# Explicit Lower Bound Of 4.5n-o(n) For Boolean Circuits 

Oded Lachish ${ }^{*}$<br>Department of Computer Science<br>Weizmann Institute<br>Rehovot 76100, ISRAEL<br>odedl@wisdom.weizmann.ac.il

Ran Raz ${ }^{\dagger}$<br>Department of Computer Science<br>Weizmann Institute<br>Rehovot 76100, ISRAEL<br>ranraz@wisdom.weizmann.ac.il


#### Abstract

We prove a lower bound of $4.5 n-o(n)$ for the circuit complexity of an explicit Boolean function (that is, a function constructible in deterministic polynomial time), over the basis $U_{2}$. That is, we obtain a lower bound of $4.5 n-o(n)$ for the number of $\{a n d, o r\}$ gates needed to compute a certain Boolean function, over the basis $\{a n d$, or, not $\}$ (where the not gates are not counted). Our proof is based on a new combinatorial property of Boolean functions, called Strongly-Two-Dependence, a notion that may be interesting in its own right. Our lower bound applies to any Strongly-TwoDependent Boolean function.


## 1. INTRODUCTION

Shannon showed that the circuit complexity of almost all Boolean functions is exponential [1]. Lower bounds for explicit Boolean functions were proved for some restricted models of Boolean circuits (e.g., monotone circuits, constant depth circuits, etc'). For the general (non-restricted) model, however, no super-linear lower bound was obtained.

In this paper, we consider Boolean circuits over the basis $U_{2}$, which is one of the most common basis for Boolean circuits. The basis $U_{2}$ contains all the Boolean functions over two variables, except for the the xor function and its complement. That is, any gate over the basis $U_{2}$ can be replaced by an and gate (or, equivalently, an or gate), with the optional addition of not gates connected directly to the inputs to the gate and to the output of the gate. Hence, any Boolean circuit over $U_{2}$ can be converted into a Boolean circuit over the basis $\{a n d$, or, not $\}$, with the exact same number of gates (when the not gates are not counted). That is, the circuit complexity of a function over $U_{2}$ is equivalent to counting the number of $\{a n d, o r\}$ gates needed to compute the function (when the not gates are ignored).

[^0]Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
STOC'01, July 6-8, 2001, Hersonissos, Crete, Greece.
Copyright 2001 ACM 1-58113-349-9/01/0007 ...\$5.00.

We prove a lower bound of $4.5 n-o(n)$ for the circuit complexity of an explicit Boolean function with $n$ input variables, over the basis $U_{2}$. The best previous lower bound was a bound of $4 n-O(1)$, proved by Zwick [2].

For our proof, we define a new property of Boolean functions, called Strongly-Two-Dependence. A Boolean function is Two-Dependent if for any choice of two input variables, $x_{i}, x_{j}$, and any choice of two different assignments, $\sigma^{\prime}, \sigma^{\prime \prime}$, to $x_{i}, x_{j}$, the partial function obtained by fixing $x_{i}, x_{j}$ to $\sigma^{\prime}$ is different than the partial function obtained by fixing $x_{i}, x_{j}$ to $\sigma^{\prime \prime}$. A Boolean function is Strongly-Two-Dependent if each one of its partial functions, obtained by fixing less than $n-o(n)$ input variables to constants, is Two-Dependent.

Our lower bound is proved for any Strongly-Two-
-Dependent Boolean function. We do not give here an explicit construction of a Strongly-Two-Dependent Boolean function. Nevertheless, we do give a probabilistic construction for such a function $F$, using a small number of random bits (more specifically, we use polylog(n) random bits). Our lower bound hence follows for the function $F$, as a function of both, the original input variables and the additional random bits. (Note that as a function of both, the original input variables and the additional random bits, the function $F$ is deterministic and explicit). As in [2], our main method is the method of partial restrictions. That is, in each step we fix several input variables to constants, and obtain a smaller circuit. We use the Strongly-Two-Dependence property to obtain the better lower bound.

## 2. PRELIMINARIES

### 2.1 Boolean circuits over $U_{2}$

Define the basis $U_{2}$ to be the set of all Boolean functions $f:\{0,1\}^{2} \rightarrow\{0,1\}$ of the sort

$$
f(x, y)=((x \oplus a) \wedge(x \oplus b)) \oplus c
$$

where $a, b, c \in\{0,1\}$. That is, $U_{2}$ is the set of Boolean functions (over two variables) that can be derived from the Boolean function $f(x, y)=x \wedge y$ by optionally applying some of the following: negate $x$, negate $y$, negate the output.

Definition 2.1. (Boolean circuit over $U_{2}$ ): A Boolean circuit over the basis $U_{2}$ is a directed acyclic graph with nodes of in-degree 0 or 2 , such that:

1. Nodes of in-degree 0 are called input-nodes, and each one of them is labeled by a variable from $\left\{x_{1}, \ldots, x_{n}\right\}$ or a constant from $\{0,1\}$. Input-nodes labeled by a constant are called constant-nodes.
2. Nodes of in-degree 2 are called gate-nodes, and each one of them is labeled by a function from $U_{2}$.

A specific subset of nodes are called output-nodes. In this paper, we only deal with Boolean functions $F:\{0,1\}^{n} \rightarrow$ $\{0,1\}$ and hence we assume that our Boolean circuit has only one output-node.

We refer to a Boolean circuit over the basis $U_{2}$ as a Boolean circuit (unless stated otherwise). Let $C$ be a Boolean circuit and let $v$ be a node in $C$. We denote by $\operatorname{OUT}_{C}(v)$ the set of gate-nodes, such that, $v$ is connected directly to each one of them. We denote by $I N_{C}(v)$ the set of input-variables whose corresponding input-nodes are connected by a path to $v$. (If $v$ is an input-node labeled by an input-variable then $\left.I N_{C}(v)=\{v\}\right)$. Given a gate-node $v$ in $C$, we refer to the two nodes that are connected directly to $v$ by $\operatorname{Right}_{C}(v)$ and $L e f t_{C}(v)$.

Let $C$ be a Boolean circuit and let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be the set of input-variables. Given an assignment $\sigma \in\{0,1\}^{n}$ to the variables in $X$, we denote by $C(\sigma)$ the value of the circuit's output on the assignment $x_{i}=\sigma_{i}$ (for every $i$ ). We compute $C(\sigma)$ as follows:

1. Label each input-variable $x_{i}$ (i.e., input-node labeled by $x_{i}$ ) by the constant $\sigma_{i}$.
2. Find a gate-node $v$, such that, $L e f t_{C}(v)$ and $\operatorname{Right}_{C}(v)$ are already labeled by constants $a_{1}, a_{2} \in\{0,1\}$ respectively. Label $v$ by $f\left(a_{1}, a_{2}\right) \in\{0,1\}$, where $f$ is the Boolean function labeling the gate-node $v$.
3. Repeat step 2, until the output-node is labeled by a constant $a \in\{0,1\}$.
The value $C(\sigma)$ is the constant $a$. In the same way, for any node $v$ in the circuit $C$, we denote by $C_{v}(\sigma)$ the value computed by $v$ on the assignment $x_{i}=\sigma_{i}$.

Any Boolean circuit computes a Boolean function $F$ : $\{0,1\}^{n} \rightarrow\{0,1\}$, where $n$ is the number of input-variables. The other direction is also true: any Boolean function can be computed by a Boolean circuit. We say that two Boolean circuits $C_{1}$ and $C_{2}$ are equivalent $\left(C_{1} \equiv C_{2}\right)$ if they both compute the same function.

Note that given a Boolean circuit $C$, if we unite all inputnodes labeled by the same input-variable the circuit $C$ will still compute the same Boolean function. Therefore, we can assume that for every input-variable $x_{i}$, there is only one input-node labeled by $x_{i}$. We will sometimes abuse notations and refer to that node by $x_{i}$. For example, the expression $x_{i}=\operatorname{Left}_{C}(v)$ means: in the Boolean circuit $C$ the input-node labeled by $x_{i}$ is the left hand side input to $v$. In the same way, the expression $O U T_{C}\left(x_{i}\right)$ means the set of gate-nodes in $C$, such that, the input-node labeled by the input-variable $x_{i}$ is directly connected to each one of them.

The size of a circuit $C$ is the number of gate-nodes in it. We denote this number by $\operatorname{Size}(C)$. The circuit complexity of a Boolean function $F:\{0,1\}^{n} \rightarrow\{0,1\}$ is the minimal size of a Boolean circuit that computes $F$. We denote this number by $\operatorname{Size}(F)$. Note that $\operatorname{Size}(F)$ (i.e., the circuit complexity over $U_{2}$ ) counts the number of and,or gates needed to compute $F$ over the base $\{a n d, o r, n o t\}$ (i.e., we work over the standard base $\{a n d$, or, not $\}$ but the not gates are not counted).

The depth of a node $v$ in a Boolean circuit $C$ is the length of the longest path from $v$ to the output-node. We denote
this number by $\operatorname{Depth}_{C}(v)$. The depth of a circuit $C$ is the maximal depth of a node $v$ in the circuit. We denote this number by $\operatorname{Depth}(C)$.

The degree of a node $v$ in a Boolean circuit $C$ is the node's out degree. We denote this number by $\operatorname{Degree}_{C}(v)$. We denote by Degeneracy $(C)$ the number of input-variables that have degree one in $C$. For our lower bound proof, we also need the following measure:

$$
\mathrm{SD}(C)=\operatorname{Size}(C)-0.5 \cdot \text { Degeneracy }(C)
$$

A similar definition was used in [2].

### 2.2 Blocking constants

The basis $U_{2}$ has some properties that are used in our lower bound proof. Recall that every Boolean function $f \in$ $U_{2}$ can be represented as:

$$
f(x, y)=((x \oplus a) \wedge(x \oplus b)) \oplus c
$$

Define $B l(f)$ to be the constant $a$ in this expression. Define $B r(f)$ to be the constant $b$ in this expression. Define $\operatorname{Dm}(f)$ to be the constant $c$ in this expression.

Proposition 2.2. Let $f(x, y)$ be a function in $U_{2}$. Then,

$$
\begin{gathered}
f(B l(f), 0)=f(B l(f), 1)=f(0, B r(f))= \\
=f(1, \operatorname{Br}(f))=\operatorname{Dm}(f)
\end{gathered}
$$

That is, fixing $x$ to $B l(f)$ or $y$ to $B r(f)$ fixes $f(x, y)$ to one specific constant. We call this constant Dm(f).

Proposition 2.3. Let $f(x, y)$ be a function in $U_{2}$. Then,

$$
f(\neg B l(f), 0) \neq f(\neg B l(f), 1)
$$

and

$$
f(0, \neg B r(f)) \neq f(1, \neg B r(f))
$$

That is, fixing $x$ to $\neg B l(f)$ fixes $f(x, y)=y$ or $f(x, y)=\neg y$. Fixing $y$ to $\neg B r(f)$ fixes $f(x, y)=x$ or $f(x, y)=\neg x$.

Let $C$ be a Boolean circuit and let $v$ be a gate-node in $C$. Let $f \in U_{2}$ be the Boolean function labeling $v$ in $C$. Define, $B l_{C}(v)=B l(f), B r_{C}(v)=B r(f)$ and $D m_{C}(v)=D m(f)$.

