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ABSTRACT. Let a(0) =0and a(n) =n—1-3%,_ a"(n—k) for n > 1, where the exponent k
indicates k-fold composition. We prove that a(Fy,+2) = F, using a certain infinite morphism.
The recursive structure of the underlying morphic word is elucidated.

1. INTRODUCTION

There is a close connection between several nested recurrence relations and Fibonacci num-
bers. A nested recurrence relation, such as Hofstadter’s G recurrence, G(n) = n—G(G(n—1)),
has the property that the function name (G in his case) occurs somewhere in the parameter
for another instance of the function name. With the intial condition G(0) = 0, this recurrence
relation has the solution G(n) = [(n 4+ 1)/¢| where ¢ is the golden ratio; see Downey and
Griswold [4] (and [6],[7]). As a consequence G(F,4+1) = F,, where as usual F), is the n-th
Fibonacci number. Similar relationships for another nested recurrence equation are noted in
1, 2].

More recently, it was shown in [8] that, with carefully selected initial conditions, Q(3m +
2) = F45, where Q(n) is Hoftadter’s famous “meta-Fibonacci” recurrence relation Q(n) =
Q(n— Q(n— 1)) + Qn — Q(n—2)) [5].

Our purpose in this paper is to prove an equation similar to G(F,11) = F,, for an infinite
nested recurrence relation that occurs in the paper [3], namely

a(n) = {0 if n <0
| n—1-a(n—1)—a(a(n—2))—a(a(a(n—3)))—a(a(a(a(n—4))))—---  otherwise.

(1.1)
There they noted experimentally that

a(Fpi2) = Fy, (1.2)

and proved it when n is even, leaving open the odd case. The objective of this paper is to
prove (1.2) and elucidate some structural properties of the sequence a(1),a(2),....
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FIGURE 1. The tree of the morphism.

As proved by Meek and van Rees [6], the value of G(n) may be obtained by forming the
Zeckendorf representation of n and the deleting the least significant bit. It might be hoped
that the solution to a(n) could be obtained from the Zeckendorf representation by deleting
the two least significant bits of n; however, that is not the case, something more subtle is
happening with a(n).

The starting point for our approach to the problem is the paper [3]. There they establish
a correspondence between the solution to a certain class of nested recurrence relation and a
counting problem on words arising from a certain class of morphisms. See Section 5.2 of [3]
where (1.1) is introduced.

The relevant morphism, o, is defined as follows.

r—1r0,0 = 10,1 —200,...,k — (k+1)0F ...

The starting symbol is r, and the initial levels of the morphic tree of ¢ are shown in Figure 1.
Define the infinite morphic word

w = uyuguz - =1 Lo (r)
and let
Wg = UU2 * * - Uk
be the length k prefix of w. E.g.,
wyqr = 01020010300010102001040000101010200102001030001.

The results of [3] then imply that a(n) is the number of non-zero characters in w,,. Define
s(n) to be the sum of the numbers in w,, and b(n) to be the length of r~to(rw,). It is worth
noting that r~'o(rw,) = 0c(w,) for n > 1. A table of the relevant numbers may be found
below. The a(n) numbers are in the OEIS as sequence A227145 [9].

n |1 23 4 5 6 7 8 9 10 11 12 13
w |01 0 2 0 0 1 0 3 0 0 0 1
an)|0 1 1 2 2 2 3 3 4 4 4 4 5
s(n)f0 1 1 3 3 3 4 4 7 7 7 7 8
bin) [3 6 8 12 14 16 19 21 26 28 30 32 35

Sufficiently far down in the morphism tree, w, is the prefix of the string of characters at a
given level, ignoring the initial . For example 0102 occurs at level 3 (with the root at level 0)
and greater. In terms of the tree (again, ignoring the leading ), a(n) is the number of parents
of wy, and b(n) is the number of children of wy,.

The following identities follow fairly directly from the definitions. For example, a(b(k)) = k
says that the number of parents of the number of children of the first £ nodes is k. And (2.2)
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is true because if one of the first k£ nodes is a j then it has j + 2 children (the plus 1 comes
from the initial 0).

a(b(k)) =k and a(b(k) — 1) = k for all k > 0, (2.1)
b(k) = 1 + 2k + s(k), for all k > 1, and (2.2)
k+ s(k) = s(b(k)) = s(b(k) — 1) for all k > 1. (2.3)

Claim 2.1. For all m > 1 we have b(Fapm—1) = 1 4+ Fomi1 and b(Fap,) = Fopto.
Proof: We break this down into the following two enhanced statements.

(a) For all m > 1 we have b(Fp—1) =1 + Fopy1 and s(Fopmt1) = Fom.
(b) For all m > 1 we have b(Fa—2) = Fo, and s(Foy,) = =1+ Foppq.

