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 Another issue related to bidding strategy is whether to be bold or cautious in opening
 bidding. The man who strongly desires an item will jump in with both feet, as it were, or
 try to rout the enemy by starting out with a high, possibly loud, bid intended to "knock
 out" his opponents. Sometimes he even tops his own bid. This approach may discourage
 competitors at the outset and prevent them from ever getting caught up in the spirit of
 the bidding. In a very different strategy, a prospective buyer, even though determined to
 purchase an item, bids tentatively and cautiously in order to feel out the opposition. He
 hopes that by indicating a low regard for the offering he will lull opponents into a false
 sense of security. (Ralph Cassady, Jr)

 This paper analyses a dynamic auction in which a fraction of each bid is sunk. Jump bidding is used
 by bidders to signal their private information. Bluffing (respectively sandbagging) occurs when a weak
 (respectively strong) player seeks to deceive his opponent into thinking that he is strong (respectively
 weak). A player with a moderate valuation bluffs by making a high bid and drops out if his bluff is called.
 A player with a high valuation should vary his bids and should sometimes sandbag by bidding low, to
 induce lower bids by his rival.

 1. INTRODUCTION

 The received view in auction theory is that, in English auctions, a bidder should submit a bid that
 barely exceeds the previous one by the minimum increment, unless his valuation is reached, at
 which point he should stop bidding. This view, however, fails to account for bluffing and sand-
 bagging, the two well-known bidding tactics described by Cassady in the introductory quotation.
 It also fails to account for jump bidding, the phenomenon that, in many auctions, bidding occurs
 in repeated jumps.

 There are two theories to explain jump bidding. The first theory interprets such bids as
 coordination devices: Avery (1998), in a common values setting, shows that the opening bid may
 be used to coordinate upon the asymmetric equilibrium to be played in a second round.

 According to the second theory, jump bidding may follow from the costs of submitting and
 revising bids (Fishman, 1988; Hirshleifer and Png, 1989; Daniel and Hirshleifer, 1998). This
 second theory also provides an explanation for the bidding delays one observes in "spontaneous
 auctions" such as takeover contests. In takeover contests, or in larger auctions, such as the U.S.
 government Personal Communications Services (PCS) spectrum auction, bidding costs may be

 1. A previous version of this paper has been circulated under the title "Bluffing Beyond Poker". The very detailed
 comments and the suggestions of Mark Armstrong and of two anonymous referees are much appreciated. We also would
 like to thank Patrick Legros, George Mailath, Steven Matthews, and Andrew Postlewaite for useful comments.
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 174 REVIEW OF ECONOMIC STUDIES

 substantial. As a result, the costs of bidding must be weighed carefully by bidders: hence the
 delay and the jump bids.2

 The element common to these two theories is that jump bidding is used to signal one's
 strength in the auction. In Avery's model, a high opening bid is followed by a less aggressive
 strategy by the competitor. When bidding is costly, a high bid is used to deter other bidders from
 entering, or remaining in, the bidding contest. In both theories, signalling is monotonic in the
 sense that bidders with higher types (valuation or signal) bid more.

 We propose an alternative way of looking at signalling in bidding contests. Our main con-
 tribution is to show that non-monotonic signalling can exist. Bluffing and sandbagging strategies
 are used by bidders.

 We analyse two-round auctions. Two bidders compete for an object. Each player knows
 what the object is worth to him, but this valuation is private information. In the first period, one

 of the bidders has the opportunity to make an opening bid. His rival must then either match the
 bid or quit the auction. If the first bid is matched, a sealed bid auction determines the winner in
 the second round. In the simplest version of the model, the first bidder may initially submit one
 of two bids, either high or low.

 Bidding high has two potential effects. (1) It may deter the other player from continuing
 the auction, allowing the first player to win with no further bidding. This is the deterrence effect.
 (2) The bid might be covered, which can lead to an escalation effect. If the opening bid is inter-
 preted as a sign of strength, the second player correctly infers that to have a chance of winning he
 has to bid aggressively in the second round. While the deterrence effect benefits the first player,

 escalation makes it more expensive for him to win.
 Bidding low, the alternative option, has a sandbagging effect. This kind of bid certainly does

 not deter the second player. However, if he interprets the low bid as a sign of weakness in the first
 player, he may decide to weaken his own bid in the second round, so as not to waste resources.
 This reduces the costs of winning and makes sandbagging an attractive option for players with a
 high valuation.

 In standard signalling games, the sender always tries to convince the receiver that he is
 strong; in our terms, that he has a high valuation. In our game, however, the incentives to sig-
 nal are more sophisticated. In particular, a player with a high valuation can benefit both from
 being perceived as very strong and from being perceived as very weak. This leads to complex
 equilibrium behaviour where both direct and inverted signalling are present. Players with a weak
 valuation will make low opening bids, while those with intermediate level valuations will "bluff"
 by making high opening bids to achieve deterrence, but withdraw from the auction if their bid is

 called, thereby avoiding escalation. Players with high valuations will choose randomly between
 high and low opening bids, enjoying both the deterrence effect of a high bid and the sandbagging
 effect of a low one. Thus, the bidding strategies are not monotonic. The second player's decision
 as to whether to cover is less interesting. If the prize is worth enough to him he will cover; if not
 he will pass.

 Our results apply to any contest in which expenditures or investments are sunk as part of the
 bidding process, for example, auctions, legal contests, lobbying contests, and technology races.3

 2. The cost of bidding for big private finance initiatives in the U.K. is so high, for instance, that it has led companies
 to be much more selective about the projects for which they tender, a phenomenon described by Timmins, Felsted and
 Smy (2002) for the Financial Times. Besides the cost of obtaining financing for the bids, Hirshleifer and Png mention
 several kinds of cost of takeover bidding: "(...) fees to counsel, investment bankers, and other outside advisors, the
 opportunity cost of executive time".

 3. Consider, for instance, the contest between Boeing and Airbus to develop a super jumbo. The niche is an
 appropriate market to be occupied by a single company, and the development costs amount to $12 billion for Airbus,
 which are sunk irrespective of whether its plane ends up being preferred to Boeing's rival offering (The Economist,
 1995).

 @ 2007 The Review of Economic Studies Limited
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 HORNER & SAHUGUET COSTLY SIGNALLING IN AUCTIONS 175

 Bluffing is a tactic often used in auctions (see Avery, 1998, for several examples). Sandbagging
 is often used in legal proceedings, when a litigant withholds legal arguments until they reach the
 courts of appeal (see, for instance, U.S. Courts of Appeals, 2001). By waiting to raise arguments
 and present evidence in the reply not contained or raised in the moving papers, a defence counsel
 might "sandbag" the trial court.

 Our result sheds light on two-stage auctions. The importance of two-stage auctions is now
 well recognized. Ye (2005) documents a variety of examples of two-stage auctions in which bid-
 ding takes two rounds. The auctioneer typically uses the first bid to select the participants of
 the second round. For instance, Central Maine's Power placed its entire 2.110 megawatt asset
 portfolio for sale in such a two-stage auction. Similarly, in California, Pacific Gas and Electric-
 ity divested all of its fossil generation plants using such a procedure. Ye discusses the players'
 incentives to misrepresent their valuations in the first stage. Ye focuses on the impact of the first

 stage on the entry decision (which is assumed to be costly) of bidders. One way to reinterpret
 our model is to consider first-stage bids as entry costs and see costly entry as a way to manipulate
 the beliefs of other potential bidders.

 While Ye models the first bid as non-binding, Perry, Wolfstetter and Zamir (2000) consider,
 instead, the case in which the first-period bid serves as the minimal allowable bid in the second
 stage, as we do. Caffarelli (1998) documents another example of such a two-stage auction, used
 for the privatization of the Italian industrial conglomerate Ente Nazionale Idrocarburi (ENI). In
 the first round, all agents submitted sealed bids and the highest two were selected for the second
 round. All first-round bids were made public, so that signalling became potentially important.
 Yet Perry et al. assume that only losing bids are revealed, destroying, thereby, incentives to
 signal. However, they mention that revealing all the bids can have interesting consequences, for
 instance, of revealing the ranking of valuations. Landsberger, Rubinstein, Wolfstetter and Zamir
 (2001) analyse such a game in which the ranking of valuations is known to bidders. This does
 not really address the problem of signalling in two-stage auctions since it implicitly assumes
 that first-stage bidding has to be monotonic. One of our main results is that monotonic equilibria
 would not occur in such situations, and we show that players' incentives to misrepresent their
 valuations in the first stage are complex, since both sandbagging and bluffing strategies are used
 in equilibrium.

 The importance of bluffing and sandbagging strategies is well established in the game of
 poker. A detailed comparison with poker models can be found in Section 7. To summarize briefly,
 the incentives are reversed in poker. A player with a strong hand would like his opponent to
 submit high bids, and a player who suspects his opponent to hold a strong hand has an incentive
 to submit low bids. Auctions exhibit the opposite features. As a result, in the poker game most
 closely resembling ours (Newman, 1959), the lowest and the highest types submit high bids,
 while intermediate types submit low bids. By submitting high bids with low types, a player
 "jams" his opponent's inferences, so as to encourage bidding. In our model, it is the intermediate
 types who are the most aggressive in their initial bids, while high types are more likely to submit
 a low bid, so as to win more cheaply afterwards.

 The non-monotonic equilibrium is reminiscent, to a certain extent, of the results of Baliga
 and Sjostrom (2004). They analyse a model of an arms race with a simultaneous cheap-talk
 stage beforehand. In the two message cheap-talk game, they derive an equilibrium in which both
 weak and very tough types use the "dove" message while intermediate types use the "hawk"
 message. The context is very different since the arms race model is a game of coordination and
 communication and is two-sided. Players want to coordinate if possible, and messages help in
 that respect. The non-monotonicity comes from the presence of very tough types who do not look
 for coordination; they mimic low types (sandbagging) and take advantage of the situation when
 their opponent is fooled into believing they are facing a dove.

 ? 2007 The Review of Economic Studies Limited
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 176 REVIEW OF ECONOMIC STUDIES

 Another related paper on non-monotonic signalling is Feltovich, Harbaugh and To (2002).
 In the context of a standard signalling model, they show that when some additional signal is
 exogenously provided, there might exist non-monotonic equilibria in which the low and high
 types do not use the standard, endogenous signal, while intermediate types do. The logic is,
 however, quite different. In their model, high types are not trying to fool the other party into
 believing that they are a weak type. Rather, they rely on the exogenous signal to be distinguished
 from low types and rely on the counter-signal to separate from intermediate types, while saving
 on the cost of the endogenous signal.

 The particular auction we analyse is related to the dollar auction. The dollar auction is also
 a dynamic auction, but the prize has a common value for all bidders. However, Demange (1992)
 introduces private information in the dollar auction and analyses "escalation equilibria" in which
 players can end up paying more than the value for the prize. This is a standard result in the war
 of attrition. This definition of escalation is not what we have in mind: in our set-up, a jump bid
 triggers escalation in the sense that it leads to more aggressive bidding. After a jump bid, players
 bid more aggressively than after an ordinary bid. Another difference is that Demange analyses
 a game with two possible types and two possible bids. Our set-up allows for more complex
 signalling strategies that cannot be analysed in her framework.

 The structure of the paper is as follows. In the next section we provide some specific ex-
 amples to illustrate our results. We first show that in a two-stage auction, the incentives to
 manipulate beliefs are such that monotonic equilibria cannot exist under the first-price winner-
 only-pays rule. We then show how signalling through jump bidding takes place in dynamic
 auctions under various formats (all-pay first-price, winner-only-pays first-price) in the case of
 discrete types. In Section 3, we introduce the general model. Section 4 characterizes the different
 kinds of signalling that might take place in equilibrium. Section 5 shows that under a number
 of additional assumptions, there exists a unique equilibrium satisfying a common refinement.
 Section 6 shows that our main findings also hold when players are not restricted to a binary choice

 of opening bid, by deriving an equilibrium in non-partitioning strategies. Section 7 compares our
 results to the literature on auctions and bluffing. Section 8 concludes. Proofs are in the Appendix.

 2. ILLUSTRATING THE RESULTS: EXAMPLES AND COUNTEREXAMPLES

 Consider a dynamic auction with two bidders. Bidders have private, independent valuations for
 an item. Bidder 1 initially submits a bid, which is either an ordinary bid of 0 or a jump bid of
 K > 0. If he bids K, bidder 2, upon observing this bid, decides either to bid K as well (to cover, or
 match), or to quit. If he quits, bidder 1 wins the item. If bidder 2 covers, or if bidder 1 chooses the

 ordinary bid, a second bidding stage begins: both players simultaneously submit an unrestricted
 (non-negative) bid, and the high bidder wins the item. Ties are randomly broken. A more detailed
 description of this game is provided in Section 3. The game tree is depicted in Figure 1.

 Player 1 has a first-mover advantage in this game due to the signalling possibilities that a
 jump bid offers. The main message of the paper is to show that, under various auction formats,
 if the jump bid is not fully deterrent (that is, Player 2 covers with some probability after a jump
 bid), then the equilibrium signalling is typically non-monotonic, exhibiting intriguing strategic
 features. Before describing those features, it is helpful to understand why the equilibrium cannot
 be in threshold strategies, even in the familiar case of the (winner-only-pays) first-price auction.

