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 THE SUPREMUM AND INFIMUM OF THE POISSON PROCESS'

 BY RONALD PYKE

 Columbia University

 1. Introduction. Let {X(t); t ? 0} be a separable Poisson process with shift
 such that

 (1) log E(e"X(t)) = -itcoa + Xt(eiO1)

 for all real co, and a, X > 0. Set

 o-(x, T) = P[ sup X(t) ? x].
 O<t <T

 The task of obtaining o(x, T) explicitly for general stochastic processes is in-
 trinsically difficult. However, Baxter and Donsker [1], following the methods
 and results of Spitzer, have obtained the double Laplace transform of o(x, T)
 for processes with stationary and independent increments. Their result as it
 pertains to the Poisson process is as follows.

 THEOREM. Let {X(t); t > 0} be a separable process satisfying X(O) = 0 a.s and

 log E(eiwX(t) ) = tvI'(c)

 for all t > 0 where exp (I'(w)) is the Levy-Khintchine representation of the char-
 acteristic function of an infinitely divisible distribution. If {I(X) is complex and
 for some a > O,

 f +(X) do < co

 then for all u, v > 0,

 - uT-vx do(x, T) d T

 (2) 00

 = exP{+ t w(o - iv) s[s - d(] d
 Theoretically, therefore, to obtain o(x, T) explicitly, one should evaluate the

 double integral on the right hand side of (2) and then perform a double inversion

 on it. For most cases this is virtually impossible except by numerical methods.
 Baxter and Donsker, however, have evaluated the right hand side of (2) for
 several important cases. Moreover, for the Gaussian process and for the process
 determined by coin tossing at random times, they were able to make the in-
 versions.

 Received June 27, 1958; revised December 10, 1958.
 1 This work was sponsored in part by the Office of Naval Research while the author was

 at Stanford University. Reproduction in whole or in part is permitted for any purpose of
 the United States Government.
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 SUP AND INF OF POISSON PROCESS 569

 For the Poisson process, Baxter and Donsker showed that
 00 OQ

 (3) u f f eCuT' d. o(x, T) dT = (1 -v / s)[1 - (iv) / u-'

 where su satisfies gnm(su) _ 0 and

 u = asu + X(e8"- 1)

 From (3) they obtained a(x, + to ). It is the purpose of this paper to obtain
 o-(x, T) for finite T which is done in Section 3. In Section 4, the corresponding
 equation to (3), as well as the exact distribution, for the infimum of this process
 are derived. Applications of these results to queueingtheory are given in Section 5.
 First of all, a lemma with applications to the theory of distribution-free statistics,
 is proven.

 2. A lemma. Let XI, X2, , X. be independent random variables on a
 common measure space (Q, a, P) such that P[Xj < x] x for all 0 ? x < 1.
 Define Uj as the jth smallest component of (Xi, X2, * , X.). Therefore Uj
 is well defined a.s. Define for all real x, a and integral n

 F(x:a, n) = P[ max (ai - Uj) ? x].

 LEMMA 1. For 0 < a < 1 ? < na-x < 1,

 (4) F(x:a, n) (1 + x - na) n (7) ( -ja -x)(1 + x -ja)n-i-l

 where ty], the greatest integer contained in y, is a left continuous function. When
 na - x > 1 or na - x < 0, F(x:a, n) is equal to 0 or 1 respectively.

 PROOF: It may be shown that whenever 0 < na - x < 1, F(x:a, n) has the
 representation

 p1 rpn rlz Zk+1 Z ptZ2
 F(x:a, n) = n! ] dz,] dZ..1 ... dzk dZk-l dz1 va-x n-l,)a-xkax J

 where k [x/a] + 1. That this multiple integral reduces to the expression (4)
 may be shown by a generalization of the method of Birnbaum and Tingey 171
 along with an application of Lemma 1 of [2]. The evaluation of an essentially
 equivalent multiple integral has already been given by Chapman in equation
 (3) of [91.2 Lemma 1 has also been obtained using probabilistic methods by
 Dempster [10].

 3. The derivation of a (x, T). Let { Y(t), t > O} be a Poisson process with
 parameter A > 0; that is

 Efeicoy(01 = ext(eiw1-).

