7.. Wahrscheinlichkeitstheorie 2, 340 368 (1964)

On the Foundations of Combinatorial Theory
1. Theory of Mébius Functions

. By

Gran-CarrLo Rora

Contents

... 340
1. Introduction . . . < . . 0 o . e o e e e S B
2. Preliminaries . . . .. . . . . o o . . o o e e S
3. Theincidence algebra . . . . . . . . . . .« oo R
4. Mainresults . . . . . . . . . . . . e e ., SR
5. Applications . . . oo DR
6. The Euler characteristic . . . . . . . . . . . « . . . 3

LGS, . . . o . e e

7. Geometric | - E
8. Representations . . R R ‘ o S
9. Application: the coloring of graphs . . .7 . . . . .. .

10. Application: flows in networks . . . . . . . . . . ..

1. Introduction

One of the most useful principles of enumeration in %meg»‘o,dnocmf:@ p":hm
qoBgsgmo:.m_ theory is the celebrated principle of &:&:y_N‘ez.&&arw.@.&i (cf K _i,._.,_m._w L
mﬁ:ﬁ ster, RIORDAN, Ryser)., When skillfully applied, this ?,Eo:v__: M:# MF» de

oluti . S M icé ations

1t inatorial problem. Its mathematical founda .
the solution to many a combina : ouncanor
were thoroughly investigated not long ago in a Bo:omﬂmwv by %zwﬁ%ﬂvw:&:;
:. bt at first appear that, after such exhaustive work, litle else could be s
might at ax ¢ N
n the subject. ) . . "
° One frequently notices, however, a wide gap cmni.c@: ew.o UMS@ mSM‘M”MMw
of the principle and the skill required in recognizing ewmw ._m m%w_%m .eM N WJS :.? "
ombi i : as often taken the combined cffor
combinatorial problem. It has o : offorts of many
i i s 4 iods to recognize an inclusion-e E
combinatorial analyst over long perio ¢ sio)
g took fifty-five years, since
le, for the ménage problem it .
T D in 1934 could recognize a pattern,
s EY’s attempts, before JAcQUES TOUCHARD & 4 coul : alte
MM.»MJ.. thence wm%&:% obtain the solution as an explicit _u_:o::w_ moma:_?m_m”w.
gituation becomes bewildering in problems nm@ﬁiwm an enumeration o any Mo erm
numerous collections of combinatorial objects which are zoéw;:ﬂf :.::w _ano the
. i tially ordered sets, complexes, fini
fore. The counting of trecs, graphs, par ) lexos, finite sots
i tion more difficult problems relating to perm
on which groups act, not to men : b eloneg oF mags
i i ic siti h as Latin squares and the coloring ,
tations with restricted position, suc . : ;
seem to lie beyond present-day methods of enumeration. The lack of a systematic
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theory is hardly matched by the consummate skill of a fow individuals with a
natural gift for enumeration. )

This work begins the study of a very general principle of enumeration, of
which the inclusion-exclusion principle is the simplest, but also the typical case.
It often happens that a set of objects to be counted possesses a natural ordering,
in general only a partia} order. Tt may be unnatural to fit the enumeration of such
a set into a linear order such as the integers: instead, it turns out in a great many
cases that a more effective technique is to work with the natural order of the set.
One is led in this way to set up & “‘difference calculus” relative to an arbitrary
partially ordered set. ) . ‘

Looked at in this way, a surprising variety of problems of enumeration reveal
themselves to be instances of the general problem of inverting an “indefinite sum"
ranging over a partially ordered set. The inversion can be carried out by defining an
analog of the “difference operator” relative to a partial ordering. Such an oporator
is the Mébius function, and the analog of the “fundamental theorom of the
calculus” thus obtained is the Mébius inversion formula on a partially ordered set.
This formula is here expressed in a language close to that of number theory,
where it appears as the well-known inverse relation between the Riemann zeta
function and the Dirichlet generating function of the classical Mébijus function.

“In fact, the algebra of formal Dirichlet series turns out to be the simplest non-
trivial instance of such a :&m.ono:om. calculus”, relative to the order relation of
divisibility, : '

Once the importance of the Mébius function in enumeration problems is
realized, interest will naturally center upon relating the properties of this function
to the structure of the ordering. This is the subject of the first paper of this series;
we hope to have at least begun the systematic stidy of the remarkable properties
of this most natural invariant of an order relation,

We begin in Section 3 with a brief study of the incidence algebra of a locally
finite partially ordered set and of the invariants associated with it: the zeta
function, Mébius function, incidence function, and Euler characteristic. The
language of number theory is kept, rather than that of the calculus of finite
differences, and the results here are quite simple. .

The next section contains the main theorems: Theorem 1 relatés the Mobius
functions of two sets related by a Galois connection. By suitably varying one of
the sets while keeping the other fixed one can derive much information. Theorem 2
of this section is suggested by a technique that apparently goes back to Ramanu-
JaN. These two basic results are applied in the next section to a variety of special
cases; although a number of applications and special cases have been loft out, we.
hope thereby to have given an idea of the techniques involved.

The results of Section 6 stem from an “Ideenkreis” that can be traced back
to Whitney’s early work on linear graphs. Theorem 3 relates the Mébius function
to certain very simple invariants of *“cross-cuts” of a finite lattice, and the analogy .
with the Euler characteristic of combinatorial topology is inevitable. Pursuing
this analogy, we were led to set up a series of homology theories, whose Euler
characteristic does indeed coincide with the Euler characteristic which we had
introduced by purely combinatorial devices.
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Some of the work in lattice theory that was carried out in the thirties is
useful in this investigation; it turns out, however, that modular lattices are not
combinatorially as interesting as a type of structure first studied by Waurgyey,
which we have called geometric lattices following BirkHOPF and the French
school. The remarkable property of such lattices is that their Mobius function
alternates in sign (Section 7).

To prevent the length of this paper from growing beyond bounds, we have
omitted applications of the theory. Some elementary but typical applications
will be found in the author’s expository paper in the American Mathematical
Monthly. Towards the end, however, the temptation to give some typical examples
became irresistible, and Sections 9 and 10 were added. These by no means exhaust
the range of applications, it is our conviction that the Mobius inversion formula
on a partially ordered set is a fundamental principle of enumeration, and we hope
to implement this conviction in the successive papers of this series. One of them
will deal with structures in which the Mobius function is multiplicative, —-that
is, has the analog of the number-theoretic property u(mn) = p(m) u(n) if m and
nare coprime — and another will give a systematic development of the Tdeenkreis
centering around Porya’s Hauptsatz, which can be significantly extended by a
suitable Mobius inversion.

A few words about the history of the subject. The statement of the Mobius

. inversion formula does not appear here for the first time: the first coherent
version—with some redundant assumptions —is due to WRISNER, and was indepen-
dently rediscovered shortly afterwards by Pu1L1e Harr. Ward gave the statement
in full generality. Strangely enough, however, these authors did not pursue the
combinatorial implications of their work; nor was an attempt made to systemati-
cally investigate the properties of Mébius functions. Aside from Haur's appli-
cations to p-groups, and from some applications to statistical mechanics by
M. S. GrREEN and NETTLETON, little has been done; we give a hopefully complete
bibliography at the end. .

1t is a pleasure to acknowledge the encolragement of G. Bmxmorr and
A, GLrasoN, who spotted an error in the definition of a cross-cut, as well as of
SEYMOUR SHERMAN and Ka1-Lax CHung. My colleagues D. Kan, G. WHITEHEAD,
and especially I, PETERSON gave me-essential help in setting up the homological
interpretation of the cross-cut theorem.

v

2. Preliminaries

Little knowledge is required to read this work. The two notions we shall not
define are those of a partially ordered set (whose order relation is denoted by =
and a lattice, which is a partially ordered set where max and min of two elements
(we call them Jjoin and meet, as usual, and write them \ and A) are defined. We
shall use instead the symbols U and M to denote union and intersection of sels
only. A segment [z, y], for x and y in a partially ordered set P, is the set of all
elements z between z and y, that is, such-that » 5. 2z & y. We shall oceasionally
use open or half-open segments such as [, ¥), where one of the endpoints is to be
omitted. A segment is endowed with the induced order structure; thus, a segment
of a luttice is again a lattice. A partially ordered set is locally finite if every segment
is finite. We shall only deal with locally finite partially ordered sets.
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. The product P x Q of partially ordered sets P and Q is the set of all ordered
pairs (p. q), where p € Pand ¢ € @, endowed with the order (p, ¢) 2 (r, s) whenever
? W rand ¢ = s. The product of any number of partially ordered mMWem is &wm.zoa
similarly. The cardinal power Hom (P, Q) is the set of all monotonic functions
from P to @, endowed with the partial order structure f = g whenever flp} = Gv.v

for every p in P. ’

Ina mvmw.am.:% ordered set, an element p covers an element ¢ when the segment
{g, p] contains two elements. An alom in P is an element that covers a minimal
element, and a dual atom is an element that is covered by a maximal element.

H,m P is a partially ordered set, we shall denote by P* the partially ordered: set
obtained from P by inverting the order relation.

