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Abstract

This thesis investigates symbolic computation in the domain of difference equations (or recurrence 
relations). The goal is to obtain explicit solutions of a given equation automatically and, when 
possible, in closed form.

The main contributions of the thesis are:

• A comprehensive implementation of the method of generating functions as a Mathematica 
package called RSolve.m. The package can automatically compute ordinary and exponen
tial generating functions for, and find closed-form solutions of, linear difference equations 
with constant coefficients, certain linear equations with nonconstant coefficients, equations 
which contain convolutions, and systems of such equations. Used as a collection of tools, the 
package can be employed to compute closed-form solutions of certain partial difference equa
tions, to obtain recurrences for power-series coefficients of analytic functions, and to prove 
combinatorial identities.

• An existence and uniqueness theorem for partial difference equations in the nonnegative 
orthant.

• A proof that the generating function corresponding to the solution of a linear partial difference 
equation with constant coefficients with at most exponentially growing initial conditions is 
analytic.

• An algorithm for finding all polynomial solutions of a homogeneous linear difference equation 
with polynomial coefficients.

• An algorithm for finding all hypergeometric solutions of a homogeneous linear difference 
equation with polynomial coefficients. A sequence (hn) is hypergeometric if the quotient 
^n+i/^n is a rational function of n. Combined with an algorithm of Zeilberger, which, given a 
definite sum an = 2fcL-oo F(n i k) where F (n , k) is hypergeometric in both n and k, produces 
a linear recurrence for a„ with polynomial coefficients, it solves the long standing problem 
of deciding whether a definite sum such as an above is hypergeometric or not. For example, 
the algorithm can be used to prove that the number of involutions of an n-element set is not 
hypergeometric.

• A proof of the theorem that the Galois group of a linear difference operator with polynomial 
coefficients over the difference ring of germs at infinity of sequences over a field is an algebraic 
matrix group.
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Chapter 1

Introduction and Sum m ary

Despite the title this is not a monograph on linear difference equations; 
it is a discourse on linear recurrence relations. The distinction is simple.

In a difference equation the argument varies continuously; in a recurrence relation 
the argument takes on only (equally spaced) discrete values. Usage has blurred 

the distinction in terminology. Many people use the terms interchangeably.
We shall too.

— KENNETH S. MILLER, Linear Difference Equations (1968)

In the past decade, the field of symbolic computation has experienced intensive growth. On 
the software and systems side, the older and more mature systems such as Macsyma [PW85], Re
duce [Mac89], and Scratchpad [Jen84] have been joined by new systems with enhanced algorithmic, 
graphic, and/or programming capabilities such as Maple [C+85] and M athem atical [W0I88]. Sym
bolic computation systems have been ported to many different platforms, ranging from personal 
computers through workstations to supercomputers. On the algorithmic side, many important ad
vances have been made. To mention just three: Buchberger’s [Buc65] algorithm for construction 
of Grobner bases in polynomial ideals (which went largely unnoticed for several years) became a 
powerful tool for dealing with systems of multivariate polynomial equations, and found numerous 
applications [Buc85]. Thanks to the work of Risch [Ris69], Trager [Tra84], Bronstein [Bro90], and 
others, there now exists a complete algorithm for symbolic indefinite integration of elementary 
functions which have elementary integrals. Singer [Sin81] and Kovacic [Kov86], building on previ
ous work, have developed algorithms for finding Liouvillian solutions of linear differential equations 
with rational coefficients. Built into powerful symbolic computation systems, these algorithms can 
significantly increase productivity of any scientific or engineering work which uses mathematical 
tools. However, what has been achieved is likely to prove only a  glimpse at the vast potential 
which symbolic computational methods promise to have. A great deal of work remains to be done, 
both in finding better algorithms in the established areas, and in automating other mathematical 
disciplines which have hitherto not received sufficient attention.

This thesis investigates symbolic computation in the domain of difference equations (which we 
sometimes also call recurrence relations or recursions, in the spirit of the above quotation). The 
goal is to obtain solutions of a given equation automatically and, if possible, in closed form.

The thesis consists of three parts. In Chapter 2 we consider issues related to implementation of 
the method of generating functions. In Chapter 3 we investigate solutions and generating functions 
defined by partial difference equations. In Chapters 4 and 5 we examine ordinary linear differ-

1
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ence equations with polynomial coefficients and algorithms for finding solutions of such equations 
belonging to certain classes of functions.

The main contributions of the thesis are:

• A comprehensive implementation of the method of generating functions as a Mathematical 
package called RSolve.m. The package can automatically compute ordinary and exponential 
generating functions for, and find closed-form solutions of, linear difference equations with 
constant coefficients, certain linear equations with nonconstant coefficients, equations which 
contain convolutions, and systems of such equations. Used as a collection of tools, the package 
can be employed to compute closed-form solutions of partial difference equations, to obtain 
recurrences for power-series coefficients of analytic functions, and to prove combinatorial 
identities.

• An existence and uniqueness theorem for partial difference equations in the nonnegative 
orthant.

• A proof that the generating function corresponding to the solution of a linear partial difference 
equation with constant coefficients with at most exponentially growing initial conditions is 
analytic.

• An algorithm for finding all polynomial solutions of a homogeneous linear difference equation 
with polynomial coefficients.

• An algorithm for finding all hypergeometric solutions of a homogeneous linear difference equa
tion with polynomial coefficients. A sequence hn is hypergeometric if the quotient /in+1 /h n is a 
rational function of n. Let F(n, k ) be hypergeometric in both n and k, and let an = F(n, k ) 
where summation ranges over all integers. Zeilberger [Zeib] discovered an algorithm which 
given F(n, k ) produces a linear recurrence for an with polynomial coefficients. In combination 
with Zeilberger’s algorithm, the present algorithm solves the long standing problem of decid
ing whether a definite sum such as an is hypergeometric or not. For example, the algorithm 
can be used to prove that the number of involutions of an n-element set is not hypergeometric.

• A proof of the theorem that the Galois group of a linear difference operator with polynomial 
coefficients over the difference ring of germs at infinity of sequences over a field is an algebraic 
matrix group. This constitutes a major step towards an algorithm for finding Liouvillian 
solutions of difference equations with polynomial coefficients.

1.1 T h e M e th o d  o f G enerating Fun ctions

Generating functions are treated in more or less any book on combinatorics, difference equations, 
discrete or concrete mathematics, such as [Jor60], [Bra66], [Mil68], [Com74], [Knu68], [GKP89], 
and [Wil90]. In control theory a variant of the method is known as the 2-transform (see [Jur64], 
[Kac85]). For a survey and bibliography of the method of generating functions, see [Sta78].

If F  = (/„ (2 ))£Lq is a fixed sequence of complex-valued functions of a complex argument, then 
the generating function of a sequence a = K ) ~  „ of complex numbers with respect to T  is the 
formal series

C[«]M =  £ « • . / . « .
71=0

2
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For certain choices of J7, the corresponding generating functions have special names:

f n(z) = zn (ordinary) generating function
f n(z) =  zn/n\ exponential generating function
/ n(z) — l /n z Dirichlet generating function

This definition can be generalized to sequences with several indices, in which case generating 
functions are formal series in several variables.

The process of solving difference equations by the method of generating functions consists of 
three main steps:

1. Transform difference equations for the unknown sequences into equations for their generating 
functions.

2. Solve the resulting functional equations.

3. Expand the obtained generating functions and read off the ra-th coefficient.

The transformation of step 1 preserves linearity of the equations. Linear difference equations with 
constant coefficients give rise to linear algebraic equations for the corresponding ordinary generating 
functions, which are therefore rational functions of z. Linear difference equations with polynomial 
(or equivalently, rational) coefficients give rise to linear differential equations for the corresponding 
ordinary generating functions, with coefficients rational in z, and of order equal to the maximum 
degree of the coefficients of the original equation. This is shown in Section 2.2 (Transformation 
Rules). However, only those solutions of the differential equations which are analytic at the origin 
correspond to solutions of the difference equations, because the fundamental assumption of the 
method is that the generating function has a power series expansion around z — 0. Hence the 
method of generating functions will not give solutions which grow too fast, unless we can solve the 
associated differential equation as an equation in formal power series. This is the case, for example, 
with equations of the hypergeometric type which are linear differential equation with terms of the 
form z py(q\ x ) ,  and such that the set of differences p — q for all terms consists of (at most) two 
consecutive integers. Other kinds of difference equations may give rise to other kinds of functional 
equations for the generating functions. It is appropriate to mention at this point that power series 
which satisfy a homogeneous linear differential equation with polynomial coefficients are called 
D-finite, and sequences which satisfy a homogeneous linear difference equation with polynomial 
coefficients are called P-recursive by Stanley [Sta80]. As already mentioned in part, generating 
functions of P-recursive sequences are D-finite, and vice versa, which is not hard to see. Zeilberger 
[Zeia] uses the term P-finite in both contexts.

The method of generating functions can be used without changes to solve systems of simulta
neous difference equations. In this case the difference equations are transformed into a system of 
simultaneous (algebraic or differential) equations for the generating functions.

The real strength of the method when compared to others, however, lies in its ability to deal 
with nonlinear equations whose nonlinearity has the form of a convolution, and with certain types 
of partial difference equations. Since convolutions of sequences correspond generally to products

3
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of their generating functions, such equations give rise to nonlinear algebraic equations, and the 
corresponding generating functions are algebraic in z.

Some previous implementations of the method are described in [CK77], [Ivi78] (see also [Cel84]), 
and [FSZ89].

1.2 The Package R S olve .m

RSolve.m is implemented in Mathematicd™  V1.2 and contains about 1200 lines of Mathematica™  
code. From among Mathematica™ ’s built-in functions on which RSolve.m relies, the most impor
tant are Solve [ ] and DSolve[ ] which solve algebraic and differential equations, respectively. 
The functionality of the package in many cases depends directly on the functionality of these two 
functions.

The principal functions provided by RSolve.m are:

• RSolveC ]

•  G eneratingFunctionC ]

• ExponentialG eneratingFunction[ ]

•  PowerSum[ ]

• ExponentialPowerSum[ ]

•  SeriesTermC ]

RSolveC ] is the top-level function which attempts to solve given difference equations au
tomatically. First it invokes the method of ordinary generating functions, and second, in case 
of failure, the method o f  exponential generating functions. The user can specify the order 
and selection of methods to be tried, and add new methods. The transformation of differ
ence equations into functional equations for the corresponding generating functions is performed 
by PowerSumC ] and ExponentialPowerSumC ] ,  respectively. Then GeneratingFunctionC ] or 
Exponent ia lG enerat ingFunct ion  C 3 attempt to solve the obtained functional equations by using 
the built-in function S o lv e  C 3 in case they are algebraic, and HSolve C 3 (see below) in case they 
are differential. If HSolve C 3 fails the built-in function DSolve C 3 is tried. After the generating 
function has been successfully computed, SeriesTermC 3 attempts to expand it into a power series 
and read off the ra-th term.

The package allows great freedom in the format of the input, as well as in the choice of initial 
and/or boundary conditions given. The user can control the action of the functions by means of 
several optional parameters. The user can also specify typing information about individual variables 
by giving Boolean combination of inequalities, equations, and inequations which they satisfy.

The scope of difference equations which RSolve C 3 can handle includes linear equations with 
constant coefficients, linear equations with nonconstant coefficients which either are first-order 
homogeneous and have rational coefficients, or are such that HSolve [ 3 can solve the associated 
differential equation, or DSolve [ 3 can solve the associated differential equation and the solution 
grows no faster than nl an for some constant a. It can also solve nonlinear equations where the

4
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nonlinearity has the form of a convolution. Finally, it can solve systems of simultaneous equations 
of these types.

Used not automatically but rather as a collection of tools, the package RSolve.m can be employed 
to solve partial difference equations, to obtain recurrences for power-series coefficients of analytic 
functions, and to prove combinatorial identities.

Besides the functions itemized above the package contains many useful auxiliary functions. Of 
these, the most important are HSolve [ ] and ISolve [ ] . HSolve [ ] computes a formal power- 
series solution of a linear differential equation whose terms are of the form xpy(q\ x ) ,  and the set 
of differences p — q for all terms consists of (at most) two consecutive integers, provided that the 
solution can be expressed in terms of polynomials and generalized hypergeometric series.

ISolve [ ] solves Boolean combinations of inequalities, equations, and inequations involving 
rational functions of a single variable. The answer is given in the form of a disjunction of pairwise 
disjoint intervals.

The implementation of RSolve.m takes advantage of Mathematica™ ’s rich collection of pro
gramming constructs which allow the choice among functional, procedural, and rule-based pro
gramming. On the micro level, functional programming style is used throughout the package. On 
the macro level, RSolveC ] , GeneratingFunctionC ] ,  and ExponentialGeneratingFunctionC ] 
are written in the procedural style, whereas PowerSumC 3, Exponent ialPowerSumC 3, and 
SeriesTermC 3 are large collections of rewrite rules. This allows for new rules to be added with 
little or no change to the existing code.

1.3 P a r t ia l  D iffe ren ce  E q u a tio n s

Let A  be a nonempty set. We consider d-dimensional partial difference equations of the form

ap = F(ap+Zl, Op+z2, • • •, ®p+z/t), for p > s , (1-1)

where

• s € IN'* is a given point,

• zi, Z2, . . . ,  zjt G 7Ld are given points, such that s +  z< € IN'* for i = 1 ,2 ,. .. ,  k,

• F  : Ak —► A  is a  given function, and

• a : IN'* —► A  is the unknown sequence.

Let I  := {p € IN'*; p ^  s} be the initial set for (1.1). We assume that the initial conditions are of 
the form

ap = / ( p ) ,  for p  € / ,  (1.2)

where /  : /  -*■ A  is a given function.

Let Z  := {zi,Z2, . . .  ,zt}. Suarez [Sua89] has shown that if d = 2 and the points of Z  all precede 
the origin in lexicographic ordering, then (1.1), (1.2) has a unique solution. Here we characterize 
the sets Z C7Ld for which this existence and uniqueness result holds.

5
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Definition 1 For Z  C 2Zd and p ,q  € IN'*, let

p - ! z q  if p - q E  Z  and q +  Z  C IN'*. (1.3)

We call the transitive closure -<z of <z in IN'* the dependency relation corresponding to Z. □

For S C IR**, let conv S  denote the convex hull of S.

Definition 2 Let S  C IR/*. The integer cone of S  is the set
k

icon 5  =  { x £  x  =  A,-s;, A,- £ IN, s,- £ S} . □
i=o

We recall that a transitive relation is well-founded if it is asymmetric and has no infinite descending 
chain.

Theorem  1 Let Z  C 7Ld be a finite set, and <z the corresponding dependency relation. The 
following assertions are equivalent:

(i) <z is well-founded in IN'*,

(ii) icon Z is disjoint from {x £ IRd; x > 0},

(iii) conv Z is disjoint from {x £ fit/*; x > 0},

(iv) there exists an a. £ IR**, a  > 0, such that a • z < 0 for all z £ Z,

(v) there exists an a  € IN'*, a  > 0, such that a  • z < 0 for all z  £ Z,

(vi) -<z can be embedded into a linear ordering of IN'* of order type w.

Corollary 1 Let Z  C DT* be a finite set which satisfies any of the conditions of Theorem 1. Then 
(1.1), (1.2) has a unique solution.

An ordinary difference equation with constant coefficients defines a generating function which 
is rational. We give an example which shows that a multivariate generating function defined by a 
partial difference equation with constant coefficients need not be rational, even though the lower- 
dimensional generating functions corresponding to the initial conditions are. However, we prove 
the following:

Theorem  2 Let Z  C IR** be a finite set which satisfies any of the conditions of Theorem 1. Then 
the generating function corresponding to the solution of {1.1), ( 1.2) is analytic (provided that the 
rate of growth of the initial conditions is at most exponential).

It remains open whether or not such a generating function is always algebraic.
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1.4 D ifference Equations w ith  P olynom ial Coefficients

Let po(x),pi(x), ...,pd (x)  be given polynomials with coefficients in afield F, and such that po,pd £
0. Then

d
P i ( n ) an+i =  0 , for n > n0 , (1.4)

/=o
is a homogeneous linear difference equation with polynomial coefficients (an HLP, for short) 
over F  for the unknown sequence an. The order of (1.4) is d, and the degree of (1.4) is 
m = maxo<i<(i degp,(n). A sequence which satisfies an HLP is variably called P-recursive [Sta80], 
[Lip88], [Lip89], P-finite [Zeia], and holonomic [Zeia].

Unlike the case of equations with constant coefficients, there is no general method known for 
obtaining explicit solutions to arbitrary HLP’s. Therefore it is natural to ask for a given equation 
whether it has a solution in a certain fixed class of functions. We start by deriving algorithm 
POLY which given an HLP finds a basis for the space of all its polynomial solutions. As it turns 
out, there exists a polynomial P(x) of degree not exceeding the order of the HLP such that the 
degree of any non-zero polynomial solution of the HLP is a root of P(x). The coefficients of P{x) 
can be computed from those of the coefficients of the HLP. So one needs only to find the largest 
nonnegative integer root N  of F(x), substitute a generic polynomial G(n) of degree N  for an in 
the HLP, and solve a system of linear algebraic equations for the coefficients of G(n).

Next we consider hypergeometric solutions. A non-zero sequence (an) is hypergeometric over 
a field F  if it satisfies a first-order HLP over F, or equivalently, if the quotient an+1 /an is a 
rational function of n over F. Examples of hypergeometric functions include non-zero constants, 
polynomials, rational functions, and functions like n!, 2" / (n - 1)!3, and a"  = a (a  +  1) • • -(a + n - 1) 
where a  is a constant. If F  is algebraically closed then the general form of a hypergeometric function

where C, the a,-, the /?;, and Z  are constants from F.

Hypergeometric sequences are closed under multiplication and taking reciprocals, but not under 
addition. For example, 2” +  1 is not hypergeometric. However, finite sums of hypergeometric 
sequences are closed under addition, and form an algebra both over F  and over F(x),  the field of 
rational functions over F.

Using a decomposition of rational functions (which plays an important role in Gosper’s algorithm 
[Gos78] as well), we develop algorithm HYPER which returns a basis for the F-space of solutions 
which are finite sums of hypergeometric sequences. The algorithm works by constructing a finite 
set of auxiliary HLP’s (of the same order as the original one) such that the original HLP has 
a hypergeometric solution if and only if an auxiliary HLP has a non-zero polynomial solution. 
Algorithm POLY is then used on each auxiliary HLP to determine if it has any non-zero polynomial 
solutions. A hypergeometric solution of the original HLP is easily obtained from any non-zero 
polynomial (or, for that matter, hypergeometric) solution of an auxiliary HLP.

The auxiliary HLP’s are generated in a loop which runs through all monic factors of the leading 
and constant coefficients of the given HLP, as well as through the roots of a polynomial whose degree 
does not exceed the order of the given HLP. A straightforward implementation of the algorithm 
thus requires computation with algebraic numbers.

7
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Furthermore, algorithm HYPER can be used to determine hypergeometric solutions of non- 
homogeneous difference equations with polynomial coefficients, by applying it to an appropriate 
HLP of one-higher degree. Since given an HLP for an it is not hard to construct an HLP satisfied 
by Aan, algorithm HYPER can also be used to determine solutions whose fc-th differences are 
hypergeometric, for any fixed k.

1.5 D efin ite H yp ergeom etric  Sum m ation

The problem of indefinite hypergeometric summation was solved by Gosper [Gos77], [Gos78] who 
designed an algorithm for deciding whether the indefinite sum

where /* is a given hypergeometric sequence, is itself hypergeometric (apart from an additive 
constant).

The analogous question about definite sums of the form

where summation ranges over all integers and F(n,k)  is hypergeometric in both arguments (i.e., 
F(x  +  1, y)/F (x , y) and F(x, y + 1 )/F (x, y) are rational functions of a; and y), has long been open 
(cf. [Wil91]). In an important development, Zeilberger [Zeia] proved that every an of the form (1.5) 
satisfies an HLP, and in [Zeib] gave an algorithm which constructs such an equation. In general, 
this equation is not of minimum degree. However, using first Zeilberger’s algorithm to find the 
recurrence, then algorithm HYPER to find a basis for the space generated by its hypergeometric 
solutions, and finally solving a system of linear algebraic equations to expand (1.5) in this basis, 
represents an algorithm to decide whether (1.5) is a hypergeometric sequence.

For example, this algorithm can be used to prove that the number of involutions of an n-element

(cf. [Com74]) is not hypergeometric.

1.6 Galois th eo ry  o f difference equation s

Definition 3 A difference ring is a commutative ring k with unit, together with an automorphism 
r , which is called the transform, of k. A difference field is a difference ring which is a field.

The set C(k) = {x € k ;  t x  = ar} is a subring of k called the ring o f constants of k. If A: is a field 
then so is C(k). □

In applications k will most often be the field of rational functions over a field of characteristic 
zero, and r  the shift operator.

Galois theory of difference equations in difference fields was developed in a series of papers by 
Franke: [Fra63], [Fra66], [Fra67], [Fra69], [Fra71], [Fra73], [Fra74]. It turns out that Galois theory

an = Y ^ F (n ,k ) (1.5)
k

8
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of difference equations is more complicated than the corresponding theory for differential equations. 
One of the reasons is that if P{y , y ', . . . , y(n)) is a differential polynomial, then its derivative is linear 
in 3/(n+1), while no such linearization occurs with difference polynomials.

A difference field K  is a Liouvillian extension of k if there is a finite chain of difference fields k = 
Fq C Fi C . . .  C F* = K  such that F,- is either finite algebraic over F ,_i, or is obtained from F;_i by 
adjunction of some y which satisfies an equation of the form yn+i = anyn or yn+1 —yn = bn where a 
and b are elements of Fi-i. In order to obtain a more satisfactory theory, Franke [Fra66] expanded 
the definition of closed-form solutions to q-Liouvillian extensions which allow for adjunctions of 
solutions of yn+g = anyn and yn+q — Vn = bn. Here q is a positive integer. Still, this development 
did not lead to a complete resolution of the problem of existence of Liouvillian solutions as did 
the analogous line of research in the case of differential equations (see [Kol73], [Kap57], [Sin81], 
[Kov86]). The main obstacle was the existence of difference equations with coefficients in a difference 
field k and such that any extension field K  of k  in which the equation has a non-zero solution ( a 
solution field for the equation) contains new constants (i.e., constant elements which are not in k). 
An example is furnished by the simple equation an+i +  an =  0 with k the field of rational functions 
over the complex numbers. If an satisfies this equation then a* is a constant, hence (assuming there 
are no new constants) a complex number. But then its square root, a„, is a complex number and 
a constant as well. It now follows from the equation that an = 0. We conclude that any solution 
field for this equation contains new constants (such as a\).

Instead of fields of functions, we work in rings of sequences. In order to get a difference ring, 
the shift operator must be made into an automorphism by identifying sequences which agree from 
some point on. This also works well for rational sequences since we don’t have to worry about their 
poles. The units in this quotient ring are the sequences which are non-zero from some point on. 
The advantage of this setting is that we have a universal structure in which to work - the ring of 
all sequences over the field of coefficients, and we never get any new constants. The setback is the 
appearance of nonunits (which are also zero divisors).

We prove that in this setting the Galois group of a linear difference operator with rational 
coefficients is an algebraic matrix group, which is one of the major stepping stones in developing 
Galois theory. The others are establishing Galois correspondence, proving normality of extensions, 
and determining periodicity properties of nonunit solutions. This constitutes a major research 
program in itself.

9
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Chapter 2

A n Im plem entation of the M ethod of 
G enerating Functions

Given a sequence (gn) that satisfies a given recurrence, we seek a closed form for gn 
in terms of n. A solution to this problem via generating functions proceeds in four 

steps that are almost mechanical enough to be programmed on a computer.

— GRAHAM, KNUTH, PATASHNIK, Concrete Mathematics (1989)

2.1 Introd uction

This chapter describes the implementation and functionality of RSolve.m, a Mathematica™ pack
age for solving difference equations. The package is based on the method of generating functions.

For a survey and bibliography of the method of generating functions, see Stanley [Sta78]. If 
?  = (/n(z))£Lo ls a fixed sequence of complex-valued functions of a complex argument, then the 
generating function of a  sequence a = (an)^_0 of complex numbers with respect to ?  is the formal 
series

G{a,z) = nf n(z ) .
n=0

For certain choices of T ,  the corresponding generating functions have special names:

f n(z) — zn (ordinary) generating function
f n{z) = znIn\ exponential generating function
f n(z) =  l /n z Dirichlet generating function

This definition can be generalized to sequences with several indices, with generating functions 
of such sequences being formal series in several variables.

The process of solving difference equations by the method of generating functions consists of 
three main steps:

1. Transform difference equations for the unknown sequences into equations for their generating 
functions.

10
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2. Solve the resulting functional equations.

3. Expand the obtained generating functions into appropriate series.

The transformation of step 1 preserves linearity of the equations. Linear difference equations 
with constant coefficients give rise to linear algebraic equations for the corresponding generating 
functions, which are therefore rational functions of z. Linear difference equations with polynomial 
(or equivalently, rational) coefficients give rise to linear differential equations for the corresponding 
generating functions, with coefficients rational in z, and of order equal to the maximum degree of 
the coefficients of the original equation. However, only those solutions of the differential equations 
which are analytic at the origin correspond to solutions of the difference equations, because the 
fundamental assumption of the method is that the generating function has a power series expansion 
around z = 0. Solutions of the differential equation which have an essential singularity at the origin, 
however, can have the generating function as an asymptotic expansion (cf. Exercise 1.2.9. -  11 in 
[Knu68]), but these are much harder to compute than the power series expansions and therefore 
not as useful. Hence the method of generating functions will not give solutions which grow too 
fast, unless we can solve the associated differential equation as an equation in formal power series. 
This is the case, for example, with equations of the hypergeometric type. Other kinds of difference 
equations may give rise to other kinds of functional equations for the generating functions.

The method of generating functions can be used without changes to solve systems of simulta
neous difference equations. In this case the difference equations are transformed into a system of 
simultaneous (algebraic or differential) equations for the generating functions.

The real strength of the method when compared to others, however, lies in its ability to deal 
with nonlinear equations whose nonlinearity has the form of a convolution, and with certain types 
of partial difference equations. Since convolutions of sequences correspond generally to products 
of their generating functions, such equations give rise to nonlinear algebraic equations, and the 
corresponding generating functions axe algebraic in z.

Linear partial difference equations with constant coefficients translate into algebraic equations 
for the corresponding ordinary generating functions. Linear partial difference equations with poly
nomial (or equivalently, rational) coefficients translate into linear partial differential equations for 
the corresponding ordinary generating functions. Again, the method can be applied equally well 
to systems of simultaneous partial difference equations.

2.2 Transform ation R u les

This section contains derivations of a representative sample of rules used in RSolve.m.

Let (an)£L0 be a sequence of complex numbers. Its ordinary and exponential generating func
tions are defined as the formal power series

and
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respectively. We list some transformation rules which relate operations with sequences to  operations 
with their generating functions.

1. L inearity . If A,/z € C then

GF(Xan + fibn,z,n ,no)  = \G F{an, z,n ,no) + nGF(bn,z ,n ,n 0) ,
E G F (\an + fibn,z,n ,no)  = \E G F (an,z ,n ,n 0) +  fiEGF(bn,z ,n ,  n0) .

2 . Shifts and  polynomial factors. Let k € IN and x € C. Then the rising and falling powers 
are defined as ^

«fc= r i ( r i+ j')
3=0

and  ̂ j

3=0

respectively. If k, d € IN then

GF(n—tttn+d) 0) =  71—&n+dZn
n=0

=  z k f ^ ( n - d ) ^ a n z n - d - k

n=d

= zk( f ^ a nzn~d) ^
n=zd

= zk (GF(an,z ,n ,d ) /z dy k) .

If k ,d  + k € IN then

E G F (n ^ n+d,z ,n ,  0) =  ]T ) ^ a ^+ dZ n  =
n= 0  ' n= k  '

= S } n+i^ a"+do ^  = ̂ rJ±LanL;:r
/oo „ \  (<*+*)

=  zk ^ anZ—  J = zk (EGF(an, z, n ,0))^+fc) .

To convert ordinary powers to falling powers we use the well-known formula 

k
nk = J ^S { k ,i)n ^  

i=o

where S ( k , i ) are the Stirling numbers of the second kind (see, for example, [GKP89]).
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3. Convolutions. If r, s £ TL then

(n+a \  oo n+s'

£ a ( f c )& (» ,* ) ,* ,n ,0 j  =  £  £  a(k)b(n, k)zn

k = r )  n=0  k=r
a- 1 oo oo oo

= ^a(ife)*fc£ ;& (n ,fc y i-* +  «(*)** E  b(n ,k)zn~k
k=r n = 0  k=max{r,«} n = k -a

= ]jPa(fc)zfc ^ 2  K n + k ,k )zn +  ^ 2  a(k)zk ^ 2  KTl + ^>^)2;n
fc=r n = - fc  Jfe=max{rI*} n = - s
5 -1

= 2 2  a(k)zkGF(b(n + k, k), z, n , -fc) +  GF(a(k)GF(b(n + k, k), z, n, - s), z, k, max{r-, s} ),
k=T

and

= E ° ( fc) i r  E  b(n + k , k ) ^ +  f ;  o(fc)ij- f ;  &(n +  fc,fc)^-
k—r n = —k k=max{r,a} n = —a

^  Z k
= y t a(k)-jjEGF(b(n +  k, k), z, n , —k)

+EGF(a(k)EGF(b(n + A;, fc), z, n, - s ) ,  z, fc,max{r, s} ) .

2.3 T h e Package R S olve.m

The package RSolve.m , written in Mathematica™  [W0I88], implements the method of ordi
nary and exponential generating functions. The author has presented this package at the 1990 
Mathematica1M conference in Redwood City, CA [Pet90]. The package is capable of solving a wide 
range of ordinary difference equations and systems of such equations, as well as some linear partial 
difference equations.

The rest of this section consists of a Mathematica™ notebook containing a description of the 
package and the functions it provides. The corresponding Mathematica™ code is in Appendix A. 
It runs under version 1.2 or higher.

13
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The principal functions provided by RSolve.m  are:

RSolve alias RS
G enera tin g F u n c tio n alias G F
E xpG en e ra tin g F u n c tio n alias E G F
Pow erSum alias P S
E xpP ow erS um alias E P S
SeriesTerm alias ST

R Solve uses the remaining functions in an attem pt to solve the given equations automatically. If this fails, 
R Solve.m  can be used as a collection of tools to get partial results.

2.4 B asic  E xam ples

2.4.1 R Solve

In [2] :* R Sffafn] »=■ a [n - l]  + a[n-2] / ;  n >= 2,
a [0 ] — a [ l ]  »  i> , 
a [n ] , n]

S q r t[5]

These are the Fibonacci numbers:

In [3] :* T able[% [tl ,1 ]] / /  S im plify, {n,0,10}]

0ut[3]«  f l ,  1 , 2 , 3 . 5, 8 , 13, 21, 34, 55, 89)

The syntax of R Solve is patterned after that of DSolve, the arguments being a list of equations, a list of unknowns, 
and the independent variable. A single equation or a single unknown need not be given in a list. Equations can 
have the form eq n  / ;  co n d  where cond  is a boolean combination of inequalities and/or equalities specifying the 
range of validity for the equation. The result is a list of alternative solutions, each solution being a list of values for 
individual unknowns (given in the order the unknowns were listed in the input). Unlike Solve or DSolve, a solution
is not a list of transformation rules, but rather a list of the values themselves. Here is an example of a system of two
equations with two unknowns. When the range of validity is not given, it is assumed to be n  > =  0.

* 1,
+ y[n+ lj + y[iT 

_ _ ■ y[0] «  0},
f x fn ] ,  y [n]> , n]

Out [4] =

«■ n}>

As with Solve and DSolve, simplification of results is left to the user.

In [S ] := % / /  Expand

Out [5 ]-  n n n
4 ( -2 ) 3 2 2 ( -2 ) n

{ { - < - ) ----------- + -----------n , -  +  2 + n »
3 6 2 3 3

RSolve can solve any linear constant-coefficient equation, as well as any system of such equations. It can solve a 
linear variable-coefficient equation in the following two cases:

1. the equation is first-order homogeneous and its coefficients are rational functions of n, or

2. the solution does not grow faster than n i a 'n  for some constant a, and D Solve can solve the associated differential
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Here is an example of the latter:

In [6]:=  RS[{a[0] — a [ l ]  »=« 2,
<n + l ) ( n  + 2) a[n+2] -  2 (n + 1) a [n+ l] -  3 a[n] 0>, 
a[n] , n]

Out [6] * n n
(-1 ) 3«  + - »
n! n!

RSolve can also solve nonlinear equations when the nonlinearity comes from a convolution. The Catalan numbers 
provide a famous example.

In [7 ]:*  RS[{c[n+l] — Sum[c[k] c [n -k ], Ck, 0 , n}] / ;  n >- 0 ,
c[0 ] »» 1}. 
cCn], n]

Out [7]* Binomial [2 n , n]«  >}
1 + n

Sometimes a convolution is not completely obvious.

In [8] : = RS[{a[n] == Sum[k a [k - i]  , {k, n>] / ;  n > 0,
aCO] — 1>, 
a [n ] ,  n]

Out [8]= (1 + n>! I f [ n  — 0, 1, 0]
{{ +  »

I n [9] : = T ab le [% [[ l,l] ]  , {n ,0 ,6}]

0ut[9]»  C l, 1 , 3 , 12 , 60 , 360 , 2520}

2.4.2 Pow erSum

Pow erSum [expr, {z, n ,  n0:0}] computes S um [expr z 'n ,  {n, nO, Infinity}]. If a[n] is a sequence, the name 
Gf[a][z] is used by Pow erS um  to denote Sum[a[n] z 'n ,  {n, 0, Infinity}]. Pow erS um  is threaded over lists and 
equations. Alias: P S .

In [10] :* PS[n*2 + 4 n If[E venq [n ], 2 'n , 3‘n] + 1, {z , n>]
Out [10]» 1 z (1 + z) 3 z z

2 2 
( -1  + 2 z) 2 (-1  + 3 z)

In [11]:» C o e f f ic ie n tL is t[S e r ie s [%, Cz,0 ,10}], z]

0 u t [ l l ] a {1, 14, 37, 334, 273, 4886, 1573, 61286, 8257, 708670, 41061}

Out[12]* {1, 14, 37, 334, 273, 4886, 1573, 61286, 8257, 708670, 41061}

2.4.3 E xponen tia lP ow erS um

E xponen tia lP ow erS um [expr, {z, n , n0:0}] computes S um [expr z*(n-n0) /  (n -n0)!, {n, nO, Infinity}]. If 
a[n] is a sequence, the name EGf[a][z] is used by E xponen tia lP ow erS um  to denote Sum[a[n] z 'n  /  n!, {n, 0, 
Infinity}]. E x p onen tia lP ow erS um  is threaded over lists and equations. Alias: E PS .

In[13]:=  EPS[n*2 + 4 n If[E venQ [n], 2‘n, 3‘ n] + 1, f z ,  n}]

15
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Out[14]= {1, 14, 37 , 334, 273, 4886, 1573, 61286, 8257, 708670, 41061}

2.4.4 G enera tin g F u n c tio n

The syntax agrees with that of R Solve except that the user also has to provide an argument for the generating 
function (s).

In[15]:=  GF[{a[n] == a [n - l]  + afn-2] / ;  n >= 2 , 
a[0] — a [ l ]  — 1>, 
a [n ] ,  n , z]

►1] + ytn+1 
- J -■ yfo] »

< x[n ], y [n ]} , n , z j / /  Factor

: (1 + 2 z )  ) ,
(-1  + 2 z) (1 + 2 z)

( -1  + z) (-1  + 2 z) (1 + 2 z)

In[17]:=  GF[{c[n+l] == Sum[c[k] c [n -k ], {k ,0 ,n} ] / ;  
c [0] — 1>, 
e tn ] ,  n , z]

Out[17]= -2 4 1
- S q r t[ z  -  - ]  + -

I n [18]:= Together / / «  %
Out [18]= 1 -  S q rt [1 -  4 z]

I n [19] := GF[{a[n] == Sun[k a [ k - l ] , { k ,l ,n } ] / ;  n > 0 , 
a [0] »= 1>, 
a [ n ] , n , z]

Out [19]= 1 + H y p erg eo n e tr ic F [{ l, 2}, {}, z]

This sequence grows faster than exponentially, therefore its generating function is not an analytic function but just 
a formal power series.

2.4.5 E x p o n en tia lG en era tin g F u n ctio n

The syntax agrees with that of G enera tingF unction .
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Fibonacci numbers:

In [20]:= EGF[{a[n] *= a [n - l]  + a [n-2] / ;  n >= 2, 
a[0] == a [ l ]  == 1>, 
a [n ] ,  n , z]

Out[20]= ((1  -  S q r t[S ] ) z ) /2
(5 -  Sqrt [5 ])  E 

{{ -

<(1 S q r t[S ])  z ) /2
(S + S q r t[5 ])  E

Bernoulli numbers:

In [21]:»  EGF[Sun[Binomial[n,k] B [k], {k ,0 ,n} ] > 
B[n] + I f [ n  == i ,  1, 0 ] ,
B [n ], n, z]

Out[21]= z{{ }}

Out[22]= 1 1  1 1 1 5
{ 1 , 0 , 0 , 0 , 0 , —> 

2 6 30 42 30 66

In [2 3 ] :■ T ab le[B ernoulliB [n], fn ,0 ,10}]
Out[23]= 1 1 1 1  I S

[ 1 , 0 , 0 , 0 , 0 , —>
2 6 30 42 30 66

Bell numbers:

In [24] := EGF[{b[n] == S un[B inoB ial[n-l, k] b[k] , {k ,0 , n -l> ] / ;
n >■ 1,

b[0] •» 1}, 
b [n] , n , z]

Out[24]= z
' I  + E 

«■ »

Out[25]= {1 , 1, 2 , S, 15, 52, 203, 877, 4140, 21147, 115975)

In[26]:=  T able[Sum [StirIingS2[n, k] , fk .O .n } ], {n,0,10>]

Out[26]= {1, 1 , 2 , 5, 15 , 52 , 203 , 877 , 4140 , 21147, 115975}

2.4.6 SeriesT erm

SeriesTerm [f, {x, a , n}] gives the n-th coefficient of the Laurent series of f  expanded as a function of x around x 
=  a. Here n. can be symbolic.

