
Journal of Computational and Applied Mathematics 162 (2004) 33–50
www.elsevier.com/locate/cam

E$cient isolation of polynomial’s real roots

Fabrice Rouilliera ;∗, Paul Zimmermannb

aLORIA/INRIA/LIP6, LIP6, BP 168, 8 rue du capitaine Scott, F-75015 Paris, France
bLORIA/INRIA, 615 rue du Jardin Botanique, F-54602 Villers-l&es-Nancy Cedex, France

Received 1 December 2001; received in revised form 17 December 2002

Abstract

This paper revisits an algorithm isolating the real roots of a univariate polynomial using Descartes’ rule of
signs. It follows work of Vincent, Uspensky, Collins and Akritas, Johnson, Krandick.

Our 8rst contribution is a generic algorithm which enables one to describe all the known algorithms based
on Descartes’ rule of sign and the bisection strategy in a uni8ed framework.

Using that framework, a new algorithm is presented, which is optimal in terms of memory usage and as fast
as both Collins and Akritas’ algorithm and Krandick’s variant, independently of the input polynomial. From
this new algorithm, we derive an adaptive semi-numerical version, using multi-precision interval arithmetic.

We 8nally show that these critical optimizations have important consequences since our new algorithm still
works with huge polynomials, including orthogonal polynomials of degree 1000 and more, which were out
of reach of previous methods.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Univariate polynomial; Real root; Computer algebra

1. Introduction

This paper revisits the algorithm proposed by Collins and Akritas [5], based on Descartes’ rule
of signs. (This algorithm is sometimes wrongly attributed to Uspensky; we refer to [2] for historical
references.)

In 1836, Vincent shows [22] that if P is a square-free polynomial, then after a 8nite set of
transformations x → ai + 1=x with ai ∈N∗, the number of sign variations in the coe$cients of the
resulting polynomial equals 0 or 1. This theorem was then derived by Uspensky [21] who asserted
that after a 8nite number of transformations x → x + 1 and x → 1=(x + 1) the number of sign

∗ Corresponding author.
E-mail address: fabrice.rouillier@loria.fr (F. Rouillier).

0377-0427/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2003.08.015

mailto:fabrice.rouillier@loria.fr

34 F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50

variations in the coe$cients of the resulting polynomial equals 0 or 1. Because of the one-to-one
correspondance between the positive roots of P(x + 1) and the roots of P in]1; +∞[and of the
one-to-one correspondence between the positive roots of (x + 1)nP(1=(x + 1))—here and below n
denotes deg(P)—and the roots of P in]0; 1[, Uspensky’s theorem suggests a simple algorithm for
isolating the positive real roots of any square-free integral polynomial.

In 1976, Collins and Akritas revisited this method [5], showing 8rst that Uspensky’s original
algorithm has an exponential behavior by taking an example for which the number of substitutions
x → 1=(x + 1) in Uspensky’s method is exponential and then proposing the 8rst eIective version of
the algorithm. Vincent’s theorem was then improved by Collins and Johnson [6,13], and Krandick
invented a variant of Collins and Akritas’ algorithm working better for polynomials with very close
roots [16].

With the introduction of speci8c data structures [16] as suggested in [6], and optimized basic
transformations for speeding up the most expensive operation (x → x + 1) [10], the resulting al-
gorithm is currently one of the most powerful tools for isolating real roots of square-free integral
polynomials. From our personal experience in polynomial elimination, the computation of the real
roots of ill-conditioned univariate integral polynomials of high degree (1000 or more) with huge
coe$cients (several thousands of digits) has become a critical operation in computer algebra.
Collins–Akritas algorithm is surely fast enough for solving, in a reasonable time, most of the
examples we may be able to compute, but the required memory space prevents from solving such
problems in practice. To take well-known examples, Mignotte polynomials of degree 500 in the
case of Collins–Akritas variant, or orthogonal polynomials of degree 1000 in the case of Krandick’s
variant, are out of reach on a machine with 512 MB of memory.

The contributions of this article are the following. In Section 3, we propose a uni8ed description
of all methods based on Descartes’ rule of sign and using the bisection strategy (this description
does not generalize strategies based on continued fractions developments as proposed in [1,3]). We
then deduce in Section 4 a modi8ed algorithm storing only one polynomial at any intermediate
step, which runs as fast as either the Collins–Akritas algorithm and the Krandick variant for all
polynomials, and performing better than both in terms of memory usage. We then present a hybrid
version using an interval-arithmetic 8lter, extending the results from [14], developing those described
in [12], and giving full proofs and algorithms for the claims in an independent work by Collins
et al. [7].

2. The basic algorithm

In this section, we recall Descartes’ rule of signs, which gives a bound on the number of positive
real roots of a polynomial, and the algorithm from Collins and Akritas, which isolates all real roots
of a polynomial lying in]0; 1[.

2.1. Descartes’ rule of signs

Descartes’ rule of sign provides a very simple method to compute a bound on the number of
positive roots of any univariate polynomial. It is based on the study of the sign variations in the
polynomial coe$cients.

F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50 35

Notation 1. We denote by sign (a), the sign of an element a∈R, as being 0 if a = 0, 1 if a¿ 0
and −1 if a¡ 0, and de8ne the number of sign changes V (a) in the list a= (a1; : : : ; ak) of elements
of R \ {0} by induction over k:

V (a1) = 0; V (a1; : : : ; ak) =

{
V (a1; : : : ; ak−1) + 1 if sign (ak−1ak) =−1;

V (a1; : : : ; ak−1) otherwise:

We extend this notation to a list of elements in R that may contain zeroes: if b is the list obtained
by removing zeroes in a, we de8ne V (a) = V (b).

