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Abstract. A recurring theme in nested recursions research has been the search for
recursion families. By a recursion family we mean a collection of recursions with a
common or at least highly similar structure, and where, with appropriate (but usually
different) initial conditions for each recursion, their respective solutions behave simi-
larly in key respects. Our key result is a general method for generating a family of
recursions with slow solutions from any nested recursion of the form either R(n) =
R(n− s1 −R(n− a1)) +R(n− s2 −R(n− a2)) (a two term generalized Conolly recursion)
or R(n) = R(n− s1 −R(n− a1)) +R(−t1 +R(n− b1)) (a generalized Conway recursion)
so long as the recursion with which we start, together with its initial conditions, has a
known slow solution. We apply this method to discover new families of recursions with
slow solutions based on the well-known Hofstadter V and Conway recursions, respectively.

1. Introduction

In this paper, all values of the parameters and variables are integers.
A nested recurrence relation (also called a meta-Fibonacci recursion) is any recursion

where some argument contains a term of the recursion. Some early examples of nested
recursions that have spawned considerable interest include: (1) Hofstadter’s enigmatic Q
defined by Q(n) = Q(n − Q(n − 1)) + Q(n − Q(n − 2)) with Q(1) = Q(2) = 1 [18]; (2)
Conway’s1 famous challenge recursion A(n) = A(n − A(n − 1)) + A(A(n − 1)), A(1) =
A(2) = 1 [11, 28, 29]; and (3) Conolly’s2 sequence defined in [10] by the recursion C(n) =
C(n− C(n− 1)) + C(n− 1− C(n− 2)), C(1) = C(2) = 1.

A solution to a nested recursion is any sequence that satisfies the recursion together
with its initial conditions. For each of the above examples a solution exists so long as
all the arguments in the terms of the recursion remain positive for all n past the initial
conditions. For example, for Q(n) we require that for every n > 2 both n −Q(n − 1) > 0
and n − Q(n − 2) > 0 so that the recursion remains well-defined and successive values of
the recursion can be computed. If this turns out to be false then the recurrence has no
solution and we say that it “terminates” (or “dies”). For the above examples it is evident
that the solution, if it exists, is unique.3 All the nested recursions we analyze later in this
work have at most one solution.

For any nested recursion R(n), we use either R(n) or R to refer both to the recursion
together with its initial conditions and the (finite or infinite) sequence they generate. As
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we discuss further below, the initial conditions play an crucial role in whether or not the
recursion has a solution, and if so, in the solution properties.

It is well known that the sequences generated by nested recursions can display a very
wide range of behaviour.4 In some cases the solutions are very well behaved with discernible
structure (see, for example, [1, 4, 5, 8, 9, 14, 15, 20, 22, 24]). In others, the sequence gener-
ated by the nested recursion together with its initial conditions appears to be quite chaotic,
but nonetheless displays some evidence of underlying structural regularities. Hofstadter’s
Q is the most famous example of such a recursion (for details see [32] and [12]). It is still
not known whether or not Q has a solution, although the first twelve billion values of Q
have been computed.
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Figure 1.1. Graph of first 200 values of Hofstadter’s Q(n) with ICs 1, 1

By contrast, each of A(n) and C(n) has a beautiful monotone nondecreasing solution with
the following properties: the solution begins with 1, all the differences between successive
terms are either 0 or 1, and the solution tends to infinity. We call such a sequence slowly
growing or slow.

It is natural to describe a slowly growing sequence σ(n) by its frequency sequence φσ(w),
which counts the number of times that w > 0 occurs in σ(n). For the Conolly sequence,
the frequency sequence φC(m) equals rm = 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, . . ., the so-
called “ruler function”.5 Observe (from φC(m)) that for every α the value 2α appears α+1
times in C. The frequency sequence of the Conway sequence A(n) is more complex but
nonetheless is fully understood. For details see [28, 29].

Over the past 25 years two related questions have been the focus of considerable interest
in nested recursion research: given a nested recursion with a known solution, what kinds of
changes to the parameters and/or initial conditions lead to a new recursion with a solution?

4See [20], especially chapter 1, for a detailed discussion and more comprehensive bibliography.
5The ruler function rm is defined as one plus the 2-adic valuation of m (the exponent of 2 in the prime

factorization of m).
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In such a situation, how do the properties of the new solution relate to those of the solution
to the original recursion?

The radically different behaviour of the Conolly C and Hofstadter Q recursions described
above underscores the fact that sequences generated by very similar looking recursions
together with identical initial conditions may behave extraordinarily differently. At the
same time, this need not always be the case: for example, the solution to T (n) = T (n −
1 − T (n − 1)) + T (n − 2 − T (n − 2)), T (0) = T (1) = T (2) = 1, a close variant of the
Conolly recursion, is almost identical to that for C. The only difference between the two
slow solutions is that each power of 2 appears precisely one more time in T (n) (see [35]).

It is well known that the behaviour of the sequence generated by a nested recursion is
highly sensitive to the choice of the initial conditions. So a key element of these questions is
the selection of the initial conditions for the modified recursion being explored. Sometimes,
as in the above examples, the initial conditions for the original recursion may provide a
useful guide. However, as we discuss further below, in many situations there is a wide range
of plausible alternatives and not necessarily any “natural” choice.

Exploration of these questions has shifted the focus of nested recursion research to pa-
rameterized versions of individual recursions. In an attempt to understand Q, Hofstadter
and Huber [19] define the two-parameter generalization Qr,s(n) = Qr,s(n −Qr,s(n − r)) +
Qr,s(n−Qr,s(n− s)), with r < s and initial conditions Qr,s(1) = · · · = Qr,s(s) = 1. Their
empirical explorations led to their still unresolved conjecture that the only (r, s) pairs for
which Qr,s remains well-defined are (1,2) (the original Q), (2,4) (called W ) and (1,4) (called
V ).6 Further, they observe that each sequence behaves very differently: the W sequence,
if it exists, is much wilder than Q while the V sequence appears to be slow with a very
complex frequency function (see [4] where this conjecture is proved).

Finding different recurrences with similar behaviour, such as C and T , is very important
and has been an essential key to the substantial progress that has been made in the relatively
new field of nested recurrence relations. In some situations, analysis of the parameterized
recursion that describes such a situation has led to improved understanding of the links
between the behaviour of the solutions and the structure, parameters and choice of initial
conditions.

In [27], Jackson and Ruskey generalize the Conolly recursion by introducing the shift
parameter s: Cs(n) = Cs(n− s−Cs(n− 1)) +Cs(n− (s+ 1)−Cs(n− 2)), with s+ 2 initial
conditions Cs(1) = Cs(2) = · · · = Cs(s+ 1) = 1, Cs(s+ 2) = 2. They apply a “tree-based”
solution method to prove that for every s the nth term of Cs(n) counts the number of leaves
with label less than or equal to n in a certain infinite, labeled binary tree (see Section 2 for
further details). Their choice of the initial conditions for Cs(n) necessarily derives directly
from the structure and labeling of the infinite binary tree that provides the combinatorial
interpretation for the solution to the recursion, since the initial conditions are the first few
terms of the solution sequence. The counting interpretation for Cs(n) explains why, as
we indicated above, the solutions for s = 0 (the Conolly recursion C) and s = 1 (the T
recursion) are so similar.
Cs(n) is an example of a collection of parameter-related recursions that have solutions

that all behave very similarly in terms of the specified parameter. To emphasize this we
call such a collection a recursion family.