I n [27] :» ST[E"x, fx ,  0 , n}]
Out[27]= 1

In [28] := ST[1/(1 -  x ) , fx , 0 , n>]

17
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Out[28]* I f [ n  >= 0 , 1 , 0]

The answer is not simply 1 since this would be wrong when n  is negative.

In£29]:= T»ble[5C, {n, - 3 ,  3>]
Out[29]“  {0, 0 , 0 , 1, 1, 1, 1}

In [30] S I [ l/(x -x -3 )  , <x,0,n>]
Out [30]“  n

I f [ n  >“  0 , 1, 0] (-1 ) I f [ n  >“ 0 , 1 , 0]

I n [ 3 1 ] Table[%, [n ,  -1 , 10>] 
Out[31]® [1 , 0 , 1, 0 , 1 , 0 , 1 ,

Often we have additional information about n. We can specify it using the function Info , and S eriesT erm  will 
try to simplify the answers accordingly. For example, if we are only interested in nonnegative n , we should say

In[32]:® n / :  In fo[n] “  n >= 0 
Out[32]= n >= 0

In [33] := ST[1/(1 -  x ) , [x , 0 , n>]
Out[33]= 1

In [34 ]:® ST [l/(x-x*3>, [x , 0 , n>]
Out [34]= n

1 ( - 1 )

look simpler. The information we can give about an integer variable n  must have the form of a Boolean combination 
of inequalities and/or equalities which involve no other variables beside n.

If we forget to give the information before we plunge into a lengthy computation, we can reuse the previous result 
by first specifying the information and then substituting W h en  for If:

In [35]:= / .  I f  -> When
Out[35]= n

Here are a few more examples (now all assuming n  > =  0):

I n [36] := S T [l/( l-x * 3 ) , [x ,0 ,n > ]
O ut[36]= 2 P i n

I n [37] := ST[1/(1 + x + x*2 + x * 3 ), [x ,0 ,n> ]
Out [37]= P i P i n

n Cos[— + ------ ]
(-1) 4 2

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In [38] := ST[(1 + 3 x + 17 x * 2 ) /( l  + x + x*2 + x*3 ), {x.O.n}] 
Out[38]= Pi n P i n

n 13 Coa[ ] 19 S in [ ------ ]

In [39]:= ST[(2 + 3 x ) / ( l  -  x + 15 x*2), {x ,0,n}]
Out[39]= 1 /2  + n/2  21

-2  S q r t [5 ] 15 Cos[ArcTan[-------------]  + (1 + n) A reT an[Sqrt[S9]]]
S q r t[59]

S q rt [59]

We can use S eries as a check:

In [40]:=  T a b le f t / /  I ,  {n ,0 ,7}]
Out[40]= { 2 . ,  5 . ,  - 2 5 . ,  -1 0 0 ., 275., 1775 ., -2 3 5 0 ., -28975.}

Out[41]= {2 , 5 , - 2 5 , -100 , 275, 1775, -2350, -28975}

In [42] := C lea r[n ]

2.4.7 A n o th e r  ex am p le

This example is taken from [MOW84]. Here a[n] denotes the number of binary strings of length n  which do n 
contain 111 as a substring.

In [43]:=  GF[{a[0] == 1, a [ l ]  == 2,
b [n] »» 0 / ;  0 <“ n <= 2,
2 a [n ]  =■ a [n+ l]  + b[n+lj / ;  n >= 0 ,
a [n ] =» b[n+ l] + b[n+2] + b[n+3] / ;  n >= 0},

< a [n ] , b [n ]} , n , z]
Out [43]= 2 3

-1 -  z -  z z )(  _ }}

In [44] := RS[{a[0] == 1, a [ l ]  == 2,
b[n] == 0 / :  0 <■ n <= 2,
2 a [it] *= a [n+ l]  + b[n+l] / ;  n >» 0 ,
a [n] =» b[n+ l] + b[n+2] + b[n+3] / ;  n >= 0},

{a[n] , b [n ]} , n]
Out [44]= n n

{{1.13745 1.83929 + 0.282707 0.737353

Cos[2 .07853 + 2.17623 n] ,

0 .0993883 1.83929 + 0.956392 0.737353

C o s [0 .34322 -  2.17623 n] -  I f [ n  == 0 , 1, 0]}}

In [45] := T ranspose [Table[X [[1]] / /  Chop, {n ,0 ,10}]] / /  HatrixForm

Out [45]= 1. 2. 4 . 7. 13. 24. 44. 81. 149. 274. 504.

0 0 0 1. 1. 2 . 4 . 7 . 13. 24. 44.

We note that the additive constant under the cosine function given as 2.078 in [MOW84] should be changed to 2.079. 

The authors also need the n-th coefficient in the power series expansion of the following function:
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Out[47]-

1.75488
S q r t[5]

-1 + Sqrt [5]

We note that in [MOW84] 1 should be subtracted from the result when n  =  0, and the values given as 1.7548 and
0.754 should be changed to 1.7549 and 0.755 (or 0.7549), respectively.

In [48] Table [I [X] / /  Chop, {n,0,10>]

Out[48]- {0, 1 . ,  1 . ,  4 . ,  7 . ,  1 1 ., 1 9 ., 3 6 ., 6 7 .,  121 ., 216.}

2.5 The O ptions

2.5.1 RSolve 

I n [49]:» Options[RS]

Out[49]= {Methods -> {MethodGF, MethodEGF}, PrecisionH S -> A utom atic,

Preeis ionST  -> A utom atic , UseApart -> Automatic,

MakeReal -> T rue, UseMod -> True, Spec ialF unctions -> True}

M ethods

Except for M ethods, all the optional parameters of RSolve actually belong to SeriesT erm  or to 
(E xp)G enera tingF unction  and we shall discuss them there. The optional parameter M eth o d s specifies 
which methods and in what order are to be tried. At present, there are two methods available - M e th o d G F  and 
M ethodE G F , and the user can add his or her own ones as explained in Section 2.9. By default, R Solve tries 
M ethodG F  first, and if this fails, it tries M ethodE G F . M e th o d G F  succeeds when either the solution does 
not grow faster than exponentially and DSolve can solve the associated differential equation, or the equation is 
homogeneous first-order linear and its coefficients are rational functions of the independent variable n . When neither 
of these is true, we can save time by going directly to M ethodE G F . Example:

-  n T[n-1] + 3 n! / ;  n > 0>,
TLnJ , n jj

S e r i e s : : e s s s :

E s s e n t ia l  s i n g u l a r i t y  e n c o u n te re d  in

-1  2 
- + 2 + 0 [RSolve‘P r iv a te 'z ]  ] .
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S e r i e s : : e s s s :

E s s e n t ia l  s i n g u l a r i t y  e n co u n te re d  in

-2  3
Exp[ + 2 + 0 [RSolve ‘ P r iv a te  ‘ z ]  ]  .

R S olve*P r i v a t e ‘z

S e r i e s : : e s s s :

E s s e n t ia l  s i n g u l a r i t y  e n c o u n te re d  in

- 2  2
Exp[ + 2 + 0 [RSolve ‘ P r iv a te  ‘ z ]  ] .

R S o lv e * P r iv a te ‘ z

G enera l::stop :

Further output o f S e r ie s ::e s s s
w ill  be suppressed during th i s  c a lc u la tio n .

Out [50]= 1 n
{85.74 Second, {{ (3  + 2 ( -)  > n ! » >

2

This grows faster than exponentially (as indicated by the complaints from Series about an essential singularity) and 
the equation is inhomogeneous, so we should have known that M e th o d G F  will not work. Now we use M eth o d E G F  
only:

I n [61]:= Timing[RS[{T[0] == 5 , 2 T[n] == n T[n-1] + 3 n! / ;  n > 0>,
T [n ] , n, Methods -> MethodEGF]]

Out[51]= 1 n
{17.96 Second, {{ (3  + 2 ( - )  ) n ! » >

2

The actual timings depend of course on the machine used and on other things, but their ratio should give an 
impression of the savings.

2.5.2 SeriesTerm

I n [52] :■ Options[ST]

O ut[52]= { P re c is io n s !  -> Autom atic, UseApart -> 1 , HakeReal -> T rue,

UaeHod ->  T rue , Spec ialF unctions -> T rue]

In what follows we assume that SeriesTerm  is invoked as S eriesT erm [expr, {z, a, n}, op ts]. Also,

In  [53] :* n / :  In fo[n] = n >= 0 
Out [53]= n >= 0

UseM od, P rec is ionS T  an d  M akeR eai

The role of these parameters is illustrated in the following examples.

I n [54] := ST[1/(1 -  x‘4 ) , {x , 0 , n>]
Out[54]= n n/2

1 ( -1 ) If[E venQ [n ], (-1 ) , 0]

4 4 2
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I n [55]:=  ST[1/(1 -  x"4>, ( i ,  0 , n} , UseHod -> False]
Out [55]= P i n

„ Cos[ ]

I n [56]:=  ST[1/(1 + x‘ 4 ) ,  fx ,0 ,n } ]
Out[56]= n/4

If[Sym bolicHod[n, 4] =■ 0 , ( -1 ) , 0]

Remark: SymbolicMod is used instead of M od, since M od[n, 4] simplifies to n .

I n [57]:=  ST[1/(1 + x*4), { x ,0 ,n> , UseHod -> False]
O ut[57]= 0 .5  Cos[0.785398 n] + 0 .5  Cos[2.35619 n]

I n [58]:■  S T [ l/( i  + x*4), { x ,0 ,n> , UseHod -> False , PrecisionST -> 24]
O ut[58]= 0 .5  Cos[0.78539816339744830961566 n] +

0 .5  Cos[2.35619449019234492884698 n]

I n [59]:=  ST[1/(1 + x*4 ), fx .O .n } , UseHod -> F a lse , HakeReal -> Fa lse ]
Out[59]= n

0.25 (-0.707107 + 0.707107 I)  +

It
0.25 (-0 .707107 -  0.707107 I )  +

0.25 (0.707107 -  0 .707107 I )  +

0.25 (0.707107 + 0.707107 I)

In [60 ]:=  ST[1/(1 + x*4 ), fx ,0 ,n } , UseHod -> False , PrecisionST -> In f in i ty ]

Out [60]= Pi n 3 P i  n
Cos [------] Cos[---------- ]

I n [6 1 ]:= ST[1/(1 + x*4>, {x ,0 ,n > , UseHod -> False , PrecisionST -> In f in i ty ,
HakeReal -> F a lse]

Out [61] ■ 1 I  4 + n 2 + n /2  1 I 4 + n 2 + n /2
- ( ( - ( - )  -  - )  2 ) < -(-) + - )  2

1 I 4 + n 2 + n /2  1 I 4 + n 2 + n/2
( -  - - )  2 ( -  + -)  2

A caveat

It is not recommended to use the option P recisionST  ->  In fin ity  when the roots of cubic or quartic polynomials 
are found exactly, since this can be very time- and space-consuming. In such cases, P rec is ionS T  ->  Infin ity  
should only be used in conjunction with M akeR eal ->  False.

U s e A p a r t

This parameter specifies whether or not A p a rt should be used on ex p r  before attempting the expansion, and if yes, 
in what form:
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Use A p a rt ->  N one do not use A p a rt ,
U seA part ->  A u to m a tic  (default) use A part[exp r], 
U seA part ->  A ll use A p a rt[ex p r , z].

M ethodG F  invokes S eriesT erm  with U seA part ->  A u to m a tic . 

M ethodE G F  invokes S e rie sT e rm  with U seA part ->  N one.

In[62]:=  RS[fp[k] =  (1 -a ) p [k - l ]  + b (1 -  p [k -l]>  / ;  k >= l .  
pCO] »  x>.
P[ k ] , k]

Out [62]* 1 + k
^  ( (1 -  a  -  b)

(1 -  a  -  b) ( ----------------------------------------) I f  [k >

This is correct, but unnecessarily complicated. When there are parameters in the input (like a, b , and x in this 
example), it is advisable to  use the option U seA part ->  A ll so that A p a rt will distinguish between the variable 
with respect to which expansion is done and other symbolic parameters.

I n [63]:= RS[fp[k] == < l-a )  p [ k - l ]  + b (1 -  p [k -l]>  / ;  k >= 1, 
pCO] — x>,
p [k ], k , UseApart -> A ll]

Out[63]=
b ( -1 )  (-1  + a + b) <b -

« -(  ) + ----------------------------
-a  -  b -a  -  b

In[64]:=  %/ .{a_*k b_"k :> Expand [a  b]*k>

Out[64]» k
b (1 -  a  -  b) (b -  a<{-( > +------------

-a  -  b - a  -  b

In [65]:» % / / .  a .  f .  + b_ ->  <a + b) f
Out[65]=

-b

In [66] := X / .  - ( a .  -  b_) -> b -  a 
Out[66]=

t> -  (1 -  (a  + b ))  (b -  (a + b) x)

U seA part ->  A u to m a tic  is useful when the function to be expanded is an algebraic function containing radicals. 

U seA part ->  N one is recommended when the function to be expanded contains the exponential function applied 
to a factored expression. Example:

In [67] := ST[E-((1 + S < irt[5 ])z ), {z , 0 , n>]

► S q rt [5] z
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In [68]:= ST[E-((1 + S q r t[5 ] )z ) ,  {z, 0 , n>, UseApart -> lone]

Out[68]= n
(1 + S q r t [5 ])

In[69] :■ C lea r[n ]

Special Functions

At present, the only special functions used by SeriesTerm  are the Legendre polynomials. 

Exam ple: L egendre  polynom ials

In [70]:» RS[{P[0] *> 1, P [l]  »* x.
(n + 1) P[n+1] -  (2 n * 1 )  « P[n] + n P[n-1] == 0 / :  n > 0>,
P tn ],  n]

Out[70]= {{L egendreP[n, x]>>

In [71] := RS[{P[0] == 1, P [l]  == x,
(n + 1) P[n+1] -  (2 n + 1) x P[n] + n P[n-1] == 0 / :  n > 0>,
P [n ] , n , SpecialFunctions ->  F a lse]

Out[71]= -n + 2 K[l] -n  + 2 K [l]
{{Sum[C(-2> x B inom ial[K [l] , n -  K [l]]

KCl]
Binomial [2 K[l] , K [ l ] ] )  /  (-4 ) , {K[l] , 0 , n > ] »

In [72]:= T a b le [% [[ l,l] ]  / /  Together, {n, 0 , 5>]

Out[72]= 2 3 2 4
■1 * 3 I  -3  x + S x 3 -  30 x + 36 x 

(1 ,  x , -------------- , ------------------- ,  .

IS x -  70 i

In [73] :* Table [LegendreP [n, x] , {n, 0 , S>]

Out[73]= 2 3
-1 + 3 x -3  x + S x 3 -  30 x 

[ 1 ,  x , -------------- , ------------------- ,---------------

IS x -  70 x + 63 x 
 }

Exam ple: M idd le  trin o m ia l coefficients

ln [74 ]:=  RS[{a[0] =  1, a [ l ]  =* 1,
(n+1) a[n+ l] == (2n+l) a[n] + 3n a [n - l]  / ;  n > 0>, 

a [n ] ,  n]

Out[74]= n /2  1
{{ (-3 )  LegendreP[n, -------------] »

S q r t[ -3 ]

These are the coefficients of x ‘n  in the expansion of (1 +  x  +  x"2)*n .

In [75] := T ab le[X [[l ,1]] , {n,0,6>] 
Out[75]= f l ,  1 , 3 , 7 , 19, S I, 141}

In[76] := Table [C o e ffic ien t [Expand [(1 + x + x*2)"n], x*n] , 
fn ,  0 , 6}]
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Out[76]= [1 , 1, 3 , 7 , 19, 51, 141}

In [77 ]:»  RS[{a[0] == 1, a [ l ]  «  1,
(n+1) a[n+1] == (2n+l) a [n ] + 3n a [n - l]  / ;  n > 0>, 
a [n ] ,  n, S pacialF unctions -> False]

Out [77]= K [l] n -  K [l]
{{Sum[(-1> 3 B inom ial[2 n -  2 K [l] , n -  K [l]]

B inom ial[2 K [ i ] ,  I [ l ] ]  , [K [l]  , 0 . n}] /  4“ )}

I n [78] :■ Table[JC[[l,1 ]] , {n ,0 ,6} ]
Out[78]= {1. 1, 3 , 7 , 19, 51, 141}

K [l], K[2], .. ate summation indices used by SeriesTerm  when the result involves sums.

I n [79]:= XX / .  K [l] -> k 
Out [79]= k -k  + n

{{Sum[<-1) 3 B inom ial[2 k , k]

B inom ial[-2  k + 2 n , -k  + n ] , {k, 0 , n>] /  4 »

2.5.3 G en era tin g F u n ctio n  a n d  E x p G enera tingF unction

In [80]:= Opt ions [OF]

Out [80]= {PrecisionHS -> Automatic}

In [81]:= Options [EGF]

Out[81]= {PrecisionH S -> A utomatic}

PrecisionH S has the same role in computing parameters of hypergeometric series as P rec is io n S T  has in finding 
poles of rational generating functions. Examples:

In [82]:=

Out[82]=

In [83] :■ 

Out [83]=

In [84]:= 

Out[84]=

In [85] :=

25

- 1) a [n ] ,  a [0] == 1},

{{H ypergeom etricF[{l.618034, -0.61803399}, {} , 2]}}

GF[[(n + 1) a [n+1] == (n*3 + n -  1) a [n ] , a [0] == 1}, 
a [n ] , n, z]

{{Hypergeom etricF[{-0 .682328 , 0.341164 -  1.16154 I ,  

0.341164 + 1.16154 I} , {}, 2]}}
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Out[85]= -1
{{H ypergeom etricF[{-(--------------------------------

1 S q r t[31] 1 /3

1 S q r t[31] 1/3
( -  +  ) ) ,
2 6 S q r t[3]

1 Sqrt [31] 2 /3
(-1 + S q rt [-3 ] + 3 ( -  +  ) +

2 6 S q r t[3]

1 S q r t[31] 2 /3  1
3 S q rt [ -3 ] ( -  +  ) ) /  (6 ( -

2 6 S q r t[3] 2

1 S q r t[31] 2 /3
, (-1  -  S q rt [-3 ] + 3 <- + ---------------)

2 6 S q r t[3]

1 S q r t[31] 2/3  1
3 S q rt [ -3 ] <- + -----------------) ) /  (6 <-

2 6 S q r t[3] 2

>, O , z ] »

2.6 O ther Functions in the Package

2.6.1 T h e  lis t o f  a ll func tions provided  by  R S olve.m

In [86]:= ?RSolve‘*

S q r t [31] 1/3 ) )
6 S q r t[3]

S q r t[31] 1/3

6 S q r t[3]

26
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ArgPi
Conjugate!}

EGf
E n ta i l s

Exponent ia lG e n e ra t  in g  F unc t io n

Exponent ia lG e n e r  a t  in g F u n c t io n

Exponent ialPow erSum

Exponent ialPow erSum

F a c to r i a lS im p l ify

F i rs tP o s

FreeL
G en e ra tin g F u n c tio n  

G enera t ingF unct io n  

Gf
HSolve

H ypergeom etricF
IS o lve

LeadingCoef

ListComplement

M akeList

HakeReal

H akeT rinom ial

MethodEGF

MethodGF

Methods

P a r t i a lF r a c t io n s
P a t te m L is t

PoleM ult i p l i c  i t y

PowerSum
PowerSum

P recisionH S

P re c is io n S T

RSolve

RSolve

ReP
RealQ
R eset

S a f e F ir s t
S a fe S e r ie s

S eriesT erm
S eriesT erm

Sim plifyG om plex2
Sim plifyCom plex3

Sim plifyCom plex4

Sim plifyCom plexE l

SimplifyCom plexE2

SimplifyCom plexN

SimplifySum

S im p lify T rig
S p e c ia lF u n c tio n s

SymholicMod

TTQ
U seA part

UseHod
UserSymbols

When

Remark: In the above list, the six functions which have aliases (E G F, E P S , G F , P S , R S , and ST) are listed 
twice.

All these functions have usage messages which can be seen by typing ? followed by the name of the function. 
Example:

In [8 7 ] :» T P a tternL ist

P a t te r n L i s t [ e x p r ,  p a t t e r n ]  r e tu r n s  th e  l i s t  o f  a l l
s u b e x p re s s io n s  o f  e x p r  w hich m atch th e  g iv e n  p a t t e r n ,  
p ro v id e d  t h a t  e x p r  d o e s  n o t  c o n ta in  Rule [ ]  .

2.6.2 HSolve

HSolve finds formal power-series solutions to a linear differential equation whose terms are of the form x ‘p  D[y[x], 
{x,q}] or x * (p + l)  D[y[x], {x,q}] for some nonnegative integers p , q. The solution has to be expressible in the 
form x*k (p[x] +  x*m  F[x]) where F[x] is a generalized hypergeometric function, p[x] is a polynomial, and k, m 
are integers.

Here is the hypergeometric differential equation.

0ut[88]s f{y[x] -> C [ l]  H ypergeoraetric2Fl[a,
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A couple of "random" examples:

I n [89] : -  HSolve[x*2 y ” [x] + 2 x y ’ [x] -  3 y[x] — x + 1, y[x] , x]
Out[89]= 1

« y [ x ]  -> - ( - )  -  x »
3

I n [90] : = HSolve[x*2 y ” ’ [x] + 2 x y>[x] -  3 y[x] — x + 1, y [ x ] , x]

Out [90]- 1 2
« y [ x ]  -> - ( - )  -  x + x C[l]

3

1
Hypergaom atricF[{-> , <2, 3}, -2  x ] »

2

2.6.3 ISolve an d  W hen

ISolve solves Boolean combinations of inequalities and/or equalities among rational functions of a single integer 
variable. Here is an example:

In [9 1 ] := ISolve[(n*2 -  3 n + 10)/(n*3 + 1) <= 1 /(5  n*2 + 2) t*
(n + 9)*2 > 1]

Out[91]- n <= -11 II -7  <- n <- -2

W h en  has the same syntax and semantics as I f  except that it checks whether the information given by the user 
implies the truth or falsity of the condition. The information is specified using the function Info.

I n [92]:» ??n

n

In [93 ]:»  Hhen[n~2 >« 10 n , a ,  b]
Out[93]- 2

I f [ n  >- 10 n , a , b]

No information has been given about n, so W h en  simply turns into If.

In[94] : -  n / :  In fo[n] = n < 1
Out [94]- n < 1

W h en  assumes that n  is an integer variable, so this actually means that n  < =  0.

In [95] : -  Hhen[n*2 >- 10 n , a ,  b]

Out[95]- a

In [96] := n / :  Info[n] = (n -  5)*2 <* 1
Out[96]- 2

(-5  + n) <= 1

I n [97] Hhen[n*2 >« 10 n . a , b]
Out[97]- b

In [98] : -  n / :  In fo[n] = n <= 1
Out[98]= n <= 1

In[99] := When[n*2 >= 10 n , a ,  b]
Out[99]= 2

I f [ n  >- 10 n , a , b]

28
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Here both possibilities are still open.

In [100] := C lear[n]

W hen  can be used to take care of special cases which are left out in Mathematica’s "generic values" paradigm.

In [101]:= In teg ra te [x * n , x]
Out [101]= 1 + n

In [102] := Table[X, {n, - 3 . 3}]

1
P o s e r : : in f y :  I n f i n i t e  e x p r e s s io n  -  e n c o u n te re d .

0

Out [102]= 2 3 4
- 1 1  x x x

■C , C o m p lex ln fin i ty , x , — , —>
2 x 2 3 4

2 x

We can redefine In te g ra te  in this case.

In [ 1 0 3 ] U n p ro te c t[ In te g ra te ] ;
In teg ra te[x_"n_ , x_] := Uhen[n *» -1 , Log[x], x '( n + l) /( n + l> ] ;
P r o te c t [ I n te g ra te ] ;

In[104]:= In teg ra te [x ~ n , x]

Out [104]= 1 + n

I f  [n == - 1 , Log[x] , ----------]
1 + n

In[105]:= TablefX, {n , - 3 ,  3>]
Out [105]= 2 3 4

-1 1 x x x
{------ , Log[x] , x . — , - -}

2 x 2 3 4
2 x

To achieve this we could just as well have used If  instead of W h en . The advantage is that the information we might 
have about the possible range of n  will now be taken into account.

In [106] := n / :  In fo [n ] = n >= 0 
Out [106]= n >= 0

In[107]:= In teg ra te [x * n , x]

Out [107]= 1 + n

2.7 L im itations

RSolve.m  currently uses only the method of (ordinary and exponential) generating functions. Therefore it cannot 
solve certain difference equations which can be solved by other methods. These include:

1. first-order linear equations unless

a) they are homogeneous with coefficients rational in n, or

b) the solution is 0 [n !  a 'n ]  for some constant a, and DSolve is able to solve the associated differential equation

29
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satisfied by the generating function;

2. equations which require domain or range transformations (examples: a[2n] = =  a[n] +  1 / ;  n  > =  1 can be 
solved by setting n  = =  2*k, b[k] = =  a[2 ‘k]; the equation a [n + l]  = =  a[n]~2 / ;  n  > =  0 can be solved by 
setting b[n] =  Log[a[n]]);

3. nonlinear equations or higher-order equations of special form such as Bernoulli equations, Euler equations etc. 

Section 2.8 below describes how the functions provided in the package can be used to obtain more information about 
the equation and its solution when the automatic solving routine R Solve fails. Section 2.9 describes how to add 
new methods to the repertoire of RSolve.

2.8 R S olve .m  as a C ollection  o f Tools

2.8.1 In te ra c tiv e  m ode

RSolve tries to do everything automatically. Currently it uses the methods of ordinary and exponential generating 
functions which consist of three major steps:

1. Transform recurrences into functional equations for the generating functions using Pow erSum  (E xponen- 
tia lP ow erS um ).

2. Solve these equations using Solve, HSolve, and/or DSolve.

3. Find the n-th Taylor coefficient of the generating functions using SeriesT erm . (Multiply it by n!.)

If RSolve returns Fail not all hope is lost. If Step 1 succeeded but Step 2 failed to solve the functional equations 
which the generating functions satisfy we can look at these equations using P ow erS um  or E xponen tia lP ow erS um  
and try  to solve them interactively.

Exam ple: A lte rn a tin g  m u ltip lie rs

If we start with 1 and at each step multiply the previous term by 2 we get the sequence 2 ‘ n. If we use 3 instead of 
2 we get 3*n. W hat if we alternate the multipliers?

In [108]:* R S[fa[n+l] == If[EvenQ [n], 2 , 3] a[n] , 
a [0 ] -  1>, 
a [ n ] , n]

Out [108]* F a i l

RSolve failed. Can we see the equation that the generating function satisfies?

In [109]:»  PS [a  [n+1] — I f  [Evenq[n] , 2 , 3] a [n ] , 
f z .  n>]

Out [109]= a [0 ] -  Gf [a] [z] -Gf [a] [ -z ]  S Gf [a]  [z]
- (  )   + ----------------

z 2 2

Now we see what the problem is! there is just one equation but two unknowns: Gf[a][z] and Gf[a][-z]. We can get 
another equation by substituting -z for z:

In [110]:* SolveDOi, %f .z  -> -z> , G f[a ][z ] ,  G f[a ][ -z ]]
Out[110]* (1 + 2 z )  a[0]

{{Gf [a] [z] - > -----------------------»
2

1 -  6 z

It remains to substitute the initial condition and to peel the generating function out of its shell:

I n f i l l ] : *  Gf [a] [z] / .  X [ [ l , l ] ]  / .  a [0] -> 1 
Out [111]= 1 + 2 z

1 - 6 z

This completes Step 2. Now we perform Step 3 using SeriesTerm:

30
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In Cl 12] : = n / :  I n fo M  = n >■ 0;
ST[%, { z ,  0 , n>]

Out[112]= n /2  2 n
- (6  ( - 1  ))  ( - 6 )

S q r t [6]

Here is a check:

In [113]:= T able[% / /  S im plify , {n,0,10}]

Out[113]= {1, 2 , 6 , 12, 36 , 72, 216, 432, 1296, 2S92, 7776}

In [114] :■ T ab le[* [[n ]]  /  X [[n-1]] , {n, 2 , 11>]
Out[114]= {2, 3 , 2 , 3 , 2 , 3 ,  2 , 3 , 2 , 3}

With some effort we can simplify the result and find out that a[2k] =  6*k and a [2 k + l] =  2 6*k.

2.8.2 R ed u ctio n  o f o rd e r

If we know one solution of a linear difference equation then we can lower its order by one. Let sol[n] be the known 
solution and a[n] the unknown sequence. The recipe is to substitute b[n] sol[n] for a[n] and rewrite the equation 
in terms of the difference d[n] =  b [n + l]  - b[n]. Here is an example.

In[115] := eqn = (n + 4) a[n+2] + a[n+ l] -  Cn + 1) a[n] =■ 0;

Suppose we somehow discovered that l / ( ( n + l ) ( n + 2 ) )  solves this equation.

In[116]:= so l[n_ ] := l/((n+ l)(n+ 2> )

In [117] :■ Together / •  (eqn / .  a[n_] -> so l[n ] )

Out [117]= True

Following the recipe we can find another, independent, solution.

In[118]:=  eqn = eqn / .  a[n_] -> b[n] so l[n ]

Out [118]= b[n] b [ l  + n] b [2  + n]
- (  ) +  +    0

2 + n (2 + n) (3 + n) 3 + n

Now we want to express this equation in terms of d[n] =  b [n + l]  -  b[n].

In[119]:= Solve[{eqn,
d[n] ”  b[n+l] -  b [n ], 
d [n+1] == b [n+2] -  b [n+ l]> , 
d [n ] ,  { b [n ], b [n + l] , b[n+2]}]

Out [119]= 1
<{d[n] -> (-1  + --------) d [ l + n]}}

3 + n

As predicted by theory, we now have a first order equation. RS can solve it:

In[120]:= RS[d[n] == Cd[n] / .  X [ [ l , l ] ] ) ,  d[n] , n]
Out [120] =

We only need a particular solution, so we can pick any nonzero value for d[0] (note that the choice d[0] =  0 leads 
to a constant multiple of sol[n]).

In[121] := F a c to r[% [[!,! ]]  / .  d[0] -> 1]
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Out [121] » n
( -1 )  (2 + n)

2

This is d[n]; let us find b[n]. This time we are free to choose b[0] =  0.

In [1 2 2 ]:-  RS[{X —  b[n+l] -  b [n ] , b[0] — 0}, b[n] , n]
Out [122] > n n

3 ( -1 )  (-1 ) (1 + n)

8 8 4

We can also multiply this by any nonzero constant.

In [123]:»  C o l le c t[8 X [ [ l , l ] ] t ( - l ) 'n ]
Out [123]* n

3 + ( -1 )  (-3  -  2 n)

In [ 1 2 4 ] N ap[Factor, X, 2]
Out [124]- n

3 -  ( -1 )  (3 + 2 n)

This is b[n]. Hence the general solution of the original equation is

In[12S] s o l[n ]  CC[1] + C[2] X)
Out [125]- n

C t l]  + (3 -  ( -1 ) (3 + 2 n)) C[2]

(1 + n) (2 + n) 

where C [l] and C[2] are arbitrary constants.

2.8.3 F in d in g  recu rren ces fo r pow er-series coefficients o f  fu n c tio n s

Given an analytic function, can we find the recurrence satisfied by its Taylor coefficients? This is the inverse 
transformation of the one computed by G en era tin g F u n ctio n . We can do this using SeriesTerm .

A  ra tio n a l fu nc tion

This example is taken from [BGMP86]. The authors show that the so-called matching polynomial a[m][x] of a 
certain one-parametric family of graphs G[m] satisfies the following recurrence of order 4:

In[126]:=  GF[{a[m] -  (x‘ 3 -  4x)a[m -l] + (2x*4 -  8x‘ 2 + 4)a[m-2] -
<x*5 -  2x*3 + 8x)a[m-3] + (x*4 + 4x*2)a[m-4] »» 0 / ;  m >“ 4 , 
a [0 ] — 1,
a [ l ]  — x-3 -  2x,
a [2] — x-6 -  8x*4 + 13x"2 -  2,
a [3] — x-9  -  14x*7 + S 8 x S  -  76x ' 3  + 22x>,
a[m ], m, z] / /  Factor 

Out [126]- 2
1 + 3 x z + 2 z

«  »
3 2 2 2 4 2  3 3 3

1 + 5 x z -  x z + 4 z  -  3 x z  + x z -  4 x z -  x z

Since the denominator is cubic in z there is a recurrence of order 3. Let us find it.

In [127] := f [ z ]  -= X [ [ l . l ] ] ;

Multiply the equation by the denominator and gather terms on one side:

I n L 1 2 8 J lu m e ra to r lT o g o th e r u if l ] ]  -  X [[2 ]]]]

Out [128]- 2 3 2
- l - 3 x z - 2 z  + f [z ]  + S x z f [ z ]  -  x z f [z ]  + 4 z f [ z ]  -
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Now use SeriesTerm  to find the recurrence and the initial conditions:

I n [129] :■ (ST[%, {z, 0 , a>] / .  S T [f[z ] , z , a_] -> i [ i ] >  »= 0
O ut[129]“ -If[m  == 0 , 1 , 0] -  3 x I f [ a  =* 1, 1, 0] -  2 I f [ a  ■= 2 , 1 , 0] -

3 2
4 x a [-3  + a] -  x a [ -3  + a] + 4 a [-2  + ■] -  3  x a [-2  + a ] +

4 3
x a [-2  + a ] + S x a [ - l  + ■] -  x a [ - l  + a] + a [a ]  ■= 0

Here are the initial conditions:

In[130] :■ Solve[Table[% / .  a [_?*ega tive ] -> 0 , {n ,0 ,2 } ], [a[0 ] ,a [ l ]  ,a[2]> ]

Out [130]“ 3
« a [ 0 ]  -> 1, a [ l ]  ->  -2  x + x ,

In [131]:=  Expand //C  X 

Out [131]*

And here is the recurrence:

I n [132]:= a  / :  In fo[n] = m >* 4 ; XXX / -  I f  -> Uhen
Out [132]= 3 2

-4  x a [-3  + a ] -  x a[~3 + a] + 4 a [-2  + a ] -  3 x a [ -2  + a] h

4 3
x a [-2  + a ] + S x a [ - l  + a] -  x a [ - l  + a] + a [a ]  »= 0

I n [133]:■ C o lle c t[#, Table[a[m +i] , [ i , - 3 ,0 > ] ] 4  /«  X
3 2

(-4 x -  x ) a  [ -3  + a] + (4 -  3 x +

3
(S x -  x ) a [ - l  + a ]  + a[m] =» 0 

I n [134] := C lear[a]

We can check this using SeriesT erm .

l  + 3 x z  + 2 z
«  »

3 2 2 2 4 2  3 3 3
1 + S x z - x  z + 4 z  -  3 x z + x z -  4 x z  -  x z

We got f[z] back.

A n  algebraic  fu n c tio n

In  [136]:= expr = 1 /  Sqrt [3 x*2 -  4 x + 1] ; f [x ]  == expr 

Out [136] =
f[x ]  == ---------------------------------

2
Sqrt [1 -  4 x + 3 x ]
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and differentiate

I n [137] := D[#, x ]*  /O X
Out[137]= - ( - 4  + 6 x)

f ’ [x] ...................................................
2 3/2  

2 (1 ■ 4 X ♦ 3 X )

Eliminating the square root from these two equations, we get a differential equation which f  satisfies.

In[138]:=  X  / .  1 /  a_*<3/2) -> f [x ]  /  a 
Out[138]= - ( ( - 4  + 6 x) f [x ] )f)[x] -----------

2
2 (1 -  4 I  * 3  i  )

After getting rid of fractions, we use SeriesT erm  and denote coefficients of f[x] by a[n]:

In [139] :■ lum erato r [Together [% [ [1] ] -  X [[2 ]]]]

Out [139]= 2
-2  f [x ]  + 3 x f[x ]  + f>[x] -  4 x f> [x ] + 3 x f [ x ]

In [140] := ST[%, {x , 0 , n>] / .  ST[f [ x ] , x , n_] -> a[n]
Out[140]= 3 a [ - l  + n] + 3 (-1 + n) a [ - l  + n] -  2 a [n ] -  4 n a[n] +

<1 + n) a [ l  + n]

In [141 ]:■ C o llec t [X, PatternListtfC , a [ . ] ] ]

O ut[141]= 3 n a [ - l  + n] + (-2  -  4 n) a [n ] + (1 + n) a [ l  + n]

This is a second order recurrence, so we compute a[0] and a [l] (using Series).

In[142] := S e r ie s  [ex p r, {x, 0 , 1>]

O ut[142]= 2
1 + 2 x + 0[x]

Here is a check of the recurrence we obtained.

I n [143] := Q F[{U  == 0 / ;  n >= 1, a [0] == 1, a [ l ]  == 2>, 
a [ n ] , n , x]

O ut[143]= 1
{{ »

S q r t [ l  -  3 x] S q r t[ l  -  x]

In [144]:= X / .  a_"x_ b .* x . :> Expand [a b]*x 

Out [144]= 1{{ >}
2

S q r t [1 -  4 x ♦ 3 x ]

This is ffx] we started with.

Another way to get rid of the square root is by squaring. This leads to a recurrence with convolutions.