A dlosure relation in a partially ordered set Pis a st pof Pi
itself with the properties (1) P M%w 2) =p; (8) M:Wowﬂﬁwwmmwcwm :M.M
&mB.o:e is closed if p = §. If P is a finite Boolean m_mo_orwl of sets, then ” o&mim
relation on P defines a lattice structure on the closed &@5@5\“@ by the rules
P > qg= %Jn and p\Vg=2p Ug, and it is easy to see that every finite lattice
Is isomorphic to one that is obtained in this way. A Galois connection (cf. OrE
p. 1821f.) between two partially ordered sets P and Q is a. pair of ?z‘oﬁoam«
.pwn P— © and 7: Q — P with the properties: (1) both ¢ and 7 are order-inverting;;
Mvv for p in P,7(l(p)) = p, and for 7in @, {(n(g)) = ¢. Under these circumstances

. the mappings p = n({(p)) and ¢->¢ (m(g)) are closure relations, and’ the two
partially ordered sets formed by the closed sets are isomorphic. «

In Section 7, the notion of a closure relation with the Mac Lane-Steinitz exchange
property will be used. Such a closure relation is defined on the Boolcan algebra Wv
of mz,cm@a.m of a finite set & and satisfies the following property : if p and q pwm points
of @v. and S a subset of £, and if p ¢ S but peSUyq, then g e SUp. Such a closure
relation can be made the basis of WHITNEY’s theory of independence, as well as of
the theory of geometric lattices. The closed sets of a closure relation vmmwmmw%m:m the
MacLANE-STEINTTZ exchange property where every point is a closed set form a

WMVVE%&@ (= matroid) lattice in the sense of BIRKHOFF (Lattice Theory, Chapter

> partially ordered set P is said to have a 0 or a I if it has a unique
minimal or maximal element. We shall always assume 0 + I. A partially ordered
set P having a 0 and a I satisfies the chain condition (also called the JorpAN-
Uwu.wwuzb chain condition) when all totally ordered subsets of P having a
n.SuSEm_ number of elements have the same number of elements. Under ?m%a
oﬂ.oz.imgzomm one introduces the rank 7(p) of an element P of P as the length om a
maximal chain in the segment [o, 2], minus one. The rank of 0 is 0, and the rank
of an atom is 1. The height of P is the rank of any maximal &msﬁwﬁ plus one.

. .H@o P be a finite partially ordered set satisfying the chain condition and of
eight » .+ L. The characteristic polynomial of P is the polynomial M #(0, ) An—r@,
where 7 is the rank function (see the def. of u below). zel

If A4 is a finite set, we shall write n(4) for the number of elements of 4.
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344 G1an-Carvo Rora:
3. The incidence algebra
Let P be a locally finite partially ordercd set. The tncidence algebra of P ig
defined as follows. Consider the set of all real-valued functions of two variables
f(z, y), defined for « and y ranging over P, and. with the property that f(z, y) = 0
if &£ y. The sum of two such functions f and g, as well as multiplication by
scalars, are defined as usual. The product & = fg is defined as follows:

h(z,y) = > f(x,2)9(z 9).

TSzSY

In view of the assumption that P is locally finite, the sum on the right is well-

defined. It is immediately verified that this is an associative algebra over the real
- field {any other associative ring could do). The incidence algebra has an identity
element which we write §(x, y), the Kronecker delta.

The zeta function {(x, y) of the partially ordered set P is the element of the
incidence algebra of P such that {(x, y) = 1 if x < y and {{x, y) = 0 otherwise.
The function » (x, y) = {(x, y) — 6{x, y) is called the incidence function.

The ides of the incidence algebra is not new. The incidence algebra is a special
case of a semigroup algebra relative to a semigroup which is easily associated
with the partially ordered set. The idea of taking “i
to DEDEKIND and E. T. BELL; see also WARD.

Proposition 1. The zeta function of a locally fingte partially ordered set is invertible
in the incidence algebra.

Proof. We define the inverse u(, y) of the zeta function by induction over the
number of elements in the segment [, y]. First, set pu(x, ) = 1 for all x in P.
Suppose now that u(x, z) has been defined for all z in the open scgment [, o).
Then set v

Clearly u is an inverse of {. )

The function g, inverse to [, i& called the Mdbius function of the partially
ordered set P,

The following result, simple though it is, is fundamental:

Proposition 2. (Mobius inversion formula). Let {(x) be a real-valued function,
defined for x ranging in a locally finite partially ordered set P. Let an element p exist
with -the property that f(x) = 0 unless z = p.

Suppose that

(*) - g(x) HM.IS.
Then e i
(**) @) =29y puly.2).

ysu

Proof. The function ¢ is well-defined. Indeed, the sum on the right can be

written as M f(y), which is finite for a locally finite ordered set.
PRYST

Substituting the right side of (*) into the right side of (**) and simplifying,
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we get

2902 =3 Df@pwma) =3 5[ (y) ).

VvEz yaxzsy yix 2
Interchanging the order of summation, this becomes

MI&MQN_SEQEVHM\@&N,&VHI&Ya.o.&.
z V=T z :
QogE:.w 1. Letr(x) be a function defined for x in P. Suppose there is an clement
q such that r (x) vanishes unless x < q. Suppose that
s(@) =2 r(y).

yex

Then ,
(@) =2 ulzy)sy).

v2z

The proof is analogous to the above and is omitted. :

Proposition 3. (Duality). Let P* be the partially ordered set oblained by inverting
the order of a locally finite partially ordered set P, and let pu* and u be the Mobius
functions of P* and P. Then u*x, y) = ply, 2).

Proof. We have, in virtue of Proposition 2 and Corollary 1,

: O u*(@,y) = 8(x,2).

: T2ty tz
Letting g(x, y) = h*ﬁ} z), it follows that ¢ is an inverse of ¢ in the incidence
algebra of P. Since the inverse is unique, ¢ == g, q. e. d. :

Proposition 4. The Mébius function of any segment [x,y] of P equals the
restriction to [, y) of the Mébius junction of P.

The proof is omitted.

Proposition 5. Let P x Q be the direct product of locally finite partially ordered
sets P and Q. NSwa.NS Gbius function of PxQ is given by

(@), (0, 0) = p (e u)u(y,v), z,ue Py y,ve.

The proof is immediate and is omitted.
The same letter 4 has been used for the Mébius functions of three partially
ordered sets, and we shall take this liberty whenever it will not cause confusion.

Corollary (Principle of Inclusion-Exclusion). Let P be the Boolean algebra of
all subsets of a finite set of n elements. Then, for x and y in P,

-

i, y) = (— C:.glisv s y=x

= Ay, .

-where n(x) denotes the number of elements of the set .

Indeed, & Boolean algebra is isomorphic to the product of # chains of two
elements, and every segment [z, ] in a Boolean algebra is isomorphic to a Boolean
algebra.

Aside of the simple result of Proposition 5, little can be said in mobog._ about
how the Mébius function varies by taking subsets and homomorphic images of a
partially ordered set. We shall see that more sophisticated notions will be required
to relate the Mdobius functions of two partially ordered sets.
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348 Gran-CarrLo RoTa:
Let P be a finite partially ordered set with 0 and I. The Euler characteristic
i of P is defined as
. E=1+4 pu(0l).

The simplest result relating to the computation of the Euler characteristic
was proved by PuiLre Hart by combinatorial methods. We reprove it below with
a very simple proof which shows one of the uses of the incidence algebra:

Proposition 6. Let P be a finite partially ordered set with 0 and I. For every k,
let Oy be the number of chains with k elements stretched between 0 and I. Then

B=1—Cy4 C5— 4t .

Proof. p={0"1==(d+n)1=8—n+n2.... It is easily verified that
n¥-1(z, y) equals the number of chains of % elements stretched between x and Y.
Letting = 0 and y = I, the result follows at once.

Tt will be seen in section 6 that the Euler characteristic of a partially ordered
set can be related to the classical Euler characteristic in suitable homology
theories built on the partially ordered set.

Proposition 6 is a typical application of the incidence algebra. Several other
results relating the number of chains and subsets with specified properties can
often be expressed in terms of identities for functions in the incidence algebra. In
this way, one obtains generalizations to an arbitrary partially ordered set of some
classical identities for binomial coefficients. We shall not pursue this line here
further, since it lies out of the track of the present work.

Example 1. The classical Mobius function g () is defined as (—D¥if nis
the produet of k distinet primes, and 0 otherwise. The classical inversion formula
first derived by Mébius in 1832 is:

g(m) =3 f(n); flm)= MQA::«A.MWV.

nim nim

1t is easy to see (and will follow trivally from later results) that u Ahﬂwxv is the

Mébius funetion of the set of positive integers, with divisibility as the partial
order. In this case the incidence algebra has a distinguished subalgebra, formed
by all functions f (n, m) of the form f(n, m) == Awmv The product H == F G of two
functions in this subalgebra can be written in the simpler form

* . H(m) = > F(k)G(n). .

kn=m
If we associate with the element ¥ of this subalgebra the formal Dirichlet series

F () = 2 F(n){n®,-then the product (*) corresponds to the product of two formal

n=1 .
Dirichlet series considered as functions of s, %E = F(s) G(s). Under this

representation, the zeta function of the partially ordered set is the classical Rie-

mann zeta function { (s) = M 1/n%, and the statement that the Mobius function is
n=1
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the inverse of the zeta function reduces to the classical identity 1/¢ (s) = WH p(n)fns.
e

. . Y. . .
It is hoped this example justifies much of the terminology introduced ahove.

Example 2, If P is the set of ordinary integers, then u(m, n) == — 1 if
m=mn—1, u(m,m)=1, and p(m,n) = 0 otherwise. The Mébius inversion
formula reduces to a well known formula of the calculus of finite differences, which
is the discrete analog of the fundamental theorem of calculus.

The Mébius function of a partially ordered set can be viewed as the analog
of the classical difference operator Af(n) = f(n 4+ 1) — f(n), and the incidence
algebra serves as a calculus of finite differences on an arbitrary partially ordered set.

