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1. Introduction

This paper arose from my earlier paper [8]. (See also the follow-up
by Speyer [4].) The prototypical result in [8] is the following. Define

(1.1) Sn(x) =

n−1
∏

i=0

(

1 + x2i + x2i+1
)

.

Set Sn(x) =
∑

k≥0

〈

n

k

〉

xk (a finite sum), and define

u2(n) =
∑

k≥0

〈

n

k

〉2

.

Then
∑

n≥0

u2(n)x
n =

1− 2x

1− 5x+ x2
.

Upon seeing this result and some similar ones, Doron Zeilberger asked
what happens when 2n is replaced by some other function satisfying
a linear recurrence with constant coefficients, such as the Fibonacci
numbers Fn (with initial conditions F1 = F2 = 1). We will prove some
results of this nature, but the data suggests that much more is true.
We give a number of conjectures in this direction.
This paper is written in somewhat casual style, with many proofs

omitted or just outlined. My main motivation in posting it is to inspire
someone to find a better approach, prove the conjectures, and develop
a more general theory.

2. A Fibonacci product

In this section we consider the product

(2.1) In(x) =
n
∏

i=1

(

1 + xFi+1
)

.
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In particular, I0(x) = 1 (the empty product) and I1(x) = 1 + x. Our
main goal for this section is a proof of the following result.

Theorem 2.1. Let In(x) =
∑

k≥0 cn(k)x
k, and set

v2(n) =
∑

k≥0

cn(k)
2,

so v2(0) = 1, v2(1) = 2, v2(2) = 4, v2(3) = 10, etc. Then

∑

n≥0

v2(n)x
n =

1− 2x2

1− 2x− 2x2 + 2x3
.

The proof parallels the proofs in [8] of similar results by setting up a
system of linear recurrences of order one. (In Section 4 we give another
proof, the case k = 2 and t = 1 of Theorem 4.3). However, deriving
these recurrences here is quite a bit more complicated. It simplifies
somewhat the argument to replace In(x) with another power series
(with noninteger exponents). The justification for this replacement
is provided by the following lemma. Part (b) is presumably known,
though I couldn’t find this anywhere.

Lemma 2.2. Let φ = 1
2
(1 +

√
5).

(a) Suppose α = (a0, a1, . . . ) and β = (b0, b1, . . . ) are sequences of
0’s and 1’s, with finitely many 1’s, such that

∑

i≥0

aiφ
i =

∑

i≥0

biφ
i.

Then α can be converted to β by a sequence of operations that
replace three consecutive terms 001 with 110, and vice versa.

(b) Suppose α = (a0, a1, . . . ) and β = (b0, b1, . . . ) are sequences of
0’s and 1’s, with finitely many 1’s, such that

∑

i≥0

aiFi+2 =
∑

i≥0

biFi+2.

Then α can be converted to β by a sequence of operations that
replace three consecutive terms 001 with 110, and vice versa.

Proof. (a) This is a simple consequence of the fact that φ is a zero
of the irreducible polynomial x2 − x− 1.
(b) Simple proof by induction on the largest j for which aj = 1 or

bj = 1. Details omitted. �

For a power series P (x) =
∑

i≥0 cix
mi with real exponents mi ≥ 0,

where each ci 6= 0 and m0 < m1 < · · · , we call the sequence (c0, c1, . . . )
the sequence of coefficients of P (x). It’s easy to see that Lemma 2.2
has the following consequence.
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Corollary 2.3. Let Gn(x) =
∏n−1

i=0

(

1 + xφi

)

, a power series whose

exponents lie in the ring Z[φ]. Then the sequence of coefficients of
Gn(x) is equal to the sequence of coefficients of In(x). Moreover, if the
coefficient of xk in In(x) is 0, then k > deg In(x).

To illustrate the next result, when we expand G5(x) we obtain the
following expression, where the terms are listed in increasing order of
their exponents:

G5(x) = 1 + x+ xa + 2xa+1 + xa+2 + 2xb + 2xb+1 + xc + 3xc+1 + 2xc+2

+2xd+3xd+1+xd+2+2xe+2xe+1+xf+2xf+1+xf+2+xg+xg+1,

for certain numbers a, b, . . . , g ∈ Z[φ]. Note that the terms come in
groups of length two or three, where within each group the exponents
increase by one at each step.