### 2.3 Restrictions

A restriction $\theta$ is a mapping from a set of $n$ variables to $\{0,1, \star\}$. That is, $\theta \in\{0,1, \star\}^{n}$. Intuitively, a restriction is a partial assignment to the set of input-variables. That is, some input-variables are assigned to a constant from $\{0,1\}$ and all other input-variables remain undetermined. Formally, we apply a restriction $\theta$ to a Boolean function $F:\{0,1\}^{n} \rightarrow\{0,1\}$ in the following way: For any variable $x_{i}$ that is mapped by $\theta$ to a constant $a_{i} \in\{0,1\}$, we assign $a_{i}$ to $x_{i}$. We leave all the other variables untouched. We refer to the restricted Boolean function by $\left.F\right|_{\theta}$. Note that $\left.F\right|_{\theta}$ is a Boolean function of all the untouched variables. We apply a restriction $\theta$ to a Boolean circuit $C$ in the following way: For any input-variable $x_{i}$ that is mapped by $\theta$ to a constant $a_{i} \in\{0,1\}$, we relabel the input-variable $x_{i}$ (i.e., the corresponding input-node) by $a_{i}$. We leave all the other nodes untouched. We refer to the restricted Boolean circuit by $\left.C\right|_{\theta}$. In this paper, when we describe a restriction $\theta$, we will only mention the input-variables that are mapped to constants in $\{0,1\}$. The input-variables that we do not mention are mapped to $\star$.

Let $F:\{0,1\}^{n} \rightarrow\{0,1\}$ be a Boolean function over the set of variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Let $\theta_{1}$ and $\theta_{2}$ be two restrictions, such that, $\theta_{1}$ maps each one of the input-variables in the set $X_{1}$ to $\{0,1\}$ and $\theta_{2}$ maps each one of the inputvariables in the set $X_{2}$ to $\{0,1\}$. We say that the two restrictions $\theta_{1}, \theta_{2}$ are orthogonal if $X_{1} \cap X_{2}=\phi$. The composition of two orthogonal restrictions $\theta_{1}, \theta_{2}$ is well defined. We denote that composition by $\theta_{1} \theta_{2}$. The composition $\theta_{1} \theta_{2}$ maps each one of the input-nodes in $X_{1}$ according to $\theta_{1}$ and maps each one of the input-nodes in $X_{2}$ according to $\theta_{2}$.

Proposition 2.4. Let $F$ be a Boolean function. Let $C$ be a Boolean circuit. Let $\theta_{1}, \theta_{2}$ be two orthogonal restrictions. Then,

$$
\left.\left.\left.\left.\left(\left.F\right|_{\theta_{1}}\right)\right|_{\theta_{2}} \equiv F\right|_{\theta_{1} \theta_{2}} \equiv F\right|_{\theta_{2} \theta_{1}} \equiv\left(\left.F\right|_{\theta_{2}}\right)\right|_{\theta_{1}}
$$

and

$$
\left.\left.\left.\left.\left(\left.C\right|_{\theta_{1}}\right)\right|_{\theta_{2}} \equiv C\right|_{\theta_{1} \theta_{2}} \equiv C\right|_{\theta_{2} \theta_{1}} \equiv\left(\left.C\right|_{\theta_{2}}\right)\right|_{\theta_{1}}
$$

The last proposition can be easily generalized to the case of several orthogonal restrictions.

## 3. STRONGLY TWO DEPENDENCE

### 3.1 Definitions

Definition 3.1. (Two-Dependent Boolean function): Let $F:\{0,1\}^{n} \rightarrow\{0,1\}$ be a Boolean function. We say that $F$ is Two-Dependent if for any two different variables $x_{i}, x_{j}$ and for any four constants $a, a^{\prime}, b, b^{\prime} \in\{0,1\}$, such that, $(a, b) \neq$ $\left(a^{\prime}, b^{\prime}\right)$, the following is satisfied: Let $\theta_{1}$ be a restriction that maps $x_{i}, x_{j}$ to $a, b$ respectively. Let $\theta_{2}$ be a restriction that maps $x_{i}, x_{j}$ to $a^{\prime}, b^{\prime}$ respectively. Then,

$$
\left.F\right|_{\theta_{1}} \neq\left. F\right|_{\theta_{2}}
$$

Definition 3.2. ( $n, k)$-Strongly-Two-Dependent Boolean function): Let $F:\{0,1\}^{n} \rightarrow\{0,1\}$ be a Boolean function. We say that $F$ is $(n, k)$-Strongly-Two-Dependent if for any $k$ different variables $\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}$ and for any restriction $\theta$ that maps $\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}$ to $\star$ and all other variables to constants from $\{0,1\}$, we have that $\left.F\right|_{\theta}$ is Two-Dependent.

Proposition 3.3. Let $F:\{0,1\}^{n} \rightarrow\{0,1\}$ be an $(n, k)$ -Strongly-Two-Dependent Boolean function. Then, for any $n^{\prime}$, such that, $n \geq n^{\prime}>k$, for any set of $n^{\prime}$ different variables $X^{\prime}=\left\{x_{i_{1}}, \ldots, x_{i_{n^{\prime}}}\right\}$ and for any restriction $\theta$ that maps each one of the input-variables in $X^{\prime}$ to $\star$ and maps all other input-variables to $\{0,1\} .\left.F\right|_{\theta}$ is $\left(n^{\prime}, k\right)$-Strongly-Two-Dependent.

Proposition 3.4. Any $(n, k)$-Strongly-Two-Dependent Boolean function is also Two-Dependent.

### 3.2 Construction

We present a construction for an explicit Boolean function $G:\{0,1\}^{n} \rightarrow\{0,1\}$, such that, for some restriction $\phi$ we have that $\left.G\right|_{\phi}$ is $(n, k)$-Strongly-Two-Dependent, where $\tilde{n}=$ $n+k^{2}$ and $k=t \log n$, and $t$ is some big enough constant (say $t>2^{20}$ ). We partition the $\tilde{n}$ input-variables of $G$ into two sets: a set of $n$ "regular" input-variables denoted by $\left(x_{1}, \ldots, x_{n}\right)$, and a set of $k^{2}$ "auxiliary" input-variables. In the analysis of the function, we think of the auxiliary inputvariables as a string of random bits. We consider random
restrictions $\phi$ that map the regular input-variables to $\star$ and the auxiliary input-variables to random constants. We show that with high probability (over the values of the auxiliary input-variables) $\left.G\right|_{\phi}$ is $(n, k)$-Strongly-Two-Dependent. In all that comes bellow, the probability is taken over these random bits. For the sake of simplicity we also assume that $n>2^{8}$. Thus, we also have that $k>2^{23}$.

We define the function $G$ as follows:

1. Use the auxiliary random string to choose $n k-w i s e$ independent vectors $\bar{c}_{1}, \ldots, \bar{c}_{n}$, such that, each $\bar{c}_{i}$ is a vector of $k$ bits.
2. Define

$$
\bar{c}=\bigoplus_{j=1}^{n} x_{j} \cdot \bar{c}_{j} .
$$

That is, $\bar{c}$ is a vector of $k$ bits, which is the bitwise xor of the $n$ vectors $x_{j} \cdot \bar{c}_{j}$.
3. Define

$$
G=M a j[\bar{c}] .
$$

That is, the value of $G$ is one if at least half of the bits in $\bar{c}$ are one.

Lemma 3.5. There exists a restriction $\phi$ over the inputvariables of $G$ that maps the auxiliary variables to $\{0,1\}$, such that, $\left.G\right|_{\phi}$ is ( $n, k$ )-Strongly-Two-Dependent.

### 3.3 Proof of the Lemma

We will first prove that the vectors $\bar{c}_{1}, \ldots, \bar{c}_{n}$ satisfy two specific properties, with high probability over the possible assignments to the auxiliary input-variables. Denote by $W[\bar{v}]$ the Hamming weight of a vector $\bar{v}$ (i.e., $W[\bar{v}]$ is the number of ones in $\bar{v}$ ).

Proposition 3.6. With probability of at least $1-\frac{1}{n}$ the following is satisfied: For every $1 \leq i<j \leq n$ and every four constants $a, a^{\prime}, b, b^{\prime} \in\{0,1\}$, such that, $(a, b) \neq\left(a^{\prime}, b^{\prime}\right)$,

$$
W\left[\left(a \cdot \bar{c}_{i}\right) \oplus\left(b \cdot \bar{c}_{j}\right) \oplus\left(a^{\prime} \cdot \bar{c}_{i}\right) \oplus\left(b^{\prime} \cdot \bar{c}_{j}\right)\right]>\frac{1}{8} k .
$$

Proof. Observe that the value of $\left(a \cdot \bar{c}_{i}\right) \oplus\left(b \cdot \bar{c}_{j}\right) \oplus\left(a^{\prime}\right.$. $\left.\bar{c}_{i}\right) \oplus\left(b^{\prime} \cdot \bar{c}_{j}\right)$ is equal to one of the following: $\bar{c}_{i}, \bar{c}_{j}, \bar{c}_{i} \bigoplus \bar{c}_{j}$.

For each $i$, the probability that $W\left[\bar{c}_{i}\right] \leq \frac{1}{8} k$ is at most $n^{-10}$ (by the standard Chernoff bound). Since for $i \neq j$ the vectors $\overline{c_{i}}, \overline{c_{j}}$ are independent (as random variables), the probability that $W\left[\bar{c}_{i} \oplus \bar{c}_{j}\right] \leq \frac{1}{8} k$ is also at most $n^{-10}$.

There are $n$ different possible values for $i$ and $n(n-1) / 2$ different possible values for $i, j$. Therefore, the probability that for every $i$ we have $W\left[\bar{c}_{i}\right]>\frac{1}{8} k$ and for every $i \neq j$ we have $W\left[\bar{c}_{i} \oplus \bar{c}_{j}\right]>\frac{1}{8} k$ is larger than $1-\frac{1}{n}$.

Proposition 3.7. With probability of at least $1-\frac{1}{n}$ the following is satisfied: for every set of $k$ different indices $i_{1}, \ldots, i_{k}$, the vectors $\bar{c}_{i_{1}}, \ldots, \bar{c}_{i_{k}}$ span a linear space of dimension at least $\left(1-\frac{1}{256}\right) k$.

Proof. Denote $k^{\prime}=\left(1-\frac{1}{256}\right) k$. For the sake of simplicity we assume that $k^{\prime}$ is an integer.

The property is not satisfied only if there exists a set $S$ of vectors $\left\{\bar{c}_{i_{1}}, \ldots, \bar{c}_{i_{k}}\right\}$ and a subset $S^{\prime} \subset S$ of size $k^{\prime}$, such that, the vectors in $S^{\prime}$ span all the vectors in $S$. Recall that the vectors $\bar{c}_{i_{1}}, \ldots, \bar{c}_{i_{k}}$ are independent as random variables. Thus, the probability that all the $k-k^{\prime}$ vectors in $S \backslash S^{\prime}$ are spanned by $S^{\prime}$ is at most

$$
\left(\frac{2^{k^{\prime}}}{2^{k}}\right)^{k-k^{\prime}}=2^{-2^{-16} k^{2}}
$$

(since the dimension of the linear space spanned by the vectors in $S^{\prime}$ is at most $k^{\prime}$, and the length of the vectors is $k$ ). The number of possibilities for choosing $S, S^{\prime}$ is

$$
\binom{n}{k} \cdot\binom{k}{k^{\prime}}
$$

which is less than $n^{2 k}$. Hence, by the union bound, the probability that there exist such $S, S^{\prime}$ is smaller than $\frac{1}{n}$ (since $\left.k>2^{20}\right)$.

We are now ready to prove Lemma 3.5.
Proof. By Proposition 3.6, Proposition 3.7, and the union bound, we have that with probability of at least $1-\frac{2}{n}$ :

1. For every $1 \leq i<j \leq n$ and every four constants $a, a^{\prime}, b, b^{\prime} \in\{0,1\}$, such that, $(a, b) \neq\left(a^{\prime}, b^{\prime}\right)$,

$$
W\left[\left(a \cdot \bar{c}_{i}\right) \oplus\left(b \cdot \bar{c}_{j}\right) \oplus\left(a^{\prime} \cdot \bar{c}_{i}\right) \oplus\left(b^{\prime} \cdot \bar{c}_{j}\right)\right]>\frac{1}{8} k
$$

2. For every set of $k$ different indices $i_{1}, \ldots, i_{k}$, the vectors $\bar{c}_{i_{1}}, \ldots, \bar{c}_{i_{k}}$ span a linear space of dimension at least $\left(1-\frac{1}{256}\right) k$.

