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SOLUTION OF TWO DIFFICULT COMBINATORIAL PROBLEMS WITH
LINEAR ALGEBRA

ROBERT A. PROCTOR*
Department of Mathematics, University of California, Los Angeles, CA 90024

(i) Pick six positive real numbers—any six positive real numbers. If you chose
1,e,m,4,/67,98.6,

you’re in trouble, because the object of this game is to have as many subsets as possible adding up to
the same sum. For example, choosing

5,6,8,9,13,14
yields three subsets with the same sum.:
14=54+9=6+8.

The set

3,4,5,6,7,8
has four subsets adding up to the same number:

7+8=34+4+8=3+5+7=4+5+6.

Choosing

1,2,3,4,5,6
yields five subsets with the same sum:

4+6=14+3+6=14+4+5=2+3+5=1+2+3+4.

Is this the best possible? This problem can be more generally posed for n positive real numbers: Then
it seems that no collection does better than

1,2,3,...,n—1,n.
Call this problem the subset sum problem.

(ii) Fix two positive integers m and n. Draw an m X n grid of squares “on tilt” as in Fig. 1. Now

shade in some of the squares so that there are no unshaded squares below shaded squares—i.e., so
that if the shaded squares were blocks in a rectangular frame, none would slide down. Call such a

FiG. 1.
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shading a proper shading. As an index k runs from O to mn, count how many proper shadings there
are with k shaded squares. For example, if m = 2 and n = 3, then the count is

1,1,2,2,2,1,1
as k runs from 0 to 6. For m = 2 and n = 4, the count is
1,1,2,2,3,2,2,1,1.
And for m = 3 and n = 4 one counts
1,1,2,3,4,4,5,4,4,3,2,1, 1.
It seems that the count always weakly increases until half of the squares have been shaded, and then
weakly decreases until all of the squares have been shaded. In other words, there seem to be no “dips™

in the count. It gets bigger, then smaller. Is this always true for any size grid? Call this the grid
shading problem.

1. Introduction. Letting the cats out of the bags, the answers to both of the questions above are
what you would expect. The choice

1,2,3,...,n—1,n

is the best possible, and there are not any dips in the proper shading count for any values of m and
n. Proving either of these answers correct is surprisingly hard. All known proofs of these results
involve representations of Lie algebras or the symmetric group in some form. We’ll give proofs
phrased entirely in terms of elementary linear algebra. These proofs were obtained by translating
the essential parts of Lie algebraic proofs into linear algebra. So knowledge of undergraduate
linear algebra is the only background you’ll need.

Let py, py,-- -, b, be a sequence of numbers. If

PoSPi < " SPR SPypZPp1 2 2P 2D,

for some h between 0 and r, then the sequence is said to be unimodal. The grid shading problem
can now be succinctly stated: Is the sequence of proper shading counts unimodal for all values of m
and n?

How did this problem and its solution arise? Unfortunately from a theatrical point of view, the
grid shading problem first arose in the subject in which it was ultimately solved: Classical
Invariant Theory. (Not a dashing rescue of some befuddled combinatorialists by the Lie algebra
cavalry: The ancestors of modern day Lie representation theorists got themselves into and out of
this one!) While finding all covariants of a binary quantic in the early 1850’s, Arthur Cayley
apparently took the unimodality of the grid shading counts completely for granted. At the same
time, he accepted without proof the independence of a certain set of linear equations. In the words
of James Sylvester, this crucial gap in Cayley’s methods remained for “upwards of a quarter
century.” Then in 1878, “by aid of a construction drawn from the resources of Imaginative
Reason,” Sylvester “accomplished with scarcely an effort a task which (he) had believed lay
outside the range of human power,” and showed that Cayley’s equations were in fact independent.
The unimodality of the proper shading counts is an immediate consequence of the independence
of these equations. Other proofs have appeared over the last century in various contexts, including
representations of the symmetric group, Hodge theory, and representations of Lie algebras. But all
of these proofs, including the one presented in this article, are related to the methods of Cayley
and Sylvester. However, this being 1982, instead of using “a construction drawn from the
resources of Imaginative Reason,” we’ll use a “trick” for our crucial step.