 2.1. First-price auction: non-existence of equilibria in threshold strategies

 Since the auction is dynamic, it is necessary to be more specific about what we mean by a winner-
 first-price auction in this context. If Player 1 does not bid K, the winner is determined by a

 ? 2007 The Review of Economic Studies Limited
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 bidding

 Player 1
 Cover

 Simultaneous

 Player 2 bidding

 Quit Player 1
 wins

 FIGURE 1

 Game tree

 winner-only-pays first-price auction. If Player 1 bids K and Player 2 quits, Player 1 wins and
 pays K, while Player 2's pay-off is 0. If Player 1 bids K and Player 2 covers, the item is assigned
 in the second stage by a winner-only-pays first-price auction with non-negative bids. The winner
 pays the sum of his bids. The loser's pay-off is 0. Ties are broken randomly.

 Suppose that the players' valuations are drawn from some common, positive, and continuous
 distribution over the support [0, 1], K < 1. We argue that no equilibrium in which Player 1
 submits the jump bid with positive probability, and Player 2 covers such a bid with positive
 probability, can be an equilibrium in threshold strategies: that is, an equilibrium in which Player
 1 submits the jump bid if and only if his valuation exceeds some threshold a < 1, while Player 2
 covers the jump bid if and only if his valuation exceeds some threshold y < 1. Suppose indeed
 that such an equilibrium existed.

 Observe first that Player 1 cannot submit the jump bid with probability 1. Indeed, if Player 2

 does not cover the jump bid for sure, submitting the jump bid yields a negative expected pay-off
 to Player 1 if his valuation is low enough, as he may be forced to pay K in the event that Player
 2 concedes. If Player 2 were to cover for sure, then it cannot be optimal for Player 1 to submit
 the jump bid for sure as well: otherwise, at least one player must win with positive probability
 with an arbitrarily low valuation, yielding again a negative expected pay-off. Therefore, it must
 be that a > 0.

 We are thus led to consider two possible "continuation games". In one of them, Player l's
 valuation is drawn from [0, a], while Player 2's valuation is drawn from [0, 1]. In the second
 one, Player l's valuation is drawn from (a, 1], while Player 2's valuation is drawn from [y, 1].4

 It follows from standard arguments that, in the first case, Player 1 with valuation ol = a must
 submit with positive probability a total bid 0 + bl that wins with probability pl = 1, while if his
 valuation v2 slightly exceeds a, he submits a total bid b2 (including K) that wins with probability
 P2 < 1. As usual, incentive compatibility then requires

 pi(vi -bl) > P2(Vl -b2),

 P2(V2 - b2) > Pl(V2 - bl),

 or

 (PI - p2)l >_ Plbi - p2b2 > (P1 - P2)02,
 which is impossible since p1 > P2 and V2 > 01.

 This means that, if Player 2 were to follow the corresponding strategy, Player 1 would want
 to deviate from his own strategy in one of two cases: either it is sufficiently cheap and deterrent to

 4. Type a must be indifferent across jump bids, so it is irrelevant for the argument whether he submits 0 or K. For
 definiteness, we assume he submits 0.

 ? 2007 The Review of Economic Studies Limited
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 178 REVIEW OF ECONOMIC STUDIES

 submit the jump bid that it is worth doing so with a signal just below a, or it is worth "lowballing"

 in the first period by bidding 0 rather than K when the valuation is just above a in order to win
 in the second period with a relatively low bid.

 We will argue in this paper that such behaviour (sandbagging) is in fact part of the equilib-
 rium. Tractability, however, prevents us from solving for the equilibrium in this general set-up,
 at least with a first-price auction. We can do so in a discrete example (see below), and we can
 also solve more generally in the case of the all-pay auction format. In each case, the equilibrium
 will be non-monotonic. In such a non-monotonic equilibrium high types (the highest valuations)
 randomize between the jump bid and the ordinary bid. Intermediate types use the jump bid with
 probability 1, thus creating the non-monotonicity in the bidding strategies.

 To make high types indifferent, it is necessary that an ordinary bid and a jump bid have
 benefits and costs that cancel out. A jump bid has a clear benefit, which is that it is sometimes not

 covered and enables the first player to win the auction without further competition. The relative
 cost of the jump bid compared to the ordinary bid is the result of a more aggressive bidding
 strategy from Player 2 after a jump bid. This comes from the fact that on average, the ordinary
 bid is used by lower types than the jump bid. A signalling equilibrium obtains when the deterrence

 effect, and the escalation effect associated with the jump bid have the same cost/benefits ratio as
 the sandbagging effect associated with the ordinary bid. Even if Player 1 is indifferent between
 initial bids, it does not mean that the signalling has no effect. His pay-off is strictly higher when
 he uses the signalling strategy than when he does not. The following examples illustrate this
 result under various auction rules.

 2.2. The first-price all-pay auction

 We first consider the case of a first-price all-pay auction. That is, both winner and loser forfeit all
 their bids, including K, if that case occurs.

 Specifically, we assume that bidder 1 has one of three possible types: a low valuation of

 with a probability of 1/10, an intermediate valuation of 1 with a probability of 1/10, or a high
 valuation of 1. Bidder 2 has either a low valuation of 3/5 or a high valuation of 3/2, with equal
 probability. Let the jump bid be K = 1/10. If bidder 2 does not cover, bidder 1 wins the object
 and pays K, and bidder 2's pay-off is 0. If bidder 2 covers (or if bidder 1 chooses to bid 0), a
 simultaneous first-price all-pay auction takes place in the second stage.

 How should bidder 1 choose his initial bid? Suppose he makes a jump bid of K. If bidder 2
 perceives it as a sign of strength upon observing it, he may then prefer to quit, allowing bidder 1

 to win at low cost. However, if bidder 2 covers the jump bid, more aggressive bidding will ensue
 in the second stage. Suppose, on the other hand, that bidder 1 bids 0. This bid has no deterrence
 effect; but if Player 2 perceives it as a sign of weakness, he will believe that he can win with a
 "less aggressive" bid in the second stage, thus saving costs.

 The following strategy profile (along with the corresponding beliefs) is a sequential equi-

 librium. Player l's low type bids 0, the intermediate type bids K, and the high type randomizes
 between bids, bidding K with probability 7/8. Player 2's low type covers a bid of K with prob-

 ability 1/5 and the high type covers for sure. After bidding K, Player l's intermediate type
 submits a losing bid (0 in this example) in the second round, whenever it is reached. An equilib-
 rium displaying such features is referred to as an equilibrium with covering, formally defined in
 Section 4.

 Figure 2 summarizes this equilibrium. Player 1 submits a jump bid with probability 4/5
 and Player 2 covers with probability 3/5. Because different types bid and cover differently, the
 players' beliefs vary across subgames. For instance, Player 2 assigns zero probability to Player
 l's intermediate type in the subgame following an ordinary bid (subgame 0) and assigns zero

 ? 2007 The Review of Economic Studies Limited
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 Player 1

 Bid 0 (1/5) Bid K = 1/10 (4/5)

 Player 2

 Cover (3/5

 Quit (2/5)
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 V2 7/10 W2 2

 2/10-L_-_ 1/6 -mi
 vo;1--- 0------ -- -W - ---- ---- - -

 FIGURE 2

 Equilibrium with covering

 probability to Player l's low type in the subgame following a jump bid, which is covered (sub-
 game K). Player 1 assigns a higher probability to Player 2's high type in subgame K than in
 subgame 0.

 The bidding in the subgames reflects these beliefs:

 - In subgame 0, bids only range from 0 to 7/10. Player l's low type bids either 0 or
 continuously randomizes over [0, 1/10], while the high type continuously randomizes over
 [1/10,7/10]. Meanwhile, Player 2's low type continuously randomizes over [0,2/10],
 while the high type continuously randomizes over [2/10, 7/10].

 - In subgame K, bids range from 0 to 1. Player l's intermediate type bids 0, and the high
 type bids either 0, or continuously randomizes over [0, 1]. Player 2's low type continuously
 randomizes over [0, 1/6], while the high type continuously randomizes over [1/6, 1].

 From the bidding distributions given in the Appendix, it follows that, by bidding 1/10 (= K) in
 subgame 0, Player 1 wins with probability 2/5. This implies that Player l's high type is indeed
 indifferent between both an ordinary and a jump bid: by bidding 0 and then K, he wins with prob-

 ability 2/5, while by bidding K and then 0, he wins with probability 2/5 as well (the probability
 that Player 2 quits).

 It follows also from the bidding distributions that, by bidding 0 in subgame K, Player 2's

 low type wins with probability 1/6: this implies that his pay-off from doing so equals 3 - 1 = K,
 so that, at the covering stage, he is indeed indifferent between quitting or not.

 Finally, observe that, if Player l's intermediate type were to bid in subgame 0, he would
 bid K (since this is the intersection of the low type's and the high type's bidding supports), and
 win with probability 2/5; as we have seen, this is also his expected payment and probability of
 winning if he submits the jump bid. Therefore, it is optimal to submit a jump bid.

 That Player l's initial bid is not monotonic in his valuation is a novel and rather surprising
 feature of the equilibrium. Somewhat paradoxically, Player l's initial bidding strategy cannot be
 monotonic precisely because his "overall" probability of winning in the auction must be mono-
 tonic in his valuation. To see this implication, suppose, for the sake of argument, that the high type

 VH always uses a jump bid, and suppose that Player 2 covers (at least with positive probability)

 @ 2007 The Review of Economic Studies Limited
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 180 REVIEW OF ECONOMIC STUDIES

 when his valuation is high. Then Player l's high type is willing to follow a course of action
 (among others) which has a probability of winning strictly less than 1 (say A): he bids K first,
 and then, if necessary, submits a bid in the interior of his bidding support in the second stage say

 bK .5 At the same time, either of Player l's low type or intermediate type, VL, is willing to follow
 a course of action that has a winning probability of 1: he bids 0 first, and then submits the highest

 bid ever submitted in the ensuing auction (since Player l's high type always bids K by assump-
 tion, one of the lower types must be Player l's highest type in the auction following a bid of 0),
 say bo. Because preferences satisfy the single-crossing condition, this yields a contradiction. We

 would have VL - bo >_ IVL - bK and vH - bo < VH - bK.
 In fact, in a monotonic equilibrium, the incentive for high types to deviate would be too

 great because the benefit of sandbagging would be very large. Therefore, either Player 2 never
 covers a bid of K, or, if such a bid is ever observed, the high type must be randomizing between
 both initial bids.

 In addition, whenever covering occurs with positive probability, some types of Player 1
 must be "bluffers", that is, must submit a losing bid in the second round. Otherwise, Player 2's
 lowest type who covers would not recoup the cost of covering. Hence, the equilibrium has to be
 non-monotonic.

 Since the high type randomizes between both initial bids, he is indifferent between them.
 The benefits of a jump bid are that with probability 2/5, Player 2 quits and Player 1 wins with
 a bid of only K. However, a covered jump bid leads to an escalation, while an ordinary bid
 leads to a softening of the bidding competition. Bidding is less aggressive in subgame 0 than in
 subgame K, because players perceive their opponent as weaker in the former than in the latter.
 For example, a bid of 7/10 is sufficient to win for sure in subgame 0, while for a sure win in
 subgame K it is necessary to bid 1. In the "static" game, the minimum bid required for a sure
 win is 173/200, which is strictly in between that of subgames 0 and K.

 The strength of Player 1 in a subgame can be measured by the reversed hazard rate order:

 as a random variable, Player l's valuation in subgame 0 is smaller than in the static game, which
 in turn is smaller than in subgame K.6

 In addition to the equilibrium with covering just described, there exists another sequential
 equilibrium, in which Player 1 uses the ordinary bid with probability 1. Such an equilibrium,
 in which Player 1 never makes a jump bid and thus Player 2 never needs to cover, is termed a
 non-revealing equilibrium. The strategy profile supporting such a non-revealing equilibrium is
 given in the Appendix. Such a profile is legitimate if out-of-equilibrium actions are interpreted
 as trembles. If bids are interpreted as rational signals, this equilibrium seems less reasonable,

 because Player l's higher types have an incentive to submit a jump bid.
 The idea that out-of-equilibrium actions should be interpreted as rational signals underlies,

 for instance, the concept of Perfect Sequential Equilibrium (PSE), defined by Grossman and
 Perry (1986) and is further discussed in Section 5. Roughly speaking, in our set-up, a sequential
 equilibrium fails to be a PSE if there exists an out-of-equilibrium action for Player 1, and asso-
 ciated beliefs for Player 2, such that, if Player 2 were to take a best response to these beliefs
 after observing this action, Player 1 would have an incentive to deviate from the equilibrium and
 take this action if and only if his type is an element of the support of these beliefs. (The defini-
 tion of PSE, given in Section 5, imposes additional requirements that are derived from Bayes'

 5. Recall that, in a first-price all-pay auction, the bid distribution has no atom at the upper extremity of the players'
 bidding supports.