Theorem 2.4. For n ≥ 1, we can write Gn(x) as a sum Gn(x) =
T1(x)+T2(x)+ · · ·+Tk(x), where each Ti(x) has the form xa+xa+1 or
xa + xa+1 + xa+2. Moreover, the largest exponent of a term in Ti(x) is
less the smallest exponent of a term in Ti+1(x). (As an aside, we have
k = Fn+1.)

Proof hint. The terms Ti(x) with two summands are of the form

c1x
φ+φ2+a3φ

3+a4φ
4+··· + c2x

1+φ+φ2+a3φ
3+a4φ

4+···,

where a3, a4, . . . is a sequence of 0’s and 1’s with finitely many 1’s, and
where c1, c2 are positive integers. Similarly, the terms Ti(x) with three
summands are of the form

c1x
φ+a3φ

3+a4φ
4+··· + c2x

φ2+a3φ
3+a4φ

4+··· + c3x
1+φ2+a3φ

3+a4φ
4+···. �

Note. Though we have no need of this result, let us mention that
if d(i) denotes the number of terms (either two or three) of Ti(x), then
for i fixed and n sufficiently large we have

d(i) = 1 + ⌊iφ⌋ − ⌊(i− 1)φ⌋.
The sequence (d(1), d(2), . . . ) is obtained from sequence A014675 in
OEIS by prepending a 1 and adding 1 to every term.
We now define an array analogous to Pascal’s triangle (or the arith-

metic triangle) and Stern’ triangle of [8]. We call the resulting array
the Fibonacci triangle F . (This definition is unrelated to some other
definitions of Fibonacci triangle in the literature.)
Every row is a sequence of positive integers, together with a grouping

of consecutive terms such that every group of the grouping has two or
three terms. We will denote the grouping by a bullet (•) between
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groups. The first row is the sequence 1, 1, which necessarily has a
single element 1, 1 in its grouping. Regard the first entry in each row
as preceded by a 0 which is the last element of its group. (The length
of this group ending with a 0 is irrelevant.) Similarly, the last entry in
each row is followed by a 0 which is the first element of its group.
Row i+1 is obtained from row i by the following recursive procedure.

If a term aj of row i ends a group (so aj+1 begins a group), then below
aj, aj+1 write in row i+ 1 the 3-element group aj, aj + aj+1, aj+1. If aj
in row i is the middle element of a 3-element group, then write in row
i+1 below aj the 2-element group aj , aj. The first five rows of F look
as follows:

1 1
1 1 • 1 1

1 1 • 1 2 1 • 1 1
1 1 • 1 2 1 • 2 2 • 1 2 1 • 1 1

1 1 • 1 2 1 • 2 2 • 1 3 2 • 2 3 1 • 2 2 • 1 2 1 • 1 1

Let
[

n

k

]

be the kth entry (beginning with k = 0) in row n (beginning

with n = 1) of F . Set Hn(x) =
∑

k≥0

[

n

k

]

xk. For instance,

H3(x) = 1 + x+ x2 + 2x3 + x4 + x5 + x6.

The following result can be proved by induction.

Theorem 2.5. We have Hn(x) = In(x).

We now have all the ingredients for proving Theorem 2.1. Define

[

n

k

]

1

=

{
[

n

k

]

, if the kth entry in row n of F is the first entry of its group

0, otherwise
[

n

k

]

2

=

{
[

n

k

]

, if the kth entry in row n of F is the middle entry of its group

0, otherwise
[

n

k

]

3

=

{
[

n

k

]

, if the kth entry in row n of F is the last entry of its group

0, otherwise.
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Set

A1(n) =
∑

k

[

n

k

]2

1

A2(n) =
∑

k

[

n

k

]2

2

A3(n) =
∑

k

[

n

k

]2

3

A3,1(n) =
∑

k

[

n

k

]

3

[

n

k + 1

]

1

A1,2(n) =
∑

k

[

n

k

]

1

[

n

k + 1

]

2

A1,3(n) =
∑

k

[

n

k

]

1

[

n

k + 1

]

3

A2,3(n) =
∑

k

[

n

k

]

2

[

n

k + 1

]

3

.