Upon hearing of this unimodality theorem and its mysterious proofs a few years ago, some
combinatorialists decided to look for a more satisfying “combinatorial” proof: For each k < mn/2
(less than half of the squares shaded), explicitly describe a one-to-one map from the set of proper
shadings with k squares shaded into the set of proper shadings with k& + 1 squares shaded. This
would imply that the proper shading count increases until half of the squares have been shaded. A
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simple symmetry argument then completes the proof. At first glance it seems like it should be easy
to find such a proof, but to date such proofs have been found only for the cases where one of m or
n is less than or equal to 5.

In contrast to the grid shading problem, the story behind the subset sum problem does have
something of a dramatic twist. Since this problem was of genuinely combinatorial origins, its
solution was almost necessarily by accident: No one in his right mind would consider using the
cohomology of projective algebraic varieties! However, this was the technique which led to the
first solution of this problem. First proposed by that grandmaster of intriguing combinatorial
problems himself, Paul Erd6s, and Leo Moser in 1963, no progress was made on the problem until
1969. At that time, Bernt Lindstrom reduced the problem to showing that a certain family of
partially ordered sets have the “Sperner” property. Completely unaware of both the original
problem and Lindstrom’s reduction, Richard Stanley showed in 1978 that this family of partially
ordered sets do have the Sperner property. Stanley’s methods used the hard Lefschetz theorem of
algebraic geometry, which concerns the effect of multiplication by the cohomology class corre-
sponding to a hyperplane section in the cohomology ring of a projective algebraic variety.
However, the solution was not complete until these two pieces were combined. The connection
was made by Larry Harper during a phone call with Stanley, the original purpose of which was to
discuss a house sublet during a sabbatical leave! The Lie algebraic solution from which our proof
is derived is closely related to Stanley’s algebraic geometric solution.

The solutions presented here proceed as follows: We'll associate a family of partially ordered
sets to each problem, and then show how the questions at hand can be translated into properties
of the partially ordered sets. Next we’ll associate vector spaces with linear operators to each
partially ordered set. Everything will then be reduced to showing that the linear operators have the
largest ranks possible. The solutions will be completed by proving this with a trick borrowed from
the representation theory of Lie algebras.

D
F1G. 2.

2. Poset Formulation. A finite partially ordered set (“poset” for short) is just a finite set upon
which an ordering relation < has been defined. As indicated by the word “partial,” it is not
necessary for any two elements to be related by <. For example, Fig. 2 shows what a poset
describing the logical dependence of four chapters in a textbook might look like: Chapter A must
precede Chapters B and C, and Chapters B and C must precede Chapter D, but neither Chapter B
nor Chapter C must precede the other.

For any fixed values of m and n, there’s a natural partial ordering of the various proper
shadings of an m X n grid: Order the proper shadings “by containment.” See Fig. 3 for the case
m = 2 and n = 2. Given a proper shading, let a, be the number of squares shaded in its top right
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FiG. 3.
row, a, the number shaded in the next row,. .., and a, the number shaded in the bottom left row.
Note that
0<a <a,<-"<a, <a,<m
Let the n-tuple
a=(a,ay,...,a,)

denote this shading. It’s easy to see that there’s a 1-1 correspondence between the collection of all
such n-tuples and the set of all proper shadings of the m X n grid. Now the poset of proper
shadings can be officially described:
a<b
if and only if
a<b, a,<b,, ..., a,<b,

We'll call th’is poset L(m, n). Fig. 4 shows L(3, 3).