Significant extensions of the tree-based solution method have been developed to prove the
existence of other families of nested recursions, many of which are related to the Conolly

6They also investigate other choices for the initial conditions. We discuss this later in the Introduction.
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recursion (see, for example, [26, 14, 23]). In each case the solution to a parameterized
recursion is shown to have a combinatorial interpretation in terms of an infinite labelled
tree whose structure and labeling is determined by the recursion and its parameters. As
above, this counting interpretation for the nth term is typically in terms of the number of
leaves or some variant, such as leaf labels, up to the label n. Because of the tree-based
counting interpretation for the solution it follows that for different values of the parameters
the solutions are slow and behave similarly. It follows that these recursions form a family
with slow solutions. Finally, and very importantly, the tree interpretation for the solution
makes completely transparent the choice of the initial conditions for the recursion: the
initial values for the recursion can be read off the tree since the solution to the recursion
counts certain features embedded in the tree.

In those situations where the tree-based solution method can be applied, it has proved a
powerful technique for identifying and solving new families of recursions with slow solutions.
Where no tree interpretation for the solution to a recursion is known, the search for recursion
families related to that recursion has been far less fruitful. This is due, at least in part,
to the difficulty in identifying the appropriate choice of initial conditions for the modified
recursion.7

The following example is illustrative. In [19] Hofstadter and Huber examine empirically
the recursion V ′(n) = V ′(n − V ′(n − 2)) + V ′(n − V ′(n − 8)) in an attempt to identify a
recursion family with solutions that behave like the solution to Hofstadter’s V recursion
V (n) = V (n − V (n − 1)) + V (n − V (n − 4).8 The four initial conditions for V are either
V (1) = ... = V (4) = 1 or V (1) = 1, V (2) = 2, V (3) = 3, V (4) = 4 (with the second choice
the resulting sequence is advanced three terms but otherwise the same). Not sure what
initial conditions to use for V ′ they report on the results from two alternatives considered:
the eight initial conditions consisting of all 2s, that is, V ′(1) = ... = V ′(8) = 2 and the eight
initial conditions 1,2,..,7,8.9

Neither of these two choices for the initial conditions for V ′ results in a solution whose
behaviour has interesting properties resembling those of V . With the first choice all the
values are just twice those of V .10 With the second choice the sequence that is generated
seems to have some interesting properties but they are not like those of V (for example,
the sequence is not slow or even monotone); there is no known proof to date that a so-
lution exists, that is, that this sequence doesn’t terminate. In fact, a V -like sequence is
generated by the V ′ recursion together with either of the nine initial conditions 1,2,..,7,8,9
or 1,2,2,2,2,2,2,2,3, neither of which seem to be a priori natural choices. We discuss this
unexpected result further in Section 4.

In this paper we describe a methodology for identifying new families of recursions in a
very general situation. Our approach automatically specifies an appropriate choice for the
initial conditions for the recursions in the new family that leads to the desired behaviour
of the solutions.

More precisely, our key result is the following: suppose we have any nested recursion R
of the form either R(n) = R(n− s1−R(n−a1)) +R(n− s2−R(n−a2)) (we call this a two
term generalized Conolly recursion) or R(n) = R(n− s1−R(n− a1)) +R(−t1 +R(n− b1))
(a generalized Conway recursion), together with initial conditions so that the recursion has

7There have been some successes, however. See, for example, [15, 17, 9, 16].
8See [4] for details about the solution to V .
9Another natural choice for the initial conditions might be eight 1s, but this does not lead to a solution

as the sequence terminates.
10This is a special case of Theorem 2.2 in [14].
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a known slow solution. For any positive integer j, define the so-called “j-related” recursion
Rj obtained by multiplying all of the parameters of R by j. Then we can specify appropriate
initial conditions (determined by the initial conditions for R and the value of j) so that Rj
defines a family of recursions whose solutions are slow and behave like the solution to R.11

Notice that while in general we don’t have any knowledge of an underlying tree inter-
pretation for the solution to R, the methodology for specifying the initial conditions for Rj
and identifying its solution is based upon a purely parametric tree-based formula, namely,
the relation between the binary tree interpretation for the slow solution to the j-related
version of the recursion Cs (formed by multiplying all the parameters of the Cs recursion
by j) and that for the solution to Cs. In a sense it is almost as if R has an unknown
underlying “virtual” tree to which the parametric formula appeals. In our view this is a
surprising and somewhat mysterious result.

The outline of the remainder of this paper is as follows: in the following section we derive
the purely parametric formula for the relation between the binary tree interpretation for
the slow solution to the j-related version of the recursion Cs and that for the solution to Cs.
In Section 3 we apply this parametric characterization to derive the slow solution to Rj ,
the j-related version of an arbitrary two term Conolly or Conway generalized recursion R
for which we have a known slow solution; in so doing the parametric characterization also
specifies the appropriate initial conditions to use for Rj . That is, we start with any specific
two term Conolly or Conway generalized recursion R, together with its initial conditions,
for which a slow solution is known. To this slow solution for R we apply the parametric map
derived in Section 2. The resulting sequence solves the recursion Rj , together with initial
conditions specified by the map. In this way we identify a new family of nested recursions
with slow solutions related to R. We conclude in Section 4 by applying this methodology
to identify a new family of recursions with slow solutions based on each of the well-known
Hofstadter V and Conway A recursions, respectively.

2. A Parametric Formula from the Tree-Based Methodology

We begin with a very brief explanation of the tree-based solution methodology. For s, n
natural numbers, we define the tree Ts(n) (or T (n) when it won’t cause confusion to omit
the subscript) with an infinite number of nodes and a finite number n of labels, as follows.
First, draw an infinite binary tree in preorder (that is, from the bottom left). All nodes
on the extreme left except the very first node on the bottom left are supernodes. All nodes
on the bottom level of T (n) (including the bottom leftmost node) are leaves. Any other
node is a regular node. Place the natural numbers 1 through n into the nodes of the T (n)
in preorder as labels, with one label going into each regular node and leaf, and s labels
going into each supernode. See Figure 2.1 for the case s = 2 and n = 35; in the diagram
circles are used to depict the leaves and the regular nodes, while rectangles are used for the
supernodes.

Note that if n is a label on a supernode, that supernode might be only partly full (for
example, if s = 2, and n = 5, then the second supernode in Figure 2.1 would have only one

11In fact our proofs extend naturally to the more general recursion R(n) =
k1∑
i=1

R(n− si − R(n− ai)) +

k2∑
i=1

R(−ti +R(n− bi)) with arbitrary k1 and k2 and appropriate initial conditions. But to date, allowing for

the more general (k1, k2) values, the only recursions with slow solutions we know of have (k1 > 2, k2 = 0).
For such recursions a tree-based interpretation for the slow solution is already known, so a virtual tree
interpretation is unnecessary. For this reason we restrict ourselves to the two above simpler recursion forms.
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Figure 2.1. Solution of C2(n) = C2(n−2−C2(n−1))+C2(n−3−C2(n−2))
with initial conditions 1, 1, 1, 2 counts labels in leaves of T2(n)

label (namely, 5) so would be only partly full). When we want to refer to the unlabelled
tree (that is, T (n) without regard to the number or placement of labels), we call it the
“skeleton.”

Define the leaf label counting function Ls(n) to be the number of labels in the leaves in
Ts(n). For example, in Figure 2.1, L2(35) = 16 and L2(13) = 4. Observe that by definition
the label counting sequence for Ts(n) is slow.