Using the above notations, let us recall Descartes’ rule of signs:

Theorem 2 (Descartes’ rule of signs). Let P =
∑d

i=0 aixi be a polynomial in R[x]. If we denote by
V (P) the number of sign changes in the list (a0; : : : ; ad) and pos(P) the number of positive real
roots of P counted with multiplicities, then pos(P)6V (P), and V (P)− pos(P) is even.

Obviously, the bound provided by Theorem 2 gives the exact number of positive real roots when
it is equal to 0 or 1.

Let us consider the following transformations and basic notations:

De�nition 3. Let P be a polynomial of degree n in R[x], k and c non-negative integers with c¡ 2k ,
and �∈R. We de8ne

Ik;c =] c
2k ; c+1

2k]; Pk;c = 2knP(x+c
2k);

R(P(x)) = xnP(1
x); H�(P(x)) = P(�x); T�(P(x)) = P(x + �):

(The intervals Ik;c are called standard intervals in [16].)

A modern version of the algorithm has been invented by Collins and Akritas [5]. They introduce
a bisection strategy and show that if transformations H1=2 and H1=2T1 are applied iteratively on any
square-free polynomial P, one obtain, after a 8nite number of transformations, a polynomial Q such
that V (T1R(Q)) gives 0 or 1. Such a process provides a simple method for isolating all the positive
real roots in]0; 1[of P with intervals in the form Ik;c. The method can obviously be generalized to
isolate all the real roots of P in any interval and so, using well-known bounds on roots locations,
to isolate all the roots of P.

The proof of the termination and the complexity computation of their algorithm is based on the
two following theorems:

Theorem 4 (Vincent [22]). Let P ∈R[X] be a square-free real polynomial. If P has exactly one
real root in the interval]0; 1[and all of the nonreal roots are outside the two disks of radius 1
centered at (0; 0) and (1; 0) in the complex plane, then V (T1R(P)) = 1.

Theorem 5 (Collins and Johnson [6]): Let P ∈R[X] be a square-free real polynomial. If P does
not have any nonreal roots in the disk of radius 1=2 centered at (1=2; 0), then V (T1R(P)) = 0.

36 F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50

Remark. In [18], Mehlhorn improves Theorem 4, by showing that it still holds with the two disks
of radius 1√

3
centered in (1

2 ;
±1

2
√

3
), which are contained in those de8ned by Collins and Johnson.

3. A uni�ed framework

Let DesBound a function taking as input a polynomial P, and applying Descartes’ rule of signs on
T1(R(P(x)))=(x+1)nP(1=(1+x)). One can easily show that every polynomial computed in the algo-
rithm is in the form Pk;c. Hence, isolating the real roots in]0; 1[of a square-free polynomial P ∈R[x]
using such a strategy consists 8rst in computing all the pairs (k; c) such that DesBound(Pk;c) ¿ 1,
and then to deduce the pairs (k; c) such that DesBound(Pk;c) gives 0 or 1, taking care of the points
c=2k that are roots of P.

De�nition 6. Let P be a univariate polynomial of degree n, k and c two nonnegative integers with
c¡ 2k . We de8ne:

• Internal(P) = {(k; c) : Pk;c(0)
= 0; DesBound(Pk;c) ¿ 1},
• Tree(P) = {(0; 0)} ∪ {(k; c) : (k − 1; �c=2)∈ Internal(P)},
• Exact(P) = {(k; c)∈ Tree(P) : Pk;c(0) = 0},
• Isol(P) = {(k; c)∈ Tree(P) : Pk;c(0)
= 0; DesBound(Pk;c) = 1},
• Lost(P) = {(k; c)∈ Tree(P) : Pk;c(0)
= 0; DesBound(Pk;c) = 0}.

From Theorems 2, 4 and 5, it follows:

• If P is square-free, then Internal(P) is 8nite,
• Tree(P) = Internal(P)∪ Exact(P)∪ Isol(P)∪ Lost(P),
• � is a root of P in]0; 1[if and only if: �∈ Ik;c for some (k; c)∈ Isol(P), or � = c=2k for some

(k; c)∈ Exact(P).

Thus, whatever the strategy used, isolating the real roots of P using Descartes’ rule and a bisection
strategy consists in computing Tree(P). The diIerences between the implementations are:

(1) the method for computing the polynomials Pk;c,
(2) the order of traversal of the tree: depth-8rst for Collins and Akritas’ algorithm, breadth-8rst for

Krandick’s algorithm (but the considered nodes, which are exactly those of Tree(P), do not
depend on the order),

(3) the way the nodes of Tree(P) are stored. In Collins and Akritas’ algorithm, a node is represented
both by a pair (k; c) and the corresponding polynomial Pk;c, but we may store (k; c) only and
compute Pk;c on demand (see Section 3.1.3).

The computation time of the resulting implementation depends mostly on item (1), while the
memory usage depends on items (2) and (3).