Using the definition of F one checks the following (all sums are over
k ≥ 0):

A1(n+ 1) =
∑

(

[

n

k

]2

3

+

[

n

k

]2

2

)

= A2(n) + A3(n)

A2(n+ 1) =
∑

([

n

k

]

3

+

[

n

k + 1

]

1

)2

= A1(n) + A3(n) + 2A3,1(n)

A3(n+ 1) =
∑

(

[

n

k

]2

1

+

[

n

k

]2

2

)

= A1(n) + A2(n)

A3,1(n+ 1) =
∑

([

n

k

]

1

[

n

k + 1

]

2

+

[

n

k

]

1

[

n

k + 1

]

3

+

[

n

k

]

2

[

n

k + 1

]

3

)

= A1,2(n) + A1,3(n) + A2,3(n)
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A1,2(n + 1) =
∑

[

n

k

]

3

([

n

k

]

3

+

[

n

k + 1

]

1

)

= A3(n) + A3,1(n)

A1,3(n + 1) =
∑

[

n

k

]2

2

= A2(n)

A2,3(n + 1) =
∑

([

n

k

]

3

+

[

n

k + 1

]

1

)[

n

k + 1

]

1

= A1(n) + A3,1(n).

Let M denote the matrix

M =



















0 1 1 0 0 0 0
1 0 1 2 0 0 0
1 1 0 0 0 0 0
0 0 0 0 1 1 1
0 0 1 1 0 0 0
0 1 0 0 0 0 0
1 0 0 1 0 0 0



















,

and let v(n) denote the column vector

v(n) = [A1(n), A2(n), A3(n), A3,1(n), A1,2(n), A1,3(n), A2,3(n)]
t

(where t denotes transpose). The recurrences above take the form
v(n+ 1) = Mv(n). Hence, as in [8, §2], the seven functions Aα(n)
all satisfy a linear recurrence relation whose characteristic polyno-
mial Q2(x) is the characteristic polynomial det(xI −M) of M . Then
∑

n≥0Aα(n)x
n is a rational function with denominator xdegQ2(x)Q2(1/x).

One computes Q2(x) = x2(x+ 1)2(x3 − 2x2 − 2x+ 2). Taking into ac-
count the initial conditions for the case A1(n)+A2(n)+A3(n) = v2(n)
yields Theorem 2.1.
Note that the factors x2(x+1)2 of Q2(x) were spurious. This suggests

that there should be a simpler argument involving a 3×3 matrix rather
than a 7× 7 matrix.

3. Some generalizations

There are several ways we can try to generalize Theorem 2.1. In
this section we will consider generalizing the product In(x) and the
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function v2(n). However, we continue to deal with Fibonacci numbers.
Let α = (α0, α1, . . . , αm−1) ∈ Nm (where N = {0, 1, . . . }), and define

vα(n) =
∑

k≥0

[

n

k

]α0
[

n

k + 1

]α1

· · ·
[

n

k +m− 1

]αm−1

.

This definition is completely analogous to the definition of uα(n) in [8].
As in [8], we write vα0,...,αm−1 as short for v(α0,...,αm−1).
Our proof of Theorem 2.1 carries over to the following result. The

argument is analogous. We just have to ascertain that we don’t end up
with a system of infinitely many equations. This is proved in the same
way as in [8, Thm. 2].

Theorem 3.1. For any α ∈ Nm, the generating function

Jα(x) =
∑

n≥0

vα(n)x
n

is rational.

We used the Maple package gfun to “guess” the rational function
Jα(x) for some small α. Gfun finds the “simplest” rational function
fitting the data, which consists of values of vα(n) for small n (typically
around 0 ≤ n ≤ 36). Thus the examples below have not been rigorously
proved. First we give some examples where α = (r):

(3.1)

J3(x) =
1− 4x2

1− 2x− 4x2 + 2x3

J4(x) =
1− 7x2 − 2x4

1− 2x− 7x2 − 2x4 + 2x5

J5(x) =
1− 11x2 − 20x4

1− 2x− 11x2 − 8x3 − 20x4 + 10x5

J6(x) =
1− 17x2 − 88x4 − 4x6

1− 2x− 17x2 − 28x3 − 88x4 + 26x5 − 4x6 + 4x7

J7(x) =
1− 26x2 − 311x4 − 84x6

1− 2x− 26x2 − 74x3 − 311x4 + 34x5 − 84x6 + 42x7
.