Whenever one element of a poset lies immediately above another element, we’ll say that the

first element covers the second. For example, the element (1,2,3) covers the element (1, 1,3) in

L(3,3). A poset P which can be split up into r + 1 subsets
Py,P,P,,....,P._,P

r

such that elements in P, cover only elements in P, _, is called ranked. (The smallest example of a
poset which cannot be ranked has a diagram which is a pentagon.) If we let p, denote the number
of elements in the kth rank P,, the sequence of numbers

Pos P15 Pas--sPr—15 Py
lists the sizes of the ranks of P. If this sequence is unimodal, we’ll call P a rank unimodal poset.
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(3,3,3) (1,2,3,4)

(2,3,3) (0,2,3,4)

(0,3,3)
(0,2,3)
(0,1,3)
(1.1,1) (0,0,3)
©.0.1) (o,o,o,i)
(0,0,0) (0,0,0,0)
FIG. 4. L(3,3). FIG. 5. M(4).

In the posets L(m, n), the Oth rank consists of just the empty grid. As we generate all proper
shadings by adding one shaded square at a time, note that all the grids with k squares shaded will
lie in the kth rank of L(m, n). So the size of the kth rank of L(m, n) is the number of proper
shadings of an m X n grid with k squares shaded. Therefore the grid shading problem can be
restated as: Show that the posets L(m, nn) are rank-unimodal for all values of m and n.

There’s a family of posets closely related to the L(m, n) whose structures play a crucial role in
the solution of the subset sum problem. Let M(n) denote the set of all n-tuples of integers

b= (by,b,,..., b,)
such thaf
0=b1= =bj<bj+l<bj+2< <bn<n

where j is some integer 0 < j < n. For example, if n = 3, there are eight such 3-tuples:

(0,0,0), (0,0,1), (0,0,2), (0,0,3),

(0,1,2), (0,1,3), (0,2,3), (1,2,3).
Now define a partial ordering on the set M(n) exactly as we did for L(m, n):

a<b
if and only if
a<b, a,<b,, ..., a,<b,.



726 ROBERT A. PROCTOR [December

See Fig. 5 for a picture of M(4).

The Oth rank of M(4) consists of the 4-tuple (0,0, 0,0). As we move upward in the poset, we see
that each succeeding rank consists of 4-tuples whose entries add up to a sum 1 greater than the
sums of the 4-tuples in the preceding rank. Therefore the kth rank of M (4) consists of 4-tuples
which add up to k. For example, the 5th rank of M(4) consists of (0,0,2,3) and (0,0, 1,4). It is
not hard to see that this is true for the ranks of any M(n).

Now recall that the subset sum problem concerned the sums of the elements of subsets of a set
of n positive real numbers. In particular, it was claimed that the set

N={1,2,3,...,n—1,n)

had at least as many subsets adding up to a common sum as did any other set of  positive real
numbers. If we look back at our definition of M(n), we see that there is a 1-1 correspondence
between its n-tuples and the subsets of the set N. Note that under this correspondence, the entries
of the n-tuple add up to the same sum as the elements of the subset do. So two subsets of N will
add up to the same number k if and only if both of their corresponding n-tuples lie in the kth
rank of M(n). Therefore the largest collection of subsets of N with equal sums will be found by
taking the subsets which correspond to the n-tuples lying in the largest rank of M(n).

Now remember that what we want to show is that no other set S of » positive real numbers will
do better than the set N. Take any such set S and list its elements in increasing order:

S = (81552553545 Sy—15Sn)s
§1 <85, <§3< - <§, <595,
If
A={si|,si2,...,si4), i <iy< - <,

is a subset of S, then define
a=(0,0,...,0,i,ip,...,1,)
to be a corresponding element of M(r). It will no longer be true for S (as it was for N) that two

subsets corresponding to n-tuples in the same rank of M(n) will have equal sums. However, the
following will be true:

a<b inM(n)
implies that
2(4) <X(B),

where X(A) and X(B) denote the sums of the subsets of S corresponding to the n-tuples a and b.
To see this, just write the elements of S above the entries of a and b to which they correspond. For
example, if

S = {y2,11,107,55)
and
A={1,3) and B={(1,2,4),
then write
V2 107 V2 11 55
(0, 0,1, 3) and (0, 1, 2, 4).

