplo + ezp(1 — 1)1 — to)
+ eapltp(l — 1) + to(1 — o)1} (2.23)

for a particular configuration {t} of A and B atoms. It is left as an exercise
for the reader to set up an isomorphism between the binary alloy and the
magnet. It is almost obvious, for example, that the binary alloy with the same

‘number of A and B atoms corresponds to a magnet with zero external field.
' From this point on we shall mean the Ising magnet when we refer to the
Ising model (or problem).

5.3 One-dimensional Model and Transfer Matrix

Let us consider first the one-dimensional open-chain model (Equation.1.3)
with zero external field. The problem is to evaluate the partition function
(Equation 1.8)

N-1
Zy= > exp(v _Zl Hi By 1) . 3.

p1=t1,.., un=%1

where\5= J) Because of the one-dimensional structure (cf. the Tonks gas)
we can separate off and sum over the Nth spin yy to get

N-2
Zy=2coshv. ) exp(v Y M+ 1)
pi=tl,..,py-1=%1 i=1

= (2 cosh v)Zy_1, 3.2)
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uN=1%

Z 1CXP(V#N— 1Y) =@
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Z,= ), expip

pr=x1l,p=x1

= 3, lexp(vuy) +e

pr=%1

=4 coshv
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Zy = 2(2 cosh )" 1.
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where we have used the fact that since py_; = +1,

Z+ ) exp(Vily— 1 ty) = eXp(Viy—1) + eXp(—Vily_y) -
pn=*
exp(v) + exp{—v) (3.3)

=2coshv

for either py_, = +1 or —1. The recurrence relation (3.2) together with the
obvious fact that

Z= 1§2=i exPOVA i)
=, 2, [oP0m) + exp(= )] | (3.4
=4 coshv
gives -
Zy = 2(2 cosh ¥ ~1, ' (3.5)

The free energy per spin ¥ in the thermodynamic limit is given by

__‘ﬁ_: lim N™* log Zy
kT Now
' (3.6)
= log(2 cosh v),
which "is a completely analytic function of v, and hence temperature
(v=J/kT), for all positive temperatures. Hence, as expected, there is no
phase transition. ’ ]

It is obviaus that the elementary device leading to the recurrence relation
(3.2) will not work if there is an external magnetic field, or in dimensions
greater than one even with H = 0. Although it is possible to solve the open-
chain problem in an external field, it is considerably easier to consider the
(closed) periodic chain (Figure 5.3). In the limit N — o0 we would expect
identical results, and this, as we will see, is the case.

For the periodic chain (uy,; = 1;) in an external magnetic field H the
problem is to evaluate

. N N
Zy= {Z}GXP(VZ Wifirq + B Zlﬂi), 3.7
2 i=1 i=

Whern{B = ﬁH;. If we define

B
L(pis fysq) = CXP[V/vLilliﬂ + ) (u; + #i+1)] (3.8)
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we can write

Zy= {Z}L(ﬂn Hz)L(ﬂz s H3) o Lluy -1, .“N)L(#N, H1)s . (3.9)
u

which has the form of a matrix product. Indeed, if L is the 2 by 2 transfer
matrix with elements L(u, p") defined by Equation 3.8, i.e.,

. L(+1, +1) L(+1, =1)
—(L(——l,—!—l) L(—l,—l))

3 (eXp(v +B) exp(—v) ) (3.10)

exp(—v) exp(v — B)
we have, after summing in Equation 3.9 over u, = %1, ..., uy = 1, that

Zy= Z LYy, p)s ' (3.11)
pi=x1

where IN(u, ') denotes the (u, u') elements of the matrix L raised to the
Nth power. Zy (Equation 3.11) is therefore the sum of the diagonal elements
of IV, i.e., the trace of I¥. Now since the trace of a matrix is the sum of its
eigenvalues and the eigenvalues of L are the eigenvalues of L raised to the
Nth power, we have that

ZN:Tr(LN) o | (3.12) .‘

=M + 23,
where A; and A, are the eigenvalues of the matrix L (Equation 3.10). The

eigenvalue equation is

exp(v + B) — 4 exp(—v) :
Det = A% —2)e” cosh B + 2 sinh 2v = 0,
exp(—v) exp(v — B) — 4

(3.13)
which gives
. .
/11} = ¢’ cosh B + (¢*" sinh® B + e~ 2")/2 (3.14)
2 .

for the eigenvalues of L.
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Noting that A,/1, is strictly less than unity for all v > 0 we have that
oo
T 1\1{1_1'130 N7 log Zy
= lim N7 log {21 [1 + (,/A)"]}

N-w

=log A, + lim N~ log[1 + (1,/4,)"] , (3.15)

N—oo
= log 4, .
= log[e” cosh B + (¢*” sinh? B + e~ 2")1/?],

When B = 0 the right-hand side of Equation 3.15 is log(2 cosh v), which is

precisely the expression (Equation 3.6) for the open chain. Further, from
Equation 3.14 with B = 0, '

Ay =2cosh v,

(3.16)
A, = 2sinh v,

so, from Equation 3.12, the partition function for the finite chain is given by

-Zy = (2 cosh v)¥ + (2'sinh v)¥, (.17

which obviously differs from the open-chain-result, Equation 3.5. In the
thermodynamic limit, however, only the maximum eigenvalue (A,) contri-
butes. We will see that this is generally the case in applications of the transfer-
matrix method.