According to item (2), we need to 8x an order of traversal of Tree(P). Such an order can
obviously be deduced from a total ordering over the pairs (k; c) from N2, and will be a parameter
of our generic algorithm, together with the following functions:

• initTree(P) initializes at level k = 0 the set T representing the working subset of Tree(P);

F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50 37

• (k; c; Q) ← getNode(T;¡) takes the lowest node (k; c) of T with respect to the ordering ¡,
removes that node from T , and sets Q to Pk;c;

• (E; T) ← addSucc((k; c); Q; E; T) adds to T the successor nodes of (k; c), say (k + 1; 2c) and
(k + 1; 2c + 1), taking care of the case where Q(1=2) = 0; in this case, the node (k + 1; 2c + 1)
is added to the set E.

DiIerent implementations of these functions will lead to diIerent strategies for computing or stor-
ing the 8nal or intermediate results. Thus, we consider them as parameters of the generic algorithm:

GenDescartes
Input: A square-free polynomial P with all its positive roots in]0; 1[, three functions initTree,
getNode and addSucc and an ordering ¡ over N2.

Output: The lists E = Exact(P) and I = Isol(P).

Auxiliary function: DesBound(P) using Descartes’ rule of sign for T1R(P).

begin
E ← ∅; I ← ∅; T ← initTree(P)
while T
= ∅ do

(k; c; Q)← getNode(T;¡)
s← DesBound(Q)
if s = 1 then I ← I ∪ {(k; c)}
if s¿ 1 then (E; T)← addSucc((k; c); Q; E; T)

end

3.1. Known and new strategies as specializations of the generic algorithm

In this section, it is shown that both Collins and Akritas’ algorithm [5] and Krandick’s strategy [15]
can be described in terms of the generic algorithm, using the same functions initTree, getNode and
addSucc, the only diIerence being the ordering used. We then deduce a new and simple algorithm
which is optimal in terms of memory usage. In the rest of the paper, P ∈R[x] is a square-free
polynomial with all its roots in]0; 1[.

3.1.1. Collins and Akritas’ algorithm
Collins and Akritas’ algorithm consists in computing recursively the polynomials Pk;c for (k; c)∈

Tree(P) using a depth-8rst strategy. By introducing the following ordering over N2:

(k; c) ¡back (k ′; c′) ⇔
(

c
2k ¡

c′

2k′

)
or

((
c
2k =

c′

2k′

)
and (k ¡k ′)

)
;

we can easily show that this consists in computing the polynomials Pk;c in increasing order with
respect to ¡back.

With Collins and Akritas’ strategy, the polynomial Pk;c is needed for testing the nodes (k + 1; 2c)
and (k +1; 2c+1) that require the computation of Pk+1;2c and Pk+1;2c+1, so that we have to represent
Tree(P) by a list of elements of the form (k; c; Pk;c).

38 F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50

We extend canonically the ordering used by taking

(k; c; Q) ¡back (k ′; c′; Q′) ⇐⇒ (k; c) ¡back (k ′; c′):

Thus, the specialization

GenDescartes(initTreeClassic,getNodeClassic,addSuccClassic;¡back)

implements Collins and Akritas’ algorithm with the following set of functions:

initTreeClassic
begin

T ← {(0; 0; P)}
end

Since all polynomials Pk;c are stored in the set T , the function getNode is trivial:

getNodeClassic
begin

(k; c; Q)← min¡back (T)
remove (k; c; Q) from T

end

addSuccClassic
begin

L← 2nH1=2(Q)
R← T1(L)
if R(0) = 0 then E ← E ∪ {(k + 1; 2c + 1)}
T ← T ∪ {(k + 1; 2c; L); (k + 1; 2c + 1; R)}

end

3.1.2. Krandick’s algorithm
In [15], Krandick proposed to improve Collins and Akritas’ algorithm by computing the polyno-

mials level by level instead of using a depth-8rst strategy. According to our de8nitions, Krandick’s
algorithm is de8ned as

GenDescartes(initTreeClassic,getNodeClassic,addSuccClassic;¡lev)

where the ordering ¡lev over N2 can be de8ned as follows:

(k; c) ¡lev (k ′; c′) ⇔ (k ¡k ′) or ((k = k ′) and (c¡c′)):

In both situations we can remark that Tree(P) is never fully stored. As noted by Krandick [15], in
Collins and Akritas’ algorithm, the number of stored elements of Tree(P) is O(kmax) where 1=2kmax

denotes the minimal interval length in the 8nal result, while in Krandick’s algorithm it is O(n) where
n denotes the degree of the initial polynomial.

F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50 39

3.1.3. A simple constant-memory algorithm
All the polynomials needed during the traversal of Tree(P) can be deduced from the

initial polynomial P. We can thus represent Tree(P) simply by a list of pairs (k; c) and
customize the functions initTree, getNode and addSucc as follows to get a naNOve but constant-
memory algorithm: 1

initTreeConst
begin

T ← {(0; 0)}
end

The polynomials Pk;c are not stored in the representation of Tree(P), but are computed at demand
by the following function:

getNodeConst
begin

(k; c)← min¡(T)
remove (k; c) from T
Q ← 2nkTcH1=2k (P)

end

Owing to the simple structure of T , the addSucc function is very short:

addSuccConst
begin
if Q(1=2) = 0 then E ← E ∪ {(k + 1; 2c + 1)}
T ← T ∪ {(k + 1; 2c); (k + 1; 2c + 1)}

end

Whatever the ordering ¡ used, the algorithm

GenDescartes(initTreeConst,getNodeConst,addSuccConst;¡)

is very e$cient in terms of memory usage, due to the way the nodes of Tree(P) are stored (only
one pair of integers for each node). Only two polynomials need to be stored: the initial polynomial
P and the current one Q = Pk;c.