Observe that the element of S written above the ith entry of a will be less than the element of S
written above the ith element of b. Therefore the sum of the elements in 4 will be less than the
sum of the elements in B.
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The upshot of all this is: In order for two subsets of S to have equal sums, they must correspond to
incomparable elements of M(n). (Two elements x and y of a poset are said to be incomparable if
x & y and y £ x.) This tells us that the largest collection of subsets of S with equal sums can be
no larger than the largest collection of mutually incomparable elements of M(n). A little
experimentation for small values of n seems to indicate that the largest collection of mutually
incomparable elements of M(n) is never larger than the biggest rank of M(n). If we could prove
this to be true for all n, then we’d be done, as the following summary indicates:

Largest collection of subsets of S with equal sums
is no larger than the

Largest collection of mutually incomparable elements of M(n)
which is conjectured to be no larger than the

Largest rank of M(n)
which is equal in size to the

Largest collection of subsets of N with equal sums.

Any ranked poset which has no collection of mutually incomparable elements larger than its
largest rank is said to be Sperner. The above argument has reduced the subset sum problem to:
Show that the posets M(n) are Sperner for all values of n.

The methods we’ll use in this article will actually show all L(m, n) and M(n) to be both rank
unimodal and Sperner. Here’s one way to show that a ranked poset P has these properties.
Suppose the ranks of P are

P,,P,P,,...,P._,, P

r

and suppose we want to show that the sequence of rank sizes is unimodal with a peak at k = A.
Assume for the time being that to each element x in a rank P, with k < h, we can assign an
element y from the rank P, | such that x < y and such that no element y from the rank P, ,, is
used more than once when all of the elements of rank P, have been taken care of. If we can do
this, we’ll say that we have a matching of rank P, into rank P, , . Also suppose that we can do the
reverse process for each pair of ranks P, and P, _, when k > h (i.e., find a 1-1 map from P, into
- P, _, such that if w in P, _, is assigned to x in P,, then w < x). The following lemma asserts that
we will have solved both of our problems if we can find such matchings for L(m, n) and M(n).

LEMMA. Let P be a ranked poset with r + 1 ranks. If rank P, can be matched into rank P, ., for
k < h and rank P, can be matched into rank P, _, for k > h, then the poset P is rank unimodal and
Sperner.

Proof. As before, let p, be the number of elements in the kth rank. The matching conditions
clearly imply that p, < p, ., for k < h-and that p, _, > p, for k > h. Thus the sequence of rank
sizes is unimodal about k = A.

Picture the matchings as special edges in the diagram of P. (See Fig. 6.) Glue the various
matchings together and obtain “chains” of elements of the poset which stream into the rank P,
from above,and below. (A chain is a subset of a poset in which any two elements are related by
< . Chains can be visualized as ascending or descending sequences of elements in the diagram of
the poset.) Every element of P lies on one of these chains. Now take any set of mutually
incomparable elements in P and plot them on the diagram of P. Each of these elements lies on
one of the chains. By the definition of incomparable, no two can lie on one chain. But there are
exactly as many chains as there are elements in the biggest rank P,. Therefore there can’t be more
elements in this mutually incomparable subset than there are elements in the largest rank P,. So
the poset P must be Sperner, as desired.

3. Linear Algebra Formulation. So far we have translated the original two problems into the
question of whether certain matchings exist in the posets L(m, n) and M(n). The proof of the



728 ROBERT A. PROCTCR [December

FIG. 6.

existence of such matchings, the heart of the solutions, is in the next section. To get there from
here, we must first describe the role that linear algebra plays. In this section we’ll work with an
arbitrary ranked poset P with ranks

. Py,P,P,,....,P,_,,P,.
Suppose that the elements of P are a, b,. .., e. Let P denote the vector space over the complex
numbers which has a basis consisting of vectors @, b,.. ., & which correspond to the elements of P.

Under this set-up, P, will denote the subspace of P spanned by those Dbasis elements which
correspond to elements in rank P,. We’ll call P, the kth rank subspace of P. Note that

dim P, = p,,
the number of poset elements in the rank P,. 3
Now define the order operator of P to be the linear operator X on P given by:

Xa = Z"b covers ab .