Note that the magnetization per spin computed from Equation 3.15 is
is given by

-5 ()
"=\ T iT (3.18)
= sinh B(sinh® B + e~*")71/2,

In zero field (B = 0) the (spontaneous) magnetization is zero, as expected,
for all finite temperatures (v > 0).

5-4 Transfer Matrix for the Two- and Higher-dimensional Models

The advantage of the matrix method is that it can be easily generalizedl to two
or more dimensions. Let us consider first the two-dimensional problem on a
square lattice wrapped on a cylinder (i.e., periodic in columns but not rows),
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as shown in Figure 5.4. The interaction energy is given by (Equation 1.2
With g, nt1 = Hi, 1) ’

E{y} = "J_Z Zlui,j“i+1,j - J_Zl leli,j#i,jﬂ - Hzl Zlﬁi,j- 4.1
i=1 j= j=

1
1 = E A

If we now denote a column configuration by g, L.e.,

O-jz(:ul,j:ﬂz,ja'--:.um,j) 4.2)

(there are a total of 2™ possible configurations for each column), we can write
E{u} as a sum of two terms—the interaction energy of columns and the
interaction energy between nearest-neighbor columns—i.e., if we define

i+1
Y

G+ 1,7

—h____._/
an G j+ 1)

77

S By

.
=

L

FIoURE 5.4. Two-dimensional Ising lattice wrapped on a cylinder.
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m—1 m »
_ Vi(a)) = “J__zl Hi i, 5 — Hz,lﬂi,j (4.3)

to be the interaction energy of the jth column, and
Va(0), 6541) = ‘J'le'ti,j Ky, j+1 . (4.4

to be the interaction energy between the jth and (j + 1)th columns, we can

write (0,41 = 0;) -

E{/u} = E{Gla 0-27 e Jn}

" 4.5
=3 (0) + Valoy, o001 *-5
=
The partition function can then be written as
Zn, m = (Z:}exp(—ﬁE{ﬂ})
m
= ) eXP[_ﬂ( ZI{VI(J_]') + Va(a;, 0'j+1)})]
Tlyeney an J=
= Z Loy, 62)L(03, 03) -+ L(oy—1, 0,)L(a,, 0y) (46)

= Z Ln(ab 0-1)7
o1

where from -Equations 4.3 and 44 with ¢ = (lys Uy ooy hy) and o =
(B1s Bas voes ),

L(o, ) = exp[— BV1(a)]exp[ - fV,(0, 0')]

m=—1 m
= eXP(" '—21 Milkiyy + B.Zl,ui)eXP(V.

1

INgE]

Hi i

) : (4.7)
with l

v=fJ and B=pH. , (4.8)

Alternatively, we can take the symmetric matrix (as we did for the one-
dimensional model)

L"(o—, o) = exp[« g Vl(d)ji exp{ — fV,(o, 0/)]GXP{‘“ g V;(O'/)]

ym-1 B m m ,
= eXP(‘z‘ ‘—21 Pilivy T 3 Zlﬂi) CXP(V_ZIM ﬂi) (4.9)

vm—l ., B m ,
X eXP(E Y il Z#i)~
S\Za=1 =1
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The final result is, of course, the same. L"(g, ¢) in Equation 4.6 denotes the
(6, o) component of the 2™ by 2" matrix L with elements 4.7, raised to the
nth power, i.e., by analogy with Equation 3.12,

Zy, = Tr(LY)

- : 4.10
=Z/1j? ( )
ji=1

where A, > 4, > -+ > 1, are the eigenvalues of the 2" by 2" matrix L. If
now, in the thermodynamic limit, we allow n to approach infinity before m
(this is convenient rather than necessary), we have for the free energy per

spin ¥,

- % = lim lim(mn)"'logZ, ,

m—r o B0

m— o M=y o0 Ln— o

2m
= limm™'log A, + lim [hm (mn)~1 log(l + ) (lj/zll)")} (4.1
v j=2

= limm™ ! log A,.

So the problem has again been reduced to finding the largest eigenvalue of a
matrix, but notice the dramatic effect of dimensionality: In one dimension
we had only to find the largest eigenvalue of a 2 by 2 matrix, but in two
dimensions we have to find the largest eigenvalue of a 2™ by 2™ matrix and
then let m approach infinity! : .

The manipulation leading to Equation 4.11 can be repeated essentially
word for word in three and higher dimensions, Thus in three dimensions,

for example, we define ¢; to be the configuration of the jth (two-dimensional) -

plane and build the lattice up by planes. V,(c;) then represents the interaction
energy of a plane and V,(c;, 0;,) the interaction energy of nearest-neighbor
jth and (j + Dth planes, and so forth. The interested reader can fill in the
details for himself. o

The two-dimensional problem with H = 0 was solved by Onsager (1944)
in one of the most celebrated articles of modern times. The corresponding
problem in three dimensions and the two-dimensional problem with H # 0
are unsolved.

There have been many simplifications in the derivation of the Onsager
result since 1944, but even the simplest are rather complicated. We shall
present in the following section only a statement and discussion of Onsager’s
result. A detailed derivation based on Equation 4.11 is given in Appendix D.

