
Explicit Lower Bound Of 4.5n - o(n) For Boolean Circuits

Oded Lachish
�

Department of Computer Science
Weizmann Institute

Rehovot 76100, ISRAEL

odedl@wisdom.weizmann.ac.il

Ran Raz
y

Department of Computer Science
Weizmann Institute

Rehovot 76100, ISRAEL

ranraz@wisdom.weizmann.ac.il

ABSTRACT
We prove a lower bound of 4:5n � o(n) for the circuit com-
plexity of an explicit Boolean function (that is, a function
constructible in deterministic polynomial time), over the ba-
sis U2. That is, we obtain a lower bound of 4:5n � o(n) for
the number of fand; org gates needed to compute a certain
Boolean function, over the basis fand; or; notg (where the
not gates are not counted). Our proof is based on a new com-
binatorial property of Boolean functions, called Strongly-
Two-Dependence, a notion that may be interesting in its
own right. Our lower bound applies to any Strongly-Two-
Dependent Boolean function.

1. INTRODUCTION
Shannon showed that the circuit complexity of almost

all Boolean functions is exponential [1]. Lower bounds for
explicit Boolean functions were proved for some restricted
models of Boolean circuits (e.g., monotone circuits, constant
depth circuits, etc'). For the general (non-restricted) model,
however, no super-linear lower bound was obtained.
In this paper, we consider Boolean circuits over the ba-

sis U2, which is one of the most common basis for Boolean
circuits. The basis U2 contains all the Boolean functions
over two variables, except for the the xor function and its
complement. That is, any gate over the basis U2 can be
replaced by an and gate (or, equivalently, an or gate), with
the optional addition of not gates connected directly to the
inputs to the gate and to the output of the gate. Hence, any
Boolean circuit over U2 can be converted into a Boolean cir-
cuit over the basis fand; or; notg, with the exact same num-
ber of gates (when the not gates are not counted). That is,
the circuit complexity of a function over U2 is equivalent to
counting the number of fand; org gates needed to compute
the function (when the not gates are ignored).

�Research supported by US-Israel BSF grant 98-00349.
yResearch supported by US-Israel BSF grant 98-00349, and
NSF grant CCR-9987077.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’01, July 6-8, 2001, Hersonissos, Crete, Greece.
Copyright 2001 ACM 1-58113-349-9/01/0007 ...$5.00.

We prove a lower bound of 4:5n � o(n) for the circuit
complexity of an explicit Boolean function with n input vari-
ables, over the basis U2. The best previous lower bound was
a bound of 4n�O(1), proved by Zwick [2].
For our proof, we de�ne a new property of Boolean func-

tions, called Strongly-Two-Dependence. A Boolean function
is Two-Dependent if for any choice of two input variables,
xi; xj , and any choice of two di�erent assignments, �0; �00, to
xi; xj , the partial function obtained by �xing xi; xj to �

0 is
di�erent than the partial function obtained by �xing xi; xj
to �00. A Boolean function is Strongly-Two-Dependent if
each one of its partial functions, obtained by �xing less than
n� o(n) input variables to constants, is Two-Dependent.
Our lower bound is proved for any Strongly-Two-

-Dependent Boolean function. We do not give here an ex-
plicit construction of a Strongly-Two-Dependent Boolean
function. Nevertheless, we do give a probabilistic construc-
tion for such a function F , using a small number of random
bits (more speci�cally, we use polylog(n) random bits). Our
lower bound hence follows for the function F , as a func-
tion of both, the original input variables and the additional
random bits. (Note that as a function of both, the original
input variables and the additional random bits, the function
F is deterministic and explicit). As in [2], our main method
is the method of partial restrictions. That is, in each step we
�x several input variables to constants, and obtain a smaller
circuit. We use the Strongly-Two-Dependence property to
obtain the better lower bound.

2. PRELIMINARIES

2.1 Boolean circuits over U2

De�ne the basis U2 to be the set of all Boolean functions
f : f0; 1g2 ! f0; 1g of the sort

f(x; y) = ((x� a) ^ (x� b))� c;

where a; b; c 2 f0; 1g. That is, U2 is the set of Boolean
functions (over two variables) that can be derived from the
Boolean function f(x; y) = x^y by optionally applying some
of the following: negate x, negate y, negate the output.

Definition 2.1. (Boolean circuit over U2): A Boolean
circuit over the basis U2 is a directed acyclic graph with nodes
of in-degree 0 or 2, such that:

1. Nodes of in-degree 0 are called input-nodes, and each
one of them is labeled by a variable from fx1; : : : ; xng
or a constant from f0; 1g. Input-nodes labeled by a
constant are called constant-nodes.

399

2. Nodes of in-degree 2 are called gate-nodes, and each
one of them is labeled by a function from U2.

A speci�c subset of nodes are called output-nodes. In this
paper, we only deal with Boolean functions F : f0; 1gn !
f0; 1g and hence we assume that our Boolean circuit has
only one output-node.

We refer to a Boolean circuit over the basis U2 as a Boolean
circuit (unless stated otherwise). Let C be a Boolean circuit
and let v be a node in C. We denote by OUTC(v) the set
of gate-nodes, such that, v is connected directly to each one
of them. We denote by INC(v) the set of input-variables
whose corresponding input-nodes are connected by a path
to v. (If v is an input-node labeled by an input-variable
then INC(v) = fvg). Given a gate-node v in C, we refer to
the two nodes that are connected directly to v by RightC(v)
and LeftC(v).
Let C be a Boolean circuit and let X = fx1; : : : ; xng be

the set of input-variables. Given an assignment � 2 f0; 1gn

to the variables in X, we denote by C(�) the value of the
circuit's output on the assignment xi = �i (for every i). We
compute C(�) as follows:

1. Label each input-variable xi (i.e., input-node labeled
by xi) by the constant �i.

2. Find a gate-node v, such that, LeftC(v) andRightC(v)
are already labeled by constants a1; a2 2 f0; 1g respec-
tively. Label v by f(a1; a2) 2 f0; 1g, where f is the
Boolean function labeling the gate-node v.

3. Repeat step 2, until the output-node is labeled by a
constant a 2 f0; 1g.

The value C(�) is the constant a. In the same way, for
any node v in the circuit C, we denote by Cv(�) the value
computed by v on the assignment xi = �i.
Any Boolean circuit computes a Boolean function F :

f0; 1gn ! f0; 1g, where n is the number of input-variables.
The other direction is also true: any Boolean function can be
computed by a Boolean circuit. We say that two Boolean
circuits C1 and C2 are equivalent (C1 � C2) if they both
compute the same function.
Note that given a Boolean circuit C, if we unite all input-

nodes labeled by the same input-variable the circuit C will
still compute the same Boolean function. Therefore, we can
assume that for every input-variable xi, there is only one
input-node labeled by xi. We will sometimes abuse nota-
tions and refer to that node by xi. For example, the ex-
pression xi = LeftC(v) means: in the Boolean circuit C the
input-node labeled by xi is the left hand side input to v. In
the same way, the expression OUTC(xi) means the set of
gate-nodes in C, such that, the input-node labeled by the
input-variable xi is directly connected to each one of them.
The size of a circuit C is the number of gate-nodes in it.

We denote this number by Size(C). The circuit complexity
of a Boolean function F : f0; 1gn ! f0; 1g is the mini-
mal size of a Boolean circuit that computes F . We denote
this number by Size(F). Note that Size(F) (i.e., the cir-
cuit complexity over U2) counts the number of and,or gates
needed to compute F over the base fand; or; notg (i.e., we
work over the standard base fand; or; notg but the not gates
are not counted).
The depth of a node v in a Boolean circuit C is the length

of the longest path from v to the output-node. We denote

this number by DepthC(v). The depth of a circuit C is the
maximal depth of a node v in the circuit. We denote this
number by Depth(C).
The degree of a node v in a Boolean circuit C is the node's

out degree. We denote this number by DegreeC(v). We de-
note by Degeneracy(C) the number of input-variables that
have degree one in C. For our lower bound proof, we also
need the following measure:

SD(C) = Size(C)� 0:5 �Degeneracy(C):

A similar de�nition was used in [2].