Unofficially: When X acts on a poset element, it produces the sum of poset elements covering that
element. Note that

X(B,) c Py,

So let’s define X, to be the linear transformation from P, to P, , , obtained by restricting X to P, .
The matrix for X, with respect to the poset element bases for P, and P, | is a p, ., X p, matrix
consisting of 0’s and 1’s. The locations of the 1’s describe which elements of P, , cover which
elements of P,.

We’re now ready to state the next step of the solutions:

LEMMA. Let P be a ranked poset with r + 1 ranks and order operator X. If there is some h such
that the X, are injective for k < h and surjective for k > h, then P is rank unimodal and Sperner.

Proof. Suppose k < h. Then X, is injective and its matrix with respect to the poset basis has
rank p,. This matrix must have at least one nonzero p, X p, minor. The usual determinantal
expansion of this minor into p,! terms must have at least one nonzero term. This term is the
product of p, 1’s, where no two of these 1’s lie in the same row or the same column of the matrix
for X,. Now the columns of the matrix for X, are indexed by the elements of P, and the rows by
elements of P, ,. Using the nonzero term of the nonzero minor, we can assign to each element in
P, a covering element from P, , | in such a way that no element from P, , , is used twice. In other
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words, we get a matching of P into P, ;. The same method produces matchings of P, into P,
when k > h and X, _, is surjective. Apply the lemma of the previous section to f1msh the proof.

4. Order Operators Have Maximal Ranks. In this section we’ll complete the solutions of the
two problems by showing that the order operators for the posets L(m, n) and M (n) satisfy the
requirements of the lemma above. The construction used will seem somewhat unmotivated and ad
hoc to anyone unfamiliar with representations of the Lie algebra s1(2, C). However, the existence
of such a construction is almost necessary in these circumstances—more on this in the last section.

Recall that the elements of L(m, n) and M(n) are being denoted by n-tuples

a=(ay,a,,...,a,).

Also recall that the order operator X for any poset is defined by

X8 = Lp covers ab-
We’ll need two other linear operators H and Y on the vector spaces L(m, n) and M (n). Set
Hi=[2(a,+ay+ - +a,)—mn]a
on L(m, n), and
n(n2+ 1) "
on M(n). Oh yes—we forgot to mention in Section 2 that if b covers a in either L(m, n) or M(n),

then there is some index i such that a, = b, — 1 and a;, = b; when j = i. But no harm done, since
only now do we need this fact: Defme the third operator Y on either L(m, n) or M (n) by

Yb ZI:u covers a€ (a b)a

Hﬁ=[2(a1+az+~-+an)—

where (assuming a;, = b, — 1)
c(ab)y=(m+n—a,—i)(a, + i)

for L(m, n), and c(a,b) = n(n + 1)/2 if a;, = 0, otherwise = (n — a,)(n + a; + 1) for M(n). In
passing, we culturally remark that each set of three operators defines a representation of s1(2, C)
on L(m, n) or M(n).

If you picture the posets L(m, n) and M(n) as in Figures 4 and 5, then the action of X raises
vectors by one level, the action of H leaves vectors in their original levels, and the action of Y
lowers vectors by one level. By now it should be apparent that the two cases L(m, n) and M (n)
are very similar. To save ink, we’ll usually refer only to L(m, n) from now on. The rank subspaces
of L(m, n) will be denoted by

750 AR A /

mn*

Now that we’ve dispensed with the reductions of the problems, definitions, notation, and
preliminary observations, we’re ready to get to work. What do we want to prove? Remember that
X denotes the restriction of X to the rank subspace L, (or M, for M(n)).

LEMMA. The linear transformations X, for L(m n) are injective if k < mn/2 and surjective if
k > mn/2. The linear transformations X, for M(n) are injective if k < n(n + 1)/4 and surjective if
k>n(n+ 1)/4.

Once we prove this, the solutions are complete. The proof consists of two parts. The first part
concerns the “commutation relations” between the three operators X, Y, and H. The second part
constructs new bases for the vector spaces L(m, n) and M(n).