Hence, there exists a restriction $\phi$, such that these two properties are satisfied. We will now show that $\left.G\right|_{\phi}$ is $(n, k)$ -Strongly-Two-Dependent.

Let $\theta$ be a restriction which is the composition of $\phi$ and a restriction that maps the $k$ variables $\left\{x_{1}, \ldots, x_{k}\right\}$ to $\star$ and all other variables to the constants $h_{k+1}, \ldots, h_{n} \in\{0,1\}$. Let $\theta_{1}$ be a restriction which is the composition of $\theta$ and a restriction that maps the variables $\left\{x_{1}, x_{2}\right\}$ to the constants $h_{1}^{1}, h_{2}^{1} \in\{0,1\}$. Let $\theta_{2}$ be a restriction which is the composition of $\theta$ and a restriction that maps the variables $\left\{x_{1}, x_{2}\right\}$ to the constants $h_{1}^{2}, h_{2}^{2} \in\{0,1\}$, such that, $\left(h_{1}^{1}, h_{2}^{1}\right) \neq\left(h_{1}^{2}, h_{2}^{2}\right)$. We will prove that

$$
\left.G\right|_{\theta_{1}}\left(x_{3}, \ldots, x_{k}\right) \neq\left. G\right|_{\theta_{2}}\left(x_{3}, \ldots, x_{k}\right)
$$

(the proof for arbitrary $k$ variables $x_{i_{1}}, \ldots, x_{i_{k}}$ is done in the same way).

Let $\bar{m}_{1}, \bar{m}_{2}$ be the two vectors defined as follows:

$$
\begin{aligned}
& \bar{m}_{1}=\left(\bigoplus_{r=k+1}^{n} h_{r} \cdot \bar{c}_{r}\right) \oplus\left(h_{1}^{1} \cdot \overline{c_{1}}\right) \oplus\left(h_{2}^{1} \cdot \overline{c_{2}}\right) . \\
& \bar{m}_{2}=\left(\bigoplus_{r=k+1}^{n} h_{r} \cdot \bar{c}_{r}\right) \oplus\left(h_{1}^{2} \cdot \overline{c_{1}}\right) \oplus\left(h_{2}^{2} \cdot \overline{c_{2}}\right) .
\end{aligned}
$$

Let $\bar{D}:\{0,1\}^{k-2} \rightarrow\{0,1\}^{k}$ be the function defined over $\left\{x_{3}, \ldots, x_{k}\right\}$ as follows:

$$
\bar{D}\left(x_{3}, \ldots, x_{k}\right)=\bigoplus_{r=3}^{k} x_{r} \cdot \bar{c}_{r}
$$

Thus, we have

$$
\begin{aligned}
\left.G\right|_{\theta_{1}}\left(x_{3}, \ldots, x_{k}\right) & =\operatorname{Maj}\left[\bar{m}_{1} \oplus \bar{D}\left(x_{3}, \ldots, x_{k}\right)\right] \\
\left.G\right|_{\theta_{2}}\left(x_{3}, \ldots, x_{k}\right) & =\operatorname{Maj}\left[\bar{m}_{2} \oplus \bar{D}\left(x_{3}, \ldots, x_{k}\right)\right]
\end{aligned}
$$

By the choice of $\phi$ and since $\left(h_{1}^{1}, h_{2}^{1}\right) \neq\left(h_{1}^{2}, h_{2}^{2}\right)$, we have

$$
W\left[\bar{m}_{1} \oplus \bar{m}_{2}\right]>\frac{1}{8} k
$$

and the vectors $\bar{c}_{3}, \ldots, \bar{c}_{k}$ span a linear space of dimension at least $\left(1-\frac{1}{256}\right) k-2$. Thus, there is some specific set of $\left(1-\frac{1}{256}\right) k-2$ coordinates of the vector $\bar{D}\left(x_{3}, \ldots, x_{k}\right)$, such that, the values of these $\left(1-\frac{1}{256}\right) k-2$ bits can be determined to anything we want (by choosing appropriate values for $x_{3}, \ldots, x_{k}$ ).

We denote the set of indices of these bits by $J$. We choose an assignment of constants $h_{3}, \ldots, h_{k} \in\{0,1\}$ to $x_{3}, \ldots, x_{k}$, such that, the following two properties are satisfied:

1. For every index $j \in J$, such that, $\bar{m}_{1}^{j} \neq \bar{m}_{2}^{j}$ (where $\bar{m}_{1}^{j}$ is the $j^{\text {th }}$ bit of $\bar{m}_{1}$ and $\bar{m}_{2}^{j}$ is the $j^{\text {th }}$ bit of $\bar{m}_{2}$ ) the bit $\bar{D}^{j}\left(h_{3}, \ldots, h_{k}\right)$ satisfies $\bar{D}^{j}\left(h_{3}, \ldots, h_{k}\right) \oplus \bar{m}_{1}^{j}=0$ and $\bar{D}^{j}\left(h_{3}, \ldots, h_{k}\right) \oplus \bar{m}_{2}^{j}=1\left(\right.$ where $\bar{D}^{j}\left(h_{3}, \ldots, h_{k}\right)$ is the $j^{\text {th }}$ bit of $\left.\bar{D}\left(h_{3}, \ldots, h_{k}\right)\right)$.
2. For the indices $j \in J$, such that, $\bar{m}_{1}^{j}=\bar{m}_{2}^{j}$, we choose values, such that,

$$
\sum_{j \in J}\left(\bar{D}^{j}\left(h_{3}, \ldots, h_{k}\right) \oplus \bar{m}_{1}^{j}\right)=\frac{7}{16} k .
$$

Hence,
$\frac{7}{16} k<\sum_{j=1}^{k}\left(\bar{D}^{j}\left(h_{3}, \ldots, h_{k}\right) \oplus \bar{m}_{1}^{j}\right) \leq \frac{7}{16} k+\frac{1}{256} k+2<\frac{1}{2} k$.
Thus,

$$
\left.G\right|_{\theta_{1}}\left(h_{3}, \ldots, h_{k}\right)=0
$$

On the other hand,

$$
\begin{gathered}
\sum_{j=1}^{k}\left(\bar{D}^{j}\left(h_{3}, \ldots, h_{k}\right) \oplus \bar{m}_{2}^{j}\right)-\sum_{j=1}^{k}\left(\bar{D}^{j}\left(h_{3}, \ldots, h_{k}\right) \oplus \bar{m}_{1}^{j}\right) \geq \\
\geq \frac{1}{8} k-2\left(\frac{1}{256} k+2\right)
\end{gathered}
$$

Hence,

$$
\sum_{j=1}^{k}\left(\bar{D}^{j}\left(h_{3}, \ldots, h_{k}\right) \oplus \bar{m}_{2}^{j}\right) \geq \frac{9}{16} k-2\left(\frac{1}{256} k+2\right)>\frac{1}{2} k
$$

Thus,

$$
\left.G\right|_{\theta_{2}}\left(h_{3}, \ldots, h_{k}\right)=1
$$

### 3.4 Some easy propositions

The following lemma is the motivation behind the definitions of Two-Dependent and ( $n, k$ )-Strongly-Two-Dependent.

Lemma 3.8. Let $F:\{0,1\}^{n} \rightarrow\{0,1\}$ be a Two-Dependent Boolean function over the set of variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Let $C$ be a Boolean circuit that computes $F$. Then, the following is never satisfied in $C$ : There exist two inputvariables $x_{i}, x_{j}$, such that, $\operatorname{OUT}_{C}\left(x_{i}\right)=\operatorname{OUT}_{C}\left(x_{j}\right)$ and $\left|\operatorname{OUT}_{C}\left(x_{i}\right)\right|=\left|\operatorname{OUT}_{C}\left(x_{j}\right)\right|=2$ (i.e., $x_{i}, x_{j}$ are connected directly to the same two gate-nodes).

Proof. Without loss of generality, assume that $i=1$ and $j=2$. Let $v_{1}, v_{2}$ be the two different gate-nodes, such that, $\operatorname{OUT}_{C}\left(x_{1}\right)=\operatorname{OUT}_{C}\left(x_{2}\right)=\left\{v_{1}, v_{2}\right\}$. Without loss of generality, assume that $x_{1}=\operatorname{Left} t_{C}\left(v_{1}\right), x_{1}=\operatorname{Left} t_{C}\left(v_{2}\right)$, $x_{2}=\operatorname{Right}_{C}\left(v_{1}\right), x_{2}=\operatorname{Right}_{C}\left(v_{2}\right)$.

Let us partition the possibilities for values of $B l_{C}\left(v_{1}\right)$, $B l_{C}\left(v_{2}\right), B r_{C}\left(v_{1}\right), B r_{C}\left(v_{2}\right)$ into the following cases:

1. $B l_{C}\left(v_{1}\right)=B l_{C}\left(v_{2}\right)$ or $B r_{C}\left(v_{1}\right)=B r_{C}\left(v_{2}\right)$
2. $B l_{C}\left(v_{1}\right) \neq B l_{C}\left(v_{2}\right)$ and $B r_{C}\left(v_{1}\right) \neq B r_{C}\left(v_{2}\right)$

Let us analyze separately each one of these cases:
Assume that either $B l_{C}\left(v_{1}\right)=B l_{C}\left(v_{2}\right)$ or $B r_{C}\left(v_{1}\right)=$ $B r_{C}\left(v_{2}\right)$. Without loss of generality, assume that $B l_{C}\left(v_{1}\right)=$ $B l_{C}\left(v_{2}\right)$. Let $\theta_{1}, \theta_{2}$ be two restrictions, such that, $\theta_{1}$ maps $x_{1}$ to $B l_{C}\left(v_{1}\right)$ and $x_{2}$ to 0 , and $\theta_{2}$ maps $x_{1}$ to $B l_{C}\left(v_{1}\right)$ and $x_{2}$ to 1 . In $\left.C\right|_{\theta_{1}}$ and in $\left.C\right|_{\theta_{2}}$ the gate-nodes $v_{1}, v_{2}$ compute the same constant functions $D m_{C}\left(v_{1}\right), D m_{C}\left(v_{2}\right)$, respectively. Hence, $\left.\left.C\right|_{\theta_{1}} \equiv C\right|_{\theta_{2}}$. Thus, $\left.F\right|_{\theta_{1}}=\left.F\right|_{\theta_{2}}$ in contradiction to the fact that $F$ is Two-Dependent.

Assume that $B l_{C}\left(v_{1}\right) \neq B l_{C}\left(v_{2}\right)$ and $B r_{C}\left(v_{1}\right) \neq B r_{C}\left(v_{2}\right)$. Let $\theta_{3}, \theta_{4}$ be two restrictions, such that, $\theta_{3}$ maps $x_{1}$ to $B l_{C}\left(v_{1}\right)$ and $x_{2}$ to $B r_{C}\left(v_{2}\right)$, and $\theta_{4}$ maps $x_{1}$ to $B l_{C}\left(v_{2}\right)$ and $x_{2}$ to $B r_{C}\left(v_{1}\right)$. In $\left.C\right|_{\theta_{3}}$ and in $\left.C\right|_{\theta_{4}}$ the gate-nodes $v_{1}, v_{2}$ compute the same constant functions $D m_{C}\left(v_{1}\right), D m_{C}\left(v_{2}\right)$, respectively. Hence, $\left.\left.C\right|_{\theta_{3}} \equiv C\right|_{\theta_{4}}$. Thus, $\left.F\right|_{\theta_{3}}=\left.F\right|_{\theta_{4}}$ in contradiction to the fact that $F$ is Two-Dependent.

Proposition 3.9. Let $F:\{0,1\}^{n} \rightarrow\{0,1\}$ be a TwoDependent Boolean function over the set of variables $X=$ $\left\{x_{1}, \ldots, x_{n}\right\}$. Let $C$ be a Boolean circuit that computes $F$, and let $v$ be the output-node of $C$. Then, $I N_{C}(v)$ contains all the input-variables in $X$.