 6. For discrete random variables X and Y taking on values in a set A, X is smaller than Y in the reversed hazard
 rate order if, for all n e A,

 P{X = n} P{Y = n}
 P{X < n} - P{Y < n}
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 HORNER & SAHUGUET COSTLY SIGNALLING IN AUCTIONS 181

 rule.) Indeed, Player l's intermediate and high types strictly prefer the equilibrium with covering

 described above to the non-revealing equilibrium that is described in the Appendix: Player l's
 high type's pay-off is 60/200, compared to 27/200, and Player l's intermediate type's pay-off
 is 20/200, compared to 5/200. (Player l's low type is indifferent, as his pay-off is 0 in both
 equilibria.) While this is insufficient evidence per se to rule out the non-revealing equilibrium
 as not being perfect sequential, it suggests that such beliefs can be found, because Player 1's
 higher types have, in a sense, a strong incentive to bid K. Indeed, we prove in the Appendix that,
 for these parameters, the non-revealing equilibrium is not a PSE, and therefore, the equilibrium
 with covering is the only such equilibrium. However, if K is much larger (say, K = 1), it is then
 clearly in the best interest of Player 1 never to use the jump bid.

 For this specific example, observe that Player 2's high type covers in any equilibrium,

 because his valuation exceeds the sum of K and Player l's high valuation. Nevertheless, equi-
 libria with assured deterrence, in which Player 2 never covers, exist for other parameters. For

 instance, it is straightforward to check that if K equals 1 instead of 1/10, it is an equilibrium for
 Player 1 to bid K for sure if his type is high, and to bid 0 otherwise, and for Player 2 never to
 cover (supported by the belief that, if the bid is covered, Player 2's type is high).

 In the rest of the paper, we generalize the following ideas to more general environments:

 1. For small enough values of K, there exists an equilibrium with covering, in which Player
 1 bids K for sure if his type falls into an intermediate range and loses for sure in the
 second round when covering occurs (bluffing). For higher valuations, Player 1 randomizes
 between bidding 0 (sandbagging) and bidding K, with a probability independent of his
 type. For lower types, Player 1 bids 0 for sure.

 2. There exists a unique PSE. For small values of K, it is the equilibrium with covering. For
 higher values, it is an equilibrium with assured deterrence, in which Player 1 submits K
 if his type is high enough, and Player 2 never covers. For even higher values of K, the
 equilibrium is non-revealing, as Player 1 always submits a bid of 0.

 The expected revenue generated by the equilibrium with covering (187/300 _ 0.62) is smaller than the expected revenue in the static (or non-revealing) auction (319/450 - 0-71, cal-
 culations omitted). This result is mainly driven by the inefficient allocation of the item, whenever

 bluffing succeeds. As we will see in a more general set-up, when players are symmetric, the equi-
 librium with covering always raises a lower expected revenue than the non-revealing equilibrium,
 but the loss is not monotonic in the value of the jump bid.

 2.3. Other auction formats

 This paper is primarily based on first-price all-pay auctions or a slight generalization thereof.
 All-pay auctions are remarkably tractable when distributions are asymmetric. It is not possible,
 for instance, to analyse this dynamic auction using a (winner-only-pays) first-price auction with
 absolutely continuous distributions.7 It is, however, possible to do so with discrete types, as we
 now show.8

 Preliminary to providing the example, we should note that two important conditions must
 be satisfied if non-monotonic bidding featuring bluffing and sandbagging is to be achieved.

 7. In fact, with a standard first-price auction and absolutely continuous distributions, the existence of a Bayesian
 Nash equilibrium in relevant subgames is unknown, as current existence results require that the lower extremity of the
 player's type support be identical across players. See Krishna (2002), appendix G, for details and references.

 8. A similar equilibrium can be constructed with a second price all-pay auction. The details are available from the
 authors.
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 1. Because the jump bid must credibly signal strength, it must involve a cost that prevents it
 from being used by Player 1's low type. This cost need not be incurred automatically, as in
 an all-pay auction, or in an auction with a fixed cost of bidding; it can be of a probabilistic
 nature, as in a first-price winner-only-pays auction, where the jump bid has to be paid in
 the event that Player 2 quits.

 2. A player's bidding strategy must reflect the perceived strength of his opponent. The stronger

 he believes his opponent to be, the more aggressive the bids a player submits.

 The second condition is necessary both for bluffing to act as a deterrent and for sandbag-
 ging to be effective; since a jump bid signals Player l's strength, Player 2's low type may prefer
 to quit, even if covering is not costly (as in a winner-only-pays auction), because it expects a
 zero continuation pay-off from covering. Conversely, after an ordinary bid, both players submit

 a moderate bid, which makes an ordinary bid attractive to Player l's high type. This second con-
 dition is a well-known characteristic of winner-only-pays first-price auctions, when distributions
 are ordered by reversed hazard rate (see Krishna, 2002, p. 47). However, this condition fails in a
 winner-only-pays second-price auction, where a weakly dominant strategy is to bid one's value,
 independently of one's beliefs about the other player. Therefore, sandbagging cannot be effective
 in a winner-only-pays second-price auction. Hence, in this case, non-monotonic bidding (and
 hence equilibrium with covering) is not possible.9

 The equilibrium with covering is robust to most equilibrium refinements, including PSE, but
 it may not be unique. Details are in the Appendix.

 Example 1 (first-price winner-only-pays auction). Each player has three possible valu-
 ations: vo = 0, vi = 1/2, and v2 = 1. Each valuation is equally likely for Player 1: po = pi =

 P2 = 1/3, where pi is the probability of valuation vi. As for Player 2, his valuation is either v2
 with probability 1/2, or Do, 01 with probability 1/4 each (the main features of the equilibrium
 only depend on the sum of the low and intermediate valuation probabilities of Player 2). Assume
 K = 1/10.

 There is a (non-monotone) equilibrium with covering: Player 1 bids 0 if his valuation is
 vo; he bids K with probability q e (0, 1) if his valuation is vi and randomizes with probability
 p e (0, 1) between 0 and K if his valuation is v2, where q > p. Player 2 covers if and only
 if his valuation is 1 (and submits then a strictly positive bid). Finally, if Player l's valuation
 is vi, he submits a losing bid whenever his initial bid K is covered. As before, intermediate
 types vi are willing to bluff in an attempt to deter their opponent and lose for sure if covering

 occurs. The high type v2 is indifferent between a jump bid that is deterrent, but triggers aggressive
 bidding and an ordinary bid that leads to cautious bidding. Of course, covering is not directly
 costly to Player 2's low or intermediate type, but the jump bid changes his beliefs in such a
 way that, if he were to cover, his pay-off would then be 0. Therefore, he is willing to quit.

 Observe that in this example, Player l's intermediate type randomizes as well, although the
 equilibrium is non-monotonic (q > p). With a continuum of types, both the type and the number
 (measure) of bluffers become endogenous, so it is natural to interpret q as a fraction and p as a
 true randomization. Examples where q = 1 can be constructed as well, but involve, therefore, a
 non-degenerate choice of parameters (unless one allows more than three types). Nevertheless, it is
 important to point out that equilibria with covering are always mixed equilibria, in the sense that

 9. Arozamena and Cantillon (2004) make a somewhat related point. They analyse a dynamic game in which a
 firm can invest to lower its cost distribution prior to a procurement auction. They show than in the case of a first-price
 auction, this will make the other firm bid more aggressively, while in the case of a second-price auction, investments do
 not change bidding behaviour since firms bid their true cost.
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 intermediate types ("bluffers") are indifferent between both initial bids, even if in equilibrium
 they may bid K with probability 1. As with all mixed equilibria, the probabilities are determined
 by equilibrium considerations, not by optimality conditions alone.

 The intuition for the non-monotonic equilibrium is the same as in the previous example. The
 bidding after a jump bid is more aggressive than after an ordinary bid, but with some probability
 a jump bid is not covered and the auction is won at a low cost. The non-monotonic structure of
 signalling is necessary. Player 1 must be perceived as weaker after an ordinary bid. To achieve
 that, it must be that the intermediate type use the jump bid.

 3. THE BIDDING GAME

 3.1. The model

 Two risk-neutral bidders (Players 1 and 2) compete for an object prize. The bidders' valuations,
 denoted respectively v for Player I and w for Player 2, are drawn independently from distribu-
 tions F and G with support [0, 1]. We assume that F and G are continuously differentiable (with
 densities f and g). Valuations are private information. As in the examples, the auction is modelled
 as a two-stage game. In the first stage of the game Player 1 makes an opening bid. For now, we
 restrict bid choices to be either low (an ordinary bid normalized to 0) or high (a jump bid K > 0).
 If Player 1 uses the jump bid, Player 2 decides whether to cover or not. Covering means bidding

 K as well. If Player 2 does not cover, Player 1 wins the object. If he covers, or if Player 1's open-
 ing bid is 0, the game enters a second stage that consists of a simultaneous auction. This second
 bid is unrestricted: players may bid any amount at this stage. The winner pays the sum of his bids,

 while the loser pays a fraction p e (0, 1] of his opening bid and of his second bid.10 This formu-
 lation is a slight generalization of the first-price all-pay auction, since we only require that at least

 a fraction of the opening bid is sunk. The prize is awarded to the highest bidder. In the case of a
 tie, the winner is chosen randomly. There is no discounting, and players' pay-offs are quasi-linear.

 3.2. Background of the model

 There are two crucial assumptions for this model: (i) bidding is costly, and (ii) in the last stage,
 bidders submit their bids simultaneously.

 The first assumption has already been discussed in the examples. For a jump bid to credibly
 signal strength, submitting such a bid must be costly (recall that this cost can be in expected
 terms, as in the example of a winner-only-pays first-price auction).

 The second assumption captures the idea that no bidder gets the opportunity to bid "last".
 In such an alternative situation, the game can be solved by backward induction. Given this unfair
 advantage, the "last" bidder knows precisely how much to bid in order to win the auction, and
 his penalized rival has therefore no incentive to attempt to manipulate his beliefs. Therefore, we
 view our model as relevant for bidding contests in which there is a deadline of some sort, and
 no player is given the exclusive authority to make final decisions. Legal, lobbying, and takeover
 contests are good examples of such situations.

 In Section 6, we drop the assumption that the jump bid takes only one value. The other
 assumptions of the model are made for simplicity. Allowing for a longer, but finite, horizon does
 not change the qualitative results. In particular, allowing Player 2 to overbid, rather than only
 match, Player 1's jump bid is a special case of such a longer horizon. (The analysis of the game
 in which players get the opportunity to simultaneously submit a jump bid is available from the
 authors and does not add to the insights of this simpler model.)

 10. It is only necessary, for our results, that a fraction of the initial bid is sunk.
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 184 REVIEW OF ECONOMIC STUDIES

 3.3. Strategy and equilibrium

 A strategy for Player 1 specifies, as a function of his type, the probability of a jump bid in the first

 period and the bid he makes in the two subgames in which he is called upon to bid again. That is,
 let Q be the measure space that results when we impose Lebesgue measure on the unit interval

 I. Then the strategy for Player 1 consists of a measurable function pl : Q1 x [0, 1] -- (0, I},
 (s, v) ? pl (s, v), which maps a uniform draw from the unit interval and a valuation into an
 action, 0 or 1, that corresponds, respectively, to bidding 0 and to bidding K and two measurable

 functions b' : [0, 1] -> IR+, i = 0, K, which map a valuation into a non-negative bid, for each of
 the subgames i = 0, K. To guarantee that the equilibria in the subgames may be characterized
 by first-order conditions, we further assume that the distribution function in each subgame is

 piecewise continuously differentiable in the valuation, that is, fo fo' p(s, t)dsdF(t) is piecewise
 continuously differentiable in v.

 Player 2's strategy specifies whether he covers (if required) and how much he bids in the
 two subgames, as a function of his valuation w. A strategy for Player 2 consists of mappings P2,

 b', i = 0, K, with the obvious interpretations.
 If Player i's valuation is s, his bid in the subgame following an opening bid of k = 0

 or K is denoted by bi(s). A Perfect Bayesian Equilibrium (PBE) consists of strategies and
 beliefs for each player, such that (1) strategies are sequentially rational in that the bid choices
 maximize the expected pay-offs given beliefs about the other player's valuation and strategy,
 and (2) beliefs are correct and updated according to Bayes' rule. We call a winning bid one
 that has a positive probability of being the highest. A losing bid is any bid, which is not a
 winning bid.

 4. CHARACTERIZATION OF SIGNALLING

 In this section, we characterize the general features that signalling may exhibit. Player 1 can use
 bids to send information to Player 2 in two ways. (i) He can use a jump bid to deter Player 2 from
 entering the auction. (ii) By using an ordinary bid he can hope to induce Player 2 to believe that
 he is weak, thus softening the competition in the second stage of the game. Our main interest
 lies in the jump-bidding decision of Player 1, characterized by the function pi. Of course, the

 bidding decision pl is closely related to the covering decision P2 by Player 2.
 We show that only three kinds of equilibrium exist: an equilibrium with covering, a non-

 revealing equilibrium, and an equilibrium with assured deterrence. An equilibrium with covering
 is an equilibrium in which Player 1 makes a jump bid with positive probability for some of (i.e.
 a positive measure of) his valuations, whereupon Player 2 covers for some of his valuations. A
 non-revealing equilibrium is an equilibrium in which Player 1 never makes a jump bid, and thus
 Player 2 does not need to cover. Finally, an equilibrium with assured deterrence is an equilibrium
 in which Player 1 makes a jump bid with positive probability for some of his valuations, and
 Player 2 never covers.