 1 I am grateful to the referee for this reference.
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 570 RONALD PYKE

 Write X(t) = Y(t) - at. Then

 a(x, T) = P[ sup X(t) < xl = PiY(t) ? at + x;0 ?< t < TI.
 0O< t < T

 It is well known (cf. [3] Chap. VIII) that the conditional distribution of the
 first n discontinuity points of the Poisson process given that there were n such
 points in (0, T), is the distribution of (TU1, TU2, ... , TUn) where the Ui's
 are as defined above. Using this fact, one may write

 laT+x] X T)n
 0(x, T) = E P[ max (i / aT- U) < x / aTle-T

 n0=0 l<i?n n

 Evaluating the summands by means of Lemma 1 gives

 o'(x, T) = ,[Z]eXT(XT)n [aT+x] e-T (XT) (aT + xn- cr (, T __ + >12 -(T+x-n a)
 (5) on=0 n! n-[x]+1 n.

 () (i - x)'(aT + x - j)n-j-

 By Lemma 2 of [2], (5) may be rewritten to give
 THEOREM 1. Let { Y(t), t > 0} be a Poisson process with parameter X > 0.

 Then for all a, x > 0

 ~(x,T) = eX T x (aT + x-n)(X/a)'

 (6) n-0 ni
 (j - x)(aT + x

 where ( 0)=0 for j > n.

 COROLLARY: For alt T > 0, ai > 0,

 (0, T) =e-XT i:[aTl (XT)n (1 - n/aT).
 n=o0n

 The limiting case of or(x, + oo ) may be obtained from Theorem 1 by an appli-
 cation of the Central Limit Theorem for Poisson variables. More specifically,
 by the Central Limit Theorem, for j > [x],

 [aT+x] -XT {XT + (z- )X/ a n ?j)1
 lim>12 eT {X+(-)/} I XT + (x - n)X /al

 f( 1- / a) e i(zJ)a f < a, 1O, if > a.

 Therefore, from Theorem 1, for x _ 0

 XI x
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 SUP AND INF OF POISSON PROCESS 571

 when X < a and is equal to zero otherwise. This formula disagrees with (4.15)

 of [1]. For x = 0, (7) becomes

 A(0, ?oo) = [- X / a if 1/a < 1,
 02 ~~~~~otherwise.

 The expression (7) has also been obtained by Breakwell [4] who has computed
 a constant multiple of (7) for several values of the parameters.

 4. The infimum of {X(t), t ? 01. It is also of interest to study the infimum
 of the deviations of the Poisson process about the line at. Since

 inf X(t) = -sup {- X(t)},
 O t < T O<t_T

 a double generating function, 4I(u, v) say, may be obtained for the infimum by
 the same methods as used for the supremum by Baxter and Donsker [1]. It
 follows from (2) that for the infimum

 u4(u,v) = exp {2X L f ( iv) [ O dw ds}.
 By an application of Rouch6's theorem, it may be shown that for all s > 0,

 y6(z)- s has as many roots in the upper half plane, lzl > 0, as h (z) = iaz +
 X + s, namely one. Denote this root by iy8 ; that is

 jP(iy8) = s = ay, + X(e- - .1).

 Since iy8 is also a root, its uniqueness implies that ys is real. Moreover the root
 is simple. Straightforward integration in the upper half plane yields

 1 f v -(@) v dy8

 2rr Lxw(c + iv) s[s - (w)] d y8(y. + v) ds
 Consequently,

 uwb(u, v) (1 + v / Yu)1.

 Although unable to make a double inversion of so, one may show that

 lim u(p(u, v) = (1 + v / yo)-.
 u.O

 Under the assumption a < X, yo is the unique positive root of the real function
 ay + X(e-v - 1). When a > X, yo 0 and the above limit is defined to be zero.
 It follows, in particular, that for a < X, the infimum over [0, oo ) of X(t) has
 an exponential distribution with parameter yo.

 In the following, the explicit distribution function of the infimum over finite
 intervals of the Poisson process is derived. Moreover, an expression for the dis-
 tribution function of the infimum over [0, oo ) is obtained. It is shown by a second
 method that this latter distribution is exponential. The advantage of the second
 method is that the parameter yo as defined above is obtained explicitly.
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 572 RONALD PYKE

 For x _ 0 set

 ,(x, T) = P[ inf X(t) < x] = 1-P[Y(t) > at + x, 0 < t < T]
 0 < t C T

 for all T > 0. It is clear that whenever aT + x < 0, Iu(x, T) = 0. Suppose
 aT + x > 0. Then by a similar argument to that used in Section 3,

 I e-XT (xT) L[ = aT iJ n-K+1 n

 where K = [aT + x], since the distribution functions of ( U1, U2, * , Un) and
 (1 -U, 1[ - Un1, *. U, 1-U1) are the same. Therefore, by Lemma 1, one
 obtains

 x T) = 1 + x w e- (-X/a)n
 nK+1 n.