4. Main results

1t turns out that the Mobius functions of two partially ordered sets can be
compared, when the sets are related by a Galois connection. By keeping one of the
sets fixed, and varying the other from among sets with a simpler structure, such
as Boolean algebras, subspaces of a finite vector space, partitions, etc., one can
derive much information about a Mébius function. This is the program we shall
develop. The basic result is the following :

Theorem 1. Let P and Q be finite partially ordered sets, where P has a 0 and Q
has a 0 and a 1. Let py and p be their Mobius functions. Let

w:Q—>P; 9:P—>Q
be a Galois connection such that

(1) w@)=0 ifandonlyif w-=1.
@) Ce(0)=1.
Then

#0,1) =2 up(0,8) (0(a), 0) = 3 (0, a).
a>0 {a:o(a)=0]

One gets a significant summand on the right for every @ > 0 in P which is
mapped into 0 by . One therefore expects the right side to contain “few” terms.
In general, up is a known function and y is the function to be determined.

Proof. We shall first establish the identity
*) 2 0(n(x),a) = (2,0 (b))

azb
for every b in P, Here { oh the right stands for the zeta function of Q. Equation (*)
is equivalent to the following statement: m(x) = b if and only if z < o(3). But
this latter statement is immediate from-the properties of a Galois conneetion.
Indeed, if 7 (x) = b, then o(m(x)) < g(b), but & < o (n(x)), hence = = ¢(b), and
similarly for the converse implication. ,

To identity (*) we apply the Mébius inversion formula, relative to P, thereby
obtaining the identity

(%) 8(r(@), 0) =3 pp(0,a)¢ (x, 0(a)).

az0
Now, é(n(x), 0) takes the value 1 if and only if 7 (x) == 0, that is, in view of
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assumption (1), if and only if z . 1. For all other values of z, we have 8 (s (2),0) = 0.
Therefore,
6(m(x),0)=1—n(z,1).
We can now rewrite equation (**) in the form
1 —n(z,1) =@ e0) + X up(0,a)l(x, o(a))
a0
However, in view of assumption (2), {(x, 0(0)) = (=, 1), and this is identically
one for all x in Q. Therefore, simplifying,
—n(z,1) =3 up(0,a) (z, 0(a)).

a>0 .

Now, since { = & + =, we have y = 8 - #n, hence, recalling that 0 + 1,
B0, )= —3 u(0,z)nlx, 1) = > > up(0,a) u(0,2){ (2, 0(a)).

0sz=1 0=z=<1a>0
Interchanging the order of summation, we get

10, 1) =2 up(0,0) 3 u(0,2){ (z, ¢(a)).
a>0 0sexs1
The last sum on the right equals 3(0, p(a)), and this equals { (o (a), 0). The
proof is therefore complete. .
For simplicity of application, we restate Theorem 1 inverting the order of P.
Corollary. Let p: Q — P; q: P — Q be order preserving functions between
P and Q such that

1) Ifp(x) =1 then x==1,and conversely.
@) g(l)=1.

@) PEE) Sz and g(pl) 2 e
Then i

#(0,1) =3 pp(a, 1)L (g(e), 0) = 3 pip(a, 1)
a<l [a:g(a)=10]
where 4 is the Mobius function of Q.

The second result is suggested by a technique which apparently goes back to
Ramanusan (cf. Hagpy, RaMANUJAN, page 139).

Theorem 2. Let § be a finile partially ordered set with 0, and let P be a partially
ordered set with 0. Let p : Q > P be @ monotonic function of § onto P. Assume that
the inverse image of every interval [0, a] in P is an interval [0, x) in Q, and that the
inverse image of O contains at least two points.

Then M (0, 2) =

[z:p(z)==a]
for every a in P.

The proof is by induction over the set P. Since [0, 0] is an interval and its
inverse image is an interval [0, g] with ¢ >~ 0, we have

2p0,2) =D p(0,x) = 0.

[z ptr)=0] Omerag
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Suppose now the statement is true for all b such that b < @ in P. Then

- 2 2 pu(0,3) 0.
b<a [z:p(x)=b]
It follows that

Su0,2) =3 3 p(0,2).

[&:p(#)=a} bsa [z:p(z)=b]
The last sum equals the sum over some interval [0. r] which is the inverse
image of the segment [0, a|, that is

. MMtBV&VHMEBMaVHiPJ.

bsa [z:p(z)=b] Osz=<r

" But r > 0 becausc a is strietly m&w@@n than 0. Hence &(r, 0) = 0, and this con-

cludes the proof.
5. Applications

The simplest (and typical) application of Theorem 1 is the following :

Proposition 1. Let R be a subset of a finite lattice L with the following properties:
1 ¢ B, and for every x of L, except x = 1, there is an element y of R such that y > x.

For k = 2, let qi be the number of subsets of R containing k elements whose meet
t5 0. Then u(0,1) =gs — g3 + g4 + -+ . - 7

Proof. Let B(R) be the Boolean algebra of subsets of B. We take P — B (R)

“and @ = L in Theorem 1, and establish a Galois connection as follows. For z in L,

let 7 () be the set of elements of R which dominate z. In particular, (1) is the
empty set. For 4 in B(R), set p(d) = A 4, namely, the meet of all elements of
A, an empty meet giving as usual the element 1. This is evidently a Galois
connection. Conditions (1) and (2) of the Theorem are obviously satisfied.

The function uy, is given by the Corollary of Proposition 5 of Section 3, and
hence the conclusion is immediate.

Two noteworthy special cases are obtained by taking R to be the set of dual
atoms of @, or the set of all elements < 1 (cf. also WEISNER).

Closure relations. A useful application of Theorem 1 is the following:

Proposition 2. Let x — % be a closure relation ona partially ordered set Q having 1,
with the property that & = 1 only if & = 1. Let P be the partially ordered subset of
all closed elements of Q. Then: (a) If & > x, then plx, 1y = 0; (b) If &=z, then
H(x, 1) = pp(w, 1), where py is the Mobius function of P. :

Proof. Considering [z, 1], it may be assumed that P has a 0 and x — 0. We
apply Corollary 1 of Theorem 1, setting p(x) = % and letting g be the injection
map of P into Q. It is then clear that the assumptions of the Corollary are satisfied,
and the set of all @ in P such that ¢(a) = 0 is either the empty set or the single
element 0, q. e. d. :

Corollary (Ph. Hall). If O is not the meet of dual atoms of a finite lattice L,
or if 1 is not the join of atoms, then p(0,1) = 0.

Proof. Set & = A A (x), where 4 () is the set of dual atoms of @ dominating x,

and apply the preceding result. The second assertion is obtained by inverting
the order.

Example 1. Distributive lattices. Let L be a locally finite distributive lattice.
Using Proposition 2, we can easil y compute its Mobius function. Taking an interval
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[x, y] and applying Proposition 4 of Section 3, we can assume that I is finite.
For a € L, define d to be the join of all atoms which @ dominates. Then a — @ is a
closure relation in the inverted lattice L*. Furthermore, the subset of closed
elements is easily seen to be isomorphic to a finite Boolean algebra (cf. BIRKHOFF
Lattice Theory, Ch. IX) Applying Proposition 5 of Section 3, we find : plr,y) =0
if y is not the join of elements covering z, and u(z, y) = (— 1)7 if y is the join of
» distinet elements covering z. .

In the special case of the integers ordered by divisibility, we find the formula
for the classical Mobius function (cf. Example 1 of Section 3.).

The Mobius function of cardinal products. Let P and Q be finite partially
ordered sets. We shall determine the Mébius function of the partially ordered set
Hom (P, @) of monotonic functions from P to @, in terms of the Mobius function
of Q. It turns out that very little information is needed about P.

A few preliminaries are required for the statement. )

Let E be a subset of a partially ordered set ¢ with 0, and let B be the ideal
generated by R, that is, the set of all elements z in Q which are below (<) some
element of B. We denote by @/R the partially ordered set obtained by removing
off all the elements of R, and leaving the rest of the order relation unchanged.
There is a natural order-preserving transformation of ¢ onto Q/R which is
one-to-one for elements of @ not in R. We shall call Q/R the quotient of @ by the
ideal generated by R.

Lemma. Lef f: P — Q be monotonic with range Rc Q. Then the segment
[/, 1] in Hom (P, Q) is isomorphic with Hom (P, Q/R). i

Proof. For g in [f, 1], set ¢’ (z) = g(z) to obtain a mapping g —+ ¢’ of [f, 1] to
Hom (P, Q/R). Since ¢ = f, the range of ¢ lies above R, so*the map is an iso-
morphism.

Proposition 3. The Mobius function 4 of the cardinal product Hom (P, Q)
of the finite partially ordered sel P with the partially ordered set Q with O and 1 is
determined as follows:

(a) If f(p) =+ O for some element p of P which is not maxcimal, then u(0, f) = 0.

(b) In all other cases,

nOH=TTu©.im), feP,
where the product ranges over all maxvimal elements of P, and where y on the right
stands for the Mébius function of Q.

(¢) For f < g, ulf.g9) = u(0, g'), where g’ is the image of g under the canomial
map of [f, 1] onto Hom (P, Q/R), provided G| R has a 0.