Note that the denominators all have odd degree, and the numerator
is the even part of the denominator. This behavior has been verified
empirically (not rigorously) for n ≤ 17. For 8 ≤ n ≤ 17, the de-
nominator degrees are 9, 7, 9, 9, 13, 11, 13, 11, 13, 13, respectively. See
Conjecture 4.6 for a generalization.
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Here are some examples where α has at least two terms:

J1,1(x) =
x+ x2

1− 2x− 2x2 + 2x3

J1,0,1(x) =
2x2 + x3 − x4

(1− x)(1 − 2x− 2x2 + 2x3)

J2,1(x) =
x+ x2

1− 2x− 4x2 + 2x3

J1,3(x) =
x+ x2 + x3 + x4

1− 2x− 7x2 − 2x4 + 2x5

J2,2(x) =
x+ x2 − x3 − x4

1− 2x− 7x2 − 2x4 + 2x5

J2,3(x) =
x+ x2 − x3 − x4

1− 2x− 11x2 − 8x3 − 20x4 + 10x5

J1,1,1(x) =
2x2 + 2x3 − 2x4

(1− x)(1 − 2x− 4x2 + 2x3)

J1,0,2(x) =
2x2 + x3 − 2x4 + x5

(1− x)2(1− 2x− 4x2 + 2x3)

J2,1,1(x) =
2x2 + 2x3 − 4x4 + 4x5

(1− x)2(1− 2x− 7x2 − 2x4 + 2x5)

J1,2,1(x) =
2x2 + 4x3 − 2x4

(1− x)(1 − 2x− 7x2 − 2x4 + 2x5)

It appears that Jα(x) has a denominator of the form (1 − x)cαDr(x),
where cα ≥ 0, r =

∑

αi, and Dr(x) is the denominator of Jr(x).
This heuristic observation is in complete analogy to [8, Thm. 3] and
presumably has a similar proof.
We can also generalize the definition of In(x). In analogy to [8,

Thm. 4] we have the following conjecture.

Conjecture 3.2. Let h ≥ 1, (a1, . . . , ah) ∈ Ch, and P (x) ∈ C[x]. Set

Ih,P,n(x) = P (x)

n
∏

i=1

(

1 + a1x
Fi + a2x

Fi+1 + · · ·+ ahx
Fi+h−1

)

.
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Regarding h, P as fixed, let cn(p) denote the coefficient of xp in Ih,P,n(x).
For α = (α0, . . . , αm−1) ∈ Nm define

vh,P,α(n) =
∑

p≥0

cn(p)
α0cn(p+ 1)α1 · · · cn(p+m− 1)αm−1 .

Then the generating function
∑

n≥0 vh,P,α(n)x
n is rational.

Let us consider one simple special case of this conjecture. Let t be
any complex number (or an indeterminate), and define

In,t(x) =
n
∏

i=1

(

1 + txFi+1
)

.

We now get a triangle F(t) with the same grouping into two or three
terms as in F , but the first row is 1, t. Row i+ 1 is obtained from row
i by the following recursive procedure. If a term aj of row i ends a
group (so aj+1 begins a group), then below aj , aj+1 write in row i + 1
the 3-element group aj, aj + taj+1, taj+1. If aj in row i is the middle
element of a 3-element group, then write in row i + 1 below aj the
2-element group aj, taj .
The following result now is proved in complete analogy with the

proof of Theorem 2.1.

Theorem 3.3. Let v2,t(n) denote the sum of the squares of the coeffi-
cients of In,t(x). Then

∑

n≥0

v2,t(n)x
n =

1− (t3 + t)x2

1− (t2 + 1)x− t(t2 + 1)x2 + t(t4 + 1)x3
.

The polynomial In,−1(x) =
∏n

i=1

(

1− xFi+1
)

has been considered be-
fore. It was shown by Yufei Zhao [10] that all its nonzero coefficients
are equal to ±1. Thus v2,−1(n) is equal to the number of nonzero
coefficents of In,−1(x), with generating function

∑

n≥0

v2,−1(n)x
n =

1 + 2x2

1− 2x+ 2x2 − 2x3
.

This fact is stated (in equivalent form) in the OEIS [2]. Note that we
can also directly compute, using the technique in the proof of Theo-
rem 2.1, that v4,−1 = v2,−1. This gives a new proof (albeit involving a
cumbersome computation) of Zhao’s result.

Example 3.4. As a somewhat random special case of Conjecture 3.2,
let h = 3, (a1, a2, a3) = (0, 1, 1), P (x) = 1, and α = (2). Thus we
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are considering the sum w(n) of the squares of the coefficients of the
product

∏n

i=1

(

1 + xFi+1 + xFi+2
)

. Then gfun suggests that

∑

n≥0

w(n)xn =
1− 4x− 5x2 + 24x3 + 4x4 − 34x5 + 2x6 + 10x7 − 4x8

1− 7x+ x2 + 47x3 − 32x4 − 84x5 + 50x6 + 34x7 − 18x8
.