4. An e*cient memory-optimal algorithm

The full study of the complexity of classical versions of the algorithm (Collins–Akritas/Krandick)
can be found in [15]. With the “big O” notation, it is easy to see that all the algorithms above have
the same time-complexity bound.

1 We mean by “constant-memory” an algorithm which stores a constant number of degree-n polynomials at any time.

40 F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50

The main diIerence between all these versions is the way chosen for the computation of Pk;c.
In Collins–Akritas and Krandick’s variants, Pk;c is computed from Pk−1;�c=2�, using the relation
Pk;c = H1=2Pk−1;�c=2�, or from Pk;c−1 using the relation Pk;c = T1Pk;c−1. Since the transformation H1=2

has linear arithmetic cost, the most expensive operation is the Taylor shift T1. This Taylor shift can
be computed within O(n2) additions if P is a polynomial of degree n, or using the fast algorithms
described in [10].

In the simple constant-memory algorithm of Section 3.1.3, each node requires the computation of
Pk;c using the formula Pk;c = 2nkTcH1=2k (P).

The translation Tc by an integer c can be written in the following way: P(x + c) = P(c(x=c +
1)) = H1=cT1Hc(P). However, the simple constant-memory algorithm will compute one Taylor shift
for each node, whereas Collins–Akritas and Krandick’s variants perform one shift for each right son
only. Hence, the resulting method may be up to two times slower.

On the other hand, Collins–Akritas and Krandick’s variants require the storage of several poly-
nomials Pk;c. This number is proportional to the width O(n) of the tree for Krandick’s variant, and
proportional to the height O(n log(d)) of the tree for Collins–Akritas, where d is the Euclidian norm
of P. In contrast, the simple constant-memory variant stores only one polynomial.

In this section, we propose a new transformation that speeds up the simple constant-memory
algorithm. The idea is, at each step in the algorithm, to compute the next polynomial from the
preceeding one. In other words, one has to study the operations needed to compute Pk′ ; c′

from Pk;c.

Proposition 7. Let P ∈K[x]. Let (k; c) and (k ′; c′) be two pairs of integers such that k; k ′¿ 0; 06 c
¡ 2k ; 0 ≤ c′ ¡ 2k′

. Then using the notations of De@nition 3, we have with d = k − k ′:

Pk′ ; c′ = 2−ndH2dT2dc′−c(Pk;c):

Proof. Pk;c := 2nkTcH1=2k (P), which gives P = 2−nkH2k T−c(Pk;c). Identifying with the same equality
for Pk′ ; c′ , we obtain Pk′ ; c′ = 2−ndTc′H2dT−c(Pk;c). The result then follows from TaHb = HbTab.

These formulae provide a new function getNodeRel for computing Pk;c in algorithm GenDescartes,
taking advantage of the previous computations:

getNodeRel
begin

let (k; c) be the previous node, Q = Pk;c the corresponding polynomial
(k ′; c′)← min¡(T)
remove (k ′; c′) from T
Q ← 2n(k′−k)H2k−k′T2k−k′ c′−c(Q)

end

For any ordering ¡, the algorithm

GenDescartes(initTreeConst,getNodeRel,addSuccConst;¡)

is optimal in terms of memory usage, since only one polynomial has to be stored if we replace Pk;c

in place by Pk′ ; c′ .

F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50 41

0/1

 0/2

1/2

0/4 1/4 2/4 3/4

Fig. 1. Successor nodes c=2k in depth-8rst traversal: starting from 0=1, the node 0=2 follows with H1=2, then 0=4 using
H1=2 again, then 1=4 using T1, then 1=2 with H2T1, followed by 2=4 using H1=2, and 8nally 3=4 using T1.

We can optimize the computation time by choosing at each step in the algorithm the node that
induces a translation by the smallest integer (by extending the ordering). But the following propo-
sition shows that if we choose ¡back as ordering, then the resulting algorithm is optimal in terms
of computation time.

Proposition 8. In the algorithm

GenDescartes(initTreeConst,getNodeRel,addSuccConst;¡back);

all translations involved in the procedure getNodeRel are either T0 or T1. In other words, if (k; c)
and (k ′; c′) are two consecutive nodes in the ordered list—with respect to ¡back— [(ki; ci)]i that
represents Tree(P), then the expression 2k−k′

c′ − c equals either 0 or 1.

Proof. This proposition comes from a general property of binary trees (see Fig. 1). In a depth-8rst
traversal of such a tree, the successor of a node n is:

• its left son if n is an internal node;
• otherwise the right brother of n’s nearest parent which is itself a left son.

In the 8rst case we have k ′ = k + 1 and c′ = 2c, therefore 2k−k′
c′− c = 0; in the second case, the

nearest parent which is itself a left son is of the form k ′′ = k − i, c′′ = (c + 1− 2i)=2i. The successor
of (k; c) is the right brother of (k ′′; c′′) i.e., k ′ = k ′′ = k − i, c′ = c′′ + 1 = (c + 1)=2i. We then have
2k−k′

c′ − c = 2i(c + 1)=2i − c = 1.

The algorithm

GenDescartes(initTreeConst,getNodeRel,addSuccConst;¡back)

computes exactly the same polynomials as in Collins and Akritas’ or Krandick’s methods, performing
the same number of homothetic transformations of the form H1=2k and the same number of translations
of the form T1 (one for each right son in Tree(P)). Moreover, the representation of Tree(P) requires
only the storage of the studied intervals and of the current polynomial Pk;c.