In [145]:= f [x ]" 2  == expr* 2 

Out [145]= 2 1
f [x ] — --------

2
1 -  4 x + 3 x

I n [146] := lum erato r [Together[*[[1]] -  « [ [2 ] ] ] ]

Out [146]= 2 2 2 2
-1 + f [x ]  -  4 x f [x ]  + 3 x f [x ]
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In[147] :* C ollec t[X , f [x ] ]
Out[147]= 2 2

■1 * (1 ■ 4 x ♦  3 x ) f [x ]

In[148]:= ST[X, {x, 0, n>] / .  S T [f[x ], x , n_] -> a[n]
Out[148]= - I f [ n  ■= 0 , 1 , 0] + Sum[a[n -  K [l]] a [K [l]]  , fK [l]  , 0 , n>] -

4 Sum[a[-1 + n -  K[2]] a [K [2 ]], [K[2] , 0 , -1  + n>] +

3 Sum [a  [-2  + n -  K [3]] a [E [3 ]] , [K[3] , 0 , -2  + n>]

In[149]:= 0 F [ «  == 0 / ;  n >= 2 , a [0 ] == 1. a [ l ]  == 2>, 
a [n ] , n , x]

Out [149]= 1
({ »

2
S q r t [ l  -  4 x + 3 x ]

2.8.4 Partial difference equations

To solve a difference equation for a[n,k], we can simply treat one of n , k  as a parameter and solve with respect 
to the other. For the method of generating functions, this means that on Step 2 the functional equation for the 
generating function is itself a difference equation. Hence the recipe is as follows:

1. State in advance what is known about the range and type of indices using functions such as Info  and In tegerQ .

2. Write a[n,k] as a[n][k]. Use P S  (or EPS) with respect to k  to get a  difference equation for Gf[a[n]][z] (or 
EGfta[n]][z]).

3. Rewrite Gf[a[n]][z] (EGf[a[n]][z]) as h[n] where h is any head; for example, rewrite it as a[z][n]. Use RS to 
solve the difference equation for a[z][n].

4. Use ST to find the k-th term in the expansion of a[z][n] with respect to z.

We have the freedom to choose any ordering of the indices. Also, we have the freedom to compute many different 
generating functions: for every index, we can either leave it as a parameter or compute the ordinary or the 
exponential generating function with respect to it.

Exam ple: N ondecreasing  d ig it s trings

Let a[n, k] be the number of strings of length k formed from n  digits with the additional restriction that the digits 
in the string must not decrease from left to right. Considering the choice of the first digit we obtain the following 
recurrence:

a[a, k] = =  Sum [a[j, k-1], - j ,  n ”] / ;  n , k  > =  1 

a[n, 0] = =  1 / ;  n  > =  1

These equations define a[n,k] for n  > =  1, k  > =  0. It is advisable to specify the information that we have 
about the range and type of the indices.

In[150] :* n / :  Info [n ] = n >= 1;
k / :  In fo [k ] = k >= 0;
n / ;  IntegerQ [n] = True; 
k / :  IntegerQ [k] = True;

We want the ordinary generating function with respect to k. The corresponding variable will be y.

In [151]:= PS[a[n][k] «=* Sum [a[j][k -1] , { j, a}], [y, k , 1>]

Out [151]* G f[a [n ]][y ]  -  a [n] [0] == y Suiu[Gf [ a [ j ] ]  [y] , f  j , 1, n>]

The initial condition is a[n][0] = =  1 . At the same time, we rename the generating function so that its argument
will be n.
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In [152 ]:= recu r = %  / .  { a [_ ][0 ] -> 1, Gf[a[n_]] [y] -> ally] [n]>

Out [152]= -1 + a [y ] [n ]  ==> y Sum[a[y] [ j ]  , {j , 1, n>]

Now we solve this as a recurrence in n.

In [153] :* RS [recu r / ;  n >= 1 , a [y] [n] , n]

Out[153]= -1  + n
(-1 )

{{-( ) »
(-1  + y)

Finally, we compute the k-th coefficient in the expansion with respect to y; this gives a[n,k].

In [154]:= ST[«, [y , 0 , k}]

Out[154]= {{Binom ial[-1  + k + n , k ] »

We can also compute the bivariate ordinary generating function for a[n,k]. The variable associated with n will be 
x.

In [155] := GF[racur / ;  n >*■ 1 , a [y ] [n ] ,  n , x]

Out [155]= x
{{ »

1 -  x -  y

E xam ple: K in g ’s  moves

The aim is to compute a[n, k] where

a [n + l)  k+1] = =  a [n , k] +  a[n, k+1] +  a [n + l ,  k+ 1] / ;  n ,  k  > =  0, 

a[n, 0] = =  a[0, k] = =  1 / ;  n , k  > =  0

Here a[n, k] is the number of ways the chess king can reach the square (n , k) starting at (0, 0) if a t each step he 
can move either up one or right one or both (i.e, diagonally).

In [156] := n / :  In fo [n ] = n >= 0;
k / :  In fo [k ] = k >= 0; 
n / :  IntegerQ [n] = True; 
k / :  IntegerQ [k] = True;

I n [157]:» PS[a[n+l] [k+1] == a [n ][k ]  + a [n ][k + l] + a [n + l] [k ] ,  {x, k}]

Out [157]= Gf [ a [ l  + n ] ] [ x ]  -  a [ l  + n] [0]

Gf [a [n ]]  [x] -  a [n ] [0]
G f[a [n ]][x ]  + Gf [ a [ l  + n]] [x] + -----------------------------------

The initial condition is a[n][0] = =  1 .

I n [158]:= recu r * % / .  a [_ ][0 ]  -> 1
Out [158]= -1 + Gf [ a [ l  + n ] ] [ x ]  -1 + G f[a [n ]][x ]

-----------------------------------  + Gf [ a [n ]]  [x] + Gf [ a [ l  + n ]][x ]

This is a difference equation for Gf[a[n]][x] . What is the initial condition?

Since a[0][k] = =  1 , it is

In [159] := i n i t  = G f[a [0 ]][x ] == PS[1, {x, k>]
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We have to rewrite Gf(a[n]][x] in the form h[n] , where h  is any head.

In [160]:* { re cu r , in i t }  » { re cu r, in i t}  / .  G f[a[n_]][x] -> a [x ][n ]
Out [160]* -1 + a [ x ] [ l  + n] -1 + a[x] [n] 1<---------------------------------------     a[x] [n] + a[x] [j + n] ( a[x] [0]   }

X X 1 -  X-

Now solve for a[x][n] :

In [161]:* RS [{ rec u r, i n i t } ,  a [x ][n ] , n] / /  Factor 
Out [161]* 1 + n n

(-1 )  (1 + x)«  >}
1 + n

(-1  + x)

This has to be expanded as a function of x  .

In [162] :* S T [*[[1 ,1 ]]  , {x , 0 , k}]
Out [162]* Sun [B inom ial [n , K [l]]  Binomial[k + n -  K [ l ] ,  k -  K [ l ] ] ,  {K[l] , 0 , k}]

This is a[n,k] . Differently from previous example it is not in closed form since it contains a sum. Before we quit 
let us see what happens on the diagonal, i.e., when k  =  n  .

In[163] :* X/. k -> n
Out [163] * Sum [Binom ial [ n , K [l]]  Binomial [2 n -  K [l] , n -  K [l]]  , {K[l] , 0 , n>]

What is the generating function of a[n, n] ?

In[164]:» PS[%, {z , n}]
Out [164]* 1

S q r t [ l  -  6 z + z ]

And here is a [n , n] - in closed form (well, sort of):

I n [165]:* ST[%, {z,0,n}]
Out [165]* LegendreP [n , 3]

We can also get the "master" generating function depending on x  and y:

In[166]:= Together [GF [{ re c u r , in i t } ,  a [x ][n ] , n , y]]

Out [166]* 1

1 -  x -  y -  x y

2.9 Exp andin g th e  System

2.9.1 A dd ing  new  ru le s  to  Pow erSum  and  E xpP ow erS um

1 /S q rt[ l  - 2 x z - f z * 2 ] i s  the ordinary generating function for Legendre polynomials. SeriesTerm  knows about 
this, but P ow erS um  does not:

Out [167]* LegendreP [n , x]

In[168] :* PS[X, {z , n}]

Out[168]* PoBerSum[LegehdreP[n, x ] , z , n]

We can add a corresponding rule, using the "internal syntax" of PS (with three arguments, assuming the range of
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summation index starts a t zero). To make it more general, we allow for a shift in the index of the polynomial.

In[169]:=  PS[LegendreP[n_ + a _ . , x _ ] , z_ , n_] :»
Block[{nn>,

( 1 /S q r t[ l  -  2 x z + z*2] -
Sum[LegendraP[nn, x] z*nn, {nn, 0 , a  -  1>] > /  
z*a ] / ;  In tegerQ [a] fefc a  >* 0

Let us try it out:

In [170] : * PS [LegendreP [n , 3 ] ,  f z ,  n>]

Out[170]» 1

2
S qrt [1 -  6 z  + z ]

Adding new rules to E xpP ow erS um  is analogous.

2.9.2 A dd ing  new  ru le s  to  SeriesT erm

There are many functions in Mathematica SeriesT erm  does not know how to.expand. For example:

In [1 7 i]: = ST[Sin[x] , {x.O .n}]
Out[171]* S e r ie sT e rn [S in [x ]  , x , n]

Let us add a rule for Sin[x]. We have to use the "internal syntax" of ST  shown in the output above - with three 
arguments:

ST[Sin[x_], x_, n_] :=  ...

By assumption, we are expanding around x  =  0. W hat is the n-th  Taylor coefficient of Sin[x]? Maybe ST  can help 
us out after all, since it knows how to expand ExpfxJ:

I n [172] :* ST[(E*(I x) -  E‘ ( ' I  x ) ) / (2  I ) ,  fx ,0 ,n> ]
Out [172]* I n - I  n 

-  ( -1 )  — I
2 2

n! n!

If we do not like real quantities to be expressed in terms of complex ones, we can use the appropriate one of the 
S im plifyCom plex rulesets to make everything real. But first we have to tell the system that n  is real (saying that 
it is integer would also work):

I n [173]:* n / :  BealQ[n] -  True;
X / / .  SimplifyComplexEl

Out[173]* - (P i  n)
S in [ ----------- ]

2
- (  )

I n [174]:* X / .  S im plifyT rig

Out [174]= P i n
S in [ ]

2

So, here is our new rule. To make it more general, we add a factor to the argument:

In [175] :* ST[Sin[a_. x_] , x_, n_] : -  a 'n  S in [P i n /  2] /  n! / ;
FreeQ[&, x]

Let us try it out:
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I n [176] :* ST[Sin[2x], {x ,0 ,n} ]

Out [176]* n P i n
2 S in [ ]

2

In the same way, we find the rule for Cos[x]:

In[l77] : = ST[Cos[a_. x _ ] , x_, n_] :* a*n Cos[Pi n /  2] /  n! / ;
FreeQ [a, x]

In [178]:= ST[Cos[x]-2, {x,0,n> ]
Out[178]* P i <n -  K [l] ) P i E [l]

Cos[--------------------- ] Cos[----------- ]
2 2

Sun[---------------------------------------------------- , « [ 1 ] ,  0 , n>]
<n -  K [l] >! E [l] !

2.9.3 A dding new m ethods to RSolve

At present, RSolve uses two methods: M ethodG F  (ordinary generating functions) and M e th o d E G F  (exponential 
generating functions). This means, among other-things, that it is unable to solve many linear equations of first order 
although it is trivial to do so. Here is an example:

I n [179]:* RS[{a[n + 1] *= (n + 1)'“2 a[n] + 1, a [0] ** 1>, a[n] , n]

D Solve: : N otY et:

B u i l t - i n  p ro c e d u re s  c a n n o t s o lv e  t h i s  d i f f e r e n t i a l  
e q u a t io n .

D Solve: : N otY et:

B u i l t - i n  p ro c e d u re s  c an n o t s o lv e  t h i s  d i f f e r e n t i a l  
e q u a t io n .

D S o lve :: N otY et:

B u i l t - i n  p ro c e d u re s  c an n o t s o lv e  t h i s  d i f f e r e n t i a l  
e q u a tio n .

G e n e ra l : : s to p :

F u r th e r  o u tp u t o f  D S o lv e ::NotYet
w i l l  be  su p p re s s e d  d u r in g  t h i s  c a l c u l a t i o n .

Out[179]= F a il

The differential equation in both cases is nonhomogeneous. of second order, therefore D Solve cannot handle it as 
yet. But even if it could it would not help since solutions to these differential equations have an essential singularity 
at z =  0. This is a consequence of the fast growth of a[n] (it grows approximately as n! ‘2). Both generating 
functions are just formal power series.

We can add a new method, called M e th o d L l, as a "quick and dirty" first-order linear equation solver. Here is the 
general recipe for adding new methods.

RSolve does the parsing and then evokes the methods (as specified by the optional parameter M ethods) one by
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one until one succeeds. The arguments passed to a .particular method by R Solve are: 

recu r - a list of equations, all valid for n  > =  0; 

conds - a list of initial conditions;

unknow ns - a list containing the heads of all unknown sequences;

s ta r t V alues - a list of starting values for n, one for each of the unknown sequences, in the order these are listed in 
unknowns;

n - the independent variable;

op ts - the optional parameters that RSolve received.

The function R ese t [recu r, conds, unknow ns, s ta r t  V alues, nO] can be used to reset the unknown sequences so 
that they all start with n  =  nO. Of course, this must be compensated for in the final result.

The result should be a double list in the manner of Solve (but containing just values, not rules). If the method fails,
it should return Fail.

In [180]:* H e th o d L l[rec u r., conds., unknowns., s ta r tV a lu e s . ,  n_,
o p ts  Rule] :=

Block [{eqn, a , rec , con, sv , kk},

I f  [Length[roc] !» 1, R e turn[F ail] , 
eqn « F i r s t [ r e c ] ] ;

I f  [Length[unknowns] !» 1, R e tu rn [F a i l] , 
a  » First[unknow ns]];

I f  [Length[startV alues] != 1, Return [F a il]  , 
sv  ■ F irs t[s ta r tV a lu e s ] ] :

(* ex p re ss  a [n+1] in  te rn s  of a[n] *)

( •  s o lu t io n  fo m u la  *>

s o l  ■ Replace[rhs, c_. a [n ] + d_. :>
a[0] Producttc  / .  n -> j ,  { j ,  0 , n -  1>] +
Smn[(d / .  n -> k) P roduct[c / .  n -> j , { j , k+1, n - l> ] , 
{k, 0 , n -  1} ] / ;  FreeQ [{c, d>, a ] ] ;

(* f in d  a[0] f ro n  the  i n i t i a l  c ond ition  *)

( •  r e s to re  th e  index *)

];

Let us try this on our example:

In[181] := RS[{a[n + 1] =»= (n + 1)*2 a[n] + 1, a [0] — 0>, a [ n ] , n , 
Methods -> HethodLl]

Out [181] =» 2
{{S un[P roduc t[1 + 2 j ♦ j , { j, 1 + k, -1 + n > ] , {k, 0, ■

In [182]:= T ableIX[ [1 ,1 ] ]  , {n,0,6>]
Out [182] ■ {0, 1, S, 46 , 737, 18426 , 663337}
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It works! But I called this solution "quick and dirty" because there are several problems with it, for instance:

1. There is no simplification of products and sums, e.g. the above solution can be written as n!~2 S u m [l/k !* 2 , 
{k, n}].

2. The result will be incorrect if the product has factors with integer poles, e.g., if the equation is something like

In [1831 : = R S[(n-3)a[n + 1] == (n + 1)*3 a [n ] , a [ n ] , n , Methods -> HathodLl]
Out [183]= 2 3

1 3 j  3 j  j
{{Sum[0, -{k, 0 , -1 + n}] * P roduct [ --------- + --------— + -----------+ ------------,

-3  + j  -3  + j  -3  + j  -3  + j

{ j ,  0 , -1  + n}] a [ 0 ] »

In [184] :» Table [%[ [1 ,1] ]  , <n,0,6}]

1
P o s e r : : in f y :  I n f i n i t e  e x p re s s io n  -  e n c o u n te re d .

P o s e r : : in f y :  I n f i n i t e  e x p re s s io n  -  e n c o u n te re d .

P o s e r : : in f y :  I n f i n i t e  e x p re s s io n  -  e n c o u n te re d .

F u r th e r  o u tp u t  o f  P o s e r : : i n f y
s i l l  be su p p r e s s e d  d u r in g  t h i s  c a l c u l a t i o n .

I n f i n i t y : : i n d t :

In d e te rm in a te  e x p re s s io n  C o m p le x ln fin i ty  + C o m p le x ln fin i ty  + 
Complex I n f i n i t y  + C o m p le x ln fin i ty  e n c o u n te re d .

I n f i n i t y : : i n d t :

In d e te rm in a te  e x p re s s io n  C o m p le x ln fin i ty  + C o m p le x ln fin i ty  + 
C o m p le x ln fin i ty  + C o m p le x ln fin i ty  e n c o u n te re d .

I n f i n i t y : : i n d t :

In d e te rm in a te  e x p re s s io n  C o m p le x ln fin i ty  + C o m p le x ln fin i ty  + 
C o m p le x ln fin i ty  + C o m p le x ln fin i ty  e n c o u n te re d .

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



G e n e r a l : : s to p :

F u r th e r  o u tp u t  o f  I n f i n i t y : : i n d t
s i l l  be  s u p p re s s e d  d u r in g  t h i s  c a l c u l a t i o n .

Out[184]• -a [0 ]  4 a[0]
{ a [ 0 ] , -------- ,  , -36 a [ 0 ] , In d e te rm in a te , In d e te rm in a te , In d ete rm in ate}

3 3

By the way, this example can be handled by the built-in methods, since the equation is homogeneous:

I n [185] :■ RS[(n -  3 )a[n  + I]  =  (n + 1)*3 a [n ] , a [ n ] , n]
Out [185] = 3

n!
{ { If  [n >= 4 , ------------------------- , 0] a [ 4 ] »

13824 (-4  ♦ n ) !

I n [186]:= T a b le [X [[ l,l] ]  , {n,0,6}]

Out[186]= {0, 0 , 0 , 0 , a [ 4 ] , 125 a [ 4 ] , 13500 a [4 ]}

Note that any solution to this equation must have a[3], and therefore all the preceding terms, equal to zero.

2.10 If it d oesn ’t  work . . .

2.10.1 T he  in p u t expression  is re tu rn e d  u neva lua ted

Check the syntax against the description in the usage message. One common syntax error is to omit the generating 
function argument in G F  or EG F.

I n [187] := «RSolve.ra

In  [188] := GF[a[n+l] == c a [n ] , a [n] , n]
Out[188]» G enara tingF unction [a [n  + 1] =  c a[n] , a [n ] , n]

In [189] := GF[a[n+l] == c a [n ] ,  a[n] , n , z]
Out [189]= a[0]

{{ »
1 -  c z

2.10.2 RS (o r G F , o r E G F ) re tu rn s  Fail

This means that the function was not able to handle the given equations. Perhaps rewriting the equations in 
a different way or changing the values of optional parameters might help. If not, use P S  and/or E P S  on the 
recurrence(s) to see if at least Step 1 (i.e., transformation of recurrences into functional equations for the generating 
functions) was successful. If yes, there is a chance that these equations might be solved with some help from the 
user, or that they could be useful in some other way. See the first example in Section 2.8.

It should be noted that an answer of the form {} means that the given equation or system of equations has no 
solution.

2.10.3 Series::esss

This message means that the solution grows too fast causing the generating function to have an essential singularity 
at the origin. In the default setting R Solve will not give up but proceed with the method of exponential generating 
functions. If the solution grows faster than a *n  for any constant a, but not faster than n! b * n  for some constant b  
we might see this message but nevertheless get the solution in the end (see the example in Subsection 2.5.1).

2.10.4 D Solve::N otY et

This message means that DSolve was not able to solve the differential equations satisfied by the generating 
functions. See the example in Subsection 2.9.3. We might still get the solution if the equation for the exponential 
generating function is simpler than the one for the ordinary generating function.
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Chapter 3

Partial difference equations

A generating function is a clothesline 
on which we hang up a sequence of numbers for display.

— HERBERT S. WILF, generatingfunctionology (1990)

3.1 In tro d u c tio n

We shall denote points in lRd with small boldface letters, and their coordinates with the cor
responding plain letters indexed by coordinate names. For example, p =  (pi,P2, • - -iPd) and
Pi =  (p«i,Pi2, • • • ,Pi<f). The canonical basis for IR** will be denoted by {ei, e2, . . . ,  e<J.

Let p ,q  € H/*. We shall write p  < q if p,- < q,- for i = 1,2, . . . ,d ,  and p < q if pt- < q, for 
t =  l , 2 , . . . , d .

Let A  be a nonempty set. We shall consider d-dimensional partial difference equations of the 
form

ap = F1(ap4.Zl,a p-(.Z2, . . . ,a p+Zfc) , f o r p > s ,  (3.1)

where s € IN'* and zi,Z2, . . . ,z* € TLd are given points such that s + z; € IN'4 for i =  1 ,2 ,. . , ,k , 
where a : IN'* —► A is the unknown sequence, and F  : Ak —*• A  is a given function. Let I  := {p 6 
IN'*; p  ^  s} be the initial set for (3.1). We assume that the initial conditions are of the form

«P = /(P)> for p e l ,  (3.2)

where /  : I  —* A is a given function.

The purpose of this chapter is to determine for which sets Z  = {zi,Z2, . . . , zjt} C ZS'* the 
equation (3.1) together with the initial conditions (3.2) has a unique solution. To be able to do so 
we need some properties of convex sets.

3 .2  S o m e P ro p e r t ie s  o f C on v ex  S e ts

D efin ition  4 Let S  C IR**. The convex hull of S  is the set

k  k
conv 5  = {x € Df*; x = ^  A,- s,-, A,- € IR, A,- > 0, A,- = 1, s; G 5} . □

i= 0  i= 0
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Definition 5 Let S  C Htd. The convex cone generated by S  is the set

k

cone S  = {x £ IRrf; x =  ^  A, sA ,-  € JR., A,- > 0, s, € 5} . □
t= 0

Definition 6 Let 5  C IRA The integer cone of 5  is the set

k
icon S  = {x € IRd; x  = ^  A,- s,-, A,- € IN, s,- € 5 } . □

«=o

Definition 7 Let S  C The polar cone of S  is the set

S p = {x € M d; x  • s < 0, Vs 6 5} . □

Definition 8 The relative interior of a set S  C ntd is the interior of 5 in the relative topology of
the affine subspace generated by 5 in IRd. □

Lemma 1 I f  C is the convex cone generated by a finite set of points in IRrf then Cvv = C .

For a proof, see, for example, Lemma 2.7.9 in [SW70].

Theorem  3 Any two nonempty disjoint convex polyhedra P \,P 2 C IRd can be separated by a hy
perplane H such that H (1 Pi = H  (1 P2 =

For a proof, see, for example, Theorem 2.12.9 in [SW70].

Theorem  4 Two nonempty convex sets K i ,K 2 Q can be separated by a hyperplane H such 
that K \ U K 2 % H if  and only if their relative interiors are disjoint.

For a proof, see, for example, Theorem 3.3.9 in [SW70].

We shall also need some facts about rational points in convex sets in JR.d.

Definition 9 A point in p 6 E/* is rational if pi 6 Q for i = 1 ,2 ,. .. ,  d. A convex set X  C IRd is
rational if it is equal to the convex hull of its rational points. □

Lemma 2 Let X  C JRrf be a set of rational points, and p £ conv X .  Then p is rational if and 
only if  p can be expressed as a rational convex combination of points from X .

Proof: If p is a rational convex combination of rational points then clearly p is rational.

Conversely, let p 6 conv A be ration?]. If p £ X  the assertion is trivial. Otherwise let S  C X  
be a minimal subset with the property that p £ conv S. Such a subset exists because p is in the
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convex hull of some finite subset of X ,  and p ^  q for all q  6 X .  Let e be the affine dimension of 
S. By Caratheodory’s theorem and by minimality of S, we have |5| < e + 1. But e +  1 equals the 
maximum number of affinely independent points in 5, by definition of e. So e +  1 < |5|, and S  is 
affinely independent. Therefore conv S  is an e-simplex containing p.

Let 5  =  { q o ,q i ,. . . ,q e} and S; =  S -  {q,} U {p}, for i =  0 , 1 , Then 

p = X )A ,q ,,

. e-vol(conv5f ) „ ,  . „ ,
A« -  v  o \ > 0 > for z = 0 ,1 , . . . , e.e-vol(conv S)

Since the volume of a simplex can be expressed as a fraction of a determinant whose nonunit 
entries are the coordinates of its vertices (see, for example, [Ken61]), any simplex with rational 
vertices has rational volume. It follows that all the A; are rational. □

L em m a 3 In a rational convex set rational points are dense.

Proof: Let X  be a rational convex set, x  € X , and e > 0. We claim that there is a rational point 
p  6 X  such that ||x -  p|| < e.

By Definition 9 there exist rational points qo,qi,-..,qfc € X  and nonnegative real numbers 
Ao, A i,. . . ,  A* such that X)f=0Aj = an<̂  x  = ]CiU) Qi- If aU the A; are rational take p = x. 
Otherwise assume without loss of generality that A0 is irrational. Let M  =  maxo<;<jfc||q;||. For 
i =  1 ,2 ,. . . ,  k choose Si > 0 such that Si < imn{X0/k,e /(2kM )}  and A< + Si is rational. Then the 
point p  =  (Ao -  Yii=i h )  Qo + + h )  q« is rational, belongs to X ,  and ||x -  p|| < e. □

3 .3  W ell-Founded D ep end en cy  R elations

D efin ition  10 For Z C 7Ld and p ,q  6 INd, let

p - i ^ q  if P -  q € Z and q + Z  C JNd . (3.3)

The transitive closure <z °f -<z in !Nd is the dependency relation corresponding to Z. We shall 
say that q depends on p when p -<z q- Also, we shall write p <z Q when p -<£ q or p = q. □

P ro p o sitio n  1 Let p ,q , r, s 6 lNd. Then

p -< ?q , r X z s implies p +  r  <z q + s . (3.4)

Proof: Obviously -<z is translation-invariant: if p ,q ,r  G INd and p <z q then p + r  <z q +  r. 
Therefore < z  is translation-invariant as well. Then p -<z q  implies p +  r ^ q + r .  If r  <z  s then 
q +  r  < z  q + s, and the assertion follows by transitivity. □
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Theorem  5 Let Z  C TLA be a finite set, and <z the corresponding dependency relation. The 
following assertions are equivalent:

(i) <z is asymmetric,

(ii) 0 ^ icon Z,

(iii) 0 £ conv Z,

(iv) there exists an a  £ I 1* such that a  • z < 0 for all z G Z.

Proof: If Z  is empty then all four assertions are trivially true, and thus equivalent. Now assume 
that Z  is nonempty.

(i) =» (ii) If 0 € icon Z  then there exist positive integers kQ, k i , . . . , kd and zo, z i , . . . ,  z,* 6 Z  
such that

d
£ ]jb t z, =  0 .  (3.5)
■=o

Let M  := Y,i=o ki- There exists some p € INd such that p  + z, 6 lNd, for i = 0 ,1 ,. .. ,  d. Then 
P + Zi -<z  P, for i = 0 ,1 ,. . . ,  d. Hence by repeated application of Proposition 1, k{ p +  ki z; -<z h  p 
for i = 0 ,1 ,. .. ,  d, and M p +  £?_0 k, zi -<z M p. By (3.5), M p -<z M p, so -<z is not irreflexive, 
and hence not asymmetric.

(ii) => (iii) Assume that 0 € conv Z. By Lemma 2 there is a rational convex combination of the 
points in Z  which is equal to 0. Multiplying this combination by the least common denominator 
of its coefficients we see that 0 can be expressed as a positive integral combination of the points in 
Z.

(iii) => (iv) If 0 ^ conv Z  then {0} and conv Z  are disjoint convex polyhedra. According to 
Theorem 3, they can be separated by a hyperplane which meets neither of them. Therefore there 
exists an a e IR  ̂and b € 1R such that a  • z < b < 0 for all z e Z.

(iv) => (i) Assume that a € !Rd is such that a • z < 0 for all z € Z. Let p <z q. Then 
p -  q € Z, so a • (p -  q) < 0 and a • p < a  • q. Applying this successively we see that p -<z q 
implies a -p < a  • q as well. Since < is asymmetric in IR it follows that <z is asymmetric in INd. 
□

Theorem  6 Let Z  C 7Ld be a finite set, and -<z the corresponding dependency relation. The 
following assertions are equivalent:

(i) <z has no infinite descending chain,

(ii) icon Z n { x £  IRrf; x > 0, x ^  0} = 0,

(iii) conv Z  fl {x € IRd; x > 0, x ^  0} = 0,
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(iv) there exists an a  G IR*, a  > 0, such that a • z < 0 for all z G Z.

Proof: If Z  is empty then all four assertions are trivially true, and thus equivalent. Now assume 
that Z  is nonempty.

(i) =*• (ii) Let z be a non-zero point in icon Z  such that z > 0. Then z =  .S U r k< z; for some 
d 6 IN, ki G 1N+, and z,- G Z. There exists some p G IN* such that p +  z,- G IN*, for i =  0 ,1 ,. .. ,  d. 
Then p + z; -<z p, for i = 0 ,1 ,. . . ,  d. Let M  := £*_0 fc;. By repeated application of Proposition 1, 
fc,p +  k{Zi < 2  ki P for i = 0, l , . . . , d ,  and M  p -I- z <z M p. Let z * := M p  +  k z .  Since z G IN* it 
follows by repeated application of Proposition 1 and by induction on k that z*+j <z z* for k > 0. 
Since z ^  0, all the z/t are distinct and form an infinite descending chain in IN*.

(ii) => (iii) Let K  := (conv Z) fl (x  e IR*; x > 0}. As K  is a convex polytope with rational 
vertices, it is a rational convex set. By Lemma 3, rational points are dense in K . By assumption, 
K  contains a non-zero point. Therefore it contains a non-zero rational point q. By Lemma 2, q is 
a rational convex combination of points from Z. Let M  be the least common denominator of the 
coefficients in this combination. Then z = M q belongs to icon Z, is non-zero, and z > 0.

(iii) =*► (iv) Let Q = {x G IR*; x  > 0} be the nonnegative orthant. Assume that (conv Z)(~]Q C 
{0}. Let C be the convex cone generated by Z, and Cp its polar cone. We claim that the relative 
interiors of Cp and Q have a common point.

If not, then by Theorem 4, Cp and Q can be separated by some hyperplane H. That is, there is 
an a  G IR* and b G 1R such that a  ^  0, a • x < b for all x  e  Cp, and a  • x > b for all x € Q. Since 0 
belongs to both Cp and Q, b = 0. Since e; G Q for i = 1 ,2 ,. .. ,  d, a{ = a  • e; > 0 for i = 1 ,2 ,. .. ,  d, 
and so a G Q. Let D = {x G IRrf; a  ■ x < 0} be the halfspace defined by H  and containing Cp. 
Then Dp C Cpp = C, by Lemma 1. Here we used the fact that Z  is finite. By definition of the 
polar cone, a  G Dp, and so a  G C. Therefore a  = ]Cf_0 A,- z, for some d G IN, Â > 0, and z,- G Z. 
As a  ^  0, £ f =0 A,- > 0. Let a ' = a /  £ ? =0 A,-. Then a ' /  0 and a ' G (conv Z) fl Q, contrary to the 
assumption. This proves the claim.

Therefore there exists an a  G IRd which is an inner point of both Cp and Q. Hence a > 0 and 
a  G Cp. By definition of the polar cone, this implies that a  • x  < 0 for all x G C, and so a • z < 0 
for all z G Z.

(iv) => (i) Assume that a  G ntd is such that a  > 0, and a  • z < 0 for all z G Z. We claim 
that for any p G lNd there are only finitely many q G lNd such that q <z P- From this it follows 
immediately that < z has no infinite descending chain in lNd.

To prove the claim, pick p  G IN* and let c := a  • p .  If q  -<z P then q - p G Z ,  so a • ( q  -  p) < 0 
and a  • q  < c. Applying this successively we see that q  -<z P implies a  • q  < c as well. As <?,- > 0 
and ai > 0 it follows that 0 < ?,- < c/a,-, for i = 1,2, . . . , d .  Hence there are only finitely many 
q  G IN* such that q  < z  P as claimed. □

R em ark  The implication (ii) =>• (i) can be proved directly by using Dickson’s Lemma [Dicl3] 
which says: Given a sequence (Pk)tLo m IN*, there exists an integer I( > 0 such that for every 
k > K , there is a j  < K  with pj < p*.

Assume that (i) is false. Then there are points po,Pi>-*- such that po > z  Pi > z  ••• and 
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P i i1 P* when j  ^  k. By Dickson’s Lemma, there exist j  and k such that j  < k and py < p*. 
Then p* -  pj belongs to {x G IR/*; x > 0, x  ^  0}. Also, there are qo,qi, • • •’> q»n such that
Pi = qo >Z qi > z ••• > z  qm = Pfc- It follows that qj+1 -  q,- G Z, for i = 0,1, . . . , m  -  1. Then
Pfc -  Pi = qm -  qo =  Ef=o1(‘l«'+i -  q») € icon Z, in violation of (ii).

Corollary 2 Let Z C 2Zd be a finite set, and <z the corresponding dependency relation. The 
following assertions are equivalent:

(i) <z is well-founded in INd,

(ii) icon Z  D {x 6 IRd; x  > 0} =  0,

(iii) conv 2 n { x 6  IR/*; x > 0} = 0,

(iv) there exists an a  6 IR/*, a  > 0, such that a  • z < 0 for all z G Z,

(v) there exists an a  € IN'*, a  > 0, such that a  • z < 0 for all z G Z,

(vi) <z can be embedded into a linear ordering o f \N“* of order type u>.

Proof: Each of the assertions (i) -  (iv) can be seen to be equivalent to the conjunction of the 
corresponding assertions in Theorems 5 and 6, therefore they are equivalent among themselves.

(iv) =► (v) Let a  G IR1*, a  > 0, be such that a  -z < 0 for all z G Z. Pick e > 0 so that
£ < mini<,<(i at- and e < minzez ( - a  • z / l*»D- This is possible because 0 $ Z  and Z  is finite.
Let b G Q^be such that |a,- — 6,j < £ for i = 1 ,2 ,. .. ,  d. Then

b{ — Of — (a, -  b{) > ai -  |a,- -  6f| > a,- -  e > 0

and
d d d

b • z = biZi = -  (a{ -  bi)]zi =  a  • z -  ^ (o ,-  -  h<)2«
i=l i=l i=1

d d
< a  • z + ^ 2  la« ~ fetlktl < a  • z + £ y ]  |z,j < a  • z — a • z = 0.

:=1 »=1

Let K  be a positive common denominator for the 6;, and c := Kh. Then c € IN'*, c > 0, and 
c • z < 0 for all z G Z.

(v) (vi) Let a  G IN'*, a  > 0, be such that a * z < 0 for all z G Z. Then a  • p G IN for all 
p G IN'*. The equation a  • x  = A: has only finitely many solutions x  G IN'* for any k G IN, because it 
implies that 0 < X{ < k/ai for all i. ■

Let L be any linear ordering of IN'* with the property that a • p < a  • q implies p L q. Then by 
the preceding paragraph L  is of order type u , and since p - ! z q  implies a  • p < a  • q, dependency 
relation <z can be embedded into L.

(vi) => (i) Any ordering of type w is a well-ordering, therefore any transitive relation embeddable 
into it is well-founded. □
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3.4 E x isten ce and Uniqueness o f Solutions

Theorem  7 Let Z  =  {zi,z2 ,...,Zfc} C satisfy any of the equivalent conditions of Theorem 2. 
Then there exists a unique sequence a : IN'* —► A which satisfies (3.1) and (3.2).

Proof: 1. E x is ten ce  p a rt. Let pi L p 2 L . . .  be a linear ordering of IN'* of order type w for which 
p - < z q  implies p L  q. Such an ordering exists by Theorem 2 (vi). Define a sequence of partial 
functions tp{: IN'* -► A  for i > 0 by setting

<po := -L,

and inductively for i > 1 by

<A-i(Pj), for j  < i
f  f ( P i ) ,  i f p i € /
I + zi )><Pi-i(Pi +  z2) , . . . ,  + zk)), otherwise
_L, for j >  i .

We claim that y?i is defined on pj with j  < i, and undefined elsewhere. We prove this by induction 
on i.

The claim is certainly true for i = 0. Now assume that i > 1, and that the claim holds for i -  1. 
The only thing to check is whether i is defined on p, +  Z\,Pi + z2, . . . ,  p, +  z* when p, $ I. 
Then p,- > s, hence p,- + zj > s +  zj € IN'* for j  = 1 ,2 ,...  ,k .  This implies that p,- +  zj <z Pi, 
which in turn implies that p,- -I- Zj L p;, for j  = 1 ,2 ,. .. ,  k. By induction hypothesis, it follows that 
(fii-i is indeed defined on these points, proving the claim.

Since by definition, <pi agrees with <pi-1  wherever the latter is defined, a := is a total
function mapping IN'* into A. It is clear from the definition of <pi that a satisfies (3.1) and (3.2).

2. Uniqueness p a r t .  Assume that a and b are two sequences satisfying (3.1) and (3.2). We
will use structural induction on well-founded sets (cf. [Man74], Theorem 5-10) to prove that a = b.

By Theorem 2 (i), <z  is well-founded on IN'*. Let S := {p 6 IN'*; ap = 6P}. We will have 
shown that 5  =  IN'* if we show that p G 5, for all p  <z q> implies q e S.

Assume that p G S, for all p <z q- We distinguish two cases. If q € /  then aq = 6q = / ( q), 
hence q € S. If q ^ /  then Oq — E(cq+z,, flq+z2 ■> • • • ■> ̂ q+z*) Rud 6q = E(6q^.zj, 6q -̂z2, . . . ,  &q+z*)> 
by (3.1). But as q £ I ,  we have q+Zj <z  q> for j  = 1 ,2 , . . . , k. Then by the assumption, q+Zj e S 
and aq+Zj = 6q+Zj, for j  = 1 ,2 ,. . . ,k. It follows that aq = 6q and so q £ S’.