Proposition 3.10. Let $F:\{0,1\}^{n} \rightarrow\{0,1\}$ be an $(n, k)$ -Strongly-Two-Dependent Boolean function over the set of variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Let $C$ be a Boolean circuit that computes $F$. Then, the following is never satisfied in $C$ : There exists an input-variable $x_{i}$, and a set of less than $n-k$ other input-variables $X^{\prime}$ and a restriction $\theta$ that maps each input-variable in $X^{\prime}$ to a constant in $\{0,1\}$, such that, in $\left.C\right|_{\theta}$ every path that connects $x_{i}$ to the output-node contains a gate-node that computes a constant function.

Proposition 3.11. Let $F:\{0,1\}^{n} \rightarrow\{0,1\}$ be an $(n, k)$ -Strongly-Two-Dependent Boolean function and let $C$ be a Boolean circuit that computes $F$. Let $v$ be a gate-node in $C$ and let $v^{\prime}$ be the node, such that, $v^{\prime}=\operatorname{Right}_{C}(v)$. Assume that $\operatorname{Left}_{C}(v)$ is an input-variable $x_{i}$, such that,
$\operatorname{Degree}_{C}\left(x_{i}\right)=1$. Then, one of the following is satisfied:

1. The node $v^{\prime}$ computes the constant function $\neg B r_{C}(v)$. (That is, $C_{v^{\prime}}(\sigma)=\neg B r_{C}(v)$, for any assignment $\sigma \in$ $\left.\{0,1\}^{n}\right)$.
2. The node $v^{\prime}$ computes a non constant function, and $\left|I N_{C}(v)\right| \geq n-k$.

Proof. In the first case all the paths between $x_{i}$ and the output-node contain a gate-node that computes a constant Boolean function. That is a contradiction to Proposition 3.10. In the second case there exists a restriction $\theta$ that maps the input-variables in $\left|I N_{C}(v)\right|$ to constants, such that, $v^{\prime}$ computes the constant function $\neg B r_{C}(v)$, since the node $v^{\prime}$ computes a non constant function. By Proposition 3.3, $\left.F\right|_{\theta}$ is $\left(n-\left|I N_{C}(v)\right|, k\right)$ Strongly-Two-Dependent, since $\left|I N_{C}(v)\right| \geq n-k$. This is a contradiction to the first case.

Proposition 3.12. Let $F:\{0,1\}^{n} \rightarrow\{0,1\}$ be an $(n, k)$ -Strongly-Two-Dependent Boolean function and let $C$ be a Boolean circuit that computes $F$. Denote by $v$ the outputnode of $C$ and let $v^{\prime}=\operatorname{Right}_{C}(v)$. Assume that $v^{\prime}$ does not compute a constant function. Then, $I N_{C}\left(v^{\prime}\right) \geq n-k$.

In the same way, assume that $\operatorname{Left}_{C}(v)$ does not compute $a$ constant function. Then, $I N_{C}\left(\operatorname{Left}_{C}(v)\right) \geq n-k$.

Proof. Assume for the sake of contradiction that $I N_{C}\left(v^{\prime}\right)<n-k$. Let $n^{\prime}=\left|I N_{C}\left(v^{\prime}\right)\right|$. Without loss of generality, assume that $I N_{C}\left(v^{\prime}\right)=\left\{x_{1}, \ldots, x_{n^{\prime}}\right\}$. Then, $v^{\prime}$ is a node that computes a non constant Boolean function $F^{\prime}$ : $\{0,1\}^{n^{\prime}} \rightarrow\{0,1\}$ over the the set $\left\{x_{1}, \ldots, x_{n^{\prime}}\right\}$. Therefore, there exists an assignment $\sigma \in\{0,1\}^{n^{\prime}}$, such that, $F^{\prime}(\sigma)=$ $B r_{C}(v)$. Let $\theta$ be a restriction that maps each input-variable $x_{j} \in\left\{x_{1}, \ldots, x_{n^{\prime}}\right\}$ to $\sigma_{j}$. Then, in $\left.C\right|_{\theta}$ the node $v$ computes a constant function, since $v^{\prime}$ computes the constant function $B r_{C}(v)$. This is a contradiction to Definition 3.2, since by Proposition 3.3, $\left.F\right|_{\theta}$ is $\left(n-n^{\prime}, \boldsymbol{k}\right)$-Strongly-Two-Dependent (because $n^{\prime}<n-k$ ).

## 4. THE LOWER BOUND

### 4.1 Circuit manipulation propositions

The following proposition supplies the method of removing degenerate gate-nodes (1.e., gate-nodes that do not contribute to the computation process of the Boolean circuit) from a Boolean circuit. It is widely used in the lower bound proof.

Proposition 4.1. Let $C$ be a Boolean circuit. Assume that $C$ contains one of the following degenerate cases:

1. A gate-node $v$, such that, for some constant $a \in\{0,1\}$ and any assignment $\sigma$, we have $C_{v}(\sigma)=a$ (that is, the function computed by the node $v$ is a constant function).
2. A gate-node $v$, such that, a constant-node is connected directly to $v$ and $v$ computes a non constant Boolean function.
3. A non output gate-node $v$, such that, $\operatorname{Degree}_{C}(v)=0$.
4. A gate-node $v$, such that, $\operatorname{Left}_{C}(v)=\operatorname{Right}_{C}(v)$.

Then, there exists a Boolean circuit $C \equiv C^{\prime}$, such that,

$$
\operatorname{Size}(C) \geq \operatorname{Size}\left(C^{\prime}\right)+1
$$

Proof. The proof is trivial. Nevertheless, we will present it here, since the exact argument will be important for the rest of the paper. Let $C, v$ be as above. Let $f \in U_{2}$ be the Boolean function labeling $v$. Take $C^{\prime}$ to be identical to $C$ and modify it as follows:

1. If for some constant $a \in\{0,1\}$ and any assignment $\sigma$, we have $C_{v}(\sigma)=a$ then relabel $v$ by $a$ and remove the two edges connected to $v$. That is, $v$ is modified to be a constant-node.
2. Assume that a constant-node is connected directly to $v$ and $v$ computes a non constant Boolean function. Without loss of generality, assume that $\operatorname{Left}_{C}(v)$ is a constant-node labeled by 1 and that $v$ is labeled by a Boolean function $f \in U_{2}$, such that, either $f(1, y)=y$ or $f(1, y)=\neg y$. Then, remove $v$ and the edges connected to it. Instead, connect the node $\operatorname{Right}_{C^{\prime}}(v)$ directly to each one of the nodes in $O U T_{C^{\prime}}(v)$. If $f(1, y)=\neg y$ we also have to relabel each one of the gate-nodes $u \in O U T_{C^{\prime}}(v)$ as follows: Let $g \in U_{2}$ be the Boolean function labeling $u$ in $C$. If $v=\operatorname{Left}_{C}(u)$ relabel $u$ in $C^{\prime}$ by the Boolean function $g^{\prime} \in U_{2}$, such that, $g^{\prime}(x, y)=g(\neg x, y)$. If $v=\operatorname{Right}_{C}(u)$ relabel $u$ in $C^{\prime}$ by the Boolean function $g^{\prime \prime} \in U_{2}$, such that, $g^{\prime \prime}(x, y)=g(x, \neg y)$.
3. If $v$ is a non-output gate-node, such that,
$\operatorname{Degree}_{C}(v)=0$. Then, remove $v$ and the two edges connected to it.
4. If $v$ is a gate-node labeled by a Boolean function $f \in$ $U_{2}$, such that, $\operatorname{Left}_{C}(v)=\operatorname{Right}_{C}(v)$ and $f(x, x)=x$. Then, connect the node $\operatorname{Right}_{C^{\prime}}(v)$ directly to each one of the nodes in $\operatorname{OUT}_{C^{\prime}}(v)$. Remove $v$ and the edges connected to it.
5. If $v$ is a gate-node labeled by a Boolean function $f \in$ $U_{2}$, such that, $\operatorname{Left}_{C}(v)=\operatorname{Right}_{C}(v)$ and $f(x, x)=$ $\neg x$. Then, connect $\operatorname{Right}_{C^{\prime}}(v)$ directly to each one of the nodes in $O U T_{C^{\prime}}(v)$. Relabel each one of the gatenodes $u \in O U T_{C^{\prime}}(v)$ as follows: Let $g \in U_{2}$ be the Boolean function labeling $u$ in $C$. If $v=\operatorname{Left}_{C}(u)$ relabel $u$ in $C^{\prime}$ by the Boolean function $g^{\prime} \in U_{2}$, such that, $g^{\prime}(x, y)=g(\neg x, y)$. If $v=\operatorname{Right}_{C}(u)$ relabel $u$ in $C^{\prime}$ by the Boolean function $g^{\prime \prime} \in U_{2}$, such that, $g^{\prime \prime}(x, y)=g(x, \neg y)$.

Note that a gate-node is removed if it was physically removed from the Boolean circuit or if it was modified into a constant-nodes. Therefore, in all the cases we have removed one gate-node.

The following proposition is designed to remove as many degenerate cases as possible from a Boolean circuit that computes an ( $n, k$ )-Strongly-Two-Dependent Boolean function. We use it before we apply the random restriction technique in order to avoid dealing with the mentioned degenerate cases.

Proposition 4.2. Let $F:\{0,1\}^{n} \rightarrow\{0,1\}$ be an $(n, k)$ -Strongly-Two-Dependent Boolean function and let $C$ be a Boolean circuit that computes $F$. Then, there exists a Boolean circuit $C^{\prime} \equiv C$, such that, $\mathrm{SD}(C) \geq \mathrm{SD}\left(C^{\prime}\right)$ and Degeneracy $\left(C^{\prime}\right) \leq k$ and $C^{\prime}$ does not contain any of the following degenerate cases:

1. Any of the degenerate cases of Proposition 4.1.
2. An input-variable $x_{i}$ of degree greater than one, such that, $\left|O U T_{C^{\prime}}\left(x_{i}\right)\right| \geq 2$ and one of the gate-nodes in $O U T_{C^{\prime}}\left(x_{i}\right)$ is directly connected to a different gatenode in OUT $_{C^{\prime}}\left(x_{i}\right)$.

Proof. Let $C, x_{i}$ be as in case 2. Without loss of generality, assume that $i=1$. Let $v_{1}, v_{2}$ be two different gate-nodes, such that, $v_{1}, v_{2} \in O U T_{C}\left(x_{1}\right)$ and $v_{1}$ is directly connected to $v_{2}$. Without loss of generality, assume that $v_{1}=\operatorname{Left} t_{C}\left(v_{2}\right)$, $x_{1}=\operatorname{Right}_{C}\left(v_{2}\right)$ and $x_{1}=\operatorname{Left}_{C}\left(v_{1}\right)$. Denote by $A$ the function computed by $\operatorname{Right}_{C}\left(v_{1}\right)$. Note that the function computed by $v_{2}$ depends only on the values of $x_{1}$ and $A$. Denote by $\hat{f}\left(x_{1}, A\right)$ the function computed by $v_{2}$ (over $x_{1}$ and $A)$. We can easily prove that $\hat{f} \in U_{2}$ by simply checking all the possible cases. For example, assume that both $v_{1}$ and $v_{2}$ are labeled by $\hat{f}(x, y)=x \wedge y$. Then, the function computed by $v_{2}$ over $x_{1}, A$ is $\hat{f}\left(x_{1}, A\right)=\left(x_{1} \wedge A\right) \wedge x_{1}=x_{1} \wedge A$.