In [27] Jackson and Ruskey prove that the the nth term of the solution of the recursion
Cs(n) = Cs(n− s− Cs(n− 1)) + Cs(n− (s+ 1)− Cs(n− 2)), with s+ 2 initial conditions
Cs(1) = Cs(2) = · · · = Cs(s+ 1) = 1, Cs(s+ 2) = 2 counts the number of leaves with label
less than or equal to n in the tree T2(n). That is, the label counting function Ls(n) solves
the recursion Cs(n) with the specified initial conditions; for example, the reader can readily
confirm from the recursion that C2(13) = 4 and C2(35) = 16, corresponding to the values
L2(13) and L2(35), respectively. Observe that the first s + 2 terms of the label counting
function Ls(n) match the given initial conditions for the recursion Cs(n).

It is shown in [26] that the nested recursion Cs∗j(n) = Cs∗j(n−sj−Cs∗j(n−j))+Cs∗j(n−
(s+1)j−Cs∗j(n−2j)), which is obtained by multiplying all of the parameter values in Cs(n)
by j, defines a family of recursions (it is important to note that Cs∗j 6= Cj∗s in most cases).12

Each recursion in this family, with appropriate initial conditions, has a slow solution that
is obtained by extending the Jackson-Ruskey tree-based methodology.13 In this extended
methodology the solution is shown to be the label counting function Ls∗j(n) for the tree
Ts∗j(n), which is formed by replacing every label in Ts(n) by j labels. The (as yet unstated)
initial conditions required for the recursion for Cs∗j(n) are the first (s + 2)j terms of the

12Observe that the Cs∗j notation for this recursion used here differs slightly from how this recursion
would be identified in [26]. There we would write Csj,j rather than Cs∗j . We adopt the alternate notation
here to emphasize our focus in this work on multiplying all the parameters in the recursion of interest, here
Cs, by j.

13See, in particular, Theorem 3.10 in [26], where the solutions to considerably more general recursions
are derived.
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label counting sequence Ls∗j(n) of the tree Ts∗j(n) (recall that Ls∗j(n) counts the number
of labels less than or equal to n in the leaves of Ts∗j(n)). In a sense the specification of the
initial conditions for which we can solve for Cs∗j(n) occurs after the fact. See Figure 2.2,
where we illustrate the tree-based solution to Cs∗j(n) for s = 2 and j = 3.

Figure 2.2. Solution of C2∗3(n) = C2∗3(n−6−C2∗3(n−3))+C2∗3(n−9−
C2∗3(n− 6)) with 12 initial conditions 1, 2, 3, 3, 3, 3, 3, 3, 3, 4, 5, 6 counts
labels in leaves of T2∗3(n).

By comparing the labeling on each of the trees Ts(n) and Ts∗j(n), both of which have
identical skeletons, we observe a fundamental connection between the frequency functions
of their respective label counting sequences Ls(n) (= Cs(n)) and Ls∗j(n) (= Cs∗j(n)).

Proposition 2.1. Let φs(m) (respectively, φs∗j(m)) be the frequency of m in the label
counting sequence Ls(n) (respectively, Ls∗j(n)). Let m = jw + a, where 0 ≤ a < j. For
a = 0, φs∗j(m) = φs∗j(jw) = jφs(w)− (j − 1). Otherwise φs∗j(m) = 1.

Proof. In [20] a formula for the frequency function of generalized Conolly sequences is
proved (see Theorem 4.4.2). Proposition 2.1 is a direct consequence of the explicit formulas
for these frequency functions that can be derived from this formula. In order to emphasize
the multiplicative relationship between the parameters and to provide additional insight
into the relationship between the structures of the related trees we include an alternative
direct proof.

We first prove the formula for a = 0. By the definition of the label counting function
and the structure of the labeled tree Ts∗j(n) the first occurrence of the label count jw in

Ls∗j(n) is with the last label in the wth leaf node (Ts∗j(n) has j labels in every leaf node).

The skeletons of Ts∗j and Ts are the same, so this node is also the wth leaf node Ts. It
follows by the definition of the frequency function of the label counting sequence that in
the tree Ts there are φs(w)− 1 labels, and thus nodes (since in Ts there is one label in each
node) following the wth leaf node before arriving at the next leaf node. Thus, in Ts∗j(n)

there must be j(φs(w)− 1) labels following the jwth label before arriving at the first label
in the next leaf node. It follows that in Ts∗j(n) the label count remains at jw for all of these
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j(φs(w)− 1) labels. Counting the last label in the wth leaf node we get that the frequency
for the value jw is φs∗j(jw) = j(φs(w)− 1) + 1 = jφs(w)− (j − 1), as desired.

By the definition of the label counting function the only frequency counts that can be
(but are not necessarily) greater than 1 are those associated with the last label on a leaf; for
every other label the associated frequency count must be 1. For a 6= 0 the m = (jw + a)th

label cannot be the last label on a leaf, from which we have φs∗j(m) = φs∗j(jw+a) = 1. �

We can use this relation between the frequency functions for the label counting sequences
Cs(n) and Cs∗j(n) to identify a formula linking the sequences themselves. To do so first we
set Cs(0) = 0 and Cs∗j(0) = 0.

Proposition 2.2. Let n = jz + b, where 0 ≤ b < j. Then Cs∗j(n), the label counting
sequence of the tree Ts∗j (with an initial 0 term appended to the sequence), can be expressed
as the following linear combination of terms in Cs(n), the label counting sequence (with an
initial 0 term appended) for the tree Ts: Cs∗j(n) = Cs∗j(jz + b) = jCs(z) + b(Cs(z + 1) −
Cs(z)).

Proof. The skeleton of Ts∗j is the same as the skeleton of Ts. Every label in Ts is replaced
by j labels in Ts∗j . Hence we know that for any z, Cs∗j(jz) = jCs(z).

Since jz is a multiple of j, the label jz in the tree Ts∗j must be either (i) the last label
of some regular or leaf node, or (ii) the last label in a group of j labels on a supernode. In
case (i), as we move forward 1 ≤ b < j labels in Ts∗j , we move to and stay on the next node
(since b < j); in case (ii) either we stay on the same supernode or move to the next regular
node. It follows that these b labels will add to the leaf label count if and only if this next
node is a leaf node, so Cs(z + 1) − Cs(z) = 1. Thus, jCs(z) + b(Cs(z + 1) − Cs(z)) is the
label counting function Ls∗j(n) of Ts∗j , which we know is Cs∗j(n). �

Observe that the formula in Proposition 2.2 that is derived from the tree-based interpre-
tation of the solutions of the recursions Cs(n) and Cs∗j(n) describes a purely parametric
relationship between the slow solutions to two nested recursions in the same family with
closely related parameters (each parameter of one recursion is the same multiple of the
corresponding parameter of the other). It is therefore natural to ask whether the tree
interpretation is necessary for the formula in Proposition 2.2 to hold, or whether some
other proof can be found for comparably related pairs of recursions from the same family
for which there is no known tree interpretation. In the next section we will show how to
extend the formula in Proposition 2.2 to a more general class of recursions. In this way we
provide a general method for identifying and solving new families of recursions with slow
solutions.

3. Slow Solutions for New Recursion Families Via Virtual Trees

We begin by generalizing the purely parametric relation between the label counting
sequences that we derived in Section 2 to a broad class of slow sequences.

Definition 1. Suppose {x(n)} is any slow sequence with x(0) = 0 and x(1) = 1. For any
fixed j > 0 define the functional Ψj : {x(n)} → {y(n)} as follows: for any n = jz + b with
0 ≤ b < j, y(n) = y(jz + b) = jx(z) + b(x(z + 1)− x(z)).