This shows that S  = IN'*, and hence that a = b. □

3.5 E quations w ith  C onstant Coefficients

First we restate the existence and uniqueness theorem for the case of constant coefficients, and 
show that the generating function of the solution is analytic at the origin, provided that the initial 
conditions do not grow faster than exponentially.
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Theorem 8 Let Z  C7Ld be a nonempty finite set which satisfies the conditions of Theorem 2. Let 
s G IN'* be such that s +  z € INd for all z e Z. Let I  := {p G 3Nd; p  *£ s}. Let cz 6 C, cz /  0 for 
z  e Z be given constants, and f  : I  -*■ C a given function. Then there exists a unique sequence 
a : IN'* —► C which satisfies

«p = £  czap+z , for p  > s , (3.6)
z ez

and
«P = /(P ) ,  for p e l .  (3.7)

Furthermore, if
l / ( p ) l < * U’P ,

for some k > 0, u e IR'*, and for all p e l ,  then the generating function

G (x i,x 2, . . . , x d):= ■■•xpid
peN*1

is analytic in a neighborhood of the origin.

Proof: Existence and uniqueness follows immediately from Theorem 7. Analyticity will follow if 
we show that there is a  K  > 0 and a vector v e 11“* such that |ap | < K v p  for all p e  IN'*.

By Theorem 2 (iv), there is a v  e  IRd such that v  > 0, and v • z < 0 for all z e Z . Since Z  is
finite there exists an e > 0 such that v • z < - e  for all z 6 Z. Let

K  := max{l, ^  \cz \j  , max W Ui} .

We now prove by structural induction on well-founded sets that 

|ap| < I (VP

for all p £ IN'*.

If p e l  then

\ ap \ =  | / ( p ) |  <  fcu -p  =  k UlPlk U2P3 • • • k UdPd

( “L \vlPl /  22.\ W* (  % l\VdPd __
fe"ij • • • l k v<tj < I{v 'p .

Otherwise we can assume that |ap+z| < A'v (p+Z) for all z e Z. Then

| 2 > a pJ  < S k d J i r v<p+z> < E W ^ v p ‘ e
Iz ez  I zez z gz

=  Kvp- e ^2 iczi <  A' v  p  ’
z gz

proving the claim. □

In the case of constant coefficients we can select any point with a non-zero coefficient to be 
expressed explicitly from the recurrence. For example, if co ^  0 then we can rewrite 

k

y :  c,flp+W[ = 0, for p > s (3.8)
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as

ap -  ~ c )  ap+Zi, for p > s + w0 , (3.9)

where z,- = w,- -  wo, for i = 1 , 2 , We now show that there is always at least one ’’good” 
point.

Theorem  9 Let W  C 5Zd be a nonempty finite set. Then there exists a point wo € W  such that 
the set Z  :—{w -  w0; w g ^ w  /  w0} satisfies the conditions of Theorem 2.

Proof: Let w0 be the last point in W  with respect to the lexicographic ordering of TLd. We
claim that then the relation <z is well-founded. To prove this claim we need to show that <z  is 
asymmetric and has no infinite descending chains.

Assume that -<z is not asymmetric. Then, because it is transitive, there is a p 6 INd such that 
p <z P- Therefore < z  has a chain of the form p =  po <z  Pi <Z • • • < Z  Pk = P- We assert that 
all the points in this chain are equal to p. This will imply that p <z p which is impossible since 
by construction, Z  does not contain 0.

We prove the assertion by showing that the points in the chain agree in their first k coordinates, 
for k = 1 ,2 ,. .. ,  d. We use induction on k.

For the base case, take k = 0, and for the induction step, take k > 0 in the following proof.

Assume that 1 < k < d and that the points in the chain have their first k -  1 coordinates equal. 
By definition of -<z, the points z,- := p,- — pj+i belong to Z, for i = 0 ,1 , . . . ,  k  — 1. Their first k -  1 
coordinates are equal to zero, so by maximality of w0, we have z,jt < 0, for i = 0 ,1 ,. . . ,  k -  1. But 
then pk = Pok < pik < • • • < Pkk = Pk, so all the Ar-th coordinates are equal. This completes the 
proof that - iz  is asymmetric.

If -<z has an infinite descending chain then so does <z because -<z is asymmetric. Let po >z 
pi >~z . . .  be such a chain. We assert that there is an N  such that from N  on, the points in this 
chain do not change any more. This will imply that the chain is finite.

We prove the assertion by showing that for every k between 1 and d, there is an AT* such that 
from Nk on, the first k coordinates of the points in the chain do not change any more. We use 
induction on k.

For the base case, take k = 0, and for the induction step, take k > 0 in the following proof.

Assume that 1 < k < d and that there is an N k-i  such that from N k-i on, the first k -  1 
coordinates of the points in the chain do not change any more. By definition of -<z, the points 
z; := pl+i -  p, belong to Z, for i = N k -\,N k - \  +  1 ,.... Their first k -  1 coordinates are equal 
to zero, so by maximality of wo, we have z,k < 0, for i = N k-i,N k -i  4- 1, ■ - •• But then PNk_uk >
PNk-i+i,k <  Since these coordinates are nonnegative integers, there exists an Nk > Nk-i such
that from Nk on they do not change any more. This completes the proof that <z has no infinite 
descending chain. □

In certain cases the generating function can actually be computed. In the next section we give 
an example of a system of partial difference equations with constant coefficients and two unknown
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sequences, where a method apparently first used by Knuth in Exercises 2.2.1.-4 and 2.2.1.-11 of 
[Knu68] reveals the generating function.

3.6 A n E xam p le

This example is taken from [LP90]. The objective is to find an explicit solution of the following 
system of partial difference equations:

a,\o = 4’ ( i > 0),
Oi,i =  4*+1 (i > 0), (3.10)
a i,n  — 0 » - l ,n  + 2 a , in_ i  + a » + i , n - 2  (* ^  l > n  ^  2 )  ,

bi,o = 1 ( i > 0) ,
6t-,i = 2i + 4 (i > 0), (3.11)
bi,n =  b i - I>n +  26i,n_ i  +  h t+ l,n -2  (* > 1> ^  >  2) ,

°0,n =  2 a j in_2  +  2 ao ,n - l  +  h l,n -2  (71 >  2) ,

bo,n =  ao.n ( n > 0 ) .  (3.12)

We refer to [LP90], [Luk87], and Problem 44 in [Bir67] for explanations of the meaning of 61,n, 
and a,-in in lattice theory.

A{x,y) = ^  ^  a,>x‘2/n .
t= 0  n=0

B(x,y) = Y ,'f^ k n x iyn,
t= 0  n=0

M y) = S  a°'nyn = ’
71=0

= f > , . s r “ =  ^ g ^ U = o ,
n = 0

_  d B (x ,y ) , 
dx

From (3.10) -  (3.12) we can estimate by induction on i + n that |oi,n |) |&i,n| ^  5,+n ôr a ll t ,n  > 0. 
Therefore these series converge at least for |®|, |y| < 1/5.

In terms of generating functions, (3.10) -  (3.12) translate into

(x -  (s +  y)2)A(x,y) + (y2 + 2xy -  x)A 0(y) + xy2A]_{y) =  , (3.13)

(x -  (x +  y)2)B(x, y) + (y2 +  2xy -  x)A0(y) + xy2Bi(y)  = 0, (3.14)

(1 -  2y)A0(y) -  2y2A \(y) -  y2Bi(y)  = 1 +  2y. (3.15)
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We have three equations for five unknown functions, hence we need two more. Both A(x,y) 
and B (x ,y ) are analytic in a neighborhood Af  of the origin. Therefore (x  — (x +  y)2)A(x,y) = 
(x — (x + y)2)B (x, y) =  0 on that segment of parabola x -  (x +  y)2 = 0 which lies inside jV, that 
is, when |j/| is sufficiently small and x = (1 -  y/1 -  4y)/2 -  y. Substituting this for x  in (3.13) and 
(3.14) gives the two additional equations

+ =  2 ^ 1 1 5 2 ,  (3.16)

+ =  0 . (3.17)

Now we can solve the linear equations (3.15), (3.16), and (3.17) to obtain 

M v )  = ( ^ = - 3 ) / ( 2 ( y 2 + 8 j /-2 ) ) ,

M V )  = - ( ^ ^ i  + 22,3 + 17j/2 + 22/- l ) / ( 2 j , V  + 82' - 2)),

2y2 +  4 y - l '
V I -  Ay

(3.18)

After substituting these back into (3.13) and (3.14), we introduce a new variable z = y/1 -  Ay, 
cancel out the seeming singularity at the origin, and find that

B (X’y ) =  2(2= -  fe + l)(4 t -  (z + l ) 2) ’ (3‘W)

= (4 x_ $ x+_ l + m - (3.20)

By expanding (3.18) into a power series, we determine that

*..» = ^ t K * ) - G 2_‘ 2) ] w - ‘+‘ - A r ‘+1) (” 2  0 ), (3.21)

where Ai and A2 are the roots of the polynomial 2A2 -  8A -  1,

Ax =  4 + 23^  w 4.12132, (3.22)

A2 = 4 ~ | —  as -0.12132. (3.23)

From (3.18) we can obtain several recurrence relations for &i,n. For example,

26i,n -  86x,n_x -  6x,n_2 =  2^2”)  -  (n > 2),

with initial conditions &ii0 = 1 and 6x>i =  6. One can also show that, asymptotically,

1 4n+2
6 , ,„ = iA ;+ 2- - ^ = ( l  + 0 ( n - ') ) .  (3.24)
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From (3.16) and (3.17) it follows that

(1 -  4y)-V 2 -  (1 + 2y )  1
2y2

therefore

iSCr) .̂
^ - * u + i C r + , 4)  <»*•»■

To compute we let

b m  =  i.= . («> o ) .
n=0

Since x enters only once into the right-hand side of (3.19), it is easy to find that

4»‘+ l  _______

a ' W = - ^  +  l ) » ( ,* - 6 z  +  l )  i > 0 ) .  (3.25)

Let___________________________________________________ ____
1 , , 1 — y/T^~4y

c (  y )  = ------------
^ "  2y

be the generating functions of the middle binomial coefficients, dn = (2nn) , and of the Catalan 
numbers, cn -  dn/(n  +  1), respectively. Then we can rewrite (3.25) as

( i s 0 ) -

Expanding this function into a power series by means of the formulas in [Rio68], p. 154, we find 
that for i > 0 and n > 0,

*-- i is S K ” *”" ) - (” I-’ ")] or"  -*-">■ <“ >
where Ax and A2 are defined in (3.22) and (3.23), respectively. For i = 1 this gives (3.21), while for 
i =  0 and n > 0 we have

° o ,=4o,n= (V1 - 4+1+E (2i7 2) w-‘+1 - xr‘+1>).

Applying the same approach to the difference A(x, y) -  E(x, y) in (3.20), one obtains

<*, =  6i.„ +  E ( 2"  +  ‘ ) 2 2i- ‘ (3.27)
k = l ^  n  '

=  5i., +  4i+” - E ( 2" + f + 1 )  ( i > 0 . » > 0 ) .
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It is straightforward to check that (3.26) and (3.27) satisfy Eqns. (3.10) and (3.11). Insertion 
of (3.26) and (3.27) into Eqn. (3.12) leads to

^ E K 2V 4) .-< t-24) ](^ +,- ^ +') -
i « + A ; ) + ( 2" ) ,  . (3.28)

where Ax and A2 are defined in (3.22) and (3.23), respectively, and n > 2. (As it turns out, (3.28) 
holds for n > 0.) To prove this identity, note that its left-hand side, being the convolution of 
^(2Tln 4) -  5 (2n"J24) with the coefficients of the power series expansion of 1/(2 - 8 z -  z2) around 
z = 0, solves the recurrence

2*„ -  8 * _ ,  -  x„_2 =  4 ( 2” ■ 4)  -  S( 2; ; 24)  (n > 2 ). (3.29)

Therefore it suffices to verify that (3.28) holds for n = 0,1, and that xn = (2”) solves (3.29), too. 
— Alternatively, one can prove (3.28) by using Gosper’s summation algorithm [Gos78] separately 
on the two terms involving Ax and A2.
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Chapter 4

Difference equations w ith polynom ial 
coefficients

A voda se odpre 
in mocna zvezda vzide 

in nova ladja pride 
in juzni otok je.

— KAJETAN KOVIC, Juzni otok (1976)

4.1 Introduction

Following Cohn [Coh65] we shall call a field F  algorithmic if it is computable (meaning that there 
exist algorithms for carrying out the field operations), and there is an algorithm for factoring 
polynomials in F[a;].

Let F  be an algorithmic field of characteristic zero, and po(x),p\(x),.. .,pd(x) polynomials in 
.F[a;] such that po,Pd£ 0. Then

d
^ P f ( n ) a n+t-= 0 (4.1)
i=o

is a homogeneous linear difference equation with polynomial coefficients (an HLP, for short) for 
the unknown sequence (an) in F. The order of (4.1) is d, and the degree of (4.1) is m = 
maxocKi degpf(n). Following [Sta80] we identify two sequences if they agree from some point 
on. Hence we consider (an) as a solution of (4.1) if (4.1) holds for all large enough n. Similarly, by 
a non-zero sequence we mean a sequence with infinitely many non-zero terms.

We note that any equation with rational coefficients can be turned into an equivalent one with 
polynomial coefficients by multiplying it with a common denominator of its coefficients.

In this chapter we present an algorithm (called HYPER) for deciding existence of hypergeo- 
metric solutions of HLP’s. To give some motivation, we describe first an application of algorithm 
HYPER to definite hypergeometric summation.

A non-zero sequence (an) is hypergeometric over F  if it satisfies a first-order HLP, or equivalently, 
an equation of the form

fln+i = i'(n)an 
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where r(x) is a rational function over F. The set H  of all hypergeometric sequences over F  forms 
a group under multiplication.

The problem of indefinite hypergeometric summation was solved by Gosper [Gos77], [Gos78] who

where hn is hypergeometric. In other words, Gosper’s algorithm decides whether the indefinite sum 
of a hypergeometric sequence is hypergeometric (apart from an additive constant).

One can ask the same question about definite sums of the form

where summation ranges over all integers, and both F(x  -+-1, y)/F (x , y) and F (x ,y + 1 )/F (x , y) are 
rational functions of x and y. Using Bernstein’s theory of holonomic functions, Zeilberger [Zeia] 
proved that every (an) of the form (4.2) satisfies an HLP. In [Zeib] he gave an algorithm which 
constructs such an equation. In [Wil9lj, Wilf gives an elementary proof of this important fact. 
His proof can also serve as an algorithm for finding the equation. Since algorithm HYPER can 
be used to obtain a maximal set of linearly independent hypergeometric solutions of an HLP, the 
combination of Zeilberger’s (or Wilf’s) algorithm with HYPER gives an algorithm for deciding 
whether (an) as defined in (4.2) is hypergeometric.

In 1974 Abramov [Abr74] developed an algorithm for finding rational solutions of nonhomo- 
geneous equations with constant coefficients. In 1989 he gave algorithms for finding polynomial 
[Abr89b] and rational [Abr89a] solutions of nonhomogeneous linear difference equations with poly
nomial coefficients (NLP’s). His algorithms work for homogeneous equations as well. With a simple 
modification, Abramov’s algorithm for finding rational solutions can be used to find hypergeomet- 
ric solutions of NLP’s. This is described in Section 5. However, it is not clear how one could use 
Abramov’s algorithm to find hypergeometric solutions of HLP’s.

Although [Abr89b] contains an algorithm for finding polynomial solutions of NLP’s and HLP’s 
we devote Section 2 to derivation of algorithm POLY which finds a  basis for the space of polynomial 
solutions of an HLP. There are three reasons for this: 1. to make the description of HYPER self- 
contained, 2. because the algorithm in [Abr89b] expects the equation to be given in terms of the 
difference operator whereas HYPER and POLY work with the shift operator, and 3. because POLY 
has been developed without knowledge of Abramov’s work.

Section 3 describes a decomposition of rational functions which plays an important role both 
in Gosper’s algorithm and in algorithm HYPER.

In Section 4 we develop algorithm HYPER which returns a  hypergeometric solution of a given 
HLP if it exists, and prove its correctness. The algorithm works by constructing a finite set of 
auxiliary HLP’s (of the same order as the original one) such that the original HLP has a hyper
geometric solution if and only if an auxiliary HLP has a non-zero polynomial solution. Algorithm 
POLY is then used on each auxiliary HLP to determine if it has any non-zero polynomial solutions. 
A hypergeometric solution of the original HLP is easily obtained from any non-zero polynomial (or, 
for that matter, hypergeometric) solution of an auxiliary HLP. The auxiliary HLP’s are generated 
in a loop which runs through all monic factors of the least and most significant coefficients of the 
given HLP, as well as through the roots of a polynomial whose degree does not exceed the order of 
the given HLP.

discovered an algorithm lor deciding existence ofhypergeometric solutions of the nonhomogeneous 
first-order equation

fin+i ~ o n = hn

(4.2)
k
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In Section 5 we show how to find a maximal set of linearly independent hypergeometric solutions 
of an HLP, and how to decide existence of hypergeometric solutions of NLP’s. We conclude with 
some practical observations about the implementation of algorithm HYPER.

Throughout the chapter 0° is defined to be 1.

4.2 P o lyn om ia l solu tions

In this section it suffices that F  is a computable field of characteristic zero which has an algorithm 
for finding integer roots of polynomials in F[x]. Such a field is called ” suitable” in [Abr89a].

The question of existence of non-zero polynomial solutions of an HLP reduces to the problem 
of finding an upper bound N  for the possible degrees of such solutions. Once we have N , we can
insert a polynomial of degree N  with undetermined coefficients into the equation, and solve the
resulting system of linear algebraic equations. It is not possible to bound the degree of polynomial 
solutions of (4.1) in terms of the degree of the equation alone. For example, the solutions of

na„+1 -  (n + 100)an =  0

are constant multiples of n(n +  1)■••(n +  99) while the equation has linear coefficients. Similar 
examples can be constructed for higher-order equations.

We consider first the second-order equation

p(n)an+2 +  q(n)an+x +  r(n)an =  0 (4.3)

where p ,q ,r  are polynomials. Assume that (an) is a non-zero polynomial solution of (4.3), of 
unknown degree N . Let m be the degree of (4.3) and

p(n) = u0nm +  «iram-1 +  u2nm~2 + 0 (n m~3) ,
q(n) = v0nm +  uinm-1 +  v2nm~2 + 0 (n m~3) ,
r(n) = wonm +  winm_1 +  w2nm~2 + 0 {n m~3) .

By the definition of m, at least one of uq, v0, wo is not zero. Further, let

a„ = a0nN +  a in ^ -1 + a 2nN~2 + 0 (n N~3)

with a 0 ^  0. Then, by the Binomial Theorem,

fln+i = ao (n N + N n N~1 +

+ ai (n " - 1 + ( N -  l)nN~2) +  a 2nN~2 + 0 (n N~3)

and

fln+2 = a o ^  + 2Arn^_1- t - 4 ^ ^ n N“2^

.+ Qi ( n " - 1 + 2(N  -  l ) n " - 2) + a 2nN' 2 +  0 (n N~3) .

We plug all these expansions into (4.3) and equate coefficients of like powers of n. The coefficient 
of nN+m yields, after canceling ao,

Wo +  vo +  wq = 0 . (4.4)
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If this condition is not fulfilled then (4.3) has no non-zero polynomial solution. Otherwise we go 
on to the next lower power nAr+m_1, use (4.4), cancel ao, and find that

(2u0 +  v0)N  +  ui + ui +  wi = 0. (4.5)

If 2u0 +  t>o j* 0 then (4.5) determines a single possible value for N . If

2u0 +  i>o = 0 (4.6)

then we must also have
«i +  «i +  Wi = 0 (4.7)

or else (4.3) has no non-zero polynomial solution. If both (4.6) and (4.7) are true we continue with
the coefficient of nN+m~2. Here we find after using (4.4), (4.6), and (4.7), and after canceling a 0,
that

uoN2 + (2ui -  uq +  v i)N  + tf2 + t>2 +  u>2 =  0 . (4.8)
Now uo 7̂  0 because otherwise it would follow from (4.4) and (4.6) that u0 =  v0 = w0 = 0.
Therefore (4.8) determines at most two possible values for N , and we are done.

Algorithm POLY for d = 2

INPUT: Polynomials

p(n) = q(n) = r(n) = jT / wj nm- j
j= 0  j= 0  j = 0

such that at least one of u0, vo, wq is non-zero.

OUTPUT: A basis B for the space of polynomial solutions of

p(n)an+2 + ?(n)an+i +  r(n)a„ = 0 . (4.9)

[1] If uo + vo +  wo ^  0 then V := 0

else if uo £  wq then X> := {N ; (u0 -  w0)N + ui +  v\ + = 0} 0 IN

else if u\ +  v\ +  w\ ^  0 then V  := 0

else V  := {JV; uqN 2 + (ui -  uq -  w i)N  +  u-i + v2 + i«2 = 0} n IN.

[2] If D = 0 then 5  := 0 

else

k := maxX>;

let B be a basis for the space of polynomial solutions of (4.9) 

of degree at most k.

[3] Return B.
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Exam ple 1 The equation

n(n +  l)an+2 -  2n(n +  100)an+i +  (n +  99)(re + 100)an = 0

has m = 2, uo — wq = 1, vq = -2 , u\ = 1, =  —200, w\ — 199, «2 = v 2 = 0? and wz = 9900.
Therefore uq +  v 0 + w q  = 0, u0 - w q = 0, u i + v i + w i  =  0, and the possible degrees are among the 
roots of

which are N  = 99 and N  = 100. In fact, both n(n +  1) • • • (« +  98) and n(n + 1) • • • (n +  99) are 
solutions of this equation.

such that at least one of c,,o, 0 < i < d, is non-zero.

We assume that = 0 when j  < 0 or j  > m.

OUTPUT: A basis B for the space of polynomial solutions of (4.1).

[1] Initialize s := —1.

[2] Repeat

[3] Let V  be the set of nonnegative integer roots N  of the polynomial

N 2 -  199AT + 9900 = 0,

A lgorithm  POLY for a rb itra ry  d

INPUT: Polynomials

p,(n) = ^ 2  J > for i = 0 ,1 ,. .. ,  d ,
3=0

(4.10)

increment s by 1;

for j  =  0 ,1 ,. . . ,  s compute

d

i=o

until 3j  e  { 0 ,1 , . . . , s} such that #  0.

[4] I fP  = 0 then £  := 0

else

k := maxX>;
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let B be a basis for the space of polynomial solutions of (4.1) 

of degree at most k.

[5] Return B.

To prove correctness of algorithm POLY we have to show that the loop on step [2] eventually 
terminates, that the set V  is finite, and that the degree of any non-zero polynomial solution of 
equation (4.1) belongs to V . These facts are established by the following three lemmas.

Lem ma 4 In algorithm POLY, s < d at all times.

Proof: Assume that at some point s = s0. Then = 0 for 0 < j  < s < s0. In particular, &is) = 0 
for 0 < s < So. If so > d this implies that 

d

= E  i3Cito = 0, for 0 < s < d . 
i=o

Since det(i3)i=o’...d =  V "(0 ,l,...,d ) is a Vandermonde determinant it follows that ctio = 0 for 
i = 0 ,1 ,...  ,d. But these are the coefficients of n m  in p,(n), and by our definition of m  at least one 
of the p i ( n )  is of degree m, a contradiction. □

Lem ma 5 In algorithm POLY, V  is a finite set.

Proof: By Lemma 4, the loop at step [2] terminates after at most d +■ 1 iterations. When this 
happens at least one of the bj9̂  is not zero, hence the polynomial at step [3] does not vanish 
identically and has a finite set of roots. Being a subset, V  is finite, too. □

Lem ma 6 Let so be the final value of s in algorithm POLY. Let
No

an = ^ 2 ak nN°~k, where a0 ^  0 (4-H)
*=o

be a polynomial solution of equation (4.1). Then

t
j=o v J '  »=o

Proof: By the Binomial Theorem,

(4.13)
fc=o /=o ^ '

We adopt the convention that = 0 and a* = 0 whenever any of i, j ,  k are out of bounds indicated 
in (4.10) and (4.11). Then, by inserting (4.10) and (4.13) into (4.1), we get

E « j « ( JV'or fc)< " ’'* - , ’*"+ w = »
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where each summation index ranges over all integers, and the order of summation can be chosen 
at will. Replacing j  by r = m  +  / — j  gives

r i,k,l K '

By construction, the left-hand side is a polynomial in n. Being identically zero, all its coefficients 
vanish:

Y 2 a k ^ 2 ( N°i k) '5 2 iN°~k~lci’™+l- r = 0 ' fo ra U r- (4-14)
k I '  '  i

By definition of sq,
b\s) = ^  = 0 , for 0 < j  < s < sQ. (4.15)

By our convention, (4.15) also holds when j  > s, s6 it certainly holds when j  > 0 and s < so-

The innermost sum in (4.14) has the form of the sum in (4.15) with j  = No -  k ~ I and 
s = No + m -  k — r. When j  <  0 the binomial in (4.14) is zero; when j  > 0 and s < s0 the 
innermost sum in (4.14) is zero, by (4.15). Replace r  by t = N0 + m — s0 — r. Then s < s0 is 
equivalent to k > t; hence all terms of the middle sum in (4.14) vanish provided that k > t, and 
we can rewrite (4.14) as

E  ak £  ( N° I k)  H  iNo~h~lci, i+t+so—No =  0» for all t . (4.16)
k=o i v '  i

In particular, for t = 0 we have

After canceling ao and replacing / by j  = Nq — /, this turns into

which is equivalent to (4.12). □

We can also use POLY to find polynomial solutions of NLP’s. Let an be a polynomial sequence 
satisfying Lnan = pn where Ln is a linear difference operator with polynomial coefficients. Then 
pn is a polynomial sequence, and an satisfies Lnanpn+i — £ n+ian+ip„ =  0 which is an HLP of one- 
higher order. We apply POLY to this HLP and find a  general solution which we then substitute 
for an into the original NLP. This yields a system of linear algebraic equations for the unknown 
coefficients.

4 .3  A  d e c o m p o s itio n  fo r  ra tio n a l fu n c tio n s

The existence part of the following lemma is stated in [Gos78] (without mentioning properties 3 
and 4). The algorithm HYPER given in Section 4 below relies likewise on the existence part, while 
the uniqueness part can be used to decide whether a hypergeometric sequence is in fact polynomial.
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Lemma 7 Let F  be a field of characteristic zero. Every non-zero rational function r(x) over F 
has a unique decomposition of the form

; a (* )c (i +  i)
r M ~ z W ) ~ c W  ( 1

where

1. Z € F , Z ?  0,

2. A (x),B (x),C (x) are monic polynomials over F,

3. A(x),C(x) are relatively prime,

4- B(x),C (x  +  1) are relatively prime,

5. A(x), B(x +  k) are relatively prime for every nonnegative integer k.

Proof of existence: Let r(x) = p(x)/q(x) where p, q are polynomials over F  with leading coefficients 
a and /?, respectively. Let Z  := a / (3. Then r(x) ^  0 implies p(x) ^  0 which implies ft ^  0 which 
implies Z  ^  0.

If the polynomial R(k) = Result ant (p(x), g(x +  fc); x) has no nonnegative integer roots, then Z, 
A(x) := p(x)/a , B(x) := q(x)/fi, and C(x) := 1 satisfy 1 - 5 .

Otherwise, let N  be the largest nonnegative integer root of R(k). Construct polynomials p,-(x),
qi(x) with -1  < i < N  inductively by

and for 0 < i < N ,

n _  p(») „ ( , _  ?(*)p~ i(x) = ——, q-i{x) = —

S i ( x )  = gcd(pi_ i(x),ft_1(x + i)) , 
p ,- i( j )

«(*) =
g«-l(s) 

s,(x -  *) '

4(x) := P n {x ) ,  

B(x) := qN(x) , 
N  i

c (x )  ~
«=1 k=1

„ A(x) C(x  + 1) _  a pN(x) -pj *i~r s,(x -  k  +  1)
B(x)  C(x) /?*„(*) 111=1 * ,.(* -* )

Q p-l(x) njlo s i ( x  -  0  r j  J.-(g) 
/» n £ o  «.■(*)

_  Q P -i(x )  p(x) _
/Jff_x(x) q(x) [X)'
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The polynomials A(x), B (x),C (x)  are monic by construction. Now we verify 3 - 5 .

By definition of pk, ?*, and sk,

gcd(w (* ),,t (* + *»  = = 1

for all k such that 0 < k < N . Let 0 < k < i , j  < N . Then pi,pj \ pk and g,-, qj \ qk, therefore

gcd(p,(x), qj(x + k)) | gcd(p*(x), qk(x + k)) = 1. (4.18)

3. If A(x) and C (x)  have a common factor then so do pjv(x) and s,(x -  A:), for some i and k 
such that 1 < k < i < N .  Then pw(x) and g,_i(x + z — k) have a common factor, too, by definition 
of q{. But a s O < i — k < i — 1 < N , this contradicts (4.18).

4. If B(x) and C(x  +  1) have a common factor then so do gjv(x) and s,(x — k ), for some i and 
k such that Q < k < i — 1 < N  -  1. Then qw(x) and p,_i(x -  k) have a common factor, too, by 
definition of p,-. Hence q^{x  +  k) and Pi-i(x) have a common factor. But a s O < f e < i  — lc J V ,  
this contradicts (4.18).

5. Setting i =  j  = N  in (4.18), we see that v4(x) and B(x + k) are relatively prime for all k 
such that 0 < k < N . By definition of N  this implies that they are relatively prime for all k > 0.

Proof of uniqueness: Assume that

r(a;) -  z M * )C (x  + l)  _  a(x) c(x + 1)
r { x )~ Z B(x) C(x) ~  b(x) c(x) ( 9}

where Z, A, B, C  as well as z, a, b, c satisfy 1 - 5 .  Since all the polynomials appearing in (4.19) are 
monic, we have Z  = z, and

A(x)C (x  + l)6(x)c(x) =  a(z)e(z + 1 )B(x)C(x) (4.20)

Therefore

Jfc k
a *  + i)C(x  -b i + l)b(x + i)c(x +  i) =  f j  a(x +  i)c{x + i + 1 )B(x + i)C (x + i ) (4.21)
»=o «=o

for every k > 0. Canceling c’s and C s, we obtain

k k
c(x)C(x + k +  1) A(x + i)b(x + i) = c(x + k + l)C '(s) a(x + i)B(x  + i ) , (4.22)

*=o i=0

whence
k

A(x) | c(x 4- k + l)C'(x) a(x + i)B(x  + i)
«=o

and, by 3 and 5,
k

A(x) | c(x +  fc + o(x +• i ) for every fc > 0. (4.23)
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If a polynomial d(x) divides c(x + j  +  1) n L i  o(x +  i) for all j  such that 0 < j  < k, then d{x) 
divides c(x + j  + 1) for all j  such that 0 < j  < k. We prove this by induction on k.

If k =  0 the assertion is a tautology.

For the induction step, assume that d(x) divides c(x +  j  +  1) JI?=1 a(x + i) for all j  such' that 
0 < j  < k, and that the assertion holds for all smaller k. Then d(x) divides c(x + j  + 1) for all 
j  such that 0 < j  < k -  1. By 3, this implies that d(x) is relatively prime with n*=1 a(x + i). 
Therefore d(x) divides c(x +  k +  1). This completes the proof by induction on k.

From what we have just proved it follows that

j  j
gcd c(x +  j  +  1) FT a(x + i) =  o(*) gcd c(x + j  + 1) TT a(x +  i)

°<i<fc o<j<fc
=  a(x) gcd c(x +  j  +  1) 

o <j<k
= a(x) gcd c(x + j ) .

Hence we can conclude from (4.23) that A(x) divides a(2r)gcd1<J<A: c(x + j)  for all k > 1.

We claim that for large enough k, gcdj<J<A: c(x + j )  = 1. Assume not. Then there is an element 
a  € F  which is a root of c(x +  j ) for all j  > 1, where F  is the algebraic closure of F. Hence a + j  
is a root of c(x) for all j  > 1. Because F  has characteristic zero, this means that c(x) has infinitely 
many distinct roots in F. Therefore c(x) is the zero polynomial. Since c(x) is monic, this is a 
contradiction, and the claim is proved.

It follows that A(x) divides a(x). In the same way, we can prove that a(x) divides A(x). Since 
they are monic, this implies that they are equal.

In a similar way, we can prove from (4.22) that B (x)  and b(x) are equal. Then it follows from 
(4.20) that

C(x + l)c(a:) = c(x +  1 )C {x) . (4.24)

Let N  be an integer such that C(n), c(n) ^  0 for all integers n >  N. Such an N  exists because F  
has characteristic zero. Then it follows from (4.24) that

C(N)c{n) = c(N )C (n) , for all n > N , (4.25)

by induction on n. Thus the polynomials C(N)c(x) and c(N )C (x) agree for infinitely many x  G F  
and are consequently equal. Both c(x) and C(x) are monic, therefore C (N) = c(N), by comparison 
of leading coefficients, and C(x) is equal to c(x). □

4 .4  H y p e rg e o m e tric  so lu tio n s

As with polynomial solutions, we consider first the second-order equation (4.3). Assume that (an) 
is a hypergeometric solution of (4.3). Then there is a rational sequence Sn such that an+i = Snan. 
Plugging this into (4.3) and canceling an gives

p(n)Sn+1Sn +  q(n)Sn + r(n ) =  0 .

Let

ŝ zk ^ r
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be the decomposition of Sn described in Lemma 7. Then

Z 2p(n)An+\AnCn+2 + Zq(n)Bn+iAnCn+i + r(n)Bn+\BnCn =  0 . (4.26)

The first two terms contain An as a factor, therefore An \ r(n)Bn+iBnCn. By properties 3 and 5 
of the decomposition, A n is relatively prime with Cn, Bn, and Bn+i ,  hence An \ r(n). Similarly we 
find that Bn+1 | Z 2p(n)An+iA nCn+2 , hence by properties 4 and 5 of the decomposition Bn+i \ p(n) 
and Bn \ p(n -  1). So the choice of An and Bn has been narrowed down to a finite set -  the set of 
monic factors of r(n) and p(n — 1), respectively. Also, (4.26) can be rewritten with lower degree as

Z2| ^ - ^ n+1Cn+2 + Zq(n)Cn+i + ^ BnCn = 0. (4.27)
Bn+1 An

To determine the constant Z, we look at the leading coefficient of the left-hand side (which is 
a polynomial in n ) and see that Z  satisfies an algebraic equation of degree 2 or less. So given the 
choice of An and Bn, there are at most two choices for Z.

For a fixed choice of An, Bn, and Z, (4.27) is an HLP, and we can use algorithm POLY to 
determine if it has any non-zero polynomial solution C„. If yes, we have found a  hypergeometric 
solution of (4.3). If (4.27) has no non-zero polynomial solution whatever the choice of An, Bn, and 
Z, then (4.3) has no hypergeometric solution.

A lgorithm  H Y P E R  for d = 2

INPUT: Polynomials p(n), q(n), and r(n).

OUTPUT: A hypergeometric solution (an) of (4.3) if it exists;

0 otherwise.

[1] For all monic factors An of r(n) and Bn of p(n — 1) do:

Pn := (p(n)/Rn+1)An+i; Qn := q(n); R n := (r(n)/A n)Bn; 

to := max deg{Pn, Qn, Rn}-,

let a, /3, 7 be the coefficients of nm in Pn, Qn, R n, respectively;

for all non-zero Z  such that a Z 2 +  /3Z + 7  =  0 do:

If the equation Z2PnC'„+2 +  ZQnCn+1 +  R nCn = 0 has 

a non-zero polynomial solution Cn then

:= Z(An/P„)(Cn+:/C n); 

return a non-zero solution of an+i — Snan and exit.

[2] Return 0.
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Exam ple 2 The equation
(n +  4)an+2 +  Gn+i -  (n + l)a„ = 0

appears in Bender and Orszag ([B078], p. 43, Example 2.3.5). The monic factors of r(n) are 1 and 
n + 1, and those of p(n — 1) are 1 and n +  3. Taking An = Bn = 1 leads to Z = ±1; however, 
in algorithm POLY both values produce negative degrees for potential polynomial solutions of the 
auxiliary equation. If exactly one of An, Bn is equal to 1, the equation for Z  is either Z = 0 or 
contradictory. Finally, the choice An = n + 1, Bn = n + Z yields Z  =  ±1 again. For Z = 1, the 
auxiliary equation is

(n +  2)C„+2 +  Cn+1 — (n + 3)C„ =  0

with unique (up to a  constant factor) polynomial solution Cn = 1. This gives Sn = (n + 1) / (n 4- 3) 
and ^

°n =  ( n + l ) ( n  +  2)*
For Z  — —1, the auxiliary equation is

(n +  2)C'n+2 — Cn+i — (n + 3 )Cn =  0

with unique (up to a constant factor) polynomial solution Cn = 2n +  3. This gives Sn = —((n + 
l) /(n  +  3))((2n + 5)/(2n + 3)) and

(—l)n(2n +  3)
°n _  ( n + l) ( n  +  2)-

Exam ple 3 The number dn of derangements of a set with n elements satisfies the equation

On+2 — (ft +  l ) an+l — (^ + l)fln =  0 • (4.28)

Taking A n =  Bn =  1 yields Z  = -1 , but the auxiliary equation has no non-zero polynomial 
solution. The only other choice (i4n =  n +  1, Bn = 1) yields Z2 -  Z = 0, so Z  =  1. The auxiliary 
equation

(n -f- 2)Crl+2 — (n +  l)Cn+i — Cn = 0 

has the unique (up to a constant factor) polynomial solution Cn = 1. This gives 5„ =  n + 1 and 

an = n ! .

This is the unique (up to a constant factor) hypergeometric solution of (4.28). Using the well-known 
method of reduction of order, we find another solution

=  <4 -2 9 >
k=0

Since this is not a constant multiple of n! (although it comes very close, being equal to the integer 
nearest to n!/e), we have proved that (4.29) is not a hypergeometric sequence. As the summand 
in (4.29) does not depend on n this could have also been shown by Gosper’s algorithm.

Exam ple 4 The number in of involutions of a set with n elements satisfies the equation

an+2 -  ctn+i -  (n +  l)a„ = 0. (4.30)
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Here either An =  Bn =  1 or An = n +  1 and Bn =  1. The equation for Z  is contradictory in the 
first case and Z  = 0 in the second, so (4.30) has no hypergeometric solution. This proves that the 
well-known expression for in (see, for example, [Com74]),

*" = ^  ( n -  2k)\2k k\ (4,31)

is not a hypergeometric sequence.