2.2 Blocking constants
The basis U2 has some properties that are used in our

lower bound proof. Recall that every Boolean function f 2
U2 can be represented as:

f(x; y) = ((x� a) ^ (x� b))� c:

De�ne Bl(f) to be the constant a in this expression. De�ne
Br(f) to be the constant b in this expression. De�ne Dm(f)
to be the constant c in this expression.

Proposition 2.2. Let f(x; y) be a function in U2. Then,

f(Bl(f); 0) = f(Bl(f); 1) = f(0; Br(f)) =

= f(1; Br(f)) = Dm(f):

That is, �xing x to Bl(f) or y to Br(f) �xes f(x; y) to one
speci�c constant. We call this constant Dm(f).

Proposition 2.3. Let f(x; y) be a function in U2. Then,

f(:Bl(f); 0) 6= f(:Bl(f); 1)

and

f(0;:Br(f)) 6= f(1;:Br(f)):

That is, �xing x to :Bl(f) �xes f(x; y) = y or f(x; y) = :y.
Fixing y to :Br(f) �xes f(x; y) = x or f(x; y) = :x.

Let C be a Boolean circuit and let v be a gate-node in C.
Let f 2 U2 be the Boolean function labeling v in C. De�ne,
BlC(v) = Bl(f), BrC(v) = Br(f) and DmC(v) = Dm(f).

2.3 Restrictions
A restriction � is a mapping from a set of n variables to

f0; 1; ?g. That is, � 2 f0; 1; ?gn. Intuitively, a restriction
is a partial assignment to the set of input-variables. That
is, some input-variables are assigned to a constant from
f0; 1g and all other input-variables remain undetermined.
Formally, we apply a restriction � to a Boolean function
F : f0; 1gn ! f0; 1g in the following way: For any variable
xi that is mapped by � to a constant ai 2 f0; 1g, we assign
ai to xi. We leave all the other variables untouched. We
refer to the restricted Boolean function by F j�. Note that
F j� is a Boolean function of all the untouched variables.
We apply a restriction � to a Boolean circuit C in the fol-
lowing way: For any input-variable xi that is mapped by �
to a constant ai 2 f0; 1g, we relabel the input-variable xi
(i.e., the corresponding input-node) by ai. We leave all the
other nodes untouched. We refer to the restricted Boolean
circuit by C j� . In this paper, when we describe a restriction
�, we will only mention the input-variables that are mapped
to constants in f0; 1g. The input-variables that we do not
mention are mapped to ?.

400

Let F : f0; 1gn ! f0; 1g be a Boolean function over the
set of variables X = fx1; : : : ; xng. Let �1 and �2 be two re-
strictions, such that, �1 maps each one of the input-variables
in the set X1 to f0; 1g and �2 maps each one of the input-
variables in the set X2 to f0; 1g. We say that the two restric-
tions �1, �2 are orthogonal if X1\X2 = �. The composition
of two orthogonal restrictions �1, �2 is well de�ned. We de-
note that composition by �1�2. The composition �1�2 maps
each one of the input-nodes in X1 according to �1 and maps
each one of the input-nodes in X2 according to �2.

Proposition 2.4. Let F be a Boolean function. Let C be
a Boolean circuit. Let �1, �2 be two orthogonal restrictions.
Then,

(F j�1) j�2� F j�1�2� F j�2�1� (F j�2) j�1

and

(C j�1) j�2� C j�1�2� C j�2�1� (C j�2) j�1 :

The last proposition can be easily generalized to the case of
several orthogonal restrictions.

3. STRONGLY TWO DEPENDENCE

3.1 Definitions

Definition 3.1. (Two-Dependent Boolean function): Let
F : f0; 1gn ! f0; 1g be a Boolean function. We say that F is
Two-Dependent if for any two di�erent variables xi,xj and
for any four constants a; a0; b; b0 2 f0; 1g, such that, (a; b) 6=
(a0; b0), the following is satis�ed: Let �1 be a restriction that
maps xi,xj to a; b respectively. Let �2 be a restriction that
maps xi,xj to a0; b0 respectively. Then,

F j�1 6= F j�2 :

Definition 3.2. ((n; k)-Strongly-Two-DependentBoolean
function): Let F : f0; 1gn ! f0; 1g be a Boolean function.
We say that F is (n; k)-Strongly-Two-Dependent if for any
k di�erent variables fxi1 ; : : : ; xikg and for any restriction
� that maps fxi1 ; : : : ; xikg to ? and all other variables to
constants from f0; 1g, we have that F j� is Two-Dependent.

Proposition 3.3. Let F : f0; 1gn ! f0; 1g be an (n; k)-
Strongly-Two-Dependent Boolean function. Then, for any
n0, such that, n � n0 > k, for any set of n0 di�erent vari-
ables X 0 = fxi1 ; : : : ; xin0 g and for any restriction � that
maps each one of the input-variables in X 0 to ? and maps
all other input-variables to f0; 1g. F j� is (n0; k)-Strongly-
Two-Dependent.

Proposition 3.4. Any (n; k)-Strongly-Two-Dependent
Boolean function is also Two-Dependent.

3.2 Construction
We present a construction for an explicit Boolean function

G : f0; 1g~n ! f0; 1g, such that, for some restriction � we
have thatG j� is (n; k)-Strongly-Two-Dependent, where ~n =
n + k2 and k = t log n, and t is some big enough constant
(say t > 220). We partition the ~n input-variables of G into
two sets: a set of n \regular" input-variables denoted by
(x1; : : : ; xn), and a set of k2 \auxiliary" input-variables. In
the analysis of the function, we think of the auxiliary input-
variables as a string of random bits. We consider random

restrictions � that map the regular input-variables to ? and
the auxiliary input-variables to random constants. We show
that with high probability (over the values of the auxiliary
input-variables) G j� is (n; k)-Strongly-Two-Dependent. In
all that comes bellow, the probability is taken over these
random bits. For the sake of simplicity we also assume that
n > 28. Thus, we also have that k > 223.
We de�ne the function G as follows:

1. Use the auxiliary random string to choose n k � wise
independent vectors �c1; : : : ; �cn, such that, each �ci is a
vector of k bits.

2. De�ne

�c =

nM
j=1

xj � �cj :

That is, �c is a vector of k bits, which is the bitwise xor
of the n vectors xj � �cj .

3. De�ne

G =Maj[�c]:

That is, the value of G is one if at least half of the bits
in �c are one.

Lemma 3.5. There exists a restriction � over the input-
variables of G that maps the auxiliary variables to f0; 1g,
such that, G j� is (n; k)-Strongly-Two-Dependent.

3.3 Proof of the Lemma
We will �rst prove that the vectors �c1; : : : ; �cn satisfy two

speci�c properties, with high probability over the possible
assignments to the auxiliary input-variables. Denote by
W [�v] the Hamming weight of a vector �v (i.e., W [�v] is the
number of ones in �v).

Proposition 3.6. With probability of at least 1 � 1

n
the

following is satis�ed: For every 1 � i < j � n and every
four constants a; a0; b; b0 2 f0; 1g, such that, (a; b) 6= (a0; b0),

W
�
(a � �ci)� (b � �cj)� (a0 � �ci)� (b0 � �cj)

�
>

1

8
k:

Proof. Observe that the value of (a � �ci)� (b � �cj)� (a0 �
�ci)� (b0 � �cj) is equal to one of the following: �ci, �cj , �ci

L
�cj .

For each i, the probability that W [�ci] �
1

8
k is at most

n�10 (by the standard Cherno� bound). Since for i 6= j
the vectors �ci; �cj are independent (as random variables), the
probability that W [�ci � �cj] �

1

8
k is also at most n�10.