Note that as a result of the above definition y(0) = 0. If {x(n)} is a finite sequence
with d + 1 terms, where x(0) = 0, x(1) = 1, then applying Ψj to {x(n)} results in a finite
sequence {y(n)} with dj + 1 terms including y(0). For example, for j = 3, applying Ψ3 to
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{x(n)} = {0, 1, 1, 2, 3} with five terms yields {y(n)} = {0, 1, 2, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9} with
thirteen terms.

It is easy to see that the functional Ψj maps slow sequences to slow sequences.

Proposition 3.1. Suppose {x(n)} is a slow sequence with x(0) = 0 and x(1) = 1. Then
Ψj({x(n)}) = {y(n)} is a slow sequence with y(0) = 0 and y(1) = 1.

Proof. By the definition of Ψj and direct computation we get y(0) = 0 and y(1) = 1.
Again by the definition of Ψj , for any slow sequence {x(n)} and any z, y(jz) = jx(z). If
x(z+1)−x(z) = 1, then the functional Ψj inserts precisely j−1 different values into {y(n)}
between y(jz) and y(j(z + 1)), where successive terms differ by 1. If x(z + 1) − x(z) = 0,
then the functional Ψj inserts precisely j − 1 copies of y(jz) in {y(n)} between y(jz) and
y(j(z + 1)). Since {x(n)} is slow it follows that {y(n)} must also be a slow sequence. �

Evidently, Ψj({Cs(n)}) = {Cs∗j(n)}, that is, Ψj is a natural generalization of the rela-
tionship proved in Proposition 2.2 between the label counting sequences for the trees Ts
and Ts∗j . Further, Proposition 2.1 extends to the frequency functions for any slow {x(n)}
in place of Cs(n) and {y(n)} = Ψj({x(n)}) in place of Cs∗j(n). More precisely, we have:

Proposition 3.2. Suppose {x(n)} is a slow sequence with x(0) = 0 and x(1) = 1. Let
{y(n)} = Ψj({x(n)}). Suppose m = jw + a, where 0 ≤ a < j. If a = 0 then the frequency
of m in {y(n)} is φy(m) = φy(jw) = jφx(w)− (j − 1); otherwise, φy(m) = 1.

Proof. This follows directly from the argument in the proof of Proposition 3.1.
�

For any slow sequence {x(n)} with x(1) = 1 it is possible to construct a labeled tree Tx
for which {x(n)} is the leaf label counting sequence. But in general we don’t know how
to describe the structure of this tree (namely, its skeleton and labeling) in any useful way
that allows us to use this tree to relate {x(n)} to the solution of some recursion as we did
with labeled binary trees (where we showed that the label counting sequence for particular
versions of the tree solved different generalizations of the Conolly recursion).

Still, in certain situations we can make use of the existence of this underlying “virtual”
tree. Suppose that we can prove by some means (usually an induction argument) that a
nested recursion R with given initial conditions has a slow solution {x(n)}, with x(1) = 1.
Where this is the case we can sometimes use this idea that there exists an underlying
“virtual” tree Tx for which {x(n)} is the leaf label counting sequence of Tx. That’s because
we already know from the above arguments that Ψj({x(n)}) = {y(n)} is the slow sequence
that is the leaf label counting sequence for the “virtual” tree Ty obtained from Tx by
replacing all the labels in each node of Tx by j labels. And what we now show is that for
certain types of recursions R and any positive integer j the sequence {y(n)} solves the new
recursion family Rj obtained from R by multiplying all its parameters by j.14

Thus, for every j the solution sequence for Rj is found by taking the solution sequence
of R and applying Ψj to it, thereby yielding a new family of recursions with slow solutions.
We make this precise in the following results.

Theorem 3.3. Let R be a two term generalized Conolly nested recursion of the form
R(n) = R(n− s1−R(n− a1)) +R(n− s2−R(n− a2)), with 0 < a1 ≤ a2. Suppose that for
some set of α initial conditions (beginning at n = 1) R has a slow solution with R(1) = 1,

14See [23, 26] where a related and more general idea is explored in the case when the solution of the
recursion R is known to be related to a binary or k-ary tree.
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call it R(n). Define R(0) = 0. For any fixed j ≥ 1, and for all n = jz + b, with z ≥ 0 and
0 ≤ b < j, define the sequence Ψj(R(n)) = jR(z) + b(R(z + 1)−R(z)). Then Ψj(R(n)) is
the slow solution of the recursion Rj obtained by multiplying all the parameters of R by j,
that is, Rj(n) = Rj(n− s1j −Rj(n− a1j)) +Rj(n− s2j −R(n− a2j)), and where we take
as the initial conditions of Rj the first (α+1)j−1 terms (beginning at n = 1) of Ψj(R(n)).

Proof. From Proposition 3.1 we know that Ψj(R(n)) is slow. By the choice of the initial
conditions it is immediate that our statement holds for the first (α + 1)j − 1 values for
Rj(n).

We proceed by strong induction on n. Suppose the result is true up to n−1 ≥ (α+1)j−1.
We show that it is true for n. Write n = jz + b. Then from the definition of Rj we have:

Rj(jz + b) = Rj(jz + b− s1j −Rj(jz + b− a1j)) +Rj(jz + b− s2j −Rj(jz + b− a2j))
= Rj(jz + b− s1j −Rj(j(z − a1) + b)) +Rj(jz + b− s2j −Rj(j(z − a2) + b))

Note that j(z − a1) + b < jz + b and j(z − a2) + b < jz + b. We can therefore rewrite our
statement so that we can use the induction hypothesis.

Rj(jz + b) = Rj(jz + b− s1j − [jR(z − a1) + b(R(z − a1 + 1)−R(z − a1))])
+Rj(jz + b− s2j − [jR(z − a2) + b(R(z − a2 + 1)−R(z − a2))])

(3.1)

Since R(n) is slow it is sufficient to examine four cases:

(1) R(z − a1) = R(z − a1 + 1) and R(z − a2) = R(z − a2 + 1)
(2) R(z − a1) + 1 = R(z − a1 + 1) and R(z − a2) = R(z − a2 + 1)
(3) R(z − a1) = R(z − a1 + 1) and R(z − a2) + 1 = R(z − a2 + 1)
(4) R(z − a1) + 1 = R(z − a1 + 1) and R(z − a2) + 1 = R(z − a2 + 1)

The proof of each case is similar.

Case 1. R(z − a1) = R(z − a1 + 1) and R(z − a2) = R(z − a2 + 1)

With this assumption, (3.1) simplifies to:

Rj(jz + b) = Rj(jz + b− s1j − jR(z − a1)) +Rj(jz + b− s2j − jR(z − a2))
= Rj(j(z − s1 −R(z − a1)) + b) +Rj(j(z − s2 −R(z − a2)) + b)

= jR(z − s1 −R(z − a1)) + b(R(z − s1 −R(z − a1) + 1)−R(z − s1 −R(z − a1)))
+ jR(z − s2 −R(z − a2)) + b(R(z − s2 −R(z − a2) + 1)−R(z − s2 −R(z − a2)))

= j(R(z − s1 −R(z − a1)) +R(z − s2 −R(z − a2))
+ b((R(z − s1 −R(z − a1) + 1) +R(z − s2 −R(z − a2) + 1)

−R(z − s1 −R(z − a1))−R(z − s2 −R(z − a2))))

By the assumptions in Case 1 this simplifies further to the desired result:

Rj(jz + b) = j(R(z − s1 −R(z − a1)) +R(z − s2 −R(z − a2))
+ b((R(z − s1 −R(z + 1− a1) + 1) +R(z − s2 −R(z + 1− a2) + 1)

−R(z − s1 −R(z − a1))−R(z − s2 −R(z − a2))))
= jR(z) + b(R(z + 1)−R(z)).
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Case 2. R(z − a1) + 1 = R(z − a1 + 1) and R(z − a2) = R(z − a2 + 1)

The argument is similar to that in Case 1 above. We use these assumptions in the initial
and penultimate steps to simplify (3.1) to the desired result.