 (8) * E (J) ~~~(j-n + x + aT)i(n - j - x)n i (8) K-
 = jj T (XT) - eK(r)la (X/a)r(r - X)r- = e - x e:
 n=O n! rO r!

 K R-n n+ (x + aT - n) (n -x)
 + xe T ov (/a x r

 n=0 r=O r. n.
 It may be shown, by rearranging the summations of the third term in (8) and
 by applying Lemma 2 of [2], that the sum of the first and third terms is zero.
 Therefore one obtains3

 THEOREM 2: For all x < 0, a, T > 0, the distribution function of inf X(t),
 0 ? t < T

 ,u(x, T), is given by
 K

 .(x, T) = -X Er-

 As a consequence of this Theorem, it follows that

 00 (/)

 (9) (x, + oo) = - E er!('r (r-x) _l (a)
 r=0 r

 since all the summands are positive. This distribution shall be shown to be

 exponential over (- oo, 0]. Specifically, we shall prove

 3 From discussions with Joseph M. Gani, it was learned that a result equivalent to
 Theorem 2, namely the first-passage-time distribution, has been obtained in Dam Storage

 theory (cf. [11]). The author is indebted to Gani for giving him access to the proofs of [111,
 without which the above simplification of (8) would not have been attempted.
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 SUP AND INF OF POISSON PROCESS 573

 THEOREM 3: For all x ! O, X > a> 0,

 (10) log (x, + o) xXa-1 {1 (-1 + 0)

 It will be convenient to define for all real x and ,B : '

 (11) ~~~~f(x,) x E (j + x)j- j.0~~~- j=o 3.

 Since f(x, ,) is a power series in ,B we have

 00 (J + x)' (n -I + y)"~
 (12) f(zX )f(V, d) = xy j -E j (n -)!

 As a consequence of Lemma 2 of [2], the inner summation of (12) is equal to
 (n + x)'/ n!, and so

 f(x, 6)f(Y,j3) -f(x + yfi)

 Sincef(x, s) is a continuous function of x when f(O, fi) is defined to equal 1, it is
 known that

 (13) f(x, f3) = eg(l)
 for some function g(o) independent of x. For a fixed j3 < e', g(,B) may be ob-
 tained by differentiation w- r- t -x and taking limits as x 0. In this way one
 obtains

 (14) g(G) = lim f(x, ,3) = Of (1, j3).

 Setting v- X/a and , = ve-V in (9) and (11) gives

 ,u(x, + oo evxf(-x,vev) = exp fxv - xve f( 1, vecv)}

 = exp {vx - vx A(-1, + oo)},

 which is the desired result.

 Upon setting x = -1 in (10), one obtains

 log A(-1, + co ) = -v{ 1-,u(-1, + to)},

 or equivalently, one has shown that v{ 1 - ,( -1, + oo)} is a non-negative root
 of the equation

 (15) X(eCz 1) + az = 0.

 That is, in the notation of (3), v{1 - A(-1, + o ) } = so.
 The function u(x, + oo ) is a special case of the ruin function studied in the

 theory of collective risk which has already been shown to have an exponential
 form eRx where R is the unique solution of (15), (cf. Cram6r [5]). The result for
 a < X contained in Theorem 3 is new in that it gives an explicit expression for R.
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 574 RONALD PYKE

 Upon observing that the only non-negative root of (15) when X < a is zero
 itself, we may in summary state that

 (t ~~~~~~~~if a > X
 A(x, + 00) -

 texp {xXca[l - ,A(-1, + X)IJ if a < X.

 6. Applications to queueing theory. Suppose that customers are arriving at

 times n/a, n = O, 1, 2, ... and that the service time for the jth customer, Si
 say, is exponentially distributed with expectation 1/X. It is of importance in
 queueing theory to determine the distribution of the busy period of the server
 under the initial condition that there were k people in the queue. To this end
 one must compute

 B(T I k) P[server is busy throughout (0, T] I k people in the queue at t = 0].

