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This volume is devoted to the 60th birthday of Peter Paule



Foreword

This volume is dedicated to Peter Paule on the occasion of his 60th birthday. It
contains the proceedings of the workshop, Combinatorics, Special Functions and
Computer Algebra (Paule60), held on May 17–18, 2018, at the Research Institute
for Symbolic Computation (RISC) in Hagenberg, Austria. This is overwhelmingly
merited in light of Peter’s distinguished career. A former Humboldt Fellow, Peter
has been a major player in the applications of computer algebra and has been
director of RISC since 2009. He is a member of Academia Europaea and a Fellow
of the American Mathematical Society.

In the early 1980s, Professor Johann Cigler gave a wonderful talk at an
Oberwolfach conference on combinatorics. In the talk, he extolled the outstanding
work of several of his students especially that of Peter Paule. Subsequently, at the
next Oberwolfach conference on combinatorics, Peter himself gave a presentation,
and I was more than pleased to make the acquaintance of this rising star. This was
the beginning of a grand and lasting friendship.

I have written more papers with Peter than anyone else, 15 in all. The majority
concern the computer algebra implementation of P. A. MacMahon’s Partitions
Analysis (often joint with Peter’s student, Axel Riese). This collaboration was one
of the most wonderful adventures of my career. Notable partly because this allowed
us to track down a number of fascinating mathematical objects, but mostly because
it is a joy to collaborate with this optimistic man who is always full of joie de vivre.

Peter is the opposite of the stereotypical mathematician. As we all know, the
way to get ahead in mathematics is to sit alone in a small room for days on end
concentrating intensely on esoteric abstractions. As a result, a number of us are
somewhat socially challenged. Peter has completely avoided anything like this
outcome. Not only do mathematicians enjoy time spent with him, but often the
RISC visitor’s entire family remembers him warmly. Indeed, he is often the only
mathematician they do remember.
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viii Foreword

It is a great honor to be asked to prepare this foreword. Best wishes to you, Peter,
from all your friends and admirers (and me especially). We look forward to your
many future achievements.

University Park, PA, USA George E. Andrews
November 2019



Preface

The book is centered around Algorithmic Combinatorics which covers the three
research areas of Enumerative Combinatorics, Special Functions, and Computer
Algebra. What these research fields share is that many of their outstanding results
do not only have applications in Mathematics but also other disciplines, such as
Computer Science, Physics, Chemistry, etc. A particular charm of these areas is
how they interact and influence one another. For instance, combinatorial or special
functions’ techniques have motivated the development of new symbolic algorithms.
In particular, the first proofs of challenging problems in Combinatorics and Special
Functions were derived by making essential use of Computer Algebra.

This book addresses these interdisciplinary aspects with research articles and up
to date reviews that are suitable for graduate students, researchers, or practitioners
who are interested in solving concrete problems within mathematics and other
research disciplines. Algorithmic aspects will be emphasized and the corresponding
software packages for concrete problems are introduced whenever applicable.

When the Search for Solutions Can Be Terminated (Sergei A. Abramov)
addresses the problem that in algorithms often the nonexistence of solutions can
only be detected in the final stages, after carrying out a lot of heavy computations.
In this article, it is shown how to introduce early termination checkpoints in an
algorithm for finding rational solutions of differential systems.

In Euler’s Partition Theorem and Refinements Without Appeal to Infinite Prod-
ucts (Krishnaswami Alladi), combinatorial arguments on 2-modular Ferrers dia-
grams are combined in a novel way in order to find and prove analogues of some
important fundamental theorems in the theory of partitions.

In Sequences in Partitions, Double q-Series and the Mock Theta Function
ρ3(q) (George E. Andrews), a skillful mix of techniques based on q-difference
equations, generating functions, series expansions, and bijective maps based on
the combinatorics of integer partitions (and overpartitions) are applied to gain new
insights of combinatorial aspects of a family of double sum hypergeometric q-series
and their connection to many famous identities for integer partitions.

In Refined q-Trinomial Coefficients and Two Infinite Hierarchies of q-Series
Identities (Alexander Berkovich and Ali Kemal Uncu), symbolic summation tools
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x Preface

and classical methods from enumerative combinatorics are combined to discover
and explore new doubly bounded polynomial identities in terms of refined q-
trinomial coefficients.

In Large Scale Analytic Calculations in Quantum Field Theories (Johannes
Blümlein), a general overview of computer algebra and special function tools is
presented that are heavily used to solve large-scale problems in relativistic renor-
malizable quantum field theories. These analytic tools originate from algorithmic
combinatorics or are suitable for problems coming from this field.