Proof. Define a closure relation in [0, f1*, namely the segment [0, f] with the
inverted order relation, as follows. Set g (m) = g (m) if m is a maximal element of P,
and g(a) = 0 if a is not a maximal element of P. If y = 0, then g(m) = 0 for all
maximal elements m, hence g(a) = 0 for all ¢ < some maximal element, since ¢
is monotonic. Hence ¢ = 0, and the assumption of Proposition 2 is satisfied. The
set of closed elements is isomorphic to Hom (M, P), where M is a set of as many
elements as there are maximal elements in P. Conclusion (@) now follows from
Proposition 2, and conclusion (b) from Proposition 5 of Section 3. Conclusion (¢)
follows at once from the Lemma.
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We pass now to some applications of Theorem 2.

Proposition 4. Let a -> G be al&euéé relation on a finite lattice Q, with the
property that a \J b = a\/ b and 0 > 0. Then for all a € Q,

M 1{0,2)=0.
[z:2=a]

Proof. Let P be a partially ordered set isomorphic to the set of closed elements
“of L. We define p(x), for « in Q, to be the element of P corresponding to the
closed element %. Since 0 > 0, any x between 0 and 0 is mapped into 0. Hence the
H.b<m.~mm image of 0 in P under the homomorphism p is the nontrival interval
[0, 0].

Now consider an interval [0, e] in P. Then p~1([0, a)) = 0, ], where £ is the
closed element of L corresponding to a. Indeed, if 0 < y < % then 7=z =47,
hence p(y) < a. Conversely, if p(y) < @, then § =% but y <7, hence y < 7.
Therefore the condition of Theorem 2 is satisfied, and the conclusion follows at
once.

Corollary (Weisner).
(8) Let a > 0 in a finite lattice L. Then, for any b in L, -

S u0,z) =0
zVa=h
" (b) Let a < 1 én L. Then, for any b in L,
Dul,1)=0.
xha=b

Proof. Take & = x \/ a. Part (b) is obtained by inverting the order.

Example 2. Let ¥ be a finite-dimensional vector space of dimension n over
a finite field with ¢ elements. We denote by L(V) the lattice of subspaces of V.
We shall use Proposition 4 to compute the Mébius function of L (V).

In the lattice L(V), every segment [z, y], for x < y, is isomorphic to the lattice
L(W), where W is the quotient space of the subspace y by the subspace z. If we
denote by u, = #n(g) the value of 4 (0, 1) for L(V), it follows that ©®,y) = uy,
when j is the dimension of the quotient space W. Therefore once Hn is known for
for every n, the entire Mébius function is known.

To determine u,, consider a subspace @ of dimension # — 1, In view of the
preceding Corollary, we have for all ¢ < 1 (where 1 stands for the entire space V):.
Mmﬁmﬂuuvnnc

- 2Aa=0
where 0 stands of course for the O-subspace. Let a be a dual atom of L(V), that
is, a subspace of dimension % — 1. Which subspaces = have the property that
Z A @ = 0%z must be a line in ¥, and such a line must be disjoint except for 0
from a. A subspace of dimension # — 1 contains ¢n~1 distinct points, so there will
be g7 — gn-1 points outside of a. However, every line contains exactly ¢ — 1
points. Therefore, for each subspace @ of dimension » — 1 there are
qr — Q:IH
g—1
distinet lines z such that 2 A @ = 0. Since each interval [z, 1] is isomorphic to

— Q:lw
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a space of dimension n - 1, we obtain

o= p(0,1) = - Jp(@ )= gl
xha=0
%0

This is a difference equation for 4, which is easily solved by iteration. We obtain
the result. first established by PErLre HALL (see also WEISNER and S. DELSARTE):

palg) = (- Lngrn=/2 = (— 1)nql3).

6. The Euler characteristie

Sharper results relating (0, 1) to combinatorial invariants of a finite lattice
can be obtained by application of Theorem 1, when the ‘“‘comparison set” P
remains a Boolean algebra.

A cross-cut C of a finite lattice I is a subset of L with the following properties:

(a) C does not contain 0 or 1. :

(b) no two elements of C' are comparable (that is, if z and y belong to C, then
neither z <y nor « > y holds).

(¢) Any maximal chain stretched between 0 and 1 meets the set C.

A spanning subset S of L is a subset such that V § =1and A S = 0.

The main result is the following Cross-cut Theorem:

Theorem 3. Let u be the Mébius function and E the Euler characteristic of a non-
trivial finite lattice L, and let C be a cross-cut of L. For every integer k = 2, let qx
denole the number of spanning subsets of C containing k distinct elements, Then

1 = (0, 1) == go — g3 +qq -~ q5 + -+

The proof is by induction over the distance of a cross-cut €' from the element 1.

Define the distance d{z) of an element « from the element 1 as the maximum
length of 4 chain stretched between x and 1. For example, the distance of a dual
atom is two. If ' is a cross-cut of L, define the distance d(C) as max d(x) as z
ranges over C. Thus, the distance of the cross-cut consisting of all dual atoms is
two, and conversely, this is the only cross-cut having distance two.

It follows from Proposition 1 of Section 5 that the result holds when a(C) =2
(take B = C in the assertion of the Proposition). Thus, we shall assume the
truth of the statement for all cross-cuts whose distance is less than », and prove
it for a cross-cut with d(C) = n. )

If C is a subset of L, we shall write « > C or z < (' to mean that there is an
element y or € such that x > ¥, or that there is an element y of C such that
x = y. For a general C, these possibilities may not be mutually exclusive; they
are mutually exclusive when C is a cross-cut. We shall repeatedly make use of
this remark below.

Define a modified lattice L’ as follows. Let L’ contain all the elements z such
that # < €' in the same order. On top of C, add an element 1 covering all the
elements of C, but no others; this defines L’. . .

In L, consider the cross-cut € and apply Proposition 1 of section 5 again.
If u' is the Mébius function of L', then

#0,1)=ps - p3+ pa...,
where py is the nomber of all subsets A c C ¢ I of & elements, such that A 4 --0.
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Comparing the lattices I and ', we have

0 H«Mox 0,2) + 2 u(0,2) = 2 H(0,2) 4+ 4'(0,1).

x> T=C
However, for 2 < C, we have u'(0, x) = (0, 2) by construction of I, Hence

S pl0,5) = — o+ py—pa+ -

x=C
Since the sets (v/r = C) and (xfx > C) are disjoint, we can write

pON) = = 3 p0,2) = — 3 u(0,2) + 3 (0, 2)].

z<1 z=C 1>3>C ‘

We now simplify the first summation on the right:

*) #00,1) =pg —pg -+ pa--- — 3 (0, 2).

1>z>C
) Now let g () be the number of subsets of (' having & elements, whose meet
18 0 and whose join is z. In particular, gz (1) = ¢z. Then clearly

Pr=2qk(x), k=2,

z>C
the summation in (*) can be simplified to

(**) PO = (2 —gs+ga— ) = T~ ga(&) + g5 (2) — ga(z) -
1>z
totp0a).

For x above € and unequal to 1, consider the segment [0, x]. We prove that
Cla)=0Cn10,x] is a ‘cross-cut of the lattice [0, z] such that d(C' (x)) < d(C)
Once this is done, it follows by the induction hypothesis that every term _.m
brackets on the right of (**) vanishes, and the proof will be oc:é_mnmr

Conditions (a) and (b) in the definition of a cross-cut are trivially satisfied by
C(x), and condition (c) is vorified as follows. Suppose @ is a maximal chain in
[0, 2] which does not meet ' (%). Choose a maximal chain R in the segment [z, 17;
then the chain QU R is maximal in L, and does not intersect (. o

Hn.u.osmmzm to verify that d(C'(z)) < d(C), and this is quite simple. There is
a chain @ stretched between ¢ and z whose length is d(C(z)). Then d (C) exceeds
the length of the chain QU R, and since x < 1, R has length at least 2, hence
the length of QU R exceeds that of @ by at least one. The proof is ar,mnomog.
complete.

Theorem 3 givesa relation between the value #(0, 1) and the width of narrow
cross-cuts or bottlenecks of a lattice. The proof of the following statement is im-
mediate,

Corollary 1. (a) If L has a cross-cut with one element, then #(0,1) =0.

(b) If L has a cross-cut with fwo elements, then the only two possible values of
#(0,1) are 0 and 1.

(e} If L has a cross-cut having three elements, then the only possible values of
#(0,1) are 2, 1,0 and —1.

H.s this connection, an interesting combinatorial problem is to determine all
possible values of 4(0, 1), given that L has a cross-cut with elements,

Z. Wahrscheinlichkeitstheorle, Bd. 2 25

345




354 G1aN-CArLO RoTa:

Reduction of the main formula. In several applications of the cross-cut nrmommb.r
the computation of the number ¢; of spanning sets may be long, .mza gystematic
procedures have to be devised. One such procedure is the following:

Proposition 1. Let C be a cross-cut of a finite lattice L. For every integer k = 0,

and for every subset A c C, let q(A4) be the number of %as%:«.ﬁ sets containing A,
and let Sy = > q(A), where A ranges over all subsets of 'C having k elements. Set So
4

to be the number of elements of C. Then
\&AO. 1) = So—28; + 228, — 2383 4 ---.

Proof. For every subset Bc C, set p(B) =1 if B is a spanning mm»,; and
p(B) = 0 otherwise. Then ,
q(4)=73p(B).

C2B=24
Applying the Mobius inversion formula on the Boolean algebra of subsets of C,

we get
p{4) =2 a¢(B)u(4, B),
B4
where u is the Mdbius function of the Boolean algebra. Summing over all subsets
A ¢ C having exactly k elements, :
ar=ppld)=2  2q(B)ul(4,B).
n(A)=k nd)=k B4

Interchanging the order of summation on the right, recalling Huwowcmmao: 5 of
k+

Section 3 and the fact that a set of k 4 [ elements possesses A ] v subsets of &

elements, we obtlain

+- E+ 2 nep | P
qr == Nk~ Aw“ ~v®a.:+A xw_v VMT&.:.TAl: ».vam:.