We will take $C^{\prime}$ to be identical to $C$ except for the following modifications: Remove the edge between $v_{1}$ and $v_{2}$. Instead, connect $\operatorname{Right}_{C^{\prime}}\left(v_{1}\right)$ directly to $v_{2}$ and relabel $v_{2}$ by $\hat{f}$. By Proposition 3.11, $\operatorname{Right}_{C^{\prime}}\left(v_{1}\right)$ cannot be an inputvariable of degree one. Since no other input-variable of degree one was possibly effected, $\mathrm{SD}(C) \geq \mathrm{SD}\left(C^{\prime}\right)$.

We now apply the argument of Proposition 4.1. Observe that by Proposition 4.1, we removed one gate-node $v$ from the circuit $C^{\prime}$. This can only effect the degrees of $\operatorname{Left} t_{C^{\prime}}(v)$ and $\operatorname{Right}_{C^{\prime}}(v)$, and may decrease the degeneracy of the circuit by at most two. Hence, the SD measure is not increased. We apply the described process iteratively until we exhaust all mentioned cases.

We will now show that Degeneracy $\left(C^{\prime}\right) \leq k$. Assume for the sake of contradiction that Degeneracy $\left(C^{\prime}\right)>k$. Let $k^{\prime}=$ Degeneracy $\left(C^{\prime}\right)$. Without loss of generality, let $X^{\prime}=$ $\left\{x_{1}, \ldots, x_{k^{\prime}}\right\}$ be the set of input-variables of degree one in $C^{\prime}$. Let $x_{j} \in X^{\prime}$ be an input-variable, such that, for every $x_{i} \in X^{\prime}$

$$
\operatorname{Depth}_{C^{\prime}}\left(x_{j}\right) \geq \operatorname{Depth}_{C^{\prime}}\left(x_{i}\right)
$$

Let $v$ be the gate-node, such that, $x_{j}$ is directly connected to $v$. Without loss of generality, assume that $x_{j}=\operatorname{Left}{C^{\prime}}(v)$. Note that according to the definition of Depth, no other input-variable in $X^{\prime}$ is connected by an indirect path to $v$. By Proposition 3.11, no input-variable is directly connected to $v$. Hence, $\operatorname{Right}_{C^{\prime}}(v)$ is a gate-node that computes a Boolean function $F^{\prime}:\{0,1\}^{n-k^{\prime}} \rightarrow\{0,1\}$ over the set of input-variables $X \backslash X^{\prime}$. Since we exhausted all the above mentioned cases, $F^{\prime}$ is not a constant function. This contradicts Proposition 3.11.

### 4.2 The Lower Bound

Our lower bound proof is based on the gate elimination technique. For any Boolean circuit $C$ that computes an ( $n, k$ )-Strongly-Two-Dependent Boolean function
$F:\{0,1\}^{n} \rightarrow\{0,1\}$ (for certain values of the parameters $n, k$ ), we use the properties of $F$ to prove: There exists a specific restriction $\theta$, such that, by using the argument of Proposition 4.1, we can remove specific gate-nodes from $\left.C\right|_{\theta}$. We will actually work with the SD measure of the circuit (rather than the Size measure). We will show that the SD measure is decreased when we apply the restriction $\theta$. The following Lemma captures this idea and is the major building block in our lower bound proof.

Lemma 4.3. Let $F:\{0,1\}^{n} \rightarrow\{0,1\}$ be an $(n, k)$-Strongly-Two-Dependent Boolean function and assume that $n-k \geq 5$. Let $C$ be a Boolean circuit that computes $F$. Then, there exists a set of one or two input-variables $X^{\prime}$ (i.e., $\left|X^{\prime}\right| \leq 2$ ), and there exists a constant $c_{i} \in\{0,1\}$ for each $x_{i} \in X^{\prime}$, such that, for the restriction $\theta$ that maps each variable $x_{i} \in X^{\prime}$ to $c_{i}$, the following is satisfied: There exists a Boolean circuit $\left.C^{\prime} \equiv C\right|_{\theta}$, such that,

$$
\mathrm{SD}(C) \geq \mathrm{SD}\left(C^{\prime}\right)+4.5 \cdot\left|X^{\prime}\right|
$$

Before proving Lemma 4.3, let us show how it is used to prove our lower bound.

Lemma 4.4. Let $F:\{0,1\}^{n} \rightarrow\{0,1\}$ be an $(n, k)$-Strongly-Two-Dependent Boolean function, such that, $k=o(n)$. Then,

$$
\operatorname{Size}(F) \geq 4.5 \cdot n-o(n) .
$$

Proof. Let $C$ be a Boolean circuit that computes $F$. We generate a sequence of Boolean circuit $C_{0}, \ldots, C_{l}$ by iteratively applying Lemma 4.3 to $C$. (Note that this is possible by Proposition 3.3). More formally, we have $C_{0}=C$ and $C_{i+1}$ is obtained from $C_{i}$ by applying Lemma 4.3. We stop when the number of input-variables remaining is smaller than $k+5$. By Lemma 4.3,

$$
\mathrm{SD}(C) \geq \mathrm{SD}\left(C_{l}\right)+4.5 \cdot n-o(n)
$$

By Proposition 4.2, we can assume that $\operatorname{Degeneracy}(C) \leq k$. Therefore,

$$
\text { Size }(C) \geq 4.5 \cdot n-o(n) .
$$

Recall that in Lemma 3.5, we proved that for the Boolean function $G:\{0,1\}^{\tilde{n}} \rightarrow\{0,1\}$ (defined in Section 3), there exists a restriction $\varphi$, such that, $\left.G\right|_{\varphi}$ is $(n, k)$-Strongly-TwoDependent where $\tilde{n}=n+O\left((\log n)^{2}\right)$ and $k=O(\log n)$.
$\operatorname{Corollary}$ 4.5. $\operatorname{Size}(G) \geq 4.5 \cdot n-o(n)=4.5 \cdot \tilde{n}-o(\tilde{n})$.

### 4.3 Proof of Lemma 4.3

The proof of Lemma 4.3 is quite long, since it requires analysis of many different cases (and sub-cases). Nevertheless, the proof for each one of the different cases will be quite similar. More specifically, we partition the different possibilities for connections in the circuit into cases. In each case, we map one or two input-variables to constants in $\{0,1\}$. We then use the argument of Proposition 4.1 to remove some specific gate-nodes from the circuit.

We then calculate the difference in the SD measure between the original circuit and the modified restricted circuit. We call this difference: the number of SD units removed. The number of SD units removed is the number of
gate-nodes removed minus half the change in the degeneracy measure. We will show in each of the different cases that the number of SD units removed is at least 4.5 times the number of input-variables mapped to a constant. The degeneracy measure might have changed in the following cases: (1) if an input-variable of degree one was mapped to a constant, (2) if the degree of an input-variable was changed from one,
(3) if the degree of an input-variable was changed to one. More specifically, when applying Proposition 4.1 we count the change in the SD measure as follows:

1. Let $v$ be a gate-node that was removed. We count $v$ as one SD unit that was removed.
2. If we know that the degree of an input-variable $x_{i}$ was changed from a number greater than one to one, we count it as 0.5 SD unit that was removed (since the degeneracy of the circuit was increased by one).
3. If the degree of an input-variable $x_{i}$ was possibly changed from a number greater than one to one, we count it as -0.5 SD unit that was removed (i.e., 0.5 SD unit that was added ), (since the degeneracy of the circuit might have decreased by one).
4. If we mapped to a constant an input-variable $x_{i}$, whose degree was possibly one, we count it as -0.5 SD unit that was remove (since the degeneracy of the circuit might have decreased by one).

We only count the change in the SD measure caused by the application of Proposition 4.1. Note that the circuit obtained may contain some of the degenerate cases of Proposition 4.2. Nevertheless, Proposition 4.2 removes all such cases without increasing the SD measure.

We are now ready to prove Lemma 4.3.
Proof. Let $F:\{0,1\}^{n} \rightarrow\{0,1\}$ be an $(n, k)$-Strongly-Two-Dependent Boolean function and assume that $n-k \geq$ 5. Let $C$ be a Boolean circuit that computes $F$. By Proposition 4.2, let us assume that $C$ does not contain any of the degenerate cases of Proposition 4.2. Let $v_{1}$ be a gatenode, such that, $\operatorname{Depth}\left(v_{1}\right)=\operatorname{Depth}(C)-1$. That is, the depth of $v_{1}$ is the maximal possible depth for a gate-node in $C$. Therefore, $\operatorname{Right}_{C}\left(v_{1}\right), \operatorname{Left}_{C}\left(v_{1}\right)$ are both inputvariables. Without loss of generality, assume that $x_{1}, x_{2}$ are the two input-variables, such that, $x_{1}=\operatorname{Left} t_{C}\left(v_{1}\right)$ and $x_{2}=\operatorname{Right}_{C}\left(v_{1}\right)$. By Proposition 3.11, Degree $_{C}\left(x_{1}\right) \geq 2$ and $\operatorname{Degree}_{C}\left(x_{2}\right) \geq 2$. Let us partition all the possibilities for connections of $x_{1}, x_{2}$ into the following cases:

1. $\operatorname{Degree}_{C}\left(x_{1}\right) \geq 4$ or $\operatorname{Degree}_{C}\left(x_{2}\right) \geq 4$. That is, either $\left|O U T_{C}\left(x_{1}\right)\right| \geq 4$ or $\left|O U T_{C}\left(x_{2}\right)\right| \geq 4$.
2. $\operatorname{Degree}_{C}\left(x_{1}\right)=3$ or $\operatorname{Degree}_{C}\left(x_{2}\right)=3$. That is, either $\left|\operatorname{OUT}_{C}\left(x_{1}\right)\right|=3$ or $\left|\operatorname{OUT}_{C}\left(x_{2}\right)\right|=3$.
3. Degree $_{C}\left(x_{1}\right)=2$ and Degree $_{C}\left(x_{2}\right)=2$.

Note that in all cases we will never map an input-variable of degree one to a constant. Let us analyze separately each one of these cases.

Case 1. $\operatorname{Degree}_{C}\left(x_{1}\right) \geq 4$ or $\operatorname{Degree}_{C}\left(x_{2}\right) \geq 4$. $^{2}$

Without loss of generality, assume that $\operatorname{Degree}_{C}\left(x_{1}\right) \geq 4$. That is, $\left|O U T_{C}\left(x_{1}\right)\right| \geq 4$. Recall that $x_{1}$ is directly connected to the node $v_{1}$ and $x_{1}=\operatorname{Left} t_{C}\left(v_{1}\right)$. Hence, $v_{1} \in$ OUT $T_{C}\left(x_{1}\right)$. Let $v_{2}, v_{3}, v_{4}$ be three other different gate-nodes in $\operatorname{OUT}_{C}\left(x_{1}\right)$. Without loss of generality, assume that $x_{1}=$ $\operatorname{Left}_{C}\left(v_{2}\right), x_{1}=\operatorname{Left}_{C}\left(v_{3}\right), x_{1}=\operatorname{Left}_{C}\left(v_{4}\right)$. By Proposition 3.12 and by Proposition 4.2, $\left|O U T_{C}\left(v_{1}\right)\right| \geq 1$ (since $x_{1}$ is directly connected to $v_{1}$ ). Let $v_{5}$ be a gate-node, such that, $v_{2}$ is directly connected to $v_{5}$. By Proposition 4.2, $v_{5} \notin O U T_{C}\left(x_{1}\right)$. Hence, $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ are five different gate-nodes.

Let $\theta$ be a restriction that maps $x_{1}$ to $B l_{C}\left(v_{1}\right)$. We take $C^{\prime}$ to be identical to $\left.C\right|_{\theta}$ and modify it according to the argument of Proposition 4.1. That is, we apply the argument of Proposition 4.1 to each one of the gate-nodes $v_{1}, v_{2}, v_{3}, v_{4}$. Since $x_{1}$ was mapped to $B l_{C}\left(v_{1}\right), v_{1}$ is now a constant-node, and we can apply the argument of Proposition 4.1 to $v_{5}$. That is, we removed the gate-nodes $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$.