 Theorem 1. Every PBE is either an equilibrium with covering, a non-revealing equilib-
 rium, or an equilibrium with assured deterrence. More precisely, every PBE is characterized by

 numbers a /, y e (0, 1], a </ , such that

 1 Ofor v E [0, a],

 p (s, v)ds l Ifor ve (a, fl],

 0 - (0, 1)for ve (8f, 1],
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 P21 w)ds Ofor v O[0,y ]
 p2(sw)ds lfor v e (y,1]. 0

 In addition, y < 1 if and only if a < fl < 1, in which case Player 1 makes a losing bid in the

 subgame K if and only if ve (a, fl].

 In words, Player 1 makes an ordinary bid if his valuation is sufficiently low, a jump bid
 for sure (i.e. with probability 1) if his valuation falls within some intermediate interval, and
 randomizes between the ordinary and the jump bid for his highest valuations. If Player 2 covers,
 Player 1 bids nothing in the final stage if and only if his valuation falls within the intermediate

 interval. Player 2 covers if his valuation is large enough. Of course, the intervals (a, fl), (fl, 1),
 and (y, 1) could be empty (a non-revealing equilibrium). When (a, fl), (/f, 1) are non-empty, but
 (y, 1) is empty, we have an equilibrium with assured deterrence. Whenever some type of Player

 1 bids K and some type of Player 2 covers, the intervals (a, /) and (fl, 1) are non-empty (this
 characterizes an equilibrium with covering).

 Proof See Appendix. 11

 This theorem shows that signalling, in equilibrium, can take only two forms. When the
 decision to submit a jump bid is monotone in Player l's valuation, the only signalling that takes
 place is for deterrence. Players with high valuations use a jump bid that is not matched by Player
 2. This form of signalling corresponds to the rationale for jump bidding already present in the
 literature of costly bidding and is similar to the examples in Avery (1998) with degenerate second-
 stage equilibria.

 The second form of signalling that may take place is more intricate. Bidders with inter-
 mediate valuations bluff. By choosing an early bid that only bidders with high valuations would
 otherwise make, they use the deterrence effect generated by bidders with high valuations, who
 will bid aggressively even if their bid is covered. Player 2 covers only if his valuation is high
 enough, so in that event it is in the bluffer's best interest to give up. Bidders with high valuations

 sandbag. When they bid low, they use the behaviour of bidders with low valuations. Such a bid
 leads Player 2 to believe that there is a high probability that he faces a weak opponent. Acting on
 this belief, he bids less aggressively in the second round, thus conserving resources. Of course,
 both bluffing and sandbagging are rational. They correspond to the two different ways in which
 a player can try to manipulate his rival's beliefs. The chance that bluffing succeeds may satisfy
 a bidder with an intermediate valuation, but not one with a high valuation, who wants to have a
 high probability of winning, achieved either through repeated large bids or through sandbagging.
 High types randomize and thus are indifferent between both initial bids. This does not mean that
 the signalling has no effect since through the manipulation of beliefs, Player 1 achieves higher
 pay-off than he would if he was never using the jump bid.

 Apart from the case of an all-pay auction, where p = 1, it is difficult to show the existence
 of any kind of equilibrium, because, in any asymmetric continuation game, first-order conditions
 reduce to a second-order O.D.E.; this implies, in particular, that showing the existence of an
 equilibrium with covering means showing the existence of a solution for a third-order, non-linear

 O.D.E., which we are unable to do.11

 11. In fact, even if the distribution of valuations in a subgame happened to belong to some common family of
 distributions, a closed-form solution would still not follow (unless p = 1), since the lower ends of the support would not
 coincide.
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 186 REVIEW OF ECONOMIC STUDIES

 In the case of an important special case of an all-pay auction (p = 1), it is possible to further
 characterize the equilibrium. In particular, the randomization of Player l's high types takes a
 particularly simple form, as they do all use the same probability:

 Lemma 2. If p = 1, then 0f p(s, v)ds = p for some constant p E (0, 1), for (almost all)
 ve (fl, 1].

 Proof See Appendix. II

 In addition, it is possible to show the existence and uniqueness of an equilibrium with cover-

 ing in the case of the power distribution function, F(v) = G(v) = vr , u > 1, provided the jump
 bid is not too large.12

 Theorem 3. If p = 1, and the valuations are distributed according to a common power-
 function distribution F(v) = v1P, there exists K > 0, such that for any K e (0, K] a unique
 equilibrium with covering exists.

 Proof See Appendix. II

 4.1. Sandbagging and bluffing

 In an equilibrium with covering, bids sometimes escalate. According to circumstances, Player 1
 may either sandbag or bluff. By definition, attempts by the first player to deter his opponent from

 competing will sometimes fail. When this happens, his jump bid is lost, the players adjust their
 beliefs and bidding starts afresh. The intuition behind the structure of equilibria with covering is
 the following.

 Player l's early bid depends on his valuation. (i) Players with low valuations simply cannot
 afford a jump bid of K and hence make an ordinary bid. This is obvious for players whose
 valuation is smaller than K, but even players with higher valuations do not automatically use a
 jump bid, since Player 2 might cover. (ii) Players with intermediate valuations always make a
 jump bid. They are bluffing, hoping to deter Player 2 and inducing him to quit, thus winning. By
 choosing a jump bid that would otherwise be made only by players with high valuations, they
 use the deterrence effect generated by high valuations, who are prepared to bid aggressively even
 if their opponent covers. Player 2 will cover only if he has a sufficiently high valuation, so in
 that event it is in the bluffer's best interest to give up. Jump bidders with intermediate valuations

 never bid further if covering occurs. (iii) High types randomize. They are indifferent between a
 jump bid and an ordinary bid. Hence, they sometimes try to deter Player 2 and sometimes keep
 a low profile. This second behaviour is motivated by sandbagging: Player 2 falsely believes that
 he is facing a weak opponent and hence bids moderately, allowing Player 1 to win at low cost.

 The covering decision by Player 2 is simple. Players with low valuations do not cover,
 whereas those with high valuations do. Note that the "lowest" type who decides to cover beats
 all bluffers. Being the lowest type to cover, he only wins if Player 1 bids 0. Player 2's covering
 decision is thus, for some threshold y: in the second period, players update their beliefs using
 Bayes' rule and play a first-price all-pay auction. There are two possible subgames: either Player
 1 paid K and Player 2 covered, or Player 1 has bid 0.

 12. The uniform distribution is a special case when p = 1. Some arguments involve dividing by p - 1, but they are
 easily adapted to the uniform distribution.
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 Bid functions after a jump bid
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 Bid functions after an ordinary bid

 Figure 3 depicts the bids in the subgame after a jump bid for the case of the uniform distri-

 bution (p = 1). The dashed line is b2K and the connected line is bK
 Similarly, Figure 4 depicts bids in the subgame following an ordinary bid.
 These figures aid the understanding of why players with high valuations are indifferent

 between both bids. In subgame K, type 3 of Player 1 wins against all types below y (who do
 not cover). In subgame 0, type P/ bids K and beats all types below y, who also bids K. Those of
 Player l's types that are larger than f win against the same types of Player 2 in both subgames.
 Two incentives explain Player l's behaviour when he has a high valuation. On the one hand, he
 motivates less aggressive bidding by making an opening bid of 0. On the other hand, by bidding
 K, he could win without further bidding. The thresholds are such that, ex ante, players with high
 valuations find both bids equally attractive.

 Note that intermediate and high types are in fact indifferent between initial bids and that
 the initial bids do not change the outcome of the auction. However, the signalling strategy used
 by Player 1 is efficient in the sense that he does better than in a static auction. Sandbagging and
 bluffing strategies are present for equilibrium reasons and not because there exist strict incentives
 to use them. We now analyse in more details how the signalling equilibrium changes the pay-off
 of players.
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 188 REVIEW OF ECONOMIC STUDIES

 4.2. Winners and losers

 Who wins and who loses in this game? The natural benchmark is the simultaneous, static, first-
 price all-pay auction, in which all bids are sunk and the highest bidder wins. In an equilibrium
 with signalling, Player l's intermediate valuations are better off than in the static auction. They
 take advantage of high valuations since they can use the deterrence effect of the jump bid. To
 see that they are better off, note that the smallest type of Player 2 that covers is higher than the

 intermediate types (the bluffers). That means that in an equilibrium with covering intermediate
 types have a higher probability of winning than in the static auction, making them better off.
 High valuations are also better off. They randomize their initial bids. They take advantage of
 the deterrence effect when they use the jump bid and take advantage of the sandbagging effect
 when they use the ordinary bid. (The calculations justifying these claims are omitted. They are
 very similar to those in the proof of Theorem 4.) It is not surprising that the intermediate and
 high valuations benefit from the opportunity of bidding early. Losers are found among the low
 valuations, who are hurt by the high valuations who use the ordinary bid, as this exerts an upward

 pressure on bids in that subgame. The situation is reversed for the second player. High valuations
 may have to first reveal themselves through the cover, which is sunk. Low valuations, however,
 are able to better adjust their bid, which enables them to avoid wasting resources when a high bid
 reveals the first player to be at least of the intermediate valuation.

 We believe that these results on winners and losers derived for all-pay auctions extend to
 other auction formats (as was illustrated in the examples of Section 2).

 In some applications, one may want to maximize the revenue of the game, that is, the
 total expected payments of the players. An example of such an application is lobbying, from
 the politician's point of view. In others, one may want to minimize it; for example, in military
 conflicts. With respect to revenue maximization, as the static first-price all-pay auction is an op-
 timal auction, by the Revenue Equivalence Theorem (see Myerson, 1981), it is obviously best
 to set K = 0, so that the dynamic game essentially collapses to the static one.13 Of course, this
 is valid only as far as the initial distributions of valuations are the same for both players. When
 bidders are asymmetric, the static all-pay auction is not optimal and the dynamic auction could
 generate higher revenues. It is straightforward to show that a moderate, intermediate value of K
 minimizes revenue.

 5. THE STRUCTURE OF EQUILIBRIA

 Equilibria with covering are certainly the most interesting ones, displaying intriguing strategic
 features. In this section, we first characterize non-revealing equilibria and equilibria with assured

 deterrence.14 We then introduce an equilibrium refinement (PSE) that yields a striking exist-
 ence and uniqueness result, where the selected equilibrium depends on the particular value of the
 jump bid K.

 5.1. Non-revealing equilibria

 In a non-revealing equilibrium, the first player always makes an ordinary bid. The game is
 then essentially equivalent to a static, first-price all-pay auction. This equilibrium is reasonable
 when K is very large, so that the high bid is unattractive. On equilibrium path, the bids are

 13. The all-pay auction is the optimal auction when distributions are symmetric and regular and no reserve price
 can be used by the seller. Symmetry is assumed in our set-up and the power distributions we use in our analysis

 also satisfy the regularity (or increasing virtual valuations, x - 1-F(x) condition.
 14. We retain the assumption of all-pay auctions and power-function distributions used in the previous section.
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 b(v) = vcl +. For K > - this equilibrium does not even depend on out-of-equilibrium Pt+1 - P+l '
 beliefs and bids. Indeed, bidding K gives at most v - K to type v of Player 1, which is less

 vp+l
 than `u , the pay-off he receives in a non-revealing equilibrium. Hence, any belief would do to
 ensure that a non-revealing equilibrium exists.

 5.2. Equilibria with assured deterrence

 In an equilibrium with assured deterrence, the first player sometimes uses a jump bid that the
 second player never covers. The first player must follow a "threshold" strategy: he bids high if
 and only if his valuation is sufficiently high. This kind of equilibrium makes sense for relatively
 high values of K. Although a high bid has an assured deterrence effect, it is costly enough to be
 chosen only by the highest valuations of Player 1. Player 2 has therefore two good reasons to give
 up after a high bid: covering is expensive, and the opponent is strong. Observe in particular that
 the second player does not cover even if his valuation is 1, that is, even if he is certain to have
 a higher valuation than the first player's. This is due to the asymmetry between players. When
 the second player has the opportunity to cover, his updated beliefs are pessimistic after the jump
 bid. Denote the threshold by a. Solving for h, and computing the bid of type a, after a change of
 variable and simplification it must be that

 K = xl) dx.
 p-1 a

 1-a

 Observe that the derivative with respect to a of the R.H.S. is equal to

 xl( -1) a) dx > 0.

 (/p - 1)2 xl/(-1) 2x-(1-a)
 ( 1)a a2 dx>.

 0

 Therefore, a solution a e (0, 1) to the equation exists provided that

 l dx P K.
 x" Ix dx = > K. p +l 1

 0

 To complete the description of the equilibrium we must specify beliefs held by Player 1 in case
 Player 2 covers that lead to a pay-off for Player 2 smaller than K. When we specify that Player 1
 hold beliefs that Player 2's type are distributed according to a power distribution on [y, 1], and
 compute the limit pay-off after covering when y tends to 1, we get

 lim P-a 7--> 1 1--a- 1-a

 It is then enough that these pay-offs are smaller than K for an equilibrium with assured deterrence

 to exist. The exact bounds on K can be found in the Appendix in the proof of Theorem 4 , in
 which we construct PSE that are also PBE.