Getting on with the first part, we first claim that

HX—- XH=2X and HY - YH = -2Y.
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These aren’t hard to prove: Take a in L,. Then

Hi= 2k — mn)d and H(Xa)= (2k + 2 — mn) X3,
since X@ is in L, , ,. Therefore

[HX — XH]a=[2k +2— mn— (2k — mn)] Xa = 2 X4.

And similarly for the relation HY — YH = —27.
More work is required to prove the third commutation relation:

XY -YX=H.
Again look at the effect of the operators on a basis vector 4 in L,. Both XYa and YXa lie in L,
and are thus linear combinations of the vectors d with d, + d, + --- + d, = k. In terms of

n-tuples, the effect of X is roughly described as adding 1 to each component of the n-tuple at a
time. And Y subtracts 1 from each component at a time. So d appears in the expansion for
[ XY — YX]4 exactly whenever there are indices i and j such that

d=a,~1 and d;=a,+1.

If i = j, then the resulting terms in both XYa and YX3a have coefficient (m +n —a, —i + 1)
(a; + i — 1) and thus cancel each other. Therefore [ XY — YX]a is a scalar multiple of a: the only
contribution comes from adding then subtracting, or subtracting then adding 1 to the same
component. Explicitly,

[xY - YX]5={ Y (m+n—a,—i+1)(a+i—1)

1<ign
a,_<a,

- ¥ (m+n—a,-—i)(a,-+i)}§.

Igign
a,<a,;,

The summation conditions result from the requirement that the »n-tuples must always satisfy

0<a <a,< - <a,<m.

n

(And we have set a, = 0 and a,,; = m.) A close look at these summations reveals that it’s O.K.
to drop the extra conditions on the summations—any new terms appearing will be zero or will
cancel each other. So then

[XY - YX]§={ Y [(m+n—a,—i+1)(a+i-1)— (m+n—a,—i)(a,-+i)]}§
1<ign
= [2(a; +ay + - +a,) — mn]d
= Ha.
Similar steps work for M(n).

This brings us to the second part of the proof of the lemma. We are now ready to take
advantage of one of the nicer features of linear algebra, the ability to change bases. Although
changing bases will scramble the information currently contained in the matrix descriptions of the
transformations X, the new basis will help us show that these transformations have the correct
ranks. The lemma in Section 3 then provides for the unscrambling of the information back to its
original form with the knowledge that the necessary matchings exist.

The construction given below replaces the poset basis used until now for (m, n) with a new
basis which is depicted schematically in Fig. 7. Interpret this diagram as follows. The dots in the
kth level of the diagram represent new basis vectors lying in the kth rank subspace L,. And the
new basis vectors lying in a vertical line are related by the recursion

Wip1 = Xw;.
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FIG. 7. New basis for L(m, n).

Any sequence of vectors related in this manner is called a string of vectors. Our new basis will
consist of a collection of strings of vectors with each string symmetric about the middle
subspace(s).

Let the first member u,, of the new basis be @, where a is the only element of L,. Let U be the
subspace of L(m, n) spanned by the various vectors obtained by acting on u, with all possible
compositions of the operators X, Y, and H. For example, 5 XYu, — 7XHXXu, is a typical element
of U. By repeatedly using the commutation relations

HX=XH+2X,YH=HY +2Y and YX=XY-H,

it’s possible to express any composition of the operators X, Y, and H as a linear combination of
terms of the form X'H/Y*. But Yu, = 0, and H’u, is just a scalar multiple of u,. So

- - ¥2
Ug, Uy = Xug, uy=Xugy, -

span the subspace U. Now u, is in Ly, u, is in L, etc. So these vectors lie in distinct disjoint
subspaces of L(m, n), implying that they are linearly independent. Therefore the string of vectors
Ug, y,... forms a basis for U. But U is finite dimensional. Call the last vector in the string u,.