Exam ple 5 In [vdP79], it is shown that the numbers

- S O W
satisfy the equation

(n + 2)3an+2 -  (2n +  3)(17n2 +  51n +  39)an+i +  {n +  l)3a„ = 0 . (4.33)

Here all the coefficients are of the same degree, therefore the equation for Z  will have no non-zero 
solution unless A n and Bn are of the same degree as well. But they are both monic factors of 
(n +  l)3, so they must be equal. Then Pn = p(n), Qn = ?(«)> Rn = Kti), and the equation for Z  
is Z 2 -  34Z + 1 =  0 with solutions Z  =  17 ±  12\/2. In both cases the only potential degree for 
non-zero polynomial solutions of the auxiliary equation turns out to be —2/3, proving that (4.33) 
has no hypergeometric solution. As a consequence, the sequence (4.32) is not hypergeometric.

We remark that as the summands in (4.31) and (4.32) depend on n, those sums cannot be 
shown to be nonhypergeometric by Gosper’s algorithm.

A lgorithm  H Y P E R  for a rb itra ry  d

INPUT: Polynomials pi(n) for i = 0 ,1, . . . ,  d.

OUTPUT: A hypergeometric solution (an) of (4.1) if it exists;

0 otherwise.

[1] For all monic factors An of po(n) and Bn of p<i(n -  d +  1) do:

m  : =  m a x o < ,-< d d e g P ;(7 i ) ;

let a; be the coefficient of nm in Pi(n), for i = 0 ,1 ,. .. ,  d; 

for all non-zero Z  such that =  0 do:

If the equation
d

] T Z , P 1(7*)C'n .H  = 0 (4.34)
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has a non-zero polynomial solution Cn then

Sn := Z(An/B n)(Cn+l/C n);

return a non-zero solution of a„+i =  5„a„ and exit.

[2] Return 0.

We can reduce the degree of equation (4.34) by canceling the common factor AnBn+d-i (as we 
did in (4.27) for the case d = 2).

Lemma 8 Let (an) be a non-zero solution of (4.1) such that an+i =  Snan where Sn is a rational 
sequence. Let

5„ = (4.35)

be the decomposition described in Lemma 7. Let P,{n) and a,-, for i = 0 ,1 ,. . . ,  d, be defined as
in algorithm HYPER. Then S?=o Q<^' =  An divides po(n), Bn divides pd(n — d + 1), and Cn
satisfies (4.34).

Conversely, if  Z  is an arbitrary constant, An and B n arbitrary sequences, Cn satisfies (4.34) 
where P,(n), for i =  0, l , . . . ,d ,  is defined as in algorithm HYPER, and an+i =  Snan where Sn is 
as in (4.35), then (an) satisfies (4.1).

Proof: From (4.1) and an+i = Snan it follows that 

d i-1
y^,Pi(n) TT S n + jO n  — 0 (4.36)
t=0 j=0

hence after canceling on and using (4.35) we have

X > W Z' n  = 0 • (4-37)
U  f,«  s '+’ c '

Multiplication by Cn Ij[y=o Bn+j now gives (4.34). All terms in the sum in (4.34) with i > 0 
contain the factor An, hence An divides the term with i = 0 which is po{n)Cn IIj=o Bn+j- By 
properties 3 and 5 of decomposition (4.35), it follows that An divides po(n). Similarly, £„+<*-1 
divides Z dpd{n)Cnjrd \]^ J a A njrj ,  hence by properties 3 and 5 of decomposition (4.35), Bn+d- \  
divides Pd(n), and Bn divides pd(n -  d +  1). Finally, a look at the leading coefficient of the left- 
hand side of (4.34) shows that a ;£ ‘ = 0.

To prove the converse, we retrace the steps which led from (4.1) through (4.36) and (4.37) to 
(4.34), in reverse order. □

4.5 E xten sion s and sim plifications

1. Given an HLP, the algorithm HYPER will decide existence of hypergeometric solutions. But it
can also be used to lind a basis for the space of solutions which belong to C(H), the space of all
F-linear combinations of hypergeometric sequences.
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Call two hypergeometric sequences similar if they have rational ratio. It is easy to see the follow
ing: Similarity is a congruence relation in the multiplicative group H  of hypergeometric sequences. 
If the sum of two similar hypergeometric sequences is non-zero then the sum is hypergeometric, too. 
If I  is a linear difference operator with polynomial coefficients, a is hypergeometric, and La ^  0 
then La is similar to a. Also, one can show that a set S  of hypergeometric sequences is linearly 
dependent over the field of rational sequences if and only if S  contains two similar sequences. It 
follows that if a linear combination of pairwise dissimilar hypergeometric sequences solves an HLP 
then so does each individual term of this combination.

Let r  be a fixed rational sequence. Consider the mapping f  : C h where C  is a non-zero 
polynomial sequence and h is any hypergeometric sequence satisfying

ftn+i=rn%r'in*
It is not hard to see that for any non-zero polynomial sequences p,q  and for any A,p  € F  there are 
\ \ f i '  € F  such that f(Xp + pq) =  A'f(p)  + p' f(q )‘

Therefore running through all possible choices of An, Bn, and Z  in algorithm HYPER, and using 
POLY to construct a basis for the space of polynomial solutions of each auxiliary equation, will 
produce a generating set for the space of solutions which belong to £(H ). (In general, this will not be 
a basis because solutions coming from different auxiliary equations can be linearly dependent). One 
can prune this generating set testing linear independence by means of the Casoratian determinant 
until it becomes a basis.

Another way to obtain such a basis is to find one solution with HYPER, then reduce the order 
of the equation, recursively find the corresponding basis for the reduced equation, and then use 
Gosper’s algorithm to put the antidifferences of these solutions into closed form. If there is at least 
one hypergeometric solution h, this method will also yield those solutions a for which A (a/h) is 
hypergeometric (cf. Example 3).

2. Noting that the right-hand side of an NLP with a hypergeometric solution is hypergeometric, 
we can also use HYPER to find hypergeometric solutions of NLP’s in a similar way as we can use 
POLY on NLP’s (see the last paragraph of Section 4.2). However, this means that we are throwing 
away the information about the similarity class of potential hypergeometric solutions which is de
termined by the right-hand side, and then rediscovering it by factoring. A much better method is 
to seek solution as an unknown rational multiple of the right-hand side and then use Abramov’s al
gorithm to find all rational solutions of the resulting equation. Like Gosper’s algorithm, Abramov’s 
algorithm requires computation of polynomial gcd’s and resultants but no factoring.

3. Given an HLP for (a„) we can construct an HLP of the same (or possibly lower) order 
for (Aan), by first applying A to the original equation to produce an auxiliary equation, then 
expressing an+fc in both equations in terms of Aan+J- and hn, and finally eliminating an among 
them. Repeating this several times we see that algorithm HYPER can be used to find all solutions 
of a given HLP whose k-th differences are hypergeometric, for any given k.

We conclude the chapter by pointing out several possible shortcuts in the implementation of 
algorithm HYPER:

1. Consider only those pairs An, Bn for which the polynomial R(k) =  Resultant(An, Bn+k', n) 
has no nonnegative integer roots.
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2. If degpo +  degpd = 2m +  1 for some integer m, and deg pi < m  for 1 < i < d -  1, then the 
equation has no hypergeometric solutions (cf. Example 4).

3. If there is a A; such that 1 < k < d—1, deg p* > degp,- for all i ^  k, and deg pk > degpo+deg Pd, 
then the equation has no hypergeometric solutions.

4. Discard any auxiliary equation where one coefficient dominates all others in degree (cf. Ex
ample 5).
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Chapter 5

Galois theory o f difference equations

There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.

— HAMLET

5.1 Introd uction

There are many similarities and analogies between the theories of difference and differential equa
tions. The algebraic theory of differential equations which is one of the tools for investigating 
existence of closed-form solutions was developed under the name of differential algebra, principally 
by Ritt and Kolchin (see, for example, Ritt [Rit32], Kaplansky [Kap57], and Kolchin [Kol73]). 
Within this framework an analogue of Galois theory of algebraic equations has been constructed 
using the notion of differential fields. A differential field is a field together with a mapping ’ (the 
derivation) such that (a +  b)' = a1 + b' and (ab)f = a'b + aV. An element a of a differential field 
is called constant if a' =  0. A Picard-Vessiot extension K  of a differential field k is obtained by 
adjoining to ft a basis of the space of solutions of a homogeneous linear differential equation with 
coefficients in k, provided that the fields of constants of k and K  coincide. A differential field K  is a 
Liouvillian extension of k  if there is a finite chain of differential fields k = Fq C  F\ C  . . .  C f*  = K  
such that F{ is either finite algebraic over F,-1, or is obtained from E,_i by adjunction of some 
y which satisfies an equation of the form y' = ay or y' = b, where a and b are elements of F,-1. 
One of the main results in this theory is that the Galois group of a Picard-Vessiot extension is 
an algebraic group. This is the basis for construction of decision algorithms for the problem of 
existence of closed-form solutions of a given linear differential equation with coefficients in k. Here 
a solution is defined to be in closed form if it lies in a Liouvillian extension of k.

On the algorithmic side, Baldassari and Dwork [BD79] as well as Singer [Sin80] gave an algo
rithm for deciding whether a homogeneous linear differential equation with rational coefficients has 
algebraic solutions, and Baldassari [Bal80] extended this to equations with algebraic coefficients. 
Kovacic [Kov86] was the first to give an algorithm for deciding whether a second-order homoge
neous linear differential equation with rational coefficients has Liouvillian solutions, and if so, to 
find them, although his results weren’t published until a few years later. His algorithm has been 
implemented in several symbolic computation systems. Singer [Sin81] extended this to ra-th degree 
equations. Later, Singer [Sin85] attacked the question of solvability by means of adjoining solu
tions of second-order equations, while Davenport and Singer [DS86] gave an algorithm for finding 
Liouvillian solutions of nonhomogeneous linear equations.
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An overview of Galois theory of differential equations can be found in [Sin90] and [Sin].

The development of an analogue of differential algebra in the theory of difference equations was 
started by Ritt, and carried on by Cohn [Coh65] under the name of difference algebra. An inversive 
difference field is a field together with an automorphism r  (the transform or the shift operator). For 
difference equations, Galois theory was developed in a series of papers by Franke: [Fra63], [Fra66], 
[Fra67], [Fra69], [Fra71], [Fra73], [Fra74]. A difference field i f  is a Liouvillian extension of k if 
there is a finite chain of difference fields k = F0 C F\ C . . .  C Fk = K  such that F, is either finite 
algebraic over F,_i, or is obtained from FJ-i by adjunction of some y which satisfies an equation 
of the form ry  =  ay or ry  -  y = b where a and b are elements of F ,_ i. In order to obtain a more 
satisfactory theory, Franke [Fra66] expanded the definition of closed-form solutions to q-Liouvillian 
extensions which allow for adjunctions of solutions of Tqy = ay and r 9y — y = b. Here q is a positive 
integer.

Still, this development did not lead to a complete resolution of the problem of existence of 
Liouvillian solutions as did the analogous line of research in the case of differential equations. The 
main obstacle was the existence of difference equations without Picard-Vessiot extensions (i.e., such 
that the adjunction of any fundamental set of solutions introduces new constants). An example is 
given in Proposition 2 and Corollary 3 below.

Instead of with fields of functions, we work with rings of sequences. In order to get a difference 
ring the shift operator is converted into an automorphism by identifying sequences which agree 
from some point on. This works well for rational sequences since we don’t have to worry about 
their poles. The units in this quotient ring are the sequences which are non-zero from some point 
on. The advantage of this setting is that we have a universal structure in which all solutions lie 
- the ring of all sequences over the field of coefficients, and adjoining solutions produces no new 
constants. The setback is the appearance of nonunits (which are also zero divisors).

We prove that in this setting the Galois group of a linear difference operator with rational 
coefficients is an algebraic matrix group, which is one of the major stepping stones in developing 
Galois theory. The others are establishing Galois correspondence, proving normality of extensions, 
and determining periodicity properties of nonunit solutions. This constitutes a major research 
program in itself.

5.2 D ifference rings and fields

Definition 11 [Coh65] A difference ring is a commutative ring with unit, K , together with an 
injective endomorphism, r ,  called the transform of K . A difference field is a difference ring which 
is a field. A difference ring or field K  with transform r  is inversive if r  is an automorphism of K.

The set C (K )  = {x € K\ rx  = x) is a subring of K  called the ring of constants of K . If K  is a 
field then so is C(IC). □

All difference rings and fields considered will be inversive.

Exam ple 6 Any ring K  together with the identity automorphism id# is an inversive difference 
ring. In this case, C(K) = K.

Exam ple 7 The field of rational functions over the complex numbers C(z) together with the shift
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operator o f(z )  = f ( z  +  1) is a difference field. It is not difficult to see that the field of constants 
is isomorphic to C.

Definition 12 Let K  be a difference ring with transform r . A difference automorphism of K
is an automorphism a  of K  such that o r  = ro . If k, K  are difference rings, k C K, and the
transform of K  agrees on k with the transform of k, then A: is a difference subring of K , and K  is 
a difference extension ring of k. If k  is a difference subring of K , and ai, <12, . . . ,  ar are elements 
of K , then fc{ai, 02, . . .  ,a r} denotes the smallest difference subring of K  which contains the set 
k U {ai, 02, . . . ,  ar }- It is equal to the (algebraic) extension ring of k  obtained by adjoining 
for 1 < i < r, 1 < j .  □

The main difficulty in applications of Galois theory of difference fields lies in the fact that, 
unlike differential equations, there exist difference equations with coefficients in a  difference field k 
such that any difference extension field of k in which the equation has a non-zero solution contains 
constants not in k.

Proposition  2 [Fra63] Let K  be a difference field with transform r. I f  the field of constants C(K) 
is algebraically closed then the equation rx  +  x = 0 has no non-zero solution in K .

Proof: Let f  € K  be such that £ ^  0 and r£ + f  = 0. Then

r«2 = (r<)2 = ( - f )2 = {2,

so f2 6 C(K). Since C (K) is algebraically closed this implies that f  G C(K), and therefore r£ = f. 
From + £ = 0 it follows that £ = 0, a contradiction. Hence no such £ exists. □

Corollary 3  Let k be the difference field C(a) with the shift operator 0  as the transform. Let £ 
be a non-zero solution of the equation ox + x = 0 in some difference extension field K  of k. Then 
C(K) contains elements which are not in C.

Proof: By Proposition 2, C (K ) is not algebraically closed. Since C = C(k) C C (K )  and C is 
algebraically closed, the assertion follows. □

5.3 D ifference algebra o f  sequences over a field

Let F  be a field, the ring of sequences over F  with addition and multiplication defined com
ponentwise, and 0  : F ^  —> F™ the shift operator defined for /  € F 1N by

<7/ ( 71) = f{n  +  1), for all n € IN.

Note that o is a ring endomorphism of FN which is not injective, and so frIN together with <7 is 
not a difference ring.

Let J  be equal to (JfcLo ^ er <Jk, the ideal of eventually zero sequences. Construct the quotient 
ring

C = F w/ J  (5.1)
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and let ip : F w -* C be the natural epimorphism. Since both a and <p are epimorphisms, so is 
<pa : F® —y C. Furthermore,

Ker (per = a~l {J) = [J a _fc_1(0) = (J Ker ak = J. 
k —0 k= 1

By the Isomorphism Theorem of universal algebra, there exists a unique automorphism r  of C such 
that

T<p = (pa (5.2)

and the diagram

7  A !•
F™ C

commutes. Thus C together with r  is an inversive difference ring. The elements of C are equivalence 
classes of sequences over F, two sequences being equivalent if they agree from some point on. In 
[Sta80] such equivalence classes are called ”germs at oo of functions /  : IN —*■ F". One can show 
easily that I{(C) = F, provided that we identify an eventually constant sequence over F  with the 
appropriate element of F . Since C is in fact an F-algebra and r  is F-linear, we shall call C together 
with t the difference algebra of sequences over F.

The non-zero elements of C either have no zero terms (from some point on), or they have 
infinitely many zero terms. The former are the units of C, and the latter are zero-divisors. Since r  
is an automorphism it transforms units into units and zero-divisors into zero-divisors.

Let TZ denote the difference subring of those a 6  C for which there exists a rational function 
r(z) 6 F (r), a sequence /  € FN, and IV € IN such that /(n )  = r(n) for n > N , and a = <pf. 
The elements of TZ are units, and in fact 1Z together with r  is a difference field. We shall call it 
the difference field o f rational sequences over F. Similarly we can define the difference ring V of 
polynomial sequences over F. We have

K(C) = F C V C 1 Z C C .

Since two distinct rational functions over afield can only agree at a  finite number of points, TZ with 
r, and F(z) with the shift operator a  are isomorphic as difference fields. Similarly, V  with r, and 
F[z] with a are isomorphic as difference rings.

In the rest of the chapter, F will denote a field, C the difference algebra of sequences over F, 
and TZ the difference field of rational sequences over F.

5.4 Linear d ifferen ce operators on C

Definition 13 A mapping L : C -*• C of the form 

d
Lx = '^2aicTkx ,  a/, € C for k = 0,1 , . . . ,d (5.3)

k=o

with ad ^  0 is a linear difference operator on C. The degree of L is d, and the effective degree of L 
is e = d — min{fc; a t ^  0}. L is called rational if ak € TZ for fc = 0 ,1 ,. .. ,  d. □

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A linear difference operator is a linear map of the F-vector space C into itself, so its kernel is a
linear subspace of C. If L is such an operator a basis for K erl over F  is called a set of fundamental
solutions for L. -

Lem m a 9 Let L be a linear difference operator of the form  (5.3) of effective degree e, and such 
that either oj or a^-e is a unit ofC . Then dim K eri < e.

Proof: Let xi,X 2 ,- ■ • ,are+i be solutions of the equation Lx  =  0. Let y\ , t/2, ■ • • ? ye+i € F ^  be 
such that Xi = < p y for i = l ,2 , . . . , e  +  1. Let bo,bi,...,bd  € F** be such that a,- = <pb{, for 
i = 0 ,1 ,. .. ,  d. Then by (5.2) and (5.3),

( d \ dI E  a*yi J =  E  °j ^X i  = 0 , for i =  1, 2 , . . . ,  e +  1.
y = d - e  J  J= 0

Therefore there exists an N  G IN such that for all n > N ,  

d
E  bj(n)yi(n + j)  = 0, for i = l ,2 , . . . , e  +  1. (5.4)

j=d-e

Let y (n) € F e+1 be the vector with components yi(n), jfi>(rc),. . . ,  ye+i(n), for all n > 0. Denote by 
Cn the linear span of y (n ),y (ra+ 1) , . .  . ,y (n + e - l) ,a n d le t  On := {u; £ i= i u*'v« = 0 ,forallv € Cn). 
Since dim£n < e, it follows that e +  1 > dimC?n > 1, for all n > 0.

Now we split the proof into two cases:

Case 1: ad is a unit. Then there exists an M  € IN such that 6</(n) ^  0 for all n > M . Let 
k = max{iV, M}. Then by (5.4), for all n > k ,

d-i
yi(n + d) = -  ^ 2  bj(n)/bd(n)yi(n 4- j ) , for i = l ,2 , . . . , e  +  1.

j—d—e

Hence y(n) belongs to Cn-e  when n > k + d. It follows that On-e C On-e+\ for n > k + d, and 
so Ok+d-e is a subspace of On for every n > k + d — e. Since dim C9n > 1 for all n > 0, there is a 
non-zero vector c € Ok+d-e C r\n>k+d-cOn- Then

e + l
5^c,J/,(n) = 0, f o rn > fe  + d - e .  (5.5)
i=i

Applying <p to (5.5) gives
e+ l

E c'x‘ = 0 -
i=i

Since c ^  0 this means that x i, X2, . . . ,  a:e+i are linearly dependent over F.

Case 2: ad-e is a unit. Then there exists an M  G IN such that bd~e(n) £  0 for all n > M . Let 
k = max{iV, M }. Then by (5.4), for all n > k,

d
Vi(n + d - e )  = -  E  bj(n)/bd- e(n)yi(n + j ) ,  for i = 1, 2, . . . ,  e +  1.

j=d-e+1
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Hence y(n) belongs to £ n+1 when n > k +  <£— e. It follows that On+i Q On for n > k + d -  e, so 
that Ok+d-e 2  Ok+d-e+i 2  • • • is a decreasing chain of finite-dimensional linear subspaces. Every 
proper inclusion corresponds to a decrease in dimension, so there are only finitely many proper 
inclusions in the chain. Therefore there is an m  € IN such that On =  Om for all n > m, hence Om 
is a subspace of On for every n > k +  d — e. Since dim On > 1 for all n > 0, there is a non-zero 
vector c € Om. Then (5.5) holds again, and we finish the proof as in Case 1. □

Exam ple 8  To show that the condition in Lemma 9 cannot in general be weakened consider the 
equation

a i r s  +  ao x = 0 (5.6)
Let a0 = <p(a) and oi =  r a 0 where a(n) =  1 for n even, and a(n) = 0 for n odd. Clearly, a0 and fli 
are nonunits. Let x =  <py. Then (5.6) is equivalent to the requirement that from some point on, 
the even-numbered terms of y are equal to zero. It is not difficult to see that the linear subspace 
of C consisting of all <py such that y satisfies this requirement has infinite dimension although the 
effective degree of the operator is 1.

Lem ma 10 Let L be a linear difference operator of the form (5.3) of effective degree e, and such 
that both ad and ad-e are units of C. Then dim KerL > e.

Proof: Let b0, 6i, ...,&<* € be such that a,- = 96 ,•, for i = 0 ,1 ,. .. ,  d. Since both a j and ad-e are 
units of C there exists an N  6 IN such that bd(n), bd-e(n) ^  0 for all n > N .  Let K  = N  + d — e, 
and let v(0), v ( l ) , . . . ,  v(e — 1) be linearly independent vectors from Fe. Then there exist sequences 
3/1, U2, • • •, Ve € F w such that

1. yi(K  + k) = Vi(k) , for Jb =  0 , l , . . . , e - 1 ,  (5.7)

2- 3H(k) = -  £  "  d ’ ior k >  K  + e, (5.8)

for i = 1, 2, . . . ,  e. Multiplying (5.8) by bd(k — d) and setting n = k - d  gives 
d

Y ,  bj(n) crj yi(n) = 0, for i = 1 ,2 ,. .. ,  e , (5.9)
j=d-e

when n >  N . Let x,- =  <pyi, for i = 1 ,2 ,. .. ,  e. Then an application of to (5.9) shows that Lx{ =  0 
for i = 1, 2 , . . . ,  e. We claim that x \ , X2 , . . . ,  x e are linearly independent.

Assume not. For all n > 0, let y(n)  e  F e be the vector with components yi(n), y2(n) , . . . ,  ye(n).
Denote by £ n the linear span of y (n),y(n  + 1 ) ,. . .  ,y (n  + e -  1), and let On := {u; £ i= i  u w  =
0 ,forallv € £„}. By the assumption there exists a non-zero vector c € Fe and an M  € IN such 
that c € On for all n > M . Dividing (5.9) by bd-e(n) gives

yi(n +  d -  e) = -  J ]  j r ^ T ^ yi(n + ̂ ' for i = 1, 2,. . . , e ,
j=d-e+i

when n >  N . Hence y(n) € £ n+i when n >  K .  Therefore On+1 C On for n > I(, and so

c 6 On, for all n > K . (5.10)

But by (5.7), y (K  +  k) = v(k) for Ar = 0 ,1 ,. . . ,  e — 1, therefore dim Ck  = e and dim Ok  = 0, in
contradiction with (5.10). This proves the claim. □
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Exam ple 9 To show that the condition in Lemma 10 cannot in general be weakened consider the 
equations

a o  t x  +  x  =  0

and
t x  +  a o  x  =  0

where ao is as in Example 8. It is not difficult to see that if x 6 C satisfies either of these equations 
then x = 0, and so in both cases the dimension of the solution space is 0 while the effective degree 
of the operator is 1.

Definition 14 A linear difference operator of the form (5.3) of degree d and effective degree e is 
called regular if both a j and are units of C. □

Theorem  10 Let L be a regular linear difference operator on C of effective degree e. Then KerL 
has dimension e.

Proof: This follows immediately from Lemmas 9 and 10. □

5.5 H yp ergeom etric sequences

Proposition 3 Let x 6 C be a non-zero solution o f the first-order equation t x  = ax. Then x is a 
unit.

Proof: Let x = cp(y) and a = ip(b). If a: is not a unit then y contains infinitely many zero terms. 
Since x is not zero y also contains infinitely many non-zero terms. This implies that for every N  
we can find k and m such that N  < m < k, y(m) =  0, and y(k) ^  0. But from the equation 
which x satisfies it follows that, for large enough N , y(k) = b(k -  l)b(k -  2) • • • b{m)y(m) =  0, a 
contradiction. □

Definition 15 A non-zero sequence x G C is hypergeometric over F  if it satisfies an equation of 
the form t x  = ax where a G TZ is a rational sequence.

Note that a in this definition has to be non-zero.

By Proposition 3, hypergeometric sequences are units. We shall denote the set of all hyper
geometric sequences over F  by H. Obviously TZ \  {0} C H .  If t x  = ax and ry  = by, then 
r(xy ) = (ab)(xy) and t x ~ x = a~xx~l , so J? is a group under multiplication. Finite sums of 
hypergeometric sequences form an algebra over the field of rational sequences TZ.

Theorem  11 Let S  be a set of hypergeometric sequences. I f  S  is linearly dependent over TZ then 
S  contains two elements which are linearly dependent over TZ.

Proof: Let S  C H  be linearly dependent over TZ. Let S' =  {ao, a i , . • •, am} be a minimal subset of S  
which is linearly dependent over TZ. Note that a hypergeometric sequence is non-zero by definition, 
therefore m > 1. Then there exist non-zero elements r0, r i , . . . ,  rm 6 TZ such that

(5.11)
«=o
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Let bi := r,a;, for i = 0 ,1 , . . . ,  m. For j  = 0 ,1 ,. .. ,  m -  1 apply r J’ to (5.11) and divide the resulting 
equations by bm. This gives

~r~  = 0, for j  = 0 ,1 ,. . . ,  t o — 1

which can be rewritten
TO —1

J2 = 5 = (5-12)
This is a system of m linear algebraic equations for the m unknown ratios 0 < i < m, with
coefficients and right-hand sides in TZ. The determinant of this system is

det

T lT J o 'b i  '

If D  =  0 then one can show, by developing a suitable subdeterminant with respect to the first 
column, that bo, b\ , . . . ,  6m_i are linearly dependent over TZ. But this contradicts the minimality 
of S'. Therefore D £  0 and (5.12) has a unique non-zero solution in TZ. Hence there is an i, 
0 < i < m -  1, and an r G TZ such that 6; = rbm, proving the theorem. □

Theorem  12 Let { fi ,f2> • • • >&} be a set of hypergeometric sequences which are linearly indepen
dent over F. Then there exists a rational linear difference operator on C of degree and effective 
degree d such that {£i,£2> • • • 5 £d} are its fundamental solutions.

Proof: Consider the equation Cas(a,£i,£25••• ,&) = 0 where Cas(ar0,x i , . . . , xn) =  det(rJa;,-)"J_0 
is the Casoratian determinant. After dividing it by the product f i w e  obtain an equation 
for a with rational coefficients satisfied by {&,&>• ••»&}• The left-hand side of this equation is 
therefore a rational difference operator L of effective degree e < d. Since {ft, • • • ,£d} € KerX it 
follows from Lemma 9 that in fact e =  d. □

5.6 The Galois group o f  a  rational operator

Let I  be a rational linear difference operator on C of effective degree e. By Theorem 10, KerX 
has dimension e. Let f i , ^  • • • he a basis for KerX. Denote by Q{TZ{E}/TZ) the group of those 
difference automorphisms of 7£{£i,f25 • • ->fe} which fix TZ. If Lx = 0 and a G £(7l{£}/7£) then 
L a x  = 0 as well. Therefore for every a 6 G(TZ{£}/TZ) there exists a unique matrix A G G Le(F), 
with elements aij, such that

a& =  ^  aij$j, for i = 1 ,2 ,. . . ,  e . (5.13)
i=i

This defines a group monomorphism M  : G(TZ{£}/TZ) -> GLe(F). The matrix group 
M(G(TZ{£}/TZ)) is called the Galois group of •••>&:} over TZ, and will be denoted by
G(7?,{£}/ft).

The Galois group depends on the choice of basis for Ker X. But it is clear that if rji,r)2, . - . ,  Ve is 
another basis for Ker X then there exists a nonsingular matrix P  € GLe(F) such that G{TZ{rj)/TZ) = 
P -1 G(TZ{£}/TZ) P. So the Galois group of an operator is determined up to conjugacy.
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Theorem  13 Let L be a rational linear difference operator on C of degree and effective degree d. 
Let € i,fr, • • • ,€d be a basis for Ker L. The Galois group G(TZ{£}/71) is an algebraic matrix group.

The following proof is based on the proof of the analogous theorem for differential operators 
given in [Kov86], which in turn is based on the proof given in [Kap57]. However, there seems to be 
a flaw in the second part of the proof in [Kov86]. Since we also wanted to avoid using transcendency 
degrees as is done in [Kap57] this part of the proof follows a different path.

Proof: Let G = G(TZ{£}/Tl), and S  =  f t{ 6 ,6 , . . . ,  &}• Because the & satisfy the equation Lx  =  0 
it is clear that S  equals the extension ring of TZ. obtained by adjoining for 1 < i , j  < d. Let
F[zij] be the ring of polynomials over F  in the indeterminates z,-j, 1 < i , j  < d. We need to exhibit 
a set of polynomials £ C F[zif\ such that A € G if and only if p[a,j] = 0 for every p  € £ . Let 7Z[x ij\ 
be the ring of polynomials over TZ in the indeterminates Xij, 1 < i , j  < d. Let S[za\ be the ring of 
polynomials over S  in the indeterminates Zij, 1 < i , j  < d. By the universal property of polynomial 
rings, there exists a unique ring homomorphism

/  • TZ[xij] —*• S[zif\

such that f \n  =  idrc and f(x ij)  =  J2k=i * « ' for 1 < i , j  < d. Let (u>a)a<=i be a vector space 
basis for S  over F. Then the elements of <S[z,-j] can be written as finite linear combinations of w\'s 
with coefficients in F[zij]. In particular, for every q € TZ[x{j] and X e l  there is a unique polynomial 
PqX € F[zij] such that

/(9) =  £p * A te j]« fc . (5-14)
Agr

The sum on the right-hand side is finite for every q € TZ[xij].

Let Z  be the matrix of indeterminates To each polynomial p e  F[zij] we assign a
polynomial p € F[z{j] by

J[*y] =  .£>*„[*>*/J>]
where k = degp, D = det Z, and D,j is the cofactor of the ( i,j) - th element of the matrix Z.

By the universal property of polynomial rings, there exists a unique ring homomorphism 

ij) : TZ[xij] —> S

such that ^ \ tz = id^ and ^>(xij) = for 1 < i , j  < d. The kernel of ^  is the ideal of algebraic
relations among the solutions of Lx = 0 and their transforms. Define

£ = {p?a; q e  Ker i>,\ e 1}
I  = (p; p e £ }

Let A € GLd{F). We claim that A G G if and only if p[a,j] = 0 for every p e £  U £.

To prove this claim, let
XA : — S

be the unique ring homomorphism such that x.a|.S =  id^ and XA&ij) = aij> f°r 1 < h j  < d. It 
exists, once again, by the universal property of polynomial rings.
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Assume first that A € G. Let a be the corresponding difference automorphism of S  such that 
A = Mot, as in (5.13). Both aip and x a !  are ring homomorphisms from into S. Since they
agree on TZ and

d d
= a r , “1£,- = yjTt aikTj - 1t k = *»t', ” 1& ) = X A f ( x i j ) ,

fc=1 fc=1

for 1 < i , j  < d, it follows that
aip = x a !  (5.15)

and the diagram ,
n * n ]  $

d ia
% ]  «S

commutes. If q G Ker ip then by (5.14) and (5.15),

^P qxW i,] wx = X yltJp jA fe '] wx) = XAf(q) = otip(q) =  0 ,
Aer Agr

and so pqx[aij] =  0 for every q € Ker ip and A G X. Hence

p[a,j] = 0 , for every p € £ .

Let A-1 = [a.yjfj-!. Repeating the same argument with A-1 in place of A  we obtain p[ay] = 0, 
for every p € £. By definition of p,

plan) = p[Aji/ det A] =  p[ay]/(det A)de«*, (5.16)

where Ay is the cofactor of the (i,j)-th  element of A. Since det A ^  0, this implies that

p[ay] = 0 , for every p € £ .

Conversely, assume that p[ay] = 0 for every p € € U £. Let q £ Ker ip. Then XAf(q) =
SAel^Afotj] «>A = 0, so Ker ip C Ker x a /-  Using (5.16), we obtain Ker ip C K e r x A - if
in the same way. By the Isomorphism Theorem of universal algebra, there exist unique ring 
endomorphisms a  and /? of S  such that

ctiP = X A f,  (5.17)
M  =  X A - 'f-  (5-18)

Then
d

a  r 7-1^  = ctip(xij) =  XAf{*ij) = X ) » (5-19)

and similarly,
d

0T>-l £i = 'E lVikTi - 1tk ,  (5.20)
/s= l

for 1 < i, j  < d. We want to show that a  is a difference automorphism of S  which fixes TZ and such 
that Mot = A.
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Using (5.19) and (5.20) we find that

d d d

a0  =  a  X  a ik^ -'Z k  = X  «.-fc X  Ĝ 7"?_1^r
fc=l fc=l r = l

d j

= XI rJ_1^r 2  “«fcajtp = rJ-1&» (5-21)
r = l  fc=l

and similarly, that
pctT’- 1Zi = Ti - l Zi , (5.22)

for 1 < i , j  < d. Since tp, f,X A , and all fix TZ, so do a ,0 ,a 0 ,  and 0a. This together with (5.21) 
and (5.22) implies that

a0  =  0a  = id s .

Therefore a  is an automorphism of S  which fixes TZ. If r £ TZ, then t t  £ TZ, so a rr  = r r  =  ra r  
since a fixes TZ. Furthermore, by (5.19)

d

arir’-'ti) =  X a«*T,& = ™(rJ'_1& ),
k=l

for 1 < i , j  < d. This proves that a  commutes with r ,  and is thus a difference automorphism of S. 
From (5.19) it follows that M a  = A. So A £ G. □

Exam ple 10 Let { fn f2>...,& }  be a set of fundamental solutions, a £ G{TZ{£)/TZ) an auto
morphism of 72{£} which fixes TZ, and (a,j)^,=1 the corresponding matrix in the Galois group 
G(TZ{$ITZ).

If & £ TZ then a£k =  &, therefore akj — 6kj, for j  = 1 ,2 ,. .. ,  d.

If & € Ti then there is an r £ TZ such that rf* =  r ^ .  Applying a  to this equation we see that 
ra£jfc = mffc, hence af* = c& for some non-zero c € F. Therefore =  0, for j  = 1,2 ,. . . ,d ,  
j  £  k.

If & € Ti and £m = r£k for some non-zero r £ TZ then by the previous paragraph, =  c&- 
for some c £ F , so a£m = ra£t =  c r^  = c£m. Therefore a** = amm. More generally, 
if € Ti and =  1 for some w1,n 2,. . .n ^  £ TL and r £ TZ then
< C i < 2,i2 • " a iH,iH =  1 “  w eU -
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Chapter 6

Conclusions

This thesis has approached the problem of finding symbolic solutions of difference equations from 
four different directions.

First, it has shown that the method of generating functions is sufficiently versatile so that 
a comprehensive package for solving difference equations could be built around it. A prototype 
implementation in Mathematical^ has been carried out successfully. However, except for small 
classes of equations such as ordinary difference equations with constant coefficients, the method of 
generating functions should be considered as a heuristic, and should therefore be complemented 
by algorithms for other classes of equations. Procedures for related problems such as evaluation of 
sums and products in closed form, the operations of difference calculus, simplification of factorial 
expressions, and proving combinatorial identities should also be implemented.

Second, considering that ordinary difference equations with constant coefficients always give 
rise to rational generating functions and are completely understood it is surprising that it is not 
known if the generating functions defined by partial difference equations with constant coefficients 
are algebraic. The increase in complexity is due to the geometry of initial conditions. We have 
proved an existence and uniqueness theorem, and shown that under reasonable assumptons the 
generating function is analytic.

Turning to ordinary difference equations with polynomial coefficients, there is again a sharp 
increase in complexity of solutions in comparison to equations with constant coefficients. Explicit 
solutions for a general equation of this type - even for second-order equations - are not known. 
Therefore it s important to construct algorithms which decide existence of solutions of certain re
stricted types. We have developed algorithms for finding polynomial and hypergeometric solutions 
of such equations. In conjunction with an algorithm of Zeilberger [Zeib], the latter algorithm solves 
the long-standing problem of deciding whether a definite hypergeometric sum is again hypergeo
metric.

Finally, on a more theoretical level, there has been success in using differential algebra and 
Galois theory of differential equations to find Liouvillian and elementary solutions of differential 
equations. In the analogous approach to difference equations there are obstacles which do not 
appear with differential equations. We have tried .to avoid these obstacles by using difference rings 
of sequences in place of difference fields of functions. In this setting we have proved that the Galois 
group of a linear difference operator with rational coefficients is an algebraic group.
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This work suggests a number of problems for further research:

1. Are there partial difference equations with constant coefficients and such that the corre
sponding generating functions are not algebraic? If not, how can one compute the minimal 
polynomial defining the generating function? Can this be automated? In Chapter 3, we 
assumed that initial conditions are given on the boundary of the first orthant. What other 
geometric configurations could be handled?

2. Many recurrences with polynomial coefficients surfacing in combinatorial enumeration prob
lems have solutions which have the form of a definite hypergeometric sum. Is there an algo
rithm for deciding existence of solutions that are single or multiple definite hypergeometric 
sums?