Let us study more precisely the transformations involved in the algorithm

GenDescartes(initTreeConst,getNodeRel,addSuccConst;¡back);

42 F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50

which diIer from those involved in Collins–Akritas method or Krandick’s variant when two succes-
sive nodes (k; c) ¡back (k ′; c′) satisfy k ¿k ′. (This happens when (k; c) corresponds to a right leaf
of Tree(P).) Even if it does not aIect the theoretical complexity, this transformation may induce,
in practice, an overhead in our algorithm, because of the sizes of the involved coe$cients.

In such a situation, necessarily c and c′ are odd, since both nodes are right sons, so that in
Collins–Akritas or Krandick’s variants, Pk′ ; c′ is obtained using the identity Pk′ ; c′ =T1(Pk′ ; c′−1), while,
in our algorithm, it is obtained from the formula of Proposition 7, which consists in computing
Pk′ ; c′ = 2−nhH2hT1(Pk;c) with h = k − k ′.

We now propose an optimization, using the fact that since Pk′ ; c′ has integer coe$cients, all the
coe$cients of H2hT1(Pk;c) are necessarily multiples of 2nh.

HTranslate(P; h)
Input: P a polynomial of degree n, Pi its coe$cient of degree i, h a positive integer
Output: the coe$cients P′

i of 2−nhH2hT1(P), known to be integers

1: �← h + � n+1
2h �

2: for i: = 0 to n do P(0)
i ← �Pi2�−h(n−i)�

3: for i: = 1 to n do
for j: = n− i to n− 1 do P(i)

j ← P(i−1)
j + �P(i−1)

j+1 2−h�
4: for i: = 0 to n do P′

i ← �P(n)
i 2−��

Proposition 9. If H2hT1(P) has integral coeAcients, then HTranslate(P; h) correctly computes them.

Proof. Let P̃(i)
j be the coe$cients computed by HTranslate when replacing the rounding to nearest

�·� by the identity function at steps 1 − 3. After step 2 we have P̃(0) = 2�−nhP(2hx), then step 3
transforms Q(x) into Q(x + 2−h), giving 2�−nhP(2h(x + 2−h)), and step 4 divides by 2�, giving
2−nhP(2hx + 1).

For i = 0 : : : n, let ei = max06j6n|P̃(i)
j −P(i)

j |. It su$ces to show that en ¡ 2�−1. Obviously, e06 1
2

and for 16 i6 n, ei ¡ ei−1 +ei−12−h + 1
2 . It follows that en ¡ 2h−1(1+2−h)n+1, and the given value

of � works.

4.1. Theoretical analysis of the jumps overhead

As said above, using the HTranslate procedure induces an overhead with respect to Collins–Akritas
method or Krandick’s variant for each right leaf (k; c). In such a case, Collins–Akritas method will
compute Pk;c from Pk;c−1 using a simple translation, whereas HTranslate will compute Pk;c from
Pk+h;2hc−1.

Assume all coe$cients of Pk;c have binary size at most �. Collins–Akritas method computes those
from Pk;c−1 with T−1 using a method similar to HTranslate, with h = � = 0; after step i the binary
size is at most � + i, thus coe$cients of Pk;c−1 have binary size is at most � + n, and the binary
cost of Collins–Akritas method is O(n2(� + 2n)) since it involves O(n2) additions of numbers of
binary size at most � + 2n.

F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50 43

The coe$cient of degree i from Pk+h;2hc has binary size at most � + h(n− i) since it is obtained
from that of Pk;c by x → x=2h. Therefore, the coe$cient of degree i from Pk+h;2hc−1 has binary size
at most �+n+h(n− i) since it is obtained by T−1 after at most n additions or subtractions involving
the coe$cients of degree i or higher from Pk+h;2hc. Therefore, the coe$cients P(0)

i in HTranslate have
binary size at most � + n + h + �(n + 1)=2h�, and the maximal 8nal size is � + 2n + h + �(n + 1)=2h�.
The overhead with respect to Collins–Akritas method is therefore O(n2(h + �(n + 1)=2h�)) per jump
of height h.

A detailed average-case analysis of the contribution of the h and 1=2h terms can be found in [17].
It shows that the number of jumps, and also the jump distance, will usually be very small.

5. Using intervals and 3oating-point arithmetic

In [14], the authors made experiments using Soating-point arithmetic showing that such a strategy
is e$cient in practice and may run correctly in most cases. In [7], the authors present a Soating-point
version and claim that it always terminates, but do not give any proof to support this claim. The
original contribution of this section is to give a proof of that claim (Lemma 11).

Notation 10. Given any polynomial P =
∑n

i=0 aiX i with integral coe$cients, we denote by P =∑n
i=0 [li; ri]X i an approximation of P using intervals with Soating-point bounds of 8xed precision

such that:

• ai ∈ [li; ri],
• ‖ri − li‖¡

and we denote by w([li; ri]) = ‖ri − li‖ the width of the interval [li; ri] For any interval [l; r]; l6 r;
we de8ne:

sign([l; r]) =

1 if l¿ 0;

0 if l = r = 0;

−1 if r ¡ 0;

? otherwise:

In [14], the authors recall that methods based on Descartes’s rule of signs need only to compare
the signs of the coe$cients of the computed polynomials. With our notations, this means that we
are only interested in computing the signs of the coe$cients of the polynomials Pk;c. Obviously, the
authors pointed out that, due to the use of interval arithmetic, these signs may not be computable
when zero appears in at least one coe$cient so that the algorithm may not isolate all the roots
correctly.

