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Picture yourself at the poker table, every decision a crucial step toward victory or
defeat. Poker is not just a game of luck; it is a battlefield where strategy and prob-
ability rule. It was analyzed by the Hungarian-American mathematician John von
Neumann, who believed that real life mirrors poker, involving bluffing and strategic
thinking. Together with Oskar Morgenstern, he analyzed poker, resulting in their
1944 book Theory of Games and Economic Behavior, which laid the foundation for
groundbreaking mathematical theory of economic and social organization.

Simplified Von Neumann Poker

In this paper, we consider a simplified von Neumann poker game, the payoff of which
is summarized in Figure 1. This model is the simplest because raising does not play
a role, and Player 2 does not play.

Figure 1: Payoff of the simplified von Neumann poker

Player 1 antes $1 into the pot. Player 2 antes $(B + 1) into the pot. Each player
is then dealt a random card between 1 and n. After seeing their own card, Player 1
can choose to “fold,” in which case Player 2 wins the pot. Player 1 can alternately
“call,” which means to match the B + 1 dollars to the pot. Then the two cards are
compared, and the player with the higher number wins.



Objectives

Our goal is to find Player 1’s optimal strategy and conduct mathematical experi-
ments through Maple to understand its implications on concepts such as moments,
coefficient of variation, and probability generating functions. We conclude the pa-
per with a discussion of strategies for risk-averse players who prefer lower payoff
uncertainty over higher uncertainty.

Let’s shuffle up and deal as we explore the mathematics of poker, pioneered by the
founder of Game Theory.

Step-by-step procedure

First step: Assume that the given card to Player 1 is x. The initial question to ask
is “When to call?”

Player 1 will call (rather than fold) if

Payoffcall > Payofffold ⇐⇒ (B + 1)
x− 1

n− 1
− (B + 1)

n− x

n− 1
> −1

⇐⇒ x >
Bn+B + 2

2(B + 1)
.

Thus, the strategy for Player 1 is to fold if the given card x ≤
⌊
Bn+B + 2

2(B + 1)

⌋
, and

to call otherwise.

Notation: From here on, for simplicity, we assume
Bn+B + 2

2(B + 1)
is an integer, and

we denote this cutoff integer value as C.

Step 2: “What is the expected payoff?”

Let Px be the random variable representing payoff of Player 1 under this strategy.
Then,

Px =

{
−1

(B+1)(2x−n−1)
n−1

if x ≤ C (fold)

if x > C (call).

It follows that the expected payoff according to this strategy is

µC := E[Px] =
1

n

[
C∑

x=1

(−1) +
n∑

x=C+1

(B + 1)(2x− n− 1)

n− 1

]
.

Moreover, we obtain the following formulas:
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• Since C is an integer, µC simplifies to

µC =
B(Bn+B + 2)

4(B + 1)n
.

• When B = 2,

µC =
n+ 2

3n
.

Step 3: “What is the uncertainty?”

The variance of this play, if Player 1 follows this strategy, would be:

σ2
C =

1

n

[
C∑

x=1

(−1− µC)
2 +

n∑
x=C+1

(
(B + 1)(2x− n− 1)

n− 1
− µC

)2
]
.

• Again, since C is assumed to be integer, by letting B = 2, we have that

σ2
C =

4(2n+ 1)(2n2 + 1)

9n2(n− 1)
.

Step 4: “Higher moments?”

We calculate the higher moments about the mean:

E[(Px−µC)
k] =

1

n

n∑
x=1

(Px−µC)
k =

1

n

[
C∑

x=1

(−1− µC)
k +

n∑
x=C+1

(
(B + 1)(2x− n− 1)

n− 1
− µC

)k
]
.

• We can use Maple to compute these quantities for each k when B = 2.

E[(Px − µC)
3] =

8(2n+ 1)2(n+ 2)

27n3
,

E[(Px − µC)
4] =

16(2n+ 1)(24n6 − 8n5 − 32n4 − 20n3 − 55n2 + 5n+ 5)

135n4(n− 1)3
,

E[(Px − µC)
5] =

32(n+ 2)(4n− 1)(4n3 − n2 − 10n− 2)(2n+ 1)2

243n5(n− 1)2
,

. . .

Step 5: “Scaled moments as n → ∞?”

Let’s look at the scaled moments:
E[(Px − µC)

k]

E[(Px − µC)2]k/2
. The sequence, starting at k = 1,

as n → ∞, is

0, 1,
1

2
,
9

5
, 2,

31

7
,
27

4
, 13,

112

5
,
459

11
,
151

2
,
1825

13
,
1818

7
,
2429

5
,
7279

8
, . . . .

This distribution is right-skewed as the third scaled moment, skewness, is positive.
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Generating Functions

Next we use the probability generating function to double-check our results and see
if there is any closed-form solution.

f(t) := E[tPx ] =
1

n

n∑
x=1

tPx =
1

n

(
C∑

x=1

t−1 +
n∑

x=C+1

t
(B+1)(2x−n−1)

n−1

)
.

Remark: Unfortunately, we can’t find a nice closed-form for f(t).

Again, let B = 2 and assume C is an integer. We can verify some moments, i.e.

E[Px] = f ′(t)|t=1, E[P 2
x ] = [t · f ′(t)]′|t=1, etc.

We actually checked a couple of moments, and they agree with the formula we had
earlier. I learned that we can use command limit, i.e. limit(diff(A,t),t=1);

Risk-averse

Here, we have the freedom to vary the cutoff point C, that is, we will fold if x ≤ C
and call otherwise.

The average payoff as a function of C (for B = 2) is

µC =
1

n

[
C∑

x=1

(−1) +
n∑

x=C+1

(B + 1)(2x− n− 1)

n− 1

]

=
C(Bn−BC − C + 1)

n(n− 1)

=
C(2n− 3C + 1)

n(n− 1)
.

The variance in terms of C (for B = 2) is

σ2
C =

1

n

[
C∑

x=1

(−1− µC)
2 +

n∑
x=C+1

((B + 1)(2x− n− 1)

n− 1
− µC)

2

]

=
(n− C)(9C3 − 6C2 + 9C2n− 2nC + C − 5Cn2 + 3n3 − 3n)

n2(n− 1)2
.
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We now look at the coefficient of variation CV =
σC

µC

.

Discussion for B = 2, n = 100:

By Maple’s calculation, we have that CV is at its minimum when C = n = 100
(always fold), which gives CV = 0. This aligns with our expectations. On the other
hand, when extending the CV formula to the continuous space, there is a local
minimum at C = 33.49962007, which is close to the originally optimal cutoff of
Bn+B+2
2(B+1)

= 34. Note that in the discrete space, both C = 33 and C = 34 yield the
same CV value.

Figure 2: Plot of Player 1’s payoff for the strategy with cutoff point C

Figure 3: Plot of the CV for each cutoff point strategy from 1 ≤ C ≤ 100 (left) and
zoomed in on 15 ≤ C ≤ 50 (right). A local minimum is at C = 33.49962007.

Note that at C = 67, µ = 0 so CV blows up at this point. In general µ = 0 when

C =
Bn+ 1

B + 1
.
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An example of the histogram of Player 1’s payoff is shown:

Figure 4: Histogram of Player 1’s payoff when B = 2, n = 100, C = 34
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