We will now count the number of SD units removed. Recall that in $C$ the gate-nodes $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ are all different. Hence, we count their removal as 5 SD units removed. Recall that $\operatorname{Degree}_{C}\left(x_{1}\right)>1$ (and hence its removal doesn't increase the SD measure). By Proposition 3.11, no inputvariable of degree one is directly connected to $v_{1}, v_{2}, v_{3}, v_{4}$, since $x_{1}$ is directly connected to each one of them. Only $\operatorname{Right}_{C}\left(v_{5}\right)$ might be an input-variable of degree 1. Therefore, we count this as -0.5 SD unit removed (since the degeneracy of the circuit might have decreased by one). Hence, $\mathrm{SD}(C) \geq \mathrm{SD}\left(C^{\prime}\right)+4.5$.

## Case 2. Either Degreec $\left(x_{1}\right)=3$ or Degree $_{C}\left(x_{2}\right)=3$.

Without loss of generality, assume that Degree $_{C}\left(x_{1}\right)=3$. That is, $\left|O U T_{C}\left(x_{1}\right)\right|=3$. Recall that $x_{1}$ is directly connected to $v_{1}$ and $x_{1}=\operatorname{Left}_{C}\left(v_{1}\right)$. Hence, $v_{1} \in \operatorname{OUT}_{C}\left(x_{1}\right)$. Let $v_{2}, v_{3}$ be the other two different gate-nodes in $\operatorname{OUT}_{C}\left(x_{1}\right)$. Without loss of generality, assume that $x_{1}=\operatorname{Left}_{C}\left(v_{2}\right)$, $x_{1}=\operatorname{Left}_{C}\left(v_{3}\right)$. By Proposition 3.12 and Proposition 4.2, $\left|O U T_{C}\left(v_{1}\right)\right| \geq 1,\left|O U T_{C}\left(v_{2}\right)\right| \geq 1,\left|O U T_{C}\left(v_{3}\right)\right| \geq 1$ (since $x_{1}$ is directly connected to $\left.v_{1}, v_{2}, v_{3}\right)$. Let $v_{4}$ be a gatenode, such that, $v_{4} \in O U T_{C}\left(v_{1}\right)$. Without loss of generality, assume that $v_{1}=\operatorname{Left}_{C}\left(v_{4}\right)$. By Proposition 4.2, $v_{4} \notin O U T_{C}\left(x_{1}\right)$. Hence, $v_{1}, v_{2}, v_{3}, v_{4}$ are four different gatenodes.

Let us partition all the possibilities of connections of $v_{1}, v_{2}$, $v_{3}$ into the following cases:

> 1. $O U T_{C}\left(v_{1}\right) \cap O U T_{C}\left(v_{2}\right) \neq \phi$ or $O U T_{C}\left(v_{1}\right) \cap \operatorname{OUT}_{C}\left(v_{3}\right) \neq \phi$ or $\operatorname{OUT}_{C}\left(v_{2}\right) \cap \operatorname{OUT}_{C}\left(v_{3}\right) \neq \phi$.
2. $O U T_{C}\left(v_{1}\right) \cap O U T_{C}\left(v_{2}\right)=\phi$ and $\operatorname{OUT}_{C}\left(v_{1}\right) \cap O U T_{C}\left(v_{3}\right)=\phi$ and $O U T_{C}\left(v_{2}\right) \cap O U T_{C}\left(v_{3}\right)=\phi$.

Let us analyze separately each one of these cases.
Case 2.1. Either $\operatorname{OUT}_{C}\left(v_{1}\right) \cap O U T_{C}\left(v_{2}\right) \neq \phi$ or $\operatorname{OUT}_{C}\left(v_{1}\right) \cap$ $\operatorname{OUT}_{C}\left(v_{3}\right) \neq \phi$ or $\operatorname{OUT}_{C}\left(v_{2}\right) \cap \operatorname{OUT}_{C}\left(v_{3}\right) \neq \phi$.

We can assume this, because in this case we will not use the variable $x_{2}$ at all, and we will not use the fact that $v_{1}$ is of maximal depth (that is, the three gate-nodes $v_{1}, v_{2}, v_{3}$ are totally symmetric). Recall that $v_{4} \in O U T_{C}\left(v_{1}\right)$. Without loss of generality, assume that $v_{4}$ is a gate-node, such that,
$v_{4} \in \operatorname{OUT} T_{C}\left(v_{1}\right) \cap \operatorname{OUT} T_{C}\left(v_{2}\right)$. Recall that $v_{1}=\operatorname{Left} t_{C}\left(v_{4}\right)$. Hence, $v_{2}=$ Right $_{C}\left(v_{4}\right)$. Recall that by Proposition 3.12 and Proposition 4.2, $\left|\operatorname{OUT}_{C}\left(v_{3}\right)\right| \geq 1$. Let $v_{5}$ be a gatenode, such that, $v_{5} \in O U T_{C}\left(v_{3}\right)$. Without loss of generality, assume that $v_{3}=\operatorname{Left} t_{C}\left(v_{5}\right)$. Note that $v_{5}$ is different from $v_{4}$, because of the way $v_{4}$ is connected. By Proposition 4.2, $v_{5} \notin O U T_{C}\left(x_{1}\right)$. Recall that the gate-nodes $v_{1}, v_{2}, v_{3}, v_{4}$ are different. Hence, the gate-nodes $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ are different.

We partition the possibilities for the values of $B l_{C}\left(v_{1}\right)$, $B l_{C}\left(v_{2}\right), B l_{C}\left(v_{3}\right)$ into the following two cases:

1. $B l_{C}\left(v_{2}\right)=B l_{C}\left(v_{3}\right)$ or $B l_{C}\left(v_{1}\right)=B l_{C}\left(v_{3}\right)$.
2. $B l_{C}\left(v_{1}\right)=B l_{C}\left(v_{2}\right)$.

Let us analyze separately each one of these cases.
CASE 2.1.1. $B l_{C}\left(v_{2}\right)=B l_{C}\left(v_{3}\right)$ or $B l_{C}\left(v_{1}\right)=B l_{C}\left(v_{3}\right)$.
Without loss of generality, assume that $B l_{C}\left(v_{2}\right)=B l_{C}\left(v_{3}\right)$. Let $\theta$ be a restriction that maps $x_{1}$ to $B l_{C}\left(v_{2}\right)$. We take $C^{\prime}$ to be identical to $\left.C\right|_{\theta}$ and modify it according to Proposition 4.1. That is, we apply the argument of Proposition 4.1 to each one of the gate-nodes $v_{1}, v_{2}, v_{3}$. Since $x_{1}$ was mapped to $B l_{C}\left(v_{2}\right)$ and $B l_{C}\left(v_{2}\right)=B l_{C}\left(v_{3}\right)$, the gate-nodes $v_{2}, v_{3}$ are now constant-nodes. We now apply the argument of Proposition 4.1 to the gate-nodes $v_{4}, v_{5}$. That is, we removed the gate-nodes $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$.

We will now count the number of SD units removed. Recall that the gate-nodes $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ are different. Hence, we count their removal as 5 SD units removed. Recall that Degree $_{C}\left(x_{1}\right)>1$. By Proposition 3.11, no inputvariable of degree one is directly connected to $v_{1}, v_{2}, v_{3}$, since $x_{1}$ is directly connected to each one of them. Recall that $v_{1}=\operatorname{Left}_{C}\left(v_{4}\right), v_{2}=\operatorname{Right}_{C}\left(v_{4}\right), v_{3}=\operatorname{Left}_{C}\left(v_{5}\right)$. Hence, only $\operatorname{Right}_{C}\left(v_{5}\right)$ might be an input-variable of degree 1. Therefore, we count this as -0.5 SD unit removed (since the degeneracy of the circuit might decreased by one). Thus, $\mathrm{SD}(C) \geq \mathrm{SD}\left(C^{\prime}\right)+4.5$.

CASE 2.1.2. $B l_{C}\left(v_{1}\right)=B l_{C}\left(v_{2}\right)$.
Recall that $v_{1}=\operatorname{Left} t_{C}\left(v_{4}\right)$. We first show that $\operatorname{OUT}_{C}\left(v_{4}\right) \neq$ $\phi$. Assume for the sake of contradiction that $\operatorname{OUT}_{C}\left(v_{4}\right) \neq \phi$. Then, by Proposition 4.2, $v_{4}$ is the output-node. Let $\theta^{\prime}$ be a restriction that maps $x_{1}$ to $B l_{C}\left(v_{1}\right)=B l_{C}\left(v_{2}\right)$. In $\left.C\right|_{\theta^{\prime}}$ the gate-nodes $v_{1}, v_{2}$ compute a constant function, since $x_{1}$ is now a constant-node labeled by $B l_{C}\left(v_{1}\right)=B l_{C}\left(v_{2}\right)$. Therefore, the gate-node $v_{4}$ computes a constant function, since the value of the function that $v_{4}$ computes depends only on the values of the functions that $v_{2}, v_{3}$ compute. This is a contradiction to the fact that by Proposition 3.3, $\left.F\right|_{\theta^{\prime}}$ is ( $n-2, k$ )-Strongly-Two-Dependent, since $n-k \geq 5$.

Let us analyze this case according to the possible content of $O U T_{C}\left(v_{4}\right)$.

Case 2.1.2.1. Assume that $v_{3} \in \operatorname{OUT}_{C}\left(v_{4}\right)$.
Let $\theta$ be a restriction that maps $x_{1}$ to $B l_{C}\left(v_{1}\right)$. We take $C^{\prime}$ to be identical to $\left.C\right|_{\theta}$ and modify it according to Proposition 4.1. That is, we apply the argument of Proposition 4.1 to each one of the gate-nodes $v_{1}, v_{2}$. Since $x_{1}$ was mapped to $B l_{C}\left(v_{1}\right)$ and $B l_{C}\left(v_{1}\right)=B l_{C}\left(v_{2}\right)$, the gate-nodes $v_{1}, v_{2}$ are now constant-nodes. Each one of the gate-nodes $v_{3}, v_{4}$ computes a function that depends only on the values of $x_{1}, v_{1}, v_{2}$.

Recall that $x_{1}, v_{1}, v_{2}$ are now constant-nodes. Therefore, we apply the argument of Proposition 4.1 to gate-node $v_{3}$ and then to $v_{4}$. That is, we modified $v_{3}, v_{4}$ into constant-nodes. Therefore, we apply the argument of Proposition 4.1 to gatenode $v_{5}$. That is, we removed the gate-nodes $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$.

We will now count the number of SD units removed. Recall that in $C$ the gate-nodes $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ are different. Hence, we count their removal as 5 SD units removed. By Proposition 3.11, no input-variable of degree one is directly connected to $v_{1}, v_{2}, v_{3}$, since $x_{1}$ is directly connected to each one of them. Recall that $v_{1}=\operatorname{Left} t_{C}\left(v_{4}\right), v_{2}=\operatorname{Right}_{C}\left(v_{4}\right)$, $v_{3}=\operatorname{Left}_{C}\left(v_{5}\right)$. Hence, only $\operatorname{Right}_{C}\left(v_{5}\right)$ might be an inputvariable of degree 1 . Therefore, we count this as -0.5 SD unit removed (since the degeneracy of the circuit might have decreased by one). Thus, $\mathrm{SD}(C) \geq \mathrm{SD}\left(C^{\prime}\right)+4.5$.

Case 2.1.2.2. Assume that $v_{3} \notin O U T_{C}\left(v_{4}\right)$.
Let $v_{6}$ be a gate-node, such that, $v_{6} \in O U T_{C}\left(v_{4}\right)$. Without loss of generality, assume that $v_{4}=\operatorname{Left} t_{C}\left(v_{6}\right)$. Note that $v_{6}$ is different from $v_{1}, v_{2}$ because a Boolean circuit is acyclic. Recall that the gate-nodes $v_{1}, v_{2}, v_{3}, v_{4}$ are different. Hence, the gate-nodes $v_{1}, v_{2}, v_{3}, v_{4}, v_{6}$ are different.