3. Are difference algebra extensions of 1Z by adjoining solutions of a rational difference operator 
on C normal? Is there a Galois correspondence between the normal subgroups of the Galois 
group and the intermediate algebras in such an extension? What periodicity properties do the 
nonunit solutions of rational difference equations possess? Is there an algorithm for finding 
all Liouvillian solutions of such equations?
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Appendix A

The program

(*** RSolvo.m ***)

(* a lpha  t e s t  ve rsion  *)

(* l a s t  m odified: A pril 25, 1991 •)

(* Copyright C 1990 by Harko Petkovsek *)

BeginPackage["RSolve1"]

R Solve::usage » "RSolve[{eqnl, eqn2, . . } ,  { a l [ n ] t a 2 [n ] , . n , 
o p ts]  so lves the  recurrence  equations e q n l, eqn2, . .  
fo r  th e  sequences a l [ n ] , a2[n] , . . .  I f  th e re  i s  a  s in g le  sequence or 
e quation  i t  need no t be given in  a l i s t .  Equations can e i th e r  be 
rec u rren c es o r in it ia l /b o u n d a ry  cond itions. An equation  may have 
th e  form eqn / ;  cond where cond i s  an in e q u a li ty  sp e cify in g  th e  range 
o f va lues o f n f o r  sh ich  eqn i s  v a lid ; uhen no c ond ition  i s  given 
i t  i s  assumed to  be n >■ 0 . A lia s : RS."

PoverSum::usage » "PoaerSum[expr, {z , n , n0:0>] computes 
Sum[expr z*n, {n, nO, I n f in i ty } ] .  I f  a[n] i s  a  sequence, th e  name 
G f[a ][z] i s  used by PoverSum to  denote Sum[a[n] z 'n ,  {n, 0 , In f in i ty } ] .  
PoverSum i s  threaded over l i s t s  and equations . A lia s : PS."

ExponentialPoverSum::usage ” "ExponentialPoverSum [expr, {z , n , n0:0}] 
computes SumCexpr z '(n -nO ) /  (n-nO )!, {n, nO, I n f in i ty } ] .  I f  a [n] i s  a 
sequence, th e  name EG f[a][z] i s  used by ExponentialPoverSum to  denote 
SumCaCn] z*n /  n ! , {n, 0 , I n f in i ty } ] .  ExponentialPoverSum i s  threaded 
over l i s t s  and equations . A lia s : EPS."

G eneratingFunction::usage * "G enera tingFunction[{eqnl, eqn2, . . } ,
{ a l[ n ] ,  a2 [n ] , . . } ,  n, z , o p ts]  computes th e  o rd in a ry  genera ting  
fu n c tio n s  Sum[ai[n] z 'n ,  {n, s i ,  In fin ity } ]  f o r  th e  sequences a l[n ] ,  
a 2 [n ], . .  defined  by th e  equations eqnl, eqn2, . . .  Here s i  denotes the  
le a s t  va lue  of n such th a t  a i[n ]  appears in  th e  equ atio n s . An equation 
may have th e  form eqn / ;  cond sha re  cond i s  an in e q u a li ty  specify ing  
th e  range of va lues of n f o r  vhich  eqn i s  v a l id ;  vhen no cond ition  
i s  given i t  i s  assumed to  be n >■ 0 . A lia s: OF."

ExponentialG enera tingFunction ::usage » "ExponentialGeneratingFunctionC 
{ eqn l, eqn2, . . } ,  { a l[n ] ,  a 2 [n ] , . . } ,  n , z] computes th e  exponentia l 
g e n era tin g  functions Sum[ai[n + s i ]  z 'n  /  n ! , {n , 0 , In f in ity } ]  fo r  the 
sequences a l [ n ] , a 2 [n ] , . .  defined  by the  equations eqn l, eqn2, . . .  Here 
s i  denotes the  le a s t  value of n such th a t a i[n ]  appears in  th e  equations. 
An equation  may have th e  form eqn / ;  cond shore cond i s  an in e q u a lity  
sp e cify in g  the  range o f  va lues o f n f o r  sh ich  eqn i s  v a lid ; vhen no 
cond ition  i s  given i t  i s  assumed to  b« n >> 0 . A lia s : EGF."

G f:: usage * "G f[a][z] i s  used by PoverSum to  denote 
SumCaCn] z 'n ,  {n, 0 , I n f in i ty } ] ."

EG f::usage > HEGf[a][z] i s  used by ExponentialPoverSum to  denote 
Sura[a[n] z 'n  /  n ! , {n, 0 , I n f in i ty } ] ."

H Solve::usage * "HSolve[eq, f ,  z] re tu rn s  a hypergeom etric form al
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s e r ia s  so lu t io n  to  d i f f e r e n t i a l  equation eq u i th  unknown function  
f [ z ] ,  o r  {> uhen i t  de term ines th a t  th e re  i s  no s e r ie s  so lu t io n .
I t  r e tu rn s  F a i l  uhen i t  i s  unable to  do e i th e r . "

Hypergeom etricF::usage * "Hypergeom etricF[{al, a2, {b l , b2, z]
i s  the  generalized  hypergeometric fu n c tio n  u i th  upper param eters 
a l ,  a2 , . . ,  lone r param eters b l ,  b 2 , . . ,  and argument z ."

K ::usage * "K i s  the  head used f o r  summation ind ices by SeriesTerm."

SeriesT erm ::usage » "SeriesTerm [expr, {z , a ,  n>, opts]
re tu rn s  th e  n - th  c o e f f ic ie n t of the  Laurent s e r i e s  expansion o f expr
around z * a ,  fo r  symbolic n . A lia s : ST."

SymbolicNod::usage » "SymbolicHod[n, k] i s  equal to  Hodfn, k] uhen n 
i s  a number, and i s  l e f t  unevaluated o th e r s is e ."

RealQ::usage a ">RealQ[x] ■ True* se rves to  d e c la re  x to  be re a l ."

R eP::usage » "ReP[x] g ives the  r e a l  p a r t o f x ."

ImP::usage * ”ImP[x] g ives th e  imaginary p a r t  o f  x ."

Conjugate!]:: usage ■ "Conjugate!] [x , y] t e s t s  whether x and y a re  complex 
c on ju g ate s ."

SimplifySum::usage » "SimplifySum i s  a  l i s t  o f  ru le s  f o r  s im p lif ica tio n

S im p lify T rig ::usage “  "S im plifyT rig i s  a l i s t  o f  ru le s  sh ich  put 
t r igonom etric  expressions in to  canonical fo rm .”

SimplifyComplexEl: : usage * "SimplifyComplexEl i s  one o f  l i s t s  o f ru le s  
used to  rep la ce  sums o f conjugate complex q u a n ti t ie s  by th e i r  double 
r e a l  p a r t s ."

SimplifyComplexE2::usage “ “SimplifyComplexE2 i s  one o f  l i s t s  o f ru le s  
used to  rep la ce  sums o f conjugate complex q u a n ti t ie s  by th e i r  double 
r e a l  p a r t s ."

SimplifyComplex2::usage * "SimplifyComplex2 i s  one of l i s t s  o f ru le s  
used to  rep la ce  sums o f  conjugate complex q u a n ti t ie s  by th e i r  double 
r e a l  p a r t s ."

SimplifyComplex3::usage « "SimplifyComplex3 i s  one of l i s t s  o f ru le s  
used to  rep la ce  sums o f  conjugate complex q u a n ti t ie s  by th e i r  double 
r e a l  p a r t s ."

SimplifyComplex4::usage » "SimplifyComplex4 i s  one of l i s t s  o f ru le s  
used to  rep la ce  sums o f  conjugate complex q u a n ti t ie s  by th e i r  double 
r e a l  p a r t s ."

SimplifyComplexI: : usage » "SimplifyComplexI i s  one of l i s t s  o f ru le s  
used to  rep la ce  sums o f conjugate complex q u a n ti t ie s  by t h e i r  double 
r e a l  p a r t s ."

F a c to ria lS im p lify : : usage « " F a c to r ia lS in p lify [e x p r]  s im p lif ie s  
occurrences o f  F a c to r ia l□  in sid e  ex p r."

P a r t ia lF r a c t io n s : :usage “ "P a rt ia lF ra c tio n sC f , z ,  o p ts]  g ives a p a r t i a l  
f r a c t io n  decomposition o f f [z ]  over th e  complex fu n c tio n s ."

A rgP i::usage  ■ "When p o ssib le  A rgPi[z] e xp resses the  complex number z 
in  th e  form Abs[z] E~(r P i I)  where r  i s  a  r a t i o n a l  number."

E n ta i l s : :usage * "E ntailsC a, b] de term ines sh e th e r  a im plies b where 
a and b a re  Boolean combinations o f e q u a l i t ie s  and/or in e q u a li tie s  among 
r a t i o n a l  functions of a s in g le  in te g e r  v a r ia b le ."

F i r s tP o s : :usage * "F irs tP osC l, p a tte rn ]  r e tu rn s  th e  p o s it io n  of 
th e  f i r s t  argument o f 1 which matches p a t te r n , o r  l u l l  i f  th e re  is  
no such e lem ent."

F reeL ::usage ■ "FreeL[expr, l i s t ]  re tu rn s  True i f  none o f the 
e lem ents o f l i s t  appears in  expr, F a lse  o th e rw ise ."

I n fo : :u sag e  * ”Info[n] i s  inform ation about n , expressed as a 
Boolean combination o f in e q u a li t ie s .  I t  should be a sso cia te d  with n ."

I S o lv e ::usage * "ISolve[expr] so lves a Boolean combination of e q u a l i t ie s  
and/or in e q u a li t ie s  in  a s in g le  in te g e r  v a r ia b le .  The answer i s  given 
as a d is ju n c tio n  o f d i s jo in t  in c lu siv e  in e q u a li t ie s ."
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LeadingCoef: : usage » "LeadingCoef[poly, x] re tu rn s  the  lead ing  
c o e f f ic ie n t o f  th e  polynomial p o ly tx ] ."

ListComplement: :usage * "L istC om plem ent[ll.L ist, 12_L ist] re tu rn s  
th e  m u lt is e t-d iffe re n c e  o f 11 and 12."

H akeL ist::usage “  "H akeL ist[expr, he ad :L ist] r e tu rn s  th e  l i s t  o f 
arguments o f  expr i f  th e  head o f expr matches the  g iven one, o r e ls e  
i t  re tu rn s  {expr} ."

HakeTrinomial:-.usage * "NakeTrinomial[expr_] t r i e s  to  u r i t e  expr 
in  the  form M ultinom ial[a, b , c ] . “

P a t te r n L i s t : : usage ”  " P a tte m L is t[e x p r , p a tte rn ]  r e tu rn s  the  l i s t  o f  
a l l  subexpressions o f expr sh ich  match the given p a t te r n , provided 
th a t  expr does not co n ta in  R u led  •"

P o le H u ltip lic ity ::u sa g e  “  " P o le H u ltip l ic i ty [f ,  {z , a}] computes 
the  m u lt ip l ic i ty  o f the  po le  o f f  a t  z » a ."

R ese t::u sage  * " R e se t[ rec u r , conds, unknosns, s ta r tV a lu e s , sO] re tu rn s  
th e  l i s t  { re c u r , conds} s i t h  s ta r t in g  values of th e  index r e s e t  so 
th a t i t  s t a r t s  s i t h  sO r a th e r  than s i t h  s ta r tV a lu e s , f o r  a l l  unknosn 
sequences."

S a f e F i r s t : :usage •  " S a fe F i rs t[1] re tu rn s  th e  f i r s t  argument o f 1, 
o r l u l l  i f  th e  leng th  o f 1 i s  ze ro ."

S a fe S e r ie s ::usage “ "S afeSeriesC f, {z , a , n}] overcomes a bug in  
S e r ie s d  sh ic h  f a i l s  shen n i s  le s s  than th e  degree of zero o f the 
denominator o f  f  a t  a ."

TTQ:: usage “  "TTQ[cond] re tu rn s  True i f  i t  determ ines th a t  the
inform ation  g iven about th e  v a ria b le s  im plies th a t  cond i s  t r u e ,
and F a lse  o th e rs is e ."

UserSymbols: : usage » “UserSymbolsCexpr] re tu rn s  a  l i s t  o f  maximal 
subexpressions o f  expr s i t h  th e  property  th a t  th e i r  head con tain s 
symbols de fined  in  a  con tex t d if f e re n t  from System*. "

When::usage “  ”l(hen[cond, a , b] re tu rn s  a i f  i t  determ ines th a t  the  
inform ation  g iven about th e  v a ria b le s  im plies th a t  cond i s  t r u e ,
b i f  i t  determ ines th a t  th e  inform ation  given about th e  v a ria b le s
im plies th a t  cond i s  f a l s e ,  and If[cond , a , b] o th e ru is e ."

M ethods::usage * "Methods i s  an op tiona l param eter f o r  RSolve.
I t  sp e c if ie s  vhich methods and in  vhat o rder are  to  be used by RSolve. 
D efau lt: Methods -> {HethodGF, HethodEGF}. I f  a s in g le  method i s  given 
i t  need not be enclosed in  a l i s t . "

MethodGF: : usage M "HethodGF i s  a possib le  value f o r  Methods. I t  denotes 
th e  method o f  o rd inary  g e nera ting  fu n c tio n s ."

HethodEGF::usage * "HethodEGF i s  a p ossib le  value f o r  Methods. I t  denotes 
th e  method o f  e xponen tia l genera ting  fu n c tio n s ."

P recis ionH S::usage “  "PrecisionHS i s  an op tiona l param eter f o r  RSolve, 
G eneratingFunction, E xponentialG eneratingFunction, and HSolve. I t  
sp e c if ie s  th e  p rec is io n  u i th  vhich th e  ro o ts  of polynom ials a re  to  be 
computed by HSolve. When su c ce ss fu l, the  r e s u l t  o f  HSolve i s  a 
genera lized  hypergeom etrie fu n c tio n , and these  ro o ts  »re i t s  param eters. 
P os sib le  v a lu es : PrecisionHS -> n , PrecisionHS -> I n f in i ty ,
PrecisionHS -> Automatic ( d e fa u l t) .  I n f in i ty  means exact ro o ts ,  but 
those  r o o ts  sh ic h  cannot be found by Solve[] a re  computed num erically . 
Automatic means th a t  on ly  those  ro o ts  sh ich  Solve □  can f in d  s ith o u t 
recou rse  to  g en era l form ulas f o r  so lv ing  cubics and q u a rtic s  a re  found 
e x ac tly , s h i l e  o th e rs  a re  computed num erica lly ."

Precis ionST : : usage ■ "PrecisionST i s  an o p tiona l param eter f o r  RSolve 
and SeriesTerm . I t  sp e c if ie s  th e  p rec is io n  s i t h  sh ic h  th e  ro o ts  of 
denominators o f  r a t i o n a l  fu n ctio n s to  be expanded in to  poser s e r i e s  
are  to  be computed by SeriesTerm . Possib le  va lues: PrecisionST -> n , 
PrecisionST -> I n f i n i ty ,  PrecisionST -> Automatic (d e f a u l t) .  I n f in i ty  
means exact r o o ts ,  bu t those  ro o ts  sh ich  cannot be found by Solve[] 
a re  computed num erica lly . Automatic means th a t  only those  ro o ts  shich  
Solve[] can f in d  s ith o u t recourse  to  general form ulas f o r  so lv ing  cubics 
and q u a r tic s  a re  found e x a c tly , s h ile  o th e rs  are  computed num erica lly ."

U seA part::usage * "UseApart i s  an op tiona l param eter f o r  RSolve 
and SeriesTerm . I t  sp e c if ie s  sh e th er o r not Apart should be used 
before a ttem p ting  expansion in to  poser s e r i e s ,  and in  sh a t form.
Possib le  v a lu es : UseApart -> lone (don’t  use Apart a t a l l ) ,
UseApart -> Automatic (d e fa u l t ;  use Apart s ith o u t second-argum ent),
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UseApart -> A ll (use Apart s i t h  second argum ent). By d e f a u l t , HethodGF 
uses UseApart -> Automatic and HethodEGF uses UseApart -> lone .
UseApart -> A ll i s  u se fu l uhen the  function  to  be expanded con tain s 
p a ram eters.”

UseHod::usage » "UseHod i s  an op tiona l param eter f o r  RSolve and 
SeriesTerm. P o s s ib le  va lues: UseHod -> True (d e fa u l t ;  use EvenQ, OddQ 
and/or SymbolicHod to  express the  r e s u l t ) ,  UseHod -> F a lse  (the  
o p p o s ite ) ."

HakeReal:: usage * “HakeReal i s  an o p tio n a l param eter f o r  RSolve and 
SeriesTerm. P o s s ib le  va lues: HakeReal -> True (d e fa u l t;  rep la ce  p a irs  
of conjugate  complex q u a n titie s  by th e i r  doble r e a l  p a r t s ) ,
HakeReal -> F a lse  (th e  o p p o site) ."

S p e e ia lF u n ctio n s::usage a "SpecialFunctions i s  an o p tio n a l param eter 
fo r  RSolve and SeriesTerm. P ossib le  v a lu es: SpecialF unctions -> True 
(d e fa u l t;  use s p e c ia l  functions such as Legendre polynom ials to  express 
the  r e s u l t ) ,  SpecialF unctions -> F alse  ( th e  o p p o s ite ) ."

B egin["‘P r iv a te ‘“]

(•* ALIASES •*)

RS : :»  RSolve

PS : PoverSum

EPS : :*  ExponentialPoverSum

GF ::■  G eneratingFunction

EGF E xponentialGeneratingFunction

ST : :«  SeriesTerm

(** ATTRIBUTES **)

A ttribu tes[R Solve] a  {HoldFirst}

A ttribu tes[G enera tingFunction] a  {H oldFirst}

A ttr ib u te s  [ExponentialG eneratingFunction] a {H oldF irst} 

A ttr ib u te s [P a rse ]  m {HoldFirst}

(** OPTIOIS **>

Options[RSolve] ;a  Join[{Hethods ->{HethodGF, HethodEGF}}, 
Options[HSolve],
Options[SeriesTerm] ]

O ptions[G eneratingFunction] :* Options[HSolve]

Options [E xponentialG eneratingFunction] :■* Opt ions [HSolve]

Options[HSolve] a  {PrecisionHS -> Automatic}

Options[SeriesTerm ] = {PrecisionST -> Automatic,
UseApart -> Automatic,
HakeReal -> True,
UseHod -> True,
SpecialFunctions -> True}

O p tio n s[P a rtia lF rac tio n s ] Options[SeriesTerm]

(** HESSAGES **)
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ST::badopt ■ ->  “  ia  not a v a lid  o p tio n .”

PF::badopt *  ->  “  ia  not a  v a lid  o p tio n ."

P a rse ::eqn  » i s  no t an aquation or a system o f a q u a tio n s .”

(** REDEFIIITIOIS OF SYSTEM FUICTIOIS **)

U n pro tec t[B inon ia l, Povar]

B in o a ia l[n _ , n_] :■ When[n >* 0 , 1, 0] 

0*0 » 1 

P ro te c t[B in o a ia l, Poser]

(*• (RSolve.a) **)

( •  RSOLVE *)

R S o lv e [lis tl_ , l i s t 2 _ ,  n _ , op ts Rule] :=
B lock [{recu r, conds, unknosns, s ta r tV a lu e s , ae th o d s , r e s u l t ,  prs> , 

p rs  ■ P a r s e [ l i s t 1, l i s t 2 ,  n] ;
I f [ p r s  »“  F a i l ,

R e tu rn [F a i l] ,
[ r e c u r ,  conds, unknosns, sta rtV alues}  * p r s  ] ;  

methods * HakeList[Methods /.{ o p ts}  / .O ptions[R S olve]]; 
r e s u l t  *  Scan [Block [{teap},

te ap  “  * M  [re c u r , conds, unknosns, s ta r tV a lu e s , n , op ts} ; 
I f  [ tea p  »!» F a i l ,  Return [ te a p ] ]]* , a e th o d s] ;

Vhich [ re s u l t  l u l l ,
R e tu rn [F a i l] ,

T rue,
Return [ re su lt]  ] ]

( •  METHOD OF *)

MethodGF[recur_, c o n d s ., unknosns., s ta r tV a lu e s . ,  n_ , opts___Rule] := 
B lock[{genf, am, z ,  r e c , con, i ,  te ap , s t a r t ,  o p tsL is t » {opts}}, 

[ r e c ,  con} »  R ese t[recu r, conds, unknosns, s ta r tV a lu e s , 0 ]; 
genf ■ F unctionS olve[rec , con, unknosns, n , PowerSurn, 

z ,  op ts] ;
I f [g e n f  - ! -  F a i l ,

(R e le a s e [ s ta r t  /«  unknosns]) » s ta r tV a lu e s ;
If[F re eQ [o p tsL is t, UseApart],

AppendTo[optsList, UseApart ->  A utomatic] ] ;  
te a p  » (Table[ma / :  In fo[aa] ■ aa  >■ s ta r tV a lu e s [ [ i ] ] ; 

S e r ie s T e ra [* [[ i] ] ,
[ z ,  0 , aa -  s ta r tV a lu e s [ [ i] ]} ,  Sequence «6 o p tsL is t] ,
[ i ,  Length [unknowns]} ]fc / •  genf) / .  aa -> n;

Return [teap  / .  aa_?(Member() [unknosns, « ] t) [k k _ ]  ;> 
aa[Expand[kk + s t a r t [ a a ] ] ]  ] ,

R e tu rn [F a i l]  ] ]

(* METHOD EOF *)

MethodEGF[recur_, c o n d s ., unknosns., s ta r tV a lu e s .,  n_, o p ts .  Rule]
B lock[{genf, a a ,  z ,  r e c , con, i ,  temp, s t a r t ,  o p tsL is t * {opts}}, 

{ re c , con} * R ese t[recu r, conds, unknosns, s ta r tV a lu e s , 0 ]; 
genf * FunctionS olve[rec , con, unknosns, n , ExponentialPoserSua, 

z ,  o p ts ] ;
I f  [genf «*!* F a i l ,

( R e le a se [ s ta r t / •  unknosns]) * s ta r tV a lu e s ;
I f [F re e q [o p tsL is t, UseApart],

AppendTo[optsList, UseApart ->  lone ] ] ;  
te a p  •  (Table [ma / :  Info [mm] * mm >» s ta r tV a lu e s  [ [ i ] ]  ; 

F ac to ria lS im p lify [
(ma -  s ta r tV a lu e s [ [ i] ] ) !  SeriesT erm [« [[i]]  ,
{z , 0 , am -  s ta r tV a lu e s [ [ i] ]} ,  Sequence « • op tsL is t]  ] ,  
[ i ,  Length [unknowns]} ]fc /fi genf) / .  am -> n;

Return [temp / .  aa_?(Memberq[unknouns, *]A)[kk_] :> 
aa[Expand[kk + s t a r t [ a a ] ] ]  ] ,

R e tu rn [F a i l]  ] ]
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(** (G eneratingFunction*.») *•)

<• ROOTS OF UIITY *)

Omega[n_] :■ Exp[2 P i I  /  n]

( •  SIMPLIFICATION OF EXP [LOO [ J ]  AID I*SqRT[_] *)

SimplifyExpLog -  [ E -« a _ .  Log[b_] + e _ .)d _ .)  -> b‘ (a  d) E*(e d)>

<* SOLVIIO ROUTIIE ♦)

Func tionS o lve [recu r., cond* ., unknosns., n_, T ransform ., z_, 
op ts_._R ule] :»

Block[{eqn*, e x t ra ,  range , s t a r t ,  a a , kk , nm,
lo ,  h i ,  fu n c tio n s , fnHeads, i n i t i a l s ,  co n stan ts , temp, 
s e r i e s ,  o rd e r , xx , i i ,  bb, i n i t v a l s ,  so ln , tim es, 
a rg , G, i n i t ,  su b s t,  p in i t ia l s } ,

(* transform  recu rrence  equations in to  fu n c tio n a l equations e)

eqns ■ E xpand[«[[l]] -  f [ [ 2 ] ] ] t  / •  rec u r; 
eqns ”  Function[xx,

Block[{horn, inhom, yy},
yy ■ H akeList[xx, P lus] ;
inhom ”  S e le c t[y y , FreeLC*, unknowns]#];
horn * Together[P lus M  Complement[yy, inhom]];
■umerator[hom] + Expand[(Plus CC

inhom) Denominator[horn]] ] ]  /«  eqns; 
eqns ”  Transform [eqns, z ,  n ] ;
I f  [!F re eL [P a tte rn L ist[eq n s, Transform[_ _ ]] , unknosns],

R e tu rn [F a i l] ] ;
Which [Transform PowerS un, G * Gf,

Transform ExponentialPoserSum, G “  EGf] ;

i n i t  * S e le c t [conds, Function[xx, HatchQ[xx,
a_?(HemberQ[unknosns, *]»)[_?Iumberq] ** _?Ium bsrq]]]; 

su b st ”  Solve [ i n i t ,  Union M  (Pat te rn L is t  [ i n i t , t [ _ ] ] i  /C 
unknosns)];

I f [ s u b s t  »=■ {>, R e tu rn [F a i l], eqns « eqns / .  F i r s t [ s u b s t ] ] ; 

* remember th e  unknosn fu n c tio n s  *)

(* solve  th e  equations using  Solve, DSolve, o r  HypergeometricSolve *) 

I f[F reeQ [eqns, D e r iv a tiv e ],

te ap  » Solve [Thread [eqns ”  0 ] ,  fu n c tio n s ] ,

tim es » In te g r a b le [ t ,  fnHeads, z]k / •  eqns; 
eqns * P r e ln te g r a te [ t [ [ l ] ] , fnHeads, [z , » [ [2 ] ] } ] t  f t  

T hread[L i* t[eqns, t im e s ] ] ; 
eqns “  Table[Sum [C[ii, j j ]  z* (jj -  1 ) , [ j j ,  t im e s [ [ ii] ]> ]  < 

« q n s [ [ i i ] ] ,  [ i i ,  Length[eqns]> ] ;  
eqns » eqns / .  D eriva tive [kk_ ][ff_ ] :> D [ff , [z , kk>] ; 
eqns » Thread[eqns “  0 ];

temp * HSolvel[eqns, fu n c tio n s , z ,  o p ts ] ; 
temp “  temp / .  C -> F irs t[u n k n o sn s ];
I f [ !FreeL[temp, [HSolve, F a i l} ] ,
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If[!F reeL [tem p, {Solve, DSolve, F a i l} ] ,  R e tu rn [F a i l] ] ; 
I f[!F ree L [fu n c tio n s  / .  temp, fnHeads], R e tu rn [F a i l]]  ; 
temp ■ temp /X- SimplifyExpLog;

(* s o r t  i n i t i a l s  by f a l l in g  in d ic es  *)

i n i t i a l s  ■ Jo in  CC (A ppend [C ases[in itia ls , _ [* ]]»  /«
R e v erse [U n io n [P a tte rn L is t[ in itia ls , .T Iu ab e rQ ]]] , { } ]) ; 

p in i t i a l s  ■ S e l e c t [ i n i t i a l s ,  (# [[1 ]]  >■ 0 )* ];

constan ts * P a tte rn L is t[ fu n c tio n s  / .  temp, C[ ] ]  / /  Union;
s e r ie s  * temp / .  (G[aa_?(HemberQ[unknouns, t ] fc ) ][z ]  -> bb_

) :> (aa  -> T ay lo r[bb , z ,  0 , o rd e r [a a ] ] ) ;
I f [ !F re e L [s e r ie s , { S er ie s , F a i l} ] ,  R e tu rn [F a i l] ] ;
If[G  «*« EGf,

s e r ie s  * s e r i e s  / .  (aa_?(NemberQ[unknosns, t ] t )  -> bb_
) :> (aa  -> Table[nm!, {nm, 0, o rd e r[a a ]} ]  bb) ] ;  

in i t v a ls  “  FunctionCxx, Solve[Union[conds,
( t  — (Head[#] / .  x x ) [ [ F i r s t [ t ]  + 1 ]])*  / •  p i n i t i a l s ,  
Thread[Join M  R est /«  CList [# [[2 ,1 ]]*  / •  xx / .

z  -> z * ( - l ) ,  z ] •■ 0 ] ] ,
Jo in [c o n s ta n ts , i n i t i a l s ]  ] ]  / d s e r i e s ;

(* p lug in  i n i t i a l  va lu es *)

so ln  * Select[U nion M  T able[(F unction[xx ,
G[xx] [z] / .  te m p [ [ i i ] ]  ] /«  
unknosns) / .  i n i t v a l s [ [ i i ] ] ,

{ i i ,  Length [temp]} ] ,  <Head[»] »»» L is t)*  ] ;
R eturn iso ln] ]

(* TAYLOR and CLIST *)

T ay lo r[f_ , z_ , a . ,  n_] :»
Block[{tmp, kk},

tmp “  S a fe S e r ie s [f , {z , a , n } ] ;K[1 _ . .  _ .F a i l ,  R e tu rn [F a i l] ] ;

Take [tmp, n + 1]] ;

]]]
C L is t[ l .L is t , x .]  :» C L is t[#, x ]k  /«  1 

C L ist[0 , x_] {0}

C L is t[a ., x .]  :« C o e f f ic ie n tL is t[ a ,  x] / ;  a »!* 0 

( •  IITEGRABLE and PREIITEGRATE • )

In te g ra b le [a .P lu s , b ]  :* N in [In teg rab le [# , b ] t  / •  ( L is t  M  a )]

In teg ra b le [a_ , f u n c t io n s .,  z_] :■ I n f in i ty  / ;  FreeL [a, fu n c tio n s]

In teg ra b le [a ___] := 0

P r e in te g ra te [ a . , f u n c t io n s . ,  {z_ , 0}] :» a 

P re in te g ra te [a .P lu s , b ] :* P re In teg ra te [S , b ] t  f t  a
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P r e in te g ra te [ a . , f u n c t io n s . ,  {z_, n_>]
l e s t  [ I n t e g r a te d ,  z]A, a , n] / ;  FreeL[a, functions]

P re in te g ra te[a _  b_, fu n c t io n s . ,  {z_, n_>]
a  P re in te g ra te [b , fu n c tio n s , {z, n>] / ;  FreeQ[a, z]

P r e in te g ra te [ a . , f u n c t io n s . ,  {z_, n_>] :■
HapAt[(* -  n ) t ,  a ,

A ppend [F irs t[P osition [a , D arivativeC .]]] , 1]] / ;
FirstHoad [a] «»« D eriva tive

<* FIRSTHEAD, FIRSTARQ and HEADCOUIT e)

FirstH ead[a_] le s t[H ea d , a , HeadCount[a]]

F irstA rg[a_] :» Which [Length [a] »  0 , 
l u l l ,

F irs t[ le s t[H ea d , a ,  HeadCount [a] -  1]] ]

HeadCount[a_] := Which[Length[a] »» 0,
0,

True,
HeadCount[Head[a]] + 1 ]

(* POWER SUM *)

(* l i s t s  and equations e)

PouerSum[expr_List, r e s t . . ]  :■ PoeerSum[*, rest]A  /«  expr 

PouerSuB[expr.Equal, r e s t  ] :■ PouerSun[t, r e s t ] t  /«  expr

(* re v e r t to  in n e r  syntax *)

PouerSum[expr_, {z .Synbol, n_, n0_:0>] :■
Block [{e « expr / / .  {Sua[a_, {k_, » .} ] :> Sum [a , {k, 1 , »> ],

EvenQ[a_] :> SynbolicHodfa, 2] »» 0 ,
Oddq[a_] :> SymbolicMod[a, 2] ™ 1,
Hod -> SymbolicHod) >,

PoverSunCe, z ,  n , nO] / .
D erivative[kk_] [ f f . j  :> D [ff , {z, kk>] ] ;

(* nonzero s t a r t i n g  po in t *) 

PoserSum[expr_, z_ , n_ , n0_] :»
s*nO PouerSum[Expand [expr / .  n -> n + nO] / .  

a.Sym bol?(Context[*] *!» "Syste*‘" fct * ■! 
a[Expand[m]] ,  z , n] / ;  lumberQ[l[nO]]

(* th e  geom etric s e r i e s  *) 

PouerSum[l, z_ , n_] :■ 1 /(1  -  z)

(* l in e a r i t y  *)

PoverSum[Sum[a_, {k_, lo _ , hi_>] b _ ., z_, n_] :»
Sum[PoverSum[Expand[a b ] , z , n ] , {k, lo ,  hi}] / ;

FreeQ[{lo, h i ) ,  n] U  FreeQ[b, k]
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PoverSua[(a_ + b_ )*e_ In teger?P ositive  d . . ,  rest__] :■ 
PouerSua[Expand[(a + b )“c d ] , r e s t ]

(* exponentials *)

PoverSum[e_. c . - « a _ .  n_ + b _ . ) d . . ) ,  z_ , nr ] :■
(c*(b d) PoserSuaCe, z ,  n] / .  z -> c*(a  d) z) / ;

(F reeL [t, <n, Blank}]* / •  And[a, b , c , d ])  ** FraaL[a, { z , Blank}]

PoaerSum[Binonial[a_, n_ + k _ .] ,  z _ , n .]  :»
z * (-k )< (l + z)*a  -  Sun [Binomial [a , a] z*n, {a, 0 , k -  1}]) / ;

FraaQ[a, n] ft* IntagerQ[k]

PouerSum[Binomial[a_, b _ ] , z_ , n_] : •
Block [{a * Expand [n -  b ] , r  » Expand [a -  2 b] , a} ,

z -e  ( ((1  -  SqrtC l -  4 z ] ) / ( 2  z ) )* r  /  S q r t[ l  -  4 z] -
Sua[B inoaial[2 m + r ,  a] z*n, {a, 0 , - ( a  + 1)}] ) /»

IntegerQ[e] kk In teger!] [ r ] ]

(* trinom ials a)

PoaerSua[Sum[a_. b .B in o n ia l c .B inom ial, {k_, 0 , n_}], 
z_, n_] :«
Block[{aa -  a * (l/k > } ,
1/S q rt£ l -  2 (2 a a  + 1) z + z"2] /',

FraeL[aa, {k, n}] kk
N akaTrinoaial [b c] ** S o r t [H u ltinoa ia l [k , k , n -  k ] ]  ]

PoaerSun[Sun[a_. b .B in o n ia l c .B inom ial, { k . , 0 , n .} ] , 
z_ , n_] :■
Block[{aa » a“ ( l / ( n  -  k ) )} ,
1 /S q rt[1 -  2 <2 aa  ♦ 1) z + z “2] / ;

FreaL[aa, {k, n}] kk
NakaTrinoaial [b c] »=* S o rt [Multinomial [k, n - k ,  n -  k]J ]

PoserSum[Sun[a_. b .B in o n ia l c .B inom ial, {k_, 0 , n_}], 
z . , n.]
Block[{aa * a 'C l /k )} ,
1/S qrtC l -  2 z + (1 -  4 aa) z*2] / ;

FraeLCaa, {k, n}] kk
NakaTrinoaial [b c] *” S o r t[N u ltin o a ia l[k , k , n -  2 k ]]  ]

PoaerSua[Sua[a_. b .B in o n ia l c .B in o n ia l, {k_, 0 , n_}], 
z_, n_] :■
Block[{aa ■ a“ ( l / ( n  -  k ) )} ,
1 /S q rt[1 -  2 z ♦ (1 -  4 aa) z ‘ 2] / j  

FraaL[aa, {k, n>] kk
N akaTrinoaial [b c] =** S o rt [Multinomial [n -  k , n - k ,  2 k  -  n] '

(a PoaerSum i s  th e  in v e rse  o f S eriesT era  *)

PoaerSum [Literal[SeriesTerra[f_, z_ , n_ + a . . ] ] ,  
z_, n .]  :■
Block[{k},

z*(-m) ( f  -  Sum [SariasT ern[f, {z , 0 , k}] z ‘ k,

’ P o le H u lt i p l ic i ty [ f , {z , 0}] «» 0 kk IntegerljDa] ]

(* trigonom etric inhomogeneity *)
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(* f a c to r ia l  inhomogeneity *>

(ExponentialPoaerSum[Expand[expr / .  n -> n -  a ] , [ z ,  n}] -  
Sum[(expr / .  n -> k -  a) z“k /  k ! t [k ,  0 , 1>]) /  z*a] / ;  

IntegerQ[a]

(* generating  fu n c tio n s  o f sequences 

(here Be assune th a t  a [n] i s  defined  fo r  n >”  0) *)

PoBerSum[n_*m_. a_[n_ + d _ .] ,  z _ , n_] :■
Block [ { j ,  k},

Sua[S tirlingS2[m , j ]  z* j
D erivative[j][(P ow er3um [a[k], z ,  k] -  
Sum[a[k] z*k, {k , 0 , d -  l} ]) /z * d  ] ,

[ j ,  0 , m}] / /  F ac to r]  / ;
In tege rq [d ] kk TTQ[d >» 0] t t  IntegerqOa] kk TTq[m >“ 0]

PoverSum[a.[k_. n . + d . . ] ,  z_ , n_] :»
B lock [{j, a} ,

( z * (-d /k )/k  Sum[Omega[k]*(-d j )  (Of[a][Omega[k]*j  z* (l/k> ] -  
Sum[Omega[k]‘ (m j )  a[m] z * (a /k ) , {m, 0 , d - l} ]> ,
{ j ,  0 , k -  1} ] ) / /  Factor] / ;

In tegerq[d] kk T iq[d >» 0] kk In tege rq [k ] kk TTqCk > 0]

(* ra tio n a l inhomogeneity • )

PoBerSum[n_~m_., z_ , n_] :«
Block [{ j} ,

F a c to r[S u a[(S tir lin g S 2 [a , j ]  j !  z * j ) / ( l  -  z ) ‘ ( j  + 1 ),
{ j .  0 , a}] ]  ] / ;  In te g e rq W  kk TTqDa >« 0]

PoeerSua[(n_ + a_ )"n _ In teg e r? Ie g a tiv e , z _ , n_] :*
Block[{j> ,

z * (-a )  PolyLogC-m, z ]  -  Sum [z*(j-a) j* a ,  ( j ,  1 , a -l> ] ] / ;
IntegerqCa] kk TTq[a > 0]

(* convolutions *)

PoBerSua[Sum[expr_, [k _ , lo _ , h i . } ] , z . , n .]  :»
B lock[{nfree, n f u l l ,  s ,  aa * E xpand[lo], bb * Expand[hi -  n ]} , 

{ n free , n fu ll}  » I f  [Head [expr] Times,
[S e lec t [ex p r, F re eq [f, n ]k ], S e lec t [exp r, !F ree q [t, n]k]> , 

I f [F re e q [e x p r , n ] , [ex p r , 1}, [ 1 ,  expr}] ] ;
Sun[z*k n fre e  PoBerSum[Expand[nfull / .  n -> s  + k ] , 

z ,  s ,  - k ] ,  [ k ,  a a , bb -  1}] +
PoserSumtnfree PooorSum[Expand[nfull / .  n -> s  + k ] , 

z ,  s ,  -b b ],  z ,  k , HaxCaa, bb] ] / ;
F reeq [aa , n] kk F reeq[bb, n] ]

(* m u ltise c tio n  o f  s e r i e s  • )

PowerSum[If[SymbolicHod[n_ + d _ .,  m.] k_, a_ , b_] c _ . , z _ , n_] :« 
Block[{1 » Hod[k -  d , a ] ,  j j ,

f p s  * PouerSum[Expand[(a -  b )c ] ,  z , n ]} ,
PouerSum[Expand[b c] , z ,  n] +
1/m Sua[O aega[m ]*(jj(a -  1 ))  fp s  / .  z -> z Omega[m]~jj,
[ j j ,  0 , m -  1}] / /  Expand ]

(* o the r c o n d itio n a ls  *)

Pow erSun[If[cond., a_, b_] c _ . ,  z_ , n_] :>
B lock[{t, t t ,  s ,  k},

t  » IneqSolveCcond kk n >» 0 , n ] ; 
t t  » IneqSolve[!cond U  n >* 0 , n ] ;
Plus M  (Sum[Expand[a c] z*n, [n , F i r s t [ k ] ,  L a s t[t ]} ]k  /O t )  + 

Plus CO (Sum[Expand[b c] z 'n ,  [n , F i r s t [ # ] ,  L ast [»]}]» /C 
t t )  / .