Rj(jz + b) = Rj(jz + b− s1j − jR(z − a1)− b) +Rj(jz + b− s2j − jR(z − a2))
= Rj(jz − s1j − jR(z − a1)) +Rj(j(z − s2 −R(z − a2)) + b)

= Rj(j(z − s1 −R(z − a1))) +Rj(j(z − s2 −R(z − a2)) + b)

= jR(z − s1 −R(z − a1))
+ jR(z − s2 −R(z − a2)) + b(R(z − s2 −R(z − a2) + 1)−R(z − s2 −R(z − a2)))

= jR(z − s1 −R(z − a1)) + (b− b)R(z − s1 −R(z − a1))
+ jR(z − s2 −R(z − a2)) + b(R(z − s2 −R(z − a2) + 1)−R(z − s2 −R(z − a2)))

= jR(z − s1 −R(z − a1)) + b(R(z − s1 −R(z − a1 + 1) + 1)−R(z − s1 −R(z − a1)))
+ jR(z − s2 −R(z − a2)) + b(R(z − s2 −R(z − a2) + 1)−R(z − s2 −R(z − a2)))

= j(R(z − s1 −R(z − a1)) +R(z − s2 −R(z − a2))
+ b((R(z − s1 −R(z + 1− a1) + 1) +R(z − s2 −R(z + 1− a2) + 1)

−R(z − s1 −R(z − a1)))−R(z − s2 −R(z − a2))))
= jR(z) + b(R(z + 1)−R(z))

Case 3. R(z − a1) = R(z − a1 + 1) and R(z − a2) + 1 = R(z − a2 + 1)

The argument for Case 3 is the same as for Case 2 with the roles of a1 and a2 interchanged.
We omit the details.

Case 4. R(z − a1) + 1 = R(z − a1 + 1) and R(z − a2) + 1 = R(z − a2 + 1)

As above we use these assumptions to simplify (3.1) in the initial and penultimate steps
to derive the desired result.

Rj(jz + b) = Rj(jz + b− s1j − jR(z − a1)− b) +Rj(jz + b− s2j − jR(z − a2)− b)
= Rj(jz − s1j − jR(z − a1)) +Rj(jz − s2j − jR(z − a2))
= Rj(j(z − s1 −R(z − a1))) +Rj(j(z − s2 −R(z − a2)))
= jR(z − s1 −R(z − a1)) + jR(z − s2 −R(z − a2))
= jR(z − s1 −R(z − a1)) + (b− b)R(z − s1 −R(z − a1))

+ jR(z − s2 −R(z − a2)) + (b− b)R(z − s2 −R(z − a2))
= jR(z − s1 −R(z − a1)) + b(R(z − s1 −R(z − a1 + 1) + 1)−R(z − s1 −R(z − a1)))

+ jR(z − s2 −R(z − a2)) + b(R(z − s2 −R(z − a2 + 1) + 1)− bR(z − s2 −R(z − a2)))
= j(R(z − s1 −R(z − a1)) +R(z − s2 −R(z − a2))

+ b((R(z − s1 −R(z + 1− a1) + 1) +R(z − s2 −R(z + 1− a2) + 1)

−R(z − s1 −R(z − a1)))−R(z − s2 −R(z − a2))))
= jR(z) + b(R(z + 1)−R(z))

This completes the proof. �
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Recall from the Introduction the generalized Conway nested recursion R(n) = R(n −
s1 −R(n− a1)) +R(−s2 +R(n− a2)), with s1 and s2 nonnegative and a1 and a2 positive.
For s1 = s2 = 0 and a1 = a2 = 1 this is the ordinary Conway recursion A(n) that is known
to have a slow solution [11, 28, 29].

The following result is analogous to that for Theorem 3.3.

Theorem 3.4. Let R be a two term generalized Conway nested recursion of the form
R(n) = R(n − s1 − R(n − a1)) + R(−s2 + R(n − a2)), with s1 and s2 nonnegative and
a1 > 0 and a2 > 0. Suppose that for some set of α initial conditions (beginning at n = 1)
R has a slow solution, call it R(n), with R(1) = 1. Define R(0) = 0. For any fixed
j ≥ 1, and for all n = jz + b, with z ≥ 0 and 0 ≤ b < j, define the sequence Ψj(R(n)) =
jR(z) + b(R(z + 1)−R(z)). Then Ψj(R(n)) is the slow solution of the recursion Rj(n) =
Rj(n−s1j−Rj(n−a1j))+Rj(−s2j+Rj(n−a2j)) obtained by multiplying all the parameters
of R by j, and where the initial conditions of Rj are the first (α+ 1)j − 1 terms (beginning
at n = 1) of Ψj(R(n)).

Proof. From Proposition 3.1 we know that Ψj(R(n)) is slow. By the choice of the initial
conditions it is immediate that our statement holds for the first (α + 1)j − 1 values for
Rj(n).

We proceed by strong induction on n. Suppose the result is true up to n−1 ≥ (α+1)j−1.
We show that it is true for n. Write n = jz + b. Then from the definition of Rj we have:

Rj(jz + b) = Rj(jz + b− s1j −Rj(jz + b− a1j)) +Rj(−s2j +Rj(jz + b− a2j))
= Rj(jz + b− s1j −Rj(j(z − a1) + b)) +Rj(−s2j +Rj(j(z − a2) + b))

Note that j(z − a1) + b < jz + b and j(z − a2) + b < jz + b. We can therefore rewrite our
statement so that we can use the induction hypothesis.

Rj(jz + b) = Rj(jz + b− s1j − [jR(z − a1) + b(R(z − a1 + 1)−R(z − a1))])
+Rj(−s2j + [jR(z − a2) + b(R(z − a2 + 1)−R(z − a2))])

(3.2)

Since R(n) is slow it is again sufficient to examine four cases:

(1) R(z − a1) = R(z − a1 + 1) and R(z − a2) = R(z − a2 + 1)
(2) R(z − a1) + 1 = R(z − a1 + 1) and R(z − a2) = R(z − a2 + 1)
(3) R(z − a1) = R(z − a1 + 1) and R(z − a2) + 1 = R(z − a2 + 1)
(4) R(z − a1) + 1 = R(z − a1 + 1) and R(z − a2) + 1 = R(z − a2 + 1)

Case 1. R(z − a1) = R(z − a1 + 1) and R(z − a2) = R(z − a2 + 1)
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With this assumption, (3.2) simplifies to:

Rj(jz + b) = Rj(jz + b− s1j − [jR(z − a1) + b(R(z − a1 + 1)−R(z − a1))])
+Rj(−s2j + [jR(z − a2) + b(R(z − a2 + 1)−R(z − a2))])

= Rj(jz + b− s1j − jR(z − a1)) +Rj(−s2j + jR(z − a2))
= Rj(j(z − s1 −R(z − a1)) + b) +Rj(j(−s2 +R(z − a2))
= jR(z − s1 −R(z − a1)) + b(R(z − s1 −R(z − a1) + 1)−R(z − s1 −R(z − a1)))

+ jR(−s2 +R(z − a2))
= jR(z − s1 −R(z − a1)) + b(R(z − s1 −R(z − a1) + 1)−R(z − s1 −R(z − a1)))

+ jR(−s2 +R(z − a2))) + (b− b)R(−s2 +R(z − a2)))
= jR(z − s1 −R(z − a1)) + b(R(z − s1 −R(z − a1 + 1) + 1)−R(z − s1 −R(z − a1)))

+ jR(−s2 +R(z − a2))) + b(R(−s2 +R(z − a2 + 1))−R(−s2 +R(z − a2)))
= j(R(z − s1 −R(z − a1) +R(−s2 +R(z − a2)))

+ b(R(z − s1 −R(z − a1 + 1) + 1) +R(−s2 +R(z − a2 + 1))

−R(z − s1 −R(z − a1))−R(−s2 +R(z − a2)))
= jR(z) + b(R(z + 1)−R(z))

Case 2. R(z − a1) + 1 = R(z − a1 + 1) and R(z − a2) = R(z − a2 + 1)

The argument is similar to that in Case 1 above. We use these assumptions in the initial
and penultimate steps to simplify (3.2) to the desired result.