Note. There is an alternative way of describing the nonzero coeffi-
cients of the polynomial In(x) =

∏n

i=1

(

1 + xFi+1
)

. Let An denote the
set of all words of length n in the letters a, b, so #An = 2n. Define
π, σ ∈ An to be equivalent if σ can be obtained from π by a sequence of
substitutions (on three consecutive terms) baa → abb and abb → baa,
an obvious equivalence relation ∼. For instance, when n = 5 one of the
equivalence classes is {baaaa, abbaa, ababb}. The quotient monoid of
the free monoid generated by a, b modulo ∼ is called the Fibonacci
monoid in [9], though other monoids are also called the Fibonacci
monoid. Here we are interested not in the monoid itself, but rather the
sizes of its equivalence classes. It follows easily from Lemma 2.2(b) that
the multiset Mn of equivalence class sizes of ∼ on An coincides with the
multiset of (nonzero) coefficients of In(x). Thus if u∗

n(r) =
∑

j∈Mn
jr

(r ∈ N), then the generating function
∑

n≥0 u
∗
n(r)x

n is rational. What
other equivalence relations on An obtained by substitutions of words
of equal length are rational? For instance, the substitutions ab ↔ ba
do not give rational generating functions for r ≥ 2. For r = 2 the
generating function is algebraic but not rational, while for r ≥ 3 it is
D-finite but not algebraic [5, Exer. 6.3, 6.54]. Thus we can also ask in
general when we get algebraic and D-finite generating functions.
Note. It is a nice exercise to show that if f1, f2, . . . is a sequence

of positive integers satisfying f1 6= f2 and fi+1 = fi + fi−1 for all i ≥ 2,
then for all n ≥ 1 the sequence of nonzero coefficients of the polynomial
∏n

i=1

(

1 + xfi
)

depends only on n.

4. Generalizing the Fibonacci numbers

What happens if we replace Fi+1 in the definition (2.1) and its gen-
eralizations with some other sequence? We consider only sequences
f1, f2, . . . satisfying linear recurrences with constant integer coefficients.
Note that if fi+1 ≥ 2fi for all i, then the nonzero coefficients of
∏n

i=1

(

1 + xfi
)

are all equal to 1, which is not so interesting. One
class of sequences that have more interesting behavior is given for fixed
k ≥ 1 by

F
(k)
i+1 = F

(k)
i + F

(k)
i−1 + · · ·+ F

(k)
i−k+1,

say with initial conditions F
(k)
1 = F

(k)
2 = · · · = F

(k)
k = 1. Thus F

(2)
i =

Fi.
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We conjecture that Conjecture 3.2 has a direct F (k)-analogue.

Conjecture 4.1. Let k ≥ 2, h ≥ 1, (a1, . . . , ah) ∈ Ch, and P (x) ∈
C[x]. Set

I
(k)
h,P,n(x) = P (x)

n
∏

i=1

(

1 + a1x
F

(k)
i + a2x

F
(k)
i+1 + · · ·+ ahx

F
(k)
i+h−1

)

.

Regarding h, P, k as fixed, let cn(p) denote the coefficient of xp in I
(k)
h,P,n(x).

For α = (α0, . . . , αm−1) ∈ Nm define

v
(k)
h,P,α(n) =

∑

p≥0

cn(p)
α0cn(p+ 1)α1 · · · cn(p+m− 1)αm−1 .

Then the generating function
∑

n≥0 v
(k)
h,P,α(n)x

n is rational.

For the special case

I
(k)
H,P,n(x) =

n
∏

i=1

(

1 + txFi+k−1
)

,

we can prove this conjecture by a combinatorial technique. When k = 2
this gives a new proof of Theorem 2.1.
To give this proof, for k ≥ 2 define M(k) to be the set of all pairs π

of finite binary sequences of the same length, say n, denoted

(4.1) π =

(

a1 a2 · · · an
b1 b2 · · · bn

)

,

such that
n
∑

i=1

aiF
(k)
i+k−1 =

n
∑

i=1

biF
(k)
i+k−1.