A convenicnt way of recasting this expression in a form mﬁ#@r_m for ooE.c.cSSo:
is the following. Let V- be the vector space of all wog:o::&m.s the Sﬁ:»_w_m .
over the real field. The polynomials 1, z, 22, ..., are linearly independent in V.
Hencz there oxists a lincar functional L in V such that

.NAR: = .ﬂw‘ \o.“ovw.wv
Formula (*) can now be rewritten in the concise form

k42 ¥
s =L@ et e (£ TZ ) == L)

Upon applying the cross-cut theorem, we find the expression (where go and ¢1
are also given by (*), but turn out to be 0)

1 T z? !v
O =L{155 — e
] 1 - — 9, % QB e ees
=8 -28+48 — -, q.e.d.
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The cross-cut theorem can be applied to study which alterations of the order
relation of a lattice preserve the Euler characteristic. Every alteration which
preserves meets and joins of the spanning subsets of some cross-cut will preserve
the Euler characteristic. There is a great variety of such changes, and we shall
not develop a systematic theory here. The following is a simple case.

Following Brexuorr and Jonsson and TARSKT we define the ordinal sum of
lattices as follows. Given a lattice L and a function assigning to every element x
of L a lattice L(x), (all the L(x) are distinct) the ordinal sum P = MH\?& of

z

the lattices L (x) over the lattice L is the H.vmuﬁp:% ordered set' P consisting of the
set {_J L(z), where u < v fueL(z)andve L(r)and u < vin L(x), or if we L(x)

zel
and v e L(y) and « < y. It is clear that P is a lattice if all the L () are finite lattices.

Proposition 2. If the finite lattice P is the ordinal swum of the lattices L (x) over the
non-trivial lattice L, and pip, uz and uy, are the corresponding Mébius functions, then:

If L(0) is thé one element lattice; then Up(0,1) = uy(0, 1)

Proof. The atoms of P are in one-to-one correspondence with the atoms of L
and the spanning subsets are the same. Hence the result follows by applying the
cross-cut theorem to the atoms,

In virtue of a theorem of J6wsson and Tarsxr, every lattice P has a unique
maximal decomposition into an ordinal sum ovér a “skeleton” Z. This can be
used in connection with the preceding Corollary to further simplify the computa-
tion of (0, ») as n ranges through P.

Homological interpretation. The alternating sums in the Cross-Cut Theorem
suggest that the Euler characteristic of a lattice be interpreted as the Euler
characteristic in a suitable homology theory. This is indeed the case. We now
define* a homology theory H(C) relative to an arbitrary cross-cut C of a finite
lattice L. For the homological notions, we refer to Eilenberg-Steenrod.

Order the elements of O, say a1, Gz, ..., 0, For k = 0, let a k-simplex o be
any subset of  of & - 1 elements which does not span. Let Cy, be the free abelian
group generated by the k-simplices. We let C_; = 0: for a given simplex ¢, let
01 be the set obtained by omitting the (¢ 4 1)-st element of g, when the elements
of ¢ are ordered according to the given ordering of €. The boundary of a k-simplex

2

is defined as usual as 9,0 = M {(—1)ioy, and is extended by linearity to all of
i=0 .

Ck, giving a linear mapping of Cp into Cyx_;. The k-th homology group Hj is
defined as the abelian group obtained by taking the quotient of the kernel of 8
by the image of mwtu The rank by of the abelian group Hy, that is, the number
of independent generators of infinite cyclic subgroups of Hy, is the k-th Bell;
number.

Let ax be the rank of Ck, that is, the number of k-simplices. The Euler cha-
racteristic of the homology H (C) is defined in homology theory as

0

E(C) =3 (—1)ray.

k=0

* This definition was obtained jointly with D. Kax, F. PErERSON and G. WHITEHEAD,
whom T now wish to thank.
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It follows from well-known results in homology theory that

EC)= MA... 1)eby.
=0
Let qx be the number of spanning subsets with % elements as in .HrooSE 3.
Then qr41 + o is the total number of subsets of €' having & + 1 elements; if ¢

N .
has N elements, then oy = A ko Hv — qr+1- It follows from the Cross-Cut Theo-

rem that

8 .z 8
mqul: ITSS
@=21( ) =30

=S (T ) +uon.

We have however

b T ) IR

i=1 ?
and hence
E(C)=1+p0,1)=E;
in other words:

Proposition 3, In a finite lattice, the Buler characteristic of the homology of any
cross-cut C equals the Euler characteristic of the lattice.

This result can sometimes be used to compute the Mébius functions of “large”
lattices. In general, the numbers g are rather redundant, since any spanning
subset of k clements gives rise to several spanning subsets with more than k
elements. A method for eliminating redundant spanning sets is then called for,
One mﬁor method consists precisely in the determination of the Betti numbers by.

We\conjecture that the Betti numbers of H (C) are themselves independent of
the cross-cut C, and are also “invariants” of the lattice L, like the Euler charac-
teristic £ (C). In the special case of lattices of height 4 satisfying the chain con-
dition, this conjecture has been proved (in a different language) by DowkEer,

Example 1. The Betti numbers of a Boolean algebra. We take the cross-cut C of
all atoms. If the height of the Boolean algebra is # -+ 1, then every k-cycle, for
k < n — 2, bounds, so that by = 1 and by = 0 for 0'< k < n — 2. On the other
hand, there is only one cycle in dimension n — 2. Hence bs—2 = 1 and we find
E == 1+ (—1)7"2, which agrees with Proposition 5 of Section 3.

A notion of Euler characteristic for distributive lattices has been recently intro-
duced by Hapwicer and Krer. For finite distributive lattices, KLEE's Hﬁmn
characteristic is related to the one.introduced in this work. We refer to KLE®'s
paper for details.

7. Geometric lattices

An ordered structure of very frequent occurrence in combinatorial theory is
the one that has been variously called matroid (WHITNEY), matroid Edﬁo.@ Gwd«.x.
HOFF), closure relation with the exchange property (MacLaNE), geometric lattice
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(BirxHOTFK), abstract linear dependence relation (BLEICHER and Presron).
Roughly speaking, these structures arise in the study of combinatorial objects
that are obtained by piecing together smaller objects with a particularly simple
structure. The typical such case is a linear graph, which is obtained by piecing
together edges. Several counting problems associated with such structures can
often be attacked by Mobius Inversion, and one finds that the Mdbius functions
involved have particularly simple properties. : .

We briefly summarize the needed facts out of the theory of such structures,
referring to any of the works of the above authors for the proofs.

A finite lattice L is a geometric lattice when every element of L is the join of
atoms, and whenever if ¢ and b in L cover o Ab, then @ \/ b covers both @ and b.
Equivalently, a geometric lattice is characterized by the existence of a ranlk func-
tion satisfying r(a A b) + r(a Vb) £ r(a) 4 7(b). Notice that this implies the
chain condition. In particular if @ is an atom, then r(a V¢) = r(c) or r(c) -+ 1.
If M is a semimodular lattice, then the partially ordered subset of all elements
which are joins of atoms is a geometric sublattice.

Geometric lattices are most often obtained from a closure relation on a finite
set which satisfies the MacLANE-STEINTTZ exchange property. The lattice L of
closed sets in such a closure relation is a geometric lattice whenever every one-
element set is closed. Conversely, every geometric lattice can be obtained in this
way by defining one such closure relation on the set of its atoms.

The fundamental property of the Mobius function of geometric lattices is the
following:: ;

" Theorem 4. Let  be the Mdbius function of a finite geomelric lattice L. Then:

() plx,y) + 0 for any pair z, Y in L, provided x < y. ’

(b) If y covers z, then u(x, y) and p(x, z) have opposite signs.

" Proof. Any segment [z, y] of a geometric lattice is also a geometric lattice.
It will therefore suffice to assume that x — 0, y =1 and that z is a dual atom
of L.

We proceed by induction. The theorem is certainly true for lattices of height 2,
where 11(0, 1) = — 1. Assume it is true for all lattices of height % — 1, and let L
be a lattice of height . By the Corollary to Proposition 4 of Section 5, withb=1,
and @ an atom of L, we have

\kAO‘u == IAM\RAOMHV

zVa=1
z+1

Now from the subadditive inequality

r{EAa)+rxVa) Zr(z) 4 r(a)

€om:mon$z§wm&<aﬂfnrm:: = dim z - dim a, hence dim z =n — 1. The
element x must therefore be a dual atom. It follows from the induction assumption
and from the fact that L satisfies the chain condition, that all the #(0, x) in the
sum on the right have the same sign, and none of them is zero. Therefore, #(0,1)
is not zero, and its sign is the opposite of that u (0, z) for any dual atom z. This
concludes the proof.
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Corollary. The coefficients of the characteristic polynomial of a geometric lattice
alternate in sign. . o

We next derive a combinatorial interpretation of the Euler ovwgonmﬁm.so of
a geometric lattice, which generalizes a technique first used by WHITNEY in the
study of linear graphs. o

A subset {a, b. ..., ¢} of a geometric lattice L is independent when

raVoVv- - Ve)=r(@) +rd) + -+ ric).