Let $\theta$ be a restriction that maps $x_{1}$ to $B l_{C}\left(v_{2}\right)$. We take $C^{\prime}$ to be identical to $\left.C\right|_{\theta}$ and modify according to Proposition 4.1. That is, we apply the argument of Proposition 4.1 to each one of the gate-nodes $v_{1}, v_{2}, v_{3}$. Since $x_{1}$ was mapped to $B l_{C}\left(v_{1}\right)$ and $B l_{C}\left(v_{1}\right)=B l_{C}\left(v_{2}\right), v_{1}, v_{2}$ are now constant-nodes. We apply the argument of Proposition 4.1 to $v_{4}$. Since $v_{1}, v_{2}$ are constant-nodes $v_{4}$ is now a constantnode. We apply the argument of Proposition 4.1 to $v_{6}$. That is, we removed the gate-nodes $v_{1}, v_{2}, v_{3}, v_{4}, v_{6}$.

We will now count the number of SD units removed. Recall that in $C v_{1}, v_{2}, v_{3}, v_{4}, v_{6}$ are five different gate-nodes. Hence, we count their removal as 5 SD units removed. By Proposition 3.11, no input-variable of degree one is directly connected to $v_{1}, v_{2}, v_{3}$, since $x_{1}$ is directly connected to each one of them. Recall that $v_{1}=\operatorname{Left} t_{C}\left(v_{4}\right), v_{2}=\operatorname{Right}_{C}\left(v_{4}\right)$, $v_{4}=\operatorname{Left}_{C}\left(v_{6}\right)$. Hence, only $\operatorname{Right}_{C}\left(v_{6}\right)$ might be an inputvariable of degree 1 . Therefore, we count this as -0.5 SD unit removed (since the degeneracy of the circuit might decreased by one). Thus, $\mathrm{SD}(C) \geq \mathrm{SD}\left(C^{\prime}\right)+4.5$.

Case 2.2. $O U T_{C}\left(v_{1}\right) \cap O U T_{C}\left(v_{2}\right)=\phi$ and $O U T_{C}\left(v_{1}\right) \cap$ $O U T_{C}\left(v_{3}\right)=\phi$ and $O U T_{C}\left(v_{2}\right) \cap O U T_{C}\left(v_{3}\right)=\phi$.
Recall that $v_{1}=\operatorname{Left} t_{C}\left(v_{4}\right)$. By Proposition 3.12 and Proposition 4.2, $\left|O U T_{C}\left(v_{2}\right)\right| \geq 1$ and $\left|O U T_{C}\left(v_{3}\right)\right| \geq 1$, since $x_{1}$ is directly connected to $v_{2}, v_{3}$. Let $v_{8}, v_{9}$ be gate-nodes, such that, $v_{8} \in O U T_{C}\left(v_{2}\right), v_{9} \in O U T_{C}\left(v_{3}\right)$. Without loss of generality, assume that $v_{2}=\operatorname{Left}\left(v_{C}\right), v_{3}=\operatorname{Left}_{C}\left(v_{9}\right)$. By Proposition 4.2, $\operatorname{OUT}_{C}\left(v_{2}\right) \cap O U T_{C}\left(x_{1}\right)=\phi$ and $O U T_{C}\left(v_{3}\right) \cap$ $O U T_{C}\left(x_{1}\right)=\phi$. Recall that $v_{1}, v_{2}, v_{3}, v_{4}$ are four different gate-nodes. Hence, $v_{1}, v_{2}, v_{3}, v_{4}$ and the gate-nodes in $O U T_{C}\left(v_{2}\right), O U T_{C}\left(v_{3}\right)$ are all different gate-nodes.

Note there exist two different constants $i_{1}, i_{2} \in\{1,2,3\}$, such that, $h=B l_{C}\left(v_{i_{1}}\right)=B l_{C}\left(v_{i_{2}}\right)$. Let $\theta$ be a restriction that maps $x_{1}$ to $h$. We take $C^{\prime}$ to be identical to $\left.C\right|_{\theta}$ and modify it according to Proposition 4.1. That is, we apply the argument of Proposition 4.1 to each one of the gate-nodes $v_{1}, v_{2}, v_{3}$. Since $x_{1}$ was mapped to $B l_{C}\left(v_{i_{1}}\right)$ and $B l_{C}\left(v_{i_{1}}\right)=$ $B l_{C}\left(v_{i_{2}}\right)$, the gate-node $v_{i_{1}}, v_{i_{2}}$ are now constant-nodes. We apply the argument of Proposition 4.1 to the gate-nodes in $O U T_{C}\left(v_{i_{1}}\right), O U T_{C}\left(v_{i_{2}}\right)$. That is, we removed the gate-nodes $v_{1}, v_{2}, v_{3}$ and any other gate-node in $\operatorname{OUT}_{C}\left(v_{i_{1}}\right), O U T_{C}\left(v_{i_{2}}\right)$.

We will now count the number of SD units removed. Recall that in $C$ the gate-nodes $v_{1}, v_{2}, v_{3}$ and the gate-nodes in $O U T_{C}\left(v_{i_{1}}\right), O U T_{C}\left(v_{i_{2}}\right)$ are different. Hence, we count their removal as 5 SD units removed. Recall that Degree $_{C}\left(x_{1}\right)>$ 1. By Proposition 3.11, no input-variable of degree one is directly connected to $v_{1}, v_{2}, v_{3}$. By Proposition 3.11, no input-variable of degree one is directly connected to $v_{4}$, since $v_{1}$ is directly connected to $v_{4}$ and $\left|I N_{C}\left(v_{1}\right)\right|<n-k$ (because $I N_{C}\left(v_{1}\right)=\left\{x_{1}, x_{2}\right\}$ and $\left.n-k>5\right)$. Recall that $v_{1}=\operatorname{Left} t_{C}\left(v_{4}\right), v_{2}=\operatorname{Left}_{C}\left(v_{8}\right), v_{3}=\operatorname{Left}_{C}\left(v_{9}\right)$. Hence, only $\operatorname{Right}_{C}\left(v_{8}\right), \operatorname{Right}_{C}\left(v_{9}\right)$ might be input-variables of degree one. Assume that $\left|O U T_{C}\left(v_{2}\right)\right| \geq 2$ or $\left|O U T_{C}\left(v_{3}\right)\right| \geq 2$ or at least one of the nodes $\operatorname{Right}_{C}\left(v_{8}\right), \operatorname{Right}_{C}\left(v_{9}\right)$ is not an input-variable of degree one. Then, for all possible values of $i_{1}, i_{2}$, we have that $\mathrm{SD}(C) \geq \mathrm{SD}\left(C^{\prime}\right)+4.5$, since if $i_{1}=2, i_{2}=3$ and we removed -1 SD unit because $\operatorname{Right}_{C}\left(v_{8}\right), \operatorname{Right}_{C}\left(v_{9}\right)$ are both input-variables of degree one then we removed at least another 0.5 SD unit, since $\left|O U T_{C}\left(v_{2}\right) \cup O U T_{C}\left(v_{3}\right)\right| \geq 3$.

We will now prove that it cannot be the case that
$\left|\operatorname{RUT}_{C}\left(v_{2}\right)\right|=1$ and $\left|O U T_{C}\left(v_{3}\right)\right|=1$, and $\operatorname{Right}_{C}\left(v_{8}\right)$, $\operatorname{Right}_{C}\left(v_{9}\right)$ are input-variables of degree one. For the sake of contradiction assume that the above happens. Without loss of generality, assume that $x_{3}, x_{4}$ are input-variables, such that, $x_{3}=\operatorname{Right}_{C}\left(v_{8}\right), x_{4}=\operatorname{Right}_{C}\left(v_{9}\right)$. Let $\theta^{\prime}$ be a restriction that maps $x_{2}$ to $B r_{C}\left(v_{1}\right), x_{3}$ to $B r_{C}\left(v_{8}\right)$ and $x_{4}$ to $B r_{C}\left(v_{9}\right)$. Observe that in $\left.C\right|_{\theta^{\prime}}$ all the paths from $x_{1}$ contain the gate-nodes $v_{1}, v_{8}, v_{9}$ (since $\operatorname{Degree}_{C}\left(x_{1}\right)=3$ ), and by the choice of $\theta^{\prime}$ we know that $v_{1}, v_{8}, v_{9}$ all compute a constant function. This is a contradiction to Proposition 3.10, since $\theta^{\prime}$ maps less than $n-k$ input-variables to constants, (because $n-k \geq 5$ ).

## Case 3. Degree $_{C}\left(x_{1}\right)=2$ and Degree $_{C}\left(x_{2}\right)=2$.

By Lemma 3.8, it cannot be the case that $\operatorname{OUT}_{C}\left(x_{1}\right)=$ $\operatorname{OUT}_{C}\left(x_{2}\right)$ (i.e., and $x_{1}, x_{2}$ are not directly connected to the same two gate-nodes). Therefore, $\operatorname{OUT}_{C}\left(x_{1}\right) \cap O U T_{C}\left(x_{2}\right)=$ $\left\{v_{1}\right\}$. Recall that $x_{1}=\operatorname{Left}_{C}\left(v_{1}\right), x_{2}=\operatorname{Right}_{C}\left(v_{1}\right)$. Let $v_{2}, v_{3}$ be the other two different gate-nodes, such that, $v_{2} \in$ $O U T_{C}\left(x_{1}\right)$ and $v_{3} \in O U T_{C}\left(x_{2}\right)$. That is, $v_{1}, v_{2}, v_{3}$ are three different gate-nodes. Without loss of generality, assume that $x_{1}=\operatorname{Left} t_{C}\left(v_{2}\right), x_{2}=\operatorname{Left} t_{C}\left(v_{3}\right)$. By Proposition 3.12 and by Proposition 4.2, $\left|\operatorname{OUT}_{C}\left(v_{1}\right)\right| \geq 1$, since $x_{1}$ is directly connected to $v_{1}$. Let $v_{4}$ be a gate-node, such that, $v_{4} \in$ $O U T_{C}\left(v_{1}\right)$ and $\operatorname{Depth}_{C}\left(v_{4}\right)=\operatorname{Depth}(C)-2$. Without loss of generality, assume that $v_{1}=\operatorname{Left}_{C}\left(v_{4}\right)$. By Proposition 4.2, $v_{4} \notin O U T_{C}\left(x_{1}\right)$ and $v_{4} \notin O U T_{C}\left(x_{2}\right)$. Hence, $v_{1}, v_{2}, v_{3}, v_{4}$ are four different gate-nodes.

Let us partition the possibilities for connections of $v_{1}, v_{2}, v_{3}$, $v_{4}$ into the following cases:

1. $\operatorname{Degree}_{C}\left(v_{1}\right) \geq 2$ (i.e., $\left|O U T_{C}\left(v_{1}\right)\right| \geq 2$ ).
2. $\operatorname{Degree}_{C}\left(v_{1}\right)=1$ (i.e., $\left|O U T_{C}\left(v_{1}\right)\right|=1$ ) and either $v_{2}=\operatorname{Right}_{C}\left(v_{4}\right)$ or $v_{3}=\operatorname{Right}_{C}\left(v_{4}\right)$.
3. $\operatorname{Degree}_{C}\left(v_{1}\right)=1$ (i.e., $\left|\operatorname{OUT}_{C}\left(v_{1}\right)\right|=1$ ) and $\operatorname{Right}_{C}\left(v_{4}\right)$ is an input-variable.
4. $\operatorname{Degree}_{C}\left(v_{1}\right)=1$ (i.e., $\left|\operatorname{RUT}_{C}\left(v_{1}\right)\right|=1$ ) and $\operatorname{Right}_{C}\left(v_{4}\right)$ is a gate-node different than $v_{2}, v_{3}$.