Even if some particular bad cases may be solved (for example, the three consecutive signs 1; ?;−1
lead to a variation equal to 1 whatever the exact sign corresponding to ?), the problem of possible
multiple roots still remains like in [14]: When we embed A(X) into an interval polynomial that
also contain a polynomial with multiple roots, the interval method might run forever. To prevent
this, one can abort the procedure when the search tree reaches a certain height.

44 F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50

We now describe a version of the algorithm that takes as input a polynomial with intervals as
coe$cients. We will prove that it ends in every situation, whatever the considered polynomial,
without setting bounds on the search tree.

Let DesBoundInterv be a function returning V (T1R(P)) when its computation is possible and
setting a global Sag usperror to true otherwise, and let us modify slightly our main function:

DesInterv
Input: a polynomial P with intervals as coe$cients, three functions initTree, getNode and
addSucc and an ordering ¡ over N2.
Output: E = Exact(P), I = Isol(P), and Error(P)
Auxiliary function: DesBoundInterv(P).

E ← ∅; I ← ∅; Error(P) = ∅; T ← initTree(P)
while T
= ∅ do

(k; c; Q)← getNode(T;¡)
s← DesBoundInterv(Q)
if usp error then Error(P)← Error(P) ∪ {(k; c)}
else

if s = 1 then I ← I ∪ {(k; c)}
if s¿ 1 then (E; T)← addSucc((k; c); Q; E; T)

Lemma 11. Let P =
∑n

i=0 [li; ri]X i be an interval polynomial. If w([li; ri]) ¿ 0 for some i, then the
following algorithm always terminates:

DesInterv(initTreeConst,getNodeRel,addSuccConst;¡back):

Proof. Let us denote by

Internalexact(P) =

{
(k; c); k¿ 0; 06 c¡ 2k ; Pk;c(0)
= 0;

DesBoundInterv(Pk;c) ¿ 1 and usperror = false

}
:

The algorithm terminates if and only if #Internalexact(P) ¡∞. Let Q=
∑n

i=0 biX i with bi ∈ [li; ri];
∀i = 0; : : : ; n. If Q is square-free, then we have obviously #Internalexact(P) ⊂ Internal(Q).
Since Q is square-free, then #Internal(Q) ¡∞ and then #Internalexact(P) ¡∞. Therefore, if
∃Q =

∑n
i=0 biX i square-free with bi ∈ [li; ri], ∀i = 0 : : : n, then the algorithm DesInterv always

terminates.
Let us now assume that there exists a nonempty list of indices I ⊂ [0; : : : ; n] such that ∀i∈ I ,

w([li; ri]) ¿ 0. Consider the polynomial Q =
∑n

i=0 i �∈I biX i +
∑

i∈I ZiX i where Zi; i∈ I are new inde-
terminates. The algebraic set de8ned by the values of zi, i∈ I such that

∑n
i=0 i �∈I biX i +

∑
i∈I ziX i

is not square-free has dimension at most d−1 if d= #I , so that
∏

i∈I [li; ri] contains at least a point
(zi)i∈I such that

∑n
i=0 i �∈I biX i +

∑
i∈I ziX i is square-free.

Consider P =
∑n

i=0 [li; ri]X i. According to Lemma 11, the algorithm DesInterv will terminate
if ∃i with w(li; ri) ¿ 0. Suppose that w(li; ri) = 0 for all i: in such a case, li = ri for all i, so that
P can be considered as having rational coe$cients and so integral coe$cients. In such a case, one

F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50 45

can compute explicitly its square-free part WP and study the real roots of WP instead of those of P.
Thus, using the function

ReduceIfCan(P)
Input: P =

∑n
i=0 [li; ri]X i

Output: Q =
∑n

i=0 [l′i ; r′i]X i with the same roots as P and such that
∃(b0; : : : ; bn)∈∏n

i=0 [l′i ; r′i] such that
∑n

i=0 biX i is square-free.
if w([li; ri]) = 0 for all i∈ [0; : : : ; n] then return (P

gcd(P;P′)) else return(P)

we have the following result:

Proposition 12. Let P be a polynomial with intervals as coeAcients. The function DesInterv,
when applied on ReduceIfCan(P), always terminates.

According to Proposition 12, the algorithm DesInterv applied on ReduceIfCan(P) will always
terminate, returning a list Exact∪Isol of intervals that contain exactly one real root of P, and a list
Error of intervals for which no decision was possible. In the case of a nonempty Error list, one
can increase the precision and run again the algorithm taking as input Pk;c for each (k; c)∈ Error.

The following algorithm describes a full strategy for isolating all the real roots in]0; 1[of any
square-free polynomial with integral coe$cients. Note that we run DesInterv up to a maximum
precision maxPrec. (We could remove this limitation, since when the precision grows, at some point
Q will be represented in an exact way.)