How lpng is this string of vectors? By the definition of U, none of the three operators X, Y, or
H can move anything outside of the subspace U. Thus the restrictions of X, Y, and H to U are

operators on U. Denote these operators on U by X’, Y’, and H'. Note for use below that the
relation

H =XY -YX
still holds. Now take u, in L,. Then
Hu, = 2k — mn)u,,

since u, is a linear combination of the 3 with a, + a, + --- + a, = k. So the trace of the
operator H’ can be easily computed:
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trace H' = —mn + (2 — mn) + --- + (25 — mn).
We’ve finally arrived at the trick alluded to in the introduction: It’s a simple fact that
trace AB = trace BA
for any two linear operators 4 and B. Apply this fact to the operators X’ and Y’:
trace XY’ = trace Y'X'.

Then
trace H' = trace (XY’ — Y’X’) = 0,
implying
§ = mn
We conclude that the string of vectors
Ugy Upse ey Upy

forms a basis for U.

Continue the construction of a new basis by letting 8 be the smallest index such that U N LB is
not all of LB Pick any vector v in LB which is not in U. Let ¥ denote the subspace spanned by all
vectors resulting from all possible compositions of X, ¥, and H acting on either u, or v,. Since
Yv, must be in U, one can see that

vg, Vg = Xvg, gy, = X%,

together with the u;’s span V. If v, is in U for some index g, then v, is also in U for all » > q. Let
v, be the last vector in the second strmg which is not in U. By cons1der1ng rank subspaces, it’ s easy
to see that the only possible linear dependences among all of the u,’s and v,’s (with 8 < h < 1)
must occur between a u, and a v, in the same rank subspace . But our choice of ¢ pI'Oh.lbltS any
such degenerate relationships between members of the two strings. The union of the two strings
therefore forms a basis for V. The trace trick can be used again to find that

t=mn— B.
So a basis for Vis
Ugs Upseeos Upps Vs Opitseses Uppop-
Repeat this procedure, creating subspaces
UcvVvcwc.--cL(m,n).

Since L(m, n) is finite dimensional, the process must eventually stop. Call the last subspace so
constructed Z, and call the last basis vectors so chosen

Z,,2

W' Zw+1r s Zmn—w-

All the strings of vectors taken together form a new basis for L(m, n) = Z. The subset of these
vectors with subscript k& forms a basis for the rank subspace L,. Finally note that each string of
new basis -vectors is symmetric about the middle rank subspace(s): If a string starts in L, with
k < mn/2, thenitendsin L, _,.

We’re now ready to complete the proof of the lemma. If k < mn/2, then X, takes all of the
new basis vectors for I, to new basis vectors for L, , because no strings end below the middle.
So these X, ’s are injective, as required. If k > mn/2, then X, hits every new basis vector for Ly
with a new basis vector from L, since no strings start above the middle. And so these X,’s are
surjective, as required.

We’re done! Since this lemma was the last step in our solutions, we can conclude:

THEOREM. The posets L(m, n) and M(n) are rank unimodal and Sperner. Therefore the proper
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grid shading counts for fixed m and n form a unimodal sequence, and no set of n positive real numbers
has more subsets summing to a common sum than does the set N = {1,2,..., n).

5. Remarks. Our methods proved the existence of rank matchings for L(m, n) and M(n)
satisfying the requirements of the lemma in Section 2, but did not explicitly construct such
matchings. Some very nice matchings (“symmetric chain decompositions”) have been found for
L(2,n), L3, n), L4, n), and L(5, n) [Li2], [Rie], [Wes] (and K. Leeb and V. Strehl, unpublished).
No rank matchings of any kind (not even ones possibly ignoring order relations) have been found
for general L(m, n) and M(n).

The Lie representation constructions employed in this article may seem somewhat ad hoc and
unnatural with respect to the combinatorial situation at hand. However, it can be shown [Prl] that
a ranked poset is rank unimodal, “rank symmetric,” and “strongly Sperner” if and only if it
“carries” a representation of s1(2,C). Rank symmetric means p, = p, _, and strongly Sperner
means no union of N antichains is bigger than the union of the N largest ranks, for all N > 1. By
carry, we mean that three operators X, Y, and H can be defined on the vector space associated
with the poset as in this article, except that the operator X need not have all coefficients equal to 1
and the operator Y need not obey the order relations.