Sec. 5-5 The Onsager
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" 5-5 The Onsager Solution of the Two-dimensional Model

/

7
K

By a masterly application of Lie algebras and group representations, Onsager
found the largest eigenvalue of the transfer matrix, Equation 4.7, with H = 0,
to be

by = @ sinh 202 expli(ys + 73 + o+ Vam Db 5.
where y, is defined by
. nk
cosh y, = cosh 2v coth 2v — cos(——) (5.2)
m
and

(5.3)

erivation of this result is given in Appendix D.
The free energy per spin ¥ in the thermodynamic limit is then given, from
Equations 4.11 and 5.1, by

T :}lgnzon1'1 log A,

- m—1 (5.4)
‘= 1log(2sinh 2v) + Lim 2m)™" 3 Yokt

m—r o k=0
In the limit m — oo the sum in Equation 5.4 approaches an integral (see
Equation 5.2}, so that

- % = 1log(2sinh 2v) + (2m)™! f cosh ™ *(cosh 2v coth 2v — cos 6) d6.
0
(5.5)
Use of the identity
cosh™!|z] =n-1f log[2( z — cos ¢)] dp (5.6)
0

allows us to write

o1 . 1
— = ~1
T 2log(2 sinh 2v) + 5 log 2

1 T
e {[10g(cosh 2v coth 2v — cos § — cos $) db dg,  (5.7)
[
0
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which gives the symmetric Onsager formula

- .é//_ =log2 + — H log[cosh? 2v — smh 2v(cos 01 + cos 6,)] 408, dB,.
‘ (5 8)
From Equation 5.8 the internal energy U is given by
o ¥
2 — .
U= —kT oT kT
oy
=T (5.9)
= —Jcoth2v
1 do, do
1+ (sinh? 2y — 1) 12 ]
% [ + (sinh® 2v — 1) m* ” cosh? 2v — sinh 2v(cos 8, + cos 8,)
4]

The integral in Equation 5.9 diverges logarithmically (at the origin
6, = 6, = 0) when cosh? 2v = 2 sinh 2v. To see this, note that in the neighbor-
hood of the origin

cos 04 +cos02~2_.%(9%+9§)+...’

so when 8 = cosh? 2v — 2 sinh 2v ~ 0,

j‘f df, do,
7% JJ cosh? 2v — sinh 2v(cos 8 + cos 0,)
0

” 0,0,
8 + L sinh 2v(6% + 63)
f o (5.10)

§ + L sinh 2v r*

T log s
b 2y 08 191,

where in the last step we have transformed to polar coordinates (0 + 65 =r?,
etc.).
There is a singularity, or phase-transition point, therefore, when

6 = cosh? 2y — 2 sinh 2v =0, (5.11)
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lLe., when v = v, = J/kT,, given by

sinh 2v, = 1. . ‘ (5.12)

In Equation 5.9 for the internal energy U, the integral, Equation 5.10, is
multiplied by (sinh® 2v — 1), which is zero at the critical point v=1y,, It
follows that the internal energy is continuous at v = v, and that in the neigh-
borhood of v, ,

U~ —Jcoth2v,[1 + A(v — v,) log]v — v, ], (5.13)

where A4 is a constant. From this result it follows that the specific heat,
defined by
oU
C=—, : 5.14
Fre (5.19
has a symmetrical logarithmic divergence (e, C~ Blog|v—v,]) at the
critical point v, , as shown in Figure 5.5.
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FIGURE 5.5. Zero-field specific heat C of the two-dimensional square
Ising model. C diverges logarithmically on both sides of thecritical
: point T..
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To obtain the “Onsager logarithm” it is not necessary, as shown above,
to evaluate the integrals exactly. The integral 5.9 can, however, be evaluated
exactly and one finds that

U= — Jcoth 2v [1 + (2tanh® 2v — 1) %K(kl)} K ' (5.15)
Y

where

- 2 sinh 2v

17 Cosh2 2y’ (3.16)

" and K(k,) is the complete elliptic integral of the first kind defined by

n/2 .
K(k;) = fo (1 — k2 sin® )" /2 df. (5.17)

The analysis required for Equation 5:15 1s straightforward and is left as an
exercise for the reader (see Problem 5). The specific heat is obtained from the
definition 5.14 and the properties of elliptic integr‘éls (see Problem 6). It is
given by ‘

2k
C= - (v coth 2v)2{2K(k1) — 2E(k,) — 2(1 — tanh? 2v)
[7—; + (2 tanh? 2y — I)K(kl)]}, (5.18)
where E(k,) is the complete elliptic integral of the second kind, defined by
/2 :
E(k))=[ (1 —k}sin® 6)'/% do. (5.19)
o]

In the neighborhood of k; = 1— (see Problem 7)
K(ky) ~log[4(1 = kD71, (5.20)

so from the exact result (Equation 5.18) we obtain a logarithmically divergent
specific heat.