It is easily seen that if π ∈ M(k) (where π is given by equation (4.1))
and if

σ =

(

c1 c2 · · · cp
d1 d2 · · · dp

)

∈ M(k),

then the concatenation

πσ =

(

a1 a2 · · · an c1 c2 · · · cp
b1 b2 · · · bn d1 d2 · · · dp

)

also belongs to M(k). Thus M(k) is a monoid under concatenation.
(The empty array is the identity element.)
For a binary letter a = 0, 1 let aj denote a sequence of j a’s. For

instance, 04 = 0000. Given k ≥ 2, let G(k) be the set of all pairs of
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binary sequences equal to

(4.2)

(

0
0

)

or

(

1
1

)

,

or equal to one of the two forms (which differ by interchanging the
rows)
(4.3)

π =

(

1k ∗ 1k−1 ∗ 1k−1 ∗ 1k−1 ∗ · · · ∗ 1k−1 0
0k ∗ 0k−1 ∗ 0k−1 ∗ 0k−1 ∗ · · · ∗ 0k−1 1

)

, or

σ =

(

0k ∗ 0k−1 ∗ 0k−1 ∗ 0k−1 ∗ · · · ∗ 0k−1 1
1k ∗ 1k−1 ∗ 1k−1 ∗ 1k−1 ∗ · · · ∗ 1k−1 0

)

,

where * can be 0 or 1, but two *’s in the same column must be equal.
It’s easy to see that G(k) ⊂ M(k). Then the following key lemma is
fairly straightforward to prove.

Lemma 4.2. The set G(k) freely generates M(k). That is, every ele-
ment π of M(k) can be written uniquely as a product of words in G(k).

We can now state the main (nonconjectural)) result of this section.

Theorem 4.3. Let v
(k)
2 (n, t) denote the sum of the squares of the co-

efficients of the polynomial
∏n

i=1

(

1 + txF
(k)
i+k−1

)

. Then

∑

n≥0

v
(k)
2 (n, t)xn =

1− tk−1(1 + t2)xk

1− (1 + t2)x− tk−1(1 + t2)xk + tk−1(1 + t4)xk+1
.

Proof. Write ℓ(π) for the length of π ∈ M(k), and write N(π) for
the total number of 1’s in π. Note that ℓ(πσ) = ℓ(π) + ℓ(σ) and
N(πσ) = N(π) +N(σ). Define

G(k)(x) =
∑

π∈G(k)

tN(π)xℓ(π).

By a standard simple argument (see [6, §4.7.4]),
∑

n≥0

v
(k)
2 (n, t)xn =

1

1−G(k)(x)
.

We can use Lemma 4.2 to compute G(k)(x). The two generators
in equation (4.2) contribute (1 + t2)x to G(k)(x). Now consider the
generators π and σ of equation (4.3). The two generators differ only
by switching rows, so consider just π. Suppose there are j ≥ 0 columns
of ∗’s. The number of 1’s in the remaining columns is k+ j(k− 1)+ 1.
The length of π is (j + 1)k + 1. Since each of the j columns of ∗’s
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has zero or two 1’s, the contribution to G(k) of all generators (4.3) is
tj(k−1)+k+1(1 + t2)jxjk+k+1. The same is true of the second generator
σ. Hence

G(k)(x) = (1 + t2)x+ 2
∑

j≥0

tj(k−1)+k+1(1 + t2)jxjk+k+1

=
2tk+1xk+1

1− tk−1(1 + t2)xk
.

It follows that
∑

n≥0

v
(k)
2 (n, t)xn =

1

1− (1 + t2)x− 2tk+1xk+1

1−tk−1(1+t2)xk

=
1− tk−1(1 + t2)xk

1− (1 + t2)x− tk−1(1 + t2)xk + tk−1(1 + t4)xk+1
.

�

Naturally we can ask how the statement and proof of Theorem 4.3

can be extended. For any r ≥ 2 let v
(k)
r (n, t) denote the sum of the

rth powers of the coefficients of the polynomial
∏n

i=1

(

1 + txFi+k−1
)

.

Define the monoidM(k)(r) analogously to M(k) by letting the elements
of M(k)(r) be r-tuples of binary words of the same length such that
∑n

i=1 aiF
(k)
i+k−1 is the same for all the r words a1a2 · · · an. It’s easy to

see that M(k)(r) is a free monoid, basically because if π and σ are r-
tuples of binary words such that π ∈ M(k)(r) and πσ ∈ M(k)(r), then
σ ∈ M(k)(r). However, finding the free generators of M(k)(r) seems
complicated for r ≥ 3, and we have not tried to do so. For r = 3 we
have the following conjecture. We use the notation

J (k)
r (t, x) =

∑

n≥0

v(k)r (n, t)xn.

Conjecture 4.4. We have

J
(k)
3 (t, x) =

1− t3(1 + t3)2xk + t9(t3 − 1)2x2k

D
(k)
3 (x)

,

where

D
(k)
3 (x) = 1− (1 + t3)x− t3(1 + t3)2xk + t3(1 + t9)xk+1

+t9(t3 − 1)2x2k − t9(t3 − 1)2(t3 + 1)x2k+1.