Let €'y be the cross-cut of L of all elements of rank & > 0. A maximal independent
subset {a, b, ..., ¢} c Ok is a basis of Cy. All bases of Cx have the same :ﬁmb_oo.n
of elements, namely, n — k if the lattice has height n. A subset 4 n ﬂw is a circuit
(WHITNEY) when it is not independent but every proper subset is independent.
A set is independent if and only if it contains no circuits. )

Order the elements of L of rank % in a linear order, say ay, az, ..., a;. This
ordering induces a lexicographic ordering of the omnoimm of .Qa. )

If the sabset {ay,, ai,, ..:S\v (i1 < .s.m < »++ < 4y) is a circuit, the subset ag,,
@y, ..., ay_; will be called a broken circuit,

Proposition 1. Let L be a geometric lattice of height n -+ 1, and let Cy mm the
cross-cut of all elements of rank k. Then p(0,1) = (— L)*my, where my is the
number of subsets of Oy whose meet is 0, containing n — k + 1 elements each, and
not containing all the arcs of any broken circuit.

Again, the assertion implies that my = my = mg = +--. .

Proof. Let the lexicographically ordered broken circnits Um. ~.uf Py, ..., Py,
and let 8y be the family of all spanning subsets of Oy containing P, .vna not
Pi.Py,....or P,y In particular, Syy; is the family of all ﬁrOmm spanning sub-
sets not containing all the arcs of any broken circuit. Let ¢; be the number of
spanning subsets of j elements and not belonging to S;. We shall prove that for
each ¢ == 1 ,

(*) p(0,1) = g5 — gy 4 g .

First, set ¢ = 1. The set S; contains all spanning subsets containing the
broken circuit P;. Let P; be the cicuit obtained by completing the broken cir-
cuit P;. — A spanning set contained in S; contains either Py or else P, Uﬁ%
not Py; call these two families of spanning subsets 4 and B, and let ¢/ and q;
be defined accordingly. Then g5 = g} + ¢* + g7, and

PO =g —gtau - =g-g+-+
o+ )~ @ -+

Now, g3 = 0, because no circuit can contain two elements; there ,mm. a one-to-one
correspondence between the elements of 4 and those of B, obtained by com-
pleting the broken circuit P;. Thus, all terms in parentheses cancel and the
identity (*) holds for ¢ = 1. . o

To prove (*) for ¢ > 1, remark that the element ¢; of O, which is dropped
from a circuit to obtain the broken circuit P;, does not oceur in any of the pre-
vious cireuits, because of the lexicographic ordering of the circuits. Hence the
induction can be continued up to { = ¢ 4 1.
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Any set belonging to 8541 does not confain any circuit. Hence, it is an inde-
pendent set. Since it is a spanning set, it must contain 7 — % + 1 elements.

Thus, all the integers ¢4, vanish except g7t 1 . and the statement follows from (*),
q.e.d.

Corollary 1. Let q(A) = A7 4+ mqin-1 + meA?=2 - «-- 4, be the character-
istic polynomial of a geometric lattice of height n 4- 1. Then {(—L)emy is a positive
infeger for 1 <k <, equal to the number of independent subsels of k atoms not
containing any broken circuit. :

The proof is immediate : take & = | in the preceding Proposition.

The homology of a geometric lattice is simpler than that of a general lattice:

wuowom:_.o:w.Ns\Sm NSSQFE\s&Q&cmS%mogaméi C'k of all elements of rank
k=1, the Betli numbers b1, bz, ..., by_o vanish. ‘

The proof is not difficult.

Example 1. Partitions of a set.

Let 8 be a finite set of n elements. A partition 7 of S is g family of disjoint
subsets By, By, -+; Bi, called blocks, whose union is §. There is a (well-known)
natural ordering of partitions, which is defined as follows: s = o whenever every
block of  is contained in a block of partition ¢. In particular, 0 is the partition
having % blocks, and I is the partition having one block. In this ordering, the
partially ordered set of partitions is a geometric lattice (cf. BIRKHOFF).

The Mébius function for the lattice of partitions was first determined by
SCHUTZENBERGER and independently by RoBerTo FRUCHT and the author. We
give a new proof which uses a recursion. If 7 is a partition, the class of 7 is the
(finite) sequence (k;, k2, ...), where k; is the number of blocks with 7 elements.

Lemma. Let L, be the lattice of partitions of a set with n elements. I frel,
s of rank k, then the segment [, 1] is isomorphic to Ly If 7w is of class (ky, ko, ...),
then the segment [0, 7] is isomorphic to the direct product of ky lattices wsomorphic to
Ly, ks lattices isomorphic to Ly, ete.

The proof is immediate.

It follows from the Lemma that if [x, 9] is a-segment of Ly, then it is iso-
morphic to a product of k; lattices isomorphic to Ly, i=1,2,.... We call the
sequence (k1, ks, ...) the class of the segment [z, y).

waoﬁoﬁmozw.h& \:xH\iow:\osSawans.amo\%si&s.e:m of a set with n ele-
ments. Then pin = (—1)n=1(n — . :
Proof. By the Corollary to Proposition 4 of Section 5, Mt?« 1) =10. Let @

B TAa=0
be the dual atom consisting of a block ocsgma:msfHwomznmvmzammooosm

block (', containing one point. Which non-zero partitions « have the property
that 2 A @ = 07 Let the blocks of such a partition = be B, ..., Bx. None of the
blocks B; can’ contain two distinct points of the block Cy, otherwise the two
points would still belong to the same block in the intersection. Furthermore,
only one of the B; can contain the block Cs. Hence, all the By contain one point,
except one, which contains Cy and an extra, point. We conclude that # must be an
atom, and there are #n — 1 such atoms. Hence, y, = #{0, 1) = — M\iﬁ 1), where z

B T
ranges over a set of n — 1 atoms. By the Lemma, the segment [%, 1] is isomorphic
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to the lattice of partitions of a set with n — I elements, hence p, = - (n~- 1) 2, -1
Since ug == — 1, the conclusion follows.

Corollary. If the segment [z, y] is of class (ky, ks, ..., ky), then .
pxy) = bl ks = (= 1yathtotbeon gk ke (0 - 1)1

The Mébius inversion formula on the partitions of a set has mm&mnm_ com-
binatorial applications; see the author’s expository paper on the subject.

8. Representations

There is, as is well known, a close analogy between combinatorial results
relating to Boolean algebras and those relating to mro lattice of mc_ummmoam of
a vector space. This analogy is displayed for example in g.a ﬂrm.oq of m.mym,e.o:a,o
equations developed by F. H. Jacksox, and can be b.oSoom in many number-
theoretic investigations. In view of it, we are led to surmise that a result @:m_omwsm
to Proposition 1 of Section 5 exists, in which the Boolean m_mova@. of subsets of R
is replaced by a lattice of subspaces of a vector space over a mz:.wm.mmw.m. Such a
result does indeed exist; in order to establish it a preliminary definition is needed.

Let L be a finite lattice, and let ¥V be a finite-dimensional vector m@.@om over
a finite field with g elements. A representation of L over V is a 50:085.5 map p
of L into the lattice M of subspaces of V, having the following properties:

{1y p(0) - 0.

2) plevb)=pla)Vpd). ,

(3) Each atom of L is mapped to a linc of the vector space 17, and the set of
lines thus obtained spans the entire space V.

A representation is faithful when the mapping p is cE.éc.c:c‘.<<c. m_.E: see
in Section 9 that a great many ordered structures arising in combinatorial pro-
blems admit faithful representations. Given a representation p: L -~ Jf, one
defines the conjugale map q¢: M — L as follows. A

Let K be the set of atoms of M (namely, lines of V), and let 4 be the image
under p of the set of atoms of L. For s € M, let K (s) be the set of .m«oBm of M
dominated by s, and let B(s) be a minimal subset of 4 which mvmsm.AB .»._E vector
space sense) every element of K {s). Let A (s) be the subset o.m A which is spanned
by B(s). A simple vector-space argument, which is here omitted, wro,wm :_W; the
set 4 (s) is well defined, that is, that it does not depend upon the choice of B(s),
but only upon the choice of «. .

Let ('(s) be the set of atoms of L which are mapped .V% P wdg Afs). Set
g(s) = V C(s) in the lattice I; this defines the map ¢. It is obviously a mono-
tonic function.

Lemma., Let p: L > M be a faithful representation and let q: M > L be the
conjugate maup. Assume that every element of L is a join of atoms. Then p(g(s)) = s

—

and g(p(x)) < z.

Proof. By definition, g(s) - v/ C(s), where C(s) is the inverse image of 4 ()
under p. By property (2) of a representation,

Plg)=p(VC(s))=Vp(C(s)) =V A(s).
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But this join of the set of lines 4 (s} in the lattice M is the same as their span in
the vector space V. Hence \/ A(s) = s, and we conclude that p(g(s)) = s.

To prove that ¢(p(x)) < «, it suffices to show that A(p{x)) = B, where B
is -the set of atoms in 4 dominated by p(x). Clearly Bc 4 (p(x)), and it will
suffice to establish the converse implication. By (2), and by the fact that x is
2 join of atoms, we have p(x) = V B. Therefore every line ! dominated by p (z)
is spanned by a subset of B. If in addition [ & 4, then I < vV C for some subset
C c B, hence 1€ B. This shows B> A(p(x)), q.e.d.

Theorem 6. Let L be a finite lattice, where every element is a join of atoms, let
p: L — M be a faithful representation of L inlo the lattice M of subspaces of a veclor
space V over a finite field with q elements, and let ¢: M — L be the conjugate map.