DescartesHyb(P)
Parameters: initTree, getNode, addSucc, an order ¡ over N2, floatPrec and maxPrec
Input: P =

∑n
i=0 aiX i ∈Z[X]

Output: Isol(P), Exact(P)

todo← {(floatPrec;]0; 1[)}
Isol(P)← ∅; Exact(P)← ∅
while todo
= ∅

(currentPrec;] c
2k ; c+1

2k])← min¡(todo)

remove (currentPrec;] c
2k ; c+1

2k]) from todo
floatPrec← currentPrec
Q ← ReduceIfCan(convertInterval(P; floatPrec))
if floatPrec¡ maxPrec then
{lisol; lexact ; lerror} ← DesInterv(TcH1=2k (Q))

else
{lisol; lexact} ← GenDescartes(TcH1=2k (P))
lerror ← ∅

Exact(P)← Exact(P) ∪ {H2k T−c(I); I ∈ lexact}
Isol(P)← Isol(P) ∪ {H2k T−c(I); I ∈ lisol}
todo← {(increase(floatPrec); H2k T−c(I)); I ∈ lerror}

46 F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50

6. Experiments

We choose examples coming from various sources: the 8rst four classes are well-known ill-
conditioned polynomials. The last class comes from polynomial elimination problems occurring in
various applications (chemistry, robotics, ...), or from classical benchmarks. All examples are poly-
nomials of high degree with huge integer coe$cients.

We used the framework described in Section 3 for implementing Collins–Akritas’ (COL),
Krandick’s (KRA) and our version (REL), so the same arithmetic layer (GMP [11]), Taylor shifts,
and memory management are used for all implementations. Our semi-numerical variant (HYB) uses
the MPFI interval arithmetic library [19], based on the MPFR library [20], which uses basic functions
from the GMP library.

The strategy used for increasing the precision in the HYB strategy is the following: start with a
precision of 53 bits and double the precision when needed. If the precision exceeds 1024 bits, then
the exact (REL) algorithm is used.

All tests were made on the computers of the MEDICIS 2 resource center using a 1:5 GB, 1 GHz
AMD Athlon processor.

We measure the computation time (T) in seconds, the memory used to store the computation tree
(M) in MB. The binary size of the computation tree was limited to 256 MB.

We do not give the amount of memory used by the HYB algorithm since it is always less than
the value obtained with the REL algorithm.

6.1. Computation times

In Fig. 2, the 8rst three classes have a large number of real roots (equal to the degree of the
polynomial) so that the amount of memory used by algorithm KRA is large. The time diIerence
between REL and COL on these examples is mainly due to the memory management since COL
uses up to 20 times more memory than REL. The HYB algorithm is only slightly more e$cient
than exact strategies on these examples since most of the roots require a large working precision.

Mignotte polynomials (xn−2(5x−1)2) have only four real roots but two of them are very close so
that the amount of memory used by algorithm COL is large. On these examples, one may consider
that the computation times of both REL and KRA are equivalent. On such examples, the HYB
strategy is e$cient compared with the others.

On examples coming from various applications (last class), the memory usage is not so critical.
However, the HYB strategy seems to be very e$cient.

Other e$cient root 8nder programs are MPSolve from Bini and Fiorentino [4], and eigensolve
from Fortune [9,8]. Both programs give a Soating-point approximation of all complex roots of a
univariate polynomial. Since Fortune already compared eigensolve to MPSolve, we just compared
our timings to eigensolve. For Chebyshev and Laguerre polynomials of degree 500, our program
is 2–3 times faster than eigensolve.v1.0. This speedup goes to more than 5 for the degree-500
Wilkinson polynomial. However, eigensolve is 100 times faster for Mignotte’s polynomials: our
algorithm does not use the fact that those polynomials are sparse.

2 http://www.medicis.polytechnique.fr

F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50 47

Fig. 2. Comparison of the diIerent algorithms.

6.2. Detailed experiments with the hybrid algorithm

Figs. 3 and 4 display how many roots can be computed at the diIerent steps of DescartesHyb.
At each step corresponds a precision for the Soating-point arithmetic. We set maxPrec to 1024 bits
and increase the precision at each step by doubling it.

Column Deduced displays the number of roots deduced without computations (even polynomials
for example) while column ES gives the maximum bit-size of integers appearing in algorithm REL.
One can remark that on the 8rst three classes of examples, a great precision is needed to obtain
all the roots of the polynomials. These examples are known to be di$cult, since they have a large
number of roots, or very close roots.

On the second 8gure, with polynomials coming from an algebraic elimination on systems of
algebraic equations, one can see that the use of doubles is su$cient to obtain some roots and
anyway a small precision (relatively to the size of the input) is enough to get all the solutions.

7. Conclusion

This paper gave a uni8ed framework, with which all known algorithms for isolating polynomial’s
real roots using Descartes’ rule of sign and a bisection strategy can be described in a generic way.
From this framework, we 8rst derived a very simple algorithm, which performs at most twice as
much translations—which are the most expensive operations—as previous algorithms, and needs to
store only two polynomials at a time. Then we deduce a new exact algorithm that is both optimal
in space and time, in terms of arithmetic complexity: it needs to store only one polynomial at a

48 F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50

Fig. 3. Detailed analysis of the hybrid algorithm (I).

time, and performs exactly the same number of translations as both Collins/Akritas’ and Krandick’s
algorithms.

In the second part of the paper, we consider polynomials with interval coe$cients. We exhibit
an algorithm that always terminates for interval polynomials, where previous algorithms required a
bound on the tree height. When used with Soating-point intervals, this yields a new hybrid algorithm,
which decreases the average bit-size—and thus the cost—of arithmetic operations.

F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50 49

Fig. 4. Detailed analysis of the hybrid algorithm (II).

Finally, extensive experiments on diIerent polynomial classes show that the new exact algorithm
practically behaves better than both Collins/Akritas’ and Krandick’s algorithms, both in terms of
time and memory usage. In turn, the new hybrid algorithm never behaves much worse than the new
exact one, and in some cases behaves much better, especially those coming from real applications.