There are n di�erent possible values for i and n(n� 1)=2
di�erent possible values for i; j. Therefore, the probability
that for every i we have W [�ci] >

1

8
k and for every i 6= j we

have W [�ci � �cj] >
1

8
k is larger than 1� 1

n
.

Proposition 3.7. With probability of at least 1 � 1

n
the

following is satis�ed: for every set of k di�erent indices
i1; : : : ; ik, the vectors �ci1 ; : : : ; �cik span a linear space of di-
mension at least (1� 1

256
)k.

401

Proof. Denote k0 = (1� 1

256
)k. For the sake of simplicity

we assume that k0 is an integer.
The property is not satis�ed only if there exists a set S

of vectors f�ci1 ; : : : ; �cikg and a subset S0 � S of size k0, such
that, the vectors in S0 span all the vectors in S. Recall that
the vectors �ci1 ; : : : ; �cik are independent as random variables.
Thus, the probability that all the k�k0 vectors in S nS0 are
spanned by S0 is at most

2k
0

2k

!k�k0

= 2�2
�16k2 ;

(since the dimension of the linear space spanned by the vec-
tors in S0 is at most k0, and the length of the vectors is k).
The number of possibilities for choosing S,S0 is�

n
k

�
�

�
k
k0

�
;

which is less than n2k. Hence, by the union bound, the prob-
ability that there exist such S; S0 is smaller than 1

n
(since

k > 220).

We are now ready to prove Lemma 3.5.

Proof. By Proposition 3.6, Proposition 3.7, and the union
bound, we have that with probability of at least 1� 2

n
:

1. For every 1 � i < j � n and every four constants
a; a0; b; b0 2 f0; 1g, such that, (a; b) 6= (a0; b0),

W
�
(a � �ci)� (b � �cj)� (a0 � �ci)� (b0 � �cj)

�
>

1

8
k:

2. For every set of k di�erent indices i1; : : : ; ik, the vec-
tors �ci1 ; : : : ; �cik span a linear space of dimension at
least (1� 1

256
)k.

Hence, there exists a restriction �, such that these two
properties are satis�ed. We will now show thatG j� is (n; k)-
Strongly-Two-Dependent.
Let � be a restriction which is the composition of � and a

restriction that maps the k variables fx1; : : : ; xkg to ? and
all other variables to the constants hk+1; : : : ; hn 2 f0; 1g.
Let �1 be a restriction which is the composition of � and a
restriction that maps the variables fx1; x2g to the constants
h11; h

1
2 2 f0; 1g. Let �2 be a restriction which is the composi-

tion of � and a restriction that maps the variables fx1; x2g to
the constants h21; h

2
2 2 f0; 1g, such that, (h11; h

1
2) 6= (h21; h

2
2).

We will prove that

G j�1 (x3; : : : ; xk) 6= G j�2 (x3; : : : ; xk)

(the proof for arbitrary k variables xi1 ; : : : ; xik is done in
the same way).
Let �m1; �m2 be the two vectors de�ned as follows:

�m1 =

nM

r=k+1

hr � �cr

!
� (h11 � �c1)� (h12 � �c2):

�m2 =

nM

r=k+1

hr � �cr

!
� (h21 � �c1)� (h22 � �c2):

Let �D : f0; 1gk�2 ! f0; 1gk be the function de�ned over
fx3; : : : ; xkg as follows:

�D(x3; : : : ; xk) =
kM

r=3

xr � �cr:

Thus, we have

G j�1 (x3; : : : ; xk) =Maj
�
�m1 � �D(x3; : : : ; xk)

�
G j�2 (x3; : : : ; xk) =Maj

�
�m2 � �D(x3; : : : ; xk)

�
By the choice of � and since (h11; h

1
2) 6= (h21; h

2
2), we have

W [�m1 � �m2] >
1

8
k

and the vectors �c3; : : : ; �ck span a linear space of dimension
at least (1 � 1

256
)k � 2. Thus, there is some speci�c set

of (1 � 1

256
)k � 2 coordinates of the vector �D(x3; : : : ; xk),

such that, the values of these (1 � 1

256
)k � 2 bits can be

determined to anything we want (by choosing appropriate
values for x3; : : : ; xk).
We denote the set of indices of these bits by J . We choose

an assignment of constants h3; : : : ; hk 2 f0; 1g to x3; : : : ; xk,
such that, the following two properties are satis�ed:

1. For every index j 2 J , such that, �mj
1 6= �mj

2 (where �mj
1

is the jth bit of �m1 and �mj
2 is the j

th bit of �m2) the bit
�Dj(h3; : : : ; hk) satis�es �Dj(h3; : : : ; hk) � �mj

1 = 0 and
�Dj(h3; : : : ; hk)� �mj

2 = 1 (where �Dj(h3; : : : ; hk) is the
jth bit of �D(h3; : : : ; hk)).

2. For the indices j 2 J , such that, �mj
1 = �mj

2, we choose
values, such that,X

j2J

�
�Dj(h3; : : : ; hk)� �mj

1

�
=

7

16
k:

Hence,

7

16
k <

kX
j=1

�
�Dj(h3; : : : ; hk)� �mj

1

�
�

7

16
k+

1

256
k+2 <

1

2
k:

Thus,

G j�1 (h3; : : : ; hk) = 0:

On the other hand,

kX
j=1

�
�Dj(h3; : : : ; hk)� �mj

2

�
�

kX
j=1

�
�Dj(h3; : : : ; hk)� �mj

1

�
�

�
1

8
k � 2

�
1

256
k + 2

�
:

Hence,

kX
j=1

�
�Dj(h3; : : : ; hk)� �mj

2

�
�

9

16
k � 2

�
1

256
k + 2

�
>

1

2
k:

Thus,

G j�2 (h3; : : : ; hk) = 1:

402

3.4 Some easy propositions
The following lemma is the motivation behind the de�ni-

tions of Two-Dependent and (n; k)-Strongly-Two-Dependent.

Lemma 3.8. Let F : f0; 1gn ! f0; 1g be a Two-Dependent
Boolean function over the set of variables X = fx1; : : : ; xng.
Let C be a Boolean circuit that computes F . Then, the
following is never satis�ed in C: There exist two input-
variables xi,xj, such that, OUTC(xi) = OUTC(xj) and
jOUTC(xi)j = jOUTC(xj)j = 2 (i.e., xi,xj are connected
directly to the same two gate-nodes).

Proof. Without loss of generality, assume that i = 1
and j = 2. Let v1,v2 be the two di�erent gate-nodes, such
that, OUTC(x1) = OUTC(x2) = fv1; v2g. Without loss of
generality, assume that x1 = LeftC(v1), x1 = LeftC(v2),
x2 = RightC(v1), x2 = RightC(v2).
Let us partition the possibilities for values of BlC(v1),

BlC(v2), BrC(v1), BrC(v2) into the following cases:

1. BlC(v1) = BlC(v2) or BrC(v1) = BrC(v2)

2. BlC(v1) 6= BlC(v2) and BrC(v1) 6= BrC(v2)

Let us analyze separately each one of these cases:
Assume that either BlC(v1) = BlC(v2) or BrC(v1) =

BrC(v2). Without loss of generality, assume that BlC(v1) =
BlC(v2). Let �1,�2 be two restrictions, such that, �1 maps x1
to BlC(v1) and x2 to 0, and �2 maps x1 to BlC(v1) and x2
to 1. In C j�1 and in C j�2 the gate-nodes v1,v2 compute the
same constant functions DmC(v1), DmC(v2), respectively.
Hence, C j�1� C j�2 . Thus, F j�1= F j�2 in contradiction
to the fact that F is Two-Dependent.
Assume that BlC(v1) 6= BlC(v2) and BrC(v1) 6= BrC(v2).