Let us analyze separately each one of these cases.
Case 3.1. $\operatorname{Degree}_{C}\left(v_{1}\right) \geq 2$ (i.e., $\left|\operatorname{OUT}_{C}\left(v_{1}\right)\right| \geq 2$ ).

Let $v_{5} \in \operatorname{OUT} T_{C}\left(v_{1}\right)$ be a gate-node that is different from $v_{4}$. Without loss of generality, let $v_{1}=\operatorname{Left} t_{C}\left(v_{5}\right)$. By the same reasoning as for $v_{4}$ (i.e., by Proposition 4.2), the gatenode $v_{5}$ is different from $v_{2}, v_{3}$. Thus, $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ are five different gate-nodes.

Let $\theta$ be a restriction that maps $x_{1}$ to $B l_{C}\left(v_{1}\right)$. We take $C^{\prime}$ to be identical to $\left.C\right|_{\theta}$ and modify it according to Proposition 4.1. That is, we apply the argument of Proposition 4.1 to each one of the gate-nodes $v_{1}, v_{2}$. Since $x_{1}$ was mapped to $B l_{C}\left(v_{1}\right), v_{1}$ is now a constant-nodes. Hence, we apply the argument of Proposition 4.1 to $v_{4}, v_{5}$.

We will now count the number of SD units removed. Recall that $v_{1}, v_{2}, v_{4}, v_{5}$ are four different gate-nodes. Hence, we count their removal as 4 SD units removed. Recall that $\operatorname{Degree}_{C}\left(x_{1}\right)>1$. By Proposition 3.11, no input-variable of degree one is directly connected to $v_{1}, v_{2}$, since $x_{1}$ is directly connected to each one of them. Recall that $v_{1}=\operatorname{Left} t_{C}\left(v_{4}\right)$, $v_{1}=\operatorname{Left}_{C}\left(v_{5}\right)$. Hence, by Proposition 3.11, no inputvariable of degree one is directly connected to $v_{1}, v_{2}$, since $v_{1}$ is directly connected to each one of them and $I N_{C}\left(v_{1}\right)<$ $n-k$ (since $I N_{C}\left(v_{1}\right)=\left\{x_{1}, x_{2}\right\}$ and $n-k \geq 5$ ). Thus, the degree of any input-variable did not change from one by the applying the argument of Proposition 4.1. Recall that $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ are five different gate-nodes. Hence, $v_{3}$ was not removed. Recall that in $C^{\prime}$ the node $v_{1}$ is a constantnode. Therefore, in $C^{\prime}$ the input-variable $x_{2}$ is directly connected only to $v_{3}$. We count the decrease in the degree of $x_{2}$ as 0.5 SD unit removed. Hence, $\mathrm{SD}(C) \geq \mathrm{SD}\left(C^{\prime}\right)+4.5$

Case 3.2. $\operatorname{Degree}_{C}\left(v_{1}\right)=1$ (i.e., $\left|\operatorname{OUT}_{C}\left(v_{1}\right)\right|=1$ ) and either $v_{2}=\operatorname{Right}_{C}\left(v_{4}\right)$ or $v_{3}=\operatorname{Right}_{C}\left(v_{4}\right)$.
Without loss of generality, assume that $v_{2}=\operatorname{Right}_{C}\left(v_{4}\right)$. Let us prove that this case cannot occur in $C$. Recall that $\operatorname{Depth}_{C}\left(v_{1}\right)=\operatorname{Depth}\left(C^{\prime}\right)-1$. Therefore, since
$\operatorname{Degree}_{C}\left(v_{1}\right)=1$, we have $\operatorname{Depth}_{C}\left(v_{4}\right)=\operatorname{Depth}\left(C^{\prime}\right)-$ 2. Hence, $\operatorname{Depth}_{C}\left(v_{2}\right)=\operatorname{Depth}\left(C^{\prime}\right)-1$. Implying, that $\operatorname{Right}_{C}\left(v_{2}\right)$ is an input-variable. Without loss of generality, assume that $x_{3}$ is the input-variable, such that, $x_{3}=$ $\operatorname{Right}_{C}\left(v_{2}\right)$. Let $\theta^{\prime}$ be a restriction that maps $x_{2}$ to $B r_{C}\left(v_{1}\right)$ and $x_{3}$ to $B r_{C}\left(v_{2}\right)$. Observe that in $\left.C\right|_{\theta^{\prime}}$ all the paths from $x_{1}$ contain the gate-nodes $v_{1}, v_{2}$ and by the choice of $\theta^{\prime}$, the gate-nodes $v_{1}, v_{2}$ both compute a constant function. This is a contradiction to Proposition 3.10, since $\theta^{\prime}$ maps less than $n-k$ input-variables to constants (because $n-k \geq 5$ ).
 Right $_{C}\left(v_{4}\right)$ is an input-variable.
Without loss of generality, let $x_{4}$ be the input-variable, such that, $x_{4}=\operatorname{Right}_{C}\left(v_{4}\right)$. By Proposition 3.11 and Proposition 3.12, $\left|O U T_{C}\left(x_{4}\right)\right| \geq 2$, since $\left|I N_{C}\left(v_{1}\right)\right|<n-k$ (because $I N_{C}\left(v_{1}\right)=\left\{x_{1}, x_{2}\right\}$ and $\left.n-k \geq 5\right)$. Without loss of generality, assume that for each gate-node $v_{i} \in \operatorname{OUT}_{C}\left(v_{4}\right)$, we have $v_{4}=\operatorname{Left}_{C}\left(v_{i}\right)$. Then, by Proposition 3.11, for each $v_{i} \in \operatorname{OUT}_{C}\left(v_{4}\right), \operatorname{Right}_{C}\left(v_{i}\right)$ is not an input-variable of degree one, since $\left|I N_{C}\left(v_{4}\right)\right|<n-k$ (because $I N_{C}\left(v_{4}\right)=$ $\left\{x_{1}, x_{2}, x_{4}\right\}$ and $n-k \geq 5$ ). By Proposition $4.2 x_{4}$ is directly connected to a gate-node $v_{6}$, such that, $v_{6} \notin O U T_{C}\left(v_{4}\right)$. By Proposition 3.11, no input-variable of degree one is directly connected to $v_{6}$, since $x_{4}$ is directly connected to $v_{6}$. Recall that $v_{1}, v_{2}, v_{3}, v_{4}$ are four different gate-nodes, $v_{6}$ is different than $v_{1}$, because it is connected differently.

Let us prove that $v_{6}$ is different from $v_{2}, v_{3}$. Assume for the sake of contradiction that $v_{6}$ and $v_{2}$ are the same gate-node.

Recall that $x_{1}=\operatorname{Left}_{C}\left(v_{2}\right)$. Hence, $x_{4}=\operatorname{Right}_{C}\left(v_{2}\right)$. Let $\theta^{\prime}$ be a restriction that maps $x_{2}$ to $B r_{C}\left(v_{1}\right)$ and $x_{4}$ to $\operatorname{Br}_{C}\left(v_{2}\right)$. Recall that $x_{2}=\operatorname{Right}_{C}\left(v_{1}\right)$. Observe that in $\left.C\right|_{\theta^{\prime}}$ all the paths from $x_{1}$ contain the gate-nodes $v_{1}, v_{2}$ and by the choice of $\theta^{\prime}, v_{1}, v_{2}$ both compute a constant function. This is a contradiction to Proposition 3.10, since $\theta^{\prime}$ maps less than $n-k$ input-variables to constants (because $n-k \geq 5)$. Thus, $v_{1}, v_{2}, v_{3}, v_{4}, v_{6}$ are five different gate-nodes. By Proposition 3.12 and Proposition 4.2, $\left|O U T_{C}\left(v_{4}\right)\right| \geq 1$, since $\left|I N_{C}\left(v_{1}\right)\right|<n-k$ (because $I N_{C}\left(v_{1}\right)=\left\{x_{1}, x_{2}\right\}$ and $n-k \geq 5)$. By the way $v_{1}$ is connected $v_{1} \notin O U T_{C}\left(v_{4}\right)$. Thus, $v_{1}, v_{4}, v_{6}$ and the gate-nodes in $O U T_{C}\left(v_{4}\right)$ are all different.

Let $\theta$ be a restriction that maps the input-variable $x_{4}$ to $B r_{C}\left(v_{4}\right)$. We take $C^{\prime}$ to be identical to $\left.C\right|_{\theta}$ and modify according to Proposition 4.1. That is, we apply the argument of Proposition 4.1 on $v_{4}$. Since $x_{4}$ was mapped to $B l_{C}\left(v_{4}\right)$, $v_{4}$ is now a constant-node. Therefore, we apply the argument of Proposition 4.1 on $v_{1}, v_{6}$ and on each gate-node in $O U T_{C}\left(v_{4}\right)$. That is, we removed at least four gate-nodes $v_{1}, v_{4}, v_{6}$ and the gate-nodes in $O U T_{C}\left(v_{4}\right)$.

We will now count the number of SD units removed. Recall that $v_{1}, v_{4}, v_{6}$ and the gate-nodes in $O U T_{C}\left(v_{4}\right)$ are all different and that $O U T_{C}\left(v_{4}\right)$ is not empty. Hence, we count their removal as 4 SD units removed if $v_{2} \notin \operatorname{OUT}_{C}\left(v_{4}\right)$ or $v_{3} \notin O U T_{C}\left(v_{4}\right)$, and as 5 SD units removed if both $v_{2}, v_{3}$ are in $O U T_{C}\left(v_{4}\right)$ Recall that no input-node of degree one is directly connected to $v_{1}, v_{4}$. By Proposition 3.11 no input-variable of degree one is directly connected to $v_{6}$, since $x_{4}$ is connected directly to $v_{6}$. By similar reasoning no input-variable of degree one is directly connected to $v_{2}, v_{3}$. Also by Proposition 3.11, no input-variable of degree one is directly connected to a gate-node in $O U T_{C}\left(v_{4}\right)$,since $v_{4}$ is connected directly each it gate-node in $\operatorname{OUT}_{C}\left(v_{4}\right)$ and $\left|I N_{C}\left(v_{4}\right)\right|<n-k$ (because, $I N_{C}\left(v_{1}\right)=\left\{x_{1}, x_{2}, x_{4}\right\}$ and $n-k \geq 5)$. Thus, the degree of any input-variable did not change from one, by the applying the argument of Proposition 4.1. Assume $v_{2} \notin O U T_{C}\left(v_{4}\right)$ or $v_{3} \notin O U T_{C}\left(v_{4}\right)$. Without loss of generality, assume that $v_{2} \notin O U T_{C}\left(v_{4}\right)$. Then, since $v_{1}, v_{2}, v_{3}, v_{4}, v_{6}$ are five different gate-nodes, $v_{2}$ was not removed. Therefore, in C' the degree of $x_{1}$ is one. Hence, we count this as 0.5 SD unit removed (since th the degeneracy increased by one). Hence, $\mathrm{SD}(C) \geq \mathrm{SD}\left(C^{\prime}\right)+4.5$

Case 3.4. Degree $_{C}\left(v_{1}\right)=1$ (i.e., $\left|O U T_{C}\left(v_{1}\right)\right|=1$ ) and that Right $_{C}\left(v_{4}\right)$ is a gate-node.

This is the most complicated case. It requires the analysis of many subcases. Due to space limitation we omit the analysis.

## 5. REFERENCES

[1] C.E. Shannon. The synthesis of two-terminal switching circuits, Bell Systems Tech. J., vol 28, pages 59-98, 1949.
[2] U. Zwick. A 4n lower bound on the combinatorial complexity of certain symmetric Boolean functions over the basis of unate dyadic Boolean functions., SIAM Journal on Computing, vol 20, pages 499-505, 1991.


[^0]:    *Research supported by US-Israel BSF grant 98-00349.
    ${ }^{\dagger}$ Research supported by US-Israel BSF grant 98-00349, and NSF grant CCR-9987077.