As remarked previously, the two-dimensional model in an external field
is an unsolved problem. Nevertheless, by various indirect means a number
of people have obtained an expression for the spontaneous magnetization, or
what is thought to be the spontaneous magnetization. Thermodynamically

the spontaneous magnetization is defined by
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. 0 W )

me= lim —— 1 — - 5.21

® 7 Heos a(ﬁH)( kT , (5.21)

with the limit H -0+ taken after the thermodynamic limit. An exact
evaluation of m,, therefore, really requires the solution of the H # 0 problem.
Indirect methods based on alternative definitions of spontaneous magnetiza-
tion, which we shall not go into here, suggest that -

: — (sinh 2y) "#]\/8 T
.moz{[l (sinh 2v)™*] T <T, (5.22)

0 T=1,,

but we stress that nobody has actually proved that this expression agrees with
the definition (Equation 5.21).

The expression 5.22 was first derived by Onsager in the middle 1940s, but
in true Onsager fashion he has not to this day published his derivation. He
tantalized numerous people by writing down Equation 522 in various places
[Onsager (1949)], and it was not until 1952 that C. N. Yang [Yang (1952a)]
gave the first published derivation. Yang’s derivation and others given
recently [e.g., Montroll et al. (1963)] are extremely complicated. In view of

the simplicity of the final result, this fact is both surprising and frustrating.

The two-dimensional problem has been reformulated and solved by many
people in a variety of ways, in the hope that a new derivation would light the
way for a solution to the three-dimensional problem. This hope has unfortu-
nately not materialized as yet, although many interesting results and inter-
relations between mathematics and other branches of physies have emerged.
‘Most notable among these is the relation between the Ising problem and
combinatorial mathematics. Some new results in combinatorics have been
obtained by this pursuit, but unfortunately little has been added to our
knowledge of the Ising model. We shall devote Chapter 6 to the combinatorial
approach to the Ising problem.

In conclusion we remark that all methods to date can be applied with only
mild variations to other two-dimensional lattices (e.g., triangular and hex-

- agonal) and to lattices with different coupling constants in different directions.

Although the critical ‘points are different in each case, the critical behavior
is the same—a logarithmically divergent specific heat and a ¢ power law for
the spontaneous magnetization. We shall have more to say about this lattice
invariance of critical behavior in Chapter 6. '
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5-6 Correlation Functions, Eigenvalue Degeneracy, and
Long-range Order '

The pair-correlation function {1y s defined-in general by
ety =Zy ! {Z} ity €xp(— BE{u}), 6.1
I
where E{u}, Equation 1.1, is the interaction energy, i.e.,

Eut = -J Z* pp g — H Z Hp - (6.2)
F 2v7) P

Similarly, one defines three spin-correlation functions gy pi; i,,>, ete.

The one spin-correlation function {y;) is essentially the magnetization
(=N"* Y, (u> = (> for periodic lattices), which vanishes for finite N
when H =0 because of the symmetry of the interaction energy under the
transformation pp — — up, all lattice points P.

In zero field the pair-correlation function is of particular interest since it
in a sense measures the *“degree of order” of the lattice. Thus if r,; denotes
the distance between lattice points k and [ and

p= lim Lm (upp (6.3)

riy—+o N=rw

exists and is nonzero, we say that there is long-range order, which is to say
that spins g and y; are not independent of one another when separated by
an infinite distance.

It seems reasonable that if long-range order exists, there will be a phase

transition (i.e., a nonanalytic point of the free energy). This, in fact, mrast be
the case if there is long-range order at (sufficiently) low temperatures and
zero long-range order at (sufficiently) high temperatures, since an analytic
function cannot be nonzero in one region and identically zero in another
tegion. On the other hand, if there is a nonanalytic point of the free energy,
1t is conceivable that there will be no long-range order at any temperature.
This is indeed the case for an antiferromagnet, where {u, ;> oscillates in
sign, but for a ferromagnet the question is still open. There is a suggestion
that one can have a ferromagnetic transition (divergent susceptibility as
T — T,+ for the two-dimensional Heisenberg model) with zero long-range
order at all temperatures. There is also a suggestion that one can have a
nonzero spontaneous magnetization without long-range order, but at the
moment there is no proof of either statement. Since most of the recent work
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on the existence and nonexistence of phase transitions in lattice models is
based on long-range-order considerations, it would be extremely valuable to
settle these questions. The interested reader is referred to the article by
Griffiths (1966), where the problems are stated most clearly.

For the one-dimensional model the evaluation of {y, Uy 18 straightforward,
particularly for the open chain (see Problem 8). We shall consider here the
slightly more complicated closed-chain problem in order to facilitate the
discussion of the two-dimensjonal problem.

In one dimension with periodic boundary conditions (i.e., a closed chain of
N spins with py,; = )

N N
ey =Zy'! {Z} Hy Hy ©XP (V Zl.“j Hij+1+ B Zlﬂj)s - (6.4)
Z j= i=
where v = J/kT and B = H/kT. Defining as before (Equation 3.8) the transfer

matrix L with components

L(u, ©) = exp[vuu +op+ u)] (69

Equation 6.4 can be written, assuming ! > &, as
{epy =Zyt {Z} Lipgs ) Lt 1> pt Lt » Hic+1)
"

L g ) Ly, e g) Liny, u1)- (6.6)
Summing over all u; = +1 in Equation 6.6 except , and u; gives

ey = Zy* Z+ 1:” o AL (T wm L™y, ), (6.7
ﬂk— =
=%1

where I (i, 1) denotes the (4, 1’) component of the matrix L raised to the
sth power. Now