Let �3,�4 be two restrictions, such that, �3 maps x1 to
BlC(v1) and x2 to BrC(v2), and �4 maps x1 to BlC(v2) and
x2 to BrC(v1). In C j�3 and in C j�4 the gate-nodes v1,v2
compute the same constant functions DmC(v1), DmC(v2),
respectively. Hence, C j�3� C j�4 . Thus, F j�3= F j�4 in
contradiction to the fact that F is Two-Dependent.

Proposition 3.9. Let F : f0; 1gn ! f0; 1g be a Two-
Dependent Boolean function over the set of variables X =
fx1; : : : ; xng. Let C be a Boolean circuit that computes F ,
and let v be the output-node of C. Then, INC(v) contains
all the input-variables in X.

Proposition 3.10. Let F : f0; 1gn ! f0; 1g be an (n; k)-
Strongly-Two-Dependent Boolean function over the set of
variables X = fx1; : : : ; xng. Let C be a Boolean circuit that
computes F . Then, the following is never satis�ed in C:
There exists an input-variable xi, and a set of less than n�k
other input-variables X 0 and a restriction � that maps each
input-variable in X 0 to a constant in f0; 1g, such that, in
C j� every path that connects xi to the output-node contains
a gate-node that computes a constant function.

Proposition 3.11. Let F : f0; 1gn ! f0; 1g be an (n; k)-
Strongly-Two-Dependent Boolean function and let C be a
Boolean circuit that computes F . Let v be a gate-node in C
and let v0 be the node, such that, v0 = RightC(v). Assume
that LeftC(v) is an input-variable xi, such that,
DegreeC(xi) = 1. Then, one of the following is satis�ed:

1. The node v0 computes the constant function :BrC(v).
(That is, Cv0(�) = :BrC(v), for any assignment � 2
f0; 1gn).

2. The node v0 computes a non constant function, and
jINC(v)j � n� k.

Proof. In the �rst case all the paths between xi and
the output-node contain a gate-node that computes a con-
stant Boolean function. That is a contradiction to Propo-
sition 3.10. In the second case there exists a restriction �
that maps the input-variables in jINC(v)j to constants, such
that, v0 computes the constant function :BrC(v), since the
node v0 computes a non constant function. By Proposi-
tion 3.3, F j� is (n� jINC(v)j; k) Strongly-Two-Dependent,
since jINC(v)j � n � k. This is a contradiction to the �rst
case.

Proposition 3.12. Let F : f0; 1gn ! f0; 1g be an (n; k)-
Strongly-Two-Dependent Boolean function and let C be a
Boolean circuit that computes F . Denote by v the output-
node of C and let v0 = RightC(v). Assume that v0 does not
compute a constant function. Then, INC(v

0) � n� k.
In the same way, assume that LeftC(v) does not compute

a constant function. Then, INC(LeftC(v)) � n� k.

Proof. Assume for the sake of contradiction that
INC(v

0) < n � k. Let n0 = jINC(v
0)j. Without loss of

generality, assume that INC(v
0) = fx1; : : : ; xn0g. Then, v

0 is
a node that computes a non constant Boolean function F 0 :

f0; 1gn
0

! f0; 1g over the the set fx1; : : : ; xn0g. Therefore,

there exists an assignment � 2 f0; 1gn
0

, such that, F 0(�) =
BrC(v). Let � be a restriction that maps each input-variable
xj 2 fx1; : : : ; xn0g to �j . Then, in C j� the node v computes
a constant function, since v0 computes the constant function
BrC(v). This is a contradiction to De�nition 3.2, since by
Proposition 3.3, F j� is (n�n0; k)-Strongly-Two-Dependent
(because n0 < n� k).

4. THE LOWER BOUND

4.1 Circuit manipulation propositions
The following proposition supplies the method of remov-

ing degenerate gate-nodes (�.e., gate-nodes that do not con-
tribute to the computation process of the Boolean circuit)
from a Boolean circuit. It is widely used in the lower bound
proof.

Proposition 4.1. Let C be a Boolean circuit. Assume
that C contains one of the following degenerate cases:

1. A gate-node v, such that, for some constant a 2 f0; 1g
and any assignment �, we have Cv(�) = a (that is, the
function computed by the node v is a constant func-
tion).

2. A gate-node v, such that, a constant-node is connected
directly to v and v computes a non constant Boolean
function.

3. A non output gate-node v, such that, DegreeC(v) = 0.

4. A gate-node v, such that, LeftC(v) = RightC(v).

403

Then, there exists a Boolean circuit C � C0, such that,

Size(C) � Size(C0) + 1:

Proof. The proof is trivial. Nevertheless, we will present
it here, since the exact argument will be important for the
rest of the paper. Let C; v be as above. Let f 2 U2 be the
Boolean function labeling v. Take C0 to be identical to C
and modify it as follows:

1. If for some constant a 2 f0; 1g and any assignment �,
we have Cv(�) = a then relabel v by a and remove the
two edges connected to v. That is, v is modi�ed to be
a constant-node.

2. Assume that a constant-node is connected directly to
v and v computes a non constant Boolean function.
Without loss of generality, assume that LeftC(v) is a
constant-node labeled by 1 and that v is labeled by a
Boolean function f 2 U2, such that, either f(1; y) = y
or f(1; y) = :y. Then, remove v and the edges con-
nected to it. Instead, connect the node RightC0(v)
directly to each one of the nodes in OUTC0(v). If
f(1; y) = :y we also have to relabel each one of the
gate-nodes u 2 OUTC0 (v) as follows: Let g 2 U2 be
the Boolean function labeling u in C. If v = LeftC(u)
relabel u in C0 by the Boolean function g0 2 U2, such
that, g0(x; y) = g(:x; y). If v = RightC(u) relabel
u in C0 by the Boolean function g00 2 U2, such that,
g00(x; y) = g(x;:y).

3. If v is a non-output gate-node, such that,
DegreeC(v) = 0. Then, remove v and the two edges
connected to it.

4. If v is a gate-node labeled by a Boolean function f 2
U2, such that, LeftC(v) = RightC(v) and f(x; x) = x.
Then, connect the node RightC0(v) directly to each
one of the nodes in OUTC0 (v). Remove v and the
edges connected to it.

5. If v is a gate-node labeled by a Boolean function f 2
U2, such that, LeftC(v) = RightC(v) and f(x; x) =
:x. Then, connect RightC0(v) directly to each one of
the nodes in OUTC0 (v). Relabel each one of the gate-
nodes u 2 OUTC0 (v) as follows: Let g 2 U2 be the
Boolean function labeling u in C. If v = LeftC(u)
relabel u in C0 by the Boolean function g0 2 U2, such
that, g0(x; y) = g(:x; y). If v = RightC(u) relabel
u in C0 by the Boolean function g00 2 U2, such that,
g00(x; y) = g(x;:y).

Note that a gate-node is removed if it was physically re-
moved from the Boolean circuit or if it was modi�ed into a
constant-nodes. Therefore, in all the cases we have removed
one gate-node.

The following proposition is designed to remove as many
degenerate cases as possible from a Boolean circuit that com-
putes an (n; k)-Strongly-Two-Dependent Boolean function.
We use it before we apply the random restriction technique
in order to avoid dealing with the mentioned degenerate
cases.

Proposition 4.2. Let F : f0; 1gn ! f0; 1g be an (n; k)-
Strongly-Two-Dependent Boolean function and let C be a
Boolean circuit that computes F . Then, there exists a
Boolean circuit C0 � C, such that, SD(C) � SD(C0) and
Degeneracy(C0) � k and C0 does not contain any of the
following degenerate cases:

1. Any of the degenerate cases of Proposition 4.1.

2. An input-variable xi of degree greater than one, such
that, jOUTC0 (xi)j � 2 and one of the gate-nodes in
OUTC0 (xi) is directly connected to a di�erent gate-
node in OUTC0 (xi).