The computations required to determine whether a given ranked poset carries a representation
of s1(2,C) can be quite difficult. However, the computations become relatively simple in the
context modelled the most closely after the situation in this article: distributive lattices, coeffi-
cients all equal to 1 for the operator X, and the operator Y respecting the order relations.
Surprisingly, it is possible to prove [Pr3] that this version of our techniques can be applied to only
one other infinite family of and two exceptional distributive lattices besides the L(m, n) and
M (n). Dynkin-like diagrams play a crucial role in the classification procedure. The set of all of
these diagrams also arises as the set of Dynkin-like diagrams corresponding to all quotients of
semisimple Lie groups which are Hermitian symmetric spaces!

Stanley was the first to prove that L(m, n) and M(r) have the strong Sperner property [Stl].
The lemma in Section 3 is a simpler version of a lemma that he developed for this purpose. To
show that the operator X satisfied the requirements of his lemma, Stanley first noted that bases for
the cohomology rings of certain projective varieties (the Grassmannians for L(m, n)) can be
labelled in a natural way with elements of L(m, n) or M(n). Then he observed that multiplication
by a hyperplane section in the cohomology ring when viewed as a linear operator is exactly the
operator X. Stanley completed his proofs with the hard Lefschetz theorem, a major theorem of
algebraic geometry: This theorem states that the linear operator defined by multiplication with a
hyperplane section produces a vector space isomorphism between “sister” cohomology groups.

In the cases of L(m, n) and M(n) (Stanley also treated many other posets), it is possible to
replace the algebraic geometry in Stanley’s proofs with representations of Lie algebras. This was
done [Pr2] by combining combinatorial identifications of weights of representations by Hughes
[Hug] with the construction of principal three dimensional subalgebras due to Dynkin [Dyn, p.
168] in the case of minuscule representations. This replacement yielded the Lie algebraic proofs
from which the proofs given here were derived. The trace trick is a standard technique in
representation theory [SaW, p. 278].

When the historical background for this article was being researched, after a little translation it
was discovered that the vector spaces and operators used by Cayley [Cay] and Sylvester [Syl] for
their problem in invariant theory were nearly the same as those used here for the poset L(m, n).
Cayley even used the same letters X, Y, and H! Although Sylvester’s proof of the injectivity and
the surjectivity of the operators X; is different, it also uses the commutation relations between the
three operators. For two other proofs of the unimodality of the grid shading sequences in the
context of classical invariant theory, see Springer [Spr, Ex. 3.3.6(1)] and Elliott [Ell, p. 149].

The unimodality of the grid shading sequences has also been proved using representations of
symmetric groups by White [Whi], Towber and Wagner [ToW], and Stanley [St2]. Stanley’s proof
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is fairly simple, using nothing more sophisticated than general facts about representations of finite
groups. He and Larry Harper [Har] have recently extended these methods to show that L(m, n) is
strongly Sperner. Their approach turns out to be a stronger version of some work of Pouzet [Poul].
The paper by Towber and Wagner shows that the symmetric group approach and the 5s1(2,C)
approach are closely related.

The original conjecture of Erdés and Moser [Erd] actually concerned any 2n (or 2n + 1) real
numbers, rather than n positive real numbers. The answer is what one would expect:

-n, —n+1, ..., =1, 0, 1, ..., n—1, (n).

This conjecture was also first proved by Stanley [Stl]. Roughly speaking, if n=m + z + p
specifies how many numbers are negative, zero, and positive, his proof consists of showing
M(m) X M(z) X M(p) to be Sperner (which can also be done with our methods) together with a
short elementary argument showing that z = 1 and n = p(%1).

The reduction of the conjecture of Erdés and Moser for positive real numbers to the question
of the Spernerity of M(n) is due to Lindstrom [Lil].

I am indebted to my adviser Richard Stanley for encouragement and mathematical inspiration. I am also
indebted to Bruce Sagan and several other people for constructive criticisms.
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