. 2
E(/J'a /.L,) = jglij. ¢j(ﬂ)¢j(ﬂl)! ) (68)

where A; and ¢; are, respectively, the eigenvalues and corresponding eigen-
vectors of the matrix L. For example, when H =0 (see Equations 3.10 and

3.16),

Ay=2coshv, 1,=2sinhv, (6.9

and

¢1(+1)) 3 (1) (¢2(+1)) ) ( 1)
¢ 272, )= =2712 . 6.10
o (sbl( AR A P o O
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In general, from Equations 6.7 and 6.8 and the fact that (Equation 3.12)
Zy=M+25, . - (6.11)

we have

=GR ST AT b0 4 00

not
. Nie1 2 ii N—-I+k /'{j i~k 2
G 3 (B)TT(G) G (6.12)
L5210 \Ay Ay
where
(bis ue)) = Hu%(u)qu(#)- : (6.13)
p=% ] .
Now for fixed k and I, since 4, < 44,
)V N—-I+k
lim (——‘) o =0, (6.14)
N—+ow )q
Also, since limy_, o, (A2/4)Y =0,
) 2 /p NIk )
pu=tim Gy = 3 () @0 0 L (619)
N—+w Jj=1 1
In zero field, from Equation 6.10,
(b1, ) =65, 2. (6.16)
Hence, from Equations 6.9 and 6.15, .
: /12 1-k ) ’
Pr1 = (—‘) )
Ay (6.17)

= (tanh v)) 7 (> k).

For finite N and H = 0 it is easily verified from Equations 6.9, 6.10, and
6.12 that (I > k)

Cui > = [1 + (tanh v/']~* [(tanh v)!~% + (tanh vV~ 4], L (6.19)
As expected, from Equation 6.17,
lim py= lim (tanh»)* =0 . (6.19)

fe—1|— o0 Jk—1]—+ o

for all v>0; ie., there is no long-range order in one dimension for any
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1t (Equation 3.12)
6.11)

1) /15‘- kﬂz ® j(ﬂk)¢ j(.ul)

18P, (6.12)

(6.13)
(6.14)

(6.15)

(6.16)

(6.17)
1ations 6.9, 6.10, and

L4k (6.18)

(6.19)

1¢ dimension for any
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finite temperature. (At zero temperature corresponding to v — oo there is,

of course, long-range order; in fact, there is complete order.)

In two dimensions the above derivation can be repeated essentially word
for word with only slight changes in notation. Thus consider the pair-
correlation function (g ;i ;4,> of two spins in the kth row and the
Ith and (I + r)th columns, respectively. Since the 2" by 2™ transfer ma-
trix L(s, ¢’) (Equation 4.7) transfers from one column with configuration
0 =(Us, ..., Iy) to the neighboring column with configuration ¢ =
(11, - 5 i) We can write, by analogy with Equations 6.6 and 6.7 ,

<ﬂk, I 140 ) = Zn—}n {Z)Mk, 1 M, 1+ €XP(— BE{})
o

: (6.20)
= ;}n Zf‘k Lo, oYy ' (d, o),

where o and ¢’ denote, respectively, the configurations of the /th and (I +r)th -

colums. Using (see Equation 6.8)

2m
Lo, o) = _lei $(@)p (s, (6.21)

where 1; and ¢; are, respectively, the eigenvalues and corresponding eigen-
vectors of the matrix L, enables us to write

27’"
<4u'k, lﬂk, l+r> = Zt:rln . Z ll?_r/l;((ﬁi > Hi ¢j)25 (622)
i, j=

where it is to be noted from periodicity that the scalar product does not
depend on k. Now since (Equation 4.10)

Zm
Zy =y A (6.23)
j=1
we have in the limit n — oo with r and m fixed,

Cu(r) = lim <Nk,zﬂk,z+r>

2m

= 3 () @ mer Y,

i=1

Since the principal eigenvector ¢, in zero field is symmetric ie, ¢.(0)=
¢1(—0)], the j =1 term in Equation 6.24 vanishes, so the question of the
existence of long-range order is now a question of the degeneracy of the
maximum eigenvalue 4; of L. For finite m we can appeal to a theorem of
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Frobenius [see Gantmacher (B1964)], which states that the maximum eigen-
value of a finite matrix whose components are all positive (see Bquation 4.7)
is strictly nondegenerate. It then follows that there is no long-range order for
an infinite (n — co) by finite () lattice. That is, from Equation 6.24, since the
j =1 term vanishes and (Aj/Ay) < 1forall j = 2,
lim C,()=0. ; (6.25)
(m Fixed) '
In the limit m — o0, however as shown in Appendix D, 4, becomes asympto-
tically degenerate for T < T, (i.e., for temperatures below the critical tempera-
ture). Precisely, we have

&<1 forallmand T > T,

7 | | (6.26)

=1-— 00" asm— oo and T < T,.
It follows from Equation 6.24 that

lim(¢q, p¢,)* >0  for T<T,
lim lim C,(r)=

r—> o m-+ow

mre (6.27)
0 A for T>T,;

i.e., there is long-range order below T, and zero long-range order above T,
as one might have expected.