Proof. Let C,xi be as in case 2. Without loss of general-
ity, assume that i = 1. Let v1,v2 be two di�erent gate-nodes ,
such that, v1; v2 2 OUTC(x1) and v1 is directly connected to
v2. Without loss of generality, assume that v1 = LeftC(v2),
x1 = RightC(v2) and x1 = LeftC(v1). Denote by A the
function computed by RightC(v1). Note that the function
computed by v2 depends only on the values of x1 and A. De-
note by f̂(x1; A) the function computed by v2 (over x1 and

A). We can easily prove that f̂ 2 U2 by simply checking all
the possible cases. For example, assume that both v1 and v2
are labeled by f̂(x; y) = x^y. Then, the function computed

by v2 over x1,A is f̂(x1; A) = (x1 ^A) ^ x1 = x1 ^A.
We will take C0 to be identical to C except for the fol-

lowing modi�cations: Remove the edge between v1 and v2.
Instead, connect RightC0(v1) directly to v2 and relabel v2
by f̂ . By Proposition 3.11, RightC0(v1) cannot be an input-
variable of degree one. Since no other input-variable of de-
gree one was possibly e�ected, SD(C) � SD(C0).
We now apply the argument of Proposition 4.1. Observe

that by Proposition 4.1, we removed one gate-node v from
the circuit C0. This can only e�ect the degrees of LeftC0(v)
and RightC0(v), and may decrease the degeneracy of the
circuit by at most two. Hence, the SD measure is not in-
creased. We apply the described process iteratively until we
exhaust all mentioned cases.
We will now show that Degeneracy(C0) � k. Assume for

the sake of contradiction that Degeneracy(C0) > k. Let
k0 = Degeneracy(C0). Without loss of generality, let X 0 =
fx1; : : : ; xk0g be the set of input-variables of degree one in
C0. Let xj 2 X 0 be an input-variable, such that, for every
xi 2 X 0

DepthC0(xj) � DepthC0(xi):

Let v be the gate-node, such that, xj is directly connected to
v. Without loss of generality, assume that xj = LeftC0 (v).
Note that according to the de�nition of Depth, no other
input-variable in X 0 is connected by an indirect path to v.
By Proposition 3.11, no input-variable is directly connected
to v. Hence, RightC0(v) is a gate-node that computes a

Boolean function F 0 : f0; 1gn�k
0

! f0; 1g over the set of
input-variables X n X 0. Since we exhausted all the above
mentioned cases, F 0 is not a constant function. This con-
tradicts Proposition 3.11.

4.2 The Lower Bound
Our lower bound proof is based on the gate elimination

technique. For any Boolean circuit C that computes an
(n; k)-Strongly-Two-Dependent Boolean function

404

F : f0; 1gn ! f0; 1g (for certain values of the parameters
n; k), we use the properties of F to prove: There exists
a speci�c restriction �, such that, by using the argument
of Proposition 4.1, we can remove speci�c gate-nodes from
C j� . We will actually work with the SD measure of the
circuit (rather than the Size measure). We will show that
the SD measure is decreased when we apply the restriction
�. The following Lemma captures this idea and is the major
building block in our lower bound proof.

Lemma 4.3. Let F : f0; 1gn ! f0; 1g be an (n; k)-Strongly-
Two-Dependent Boolean function and assume that n�k � 5.
Let C be a Boolean circuit that computes F . Then, there ex-
ists a set of one or two input-variables X 0 (i.e., jX 0j � 2),
and there exists a constant ci 2 f0; 1g for each xi 2 X 0, such
that, for the restriction � that maps each variable xi 2 X 0 to
ci, the following is satis�ed: There exists a Boolean circuit
C0 � C j�, such that,

SD(C) � SD(C0) + 4:5 � jX 0j:

Before proving Lemma 4.3, let us show how it is used to
prove our lower bound.

Lemma 4.4. Let F : f0; 1gn ! f0; 1g be an (n; k)-Strongly-
Two-Dependent Boolean function, such that, k = o(n). Then,

Size(F) � 4:5 � n� o(n):

Proof. Let C be a Boolean circuit that computes F . We
generate a sequence of Boolean circuit C0; : : : ; Cl by itera-
tively applying Lemma 4.3 to C. (Note that this is possible
by Proposition 3.3). More formally, we have C0 = C and
Ci+1 is obtained from Ci by applying Lemma 4.3. We stop
when the number of input-variables remaining is smaller
than k + 5. By Lemma 4.3,

SD(C) � SD(Cl) + 4:5 � n� o(n):

By Proposition 4.2, we can assume that
Degeneracy(C) � k. Therefore,

Size(C) � 4:5 � n� o(n):

Recall that in Lemma 3.5, we proved that for the Boolean
function G : f0; 1g~n ! f0; 1g (de�ned in Section 3), there
exists a restriction ', such that, G j' is (n; k)-Strongly-Two-
Dependent where ~n = n+O((log n)2) and k = O(logn).

Corollary 4.5. Size(G) � 4:5 �n�o(n) = 4:5 � ~n�o(~n).

4.3 Proof of Lemma 4.3
The proof of Lemma 4.3 is quite long, since it requires

analysis of many di�erent cases (and sub-cases). Neverthe-
less, the proof for each one of the di�erent cases will be quite
similar. More speci�cally, we partition the di�erent possibil-
ities for connections in the circuit into cases. In each case, we
map one or two input-variables to constants in f0; 1g. We
then use the argument of Proposition 4.1 to remove some
speci�c gate-nodes from the circuit.
We then calculate the di�erence in the SD measure be-

tween the original circuit and the modi�ed restricted cir-
cuit. We call this di�erence: the number of SD units re-
moved. The number of SD units removed is the number of

gate-nodes removed minus half the change in the degeneracy
measure. We will show in each of the di�erent cases that the
number of SD units removed is at least 4:5 times the number
of input-variables mapped to a constant. The degeneracy
measure might have changed in the following cases: (1) if
an input-variable of degree one was mapped to a constant,
(2) if the degree of an input-variable was changed from one,
(3) if the degree of an input-variable was changed to one.
More speci�cally, when applying Proposition 4.1 we count
the change in the SD measure as follows:

1. Let v be a gate-node that was removed. We count v
as one SD unit that was removed.

2. If we know that the degree of an input-variable xi was
changed from a number greater than one to one, we
count it as 0:5 SD unit that was removed (since the
degeneracy of the circuit was increased by one).

3. If the degree of an input-variable xi was possibly
changed from a number greater than one to one, we
count it as �0:5 SD unit that was removed (i.e., 0:5
SD unit that was added), (since the degeneracy of the
circuit might have decreased by one).

4. If we mapped to a constant an input-variable xi, whose
degree was possibly one, we count it as �0:5 SD unit
that was remove (since the degeneracy of the circuit
might have decreased by one).

We only count the change in the SD measure caused by
the application of Proposition 4.1. Note that the circuit ob-
tained may contain some of the degenerate cases of Propo-
sition 4.2. Nevertheless, Proposition 4.2 removes all such
cases without increasing the SD measure.
We are now ready to prove Lemma 4.3.

Proof. Let F : f0; 1gn ! f0; 1g be an (n; k)-Strongly-
Two-Dependent Boolean function and assume that n� k �
5. Let C be a Boolean circuit that computes F . By Propo-
sition 4.2, let us assume that C does not contain any of
the degenerate cases of Proposition 4.2. Let v1 be a gate-
node, such that, Depth(v1) = Depth(C) � 1. That is, the
depth of v1 is the maximal possible depth for a gate-node
in C. Therefore, RightC(v1), LeftC(v1) are both input-
variables. Without loss of generality, assume that x1,x2
are the two input-variables, such that, x1 = LeftC(v1) and
x2 = RightC(v1). By Proposition 3.11, DegreeC(x1) � 2
and DegreeC(x2) � 2. Let us partition all the possibilities
for connections of x1, x2 into the following cases:

1. DegreeC(x1) � 4 or DegreeC(x2) � 4. That is, either
jOUTC(x1)j � 4 or jOUTC(x2)j � 4.

2. DegreeC(x1) = 3 or DegreeC(x2) = 3. That is, either
jOUTC(x1)j = 3 or jOUTC(x2)j = 3.

3. DegreeC(x1) = 2 and DegreeC(x2) = 2.

Note that in all cases we will never map an input-variable
of degree one to a constant. Let us analyze separately each
one of these cases.