Some open questions still remain. Is it possible to perform a Taylor shift of a degree-n polynomial
with l-bit coe$cients in less than .(n2l) time? Is it possible to obtain a tight bound, depending on
the input polynomial, for the precision needed in the hybrid algorithm?

Acknowledgements

The authors would like to thank the anonymous referees for their careful reading of the paper,
and their very useful comments, and Guillaume Hanrot for providing an independent and e$cient
implementation of our algorithms.

References

[1] A.G. Akritas, An implementation of Vincent’s Theorem, Numer. Math. 36 (1980) 53–62.
[2] A.G. Akritas, There is no “Uspensky’s method”, in: Proceedings of the 1986 SYMSAC, ACM, 1986, New York,

pp. 88–90.
[3] A.G. Akritas, A. Bocharov, A. Strzebonski, Implementation of real roots isolation algorithms in Mathematica, in:

Abstracts of the International Conference on Interval and Computer Algebraic Methods in Science and Engineering,
1994, pp. 23–27.

[4] D. Bini, G. Fiorentino, Numerical computation of polynomial roots: Mpsolve—version 2.0. http://www.
dm.unipi.it/pages/bini/public html/papers/mps2.html, 1998, 21pp.

[5] G. Collins, A. Akritas, Polynomial real roots isolation using Descartes’ rule of signs, in: SYMSAC, 1976, pp.
272–275.

[6] G. Collins, J. Johnson, Quanti8er elimination and the sign variation method for real roots isolation, in:
ACM-SYGSAM ISSAC, 1989, pp. 264–271.

[7] G.E. Collins, J. Johnson, W. Krandick, Interval arithmetic in cylindrical algebraic decomposition, J. Symbolic Comput.
34 (2002) 145–157.

[8] S. Fortune, An iterated eigenvalue algorithm for approximating roots of univariate polynomials, 2000, 23p.
http://cm.bell-labs.com/who/sjf/ieaarup.ps.gz.

http://www.dm.unipi.it/pages/bini/public_html/papers/mps2.html
http://www.dm.unipi.it/pages/bini/public_html/papers/mps2.html
http://cm.bell-labs.com/who/sjf/ieaarup.ps.gz

50 F. Rouillier, P. Zimmermann / Journal of Computational and Applied Mathematics 162 (2004) 33–50

[9] S. Fortune, Polynomial root 8nding using iterated eigenvalue computation, in: B. Mourrain (Ed.), Proceedings of
ISSAC’01, University of Western Ontario, Ontario Research Centre for Computer Algebra, ACM Press, 2001, pp.
121–128.

[10] J.V.Z. Gathen, J. Gerhard, Fast algorithms for Taylor shifts and certain diIerence equations, in: Proceedings of
International Symposium On Symbolic and Algebraic Computations, 1997, pp. 40–47.

[11] GMP. http://www.swox.com/gmp.
[12] G. Hanrot, F. Rouillier, P. Zimmermann, Well-de8ned semantics for Soating-point computations: the

MPFR library, 2000, ISSAC’2000 and MuPAD Workshop 2000 poster sessions, abstract available at
http://www.mupad.de/mw2000/anno/abstracts p/index e.shtml.

[13] J. Johnson, Algorithms for polynomial real root isolation, Technical Report OSU-CISRC-8/91-TR21, Ohio State
University, Department of Computer and Information Science, 1991.

[14] J. Johnson, W. Krandick, Polynomial real roots isolation using approximate arithmetic, in: W. KNuchlin (Ed.),
Proceedings of International Symposium On Symbolic and Algebraic Computations, ACM Press, New York, 1997.

[15] W. Krandick, Isolierung reeller Nullstellen von Polynomen, in: J. Herzberger (Ed.), Wissenschaftliches Rechnen,
Akademie Verlag, Berlin, 1995, pp. 105–154.

[16] W. Krandick, A data structure for approximation, Technical Report MS 96-021, University of Edinburgh, Department
of Mathematics and Statistics, 1996.

[17] W. Krandick, Trees and jumps and real roots, J. Comput. Appl. Math. 162 (2004) 51–55.
[18] K. Mehlhorn, Private communication, October 2001, 6pp.
[19] MPFI. http://www.ens-lyon.fr/∼nrevol/nr software.html.
[20] MPFR. http://www.loria.fr/projets/mpfr/.
[21] J. Uspensky, Theory of Equations, McGraw-Hill Book Company, New York, 1948.
[22] A.J.H. Vincent, Sur la r[esolution des [equations num[eriques, J. Math. Pures Appl. Ser. 1, 1 (1836) 341–372.

http://www.swox.com/gmp
http://www.mupad.de/mw2000/anno/abstracts_p/index_e.shtml
http://www.ens-lyon.fr/~nrevol/nr_software.html
http://www.loria.fr/projets/mpfr/

	Efficient isolation of polynomial's real roots
	Introduction
	The basic algorithm
	Descartes' rule of signs

	A unified framework
	Known and new strategies as specializations of the generic algorithm
	Collins and Akritas' algorithm
	Krandick's algorithm
	A simple constant-memory algorithm

	An efficient memory-optimal algorithm
	Theoretical analysis of the jumps overhead

	Using intervals and floating-point arithmetic
	Experiments
	Computation times
	Detailed experiments with the hybrid algorithm

	Conclusion
	Acknowledgements
	References