 5.3. Existence and uniqueness of a PSE

 Since all three types of equilibria are possible, which one is most likely to emerge? Obviously,
 this depends on the value of the parameter K. PBE with covering exist if and only if K < K,
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 equilibria with assured deterrence exist if and only if K < ---, and non-revealing equilibria
 always exist. However, the beliefs used to construct non-revealing equilibria for low K are not
 plausible. Such equilibria make sense for large K, when early bidding is not worthwhile, but seem
 unreasonable otherwise. The Intuitive Criterion does not have any bite in this game because,
 while it constrains the support of beliefs that can be held after a deviation, it does not impose
 any restriction on the relative likelihood of the valuations that belong to this support. With a
 continuum of valuations, this leaves considerable leeway.

 One might wish to impose the condition that, if a player has incentives to deviate for two
 distinct valuations, his opponent's beliefs after observing such a deviation should preserve the
 relative likelihood of these valuations. This is the main idea behind PSE, defined by Grossman
 and Perry (1986). The logic behind this refinement is straightforward. Fix a PBE and suppose
 that a player deviates. His opponent hypothesizes that the move was made by some subset C
 of the player's valuations, and revises his belief according to Bayes' rule conditional upon the
 player's valuation being in C. If the PBE that follows given these beliefs is preferred to the
 original equilibrium by precisely the valuations in C, then the original equilibrium fails to be
 perfectly sequential. The point is that this deviation allows the player's valuations in C to separate
 themselves convincingly from the other valuations, so that it is not credible for his opponent to
 hold any other belief after such a deviation. This eliminates equilibria based on such beliefs. This
 refinement is inspired by a forward induction argument. Deviations should be interpreted not as
 trembles, but as rational signals to influence beliefs.

 For the definition of PSE, let q/j (or qj) be the beliefs of Player j about Player i = j, and
 Ti and Tj the types spaces.

 Definition 1. A PBE is a PSE if, for all Players j, and all their possible deviations, there

 exists no PBE of the subgame following the deviation, with beliefs qij and qi immediately prior
 to the deviation and beliefs qj and Oi after the deviation such that

 1. Oj(t) = qj(t) for all t e Ti,
 2. 0i (t) = 0 if Vi (t) = 0 or if t E Tj's expected pay-off in the PBE of the subgame (follow-
 ing the deviation) is strictly smaller than his expected pay-off in the original PBE,15 and

 0i (t) > 0 if Vi (t) > 0 and t e Tj's expected pay-off in the PBE of the subgame is strictly
 larger than his expected pay-off in the original PBE,

 3. 0(t ) > whenever qi (t') > 0 and qi (t) > 0, for t e Tj whose pay-off in the PBE of
 the subgame is strictly larger than his expected pay-off in the original PBE, with equality

 if t' e Tj 's pay-off in the PBE of the subgame is strictly larger than his expected pay-off in
 the original PBE.

 Condition (1) states that the deviator should not revise his beliefs, since he has not learnt

 anything about his opponent. Condition (2) places restrictions on the support of the beliefs to
 be considered: this support should (a) include players who are strictly better off in the PBE
 following the subgame, given those beliefs, than in the original PBE, and (b) exclude those who
 are strictly worse off. Condition (3) states that, except possibly for deviators that are indifferent to

 the deviation, whose likelihood may possibly decrease, the deviators' relative likelihood should
 not be altered.

 The following theorem establishes the structure of PSE in this game.

 15. Here and in the remainder of the definition, the expected pay-off in the original PBE should be understood as
 Player l's expected pay-off, when he follows the strategy prescribed in the original PBE, conditional on the node where
 the considered deviation occurs is reached.
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 Theorem 4. For each K > 0, there exists a unique PSE. This PSE is the equilibrium with

 covering for K < K, the equilibrium with assured deterrence for K < K < --, and the non- revealing equilibrium otherwise.

 Proof See Appendix. II

 This result, illustrated in the following figure, is intuitive. For large K, deterrence is too
 costly and the first player does not take advantage of this opportunity. For intermediate K, deter-

 rence is effective. Given the entry cost that it represents and the signal of strength that it conveys,

 a high bid is sure to deter the second player. Finally, for low values of K, a high bid is not always
 deterrent and the equilibrium exhibits covering.

 Equilibria Equilibria Non-revealing
 with covering with assured deterrence equilibria

 0 K p/p+1 1 K

 6. ENDOGENOUS CHOICE OF JUMP BID

 An important limitation of the analysis so far is that the jump bid, K, is exogenous. Since the
 level of the jump bid determines which type of equilibrium obtains, it is important to understand

 whether jump bidding also occurs when the first player may submit any jump bid he pleases.
 Avery looks at this problem in Theorem 4.7; given the monotonic structure of jump bidding in
 his framework, endogenizing the jump bid leads to an equilibrium in which the behaviour in
 the limit is just a standard second-price auction without jump bid. We show that endogenizing
 the jump bid does not lead to a degenerate equilibrium in our framework. There exists a natural
 counterpart to the equilibrium with covering that was obtained previously. For simplicity, we
 analyse the case of uniform distribution (ua = 1). Features of such an equilibrium can be deduced
 from the following observations.

 First, Player 1 uses at most one jump bid that is deterrent with probability 1. It would
 otherwise be profitable to reduce such a bid to the lowest level sufficient for sure deterrence.
 This deterrent bid is obviously an upper bound on all bids made.

 Second, since Player 2 covers if and only if his valuation is sufficiently large, it must be
 that this threshold increases with the opening bid. Suppose, on the contrary, that there are two

 opening bids k1 < k2, and associated thresholds yl > y2. Then the lowest type v of Player 1
 bidding with positive probability k2 had better bid kl, since his pay-off is V - y2 - k2 which is
 strictly smaller than v -. y - kl (notice that, being the lowest type of Player 1 in the subgame
 following an opening bid of k1which is covered, his pay-off is 0 in that subgame).

 Third, given the single-crossing property of expected profits, the infimum over types of
 Player 1 who bids k with positive probability is an increasing function of k. Moreover, it can be
 shown that these lowest types bid 0 with probability 1 in the subgame that might occur after a bid

 of k. They correspond to the bluffers of the previous section.

 Fourth, for any k that Player 1 bids without deterring his opponent, the support of the types

 of Player 1 bids k with positive probability must include 1. Suppose instead that for such a level

 k, this support has maximum mi < 1. Suppose further, as can be shown, that expected profits
 H (.) are continuously differentiable in types, and that there exists e > 0 and a bid k' e [0, 1]
 below the deterrent bid, such that all types in (mi, mi + e) bid k' with positive probability. Consider
 m = im +dv, where dv < e. Since type m, by bidding k and bidding then, if necessary, as much as
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 192 REVIEW OF ECONOMIC STUDIES

 in, obtains H(mt)+ do, it must be that d1H(m)i/dv is larger than 1. On the other hand, by bidding
 k', the marginal profit of type m (which by virtue of the envelope theorem is his probability of
 winning) is strictly smaller than 1, for such a bid is covered with positive probability and type
 m is not the largest type of Player 1 in such a subgame. Hence, if the support of types bidding
 k does not include 1, higher types can profitably deviate by bidding k and bidding afterwards, if
 necessary, the minimum to win.

 Finally, conditional on a bid k, there must be a strictly positive probability that Player l's
 bid in the subgame that possibly follows is 0, for otherwise the lowest types supposed to cover
 would not find it worthwhile. Given these considerations, we have the following theorem:

 Theorem 5. There exists an equilibrium with endogenous choice of jump bid. The sup-
 port of types making a given, non-deterrent, bid k must be an interval [a (k), 1], where a () is
 increasing in k. If k is covered, type a (k) bids zero while higher types bid actively. The condi-
 tional distribution assigns strictly positive weight on a (k), but is atomless above. Thus, type v

 of Player 1 randomizes his early bid: with positive probability p(k), he bids k = a-l(v). He
 continuously randomizes on [0, a-1 (k)) according to a density q (v, k).

 Proof See Appendix. II

 Let us define A (k) as

 1

 A(k) = p(k) + f V(s,k)ds.
 a

 Hence, dA is the density over Player l's types who bid k and is well defined as long as p and

 fa w(s, k)ds are of the same cardinality, that is, as long as 0 < f 'g(s, k)ds < 00. p(k)/A(k) is
 thus the probability, conditional on observing k, that Player 1 is of type a (k). In the equilibrium
 that we derive, type a bids 0 in the subgame k, and no other type bidding k bids 0 thereafter.
 Hence, p(k)/A(k) is the conditional probability that Player 1 bids 0 in the subgame k. In other
 words it represents the proportion of bluffers among types who bid k in the first period.

 It is interesting to note that p(k)/l(k) increases monotonically in k, ranging from 0 to k.
 This means that the higher the jump bid, the larger is the proportion of bluffers among the types
 who made this bid. Also, for any k e [0, k], a (k) > y (k), which contrasts with the case where K
 was unique and exogenous: the bluffers are of higher type than the lowest types of their opponent.
 In addition, one might expect second-period bids of Player 1 to be a decreasing function of the
 jump bid. This need not be so. For low k, small increases have large effects on y. For a large type
 v of Player 1, that means that increasing slightly the first-period bid (starting from a small one)
 strongly increases the probability of winning without bidding in the second period. For him to be

 indifferent ex ante, it must be that in the case that Player 2 decides to cover, profits are lower, that

 is, his bid is larger. The randomization can be seen in Figure 5, where darker areas correspond to
 larger probabilities (that is, to larger values of V (dx, dk)).

 In this equilibrium, signalling has a very continuous form. After observing the opening jump

 bid, the second Player has gained information about Player l's type. He can rule out some very
 low types who never use that particular opening bid, but his beliefs remain imprecise: to every bid

 there corresponds an interval of possible types. Nevertheless, some information is revealed. The
 likelihood of the various types changes. After a given bid, some types appear more likely than
 others. This type of signalling was discussed in Weber (1994). Weber studies "non-partitioning
 strategies", which partially reveals information without inducing posterior partitioning of the
 players' type spaces. The reason that signalling takes this form is that with a continuum of
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 potential jump bids, a monotonic equilibrium perfectly reveals Player l's type. This leads to
 degenerate second-period bidding in which Player 2 would certainly win the auction. This is ex-
 actly what happens in the model proposed by Daniel and Hirshleifer. They exhibit a separating
 equilibrium in which a continuum of jump bids is used. However, this perfectly reveals the bid-
 der's valuation. The other bidder then reacts by giving up the bidding or by using a bid just large
 enough to win the auction. The logic is the same in Avery's model when he allows for a large
 number of potential jump bids (Theorem 4.7). The equilibrium is monotonic and in the limit
 corresponds to the static second price auction.

 We believe that the structure of signalling analysed in our model captures well the infor-
 mation transmission that takes place in bidding auctions: it is a mixture of aggressive bidding
 to intimidate competitors (bluffing) and of cautious bidding to lull them into a false sense of se-
 curity (sandbagging). This form of signalling remains present when the choice of jump bids is
 endogenous and thus seems quite robust.

 7. DISCUSSION

 The reader has probably noticed the resemblance between our game and the game of poker,
 and indeed, the main paradigm used by game theorists to discuss informational questions in a
 rigorous framework has been poker. Variations of this game have been studied by Borel and
 Ville (1938), Von Neumann and Morgenstern (1944), Nash and Shapley (1950), to name just a
 few. However, the game we have discussed here is based on different assumptions, played using
 different strategies and gives different results. Let us briefly review these differences in turn.

 Poker is a zero-sum game. In the case of a showdown, the winner is decided by the players'
 hands, which are beyond their control. That is why poker is said to be not about managing cards,
 but money. Models, which place restrictions on how much can be won or lost by a player, do so
 only to ensure tractability. A poker player can win whatever his opponent spends; bets made in
 early rounds affect players' behaviour not only by affecting their beliefs but by raising the stakes.
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 194 REVIEW OF ECONOMIC STUDIES

 In our game, on the other hand, winning is about managing the trade-off between the prob-
 ability and the cost of winning. It is a non-zero sum game in which what a player spends is lost
 for everybody, and bids have no affect on the stakes. This makes it possible to study the expected
 bids of the auction and its efficiency properties.