Note that the numerator in the above conjecture consists of the terms
in the denominator with x-exponents 0, k, 2k. For higher values of r
the coefficients seem to be more complicated. For instance, it seems

that the coefficient of x4 in the denominator of J
(k)
4 (t, x) is t2(t12+t10−
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t8 − 4t6 − t4 + t2 + 1). The factor t12 + t10 − t8 − 4t6 − t4 + t2 + 1 is
irreducible over Q. We give below some conjectures when t = 1.

Conjecture 4.5. We have

J
(k)
4 (1, x) =

1− 7xk − 2x2k

1− 2x− 7xk − 2x2k + 2x2k+1

J
(k)
5 (1, x) =

1− 11xk − 20x2k

1− 2x− 11xk − 8xk+1 − 20x2k + 10x2k+1

J
(k)
6 (1, x) =

1− 17xk − 88x2k − 4x3k

D
(k)
6 (1, x)

J
(k)
7 (1, x) =

1− 26xk − 311x2k − 84x3k

D
(k)
7 (1, x)

,

where

D
(k)
6 (1, x) = 1− 2x− 17xk − 28xk+1 − 88x2k + 26x2k+1 − 4x3k + 4x3k+1

and

D
(k)
7 (1, x) = 1−2x−26xk−74xk+1−311x2k+34x2k+1−84x3k+42x3k+1.

Theorem 3.3 and Conjectures 4.4 and 4.5 suggest the following con-
jecture.

Conjecture 4.6. For r ≥ 2 there is an integer m ≥ 1 (depending on

r) for which J
(k)
r (t, x) has the form

J (k)
r (t, x) =

1 + a2(t)x
k + a4(t)x

2k + · · ·+ a2m(t)x
mk

D
(k)
r (t, x)

,

where

D(k)
r (t, x) = 1 + a1(t)x+ a2(t)x

k + a3(t)x
k+1 + a4(t)x

2k + a5(t)x
2k+1

+ · · ·+ a2m(t)x
mk + a2m+1(t)x

mk+1,

and where each ai(t) is a polynomial in t (depending on r but indepen-
dent from k) such that a2m+1(t) 6= 0, and possibly even ai(t) 6= 0 for all
0 ≤ i ≤ 2m+1. Moreover (in order to account for the odd denominator
degrees in equation (3.1)), the largest index j for which aj(1) 6= 0 is
odd.

Note that this conjecture has the suprising consequence that once we

know J
(2)
r (t, x) (or even just its denominator), then we can immediately

determine J
(k)
r (t, x) for all k.

What other sequences satisfying linear recurrences with constant co-
efficients have interesting behaviour related to this paper? We haven’t
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found any further recurrences with “nice” behavior. For instance, gfun
fails to find rational generating functions (using the values for 0 ≤ n ≤
40) for the sum of the squares of the coefficients of

∏n

i=1

(

1 + xfi+2
)

,
when either fi+1 = fi+fi−2 or fi+1 = fi−1+fi−2, with initial conditions
f1 = f2 = f3 = 1.

5. Congruence properties

For 0 ≤ a < m, let gm,a(n) denote the number of coefficients of Sn(x)
(defined by equation (1.1)) that are congruent to a modulo m. Reznick
[3] showed that the generating function

Gm,a(x) =
∑

n≥0

gm,a(n)x
n

is rational. See also [7, pp. 28–37], where some open questions are on
page 32. In particular, the denominator of Gm,a(x) has quite a bit
of factorization that remains unexplained. (For some small progress
related to the denominator factorization, see Bogdanov [1].) For the
proof that Gm,a(x) is rational, it is necessary to introduce auxiliary
generating functions Gm,a,b(x) =

∑

n≥0 gm,a,b(n)x
n, where gm,a,b(n) is

equal to the number of integers 0 ≤ k ≤ deg Sn(x) for which
〈

n

k

〉

≡
a (modm) and

〈

n

k+1

〉

≡ b (modm).
We can do something analogous for the Fibonacci triangle. For 0 ≤

a < m, let hm,a(n) denote the number of coefficients of In(x) (defined
by equation (2.1)) that are congruent to a modulo m. Define

Hm,a(x) =
∑

n≥0

hm,a(n)x
n.