Rj(jz + b) = Rj(jz + b− s1j − [jR(z − a1) + b(R(z − a1 + 1)−R(z − a1))])
+Rj(−s2j + [jR(z − a2) + b(R(z − a2 + 1)−R(z − a2))])

= Rj(jz + b− s1j − jR(z − a1)− b) +Rj(−s2j + jR(z − a2))
= Rj(jz − s1j − jR(z − a1)) +Rj(−s2j + jR(z − a2))
= Rj(j(z − s1 −R(z − a1))) +Rj(j(−s2 +R(z − a2)))
= jR(z − s1 −R(z − a1)) + jR(−s2 +R(z − a2))
= jR(z − s1 −R(z − a1)) + (b− b)R(z − s1 −R(z − a1))

+ jR(−s2 +R(z − a2)) + (b− b)R(−s2 +R(z − a2))
= jR(z − s1 −R(z − a1)) + b(R(z − s1 −R(z − a1 + 1) + 1)−R(z − s1 −R(z − a1)))

+ jR(−s2 +R(z − a2))) + b(R(−s2 +R(z − a2 + 1))−R(−s2 +R(z − a2)))
= j(R(z − s1 −R(z − a1) +R(−s2 +R(z − a2)))

+ b(R(z − s1 −R(z − a1 + 1) + 1) +R(−s2 +R(z − a2 + 1))

−R(z − s1 −R(z − a1))−R(−s2 +R(z − a2)))
= jR(z) + b(R(z + 1)−R(z))

Case 3. R(z − a1) = R(z − a1 + 1) and R(z − a2) + 1 = R(z − a2 + 1)
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The argument is similar to that in Cases 1 an 2 above. We once again use these assump-
tions in the initial and penultimate steps to simplify (3.2) to the desired result.

Rj(jz + b) = Rj(jz + b− s1j − [jR(z − a1) + b(R(z − a1 + 1)−R(z − a1))])
+Rj(−s2j + [jR(z − a2) + b(R(z − a2 + 1)−R(z − a2))])

= Rj(jz + b− s1j − jR(z − a1)) +Rj(−s2j + jR(z − a2) + b)

= Rj(j(z − s1 −R(z − a1)) + b) +Rj(j(−s2 +R(z − a2)) + b)

= jR(z − s1 −R(z − a1)) + b(R(z − s1 −R(z − a1) + 1)−R(z − s1 −R(z − a1)))
+ jR(−s2 +R(z − a2)) + b(R(−s2 +R(z − a2) + 1)−R(−s2 +R(z − a2)))

= j(R(z − s1 −R(z − a1) +R(−s2 +R(z − a2)))
+ b(R(z − s1 −R(z − a1 + 1) + 1) +R(−s2 +R(z − a2 + 1))

−R(z − s1 −R(z − a1))−R(−s2 +R(z − a2)))
= jR(z) + b(R(z + 1)−R(z))

Case 4. R(z − a1) + 1 = R(z − a1 + 1) and R(z − a2) + 1 = R(z − a2 + 1)

As above we use these assumptions to simplify (3.2) in the initial and penultimate steps
to derive the desired result.

Rj(jz + b) = Rj(jz + b− s1j − [jR(z − a1) + b(R(z − a1 + 1)−R(z − a1))])
+Rj(−s2j + [jR(z − a2) + b(R(z − a2 + 1)−R(z − a2))])

= Rj(jz + b− s1j − jR(z − a1)− b) +Rj(−s2j + jR(z − a2) + b)

= Rj(j(z − s1 −R(z − a1))) +Rj(j(−s2 +R(z − a2)) + b)

= jR(z − s1 −R(z − a1)) + jR(−s2 +R(z − a2))
+ b(R(−s2 +R(z − a2) + 1)−R(−s2 +R(z − a2)))

= jR(z − s1 −R(z − a1)) + (b− b)R(z − s1 −R(z − a1))
+ jR(−s2 +R(z − a2)) + b(R(−s2 +R(z − a2) + 1)−R(−s2 +R(z − a2)))

= jR(z − s1 −R(z − a1)) + b(R(z − s1 −R(z − a1 + 1) + 1)−R(z − s1 −R(z − a1)))
+ jR(−s2 +R(z − a2)) + b(R(−s2 +R(z − a2) + 1)−R(−s2 +R(z − a2)))

= j(R(z − s1 −R(z − a1) +R(−s2 +R(z − a2)))
+ b(R(z − s1 −R(z − a1 + 1) + 1) +R(−s2 +R(z − a2 + 1))

−R(z − s1 −R(z − a1))−R(−s2 +R(z − a2)))
= jR(z) + b(R(z + 1)−R(z))

This completes the proof. �

Theorems 3.3 and 3.4 enable us to construct new families of nested recursions with slow
solutions from a given nested recursion with a slow solution for which no tree structure is
known. In the following section we do so for two well-known recursions, Hofstadter’s V and
Conway’s A.
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4. Applications

We now apply the two preceding general results to identify a new family of recursions
with slow solutions based on each of the well-known Hofstadter V and Conway A recursions,
respectively. In each case we demonstrate how the properties of the original slow solution
extend naturally to the solutions to the recursions in the new family that we identify.

The recursion V (n) = V (n−V (n− 1)) +V (n−V (n− 4)) with initial conditions V (1) =
V (2) = V (3) = V (4) = 1, first discussed by Hofstadter and Huber [19], has a slow solution
V with a complex structure (see [4] for details). It is readily seen that the same recursion
with initial conditions V (1) = 1, V (2) = 2, V (3) = 3, V (4) = 4 yields essentially the
same solution, excluding the initial four 1s. This latter version of the V sequence is more
convenient for our present purposes since by omitting the initial four 1s its frequency
sequence consists only of 1s, 2s, and 3s (see [4]), so we use it in what follows15. Applying
Theorem 3.3 to this V sequence (again with the additional term V (0) = 0) we derive a new
family of recursions Vj with slow solutions.

Corollary 4.1. For any fixed j > 1 let Vj(n) = Vj(n − Vj(n − j)) + Vj(n − Vj(n − 4j)).
Then for all n = jz + b, with z ≥ 0 and 0 ≤ b < j, the sequence Ψj(V (n)) = jV (z) +
b(V (z + 1)− V (z)) is the slow solution of the recursion Vj, where the initial conditions of
Vj are the first 5j − 1 terms (beginning at n = 1) of Ψj(V (n)).