For every k = 2, let my, be the number of k-dimensional subspaces s of V such that
q(s)y= 1. Then ’

™ #(0,1) = ¢Dmy — ¢Dmg - gy — ..,

where y is the Mobius function of L.

Proof. Let Q = L*, let ¢: I —>@Q and ¢*:Q —> L be the canonical isomor-
phisms between L and Q. Define 7 : Q—>Masn=pc* and g: M —Q as o=cq.
We verify that 7 and ¢ give & Galois connection between @ and M satisfying the
hypothesis of Theorem 1. If 7 (x) = 0, then there is a y & L such that Y = c*(z)
‘and p(y) = 0. Tt follows from the definition of a representation that y = 0. Hence
# = ¢(y) = 1. Furthermore, p(0) = ¢(¢(0)) = 1. It follows from the preceding
Lemma that 7 and ¢ are a Galois connection. Applying Theorem 1 and the
result of Example 2 of Section 5, formula, (*) follows at once.

Remark. It is easy to sec that every lattice having a faithful representation
is a geometric lattice. The converse is however not true, as an example of T, La-
ZARSON shows. :

A reduction similar to that of Proposition 1 of Section 7 can be carried out

with Theorem 5 and representations, and another combinatorial property of the
Ruler characteristic is obtained. :

9. The coloring of graphs

By way of illustration of the preceding theory, we give some applications to
the classic problem of coloring of graphs, and to the problem of constructing
flows in networks with specified properties. Our results extend previous work of
G. D. Bmrknorr, D. C. Lewrs, W. T. Turte and H. WirrNEy,

A linear grapk @ = (V, E) is a structure consisting of a finite set ¥, whose
elements are called vertices, together with a famil y E of two-element subsets of v,
called edges. Two vertices @ and b are adjacent when the set (a, b) is an edge;
the vertices @ and b are called the endpoints of («, b). Alternately, one calls the
vertices regions and calls the graph a map, and we use the two terms interchange-
ably, considering them as two words for the same object. If § is a set of edges,
the vertex set V(S) consists of all vertices which are incident to some edge in S.

A set of edges S is connected when in any partition S = 4 U B into disjoint
non-empty sots 4 and B, the vertex sets V(A4)and ¥V (B) are not disjoint. Every set
of edges is the union of disjoint connected blocks.
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i lation defined on the
n & graph @ = (V, E) is a closure re
t MWMW MMEMMW%WMMAV&? H»mﬂ N M E, let § be the set of all edges Uo.aw of ,<wOmm .9%.
wﬂgam U&omb.w to one and the same block of §. Every set oOme@Em of a single
M&mo is closed, and these are the only minimal non-empty closed sets.
Lemma 1. The bond closure 8 — § has the exchange property.
Proof. Suppose e and f are edges, Sc E, mu.& ee S U7 but mrmrw memw.wwmvm
endpoint of ¢ which is not in ¥ (S} is an endpoint of .\w ; o%rwro Mea MH msﬁ&uw @mwmma
int i i us both e an
least one point in common, otherwise ee §. h e
WMMMoMM dwwm same méo blocks of S, or else they have one endpoint in § and one
dpoint; hence fe JU'e, q.e.d. . .
aoEHH,MMMMMMMOMp = L(@) of bond-closed subsets of E is called the wcﬂ:.w Nﬁ.«h:omﬂom
the graph @. Suppose that E has n blocks and p (1) is the or.mgoeoimgo wm M
bowww.w Wm L ».Eob the polynomial 2#p (1) is the chromatic polynomial of MW@ mwm% 1 G,
ied Theorem 4 we infer at once the theorem
first studied by G. D. BIRKHOFF. From : t once the theorerr
i he chromatic polynomial alternate gn.
of WHITNEY that the coefficients of t . nial o In sign.
i i flowing combinatorial interpreta . L
The chromatic polynomial has the fo ¢ . e
: V- C is a proper coloring
t of n elements, called colors. A wz:osod. f
on wMo@mwaw when no two adjacent vertices are assigned the mﬂBM onmwwm. M,% mwonw .
i “ i v — there corresponds a subset of B, the bon
] — not necessarily proper — 1t . :
MM Mﬂwommw& as the set of all edges whose endpoints are assigned a,% Mmmbo Ao»o_mw
“ i S . For every closed set .S, let p(4,
. The bond of f is a closed set of edges »
MM Mrm number of colorings whose bond is S. Then éo.wwmz prove that %AM‘“ Ww
Arg(A, S), where g (4, S) is the characteristic polynomial of the mamammwﬂ mw ,g
n thic ince i > T uals the to
in the lattice L. Since every ooﬂoﬁbm has a vozmﬂw.o.% (A, 1) m&. o
number of colorings having some bond 7' 2= S. But this ::45.62 is aSQM:aM% % L s
where k is the number of vertices of the graph and r(S) is the Ezn of | .
Applying the Mobius inversion formula on the dod@;mg_ow, we ge
™* p(A)=p(4,0)= > 27D yu(0,T).
Tel
But the number of colorings whose bond is the null set 0 is exactly the number
colorings. . v N .
o mﬂ%MHzm&vm oMmFmSo: (cf. A logical expansion in Mathematics) of the owncJ
matic polynomials of a graph in terms of the number ommmWUmn@wrm oMﬁw Mu HMM”
i i diate consequence of the cross-cu
and p connected components is an imme : out theorem
i bond-lattice of G. This result of WHITNE 3
applied to the atoms of the X cun now
i irections: -cut other than that o
be sharpened in two directions: first, a cross-cu . . '
amsm,cm Mngw secondly, the computation of the coefficients of the chromatic wodo\_
nomial can be simplified by Proposition 1 of Section 8. The cross-cut of all &MENWM
of rank 2 is particularly suited for computation, and can be programme & ;m
interested reader may wish to explicitly translate the cross-cut theorem and t
results of Section 8 into the geometric language of graphs. )
Example 1. For a complete graph on n vertices, where every néo..w_msge m:, e
set is an edge, the bond-lattice is isomorphic to the H.m\oSoo of partitions of w se
with 7 elements. The chromatic polynomial is wﬁ.&a:ﬁ% {(A)n = A(4 1“ wa &
(A — n +- 1), and the coefficients s(n, k) are the Stirling numbers of the first kind.
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Hr:maM te,ﬁvﬂﬁ?@.ﬁri m?owmaoggzynol& interpretation to the Stirling
r(n)y=k

numbers of the first kind.

For a map m embedded in the plane, where regions and boundaries have their
natural meaning and no region bounds with itself, one. obtains an interesting
geometric result by applying the cross-cut theorem to the dual atoms of the bond
lattice L (in). ,

Let m be a connected map in the plane; without loss of generality we can
assume: (a) that all the regions of m, except one which is unbounded, lie inside
& convex polygon, the outer boundary of m; (b) that all boundaries are segments
of straight lines. The dual graph of m is the linear graph made up of the boundaries
of m. A circuit in a linear graph is defined as a simple closed curve contained in
the graph. We give an expression of the polynomial P(4, m) in terms of (he
circuits of the dual graph. The outer boundary is always a circuit.

A set of circunits of a map m in the plane spans, when their union — in the
set-theoretic sense — is the entire boundary of m.

Proposition 1, For every inleger & = 1, let Cy, be the number of spanning sets of k

distinct circusts of a map m tn the plane. Then
\sﬁAOMHv”IQHLIQN'QwLIQAI...

Proof. If the map has two regions, then Cr =1 and all other ¢, — 0, o the
result is trivial. Assume now that m has at least 3 regions. Then € = 0. All we
have to prove is that the integers Oy, are the integers g of Theorem 3, relative to
the cross-cut of L(m) consisting of all the dual atoms. ,

By the Jordan curve theorem, every circuit divides the plane into two regions;
this gives a one-to-one correspondence of the circuits with the dual atoms of L (m).
Oo:edwmm_%u because we can assume that the map is of the special type described
above, every dual atom in L(m) is a map with two connected regions, and so must
have as a boundary a simple closed curve, q.e.d. :

It has been shown by RicHarp Rapo (p. 312) that the bond-lattice L(@) of
any linear graph @ has a faithful representation. Accordingly,
be applied to obtain expression for y (0,1). These expressions usually give sharper
bounds than similar expressions based upon the cross-cut of atoms.

Hﬂw;:g.wm@ormzm techniques for the computation of the Mébius function of I, (@
are obtained by applying Theorem 1 to situations where P and @ are both bond-
lattices of graphs. This we shall now do. A monomorphism of g graph @ into a
graph /{ is a one-to-one function 1 of the vertices of @ onto the vertices of H,
which induces a map f of the edges of G inlo the edges of H. Every monomorphism
/:G@ — H induces a monotonic map p: L(G)— L(H), where 2(8) is defined as
the closure of the image f(S) in H. It also induces a monotonic map q: L(H) —
-> L(Q). where ¢(7T) is defined as the set of edges of @ whose image is in 7.

Lemma 2, q(p(S)) == S for 8 in (& and plgI)y < T for T in L(H).