It is clear that, in general, whenever one has a formula such as Equation
6.24 that long-range order exists if and only if the maximum eigenvalue A4
is asymptotically degenerate [i.e., limy,-, o (AfA) =1 and (¢;, uo,) # 0 for
all m). Thus from Equation 6.24"

r am
)= () L@nwor
2N 2 2
= () @1 100 (6.29)
1

-
={z)

where in the second step we have made use of Parseval’s theorem. It follows

from Equatlon 6.28 that if A, is not asymptotically degenerate, there is zero
long-range order. Similarly, from Equation 6. 24)

cm>()mef | 6.29)
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it follows that there is long-range order if 1, is asymptotically degenerate and
lim,, (1, 4P,) # 0, which proves the assertion.

Tt has been suggested by Kac (1968) that the phenomenon of eigenvalue
degeneracy may well be a general mathematical mechanism for a phase transi-
tion to long-range order. The idea is to construct from the Hamiltonian
of the system under consideration an operator whose largest eigenvalue gives
the (limiting) free energy of the systems, such that a phase transition occurs
if and only if the largest eigenvalue is asymptotically degenerate. This program
has been carried through for a number of model systems le.g., Kac (1968)
and Thompson (1968a)], so it may well turn out that eigenvalue degeneracy
provides a general mathematical mechanism for phase transitions.

To conclude this section we present a physical interpretation of the principal
eigenvector ¢;. !

Consider a particular column of the lattice and denote by P(c) the prob-
ability that the columnisin a particular configuration ¢. By definition

P(0)=Znm {% exp(— BE{u)), v (6.30)

where the primed sum is over all configurations of the lattice with the column
configuration ¢ held fixed. In terms of the transfer matrix (see Equation 4.6)
we can write

Lo, 0)

P(o) =—T—r(—LT)“, . - (63D

and in view of Equations 4.10 and 6.21 (with ¢’ = ¢) we have

lim P(c) = $3(0). ‘ | (6.32)

n—rao

¢%(0), therefore, provides us with another measure of the degree of order of

the lattice. Physically one would expect $2(0) to be concentrated around -

“ ordered configurations” at low temperatures (T'<T)and equally spread
among all 'conﬁguratio'ns at high temperatures (I > T,).
One final point to note is that we have considered above only pair-correla-

tion functions for two spiné in the same row. We could equally well have.
considered the pair-correlation function for two spins in the same colymn.

The final result for this situation (see Problem 9)is

lim (g, 1 Hic+r, D= Z $1(0)tk .Uk+r¢1(‘7), . (6.33)

n— oo

)
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where ¢ = (i, ..., ) denotes the configuration of the Ith column. Eigen-
value degeneracy now does not seem to play any role.in the discussion of
long-range column order. It does, however, appear in a devious way through
the ordered—disordered form of ¢%(c) described above. Note also that by
symmetry, Equations 6.33 and 6.24 are identical in the limit m, n — co. This
rather peculiar identity seems to be extremely difficult to prove directly.

PROBLEMS

1. Consider the lattice shown in Figure 5.6 with spins pp = £ 1 on the (six)
vertices. What is the minimum (i.e., antiferromagnetic ground state) of the
expression S & o ip fg , Where the sum is over nearest-neighbor lattice points
P and Q, and for what configurations is the minimum achieved ?

pp =1

FIGURE 5.6. Six-spin antiferromagnetic Ising lattice.

3. Derive the relations between susceptibility and compressibility, Equétion
2.20, and between specific heats, Equation 2.21 for the Ising magnet and the
lattice gas.

3. Compute the grand-canonical partition function Zs(z, ¥, T) for the one-
dimensional lattice gas with interaction energy '

v
E{ty=—J Y titi1y,
=t

14
where t; =1o0r0,t,,, =1;,and ) ;= N, and
i=1

(2) show that for J > 0 the zeros of Zg(z, ¥, T) lie on the unit circle in the
complex z plane.
(b) Compute the pressure as a function of z.

Problems
4. Consider a2by N1
with interaction energy

N
Elu, w}= —J 3, utti-

, .
(py+1 = py and py4q =
transferring from one c«
Z,  y can be written as

Zyn= Y, exp(—BE

{n, 1%}
where
e’ 1 1
A=l el
e”v 1 1
F

5, By performing one

. energy U of the two-¢

in terms of the complet

K() = j:lz(l ks

6. Derive the result,

d
- =1 -k
k A Kk) =( )
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4. Consider a 2 by N lattice with the Nth column coupled to the first and
with interaction energy

N N
E{p, uy=~J ,Zluiué —J ,Zl(ui iy + [ fies)

(ty+1 =y and py o, = py) for the configuration shown in Figure 5.7. By
transferring from one column to the next, show that the partition function
Z, y can be written as

Zy,w= 2. exp(—BE{u, u'}) = Tr(A"),

{u, 0}
where

3y

e .
1

’ 1 R v =fJ.
e

R o — n

My Ky Hy H3

Ficure 5.7. A 2 by N Ising model.

5. By performing one of the 8, integrations in Equation 5.9 for the internal
energy U of the two-dimensional Ising model, derive Equation 5.15 for U
in terms of the complete elliptic integral of the first kind,

/2 2 oinl -1/2
K(k) = fo (1 — k2 sin? 6)~1/2 dp.