Each of (a) and (b) is proven independently by induction on m. The initial cases can be
checked in the table. We first prove (a).

b(Fom—1) = 14 2F5—1 + s(Fom—1)
=14 Fop—1+ Fopm—1 + Fopm—2
=1+ Fom—1+ Fom
— 14 Fopir.
Using (2.3) we get

$(Fom+1) = s(b(Fam-1) — 1)
= 5(b(Fam-1))
= Fom—1 + s(Fam—1)
= Fom—1+ Fam—2
= Fy,,.

And now we prove (b), using (2.2).

b(Fom—2) =14 2Fy, o + s(Fopm_2)
=1+ Fom o+ Fopm o+ Fop3—1
= Fom—2+ Fom—1
= Fy,.
Again using (2.3),
$(Fom) = s(b(F2m—2))
= Fom—2 + s(Fom—2)
= Iy o+ Fop3—1
=—1+4 Fop_1.

Corollary 2.2. For alln > 3, a(F),) = F,_o.
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Proof: The proof also uses (2.1). For the even indexed case, note that

a(b(Fgm)) = Fgm and a(b(Fgm)) = Q(F2m+2).
For the odd indexed case, note that
a(b(FQm,1 — 1)) = Fgmfl and a(b(Fmel) — 1) = a(F2m+1).
O
We will now give a recursive structural characterization of the wp,. Somewhat similar
characterizations for G(n) were undertaken in Rahman [7]. However, here the situation is

considerably more complicated. In the claim and proof below, we use 0~! to mean: delete the
trailing or leading 0 from the string that precedes or follows it.

Claim 2.3. If m > 3, then

WEyy, = Whyp 1 Wy, o (2'4)
= OU(szm—z) (25)

WFyy—1 = WFap_o (m - 1)w$;72w?‘;),73 e w%2m—7w}7‘27n75 (2'6)
= 00(wp, ;)0 ! (2.7)

Proof: Our proof is by induction on m, where the base cases may be checked using the table.
We first prove that the right hand sides of (2.6) and (2.7) are equal, the most interesting of
the four equations.

—2 -3
OU(wFqu) = OU(wFqu (m - 1)“’?1 w?«}g o 'wl%'zm_7wllg'2m—5)

= 00 (W, 5)o((m — D)o(wi?)o(wi %) - o(wh, _Jo(wk,, )o(wr,, ,)
= wFQmmOm_lo(O_le3O)m_2(0_1wF50)m_3 T (O_leQm—5O)2(0_1wF2m—30)1
m—1

= WFy,,, MWp, (wF3)m72(wF5)mi3 U (wF2m75)2(wF2m73)10 (2'8)

This proves (2.7).

To prove (2.6) we will show that the string in (2.8) has the correct length. We will use
the following identity. This should be a well-known identity but we have no reference; in any
event, it is easily proven by induction.

m—1
(m —j)FQj_l = Fgm_l —1. (29)
j=1

It then follows that
00 (wry,, )0 = Fop + 1+ (m— 1)Fy + (m —2)Fs + -+ + 2F_5 + Fop_s3
=+ 14+ 1 —1 = ot
Below we show that (2.5) is true.
0o (wp,,,) = 00(wg,, ,)o(wr,, )
= Wry,,, 00(WE,,,_,)
= Wy Wy, -

And (2.4) follows from the basic recurrence for Fibonacci numbers. O
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3. ALGORITHMIC IMPLICATIONS

It is natural to wonder whether these sorts of decompositions and recurrences might lead to
an efficient way to compute a(n). Let us assume that the Fibonacci numbers of size at most
n have be pre-computed in a table; this takes O(logn) arithmetic operations.

The main thing to note is that the decomposition of (2.6) is into O(logn) ranges whose sizes
are constant-sized linear expressions of m and Fibonacci numbers, and thus their ¢ numbers
are easily computed. For example,

(m—2)F1+(m—3)F3+---—|—(m—7)F11:(m—7)F12—|—F9—1

is the cumulative size of the first 6 ranges to the right of the (m — 1) in (2.6). We can use
binary search to locate the correct range and then associated a() value; for example, again in
the first 6 ranges we would have the a() value

(m—2)a(F1)+(m—3)a(F3)+ - -+(m—T7)a(F11) = (m—T7)a(Fi2)+a(Fy)—1 = (m—T7)Fio+Fr—1.

The range in which n lies is at largest a positive fraction (related to golden ratio) of n. And
since we are doing a binary search for the right range among O(m) = O(logn) of them, the
search will take O(loglogn) steps. Once we are in the right range, O(1) arithmetic operations,
together with a recursive call, will give us the result. Thus the total number of arithmetic
operations, T'(n), satisfies the recurrence relation

T(n) < O(loglogn) + T(n/¢),

whose solution is O(loglognlogn). This gives us a fairly efficient way of computing a(n);
certainly better than using the original recurrence relation (1.1) from the problem definition!
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