(Sum[s_. z“n , [n , k_, In fin ity } ]  :>
PoT?»rSura[s, [ z ,  n , k } ] ,

Sum[0, [ „ } ]  -> 0} ]
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<♦ PoserSum under S e r ie s  *)

PoverSum / :
Series[PoverSum [a_, z _ , n _ ] , {z_, 0 , »_}] :*

Block[{k},
Sum[(a / .  n -> k) z~k, {k, 0 , n>] + 0[z]~(m+l>]

C* EXP01E1TIAL POUER SUM *)

(* l i s t s  and equ atio n s *)

(* r e v e rt to  in n e r  syn tax  *)

ExponentialPowerSum[expr_, {z.Symbol, n_, n0_:0>]
Block[{e * expr / / .  {Sum [ a . ,  {k_, a .} ]  :> Sum [a , {k , 1 , ■ } ], 

EvenQCa.] :> Symbolicl1od[a, 2] *”  0 ,  
O ddq[aJ :> SymbolicModCa, 2] “ 1 , 
Hod -> SymbolicHod} >,

ExponentialPovorSumCe, z , n , nO] / .
D erivative[kk_] [ ff_ ] :> D [ff , {z, kk>] ] ;

(* nonzero s t a r t in g  p o in t *)

(* the  e xponen tia l s e r i e s  • )  

ExponentialPoverSumCl, z _ , n_] : •  E*z

Exponent ialPoverSum[c_. (expr 1 . + expr2_) , r e s t . . ]  
ExponentialPouerSumCc e x p rl,  r e s t ]  +
ExponentialPooerSum[c expr2, r e s t ]

ExponentialPoverSum[Sum[a_, {k_, lo _ , hi_>] b _ ., z_ , n_] :*
Sum [Exponent ialPowerSum [Expand [a b ] , z ,  n ] , {k, l o ,  h i} ] / ;

FreeQHlo, h i} , n] tk  FreeqCb, k]

ExponentialPoeerSum[c_“ (a_ + b . ) , z . , n_] :» 
c*a ExponentialPouerSumCc'b, z ,  n] / ;

F reeL [c, {it, Blank}] kk FreeL [a, {n , Blank}]

(* exponentia ls *)

ExponentialPoverSum[e_. c _ * ((a . .  n_ + b _ . ) d . . ) ,  z_ , n_]
(c"(b d) ExponentialPoverSumCe, z ,  n] / .  z -> c " (a  d) z) / ;  

(FreeLt*, {n, Blank}]k /«  And[a, b , c , d ])  kk FreeLCe, {z . Blank}]

(* polynomial inhomogeneity *)

Exponent ialPouerSura [n_*m_. ,  z . , n_] :»
B lockH j},

E*z Factor[Sum [StirlingS2[m , j] z* j ,
{ j .  0 , «}] ] ] / ;  Integerq[m] kk TTq[m >= 0]
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(* f a c to r ia l  inhomogeneity •)

ExponentialPouerSum[(n_ + a . . ) ! ,  z_ , n_]
PoverSum[Pochhammer[n + 1 ,  a ] ,  z ,  n] / ;  IntegerQ [a]

( •  convolutions •)

ExponentialPouerSum[Sum[expr_ B inom ial[n. + cc_, k _ ] , {k_, l o . ,  h i_ > ] , 
z - ,  n_] :■
Block [{aa ■ E xpand[lo], bb ■ Expand[hi -  n]> ,

Derivative[cc][ExponentialPoverSum[Sum[(expr / .  n -> n -  cc) 
Binomial [n , k ] , {k, a a , n + bb -  cc} ] ,  z ,  n ] ] / ;  

IntegerQCcc] t t  TTQCcc > 0] t t  F reeq[aa , n] t t  F reeq[bb, n] ]

ExponentialPouerSum[Sum[expr. Binomial[n_, k _ ] , {k_, lo _ , h i .} ] ,  
z_ , n_] :■
B lock[{nfree, n f u l l ,  s ,  aa * E xpand[lo], bb ” Expand[hi -  n ]} ,

{n free , n fu ll}  » If[H ead[expr] »”  Times,
{S elec t [exp r, FreeQ [t, n ] t ] ,  Se lec t [expr, !Freoq[«, n ] t ] } ,

I f[F re eq [ex p r, n ] , {expr, 1}, {1 , expr}] ] ;
Sun[z*k n fre e /k !  ExponentialPouerSum[Expand[nfull / .  n -> s + k ] , 

z ,  s ,  - k ] ,  {k, a a , bb -  1}] +
ExponentialPoverSum[nfree ExponentialPouerSum[Expand[nfull / .  

n -> s + k ] ,  z , s ,  -b b ],  z ,  k , Max [a a , bb] ] / ;
F reeq [aa , n] t t  Freeq[bb, n] ]

(* m u ltisec tio n  of s e r i e s  *)

ExponentialPouerSum[If[SymbolicHod[n_ + d . . ,  m_] *”  k_ , a . ,  b_] c _ . , 
z_ , n_] :■

Block[{1 -  Mod[k -  d , m], j j ,
fp s  * ExponentialPoserSum[Expand[(a -  b ) c ] , z ,  n ]} , 

ExponentialPoserSum[Expand[b c ] , z ,  n] +
1/m Sum[Omega[m] * (j  j  (m -  1 ))  fp s  / .  z -> z Omega [m] * j j ,
{ j j ,  0 , m -  1}] / /  Expand ]

(* o the r c o n d itio n a ls  • )

ExponentialPoserSum[If[cond_, a_, b_] c . . ,  z_, n_] :»
B lock[{t, t t ,  s ,  k} ,

t  » IneqSolve[cond t t  n >* 0 , n ] ; 
t t  “  IneqSolve[!cond t t  n >■ 0 , n ] ;
P lus M  (Sum[Expand[a c] z~n /  n ! ,  {n, F i r s t [# ] ,  L as t[#]}]* /«  

t )  +
P lus M  (Sum[Expand[b c] z~n /  n ! ,  {n, F i r s t [#] , L a s t[ t ]} ] t  / •  

t t )  / .
{Sum[s.. z"n /  n ! ,  {n , k_. I n f in ity } ]  :>

ExponentialPouerSum[s, {z, n , k}] ,
Sum[0, { . .} ]  -> 0} ]

(* generating  fu n c tio n s  o f  sequences 

(here ve assume th a t  a[n] i s  defined  f o r  n >”  0) •)

ExponentialPouerSum[n_*m_. a_[n_ + d _ .] ,  z_ , n_]
Block [ { j ,  k},

Sum [StirlingS2[m, j ]  z* j
D eriva tive [d  + j ] [E Q f[a ] [z ] ] , { j ,  0 , m}] ]  / ;  

In tegerq[d] t t  TTq[d >“ 0] t t  IntegerqDa] t t  TTq[m >» 0]

ExponentialPoeerSum[n.*m_. a_[n_ -  1 ] ,  z _ , n .]
B lock[{j, k},

Sum [StirlingS2[m, j ]  z* j
D er iv a tiv e [j -  1 ][E G f[a][z ]] , {j , m}] ]  / ;

Integerq[m ] t t  TTq[m > 0]

(* QEIERATIIG FUICTIOI *)
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G e n e ra tin g F u n c tio n [lis tl_ , l is t2 _ ,  n_, z_ , op ts  Ruls] :»
Block[{temp, r e c u r ,  conds, unknowns, s ta r tV a lu e s , s t a r t ,  

r a c ,  con, i ,  p rs> , 
p r s  ”  P a r s e t l i s t l ,  l i s t 2 ,  n ] ;
I f [ p r s  ”*= F a l l ,

Return [F a il]  ,
[ re c u r ,  conds, unknowns, s ta rtV alues}  ■ p rs  ] ;

[ r e c ,  con} * R e se t[re cu r, conds, unknowns, s ta r tV a lu e s , 0 ] ; 
(R e le a se [ s ta r t /«  unknowns]) ■ s ta rtV a lu e s ; 
temp * F unctionS olve[rec , con, unknowns, n , PowerSus, 

z , o p ts ];
I f  [temp F a i l ,

R e tu rn [F a i l] , 
temp « T a b le [* [[ i] )  z * s ta r tV a lu e s[[ i] ]  ,

[ i ,  Length[unknowns]} ]k  /«  temp;
Return[temp/.aa_?(NeaberQ[unknowns,»]«) [kk_] :> 

aa [Expand [kk + s ta r t [ a a ] ] ]  ] ] ]

( •  EXPOIEITIAL GEIERATIIG FUICTIOI *)

E xponen tia lG enera tingF unc tion [lis tl_ , l i s t2 _ ,  n_, z_ , o p ts_ „ R u le ]  :* 
Block[{temp, r e c u r ,  conds, unknowns, s ta r tV a lu e s , s t a r t ,  

r e c ,  eon, p rs} , 
p rs  -  P a r s e t l i s t l , l i s t 2 ,  n ] ;
I f  [p rs  =*=» F a i l ,

R e tu rn [F a i l] ,
[ re c u r ,  conds, unknowns, sta rtV alues}  * p rs  ] ;

[ r e c ,  con} ■ R e se t[re cu r, conds, unknowns, s ta r tV a lu e s , 0 ] ; 
(R e le a se [ s ta r t / •  unknowns]) “  s ta rtV a lu e s ;
tenp  » F unc tionS olve[rec , con, unknowns, n , ExponentialPowerSum, 

z , o p ts ] ;
I f  [temp *“  F a i l ,

R e tu rn [F a i l] ,
Return [tem p/. aa_? (HemberQ [unknowns, t ]  R) [kk_] :> 

aa[Expand[kk + s t a r t [ a a ] ] ]  ] ] ]

HSolve[eq_, f _ ,  x.Symbol, op ts Rule] :»
Block[{hsol * H Solvel[eq, f ,  x , o p ts ] ,  11},

11 -  P L is t[h s o l, C [_ ]] ;
R etu rn [h so l / .  Thread[11 -> T able[C [k], [k , L e n g th [ll ]} ]] ]  ]

H Solvel[eq_, f _ ,  x.Symbol, op ts  Rule] :■

B lock[{lhs, rh s , te rm s, w eights, inhom, mine, t h e ta ,  11, 11c, r l c ,  
a L is t ,  b L is t ,  badB, nnHS, nO, su b s t, eqn, y , k , p r , temp, 
pm, nneg, n l ,  badBl},

p r  » PrecisionHS / .{ o p ts}  / . Options[H Solve];
I f  [Head [eq] * »  L is t ,

I f  [Length[eq] > 1, Return [F a il]  ] ; 
eqn * F i r s t [ e q ] , 
eqn » eq ] ;

I f  [Head [f] —  L is t ,
I f[L en g th [f ]  > 1, R e tu rn [F a i l]] ; 
y -  H e a d [F ir s t[ f ] ] , 
y * KeadCf] ] ;

lh s  "  E xpand[lum erator[T ogether[F irs t[eqn] -  L as t[e q n ]]]]  ; 
term s > S e lec t[H akeL ist[lh s , P lu s ], !F ree q [t, y ] t ] ;  
w eights ■ Union [Height [ f ,  y[x] , x ] t  / •  te rm s]; 
minw ” Min [weights] ;
If[!H em berq [[{0} ,[0 ,l} } , weights -  minw], R e tu rn [F a i l] ] ; 
lh s  ■ Expand[lhs/x~minw] / .  x*k_ .D eriva tive [n_ ][y ][x ] -> 

x " (k  -  n) S um [S tirlingS l[n , j ]  th e ta * j y[x] , { j ,0 ,n } ]
/ /  Expand;

inhom ■ Plus <0 S e lec t[H akeL ist[lh s , P lu s ], Freeq[S, y]k]
/ /  Expand; 

pm * Po leH u ltip lic ity [inhom , [x , 0}];
I f  [ ! (Integerq[pm ] kk pm >> 0 ) , R e tu rn [F ail]] ;
I f  [!PolynomialQ[x*pm inhom, x] , R e tu rn [F ail]] ;  
lh s  ■ ( lh s  -  inhom) /  y[x] / /  Expand;
rh s  » P lus M  S e le c t [HakeList [ lh s ,  P lu s ],  F reeq [« , x]k] ; 
lh s  M Expand[(rhs -  lh s ) /x ] ;
[ l i e ,  r lc }  » [L eadingCoef[lhs, th e ta ] ,  L eadingCoef[rhs, th e ta ]} ;  
a L is t » I f[F re eQ [lh s , th e ta ] ,  {} , - i [ [ l ,2 ] ] A  /«
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Which[pr *»» Automatic,
{ToRules[Roots[lhs *« 0 , th e ta ,
Cubics -> F a lse , Q uartics -> False] ]> / .
L ite ra l[R o o ts [a . , b_ , c  ] ]  :> IR oots[a , b ] ,

p r  *=“  I n f in i ty ,
So lve[lh s »» 0 , th e ta ]  / .
Roots -> IR oots,

■unberQCpr],
So lve[lh s  "  0 , th e ta ]  / .
L ite ra l[R o o ts [a . ,  b_]] :> IR oots[a , b , p r]  ] ] ;  

bL ist -  If[F re eQ [rh s , t h e ta ] ,  {>, (1 -  # [ [1 ,2 ] ] )*  / •
Which [p r » ■  Automatic,

{ToRules[Roots[rhs "  0 , th e ta ,
Cables -> F a lse , Q uartics -> False] ]}  / .
L ito ra l[R o o ts [a_ , b_ , c  ] ]  :> IRoots[a , b ] ,

p r  ” * I n f in i ty ,
Solve[rhs *» 0 , th e ta ]  / .
Roots -> IR oots,

IuaiberQ[pr] ,
S o lve[rhs “  0 , th e ta ]  / .
L ite ra l[R o o ts [a _ , b_]] :> IR oots[a , b , p r]  ] ] ;  

badB -  S e le c t [b L is t, ( In tege rQ M  t*  * <■ 0 )* ]; 
nnHS -  I f  [badB ! -  {>, 1 -  Kin [badB], 0 ] ; 
nO ■ Hax[nnHS, Exponent[inhom, x ] ] ;  
badBl “  S e le c t[b L is t ,  (In teg e rQ M  ft* » > O ft ] ; 
nneg -  If[badB l ■« {>, Max[badBl] -  1 , 0 ]; 
n l » Hax[nneg, pm];
C le a r[c ] ; 
c [ - n l  -  1] *> 0;
subst ”  {ToRules[Reduce[Table[If[n + 1 "  0 ,

C oeffic ien t[inhom , x , 0] / .  x -> 1/x  / .  x -> 0 , 
C oeffic ien t[inhom , x* (n+ l)]] ♦ 
r l c  Times M  (bL ist + n) c [n+ l]

H e  Times A# (aL is t + n) c [n ] ,  {n, -n l  -  1 , nO -  1>] , 
T ab le [c [n ] , {n , nO, - n l ,  -1>] ] ]> ;

I f  [subst *»“  {>, Return[{>] ] ;

(* then  •)

{ a L is t, b L is t]  » { a L is t, b L is t]  + nnHS;
I f  [ •HemberQ[bList, 1 ] , AppondTo[aList, 1];

AppandTo[bList, 1] ] ;  
bL ist -  D rop[bL ist, { F irs tP o s[b L is t, 1 ] ] ] ;
If[H em berQ[aList, # ] ,  a L is t * D rop[aLiat,

{ F irs tP o s [a L is t, # ]} ]; 
bL ist » D rop[bL ist,

{F irs tP o s[b L is t, * ]]]
]ft /«  b L is t;  

aL is t > S o r t[ a L i s t] ; 
b L ist > S o r t[ b L is t] ;
If[ lum berQ [pr],

a L is t m I [ a L is t ,  p r ] ; 
bL ist ”  I [ b L is t ,  pr] ] ;

temp ■ (Sum[c[k] x*k, {k, - n l ,  nO -  1]] + 
c[nO] ( l l c / r l c ) “(nnHS -  nO) (Times CC 
(Pochhanmer[# , nO -  nnHS]ft
/C b L is t) )  /  (Times CC (Pochhammer[«, nO -  nnHS]* /C 
a L is t) )  (nO -  nnHS)!
x'nnHS (H ypergeom etricF[aList, b L is t,  l l c / r l c  x] -  
Sum [(Times CC (Pochhammer[S, k ] t  /C a L i s t ) ) /

(Times CC (Pochhammer[t, k ] t  /C b L is t) )  (11c/ 
r l c  x)*k /  k ! ,
{k, 0 ,  nO -  nnHS -  1 ]] ) ) / .  subst / /  Sim plify, 

( •  e ls e  e)

{ a L is t, b L is t]  -  { a L is t, b L is t]  * nO;
If[iH em berQ [bList, 1 ] , AppendTo[aList, 1];

AppendTo[bList, 1] ] ;  
bL ist > D rop[bL ist, { F irs tP o s[b L is t, 1 ] ] ] ;
If[H em berQ[aList, # ] ,  a L is t * D rop[aList,

{ F irs tP o s[a L is t, # ]} ]; 
bL is t * D rop[bL ist,

{F irs tP o s[b L is t, ft]]]
]ft /C b L is t;  

aL is t > S o r t[ a L i s t] ; 
bL ist > S o r t[ b L is t] ;
If[lum berQ [pr],

a L ist »  I [ a L is t ,  p r ] ;
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bL ist -  I  [b L is t, p r] ] ;

temp * (Sum[c[k] x*k, {k, - n l ,  nO -  1>] +
c[nO] x*nO HypergeometricF [ a L is t , b L is t, l l c / r l c  x ])  
/ .  subst / /  Expand ] ;

temp ”  tenp / .  c -> C;
Keturn[Thread[y[x] -> #]» / •  {tamp}] ]

Height [a_ . D eriva tive  [n.]Cy_] [x_], y _ [x_ ], x_] :» -n  / ;  FreaLCa, {x, y] 

H eig h t[a_ . x_*k_. y_[x_], y_[x_] , x_] :»  k / ;  FreeL[a, {x , y}]

H eight [ a . .  y . [ x j ,  y_[x_], x_] :«  0 / ;  FreeL [a, {x, y>]

H eight [a_ , y _ [x_ ], x_] :■ In f in i ty  / ;  FreeQCa, y]

<* HYPERGEOHETRIC F *)

H ypergeone tricF [aL ist_L ist, b L is t .L i s t ,  c_.z_] :>
Block[{max, kk, neg « S e le c t[a L is t, (IntegerQC#] t t  •  <■ 0 ) t ] > ,  

(max ” -  Max [nag];
Sum[Times M  (Pochhammer[#, k k ] t /C a L is t)  /

Times M  (Pochhammer[*, k k ] t /«  b L is t)  /  kk! (c  z)*kk,
{kk, 0 , max}]) / ;  Length [neg] > 0 ]

H ypergeom etricF[a.L ist, b .L is t ,  0] :m 1

H ypergeom etricF[{>, {}, z_] :» E 'z

H ypergeom etricF[{a_}, {} , z_] :« 1 /(1  -  z )*a

H ypergeom etricF[{>, {c_>, z_] :■ HypergeometricOFl[c, z]

H ypergeom etricF[{a_>, {c_>, z_] H ypergeom etriclFl[a, c , z]

H ypergeometricF [ { a ., b_>, {c_>, z_] :» Hypergeom etric2Fl[a, b , c ,  z]

H ypergeometricF / :
S e ries[H ypergeom etricF[aL ist_L ist, b L is t .L i s t , c_ . z_] ,
{z_ , 0 , n_>] :*

Block[{kk},
Sum[rimes M  (Pochhasmer[#, k k ] t /«  a L is t)  /

Times «« (Pochhasmer[#, k k ] t /«  bL ist)  /  kk! (c z)*kk, 
{kk, 0 , n}] + 0[ z ] *(n ♦ 1) ]

D e r iv a tiv e [0 , 0 , n .In tege rT P ositive][H ypergeom etricF ][aL ist.L ist, 
b L is t .L i s t ,  c_.z_]

c"n Times M  (Pochhammer[#, n ] t  / •  aL is t)  /
Times M  (Pochhammer[#, n ] t  /«  bL ist)  HypergeometricF[ 
a L ist + n , bL ist + n , c z]

(** (SeriesExpansions.m ) **)

( •  SERIES TERM *)

S eriesT erm [expr_L ist, r e s t . . ]  :» SeriesTerm [», r e s t ] t  /C expr

S eriesT erm [f_ , {z_ , a . , n_}, op ts  Rule]
B lock [{ ff  ■ f / .  z -> z + a , nnST, useA part, nO, tempO, temp, 

p re c is io n , makeReal, useMod, specia lF unctions} , 
IntegerQ[nnST] '«  True;
Info[nnST] *= Info[n] / .  Solve[n =» nnST, P a tte rn L is t[n ,  

.Symbol?(Context[#] »!■ "System, " t)  ] ] [ [ 1 ] ] ;  
sumDepth ■» 1;
useApart * UseApart / .{ o p ts}  / . O ptions[SeriesTerm ]; 
p re c is io n  » PrecisionST /.{ o p ts}  / .O ptions[SeriesTerm ];
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aakeReal m HakeReal / .{ o p ts}  / . O ptions[SeriesTerm ]; 
usaHod ” UseHod /.{ o p ts}  / . O p tions[SeriesT era]j 
spacia lF unctions » SpecialFunctions / .{ o p ts }  / .

O ptions[S e riesT ern ];
Which [useApart " *  Automatic, 

f f  -  A p a r t[ f f ] , 
useApart A ll,

f f  » Apart [ f f ,  z ] ,  
useApart »!» Iona,

Message[ST::badopt, UseApart, useApart 1 ] ;  
tenp  » S e r ia sT a rn [ff , z ,  nnST] / .  {nnST -> n}; 
temp > Chop[tenp] / .  S i sp lify F lo a t; 
tenp  ” tenp  / / .  S inp lifyT rig ; 
tenp  a tenp  / .  S inplifyBinom ial; 
tenp  ■ tenp  / .

{Po»er[aa_, b_] :> P o se r[a a , Expand[b]] ,
B inoaia l[aa_ , b_] :> B inonial[E xpand[aa], Expand[b]], 
I f [ a a _ , b_, c_] :> I f [ I S o lv e [a a ] , b , c] / ;

FreeL[aa, {OddQ, EvenQ, SymbolicKod}] }; 
tenp  a tenp  / .  a a . I f  :> Release / / •  aa; 
tenp  a tenp  / .

{If[OddQ[n_], If[n_  >- aa_, b_ , c_] d . . ,  a . ]  :>
If[OddQ[n], Release[Expand[b d ] ] ,  e] / ;  
E n ta ils [ In fo [n ] , »  >a aa  -  13 kk OddQ[aa],

I f  [EvenQ[n_], I f[n _  > - aa_ , b . ,  c _ J d _ . ,  e_] :>
If[EvenQfo] , Release[Expand[b d ] ] , e] / ;
E n ta ils [ In fo [n ] , m >- aa  -  1] kk EvenQ[aa] }; 

tenp  a temp / / .  SinplifySum;
I f  [ lum berQ [precision],

tenp  a I  [temp, p rec is ion ] / .  S in p lify F lo a t ] ;
I f  [HatchQ[Info[n] , n >= . ]  , 

nO a  In fo[n] [ [2 ]] ;
tenpO * tenp / .  I f [n  >a aa_ , b_, _] :> b / ;  aa aa n0 + 1;
If[(tem pO / .  n -> nO) aa ( ten p  / .  n -> nO), tenp a tempO] ] ;  

ReturnCtemp] ]

(* f i n i t e  n •)

SeriesTerm [f_, z .Synbo l, n_Integer] ;a
C o e ffic ie n t[S a fe S e rie s [f , {z, 0 , n > ] , z*n] / ;

n !a o kk F reaQ [f, HypergeonetricF]

(* l in e a r i t y  *)

SeriesT erm [f.P lu s, r e s t  ] :» SeriesT em [« , re s t]A  /«  f

(a SeriesTerm i s  inverse  of Gf and o f  PoserSun •> 

SeriesT erra [G f[a_ ][z .] , z.Symbol, n_] ;a  a[n] 

SeriesTerm[PoserSun[a_, z_, n . ] , z.Symbol, n_] :*

(* SeriesTerm i s  c lo se  to  the  inve rse  o f EGf and of 
ExponentialPoserSun •)

SeriesTerm [EGf [a_] [z _ ] , z.Synbol, n_] ;a  a[n] /  n!

(* b inom ials • )

SeriesTerm [(a_.z_ + b_)"p_, z .Synbol, n_] ;a 
Block[{k>,

(b 'p  When[p < 0 ,
( -a /b )* n  B inonial[n -  p -  1, n ] ,

(a/b )*n  Binomial[p, n ] ] )  / ;
(FreeQ[«, z ]k )  /«  (a kk b kk p)]

SeriesTerm[(a_.z_*m_. + b_ )*p ., z .Synbol, n_] :-
C ancel[a‘ p SeriesTern[z*(m p>(1 * b /a  z ‘ ( -m )) 'p ,  z , n]] / ;

(F reeQ [t, z ]k) /«  (a  kk b kk n  kk p) kk TTq[m < 0]
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SeriesTerm[(a_.z_*m_ + b_)*p_, z .Synbol, n_] :»
I f  [Symbol icHod[n, a] “ 0,

Cancel [b‘ p Se riesT ern [(l + a /b  z )*p , z ,  n /n ] ] ,
0] / ;  (Freeq[« , z ] t )  /«  (a t t b U i  t t  p) t t  TTq[n >« 0] t t  

HaadCp] »!» In teg e r

S e r ie sT e rn [(a_ . z .*n_ . + b_.z_“k_.)*p_, z .Synbol, n_] :»
Cancel[b~p SariesTern[z*(k p ) ( l  + a /b  z ‘ (n -k ))*p , z , n ]] / ;

(FreeqCt, z ] t )  /«  (a  t t  b t t  n t t  k t t  p)

<• hypergeonetrica  *)

SeriesT ern  [Hype rgeoaetricF  [ a L is t . , b L is t . ,  c _ .z _ ] ,  z .Synbol, n_] :« 
When[n >- 0,

(T inas M  ( I f  [ In te g e rq W , (# + n -  l ) ! / ( #  -  1 ) ! ,
Pochhanner[t, n ] ] t  /«  a L i s t ) ) /

(T ines M  ( I f  [ In te g e rq W , (# + n -  l> ! /( #  -  1 ) ! ,
Pochhannar[», n ] ] t  /«  bList>>/n! c*n, 0] / ;  Freeq[c, z]

S eriesTerm [H ypergeonetric2Fl[a., b_, c_ , d _ .z _ ], z .Synbol, n_] :» 
Uhen[n >■ 0,

(T ines M  ( I f  [ In te g e rq W , ( •  + n -  l ) ! / ( #  -  1 ) ! ,
Pochhamner[t, n ] ] t  / •  {a, b } ) ) /

(T ines «« ( I f  [ In te g e rq W , <t + n -  l ) ! / ( #  -  1 ) ! ,
Pochhamner[#, n ] ] t  /«  ( c ,  i » )  d*n, 0] / ;  F reeq[d, z]

S eriesTerm [H ypergeom etriclF i[a., b_ , c . . z j  , z .Synbol, n_] :« 
Uhen[n >* 0,
I f [ I n te g a rq i a ] , (a  + n -  l ) ! / ( a  - 1 ) ! ,  Pochhanmer[a, n ] ] /  

(T ines «« ( I f  [ In te g e rq W , (* + n -  l ) ! / ( t  -  1 ) ! ,
Pochhammer[#, n ] ] t  /«  (b , 1 » )  c*n, 0] / ;  FreeQ[c, z]

S eriesT ern  [Hype rgeonetricO Fl [ a . , b _ .z _ ], z .S ynbo l, n .]
Uhen[n >» 0,
1 / (T ines «« ( I f  [ In te g e rq W , (# + n -  l ) ! / ( #  -  1 )! ,

Pochhammer[t, n ] ] t  /«  ( a ,  1>>) b"n, 0] / ;  Freeq tb , z]

( •  e x p onen tia ls  *)

SeriesTern[E *(k_.z_ +

S eriesT erm [a_"b .,

SeriesT ern [L og[(a . + b . .z . )* k _ .] ,  z .Synbol, n_] :>
Uhen[n «» 0 , Release[k L og[aj], R e lease [-k (-b /a)*n  /  n ]] / ;

Freeq[k, z] t t  F reeq [a, z] t t  Freeq[b, z]

(* p o se rs  and constan ts  *)

SeriesTern[z_*k_ .f _ , z.Synbol, n_] :» S e r ie sT e rn [f , z , n-k] / ;
In teg e rq W  t t  F reeq[k, z ] t t  !F reeq [f, zj 

SeriesTerm[z_*k_. , z .Synbol, n_] :■ Vhen[n k , 1, 0] / ;
In tege rq [k ] t t  Freeq(k, z] 

S e r ie s T e m [ f . ,  z.Symbol, n_] :» f  Hhen[n »  0 , 1, 0] / ;  F re eq [f, z]

(* r a t i o n a l  functions •)

S e r ie sT e rn [f_ . g_~k_Integer’Ie g a tiv e , z .Synbo l, n_] :»
B lock [{ ff  » A part[f g*k, z]> ,

I f  [Head [ ff ]  »— Plus,
Return [SeriesR at [ t , z ,  n ] t  / •  f f ] ,
R e tu rn [S erie sR a t[ff , z ,  n]] ] ]  / ;

Polynomiaiq [ f , z] t t  Polynoniaiq[g, z] t t  !Freeq[g, z]

S e rie sR a t[ f _ , z .Synbol, n_] :» SeriesTerm[ f ,  z ,  n] / ;  Polynomiaiq[ f ,  z]
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SeriesR at[f_ . g_*k_ In tege r?Iega tive , z .Synbol, n_] :*

B lock[{ff x E xpand[f], gg « Expand[g], p o le L is t, po leS e t, 
op , denon “ Expand[g~(*k)], i ,  deg, nod, aodL ist, 
d isp lac e , tenp , 1 , p r  * p rec is io n , inverseRoot, kk},

deg -  
I f[u s

1 » C o e ffic ie n tL is t [ f f , z] ;

(1 [[* ]]  0)A] - . . .
If[Length[nodL ia t] 1,

d isp lac e  ”  F i rs t [a o d L is t] ,
{ d isp lac e , nod} •  <0, 1}],

{ d isp lac e , mod} » {0, 1}];
{ f f ,  gg, denon} » {E xpand [ff/z*d isp lace ], gg, denon} / .  

z  -> z* (1 /nod)j 
deg “  deg/nod;
UhichCprecision A utoaatic  AA deg > 2 ,

p r  » I n d e te rn in a te , 
p rec is io n  *»» A utoaatic  AA deg <”  2, 

p r  “  I n f in i ty ] ;
I f [ p r  ■■ I n f in i ty  AA !Freeq[Roots[gg »» 0 , z] , R oots], 

p r ■ I n d e te rn in a te ] ;
Which[

pr **» In d e te rn in a te ,
po le L is t «  C ancel[> [[1 ,2 ]]A /«  {ToRules[

IRoots [gg " 0 ,  z] ]} ] ; 
poleSet •  U n ion [po leL is t] ; 
np » -k C oun t[po leL ist, »]A /«  po leSet; 
poleUse » po leSet; 

tenp ■ S e riesT ern [P lu s C« T able[SeriesD ivide[H om er[ 
f f ,  {z , p o le S e t [ [ i ] ] , n p [ [ i ] ]> ] ,  Drop[Horner[denon, {z , 
p o le S e t[ [ i ] ] ,  2 n p [ [ i ] ] > ] ,  n p [ [ i ] ] ] ,  n p [ [ i ] ]  ] .
T able[(z  -  p o le U s e [ [ i ] ] ) * ( - j) , { j ,  n p [ [ i ] ] ,  1 , -1 } ] ,

p r  ■!■ I n f i n i ty ,
po le L is t ”  C ancel[ t[  [1 ,2 ]]A /«  {ToRules[

IRoots [gg “  0 , z ,  p r]  ]} ] ;  
po leSe t “ U nion[poleL ist]; 
np * -k  C oun t[po leL ist, a ]a  /A po leSet; 
poleUse ■ p o le S e t; 

tenp * SeriesTerm [P lus CC T able[SeriesD ivide[H om er[ 
f f ,  {z , p o le S e t[ [ i ] ] ,  n p [ [ i ] ]> ] ,  Drop[Horner[denon, {z , 
p o le S e t [ [ i ] ] , 2 n p [ [ i ] ] } ] ,  a p [ [ i ] ] ]  , n p [ [ i ] ]  ] .
T able[(z  -  p o le U s e [ [ i ] ] ) * ( - j) , { j ,  n p [ [ i ] ] ,  1 , -1 } ] ,
{ i ,  L ength[poleSet]} ] ,  z , E xpand[(n-displace)/m od]],

p r === I n f in i ty  AA deg <” 2 ,
p o le L is t » C ancel[• [ [1 ,2 ] ]  A /<  {ToRules[

R oots[gg ** 0 , z] ]} ] ;  
po leSet x Union [p o le L is t] ; 
np x -k  C oun t[po leL ist, #]A /«  po leSet; 
inverseRoot x Expand[(1 -  gg /(gg  / .  z -> 0 > ) /z ] ; 
poleUse x ArgPi [Apart [
inverseRoot / .  z “ > C ]]* (-i)A  / •  po leSet; 

tenp x SeriesT ern [P lu s M  T able[SeriesD ivide[H om er[ 
f f ,  {z , po leS e t[  [ i ] ] ,  a p [ [ i ] ] } ] ,  Drop [Horner[denon, {z ,
p o le S e t[ [ i ] ] , 2 m p [[ i]]} ] , n p [ [ i ] ] ]  , n p [ [ i ] ]  ] .
 ----------------  "  ’ ] ) * ( - ] ) ,  { j ,  a p [ [ i ] ]  , 1 , - r / j ,

E xpand [(n -d isp lace)/nod ]],

p r >x> In f in i ty  Ah deg > 2,
p o le L is t x C ance l[S [[l,2 ]]A  /«  {ToRules[ 

R oo ts[C oeffic ien tL ist[gg , z ] .
T ab le[z ‘kk, {kk, deg. 0 , -1}] ”  0 , z] ] } ] ;  

po leSet x U n ion [po leL is t]; 
np x -k  C oun t[po leL ist, f]A / •  po leSet; 
poleUse x C onplex[T ogether[R eP[A ]//.S inplifyC ubic],

T ogether[InP[ * ] / / .S in p l ''  " “  ’ -   ---------
poleUse x poleUse / .  Coaplex[a_,
If[FreeQ [poleU se, Conplex], makeReal ”  F a lse ]; 

tenp x Se riesT era[P lu s •«  T able[SeriesD ivide[H om er[ 
f f  / .  z -> z /  p o le U se [ [ i ] ] , {z , 1, a p [ [ i ] ]} ] ,
Drop [Horner [denon / .  z  -> z /  p o le U se [[i]] , {z,
'  ‘  " ” ] ] ,  nP[ [ i ] ]  ] ■
________ ,   - l ) * ( - j ) ,  { j ,  n p [ [ i ] ] ,  1, -1 } ] ,
{ i ,  L ength[poleSet]} ] , z , E xpand[(n-displace)/nod]]
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(temp ■ tenp  / .  SinplifyComplex2) / ;  p r  In f in i ty  t t  deg »■ 2
(ten p  * tenp  / .  SiaplifyC onplex3) / ;  p r  M”  I n f in i ty  t t  deg 3

(ten p  * tenp / / .  S iaplifyC oaplex4) / ;  p r  »”  In f in i ty  t t  deg ”  4
(temp * tenp  / .  SinplifyConplexE2) / ;  p r “ » In f in i ty ;
(temp » tenp  / / .  SinplifyComplexI) / ;  p r »!« In f in i ty )  / ;

nakeR eal;
temp “ tenp  / .  Complex[a., b_] :> a ♦ b I ;
R eturn [ I f  [Release [SynbolicNod[n, nod] “  Hod [d isp la c e , n o d ]], 

R e le ase [ten p ] , 0 ] ]
] / ;  Polynom iaiq[f, z ] t t  Polynomiaiq[g, z ] t t  !Freeq[g , z]

( •  s p e c ia l  fu n c tio n s  *)

S e riesT era[l /  S q rt[a_  + b_. z_ + c _ .z_ "2 ], z .Synbol, n_] :«
Vhen[n »  0 ,

S q r t[c /a ]* n  /  S q rt[a ]  LegandreP[n, -Sgn[a] b / ( 2  S q r t[a  c ] ) ]  ,
0] / ;  specla lF unctions t t  F re eq [{a ,b ,c ) , z]

SeriesTera[Poner[a_ + b _ .z .  + c_ .z_*2 , Rational [ p . ,  2 ] ] ,  z .S ynbo l, n_] :■ 
SeriesTerm[Expand[(a + b z + c z*2)‘ ((p + l ) /2 ) ]  /

H ySqrt[a + b z + c z * 2 ] , z , n] / ;
p  !» -1 t t  specla lF unctions t t  F re e q [(a ,b ,c } , z]

SeriesTerm[1 /  H ySqrt[a_], z .Synbol, n_] :»
SeriesTerm [l /  S q r t[ a ] , z , n]

S e riesT ern [(a_  + b_.z_>*m_ (c_ + d_.z_)*m_, z.Synbol, n_] 
SeriesTerm[Expand[(a + b z )  (c + d z )] 'm , z ,  n] / ;  

sp e cia lF unctions t t  F reeq [{a ,b ,c ,d } , z] t t  
Expand[a e]*m "  Expand[a*n c“n]

SeriesTern [ ( a .  + b_.z_)*n_ (c_ + d . .z _ ) “n . ,  z .Synbol, n_] ;*
-SeriesT ern[E xpand[(a  + b z )  (c + d z)]*m, z ,  n] / ;  

specia lF u n ctio n s t t  F reeQ [{a,b ,c ,d}, z] t t  
Expand[a c]*n  » •  -Expand [a*n c*n]

(* products  u i th  a r a t io n a l  fu n ctio n  *)

S eriesTern [ a .  b_, z .Synbol, n_] :*
Block[{temp, deg, i ,  m, bn * S e riesT era[b , z , n ] , sd ■ sumDepth}, 

Increm ent[sunD epth];
O ff[G enera l: : i t e r v a r ] ;
If[Po lynom ia iq[a , z] ,

deg * Exponent[a, z] ;
tenp  * C o e f f ic ie n tL is t[ a ,  z] .