Case 1. DegreeC(x1) � 4 or DegreeC(x2) � 4.

405

Without loss of generality, assume that DegreeC(x1) � 4.
That is, jOUTC(x1)j � 4. Recall that x1 is directly con-
nected to the node v1 and x1 = LeftC(v1). Hence, v1 2
OUTC(x1). Let v2; v3; v4 be three other di�erent gate-nodes
in OUTC(x1). Without loss of generality, assume that x1 =
LeftC(v2), x1 = LeftC(v3), x1 = LeftC(v4). By Propo-
sition 3.12 and by Proposition 4.2, jOUTC (v1)j � 1 (since
x1 is directly connected to v1). Let v5 be a gate-node, such
that, v2 is directly connected to v5. By Proposition 4.2,
v5 62 OUTC(x1). Hence, v1, v2, v3, v4, v5 are �ve di�erent
gate-nodes.
Let � be a restriction that maps x1 to BlC(v1). We take

C0 to be identical to C j� and modify it according to the ar-
gument of Proposition 4.1. That is, we apply the argument
of Proposition 4.1 to each one of the gate-nodes v1,v2,v3,v4.
Since x1 was mapped to BlC(v1), v1 is now a constant-node,
and we can apply the argument of Proposition 4.1 to v5.
That is, we removed the gate-nodes v1,v2,v3,v4,v5.
We will now count the number of SD units removed. Re-

call that in C the gate-nodes v1, v2, v3, v4, v5 are all di�er-
ent. Hence, we count their removal as 5 SD units removed.
Recall that DegreeC(x1) > 1 (and hence its removal doesn't
increase the SD measure). By Proposition 3.11, no input-
variable of degree one is directly connected to v1, v2, v3, v4,
since x1 is directly connected to each one of them. Only
RightC(v5) might be an input-variable of degree 1. There-
fore, we count this as �0:5 SD unit removed (since the de-
generacy of the circuit might have decreased by one). Hence,
SD(C) � SD(C0) + 4:5.

Case 2. Either DegreeC(x1) = 3 or DegreeC(x2) = 3.

Without loss of generality, assume that DegreeC(x1) = 3.
That is, jOUTC(x1)j = 3. Recall that x1 is directly con-
nected to v1 and x1 = LeftC(v1). Hence, v1 2 OUTC(x1).
Let v2,v3 be the other two di�erent gate-nodes inOUTC(x1).
Without loss of generality, assume that x1 = LeftC(v2),
x1 = LeftC(v3). By Proposition 3.12 and Proposition 4.2,
jOUTC(v1)j � 1, jOUTC(v2)j � 1, jOUTC(v3)j � 1 (since
x1 is directly connected to v1,v2,v3). Let v4 be a gate-
node, such that, v4 2 OUTC(v1). Without loss of gener-
ality, assume that v1 = LeftC(v4). By Proposition 4.2,
v4 62 OUTC(x1). Hence, v1,v2,v3,v4 are four di�erent gate-
nodes.
Let us partition all the possibilities of connections of v1,v2,

v3 into the following cases:

1. OUTC(v1) \OUTC(v2) 6= � or
OUTC(v1) \OUTC(v3) 6= � or
OUTC(v2) \OUTC(v3) 6= �.

2. OUTC(v1) \OUTC(v2) = � and
OUTC(v1) \OUTC(v3) = � and
OUTC(v2) \OUTC(v3) = �.

Let us analyze separately each one of these cases.

Case 2.1. Either OUTC(v1)\OUTC(v2) 6= � or OUTC(v1)\
OUTC(v3) 6= � or OUTC(v2) \OUTC(v3) 6= �.

We can assume this, because in this case we will not use the
variable x2 at all, and we will not use the fact that v1 is
of maximal depth (that is, the three gate-nodes v1,v2,v3 are
totally symmetric). Recall that v4 2 OUTC(v1). Without
loss of generality, assume that v4 is a gate-node, such that,

v4 2 OUTC(v1) \ OUTC(v2). Recall that v1 = LeftC(v4).
Hence, v2 = RightC(v4). Recall that by Proposition 3.12
and Proposition 4.2, jOUTC (v3)j � 1. Let v5 be a gate-
node, such that, v5 2 OUTC(v3). Without loss of generality,
assume that v3 = LeftC(v5). Note that v5 is di�erent from
v4, because of the way v4 is connected. By Proposition 4.2,
v5 62 OUTC(x1). Recall that the gate-nodes v1, v2, v3, v4
are di�erent. Hence, the gate-nodes v1, v2, v3, v4, v5 are
di�erent.
We partition the possibilities for the values of BlC(v1),

BlC(v2), BlC(v3) into the following two cases:

1. BlC(v2) = BlC(v3) or BlC(v1) = BlC(v3).

2. BlC(v1) = BlC(v2).

Let us analyze separately each one of these cases.

Case 2.1.1. BlC(v2) = BlC(v3) or BlC(v1) = BlC(v3).

Without loss of generality, assume that BlC(v2) = BlC(v3).
Let � be a restriction that maps x1 to BlC(v2). We take C0

to be identical to C j� and modify it according to Proposi-
tion 4.1. That is, we apply the argument of Proposition 4.1
to each one of the gate-nodes v1, v2, v3. Since x1 was
mapped to BlC(v2) and BlC(v2) = BlC(v3), the gate-nodes
v2,v3 are now constant-nodes. We now apply the argument
of Proposition 4.1 to the gate-nodes v4,v5. That is, we re-
moved the gate-nodes v1,v2,v3,v4,v5.
We will now count the number of SD units removed. Re-

call that the gate-nodes v1, v2, v3, v4, v5 are di�erent.
Hence, we count their removal as 5 SD units removed. Re-
call that DegreeC(x1) > 1. By Proposition 3.11, no input-
variable of degree one is directly connected to v1, v2, v3,
since x1 is directly connected to each one of them. Recall
that v1 = LeftC(v4), v2 = RightC(v4), v3 = LeftC(v5).
Hence, only RightC(v5) might be an input-variable of de-
gree 1. Therefore, we count this as �0:5 SD unit removed
(since the degeneracy of the circuit might decreased by one).
Thus, SD(C) � SD(C0) + 4:5.

Case 2.1.2. BlC(v1) = BlC(v2).

Recall that v1 = LeftC(v4). We �rst show thatOUTC(v4) 6=
�. Assume for the sake of contradiction that OUTC(v4) 6= �.
Then, by Proposition 4.2, v4 is the output-node. Let �

0 be a
restriction that maps x1 to BlC(v1) = BlC(v2). In C j�0 the
gate-nodes v1,v2 compute a constant function, since x1 is
now a constant-node labeled by BlC(v1) = BlC(v2). There-
fore, the gate-node v4 computes a constant function, since
the value of the function that v4 computes depends only on
the values of the functions that v2,v3 compute. This is a
contradiction to the fact that by Proposition 3.3, F j�0 is
(n� 2; k)-Strongly-Two-Dependent, since n� k � 5.
Let us analyze this case according to the possible content

of OUTC(v4).

Case 2.1.2.1. Assume that v3 2 OUTC(v4).

Let � be a restriction that maps x1 to BlC(v1). We take
C0 to be identical to C j� and modify it according to Propo-
sition 4.1. That is, we apply the argument of Proposition 4.1
to each one of the gate-nodes v1, v2. Since x1 was mapped
to BlC(v1) and BlC(v1) = BlC(v2), the gate-nodes v1,v2 are
now constant-nodes. Each one of the gate-nodes v3,v4 com-
putes a function that depends only on the values of x1,v1,v2.