The proof sketched in [7] that Gm,a(x) is rational carries over, mu-
tatis mutandis, to Hm,a(x). As in the proof for Gm,a(x), we need to
introduce some auxiliary generating functions that take into account
consecutive coefficients of In(x). However, we need also specify whether
these coefficients are the beginning, middle, or end of a group (as de-

fined in Section 2). Thus we will have numbers like g
(3,1)
m,a,b(n) which

count the number of integers 0 ≤ k ≤ deg In(x) for which
[

n

k

]

ends a

group and satisfies
[

n

k

]

≡ a (modm), while
[

n

k+1

]

begins a group and

satisfies
[

n

k+1

]

≡ b (modm). When these procedures are carried out we
obtain the following result.

Theorem 5.1. The generating function Hm,a(x) is rational.
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Naturally we would like to say more about Hm,a(x) than just its
rationality. Here are some values suggested by gfun. None have been
proved.

H2,0(x) =
x3(1− 2x2)

(1− x)(1 − x− x2)(1− 2x+ 2x2 − 2x3)

H2,1(x) =
1 + 2x2

1− 2x+ 2x2 − 2x3

H3,0(x) =
2x5(1− 2x2)

(1− x)(1 − x− x2)(1− 2x+ 2x2 − 3x3 + 4x4 − 4x5)

H3,1(x) =
1− 2x+ 4x2 − 6x3 + 8x4 − 10x5 + 8x6 − 6x7

(1− x)(1 − x+ x2)(1− 2x+ 2x2 − 3x3 + 4x4 − 4x5)

H3,2(x) =
x3(1 + 2x4)

(1− x)(1 − x+ x2)(1− 2x+ 2x2 − 3x3 + 4x4 − 4x5)

H4,0(x) =
x6(1− 2x2)(1− 3x2 + 4x3 − 4x4)

(1− x)(1 − x− x2)(1− x2 + 2x4)(1− 2x+ 2x2 − 2x3)2

H4,1(x) =
1− 2x+ 5x2 − 8x3 + 10x4 − 12x5 + 8x6 − 6x7

(1− x)(1 − 2x+ 2x2 − 2x3)(1− x+ 2x2 − 2x3 + 2x4)

H4,2(x) =
x3(1 + x2)(1− 2x2)

(1− x2 + 2x4)(1− 2x+ 2x2 − 2x3)2

H4,3(x) =
2x5(1 + x2)

(1− x)(1 − 2x+ 2x2 − 2x3)(1− x+ 2x2 − 2x3 + 2x4)

Note that just as forGm,a(x), there is a lot of denominator factorization.
Moreover, some of the numerators of Hm,a(x) have only two terms, in
analogy to some numerators of Gm,a(x) having just one term.
We can try to extend Theorem 5.1 to

I(k)n (x) =

n
∏

i=1

(

1 + xF
(k)
i+k−1

)

.

For 0 ≤ a < m, let h
(k)
m,a(n) denote the number of coefficients of I

(k)
n (x)

that are congruent to a modulo m. Define

H(k)
m,a(x) =

∑

n≥0

h(k)
m,a(n)x

n.

Conjecture 5.2. The generating function H
(k)
m,a(x) is rational.
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We have some scanty evidence for a “congruence analogue” of Con-
jecture 4.6. For (m, a) = (2, 1) we found enough evidence to conjecture
the following.

Conjecture 5.3. We have

H
(k)
2,1 (x) =

1 + 2xk

1− 2x+ 2xk − 2xk+1
.

For (m, a) = (3, 1) gfun suggests the following:

H
(2)
3,1 (x) =

1− 2x+ 4x2 − 6x3 + 8x4 − 10x5 + 8x6 − 6x7

1− 4x+ 8x2 − 12x3 + 16x4 − 20x5 + 19x6 − 12x7 + 4x8

H
(3)
3,1 (x) =

1− 2x+ 4x3 − 6x4 + 8x6 − 10x7 + 9x9 − 6x10

D(x)
,

where

D(x) = 1− 4x+ 4x2 + 4x3 − 12x4 + 8x5 + 8x6 − 20x7 + 11x8

+8x9 − 12x10 + 4x11.

The connection between the two numerators is obvious. Note the de-
nominator coefficients of H

(2)
3,1 (x) are obtained from those of H

(3)
3,1 (x)

by adding the coefficients of the pairs (x2, x3), (x5, x6) and (x8, x9),
keeping the other coefficients unchanged. Someone with better com-
puter skills and/or power should be able to come up with more general
conjectures. Even better, of course, would be some theorems!
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