 Since additional customers are arriving at times n/q, n = 1, 2, ... we have

 B(T I k) =P[S1+S2+ --+Si+k (i+1)/a,0?i_aT]

 = P[Y(t) _ at + k - 1, 0 < t < T],

 where Y(t) is a Poisson process with parameter X. Therefore, B(T k) =
 (k - 1, T). Define Tk as the time until the server is free under the condition
 that there are k _ 1 in line at time t = 0. Let Gk be the distribution function

 of Tk . Then clearly Tk > 0 a.s. and for all t > 0,

 Gk(t) = 1 -B(t j k) = 1 -(k - 1, t)

 which may then be evaluated by Theorem 1. In particular T, represents the
 total busy period of the server and its distribution function is GI(t) = 1 (-o0, t)
 which is given by the Corollary to Theorem 1.

 A second application is of Theorem 2 to the queueing model in which the
 service times are constant and equal to 1/a and the times between arrivals are
 independent random variables distributed exponentially with expectation 1/A.
 Let ti denote the arrival time of the ith person after t = 0. As in the above let
 Tk denote the time until the server is free measured from t = 0 when it is assumed
 that at t = 0, there are k people in the queue and the server is just beginning
 service. Thus if Gk denotes the distribution function of Tk, Gk(t) = 0 for t < 0,
 and for t> 0,

 Gk(t) = 1 -P [ti < + I ,i- 1,2, * ,Ntl

 where Nt is the number of customers arriving in (0, t]. Therefore,

 Gk(t) = 1 -P[Y(u) > au -k, I 0 u < t]- = I(-k, t),

 which may be evaluated by Theorem 2. In particular T, represents the total
 busy period of the server and its distribution function is given by ,(-1, t).

 Of special interest is 1 - G1( + oa ), which is the probability of the server being
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 SUP AND INF OF POISSON PROCESS 575

 busy for an infinite length of time, or equivalently, of there always being a
 waiting line. Since 1 - GI(+oo) = 1 -,(-1, +oo) we have by Section 4,
 that 1 - GI(+ oo) = 0 whenever a _ X, and

 1 - Gi(+ oo) = 1 -e-x/a E iXI(j +1)3 (X/1Y
 i-0 j

 whenever a < X. That GI(*) is a proper distribution function only when a _ X
 is in keeping with the known result that the recurrent event, "the server is not
 busy" is ergodic whenever a > X, null recurrent whenever a = X and transient
 whenever a < X (cf. Lindley [61).

 6. Applications of Lemma 1. The result given by Lemma 1 is of use in the
 theory of distribution-free statistics. The special case of (4) with a = 1/n is
 the distribution function of the D+-statistic. This special case is known, having
 been obtained by several authors (see e.g. [7]).

 A slightly modified version of the D+-statistic is

 max ( ui) = ct.
 1_i<n n+ 1

 This statistic has the same asymtotic properties as D+ as well as some desirable
 small sample properties. For example E(i /(n + 1) - Uj) = 0 for all i. More-
 over, setting U.+, = 1, Uo = 0 one may write

 win1 U- + i wi = _Ui + Ui_l, i =I1 2, .. * , n + 1
 n + 1

 and

 Si= EWi, j=1,2,...,n+1.

 It is known that the random variables (W1, ***, Wn) are symmetrically de-
 pendent. Therefore by a result of Andersen [8]

 [c 4n + 1 uj n+4 1' j= O,1,*-,n.

 That is to say, the probability that the maximum should occur at the jth ob-
 servation is independent of j. This is not true for D+ as was shown in [2]. The
 distribution function of C+, i.e., P[C+ < x], is given by F(x: 1/(n + 1), n) for
 x > - 1/(n + 1) and is equal to zero for x < - 1/(n + 1).

 Lemma 1 may also be used to obtain the power of the D+ or C: tests against
 alternatives of the form G,(x) = cx for all x e [0, 1/c]. That is to say one may
 obtain, for example, the power of D+ against GL, namely

 (16) P[max (i/n - Zj) < x] = P[max (i/en - Uj) < x/c].
 1<i:gn lS<i<n

 The latter probability may be evaluated by Lemma 1 and is equal to the first
 probability, where Zi is the ith smallest component of (V1, ** *, V") in which
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 576 RONALD PYKE

 the Vi's are mutually independent random variables with the common distri-

 bution function G,. Similarly the power of D+ or C+ against alternatives of the
 form Gb,0(x) = b + cx for all x e [0, l/c - b/c] and = 0 for x < 0, may be ex-
 pressed as a sum of a finite number of terms of the form (16). This generaliza-
 tion of (16) has recently been studied by Chapman [9] for the case b + c = 1.
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