6. Derive the result,

d . '
k= K(k)'% (1- k ) E(k) — K(K),
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where
/2
E(k) = j (1 — k? sin? 6)*/ df
0
is the complete elliptic integral of the second kind.
7. By writing

n/2 '
K(k) = fo (1 — ksin 6)(1 — k* sin® 6)"*/* df

nf2
+ f k sin 8(1 — k? sin2 6)~ /2 d0,
. .

show that
"K(k) ~logl4( — kEH)~Y?] ask—1-—.

8. By summing successively over the Nth, (N — Dth, etc., spins (uy = *1,
uy—1 = 1, etc.), show that

© /N=1
ZJ 1 T2y dy-0) = {Z}GXP(AZIJI'MMH)
D i=

N—-1
=21 (2cosh J).
i=1

By differentiating with respect to Jes Jei1s oo os Jxar and setting' J ;=J all
i=1,2,..., N—1, show that the two-spin correlation function for the open
chain is given by ‘

N-1
e tirry =[Z(T, s Dt {Z} e P+ eXP(J_Zlﬂi #i+1)
I i=
=(tanh Jy  forall N >1.

9, Derive Equation 6.33 for the pair-correlation function of two spins in a
column.
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'CHAPTER 6

The Ising Model: Combinatorial Approach

6-1 Formulation

© 62 Low-temperature Expansions and Lattice Duality in Two Dimensions

6-3 Dimer Solution of the Ising Model in Two Dimensions

6-4 Correlation Functions and Susceptibility

6-5 Numerical Analysis of the Three-dimensional Ising Model
PROBLEMS .

6-1 Formulation

The basic idea behind the combinational approach is extremely simple and
was noted many years ago by Van der Waerden (1941). The problem is to
evaluate the partition function Zy (Equation 1.7 of Chapter 5), which can be
written in the form

Zy =), []" expOvpn o), ‘ GH)
{u} P,Q : .
where the starred product is over nearest-neighbor lattice points P and Q,
v = J/kT, and the sum is over all configurations of the lattice (up = +1).
Expanding the exponential in Equation 1.1 and noting, since ug = +1, that

1 if n is even

o S
(ke ko) luppg  if nis 0dd,

we have

4

exp(vip ,uQ)‘ = §osh v+ fplig si@ v w3
= cosh v(1 + wup Ky),
Whe.ré
® = tanh v. ' ‘ (1.4
| 145 '

e .
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We can then write the partition function, Equation 1.1, in-the form

Zy = (eosh " 3 TT* (1 + ot sg), . (1.5)

where, ¢ is the lattice coordination number and N is the number of lattice

sites (so that )} , = Ng/2 is the total number of nearest nelghbor bonds). -

We now expand the product in Equation 1.5,

H* I+ opppy)=1+w z*ﬂpﬂg + w? Z* Z* e, o, Hp, Ho, + 7
T s T R ‘

(1.6)

and represent each product upu, corresponding to a nearest-neighbor pair

of lattice points P and Q by a bond on the lattice connecting P and Q. For

example, each term in the coefficient of w has the representation shown in
Figure 6.1 and each term in the coefficient of w? has either the representation
(a) or (b) shown in Figure 6.2. In case (a),

_ Hey Mo, e, o, = Hp (o) Ho, = e, tig, . (1.7

and in‘general any point that appears an even number of times in a product
of w’s has its y" replaced by 1. Similarly, any point that appears an odd
number of times has a u remaining. Since '

> u=0 and > our=2, (1.8).

p=x1 * p=x1
it then follows from Equations 1.5 and 1.6 that
Zy = 2%(cosh v)V2 Y n(r)e’, (1.9
r=0

where n(0) = 1 and »(r) is the number of graphs that can be constructed from
r bonds on the lattice with the restrictions that (1) no bond can occur more

e ] ®
L] e——8
[ ® ‘e,

Ficure 6.1. Possible one-bond graphs for the two-dimensional
Ising model.
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@ ® @ @ ®
@ (b)

Ficure 6.2. Possible two-bond graphs for the two-dimensional
Ising model. '

than once in a given graph, and (2) oﬁly an even number of bonds can meet
at a lattice point (e.g., 0, 2, or 4 for the square lattice). The problem is therefore

reduced to counting graphs on a lattice. For simplicity we shall refer to graphs

satisfying conditions (1) and (2) as closed graphs.

This approach is clearly ideally suited to generating series expansions since
one has merely to count graphs. The number of graphs n(r), of course, be-
comes enormous as r increased, particular for three-dimensional lattices.
Nevertheless, a relatively large number of terms have been calculated (15
or so in three dimensions). These expansions are our only real source of exact
information in three dimensions. We shall have more to say about this in
Section 6-5. . . .

To illustrate the counting procedure let us consider the two-dimensianal
square lattice wrapped on a torus. Clearly, there can be no graphs satisfying
‘conditions (1) and (2) for r =1, 2, ot 3. For r = 4 the unit square shown in
Figure 6.3 is the only possible graph, and since it can be in any one of N
places,

n(d) = N; ' | | (1.10)

in other words, there is one square per site. When r = 5 there are no graphs
satisfying the required conditions, and in fact the reader can easily convince
himself that ' .

wr)=0  for r odd. ' (L11)

When r — 6 there are two possible graphs‘ shown in Figure 6.4 and since
there are N of each,

n(6) = 2N; , | (1.12)
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FiGURE 6.3. Onl‘y contributing four-bond graph.