 To discuss and compare the results, it is helpful to recall a distinction introduced by Von
 Neumann and Morgenstern. In the Theory of Games and Economic Behavior (1944), they iden-
 tify two motivations for bluffing in poker: the first one consists in bidding high or overbidding to

 created a (false) impression of strength, thus conceivably inducing one's opponent to pass. The
 second stems from the need to create uncertainty in the opponent's mind as to the correlation
 between bids and hands. In their own words "The first is to give a (false) impression of weakness
 in (real) weakness, the second is the desire to give a (false) impression of weakness in (real)
 strength". Bluffing pays off because it sometimes induces the other player to believe that his op-
 ponent's hand is, in reality, strong, thereby exerting a deterrent effect, and because, at other times,

 it induces him to raise, hoping that the hand is terrible while it is actually very good. By bluffing,

 you can win a lot with a bad hand. Without, you will only win very little, even with a good hand.
 In models of poker similar to that proposed by Von Neumann (see Karlin and Restrepo,

 1957; Newman, 1959; and Sakai, 1986 for extensions), bluffing is optimal when a player's hand
 is really bad and not middle-range. By contrast, in our model players with low valuations do not
 bluff because it is too expensive to do so. As in poker, bluffing pays off because it may deter
 the opponent from competing further. Unlike poker, however, a player who bids high with a high

 valuation has nothing to gain by confusing his opponent's beliefs. This may lead the other player
 to "call", a disastrous outcome for both players. A player with a moderate valuation gains an
 advantage by mimicking the behaviour of a high-valuation player.

 Sandbagging is relatively rare in poker. We find it in Nash and Shapley's (1950) three-player
 poker model. In this model all hands belong to one of just two categories: high and low. The first
 two players may bid low, even if they have strong hands, so as to induce the third one to raise
 the stakes by bidding high. As with bluffing, the confusion of beliefs this generates continues to
 be beneficial even when their hands are actually low. Sandbagging in our model has the opposite
 motivation: the aim is to persuade the other player to bid low, which allows the sandbagger to
 win at moderate cost. This strategy is particularly attractive to a player with a high valuation, for

 whom winning is especially important. Sandbagging exploits the behaviour of players with low
 valuations. By copying this behaviour, the sandbagger induces his opponent to bid cautiously so
 as to avoid potentially unnecessary expenditure. The uncertainty created by sandbagging leads
 the second player to make a stronger response to an opening bid than he would if he could be
 sure he was facing a player with a low valuation. As a result sandbagging damages players with
 low valuations.

 Avery considers a similar two-stage auction with affiliated values. In his model, players
 choose simultaneously between an ordinary bid and a jump bid. (In an extension, players may
 choose from a finite set of more than two possible opening bids.) For a given pair of an "aggres-
 sive" bidding function triggered by an unmatched jump bid and of an "accommodating" bidding
 function used in the second-stage in the event of a matched jump bid, Avery shows that there
 exists a unique symmetric equilibrium of the two-stage auction, in which signalling takes place
 in the first period: a player's first-stage strategy is characterized by a threshold. The player sub-
 mits the jump bid rather than the ordinary bid if and only if his signal exceeds this threshold.

 While our model is very similar to Avery's, focusing on independent private values raises
 the difficulties that he points out (p. 186): there is no fear of the winner's curse and it remains a
 dominant strategy to bid up to one's true value in response to a jump bid. By introducing bidding
 costs, as in Daniel and Hirshleifer, we obtain results quite different from Avery's. In particular,
 the opening bid strategy is non-monotonic.
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 Daniel and Hirshleifer analyse an infinite horizon, alternating-move game in which players
 must either match (or overbid) their rival's latest bid, or pass. The auction ends when a player
 passes. Players' valuations are private and independently distributed. Submitting or revising a
 bid entails a fixed cost, paid independently of the final outcome. Daniel and Hirshleifer show that
 there exists an equilibrium in which the first bidder opens with a fully separating (monotonic) bid,
 which induces his rival either to pass, or to match if his valuation is high enough. If he matches,
 the first bidder then passes. See Daniel and Hirshleifer and discussions in the related literature on
 takeover bidding contests.

 8. CONCLUDING REMARKS

 The importance of jump bids is evident in the literature on auctions. Such bids are used to signal
 strength and deter competitors from bidding further. However, as Cassady points out, signalling in

 auctions can take another form and have another rationale. Cautious bidding can lull competitors
 into a false sense of security. We analyse a model in which both forms of signalling are used in
 equilibrium. Costly bidding (in the sense that part of the bids are sunk), and a last stage in which
 bidding is simultaneous, are the two central ingredients necessary to obtain this type of signalling.

 Our theory complements Avery's model of jump bidding by introducing a new explanation for
 observing jump bids. We show that this type of signalling is robust to the endogenous choice of
 jump bids. Bluffing and sandbagging are used simultaneously in an equilibrium with a continuum
 of equilibrium jump bids. Revelation of information takes a restrictive and disjointed form. When
 players use non-partitioning strategies, a la Weber (1994), observing a jump bid changes the
 likelihood of types, making some types more likely following the observation of a certain bid.
 Note that Rosen's (1986) informal analysis leads to different predictions. Rosen conjectures that
 a strong player wants his rival to think his strength is greater than it truly is, thereby inducing him

 to exert less effort and that the same applies to a weak player in a weak field; a weak player in a
 strong field seeks, on the other hand, to give out signals showing that he is even weaker than he
 actually is, thereby leading his rival to slacken off.

 APPENDIX

 A.1. The equilibrium with covering

 As described in Section 2, Player l's low type bids 0, Player l's intermediate type bids K, and Player l's high type
 randomizes between 0 and K, bidding K with probability 7/8. Player 2's low type covers with probability 1/5.

 Let vo0 - = 2, v1 = 1, wl = 3/5, and w2 = 3/2. Denote by F0(-; vi) (FK (; vi)) the bidding distribution of
 Player l's type vi in subgame 0 (respectively, in subgame K). Similarly, let GO(.; wi) (GK(.; wi)) denote the bidding
 distribution of Player 2's type wi in subgame 0 (respectively, in subgame K). We have

 2 10 b- 1, be[1/10, 2/10],
 FO(b; 0)= - + --b, be[0, 1/10], FO(b; v2)=

 3 3 + 4b, bE [2/10, 7/10],

 8b, b [0, 1/10] 2
 GO(b;w 8)= w 2, b [ ,, G(b;w2)=2b - -,b [2/10,7/10], S10+2b, 51

 _ Kb, b [0, 1/6],
 FK (0; l)= 1, FK (b; 2) 21 21 /6

 1+- b6 b [1/6, 1],

 6 1
 GK(b; wl)= 6b, b E [0, 1/6], GK(b; w2) = b- -, b[1/6, 1].

 5 5
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 A.2. The non-revealing equilibrium

 In the non-revealing equilibrium, Player 1 bids 0 independently of his type. Let F(.; vi) (G(-; wi)) denote the bidding
 distribution of Player i's type vi (respectively, Player 2's type wi) in the subgame following a bid of 0. Then

 50 7 0, 1 50 5 1 17
 F(b;vo)=- b+ ,be 4-0 F(b;l)= b--- be , 3 12 L40 3 12' 40'200

 S25 96' b[200' 200j -I" 17 73

 F(b; V2) T--

 5 ,b+ bE-=b 3 173[2-
 26 40 1200' 200J

 8b, be 0,1
 l40],

 71__ 73 [73 1731 G(b; wl) = 4b+ 1 b 40, 2001, G(b; w2) = 2b - 700, be - 73 173 2b100' 200' 2001'

 200' TOO' 200J

 Pay-offs are l = 0, xl =-1 1 27 2 - and 2 -127 'O - VI- 4' 72 - 200' w1 - 200' W2 - 200'
 To support this equilibrium, we need to specify Player 2's beliefs if he observes K. Suppose that if he were to observe

 a jump, he would assign probability 1/8 to 00, 3/8 to v 1, and thus I to v2. As we will verify, Player 2 finds it therefore
 optimal to cover independently of his type. To verify that this deters Player 1 to bid K, independently of his type, it is
 necessary to determine how Player 2 would bid in the second stage, given the aforementioned beliefs. Suppose so that

 Player 1 is either of type no, with probability 1/8, of type ol, with probability 3/8, or of type v2; Player 2 is either type
 wI or w2, with equal probability. Using the previous notation, equilibrium bid distributions are

 40 1 1 3b- ,bE[ , 3I
 F(0; o0)= 1, F(b; 0l)= b+ I,'bE 0, ,F(b; v2)= 3b 5 1 9 9 5 b 4 3b 4

 3 15' E 0 5 1

 4b, be [O, ' 3 r34
 G(b; wl) = G(b; Wu2) = 2b - -, b E

 2b+2 b 13] 55 5 l--I

 In particular, Player l's pay-off is r0 = =X1 = 0 and i2 1 = 1/5. Observe that Player l's intermediate has no incentive in
 bidding K (paying K does not induce Player 2 to quit, and yields 0 afterwards). As for Player l's high type, he would get
 1/5 - 1/10 = 1/10 from doing so, while he gets 27/200 > 1/10 on the equilibrium path. Player 2's low type's pay-off is

 " >5 > 11, and covering is indeed optimal. Therefore, these beliefs support the non-revealing equilibrium.

 A.3. The non-revealing equilibrium is not a PSE

 Starting from the non-revealing equilibrium described above, suppose Player 2 observes a (out-of-equilibrium) bid K. If
 Player 2 believes (i) that this bid cannot have been submitted by the low type, (ii) that if Player l's type is intermediate he

 has randomized and submitted this bid with probability 2/3, and (iii) that -if Player l's type is high- he has submitted
 this bid with probability 1, then we will show that Player 2's intermediate type is indifferent between covering or not -in

 particular, he is willing to cover with probability 1, which we assume henceforth- and Player 2's high type covers for
 sure. In addition, given this covering behaviour, and the ensuing bidding described below, Player 1 would have indeed
 strictly preferred not to submit K if his type is low (i.e. he would have stuck with the action prescribed the non-revealing

 equilibrium); he would have been indifferent between this deviation (i.e. bidding K) and equilibrium play if his type
 was intermediate, and he would have strictly preferred the deviation if his type was high. This yields then that the non-

 revealing equilibrium is not perfect sequential.
 If the deviation occurs and is interpreted in the way described above, Player 2 believes that Player 1 is either of type

 vl, with probability 1/3, or of type 02, with probability 2/3. Similarly, given the covering behaviour specified above,
 Player 1 assigns probability 1/3 to Player 2 being of type wl, and 2/3 to Player 2 being of type w2 (if covering occurs).
 Bidding distributions are then given by (using the notation introduced earlier)

 1 1 b b- ,be ,
 F(b;nl)=5b+ ,be 0,-,F(b;V2) 2

 2 10 1 +b,be [ i1, T-0 30,
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 6b, be [0o,1], G(b; wl)= 0
 3b + , be , 7 1 10' [iTO0'~

 and  3 7 7 91 G(b; w2)= - b- -- be 1 2 20' 30'l10

 Player l's high type pay-off in this auction (that is, his continuation pay-off in the game) is 1 - 9/10 = 1/10.

 Therefore, his overall pay-off is -- + -10 = 9/40, which strictly exceeds 27/200, his pay-off in the non-revealing
 equilibrium. Player l's intermediate type's pay-off is 1 .1 1 = 1 which is exactly his pay-off in the non-revealing

 41231whcTs0t40" 1cly1es equilibrium. Finally, if Player l's low type were to bid K, his pay-off would be 4 1 -1 = -T, which is strictly less
 than his pay-off in the non-revealing equilibrium. Player 2's low type's pay-off upon covering is 1/10, so that he is indeed

 indifferent between covering and quitting, and Player 2's high type has a strict preference for covering.

 A.4. First-price winner-only-pays auction

 Both players have three possible valuations: either 0, v = 1/2 or 1, with probability Po, Pl, and 1 - P0o - pl for Player

 1, and so, sl, and 1 - so - sl for Player 2. Let s = so + s1.
 Player 1 may submit an early bid K e (0, V).

 Consider the following strategy profile: Player l's type v and 1 submit K with probability q and p < q respectively,
 and Player 2 covers if and only if his type is 1.

 In the subgame following a bid K, the total bid submitted by Player I's type v is v: that is, his second bid is v - K.
 His expected pay-off is thus

 S= s( - K), v?

 while

 S= s (1 - K)+ (1 -s) qp (1 -
 qPl + P(1 - PO - Pl)

 To see where the last summand is coming from, observe that Player l's and Player 2's high type must have the same
 pay-off, since they both are willing to submit the highest bid. However, by bidding slightly above v - K, Player 2's high

 type wins if and only if Player l's type is v, that is, he wins with probability

 qpl
 qpl + p(l - Po- pl)

 [In particular, it follows that Player 2's high type submits such a bid with this very probability.] The specification relative

 to the covering decisions for Player 2 are clearly optimal. Also, it is plain that Player l's type 0 has no incentive to bid K,
 since his expected pay-off from doing so is strictly negative.

 If the first bid is 0, beliefs about Player l's type are updated to

 PO (1 -q)pi
 PO+(1-q)pl +(1-p)(1-po-Pl) po+(1-q)pl +(1-p)(1-po-pl)'

 and 1 -u0O - P for types 0, o, and 1 respectively. We look for an equilibrium such that there exists t1 > t2 > 0,
 G2 E (ro, ro + rl), with

 - Both low types bid 0.
 - Player l's intermediate type continuously randomizes over the interval [0, tj ]; Player 2's intermediate type bids

 0+ with positive probability and continuously randomizes over [0, t2].

 - Player l's high type continuously randomizes over some non-empty interval [t1, fl; Player 2's high type contin-

 uously randomizes over the interval [t2, f1].