Each of the nested recursions in this new family has a solution with properties analogous
to those for V . In particular, for every j the frequency sequence of the solution sequence Vj
also consists only of three values, these being {1, j + 1, 2j + 1}. This follows immediately
from Proposition 3.2 and the fact that the frequency sequence for the V sequence consists
only of 1s, 2s and 3s.

The following result summarizes this discussion and describes precisely how to construct
the frequency sequence of Vj from that of V .

Corollary 4.2. The frequency sequence of Vj consists of 3 elements {1, j + 1, 2j + 1}. To
construct the frequency sequence of Vj from that of V first map each entry x in the frequency
sequence of V to the value jx − (j − 1). Next, insert j − 1 1s before the initial entry 1 in
this sequence and between every pair of entries.

Observe that the frequency sequence of V begins 1,1,1,1,2,2,1,.... It follows from the
above result that the frequency sequence of Vj begins with 5j − 1 1s, corresponding to the
5j−1 distinct values 1, 2, 3, ..., 5j−1 which are the initial conditions, followed by a 4, which
is the image of the first 2 in the frequency sequence of V .

In [4] it is shown that there are definite, highly complex rules that determine the occur-
rences of the 1s, 2s, and 3s in the frequency sequence of V . Using Corollary 4.2 we can
specify analogous (but somewhat more complicated) rules for the occurrences of the values
{1, j + 1, 2j + 1} in the frequency sequence of the solution sequence Vj . These rules apply
to the images jx− (j−1) of the terms x of the frequency sequence of V ; all the other terms
of the frequency sequence of Vj are 1.

We illustrate what we mean by this with an example of such a rule. It is shown in [4]
that if φV (a) = 1 then φV (2a) = 2 and φV (2a + 1) = 2; for example, the value 13 occurs
once in V , so both 26 and 27 occur twice.

It turns out that the analogous rule for an arbitrary j is: if a ≥ 4j and a is a multiple of
j, then if φVj (a) = 1 then φVj (2a) = j + 1 and φV (2a+ j) = j + 1.

15Either choice for the initial conditions leads to essentially the same solution other than some of the
initial terms.
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In a similar way we can enunciate analogues for each of the rules governing the frequency
sequence of V that are described in [4]. The proofs for these rules apply Corollary 4.2 and
follow closely the arguments described in [4].16,17

We can generalize the above results further to identify new families of “V -like” sequences.
First we introduce an s-parameter into the V recursion:

Vs(n) = Vs(n− s− Vs(n− 1)) + Vs(n− s− Vs(n− 4)), n > 4. (4.1)

Note that the original V sequence corresponds to s = 0.
With appropriate initial conditions we can prove that Vs has a slow solution sequence

with highly analogous properties to those for the original V sequence.18 For s = 1 we
use the initial conditions (1, 1, 1, 2), while for s = 2 the initial conditions (1, 1, 2, 2) are
suitable.19

For any s > 2 we use the 4s − 6 initial conditions (1, 2, . . . , s − 3, s − 2, s − 1, s − 1, s −
1, s, s, s, s+ 1, s+ 1, s+ 1, . . . , 2s−4, 2s−4, 2s−4, 2s−3, 2s−3); that is, each of the values
from 1 to s−2 occurs once, then each of the s−2 values from s−1 to 2s−4 inclusive occurs
three times, and the final value 2s − 3 occurs twice. We write this more compactly using
frequency sequence notation as (1)s−2(3)s−2(2). For s > 2, Vs with these initial conditions
always has a slow solution with “V -like” properties. For example, for s = 4 the ten initial
conditions are the first ten terms in Table 4.1, which illustrates the behaviour of the first
fifty terms of the sequence V4.

n n
1 2 3 4 5 1 2 3 4 5

V4(n+ 0) 1 2 3 3 3 V4(n+ 25) 11 12 12 12 13
V4(n+ 5) 4 4 4 5 5 V4(n+ 30) 13 14 15 15 15
V4(n+ 10) 5 6 6 6 7 V4(n+ 35) 16 16 16 17 17
V4(n+ 15) 7 8 8 8 9 V4(n+ 40) 18 19 19 19 20
V4(n+ 20) 9 10 10 10 11 V4(n+ 45) 20 20 21 21 22

Table 4.1.
First 50 terms of V4(n) with initial conditions 1, 2, 3, 3, 3, 4, 4, 4, 5, 5

For any fixed j > 1 we apply Theorem 3.3 to Vs to obtain a new family of nested
recursions with slow solutions which we can show are “V -like” in the same sense as the
family Vj discussed above:

Corollary 4.3. For any fixed j > 1 let Vs∗j(n) = Vs∗j(n − js − Vs∗j(n − j)) + Vs∗j(n −
js − Vs∗j(n − 4j)). Then for all n = jz + b, with z ≥ 0 and 0 ≤ b < j, the sequence

Ψj(Vs(n)) = jVs(z)+b(Vs(z+1)−Vs(z)) is the slow solution of the recursion Vs∗j with the
appropriate number of initial conditions depending on the values of s and j. These initial
conditions are given by the initial terms of the sequence Ψj(Vs(n)).

16For the sake of conciseness we omit the details. The interested reader may contact us for additional
information.

17In [3] Allouche and Shallit use the existence of the rules for the frequency sequence of V in [4] to prove
that the V sequence is 2-automatic. In a private communication Professor Shallit confirmed that a similar
argument using the analogous rules for the frequency sequence of Vj would show that the sequence Vj is
also 2-automatic for any j.

18The required induction arguments are fairly complicated, but mirror closely those that appear in [4].
The interested reader can contact us for the details.

19Other sets of initial conditions may also yield essentially the same sequence, perhaps with some of the
initial terms omitted.
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For s = 1 and s = 2 we noted above that we use four initial conditions to generate the
slow solution Vs, so α = 4 and by Theorem 3.3 we use the initial 5j− 1 terms of Ψj(Vs(n))

as the initial conditions. For s > 2 we generate the slow solution of Vs using α = 4s − 6
initial conditions. By Theorem 3.3 we use the initial 4js − 5j − 1 initial conditions of
Ψj(Vs(n)) to generate the solution Vs∗j . We can show that these initial conditions begin
with 1, and have frequency sequence that factors as (1)sj−j−1((1 + 2j)(1j−1))s−2(2j).

For the sake of greater clarity here is an example: for s = 4 and j = 3 there are 4js−5j−
1 = 32 initial conditions. These begin with 1 and have frequency sequence (1)8((7)(12))2(6),
so the initial conditions are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 10, 11, 12, 12, 12, 12, 12, 12, 12,
13, 14, 15, 15, 15, 15, 15, 15, 15.

We can apply Theorem 3.4 to derive a new family of nested recursions related to the
Conway recursion. Recall from the Introduction that the Conway recursion [11, 28, 29]
A(n) = A(n−A(n− 1)) +A(A(n− 1)), A(1) = A(2) = 1 is known to have a slow solution.
Applying Theorem 3.4 we derive a new “Conway-type” family of nested recursions.

Corollary 4.4. Let A(n) be the Conway recursion A(n) = A(n−A(n− 1)) +A(A(n− 1)),
A(1) = A(2) = 1. Fix j > 0 and let n = jz + b, z ≥ 0 and 0 ≤ b < j. Then the
sequence Ψj(A(n)) = Ψj(A(jz + b)) = jA(z) + b(A(z + 1) − A(z)) satisfies the recursion
Aj(n) = Aj(n−Aj(n− j)) +Aj(Aj(n− j)) with initial conditions the first 3j − 1 terms of
the sequence Ψj(A(n)).