@

®

or

o Ficure 6.4. Contributing six-bond graphs.

- connected graphs shown in Figure 6.5, giving a total or 7N graphs, or a dis-
‘ connected graph consisting: of two disjoint squares. With one square fixed

- tion of $N(IV — 5). It follows that
n(8) = 7N + 3N(N - 5)

N4 eN (1.13)

For larger r the problem rapidly becomes complicated, so we shall stop at
this point.

in other words, there are two hexagons per site. When » = 8§ we can have the

there are N — 5 possible positions for the other square, giving a total contribu- -

Sec. 6-1 Fornuildation
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FI1GURE 6.5,

From 4E‘quation 1.9

Zy =-(2 cosh? »)M[1 -

" For 1afge N, log Zy sho

5that limy_ , N~ " log

1 14 we take logarithm

the logarithm of the br

®® we obtain

" Jog Zy = Nlog2 cos
= N(log 2 co

which Has the required

in Equation 1.14 canct
of the logarithm of Ec

for sufficiently large N

Zy ~ (1 + Y anw")
n=1

expanding the right-h:
with those in Equatior
In general, if r is les
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FiGURE 6.5. Contributing connected eight-bond graphs.
From Equation 1.9 to 1.13 we have that (g = 4)
Zy = (2 cosh® W¥[1 + No* + 2Nw® + GN? + 2N)w® + 1. (1.14)

Tor large N, log Z, should be proportionai to N (since we know from Chapter

5 that limy_,, N ™! log Zy exists). To see how this comes about from Equation
1.14 we take logarithms of both sides of Equation 1.14 and formally expand

the logarithm of the bracketed term. If we do this and retain only terms up to
® we obtain :

log Zy = Nlog 2 cosh 2v + No* + 2Nw® + B3N + $N)0® — $(No*)* 4+
’ :N(10g2005h2v+w4+2§06+%a)8+""), o (1.15)

which has the required form. The important point to note is that the N 2 term
in Equation 1.14 cancels when one computes the free energy. The expansion

_of the logarithm of Equation 1.14 is not legitimate, since the series diverges

for sufficiently large N. One obtains the same result, however, by taking

N

Zy~ (1 +y aw) : - (1.16) -
n=1 ) ' .

expanding the ri-gh‘t-hand side in a binomiial series and equa ng coefficients
with those in Equation 1.14. This process can be made perfectly rigorous.
In general, if 7 is less than the circumference of the torus (ie., r <N Yeind
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“dimensions), n(r) is a polynomial of degree m < r/4 (or <r/[3 if triangles can

occur), i.e.,

n(r) = Na + N?a® + -+ + N"a™. : , (1.17).

Taking logarithms as above, the coefficients of Nz, ..., N ™ yanish and we are
left with

Y lim N~ ! log Zy
k N- o

| . (1.18)
=log2+ %log coshv + Y alVo".
. r=0 " '

The problem then is to compute at*? in Equatior} 1.17. More detailed dis-
cussions of the counting problem can be found in the review articles by Domb
(1960) and Fisher (1965, 1967).

An exact evaluation of Zy in two dimensions based on the combinational
formula 1.9 was first attempted by Kac and Ward (1952). Their idea was to
express the generatmg function for the graph-counting problem (i.e., the
partition function 1. 9) as a determinant of a matrix. They succeeded in con-

structing a matrix to give the Onsager result, -but they were unable to prove -

that all graphs were counted correctly (although clearly “most ™ graphs must
have been counted correctly). Sherman (1960) showed that not all graphs were
counted correctly by the Kac-Ward matrix, but with the aid of a conjecture
of Feynmann, which Sherman himself proved, he was able to make the Kac—
Ward argument completely rigorous.

A variant of the Kac~Ward method emerged in the early 19605 when &
number of Ising-model enthusiasts became aware of Pfaffians, which were
known to mathematicians last century but were subsequently forgotten. This
method will be discusged in Section 6-3, where the Ising problem is related to
a dimer problem that can be solved by Pfaffians. :

6-2 Low-temperature Expansions and Lattice Duality in
Two Dimensions

Since w = tanh(J/kT) is small when T is large, the combinational formula
1.9 gives a high-temperature expansion for the partition function. Low-tem-
perature expansions can be déveloped in‘a similar manner if we start from the

completely ordered state (corresponding to zero temperature), i.e., when all

Sec. 6-2 Low-temperatu

spins are up or all spins
ing spins. The first term
is, then, from Equations

2 exp(3Nvg),

- the “2” in front coming
- gtate. The next term is
configuration is

" _1NgJ +2q7

and there are 2N such
temperature expansion :

5 Zy =2 expGNvg)(1

In general we can write

Zy=2expGNvg) Y
i r=0

_ where m(0) = 1 and m(

_can’be arranged on the

~ magnetic fields 1s the &

© We now introduce th
in Figtre 6.6, the dashe

" ¢ gelf-dual 7). In geners

perpendicular bisector
necting the new bonds
lattice. For example, a

s the hexagonal lattice

In a given configw
(denoted by —) dash
up and a down spin. £
latticef In general, it
closed graphs on the di
dence between broken
dual lattice. In o_"cher \

n(r) = mp(r) an

where mp(r) denotes