 We let G2 denote the probability with which Player 2 wins with a bid t2, and Ho the probability with which Player
 1 wins with a bid e > 0 for e arbitrarily small. While we need Ho > so for the equilibrium strategies to be as described
 as above, this constraint need not bother us, as we can always specify so small enough (instead, we will simply exhibit
 some s satisfying the inequalities to be defined). For instance, so = 0 is fine.

 Observe also that, since both players' high types have the same expected pay-off (as they are willing to submit the

 same highest bid), it must be that Player 1 wins with probability ro + rl by submitting a bid t1, since this is the case for
 Player 2.
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 We must have

 r] =- (1-tl )(ro+rl), (A2)
 1 (v -tl)(ro+rl) 7 -- _

 = (v - t2)s

 = vHo,
 2 (1-tl)(r0+rl)

 = (1 - t2)G2,

 2f = (v - t2)G2

 = orO.

 It is straightforward to solve (Al) and (A2), but the formulas are unwieldy. Using, for instance, the specifications

 1 1 1 1

 K = -- = P1 , p l = , = 10 P 3 P 3 2'
 we obtain

 q > p.

 More precisely, defining K = /009 83-7, we have

 1 2 193 + 1 1 2 193 + 577 -72

 71 = r = 2 058, 1 - X= - 0-26, tl = 0.23, 480 5' 1080 50
 1 193+K 101+5K 193 + K

 t2 = G2 432 0.64, rl 2160 024, r - 54 - 051, 10 432 2160 540
 158- K K -63

 q - 140 0-53, p 0- _ 0-51. 140 40

 It is now clear that 0 < t2 < t1, G2 E (ro, r0 + rl), and fl can then be determined. II

 Proof of Theorem 1. If the jump bid is not submitted with positive probability, there is nothing to prove.

 Suppose that the jump bid is submitted with positive probability in equilibrium (which requires K < 1), and such

 a bid is never covered. Since a fraction of this bid is sunk, observe that a positive measure of Player l's types submit
 the ordinary bid as well. So consider the two corresponding auctions, auction 0 and auction K. Let b be the highest bid

 submitted by Player 1 in auction 0. Thus, Player 2 bids no more than b + e, for any e > 0, and Player 1 can win for
 sure by (submitting an ordinary bid and then) submitting a bid b + e. Since he wins for sure by submitting the jump bid
 K (and nothing beyond), it follows that b = K < 1 (indeed, if b > K, submitting the ordinary bid and bidding b is not

 optimal, while if b < K, submitting the jump bid is not optimal), and Player I wins for sure if he submits such a bid b

 in auction 0. Now, Player 2's type 1 bids no less than b - e, for any e > 0 in auction 0 (since Player 1 would not bid as
 much as b otherwise), and he must therefore win with probability 1 by bidding b (as bidding b + e < 1 would strictly

 dominate bidding b - e otherwise). It follows that, among those types of Player 1 submitting an ordinary bid, all types
 but the largest bid strictly less than b (and win with probability strictly less than 1). Since Player 1 wins for sure if he

 submits the jump bid, it follows that types submitting such a bid must be larger than the types submitting an ordinary bid.

 Therefore, Player 1 submits an ordinary bid if and only if his type is less than some threshold a.

 The reasoning is similar, but slightly more involved, when the jump bid is submitted with positive probability in
 equilibrium (which requires K < 1) and also covered with positive probability. We will consider the expected total bid
 and probability of winning of Player 1 for each initial bid he may submit, where the expectation is taken with respect

 to Player 2's covering decision. Let b0 (respectively, bK) be the largest (total) expected bid submitted by any type of
 Player 1 among those submitting an ordinary (respectively, a jump) bid. [This bid is an expected bid in the case of a
 jump bid, as it is the sum of the jump bid and of a bid that depends on the realization of the covering decision.] Thus,

 Player 1 wins with probability 1 if he submits an ordinary bid and then bids bo + e, for any E > 0, or if he submits a jump
 bid and bids slightly more than the highest bid he would submit in case of covering, for a total expected bid of bK + E,

 for any E > 0. Since Player l's type 1 must have a strictly positive pay-off, it follows that either of those expected bids
 wins with probability 1 (for Player 1), and bo = bK (same argument as above). Let PO and PK denote the support of
 the ("expected") probability of winning of Player 1, corresponding respectively to the ordinary and the jump bid. By the

 previous argument, we have max{p I p Ep P0} = max{p I p E PK } = 1, and it is standard to show that each support is
 an interval. Consider p e (min{p p p P PO n PK }, 1], and let o0 and 0K be any type winning with probability p in the
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 auction 0 and K (obviously, the corresponding (sum of expected) bids bo and bK are equal). We claim that v0 = uK. If
 not, by monotonicity of preferences, all types between the two valuations must bid bo = bK (with probability 1), so that

 in at least one of the auctions, there is a positive measure of types making the same bid, contradicting the continuity of

 the support. Therefore, there exists fl e (0, 1) such that v > Pf implies fol Pl (s, v)ds e (0, 1) (for almost all such v).
 It is clear that Player 2's covering decision follows a threshold rule. Because y < 1 and a fraction of the opening

 bid is sunk, if Player 2 covers, his second-round equilibrium bid must be the higher bid with positive probability (for any

 type of Player 2 that covers). Therefore, in such a subgame, Player 1 must submit a losing bid with positive probability.

 Let E be the corresponding set of Player 1 types, which has positive measure. The set of types E0 C E such that

 f0 p(v, s)ds < 1, E E if and only if v E E must be of measure 0: to see this, observe that the bid K must be in the
 interior of Player l's support of winning bids after bidding 0 (since such a bid must win with the same probability after an

 ordinary bid as does a jump bid K only) and his distribution of such winning bids is continuous at K (as Player 2 would

 strictly prefer K + e to K - e otherwise). This implies that the measure of Player l's types bidding K after an ordinary
 bid is 0. Therefore, E differs from an interval by a set of measure 0; we denote its upper extremity by f, and Player 1

 must bid 0 with probability 1 for any type below its lower extremity a. II

 Proof of Lemma 2. For the proof of this lemma, as well as for the proof of Theorem 3, it is useful to recall a few
 facts about all-pay auctions (see Amann and Leininger, 1996). The support of bid distribution is identical across bidders
 and the distribution of bids is continuous on this support. Bidding is weakly increasing in types, and there cannot be
 any atom in the bid distribution except at the bid of 0. Only one player can have a bid distribution with a probability
 mass at 0.

 In an all-pay auction, in which F1 and F2 represent the distribution of valuations, Player l's objective is to maximize

 v1 F2(b21(x)) - x over x E R+, while Player 2's objective is to maximize v2 F1 (b-l(y)) - y over y E -+. First-order
 conditions are

 F,(b2 (x))(b21)'(x) b 1
 bll (x)

 and

 F'(b (y))(b1)'(y) 1
 b2 (y)

 To determine the equilibrium bid functions, it is useful to introduce the mapping h(-) = b21 o bl (-), which maps Player
 l's valuation into Player 2's valuation making the same bid. The first-order conditions can be rewritten as

 1 1

 (2 vF'(b2' obl(v)) v F'(h(ov)) 1

 bl (0) h (o)FF'(), (b-1)'(bl()

 whenever the density is positive. Finally, since h'(v) = (b21 )'(bl (v)) -b'j (v), we obtain the following ordinary differential
 equation

 h'(v) = h()F()
 v F2(h(v))'

 which along with the boundary condition h(1) = 1 fully determines the mapping h. In particular, the mapping h indicates

 whether one of the players has an atom in his bid distribution. If max{h-l(0)} 1 0, then Player 1 bids 0 with positive
 probability. It is also useful to note that when F1 (F2) are power distribution functions, there exists a closed-form solution
 for the function h.

 Going back to the analysis of the equilibrium with covering, let us define p(V) = f01 p(s, v)ds and denote by 2 the
 probability that Player 1 uses a jump bid, that is,

 I

 A F(f) - F(a) + p(v)dF(v). (A3)

 Recall that if a player has a valuation between a and /f he makes a jump bid for sure, and that players with valuations
 between f and 1 randomize.

 Let hO, hK be the mappings from Player l's type to Player 2's type making the same bid in the subgames 0, K.
 These h mappings determine the probability of winning. Since the profits are directly related to the probability of winning,

 indifference between subgames implies equality of profits across subgames and hence the identity of the mapping h across
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 subgames. Because valuations above P are indifferent between both subgames, we must have h(v) = h0(v) = hK (v) for
 v > fi, which implies that

 h'(v) p(v) f (v)/ (1 - p(v))f (v)/(1 - )
 h(v) goh(v)/(1-G(y)) goh(v)

 It follows directly that p(v) is constant and

 (1 - G(y)) = II (A4)
 1-p 1-A

 Proof of Theorem 3. Using the notation introduced in the proof of Lemma 2, the mapping h[O, 1] -> [0, 1],

 uniquely determined by h(1) = 1, h(a) = h(f8), and

 f(v) h(v) v <a (1-A)goh(v) v ' '
 h'(-) = F(/ goh(v) v'I

 1F flu) g h(o ) o u '" --f

 must satisfy

 h(a) =y and i dF(v) = K. (A5 and A6)
 max{h-I (0)}

 To see this, recall that the mapping h, which must be identical in both subgames on their common domain, represents the

 correspondence between players' valuations in the auction subgames. Since the mapping is the same in both subgames,

 this means that players with valuations between a and f do not bid in the auction after a jump bid since (by construction)
 they do not bid (in fact they are not present) in the subgame after an ordinary bid. The first equation is tantamount to the

 boundary conditions h(a) = h(f) = y and the second is just that type a must be indifferent between both subgames, that
 is b(a) = K.

 Because Player 2's type y is indifferent between covering or not, his pay-off from covering must be equal to the
 pay-off of zero he gets when he does not cover

 F(/f)- F(a)
 y = K. (A7)

 An equilibrium consists of values in [0, 1] for the parameters a, P, y, p, and A that solve (A3)-(A7).

 It is easy to see that equations (A3), (A4), and (A7) admit a solution A, p, and y in the unit interval, given a, f,
 provided that

 F(f) - F(a)
 - 1- F(a)

 In this case, A is the solution to

 KA F(f,8) - (F(f#) - F (a)) (A8)
 F( F) - F(a) (1-A)(A-(F(f) - F (a)))

 Therefore, an equilibrium with covering exists if and only if equations (A5) and (A6) (where A is given by (A8))
 admit a solution a and P that is in the unit interval. We now check this using the explicit solution for the function h
 available in the case of a power distribution. In this case, the system of equations become

 p 1 P-L -aP -p

 (1-p)v p-, >
 h(o) = (

 (1-p)f3l-1 +p--= (1-A)y1-1 and h(v)dF(v)= K.
 max{h-1 (0)}
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 We can actually express all variables as a function of y and P:

 ( 1-#/ 1-7p-1 K =y7 1- ,-7--- -- 1-yp 1-fip-1

 1 :( 2l- ) 1-p-1

 1 1-I~ 1 1-yp-IC-I p- -1)
 p -1--=-

 791Y- 91-"1 1 y -

 1p - y 1 _- _- 1 1 1- 7 1 _- yp- 1 yyP 1 y P--yp 1-fP-1

 Depending on ~ 1, all these variables are in the right domain if

 f E [0,y] for 0 < p <1

 fE = 1- , 5 for u > 1. 7)1

 We take y as the "exogenous" parameter and show that there is a /f in the right interval that satisfies the last constraint on

 the bid of type a. We can show that max{h-1 (0)} > 0 Vp' > 0. Let us focus on the case p > 1. The condition

 h(v)d -= K
 max{h-1 (0)}

 becomes, after a change of variable and some manipulations

 K _ p (1 --x)0 /(p-1)(p-1 --px)l/(-1)dx, p /--1  0

 or

 K =I - p = F1, , 62+

 where p = y-7 /P 1- - (1 -1) , = p - 1i (IyP-1)l and F is the hypergeometric

 function. The existence and uniqueness of a solution f E ( - ) /(-1), is then obtained by consider-

 I-, ,y is then obtained by consider-
 ing both sides as functions of z = [, and considering their variations: the L.H.S. is strictly decreasing
 and onto RI+, while the R.H.S. is strictly increasing and is equal to 0 for z = 1. The only non-trivial statement is the

 monotonicity of the R.H.S. However, manipulation of its derivative with respect to z gives, for z < 1-

 d F - 1 - ,2+ cxz (z-1)(1-y)+(1-y)7p-l(1-(1- yp-1)z)1/(/P -I) dz p 1 p -l' I P-1

 +(p - 1)(100--(1- )z)1-- (1-- (1- p-1)(Z-- 1))(1-o-(1- yp-1)Z)1/(p-1) > 0.
 Finally, because the L.H.S. (resp. R.H.S.) is everywhere increasing (resp. decreasing) in y, the root z is monotonically

 increasing in y, that is, fj is decreasing in y, which establishes that the total derivative of K with respect to y is positive,

 and in particular, a solution to the system of equations exists if and only if K is below some critical threshold K. II