Proof. Intuitively, P(8S) is obtained by “adding edges” to 8, and ¢(p(8))
simply removes the added edges. Thus, the first statement is graphically clear.
The second one can be seen as follows. ¢(7) is obtained from T by removing a

Theorem 5 can also
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-number of edges. Taking p(q(7)), some of the edges may be replaced, but in
; t all. Thus, p(g(T)) < 7. : . . ‘
mozmu“__aﬂw Lm == bﬂ\\ VWAM:Q c¢: L(H) -+ M to be the canonical oﬁmon.ie.i.r:wu
map, we see that o = ¢p and { = ¢c give a Galois connection between L ()
and .&A Now, z(x) = 0 is equivalent to p(x) = 1 for 2 e L(G). This om:.rmw@oz
" only if « has only one component, that is -— since z is elosed — only if x = .~
in L(@). Thus m(z) = 0 if and only if x = 1. Secondly, ¢(0) = ¢(1) =1, evi-
dently. We have verified all the hypotheses of Theorem 1, and we therefore
obtain: C ]
iti : L X linear graph @ into a linear
Proposition 2. Let f : G — H be a monomorphi sm of a >
graph NW and let ug and upy be the Mébius functions of the bond-lattices. Then

#e(0,1) = > pn(a,1),
[a € L{H); g(a)=0]

where q is the map of L(H) into L(G) naturally associated with f, as above.

Proposition 1 can be used to derive a great many of the H,.mmﬂos.o.ym.om
G. D. Bmrkrorr and D. C. LEwis, and provides a systematic way of investigating

the changes of Mébius functions — and hence of the chromatic polynomial —

s & simple geometric interpretation.
when edges of a graph are removed. It has a simp. .
An interesting application is obtained by taking H to be the complete lattice
on n elements. We then obtain a formula for 4 which completes the mawmo_,.:mdam
of Theorems 3 and 5. Let @ be a linear graph-on n vertices. Let C cw »_r.e family
of two-element subsets of ¢ which are not edges of (. Let F be the family of all
subsets of ¢ which are closed sets in the bond-lattice of the complete graph on »
vertices built on the vertices of G. Then,
Corollary. pe(0,1)=> u(a,1),
acF .
where y is the Mobius function of the lattice of partitions (cf. Example 5) of a
set of n elements. : . o .
Stronger results can be obtained by considering “epimorphisms g.»rﬁ than
“monomorphisms” of graphs, relating uq to the Mobius function c:am_:& ?oa.d
G by ‘“‘coalescing” points. In this way, one makes contact with G. A. Dirac's
theory of critical graphs. We leave the development of this topic to a later work.

10. Flows in networks

A network N = (V, E) is a finite set V of vertices, together with a set of
ordered pairs of vertices, called edges. )

We shall adopt for networks the same language as for _Swpn graphs.

A circuit is a sequence of edges § such that every vertex in V (8) #.H&o:m.m to
exactly two edges of S. Every edge has a positive and a negative endpoint. Given
a function @ from E to the integers from 0 to 1 — 1,'let for each vertex v, D (v)
be defined as

Do) =S 7(e, ) D(e),
é

where the sum ranges over all edges incident to v, and the function 7 (e, v) takes
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the value'-|-1 or - 1 according as the positive or negative end of the edge e abuts
at the vertex », and the value zero otherwise. The function @ is a flow (mod. )
when @ () : 0 (mod. 2} for every vertex v. The value @ (e) for an edge e is called
the capacity of the flow through e. The mod. 1 restriction is inessential, but will
be kept throughout.

A proper flow s one in which no edge is assigned zero capacity. TUTTE was
the first to point out the importance of the problem of counting proper flows (cf,
A contribution to the theory of chromatic polynomials) in combinatorial theory.

We shall reduce the solution of the problem to a Mobius inversion on a lattice
associated with the network. This. will give an expression for the number of
proper flows as a polynomial in 1, whose coefficients are the values of a Mabius
function. . :

Every flow through N is a proper flow of a suitable subnetwork of N, obtained
by removing those edges which are assigned capacity 0. However, the converse
of this assertion is not true: given a subnetwork § of N, it may not be possible
to find a flow which is proper on the complement of N. This happens because
every flow which assigns capacity zero to each edge of S may assign capacity zero
to some further edges. We are therefore led to define a closure relation on the set
of all subgraphs as follows: § shall be the set of all edges which necessarily are
assigned capacity zero, in any flow of N which assigns capacity zero to every edge
of 8. In other words, if e ¢ 8, then there is a flow in N which assigns capacity =0
to the edge e, but which assigns capacity zero to all the ed
verified that 8-> S is a closure relation, We call it the e
cirenit closure has the exchange property: if e e §

of 8. It is immediately
reutl closure of 8. The

Before verifying it. we first derive a geometric characterization of the cireuit
closure. A set S is cireuit

sed (8 w2 ) i and only i through every edge ¢ not
In N there passes a cirenit which is digjoint from 8. For if N is elosed and ¢ ¢ N,
then there is a flow through e and disjoint from 5. But this can happen only if
there is a circuit, through e.

If there is a circuit through the edge p disjoint from T ¢, and a circuit
through e disjoint from § and containing p, then there is — as has been ob.’
served by WHITNEY — also'a circuit through ¢ not containing § U p. This im-
plies that e is not in the closure of § U p. and verifies the exchange property,

The lattice C(N) of closed subsets of edges of the network N is the cireuil
latticé of N. An atom in this lattice is not necessarily a single edge.

Proposition 1. The number of proper flows, (mod. 1) on @ network N with v ver-
lices, e edges and y» connected components is a polynomial p (1) of degree e - v - p.
This polynomial is the characteristic polynomial of the circuit lattice of N. The co-
efficients allernate in sign. : )

Proof. The last statement is an immediate consequence of Theorein 4 of
Section 8. ‘ i

The total number of flows on N {not necessarily proper) is determined as
follows. Assume for simplicity that N is connceted. Remove a set 1) of v — |
edges from N, one adjacent to each but one of the vertices,

Every flow on N can be obtained by first assigning to each of the edges not
in D) an arbitrary capacity, between 0 and A — 1, and then filling in capacities

357




366 Gran-CarLo Rora:

for the edges in 1) to match the requirement :w zero o@ﬁ@w?% :ﬂﬂ,c.mmw ME_W:“MMH*WA
There are 227741 ways of doing this. and this is therefore the : a, ,:. mber of
flows mod. 2. 1 the network is in p connected ocEwo:o:»z,. the r_..::n_ ;._mwmi p
gives 22712 Now, every flow on ¢ is a proper flow on a unique closed subset S,
obtained by removing all edges baving capacity zero.

Hence

Jrovip Mﬁcﬂ A),
| Bel(o)y

i isti i he closed subgraph . Setting
> , A) is the characteristic polynomial of t . ;
MMMM..%MMV W _ea?v - p{s), the number of edges, vertices and components of s,
and applying the inversion formula, we get
_ PG, A) =310 u(8, @), q.e.d.
Set(@)

In the course of the proof we have also shown that n{s) is the rank of .S in
ircui Bt 3 : the null subgraph is one.
the circuit lattice of (. The rank of t . .
) The four-color problem is equivalent to the statement that every planar qwaﬂn
work without an isthmus has a proper flow mod 5. A>M wi,rascm is an edge tha
i k when removed.
disconnects a component of the networ . - . .
Most of the results of the preceding section extend to circuit .Fnﬁoom of v.\ :Ma
work, and give techniques for computation of the flow Hx.mvﬁon:w_m of :ows.on.rw.
We mm&: not write down their translation into the geometric language of networks.
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by A. J. Hoffman in (6). They mentio

_ arbitrary graphs. This theorem immediately sugge

PATHS, TREES, AND FLOWERS
JACK EDMONDS

1. Introduction. A graphk G for purposes here is a finite mm,n of elements

called vertices and a finite set of elements called edges such that each edge

meets ex i ;
et « MMMMM.MMW Nw\nmmn.coom« called the end-points of the edge. An edge is said
A matching in G is a subset of its edges such that no two meet th
vertex. We .Qmmol_um an efficient algorithm for finding in a given graph a : mm:ho
ing of maximum cardinality. This problem was posed and EU ﬁamﬁo ,
- C. Berge; see Sections 3.7 and 3.8. partly solved by
Maximum matching is an aspect of a topic
theory, which has developed during the last ww
mvn.Eﬁ a dozen authors, In particular, W. T. Tut
which do not contain a perfect matching
set of edges with exactly one Bmagn,
.UBB%Q& attempts at finding an efficient
This M.EQ our two subsequent papers will
MWM Qw?».o. Most of the known theorems follow nicely from our treatment
though for the most part they are not treated explicitly. Our treat is
Samvm.mambm and so no background reading is necessary ment 18
Mm.oﬁoz 2 isa philosophical digression on the meaning of _..ommnmmnﬁ algorithm."”
Section 8 discusses ideas of Berge, Norman, and Rabin with a nmew M”MOMSNA

Berge's theorem. Section 4
3 ; . presents the bulk of the m i i
Section 7 discusses some refinements of it. ebing algorithm.

There is an extensive -combinatorial
to Gmﬁowﬁmm in bipartite graphs and o
It is surveyed, from different viewpoi

treated in books on graph
years through the work of
te (8) characterized graphs
or I-factor as he calls it—that is a
meeting each vertex. His theorem
construction for perfect matchings.
be closely related to other work on

-linear theory related on the one hand
n the other hand to linear programming.
nts, by Ford and Fulkerson in (5) and
n the problem of extending this relation-
5 does this, or at least begins to do it.
zed to a matching-duality theorem for
sts a polyhedron which in a
ull of the vectors associated

ship to non-bipartite graphs. Section
There, the Konig theorem is generali

m:.Um.oncw:ﬁ paper (4) is shown to be the convex h
with the matchings in a graph,

gm.x:dcﬂ matching in non-bipartite graphs is at
ooEwEwﬂoE& extremum problems in that it is ver
the “unimodular” type described in (5 and 6).

present unusual among
y tractable and yet not of
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