406

Recall that x1,v1,v2 are now constant-nodes. Therefore, we
apply the argument of Proposition 4.1 to gate-node v3 and
then to v4. That is, we modi�ed v3,v4 into constant-nodes.
Therefore, we apply the argument of Proposition 4.1 to gate-
node v5. That is, we removed the gate-nodes v1,v2,v3,v4,v5.
We will now count the number of SD units removed. Re-

call that in C the gate-nodes v1, v2, v3, v4, v5 are di�erent.
Hence, we count their removal as 5 SD units removed. By
Proposition 3.11, no input-variable of degree one is directly
connected to v1, v2, v3, since x1 is directly connected to each
one of them. Recall that v1 = LeftC(v4), v2 = RightC(v4),
v3 = LeftC(v5). Hence, only RightC(v5) might be an input-
variable of degree 1. Therefore, we count this as �0:5 SD
unit removed (since the degeneracy of the circuit might have
decreased by one). Thus, SD(C) � SD(C0) + 4:5.

Case 2.1.2.2. Assume that v3 62 OUTC(v4).

Let v6 be a gate-node , such that, v6 2 OUTC(v4). With-
out loss of generality, assume that v4 = LeftC(v6). Note
that v6 is di�erent from v1,v2 because a Boolean circuit is
acyclic. Recall that the gate-nodes v1, v2, v3, v4 are di�er-
ent. Hence, the gate-nodes v1, v2, v3, v4, v6 are di�erent.
Let � be a restriction that maps x1 to BlC(v2). We take

C0 to be identical to C j� and modify according to Proposi-
tion 4.1. That is, we apply the argument of Proposition 4.1
to each one of the gate-nodes v1, v2, v3. Since x1 was
mapped to BlC(v1) and BlC(v1) = BlC(v2), v1,v2 are now
constant-nodes. We apply the argument of Proposition 4.1
to v4. Since v1,v2 are constant-nodes v4 is now a constant-
node. We apply the argument of Proposition 4.1 to v6. That
is, we removed the gate-nodes v1,v2,v3,v4,v6.
We will now count the number of SD units removed. Re-

call that in C v1, v2, v3, v4, v6 are �ve di�erent gate-nodes.
Hence, we count their removal as 5 SD units removed. By
Proposition 3.11, no input-variable of degree one is directly
connected to v1, v2, v3, since x1 is directly connected to each
one of them. Recall that v1 = LeftC(v4), v2 = RightC(v4),
v4 = LeftC(v6). Hence, only RightC(v6) might be an input-
variable of degree 1. Therefore, we count this as �0:5 SD
unit removed (since the degeneracy of the circuit might de-
creased by one). Thus, SD(C) � SD(C0) + 4:5.

Case 2.2. OUTC(v1) \OUTC(v2) = � and OUTC(v1) \
OUTC(v3) = � and OUTC(v2) \OUTC(v3) = �.

Recall that v1 = LeftC(v4). By Proposition 3.12 and Propo-
sition 4.2, jOUTC(v2)j � 1 and jOUTC(v3)j � 1, since x1 is
directly connected to v2,v3. Let v8,v9 be gate-nodes, such
that, v8 2 OUTC(v2), v9 2 OUTC(v3). Without loss of gen-
erality, assume that v2 = LeftC(v8), v3 = LeftC(v9). By
Proposition 4.2, OUTC(v2)\OUTC(x1) = � andOUTC(v3)\
OUTC(x1) = �. Recall that v1,v2,v3,v4 are four di�er-
ent gate-nodes. Hence, v1,v2,v3,v4 and the gate-nodes in
OUTC(v2),OUTC(v3) are all di�erent gate-nodes.
Note there exist two di�erent constants i1; i2 2 f1; 2; 3g,

such that, h = BlC(vi1) = BlC(vi2). Let � be a restriction
that maps x1 to h. We take C0 to be identical to C j� and
modify it according to Proposition 4.1. That is, we apply the
argument of Proposition 4.1 to each one of the gate-nodes
v1, v2, v3. Since x1 was mapped to BlC(vi1) and BlC(vi1) =
BlC(vi2), the gate-node vi1 ,vi2 are now constant-nodes. We
apply the argument of Proposition 4.1 to the gate-nodes in
OUTC(vi1),OUTC(vi2). That is, we removed the gate-nodes
v1,v2,v3 and any other gate-node in OUTC(vi1),OUTC(vi2).

We will now count the number of SD units removed. Re-
call that in C the gate-nodes v1, v2, v3 and the gate-nodes in
OUTC(vi1),OUTC(vi2) are di�erent. Hence, we count their
removal as 5 SD units removed. Recall that DegreeC(x1) >
1. By Proposition 3.11, no input-variable of degree one is
directly connected to v1, v2, v3. By Proposition 3.11, no
input-variable of degree one is directly connected to v4, since
v1 is directly connected to v4 and jINC(v1)j < n � k (be-
cause INC(v1) = fx1; x2g and n � k > 5). Recall that
v1 = LeftC(v4), v2 = LeftC(v8), v3 = LeftC(v9). Hence,
only RightC(v8),RightC(v9) might be input-variables of de-
gree one. Assume that jOUTC(v2)j � 2 or jOUTC(v3)j � 2
or at least one of the nodes RightC(v8),RightC(v9) is not
an input-variable of degree one. Then, for all possible val-
ues of i1,i2, we have that SD(C) � SD(C0) + 4:5, since
if i1 = 2,i2 = 3 and we removed �1 SD unit because
RightC(v8),RightC(v9) are both input-variables of degree
one then we removed at least another 0:5 SD unit, since
jOUTC (v2) [OUTC(v3)j � 3.
We will now prove that it cannot be the case that

jOUTC (v2)j = 1 and jOUTC(v3)j = 1, and RightC(v8),
RightC(v9) are input-variables of degree one. For the sake of
contradiction assume that the above happens. Without loss
of generality, assume that x3,x4 are input-variables, such
that, x3 = RightC(v8),x4 = RightC(v9). Let �0 be a re-
striction that maps x2 to BrC(v1), x3 to BrC(v8) and x4 to
BrC(v9). Observe that in C j�0 all the paths from x1 con-
tain the gate-nodes v1, v8, v9 (since DegreeC(x1) = 3), and
by the choice of �0 we know that v1,v8,v9 all compute a con-
stant function. This is a contradiction to Proposition 3.10,
since �0 maps less than n � k input-variables to constants,
(because n� k � 5).

Case 3. DegreeC(x1) = 2 and DegreeC(x2) = 2.

By Lemma 3.8, it cannot be the case that OUTC(x1) =
OUTC(x2) (i.e., and x1,x2 are not directly connected to the
same two gate-nodes). Therefore, OUTC(x1)\OUTC(x2) =
fv1g. Recall that x1 = LeftC(v1), x2 = RightC(v1). Let
v2, v3 be the other two di�erent gate-nodes, such that, v2 2
OUTC(x1) and v3 2 OUTC (x2). That is, v1,v2,v3 are three
di�erent gate-nodes. Without loss of generality, assume that
x1 = LeftC(v2), x2 = LeftC(v3). By Proposition 3.12 and
by Proposition 4.2, jOUTC(v1)j � 1, since x1 is directly
connected to v1. Let v4 be a gate-node, such that, v4 2
OUTC(v1) andDepthC(v4) = Depth(C)�2. Without loss of
generality, assume that v1 = LeftC(v4). By Proposition 4.2,
v4 62 OUTC(x1) and v4 62 OUTC(x2). Hence, v1,v2,v3,v4 are
four di�erent gate-nodes.
Let us partition the possibilities for connections of v1,v2,v3,

v4 into the following cases:

1. DegreeC(v1) � 2 (i.e., jOUTC(v1)j � 2).

2. DegreeC(v1) = 1 (i.e., jOUTC(v1)j = 1) and either
v2 = RightC(v4) or v3 = RightC(v4).

3. DegreeC(v1) = 1 (i.e., jOUTC(v1)j = 1) and
RightC(v4) is an input-variable.

4. DegreeC(v1) = 1 (i.e., jOUTC(v1)j = 1) and
RightC(v4) is a gate-node di�erent than v2,v3.

Let us analyze separately each one of these cases.