 Proof of Theorem 4. K E [p /(p + 1), 1] : the only PSE involves no opening bid. The strategies of the non-revealing
 equilibria given in the text do indeed form a PBE Since any deviation from those strategies is not profitable (we have

 that the pay-off in this equilibrium equal to I is larger than v - K, which is an upper bound on the pay-off from a
 deviation), these equilibria are PSE.
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 Consider next a PBE with K < p /(p + 1) in which Player 1 never bids K. We show that such an equilibrium cannot
 be a PSE. Consider a deviation by all players with vae [a, 1] to jump bid K. Suppose, first, that, for some y e [0, 1),
 Player 2 always finds it worthwhile to cover when his valuation lies in (y, 1]. Consider the subgame between players

 with those valuations, and let h : [a, 1] - (y, 1], v * h(v) such that w = h(v) makes the same bid as a player with
 valuation v. Defining /f such that y~+ h(8f), f is necessarily larger than a, since players with valuations arbitrarily

 close to y have profits arbitrarily close to 1-au . y, which must exceed K. Also, y > a and we can compute h(v) =

 , 1 (a -1- 1) +1 p-). We have to verify that in this subgame all players with valuations in the interval [a, 1] achieve higher profits than in the original PBE, where players with valuation a earn . In the subgame following the

 deviation, players with v E [f, 1] achieve profits H(v) = IH(8) + jp h(s)-y ds, while players with valuations in [a, f]
 make zero profit. Ex ante profits of valuations [f/, 1] must exceed o~+/Pu(p + 1), that is,

 -3 + (ds_-K > op+l/(p + 1). /o ~~ , P -/

 Note that the derivative of the L.H.S. with respect to v is / P + (h()--y I) which is larger than the corresponding
 derivative of the R.H.S., which is voP. Hence, the inequality will hold if it holds for v = /. Consider players with valuations

 in [a, f]. Ex ante profits from deviating are y Po - K. Marginal profits, y ", once again exceed marginal profits 0' in the
 original PBE, since v < P < y. If players with valuation a are indifferent between deviating and not deviating, players

 with lower valuations will prefer not to deviate. This is equivalent to requiring that a - y - K = . Hence, provided
 that there exist y, a such that

 J ay/' -K = a/+'/( +1),
 _iP -ar' 1-alt ' -- K,

 we have found another PBE in which the deviators are better off, the non-deviators worse off were they to deviate and the

 beliefs of Player 2 after a deviation correspond to the set of types who benefit from the deviation. Thus the equilibrium is
 not a PSE.

 Suppose now that it is not worthwhile for Player 2 to cover after a deviation, regardless of valuation. It follows that
 the original PBE is not a PSE if

 a -K = aP+1/(ip+ 1),
 1 -al < K.

 (1+(1-aP) 1)l/(-'u-P1)-a'/ _ (Observe that -a 1 ). This system guarantees that it is indeed optimal for Player 2
 not to cover, regardless of valuation; that if a player has a valuation in the interval (a, 1] he will strictly prefer the
 expected pay-off from deviating to the original expected pay-off, and that all players with valuations in the interval [0, a)

 will strictly prefer the expected pay-off of the original PBE to their expected pay-off from deviating. Although it is not

 difficult to show which case obtains a function of K, this is not even necessary. It is enough to note that for a = 0, expected

 profits from deviating are smaller than expected profits from not deviating, whereas in both cases, since expected profits

 from deviating are larger than aP - K, they are also larger than aP+l1/(p + 1), provided that a is close enough to 1.

 This result is based on the fact that if K is strictly less than P-. y being a continuous function of K, there does then

 necessarily exist, for any K <__ , an a = (0, 1) satisfying one of the two systems.
 We finally need to verify that there does not exist a PSE providing assured deterrence outside the interval [ P, ].

 It is then easy to show that an equilibrium with assured deterrence, as specified in the text, is a PSE. RecalI that
 in an equilibrium with assured deterrence, there exists an a c (0, 1) such that all Player 1's with valuations strictly
 smaller than a make a zero opening bid, while all players with valuations strictly larger than a bid K. In this equi-
 librium Player 2 never covers, regardless of valuation. In simultaneous bidding between players with valuation a e

 [0, a] and players with w E [0, 1], after a zero opening bid, the expected profit of Player 1 with valuation v = a is

 xa - u /(1-1) ( x(a)) 1)adx; since a player with valuation a will be indifferent between this ex-
 pected profit and the expected profit following a bid of K, which is a - K, it follows that K = fl-a x1/(-1)

 (x-(1-a)1/(-1)dx. Consider a deviation by Player 2 in which he covers. More precisely, suppose that players with
 w E (y, 1] cover while players with valuations lower than y e (0, 1) do not. Obviously, if players with valuations arbitrarily

 close to y from above have expected profits from the deviation that are arbitrarily small, players with valuations strictly

 above y obtain strictly positive expected profits from deviating while players with valuations strictly below achieve
 strictly negative profits. These two situations compare with the zero profit that Player 2 achieves in the original PBE,
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 regardless of valuation. In the subgame following the deviation by Player 2, Player l's with valuations v E (a, 1] play
 against Player 2 with w e (y, 1]. In this subgame, Player 2 with valuation y+ (a valuation arbitrarily close to y from
 above) can achieve profit K, only if

 h(y)P -aP
 Y = K. 1 -aP

 Hence, the equilibrium with assured deterrence is a PSE if and only if such a y e (0, 1) cannot be found. Since the L.H.S.

 is increasing in 7, it is both necessary and sufficient that

 lim f-a ((1 -aP) L7-I + )//(/1l) -a, -lim a-a y->1 1-aP 1-aP

 l 1 xl/(-)X-(1-a) 1/( dx.
 1-a

 The latter inequality corresponds to the condition for which an equilibrium with covering exists, which precisely states
 that K > K.

 Finally, when K > - , there is no equilibrium with assured deterrence, as we saw in Section 5. Finally, equilibria

 with covering, as specified in the text for K < K, are obviously PSE, since they are PBE and every subgame is on the
 equilibrium path. II

 Proof of Theorem 5. The analysis that follows establishes the existence of equilibrium. We first need to compute
 pay-offs in the subgames where Player 2 has covered. We reformulate the different functions at stake in those subgames

 using the mapping h(.) = b1 o b (.). This function maps Player l's type into the type of Player 2 who makes the same bid. Let F1 and F2 be c.d.f.'s on [0, 1], with positive densities on (0, 1), F1 being the distribution of types of Player 1 and
 F2 the distribution of types of Player 2.

 Consider a subgame following a bid of k > 0 by Player 1, and assume that types are distributed as follows: the
 support of types for Player 1 is [a, 1], a e (0, 1), and its distribution has an atom of size p at a, and is continuously

 distributed with positive density on (a, 1). Player 2's types are non-atomic, uniformly distributed on (y, 1]. Since type v

 of Player 1 maximizes nH (v) = v Pr{x > b2} - x in the subgame, an immediate consequence of the envelope theorem is

 that a Hf (v)/la = Pr{x > b2}, and hence, by monotonicity of the bids in the types, Hf (v) = f"' Pr{b1 (t) > b2}dt (the
 superscript P is mnemonic for ex post, since these are the profits in the subgame). In this context, defining the mapping

 h(v) = b21 obl (v), we get that

 hP ()= (s)- yds.
 S() = ds.

 a

 Having a reduced form for Player l's profits in the subgames, we address now the first-period strategies. Given that a
 fraction y of Player 2's types has not covered, Player l's expected profit is

 HA(o) = -(1- y ) if()- - k = h(s)ds + -k.

 Assume now that a(.), y ('), h(v, .), p(.) are differentiable mappings in k. Since Player 1 randomizes over early bids, his
 ex ante profits must be equal across early bids. So if all types v of Player 1 on some interval V are (overall) indifferent

 between all k's in some common interval K, it must be that H-A (v)/lv = h(v) is independent of k E K, for v E V. Also,
 it must be that a HA (v)/8k = 0 on K x V. Using that h(v) is independent of k, this simplifies to (y (k) - h(a(k))) c k +

 dk a(k) - 1 = 0, that is, A a (k) = 1. Let us define ? (k) as

 1

 (k= p(k)+ I(s,k)ds. (1)
 a

 Equation (1) has the following interpretation. (.-, .), which was defined above, depends both on k and v; as a function of
 k, it is the density over bids made by type v; as a function of v, it is the density over types that, along with type a, bid k.

 di is thus the density over Player l's types who bid k, and is well defined as long as p and fa yV(s, k)ds are of the same

 cardinality, that is, as long as 0 < fa 'y(s, k)ds < oc. p(k)/1(k) is thus the probability, conditional on observing k, that
 Player 1 is of type a (k). In the equilibrium that we derive, type a bids 0 in the subgame k, and no other type bidding k

 bids 0 thereafter. Hence, p(k)/I(k) is the conditional probability that Player 1 bids 0 in the subgame k. In other words it
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 represents the proportion of bluffers among types who bid k in the first period. Accordingly, it is necessary in equilibrium
 that

 p(k) k
 (k) (2) 1(k) y (k)'

 which states that y (k) is the cut-off between types of Player 2 who have positive expected profits in the subgame and
 those who do not. Finally, we can rewrite the differential equation as

 vah(v)/ao y(v, k)
 h) - (1 - (k)). (3)

 h(u) ,(k)
 Since h(v) is independent of k on any interval V x K where types of Player 1 randomize, it must also be that A (k)

 V (v, k) is independent of k. In particular, we can define g(v) such that g(v) = 1- ,I-k) /(v, k), which is independent of k on any such interval. Multiplying equation (1) by 1-k)nd using equation (2), we get
 (k) ad using equation (2), we get

 1

 S( ( a()) g (s)d
 a (k)

 Differentiating this identity with respect to k, and using that g is independent of k, we obtain

 kdy (k)/dk 1 + kd (k)dk d y (k)/dk - 1/y (k) = -g(a(k))da(k)/dk.
 y (k)2

 Finally, since a = 1, this last equation can be rewritten as

 kdy (k)/dk 1 d2y (k)/dk2 1+ (k -dy (k)/dk - 1/y(k) = gd (k)/dk (dy(k)/dk2 (4) y (k)2 dy (k)dk(dy (k)dk)2

 This equation only involves the unknowns y and g.

 Conjecturing a solution of the form y (k) = ck" for some n and c, we have that a(k) = kl-n/nc, since -a = 1.
 Let k be the largest early bid made. Then a (k) = 1, which also implies that y (k) = 1. It follows that n = k, and c = n-n,

 so that (k) = (), while a(k) = . Equation (4) then implies that

 g(v)=n(l+ v1-(2n-1)/(1-n)
 1-n

 We can now solve for p and qp. It must be that, for any k and associated a, p + f0k Vt(a, k)dk = 1. Differentiating this
 identity with respect to k yields

 dp(k) )(k)

 d - -yi(a (k), k)= - - g(a(k)). dk 1- y (k)
 Using equation (2), this is equivalent to

 dp(k)/dk y (k) g(a(k))
 p(k) 1- Y (k) k

 Integration of the latter equation leads, for some constant A e IR+, to

 p(k) = A 1 - (-n) e-(k/n)n/n(1-n)

 (k) kn-I k
 Since A(k) = p(k) (k) = p(k)n, and f) A(k)dk = 1, it must be that

 S kn-I (-n))/(-n) -1
 A _ n 1-- e-(k/n)n/n(1-n)dk

 0

 kn-1
 The positive integrand is dominated by knn, and the integral is thus well-defined for n > 0. To complete the analysis, it
 remains to determine the deterrence level n. In fact, in the subgame following k = n, no type of Player 2 follows. (The
 equilibrium of the subgame with perfect information, in which only the highest types compete, is easy to solve and entails
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 HORNER & SAHUGUET COSTLY SIGNALLING IN AUCTIONS 205

 zero profit ex post for Player 2. Hence, Player 2 should not enter the subgame). Hence, the profit of type 1 of Player 1 is

 1 - n. On the other hand, that type must be indifferent between this bid and any other bid, say 0. It must thus be that

 1

 1 - n = h(s)ds, (5)
 0

 where the R.H.S. is the player's ex ante profit from bidding 0. Since g(v) = h(v) , we can, upon integration,
 determine h. The integral of the former equation, denoted I (n), is then equal to

 S xn (2n-1)/(1-n) xn/(-n) 1-n dx
 I(n) - xn e 2n- n n(2n-1) dx.

 0

 It can then be shown that

 Se(x-1)/x I(0) = -e dx = -e . Ei (-1) 0.6,
 0

 1

 I(1) = fxdx = 1/2.
 0

 Since I (-) is continuous in n, the existence of a solution to equation (5) then follows from the intermediate value theorem.

 Uniqueness of that kind of equilibrium is numerically obvious, and k - 0.53, which is almost twice as much as the bound
 found in the case of exogenous K. To sum up,

 a(k) = (-lk y(k) = k

 p(k) = A 1 - 1 e-(k/k)k/k(1-k), and

 y(v,k) =k 1+ v v(2k-1)/(1-k)) p(k)Y (k)
 1-k k(1-y(k))

 on the relevant domain.

 To see that second-period contributions need not increase with the early bid, differentiate Player 1's second-period bid
 with respect to the early bid. It is straightforward to obtain that type v's bid decreases with the early bid k if and only if

 a k) (s, k)h(s) (k) ds, - A(k)
 a(k)

 which is not satisfied for small enough k and large enough v. II
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