T able[bn / .  n  -> i ,  [ i ,  n , n -  deg, -1>] / .  I f  ->  Hhen, 
temp ■ Sum [SeriesTern[Apart[a, z] , z ,  n -  K[sd]] bn / .  

m -> K [sd ], {K[sd] ,
- P o le H u ltip l ic i ty [b , ( z ,  0> ], n + P o le N u ltip lic ity [a ,
( z .  0>] >] ] ;

On [General: : i t e r v a r ] ;
R eturn[tenp] ] / ;  SeparateProduct[a b , (P o ly n o n ia iq [t, z ] I I 

Polynomiaiq[ •* (-1 ) , z ] ) t  ] ■» ( a ,  b>

(* g e n e ra l products *)

SeriesTern[a_ b_, z .Synbol, n_] :=
Block[{temp, sd “  sunDepth},

Increment[sumDepth];
O ff[G enera l: : i t e r v a r ] ;
temp » Sum[SeriesTerm[a, z , n -  K[sd]] *

S eriesT ern [b , z ,  K [sd]j ,
{K [sd], -P o le H u ltip l ic i ty [b , {z, 0> ],

n + P o le H u ltip lic ity U i {z . 0} ]} ];
On [G e n era l:: i te rv a r ]  ;
R e turn[tenp] ] / ;  SeparateProduct[a b , (Polynomiaiq[* , z ]  I I 

P o lynon ia iq [t* ( -1 ) , z ] ) t  ] »  {1, a b}

S e riesT ern[a_*k_In tege r?Positive , z.Synbol, n_] :»
Block[{temp, sd * sunDepth},

Increment[sumDepth];
O ff[G enera l: : i t e r v a r ] ;
temp m Sum[SeriesTerm[a, z ,  n -  K[sd]] *

SeriesTerm[a*(k -  1 ) , z ,  K [sd]],
{K [sd], -P o le M u ltip lic ity [a* (k  -  1 ) , {z , 0 } ], 

n + P o leM u ltip lic ity [a , {z, 0}]}];
On [G eneral: - .i te rv a r] ;
Return [temp] ] / ;  !F reeq[a , z]
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(* tr in o m ia ls  *>

SeriesTerm [(a_ + b_.z_ + c_.z_*2)“alpha_ , z .Synbol, n_] :»
Block[{temp},

O ff [G e n era l:: i te rv a r ]  ;
temp » Sum [Binom ial[alpha, K[sumDepth]] Binomial [K[sumDepth], 

n -  K[sumDepth]] a*(alpha -  K[sumDepth]) b*(2 K[sumDepth] -  
n) c*(n -  K[sunDepth]) ,  {K[sumDepth] , 0 , n>] ;

On [G eneral: : i t e r v a r ] ;
++sumDepth;
Return [temp] ]  / ;  FreeQ [{a,b,c}, z]

(* d e r iv a tiv e s  • )

SeriesTerm [D erivat iv e [ k .] [ f  _ ][z_ ], z.Symbol, n_]
rocnha=aer[= + i ,  k] SeriasTerm[f [z] , z ,  n + k]

(* HOSIER and SERIES DIVIDE *)

Horner[p_, {z_, a lp h a .,  n .} ]  :■
Block[{qh » Expand[p], ih ,  kh, nh, ah>,

[n h , ah> * {Exponent[qh, z] , C o e ffic ie n tL is t[q h , z ]} ;
D o [a h [[ih ]]  «■ a lpha  a h [[ih  + 1]] + a h [ [ ih ] j ,  {kh, 1, Hin[nh, m]>, 

{ ih , nh, kh, -1>];
Do [AppendTo[ah, 0 ] ,  { ih , m -  nh -  1>] / ;  m > nh + 1; 
R eturn[T ake[ah, m]j ]

Se riesD iv ide[a_ , b_, n_] :»
B lo ck [{ is , c s  •  Range[n], ks>,

D o [c s [ [ i s ] ]  ■ < a [[ is ] ]  -  Sum [cs[[ks]] b [ [ i s  -  ks + 1 ] ] ,
{ks , 1 , i s  -  l> ] ) /b [ [ l ] ] ,
{ i s ,  1 , n > ];

R e tu rn [cs]  ]

(* SYMBOLIC HOD *)

SymbolicHod[n_, 1] -  0 

SymbolicHod[n_?IumberQ, k_] :» Hod[n, k]

SymbolicHod / :  (SymbolicHod[n.Symbol + a . . ,  2] »» b_) :» EvenQ[n] / ;
Event] [b -  a]

SymbolicHod / :  (SymbolicHod[n.Symbol + a . . ,  2] “  b_) :■ OddQ[n] / ;
Oddq[b -  aj

(* PARTIAL FRACTIOIS • )

P a r t ia lF ra c t io n s [f_ , z_ , op ts Rule] :■
B lock[{ff -  f , useApart},

useApart * UseApart /.{ o p ts}  / .O p tio n s [P a r tia lF ra c tio n s ] ; 
Which [useApart "  Automatic, 

f f  ■ Apart [ ff ]  , 
useApart "  A ll,

f f  ■ Apart [ f f ,  z ] ,  
useApart »!* lone ,

Hessage[PF: : badopt, UseApart, useApart ] ] ;
If[H ea d [ff ]  —-  P lu s,

R etu rn [P artF rac[* , z , op ts]k  /0  f f ] ,
R e tu rn [P a rtF ra c [f , z , op ts]]  ] ]  ;

P a r tF ra c [f_ , z . , o p ts ...R u le ]  :»
Block[{num ”  lu m e ra to r[ f] , den » D enom inator[f], p o le L is t, poleSet, 

■P> i> j> k> deg, temp, p rec is ion} , 
p re c is io n  » PreeisionST /.{ o p ts}  / .  O p tio n s[P a r tia lF rac tio n s ] ; 

(deg “ Exponent[den, z] ;
U h ich [p rec ision  Automatic Aft deg > 2 ,

p rec is io n  * Indeterm inate, 
p re c is io n  Automatic tft deg <=* 2,

p rec is io n  » I n f i n i t y ] ; 
p o le L is t -  C an ce l[» [[l,2 ]]ft /«  {ToRules[Which[

p re c is io n  Indeterm inate, SRoots[den 0 , z ] , 
p re c is io n  I n f in i ty ,  IRoots [den " 0 ,  z ,  p re c is io n ] , 
p re c is io n  =*”  I n f in i ty ,  Roots[den »=* 0 , z ] j  ] } ] ;  

po leS e t » Union [po leL ist] ;
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■p * C oun t[po leL ist, *]k / •  poleSet;
I f [p re c is io n  » >  I n f i n i ty ,

poleUse > A rgP i[* ]t /«  po leS e t, 
poleUse * p o le S e t] ; 

temp » Plus M  Table[SeriesD ivide[Horner[num, { z ,
p o le S e t [ [ i ] ] , m p[[il 
p o le S e t[ [ i] ]  , 2 mp[ 
T able[(z  -  poleUse[ 

{ i ,  Length [po leS et]} ’ 
) / ;  PolynomialQ[num, z.

] } ] ,  Drop [Horner [den, {z,
I i ] ]} ] ,  m p[[i]]]  , m p[[i]] ] . 
: i ] ] ) * ( - j ) ,  { j ,  m p[[i]] , 1, -1 } ] ,

AA Polynomiaiq[den, z] ] ;

(*  REALQ, R EP, IHP, AIGLE, SGV, ABSV, and COIJUOATEq • )

Reaiq[x_] :■ True / ;  Integerqdz]
Reaiq[x_Rational] "  True 
Reaiq[x_Real] * True 
Reaiq[Pi] -  True 
Reaiq[E] * True
Reaiq[n_!] :»  True / ;  Reaiq[n]

ReP[k.Integer x .]  :« k ReP[x] 
ReP[k.Rational x_] :« k ReP[x] 
ReP[k.Real x .]  :> k ReP[x]

ImP[k.Real x_] :> k ImP[x]

ReP[x_ S q rt[y _ ? P o sitiv e]] :*  ReP[x] Sqrt[y]
ImP[x_ S q rt[y _ ? P o sitiv e]] :*  ImP[x] Sqrt[y]
ReP[x_ S q r t[y_? Iegative]]  :«  -ImP[x] S q rt[-y]
ImP[x_ S q rt[y _ ? Ie g ativ e]] :*  ReP[x] S q rt[-y]

ReP[x.?Iegative "n .R a tional]  :■ 0 / ;  Integerq[2n]
ImP[x_?legative 'n .R a tio n a l]  :»  (-x)*n  ( - i )* (n -l /2 >  / ;

Integerq[2n]

ReP[x_*Rational[p_,q_]]
R eP[x 'quo tien t[p ,q] x*(Hod[p,q]/q>] / ;

AbsV[p] >« AbsV[q]

ReP[x_*q_Rational] :«■ AbsV[x]~q Cos[q Angle[x]] / ;
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H ImP [x*a] ReP[x"b]

Angle[z_] :»
Block[{x » ReP[z], y «  IraP[z]>,

Which[x — 0 , P i /2  Sgn[y],
y  0 , P i /2  (1 -  Sgn[x]) ,

ArcTan[y/x] -  P i /2  (Sgn[x]-1) SgnCy]] / ;  
FreeQ[{x,y>, RaP] t t  FreeQ K x.y}, ImP]]

Sgn [a . n e g a t iv e ]  » -1 
Sgn [a . b_] :■ Sgn[a] Sgn[b]
Sgn[a_*b_] :» Sgn[a]*b 
Sgn [Sqrt [a  J ]  ■ 1
Sgn[a. + b_] :»  Sgn [Chop [■ [a + b ] ]]

AbsV[0] -  0 
AbsV[x_?Positive] :» x 
AbsV[x_?legative] := -x 
AbsV[x_ y_] :« AbsV[x] AbsV[y]
AbsV[x_‘n_] AbsV[x]*n / ;  Head[n] ” !■ Complex 
AbsV[x_] : =

Block [{a ■ ReP[x], b » ImP[x]>,
Which [b »  0 , Expand [a Sgn[a]] , 

a  ”  0 , Expand[b Sgn[b]] ,
T rue, Sqrt[Expand[a‘ 2 + b*2]]]]

. -J s-
■ P a tte rn L is t[{ a , b>,

.Symbol?(Context[*] »!■ "System1"*) ]> ,
Which[

1 O,
Chop [I  [ReP [a]] -  I[B eP[b]]] — 0 t t  
Chop [ I  [ImP [a]]  + I[Im P[b]]] »  0 ,

1 {},
Expand [ReP [a] -  ReP[b]] »» 0 t t  
Expand [ImP [a] + ImP[b]] *» 0 ] ]

(* SIMPLIFICATIOI RULES *)

S im plifyT rig » {
S in[x_. + r .R a tio n a l P i]  :> Coa[x] / ;  E venQ [r-1/2],
S in [x .. ♦ P i]  :> -S in [x ] ,
S in[x_. + n_Integer?OddQ P i] :> -S in [x ] ,
S in[x_. + r .R a tio n a l P i]  :> -Cos[x] / ;  E venQ [r-3/2],
S in[x_ . + n_Integer?EvenQ P i]  :> S in [x ],
Cos[x_. + r .R a tio n a l P i]  :> -S in[x] / ;  E venQ [r-l/2 ],
C os[x .. + P i] :> -C os[x],
Cos[x_. + n_ IntegerTOddQ Pi] :> -Coe[x],
Cos[x_. + r .R a tio n a l P i]  :> Sin[x] / ;  E venQ [r-3/2],
C os[x .. + n_Integer?Evenq P i] :> Cos[x],
S in [a_?Iegative  b . . ]  :> -S in [ -a  b ] ,
C os[a_?Iegative b _ .]  :> C os[-a b ] ,
S in [a .P lu s] :> -S in  [Expand [ -a ]]  / ;  H atchQ [a[[l]] , .n e g a t iv e  _ .]  
Cos [a .P lu s] :> Cos [Expand [ -a ] ]  / ;  H a tc h q [a [ [l]] , .n e g a t iv e  _ .]  
A rcTan[a.TIegative b _ .]  :> -ArcTan[-a b ] ,
A rcTan[a.Plus] :> -ArcTan[Expand[-a]] / ;

H atchQ [a[[l]] , .n e g a t iv e  _ .]
ArcTan [Sqrt [3]] -> P i /3 ,
ArcTan [Sqrt [3 ]/3 ] -> P i /6 ,
A rcTan[1/Sqrt[3]] -> P i/6}

S im plifySqrt ■ {a_*Rational[b_,2] :> a * ((b - l ) /2 )  S q rt[a ]>

CanonicRadicals = {
<a_ + b_)‘ R ational[k_ ,n_] :> a (a + b ) ‘ (Hod[k, n] /  n) + 

b (a  + b)*(Hod[k, n] /  n) / ;  q u o tie n t[k , n]=“ l ,  
a_*Rational[k_,n_] :> a ‘ (Hod[k, n ] /n )  Expand[a*quotient[k, n ]]}

SimplifyCubic * Jo in [S im p lifyT rig , S im plifySqrt]

SimplifyBinomial = {
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B inom ial[i/2 , k_ + 1] :> <-4)*<-k) Binomial[2 k . k ] /(2 (k  + 1>) / ;
E n ta i ls [ In fo [k ] , k != -1] ,

Binomial[1 /2 , k_] ->  ( - 4 ) - ( - k )  Binomial[2 k , k ] / ( l  - 2 k ) ,  
Binomial[-1 /2 , k_] -> (-4 )* (-k>  Binomial[2 k , k] ,
Binomial[k_ -  1 /2 , k . ]  ->  4*<-k) Binomial[2 k , k]>

SimplifySum ■ {
Sum[0, {__}] -> 0 ,
Sum[l, {k_, a . ,  b_>] :> When [a <■ b , b -  a  + 1, 0 ] ,
Sum[a_. b_, {k_, c  >j :> b Su*[a, {k, c}] / ;

Fre«Q[b, k ] ,
Sum[lf[k_ ■» a _ , b .]  c . . ,  {k_, m_, n_>] :>

« a  c) / .  k -> m) Uh«n[n >« a ,  1 , 0] +
Sum[b c ,  [k , ■ + 1, n>] ,

Sum [(If[-k_ + n .  >■ o , a _ , b_] c_. + d_.) a . . ,  {k_, n_>3 :>
Sum[R«laasa[Expand[a e a ] ] ,  {k, a , n>] + Expand[d a ] ,

Sum[If[k_ >- m_, a . ,  b.3 c . . ,  <k_, n_>] :>
Sum[Raleaae[Expand[a c ]]  , {k, m, n>] )

S implifyComplaxEl "  {
a _ .I“c_ + d . . ( - I ) - c _  :> A rgPi[a] K*Expand[I P i c /2 ]  +

ArgPi[d] E*Expand[-I P i c /2 ]  / ;  Conjugateq[a, d ] , 
a_.E*b_ + d ..E * e . :> 2 a  Coa[ImP[b]] / ;

(ImP [a] ™ a  -  d ~  BeP[b] ”  b + a *■ 0 ) ,
a_.E“b_ + d_.E"e_ :> -2 ImP [a] S in[IaP[b]] / ;

(BoP[a] -»  a + d - -  ReP[b] - -  b + a — 0 ) ,
a_.E*b_ + d_.E"e_ :> A rgPi[a] E*b ♦ ArgPi[d] E'e>

Sim plif yComplex2 * {
a_.b_*c_ + d_.e_*c_ :>

2 AbsV [a] AbsV [b] *c SimplifyCos[Cos[Angle[a] + c Anglo [b ]] ]  / ;  
(ConjugateQ[a, d] t t  ConjugataQ[b, a] t t  ImP[c] »  0)>

SimplifyComplex3 * {
a_. b_Complex~c_ + d_.a_Complex~c_ :>

2 AbsV[a]AbsV[b]~c Cos [Angle [a] + c Angle [b]] / ;  
(ConjugateQ[a, d] t t  Conjugateq[b, a] t t  ImP[c] • “  0)>

SimplifyComplex4 * {
a_. b.Complex* c _ + d _ . e.Complex'  c_ :>

2 AbsV [a] AbsV [b] “c SimplifyCos[Cos[Angla[a] + c Angle [b ]] ]  / ;  
(ConjugateQ[a, d] t t  Conjugateq[b, a] t t  lmP[c] ”  0)}

S im p lif  yComplexE2 “  {
a ..E * b . + d..E *e_  :> Block[<c » ImP[b]>,

2 ReP [a] Cos[c] -  2 ImP [a] S in[c] / ;
(ConjugataQ[a, d] t t  Conjugateq[b, a] t t  ReP[b] ”  0 )]>

SimplifyComplaxI » {
a_.b_Complex*c_ + d_.e.Complex“c .  :>

2 Abs[a]Abs[b]*c Cos[Arg[a] + c Arg[b]] / ;
(ConjugataQ[a, d] t t  Conjugateq[b, a] t t  ImP[c] ”  0)>

SimplifyCos[x_] :■
Block[{xl ■ (x / .  Cos[a_] :> Cos [Expand [a ] ])  / / .  S im plifyT rig , 

x2 ■ x / / .  S im p lifyT rig  >,
I f  [Leaf Count [x l]  <« L eaf Count [x2], x l ,  x2 ] ]

Sim plifyF loat = [1 . ->  1 , -1 . -> - 1 ,  0. -> 0}

(* FACTORIAL SIMPLIFY *)

Factorio lS im plify[expr_] :» PostSim plify[D eFact[expr])

Block[{kin, j ,  sub , d i f f ,  t

t t  » F i r s t  [P a rt •«  Prepend [ t ,  e x ]] ; 
kin  » Scan[If[Integerq[E xpand[* •  t t ] ] ,  

R etu rn [F ae t[S ]J  ] t ,  a rg ] ;
I f  [kin »»» B u ll,

AppendTo [arg , t t ]  ; s u b *  F a c t [ t t ] ,  
d i f f  a  Expand [ F i r s t  [kin] - t t ]  ;
I f [ d i f f  > 0 ,

sub * k in  /  P ro d u c t[tt + j , { j , d i f f >],
sub m k in  Product [ t t  - j  + 1, [j', -d if f> ]  ] ] ;
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ex » H apA t[subt, ex, { t} ] ] ;  
Factor[ex] / .  Fact -> F a c to ria l ]

PostSim plify[expr.]

Block[{ex * expr / .  n! :> Expand[n]! ,  i} ,

n_!*k_. n_‘ l_ .  :> Expand[n -  1] !*k / ;  Expand[k + 1] ■

(»* (U tilit ie s .m )  **)

(* ARGPI *)

ArgPi[z_] :«■
B lock[{fraction ■ R a tio n a liz e [I [A rg [z ]/P i] ]} ,

If[H eadCfraction] MM“ R a tiona l,
Return[AbsV[z] E * (frac tio n  P i I ) ] ,
Return[z]] ]

(* EIIAILS *)

E n ta ils [a_ , a .]  » True

E n ta ils  [a At b_ t t  c  , b_] » True

E n ta ils [F a lse , a .]  ”  True

E n ta ils [a_ , b_] :»
Block[{1 ■ U n ion [P a tte rnL ist[{ a , b>,

.Sym bol?(Context[•] ■!» ,,System‘,,t )  ] ] } ,  
IneqS olve[Im plies[a, b] , F i r s t  [1]]

{ I n te rv a l [ - I n f in i ty ,  I n fin ity ]}  / ;  Length[l] ” «■ 1]

(* FIRST POS and FREE L *)

F irs tP o s[ 1 .,  p a t te r n .]  :»
Sa feF irs t[Selec t[R ange[L ength[l]] , M atchQ [l[[#]], p a t te r n ] t  ] ]

FreeL[expr_, 1_] :«  And CC (FreeQ [expr, « ] t  / •  1)

(* ISOLVE, IIEqSQLVE, LEQ *)

IneqSolve[x_ + a . > b_, x .]  :» IneqSolve[x > b -  a , x]

IneqSolve[x_ + a .  >» b_ , x_] :» IneqSolve[x >» b -  a ,  x]

IneqSolve[x_ > n .In te g e r ,  x_] :« {In te rv a l[n + 1 , I n f in i ty ]}  

IneqSolve[x_ >” n .In te g e r ,  x_] { In te rv a l[n , In f in ity ]}

IneqS olve[a ., x_] :

IneqSolve[a. t t  b_, x_] :*
Block[{aa » IneqSolve[a, x] , 

bb * IneqSolve[b, x] , 
merge, accum, b eg in , nn},

If[F re eq [aa , IneqSolve] t t  FreeQ[bb, IneqSolve], 
aa » Append[aa, {} ]; 
bb * AppBnd[bb, {}] ; 
merge * S o r t[Jo in [

Thread[{Join CA (aa  / .  In te rv a l -> L is t ) ,
Jo in  AA (aa  / .  In te rv a l[_ ,_ ]  -> {-1,1}) }] ,
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Thread[{Join CC <bb / .  In te rv a l -> L is t) ,
Jo in  CC (bb / .  I n t e r v a l L . J  -> >3 3 .
LEQ];

accun = T hread[{F irst / •  merge,
Accumulate [P lus, Last /C merge]}]; 

begin » Jo in  M  Append[Poeition[accum, { ., - 2 } ] ,  {>3i 
K e tu rn [(In te rv a l M t  t  / I  Thread[{begin, begin + 1>3> /•  

n n .In teg e r  :> First[accum [[nn]333 •
Return[aa  At bb] ]]

IneqSolve[ ! a . , x_] :*
Block[{aa > IneqSolve[a, x ] , merge, c , d>,

I f  [FreeQ [aa, IneqSolve], 
aa  "  Append[aa, {} ];
merge * Jo in  CC (aa  / .  In te rv a l[c _ , d_] -> {c-1 , d+l>) ;
I f  [merge —» {},

merge ■ { - I n f in i ty ,  I n f in i ty } ,
I f  [ F ir s t  [merge] *”  - I n f in i t y ,  

merge » Rest[m erge],
PrependTo[merge, - In f in i t y ]  ] ;

I f  [Last [merge] “ “  In f in i ty ,  
merge -  Drop[merge,- 1 ] ,
AppendTo[merge, In f in i ty ]  ] ] ;

Return [ In te rv a l M t l  / I  P a r t i t i o n  [merge, 2 ] ] ,
R etu rn [!aa]]  ]

IneqSolve[a_ II b_ , x_] :=
Block[{aa * IneqSolve[ ! ( !a  t t  !b ), x ]} ,

I f[F re e ( |[a a , IneqSolve],
R e tu rn [a a ],

R eturn[IneqSolve[a, x] 11 IneqSolve[b, x ] ]]  ]

Ineq S o lv e[In eq u a lity [a ., b_, c . ,  d_, e  ] ,  x_] :»
IneqSolve[And CC (In e q u a lity  CC t  t  /C 

P a r t i t i o n [{ a ,b ,c ,d ,e } ,3 ,2 ] ) ,  x]

IneqSolve[h_[a_, b_, c ] ,  x_] :■
IneqSolve[And CC (h  CC < t  /C

P a r t i t i o n [ { a ,b ,c } ,2 , l ] ) , x] / ;
HemberQ[{Less, LessEqual, G reater, G reaterE qual, Equal,

Unequal}, h]

IneqSolve[ineq: h_[a_, b _ ], x_] :*
Block[{lhs » Together[a -  b ] ,

num, den, z e ro L is t, p o le L is t, p o in ts ,  merge, c ,  d},

{num, den} m {|um erato r[lhS ], D enom inator[lhs]};
O ff[R o o ts::n eq ];
z e ro L is t ”  If[FreeQ[num, x ] , {} ,

t [ [ l , 2 ] ] t  /C {ToRules[IRoots[num «" 0, x ]]}  ] ; 
p o le L is t ”  If[FreeQ [den, x ] , {} ,

# [ [1 ,2 ] ]*  /C {ToRules[IRoots[den »» 0, x ]]}  ] ;
O n[R oots::neq];
z e ro L is t ■ S e le c t[z e ro L is t, (Im [t]  ”  0 ) t]  / /  Union; 
p o le L is t > S e le c t[p o le L is t, (Im[>] ”  0 ) t]  / /  Union; 
p o in ts  m U nion[zeroL ist, p o le L is t] ;
merge •  P a r titio n [A p p e n d [P re p e n d [p o in ts ,- In fin ity ] .In f in ity ] ,

2 , 1] ;
merge » Select[m erge, ( in eq  / .  x :>

Which[* **“ { - I n f in i ty ,  I n f in i ty } , 0 ,
*[[133 -*« - I n f in i t y ,  f [ [ 2 ] ]  -  1,
•  [[2 ]] m«« I n f in i ty ,  f [ [ l ] ]  + 1,
True, (P lu s CC t ) / 2  ] ) t ] ;  

merge ■ ( In te rv a l  M i l / *  merge) / .
In te rv a l[e _ , d .]  ;> I n te rv a l[C e il in g [e ] , F lo o r[d ] ] ; 

merge » merge / .  {C e il in g [-In f in ity ]  -> - I n f in i t y ,
F lo o r[ In fin ity ]  -> In f in ity } ; 

merge * S e le c t [merge, # [[1 ]]  <” * [ [ 2 ] ] t ] ;
z e ro L is t *  Sort[Jo in [F loo r /C z e ro L is t, C eiling  /C z e ro L is t] ] ;  
z e ro L is t ”  S e le c t[z e ro L is t, ((den  / .  x->#) !» 0 ) t ] ;  
z e ro L is t “  S e le c t[z e ro L is t, ( in eq  / .  x - > t ) t ] ;
merge * Sort[Jo in[m erge , T h rea d [In te rv a l[ze ro L is t, z e r o L is t] ] ] ,  

LEQ]; 
merge » merge / .

Interval[c_?((Ium berQ [t] t t  ((den / .  x:>#) M  0 I I 
! in e q / .x -> # ) ) t) , d_] :> In te rv a l[c + 1 , d ] ; 

merge » merge / .
In te rv a l[c _ , d_?((lumberQ[•] t t  ((den  / .  x :> l)  » 0 | |

: in e q / .x -> t)) t ) ] :> In te r v a l[c ,  d -1 ] ; 
merge « S e lec tfoe rge , * [[1 ]]  <”  # [ [ 2 ] ] t ] ;  
a rg s  ”  L is t  CC (Join CC Append[merge, I n te r v a l [ ] ] );
I f  [arg s —  {}. {}.
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{ f i r s t ,  l a s t }  * { F ir s t[ a r g s ] , L as t[a rg s]} ;
In te rv a l CC t  ft / •  Partition[A ppend[Prapend[Join «« 

AppendCSelact [Partition[D rop[R «st [args] , - 1 ] ,  2 ] , 
<#[[2]] -  f  [ [1 ]]  > 1)A], {} ], f i r s t ] ,  l a s t ] ,  2] ] ]  / ;

HemberQ[
{Less, L essE qual, G reater, GreaterEqual, Equal, Unequal}, h]

ISolve[expr_] :«
Block[{l ”  UserSymbols[expr] , n , temp, p , nn},

I f[L en g th [l]  « •  1 , 
n ■ F i r s t [1 ] ;
temp ” IneqSolve [expr / .  n -> nn, nn] / .  nn -> n;
temp > temp / .  L id t[p  In te rv a l]  :> O r[p];
temp •  temp / .

{ I n te rv a l [ - I n f in i ty ,  In f in ity ]  -> True,
In te rv a l  [ - I n f in i ty ,  b_] -> n <■ b ,
In te rv a l  [ a . , In f in i ty ]  -> n >■ a ,
I n t e r v a l [ a . , a_] -> n ” ” a ,
In te rv a l  [a_ , b_] -> a <» n <» b}; 

tenp  m temp / .  IneqSolve [ a . , n_] -> a ;
Return[tem p],

R eturn[expr]] ]

LEQ[h_[a_,b.], h_[c_ ,d_ ]] :» (a  < c) 11 (a  »»» c «  b <« d)

Info[_?IumberQ] » True
Info[.Symbol] “  True
Info[_[a  ] ]  :« And M  (In fo  /«  {a})

(•  LEADIIO COEF •)

( •  HAKE LIST *)

(* HAKE TRIIOHIAL and LIST COHPLEHEKT *>

HakeTrinomial[a: B inom ial[b_, c_] B inom ial[d., < 
Block[{11 -  {b, d} ,

12 ■ {c, b -  c ,  e ,  d -  e} , 1},
I  ■ I n t a r s e c t i o n [ l l , 12];
I f  [Length[l] !”  1 , Return [a] ] ;
I I  > ListComplement[11, 1 ];
12 > ListComplement[12, 1] ;
I f[{ P lu s  «« 12} !a 11, R e tu rn [a ]]; 
R e tu rn[S ort[H ultinom ial M  12]] ]

H akeT rinoaia l[aJ a

ListC om plem ent[ll.L ist, 12_L ist] ;•
Block[{1 a i i } ,

If[HemberQ[1 , f ]  ,
1 a  D rop [l, { F ir s tP o s [ l , * ]}] ]»  /«  12; 

Return[1] ]

(* PARSIIG ROUTIIE • )

P a r s e [ l is t l_ ,  l i s t 2 _ ,  n_] ;a
Block [{11 > HakeList [Release «< ( H o ld [l is tl]  / .  C ondition -> P a i r ) ] ,  

unknouns a H a k e L is t[ lis t2 ],
eqns, conds, r e c u r,  e x tra ,  range, s ta r tV a lu e s , a a , kk, 
lo ,  h i ,  check},

unknouns a Head /«  unknouns;

check a  if [H e ad [ t]  P a ir , t [ [ l ] ] , »]* / •  11;
I f [ ! HatchQ[check, { Equal} ],

H essage[P arse::eqn , check];
R e tu rn [F ail]  ] ;
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<* sake n >■ 0 the  d e fa u lt range o f  v a l id i ty  • )  

eqns “  If[H ead[#] »!■ P a ir ,  PairC*, n >» 0 ] ,  # ]*  / •  eqns;

oqne ”  P a ir [ # C [ l] ] , Inaq S o lv e [([[2 ]] , n ]]*  / •  eqns; 
r e c u r  » S e le c t[e q n s, !FreeqC*, I n f in i ty ] * ] ;  
e x tra  ■ U nion[Select[eqns, PreeQ [t, I n f i n i ty ] * ] ,

P a i r [ * [ [ l ] ] ,  Drop [* [[2 ]]  , - i ] ] *  /«  r e c u r] ; 
r e c u r  -  P a i r [ * [ [ l ] ] ,  L a s t[# [ [ 2 ] ] ] [ [ l ] ] ] *  / •  r e c u r; 
e x tra  ■ S e le c t[e x tra ,  * [[2 ]]  *!■ {> k ] ; 
e x tra  » Union M  (Thread /#  e x tra ) ;
conds * Union [conds. Union M  ( T a b le [ t [ [ l ] ] , [ n ,  * [ [2 ,1 ] ] ,  

# [ [2 ,2 ] ]} ]*  / •  e x tra )  ] ;

( •  s h i f t  n so th a t  a l l  recurrences s i l l  be v a l id

rec u r  » (# [[1 ]]  / .  (n -> n + # [ [2 ] ] )  )k /*  re c u r;

(* determ ine s ta r t in g  values o f n f o r  a l l  sequences •

[ re c u r ,  conds} ■ [ re c u r ,  conds} / / .
S u n [a ., [k_ , a .} ]  :> Sun[a, [ k ,  1 , ■}];

[ re c u r ,  conds} a [ re c u r ,  conds} / .
[EvenQ[a_] :> SymbolicHod[a, 2] 0 ,

OddQ[a.] ' :> SymbolicHod[a, 2] 1 ,
Hod -> SymbolicHod}; 

range a  (conds, recu r / .  (Sum[aa_, (kk_, l o . ,  h i .} ]  :> 
[ a a  / .  kk -> lo ,  aa / .  kk -> h i}  )}; 

s ta r tV a lu e s  a H in [F irs t / •  (P a tte rn L is t[ra n g e , # [_ ]]  / .  
n ->  0 )]*  /«  unknoens;

B e tu rn [(rec u r, conds, unknoens, s ta rtV alu e s} ] ]

(a PATTER! LIST *)

P L ist[expr_ , p a t te r n .]  :m
Block[{xpr “  expr / .  ( ( a .  -> b_) -> (a ,b } )} ,

Apply[Part, Prepend[t, xpr]]t /C Position[xpr, pattern]]

(* POLE HULTIPLICITY *)

P o le H u ltip lic ity [ f_ , ( z _ , a .} ]
Block[{pom a  S a feS er ie s [f  / .  z -> x + a , [ z ,  0 , 0}]} ,

If[!FreeL[pom , [ F a i l ,  S e rie s} ], R e tu rn [In f in i ty ] , 
pom a  form al [pom] ;
If[pom am o , R eturn[0 ]] ;
Return[H ax[0, Exponent[Expand[pom / .  z  -> 1 /z ] , z ] ] ]  ]]

<* RESET *)

R e se t[re c u r ., co n d s., unknoens., s ta r tV a lu e s . ,  aO_] ;a  
B lo c k [[s ta r t} ,

(R e le a se [s ta r t /8  unknoens]) a s ta r tV a lu e s ;
B e tu rn [{ recu r, conds} / .

aa.?(H em berQ [unknoens,*]t)[kk.] :> 
aa[kk + sO -  s t a r t  [aa]] ]]

(* SAFE FIRST, SAFE SERIES *)

S a feF irs t[1_ ] ;a
I f  [Length [1] > . 0 , l u l l ,  F i r s t [ l ] ]

S a feS erie s[f_ , [z_ , a_ , n .In tege r} ] ;a
B lock[[po les a  z  / .  Solve[Denominator[f] am o , z ,

InverseF unctions -> T rue], o rd , tern}, 
ord a Hax[n, Count [po les , a ] ] ;
O ff[General::dbyO , G enera l::bvar, S e r ie s : :a r g , S e rie s D a ta ::c s a ] ; 
tem a  C heck [S eries [f , [ z ,  a , o rd}], F a i l ,  S e r ie s : :e s s s ] ;
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0n[G enera l: :dbyO, G enera l::bvar, S e r ie s ::a rg , S e r ie sD a ta :: c s a ] ; 
I f [ te n  »!■ F a i l ,  te n  ”  S e ries [ ton , {z , a , n ) ] ]  ;
R e turn[ten] ]

(* SEPARATE PRODUCT *>

<* USER SYMBOLS *>

UserSynbols[expr_] :■
Block[{h ■ I f  [L ength[expr] ”  0 , exp r, Head[expr]]>, 

W hich[!FreeQ[h,
.Sym bol?(Context[*] « ! •  "System1" * ) ] ,

{ exp r} ,
Length [expr] “  0 ,

True,
Union M  (UserSynbols /«  (L is t M  e x p r))] ]

Hhen[cond_, a _ , b_] :»
W hich[E ntails[Info  [cond], cond], 

E n ta i ls [ In fo  [cond], !cond], 
T rue, I f  [cond, a , b]]

End[]

(* P ro te c t [RSolve, Power Sun, Exponent ialPoserSun, G eneratingFunction, 
E xponentialG eneratingFunction, Gf, EGf, HSolve, HypergeometricF, K, 
SeriesT ern , SymbolicHod, RealQ, ReP, InP, ConjugateQ, Sinp lifySun , 
S im plifyT rig ,’ SinplifyCom plexEl, SimplifyComplexE2, SimplifyConplex2,
SimplifyConplex3, SinplifyComplex4, S inplifyC onplexI, F a c to ria lS im p lify , 
P a r tia lF ra c tio n s , A rgP i, E n ta i ls ,  F irs tP o s, FreeL, In fo , ISolve, 
LeadingCoef, L istC om plenent, HakeList, MakeTrinomial, P a tte rn L is t,  
P o leM u ltip lic ity , R e se t, S a feF irs t, S a feS erie s, TTQ, U serSynbols, When, 
Hethods, HethodGF, HethodEGF, PrecisionHS, P recis ionST , UseApart, UseHod, 
HakeReal, S pec lalF unctions] «)

EndPackageD
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