For j = 2 and j = 3 selected data for Aj(n) and its associated frequency sequence
appears in the following tables.

n n
1 2 3 4 5 1 2 3 4 5

A2(n+ 0) 1 2 2 2 3 A2(n+ 25) 16 16 16 16 16
A2(n+ 5) 4 4 4 5 6 A2(n+ 30) 16 16 17 18 19
A2(n+ 10) 7 8 8 8 8 A2(n+ 35) 20 21 22 23 24
A2(n+ 15) 8 9 10 11 12 A2(n+ 40) 24 24 25 26 27
A2(n+ 20) 13 14 14 14 15 A2(n+ 45) 28 28 28 29 30

Table 4.2. First 50 terms of A2(n) with initial conditions 1, 2, 2, 2, 3

n n
1 2 3 4 5 1 2 3 4 5

φA2(n+ 0) 1 3 1 3 1 φA2(n+ 25) 1 1 3 1 5
φA2(n+ 5) 1 1 5 1 1 φA2(n+ 30) 1 9 1 1 1
φA2(n+ 10) 1 1 1 3 1 φA2(n+ 35) 1 1 1 1 1
φA2(n+ 15) 7 1 1 1 1 φA2(n+ 40) 1 3 1 1 1
φA2(n+ 20) 1 1 1 3 1 φA2(n+ 45) 1 1 3 1 1

Table 4.3. First 50 terms of φA2(n) with initial conditions 1, 2, 2, 2, 3

n n
1 2 3 4 5 1 2 3 4 5

A3(n+ 0) 1 2 3 3 3 A3(n+ 25) 14 15 16 17 18
A3(n+ 5) 3 4 5 6 6 A3(n+ 30) 19 20 21 21 21
A3(n+ 10) 6 6 7 8 9 A3(n+ 35) 21 22 23 24 24
A3(n+ 15) 10 11 12 12 12 A3(n+ 40) 24 24 24 24 24
A3(n+ 20) 12 12 12 12 13 A3(n+ 45) 24 24 24 25 26

Table 4.4. First 50 terms of A3(n) with initial conditions 1, 2, 3, 3, 3, 3, 4, 5, 6
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n n
1 2 3 4 5 1 2 3 4 5

φA3(n+ 0) 1 1 4 1 1 φA3(n+ 25) 1 1 1 1 1
φA3(n+ 5) 4 1 1 1 1 φA3(n+ 30) 1 1 1 1 1
φA3(n+ 10) 1 7 1 1 1 φA3(n+ 35) 4 1 1 1 1
φA3(n+ 15) 1 1 1 1 1 φA3(n+ 40) 1 4 1 1 7
φA3(n+ 20) 4 1 1 10 1 φA3(n+ 45) 1 1 13 1 1

Table 4.5. First 50 terms of φA3(n) with initial conditions 1, 2, 3, 3, 3, 3, 4, 5, 6

The data in the tables suggests that the recursions Aj(n) all behave in much the same
way, with frequency functions that have strong analogues to the frequency function for the
Conway recursion A(n) = A1(n); that is, that these recursions form a family in our sense
and therefore share certain properties. To illustrate the similarities between recursions in
this family two such generalized properties will be proved below using Corollary 4.4.

For the Conway sequence A(n), it is well known (see, for example, [28]) that for any
k > 0, A(n) = 2k for exactly k + 1 consecutive values of n ending with n = 2k+1. The
following lemma together with its corollary provide a natural extension of this result, for
any j > 1, k > 0, for Aj(n).

Lemma 4.5. Let A(n) be the Conway recursion with A(1) = A(2) = 1. Fix j, k > 0 and
let n = j2k+1 + b, 0 ≤ b < j. Then Aj(j2

k+1 + b) = j2k + b.

Proof. We apply Corollary 4.4 together with the known properties of A(n): Aj(j2
k+1+b) =

jA(2k+1) + b(A(2k+1 + 1)−A(2k+1)) = j2k + b(2k + 1− 2k) = j2k + b.
�

Corollary 4.6. Let A(n) be the Conway recursion with A(1) = A(2) = 1. For any j, k > 0,
Aj(n) = j2k for exactly jk + 1 consecutive values of n ending with n = j2k+1.

Proof. Since Aj(n) is slow it is sufficient to show that n = j2k+1 is the largest index for

which Aj(n) = j2k while n = j2k+1 − jk is the smallest such index.

By Lemma 4.5, Aj(j2
k+1) = j2k and Aj(j2

k+1 + 1) = j2k + 1. Therefore, n = j2k+1 is

the largest index n such that Aj(n) = j2k.

Applying Corollary 4.4 to j2k+1−jk = j(2k+1−k), we obtain Aj(j(2
k+1−k)) = jA(2k+1−

k). From our observation above about A(n) we know that the first time that A(n) = 2k

occurs at n = 2k+1 − k, and since A(n) is slow we know that A(2k+1 − k − 1) = 2k − 1.
Thus Aj(j(2

k+1 − k)) = jA(2k+1 − k) = j2k. Further,

Aj(j2
k+1 − jk − 1) = Aj(j2

k+1 − jk − j + j − 1)

= Aj(j(2
k+1 − k − 1) + (j − 1))

= jA(2k+1 − k − 1) + (j − 1)(A(2k+1 − k)−A(2k+1 − k − 1))

= j(2k − 1) + (j − 1)(2k − (2k − 1))

= j(2k − 1) + (j − 1)

= j2k − j + j − 1

= j2k − 1

Therefore, n = j2k+1 − jk is the smallest term that equals to j2k. �
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We illustrate Lemma 4.5 and Corollary 4.6 for j = 3 in Table 4.4 and Table 4.5. For
k = 2, jk = 3 · 22 = 12 and Table 4.4 contains a string of seven 12s ending at position
j2k+1 = 3 · 22+1 = 24; this corresponds to the frequency φA3(12) = 7 in Table 4.5 which is
equal to 3 · 2 + 1 = jk + 1. Similarly, for k = 3, jk = 3 · 23 = 24 and the table contains a
string of ten 24s ending at position j2k+1 = 3 · 23+1 = 48, corresponding to the frequency
φA3(24) = 10 (equals 3 · 3 + 1 = jk + 1).

From Corollary 4.4 it follows readily that for fixed j the asymptotic behaviour of Aj(n)
is identical to that for A(n), which is well known. More precisely, we have:

Corollary 4.7. Let A(n) be the Conway recursion with A(1) = A(2) = 1. Then for any

j > 0, limn→∞
Aj(n)
n = limn→∞

A(n)
n = 1

2 .

Proof. Fix j > 0 and let n = jz + b, z ≥ 0 and 0 ≤ b < j. Then:

lim
n→∞

Aj(n)

n
= lim

z→∞

Aj(jz + b)

jz + b

= lim
z→∞

(jA(z) + b(A(z + 1)−A(z)))

jz + b

= lim
z→∞

jA(z)

jz + b
+ b

(
lim
z→∞

A(z + 1)

jz + b
− lim
z→∞

A(z)

jz + b

)
=

1

2

�

Although there is no tree interpretation of A(n) comparable to that for C(n) and its
generalizations, Kubo and Vakil [28] demonstrate a very useful graphical interpretation of
A(n). It would be interesting to investigate if this approach can be extended to derive
analogous results for Aj(n).

We believe that analogous results to those in Section 3 can be developed for other nested
recursions with slow solutions with somewhat different structures from those that we have
examined above. In particular, a variation of the Conway recursion defined by Grytczuk
[16] that contains additional nestings shows particular promise. We intend to report on
this and related matters in a future communication.
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