Case 3.1. DegreeC(v1) � 2 (i.e., jOUTC (v1)j � 2).

407

Let v5 2 OUTC(v1) be a gate-node that is di�erent from
v4. Without loss of generality, let v1 = LeftC(v5). By the
same reasoning as for v4 (i.e., by Proposition 4.2), the gate-
node v5 is di�erent from v2,v3. Thus, v1,v2,v3,v4,v5 are �ve
di�erent gate-nodes.
Let � be a restriction that maps x1 to BlC(v1). We take

C0 to be identical to C j� and modify it according to Propo-
sition 4.1. That is, we apply the argument of Proposition 4.1
to each one of the gate-nodes v1,v2. Since x1 was mapped
to BlC(v1), v1 is now a constant-nodes. Hence, we apply
the argument of Proposition 4.1 to v4,v5.
We will now count the number of SD units removed. Re-

call that v1,v2,v4,v5 are four di�erent gate-nodes. Hence,
we count their removal as 4 SD units removed. Recall that
DegreeC(x1) > 1. By Proposition 3.11, no input-variable of
degree one is directly connected to v1,v2, since x1 is directly
connected to each one of them. Recall that v1 = LeftC(v4),
v1 = LeftC(v5). Hence, by Proposition 3.11, no input-
variable of degree one is directly connected to v1,v2, since
v1 is directly connected to each one of them and INC(v1) <
n � k (since INC(v1) = fx1; x2g and n � k � 5). Thus,
the degree of any input-variable did not change from one by
the applying the argument of Proposition 4.1. Recall that
v1,v2,v3,v4,v5 are �ve di�erent gate-nodes. Hence, v3 was
not removed. Recall that in C0 the node v1 is a constant-
node. Therefore, in C0 the input-variable x2 is directly con-
nected only to v3. We count the decrease in the degree of
x2 as 0:5 SD unit removed. Hence, SD(C) � SD(C0) + 4:5

Case 3.2. DegreeC(v1) = 1 (i.e., jOUTC(v1)j = 1) and
either v2 = RightC(v4) or v3 = RightC(v4).

Without loss of generality, assume that v2 = RightC(v4).
Let us prove that this case cannot occur in C. Recall that
DepthC(v1) = Depth(C0)� 1. Therefore, since
DegreeC(v1) = 1, we have DepthC(v4) = Depth(C0) �
2. Hence, DepthC(v2) = Depth(C0) � 1. Implying, that
RightC(v2) is an input-variable. Without loss of general-
ity, assume that x3 is the input-variable , such that, x3 =
RightC(v2). Let �

0 be a restriction that maps x2 to BrC(v1)
and x3 to BrC(v2). Observe that in C j�0 all the paths from
x1 contain the gate-nodes v1, v2 and by the choice of �0, the
gate-nodes v1,v2 both compute a constant function. This is
a contradiction to Proposition 3.10, since �0 maps less than
n� k input-variables to constants (because n� k � 5).

Case 3.3. DegreeC(v1) = 1 (i.e., jOUTC(v1)j = 1) and
RightC(v4) is an input-variable.

Without loss of generality, let x4 be the input-variable, such
that, x4 = RightC(v4). By Proposition 3.11 and Proposi-
tion 3.12, jOUTC(x4)j � 2, since jINC(v1)j < n � k (be-
cause INC(v1) = fx1; x2g and n � k � 5). Without loss of
generality, assume that for each gate-node vi 2 OUTC(v4),
we have v4 = LeftC(vi). Then, by Proposition 3.11, for
each vi 2 OUTC(v4), RightC(vi) is not an input-variable
of degree one, since jINC(v4)j < n� k (because INC(v4) =
fx1; x2; x4g and n�k � 5). By Proposition 4.2 x4 is directly
connected to a gate-node v6, such that, v6 62 OUTC(v4). By
Proposition 3.11, no input-variable of degree one is directly
connected to v6, since x4 is directly connected to v6. Recall
that v1,v2,v3,v4 are four di�erent gate-nodes, v6 is di�erent
than v1, because it is connected di�erently.
Let us prove that v6 is di�erent from v2,v3. Assume for the

sake of contradiction that v6 and v2 are the same gate-node.

Recall that x1 = LeftC(v2). Hence, x4 = RightC(v2).
Let �0 be a restriction that maps x2 to BrC(v1) and x4
to BrC(v2). Recall that x2 = RightC(v1). Observe that
in C j�0 all the paths from x1 contain the gate-nodes v1,v2
and by the choice of �0, v1,v2 both compute a constant func-
tion. This is a contradiction to Proposition 3.10, since �0

maps less than n � k input-variables to constants (because
n�k � 5). Thus, v1,v2,v3,v4,v6 are �ve di�erent gate-nodes.
By Proposition 3.12 and Proposition 4.2, jOUTC(v4)j � 1,
since jINC(v1)j < n � k (because INC(v1) = fx1; x2g and
n � k � 5). By the way v1 is connected v1 62 OUTC(v4).
Thus, v1,v4,v6 and the gate-nodes in OUTC(v4) are all dif-
ferent.
Let � be a restriction that maps the input-variable x4 to

BrC(v4). We take C0 to be identical to C j� and modify ac-
cording to Proposition 4.1. That is, we apply the argument
of Proposition 4.1 on v4. Since x4 was mapped to BlC(v4),
v4 is now a constant-node. Therefore, we apply the argu-
ment of Proposition 4.1 on v1,v6 and on each gate-node in
OUTC(v4). That is, we removed at least four gate-nodes
v1,v4,v6 and the gate-nodes in OUTC(v4).
We will now count the number of SD units removed. Re-

call that v1,v4,v6 and the gate-nodes in OUTC(v4) are all
di�erent and that OUTC(v4) is not empty. Hence, we count
their removal as 4 SD units removed if v2 62 OUTC(v4)
or v3 62 OUTC(v4), and as 5 SD units removed if both
v2,v3 are in OUTC(v4) Recall that no input-node of de-
gree one is directly connected to v1,v4. By Proposition 3.11
no input-variable of degree one is directly connected to v6,
since x4 is connected directly to v6. By similar reasoning no
input-variable of degree one is directly connected to v2,v3.
Also by Proposition 3.11, no input-variable of degree one
is directly connected to a gate-node in OUTC(v4),since v4
is connected directly each it gate-node in OUTC(v4) and
jINC(v4)j < n � k (because, INC(v1) = fx1; x2; x4g and
n � k � 5). Thus, the degree of any input-variable did not
change from one, by the applying the argument of Proposi-
tion 4.1. Assume v2 62 OUTC(v4) or v3 62 OUTC(v4). With-
out loss of generality, assume that v2 62 OUTC(v4). Then,
since v1,v2,v3,v4,v6 are �ve di�erent gate-nodes , v2 was not
removed. Therefore, in C' the degree of x1 is one . Hence, we
count this as 0:5 SD unit removed (since th the degeneracy
increased by one). Hence, SD(C) � SD(C0) + 4:5

Case 3.4. DegreeC(v1) = 1 (i.e., jOUTC(v1)j = 1) and
that RightC(v4) is a gate-node.

This is the most complicated case. It requires the analy-
sis of many subcases. Due to space limitation we omit the
analysis.

5. REFERENCES
[1] C.E. Shannon. The synthesis of two-terminal switching

circuits, Bell Systems Tech. J., vol 28, pages 59{98,
1949.

[2] U. Zwick. A 4n lower bound on the combinatorial
complexity of certain symmetric Boolean functions
over the basis of unate dyadic Boolean functions.,
SIAM Journal on Computing, vol 20, pages 499{505,
1991.

408