In An Eigenvalue Problem for the Associated Askey–Wilson Polynomials (Andrea
Bruder, Christian Krattenthaler, and Sergei K. Suslov), an auxiliary bivariate
function is introduced that links to associated ordinary Askey–Wilson polynomials.
With the aid of computer algebra, from this relation an eigenvalue problem for the
associated Askey–Wilson polynomials is constructed.

Context-Free Grammars and Stable Multivariate Polynomials Over Stirling
Permutations (William Y.C. Chen, Robert X.J. Hao, and Harold R.L. Yang) resolves
two open questions raised by Haglund and Visontai in their study of stable
multivariate refinements of second-order Eulerian polynomials.

In An Interesting Class of Hankel Determinants (Johann Cigler and Mike Tyson),
Hankel determinants dr(n) of a binomial sequence are considered for which for
general integers n and r no closed-form exists. Using the methods presented here,
formulas valid for all r ≥ 0 and particular arithmetic progressions are given.

In A Sequence of Polynomials Generated by a Kapteyn Series of the Second
Kind (Diego Dominici and Veronika Pillwein), an infinite sum involving squares
of Bessel-J functions with an extra parameter n is explored. A closed-form repre-
sentation is derived for this series in terms of a specific polynomial whose degree
depends on n, and a recurrence relation is computed and verified with computer
algebra methods that produces the coefficients of this polynomial efficiently.

In Comparative Analysis of Random Generators (Johannes vom Dorp, Joachim
von zur Gathen, Daniel Loebenberger, Jan Lühr, and Simon Schneider), the
research field of random number generators is introduced for nonexperts. A careful
comparison between pseudorandom number generators and hardware controlled
versions is carried out carefully in terms of their output rate.

In Difference Equation Theory Meets Mathematical Finance (Stefan Gerhold
and Arpad Pinter), the authors make those two ends meet unexpectedly through
Pringsheim’s theorem and two asymptotic methods (saddle point and Hankel
contour asymptotics).

In Evaluations as L-Subsets (Adalbert Kerber), logical systems beyond classical
Boolean logic are considered by utilizing lattice-valued evaluations of statements in
a novel way. In particular, examples are elaborated that demonstrate the practicality
of real-world problems.

In Exact Lower Bounds for Monochromatic Schur Triples and Generalizations
(Christoph Koutschan and Elaine Wong), exact and sharp lower bounds for the
number of generalized monochromatic Schur triples subject to all 2-colorings
are explored. In their challenging enterprise, they use low-dimensional polyhedral
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combinatorics leading to many case distinctions that could be treated successfully
by the symbolic computation technique of cylindric algebraic decomposition.

In Evaluation of Binomial Double Sums Involving Absolute Values (Christian
Krattenthaler and Carsten Schneider), double sums from a general family are
considered, where the main difficulty lays in the appearance of absolute values.
It is shown that these sums in general can be expressed as a linear combination of
just four simple hypergeometric expressions.

In On Two Subclasses of Motzkin Paths and Their Relation to Ternary Trees (Hel-
mut Prodinger, Sarah J. Selkirk, and Stephan Wagner), paths with alternating east
and north-east steps are shown to give nice enumeration formulas via generalized
Catalan numbers.

In A Theorem to Reduce Certain Modular Form Relations Modulo Primes
(Cristian-Silviu Radu), a question raised by Peter Paule is settled that is of
algorithmic relevance to the theory of modular forms. It is shown that the problem
to decide if a certain modular form relation modulo a prime holds can be reduced to
check congruences modulo p between meromorphic modular forms.

In Trying to Solve a Linear System for Strict Partitions in “closed form” (Volker
Strehl), a challenging linear system for strict partitions in relation to Schur functions
and symmetric functions is investigated that utilizes graph theory in combination
with the theory of partitions in a novel way.

In Untying the Gordian Knot via Experimental Mathematics (Yukun Yao and
Doron Zeilberger), two new applications of automated guessing are given: one
related to enumerating spanning trees using transfer matrices and one about
determinants of certain families of matrices. Using symbolic computation, the
painful human approach is avoided.

This book is an offspring of the workshop “Combinatorics, Special Functions and
Computer Algebra” at the occasion of Peter Paule’s 60th birthday (https://www3.
risc.jku.at/conferences/paule60/). We would like to thank Tanja Gutenbrunner and
Ramona Pöchinger from RISC for all their help to organize this wonderful event.
In particular, we would like to thank the Austrian FWF in the frameworks of
the SFB “Algorithmic and Enumerative Combinatorics” and the Doctoral Program
“Computational Mathematics” for the financial support. Furthermore, we thank
Karoly Erdei for providing us with the above picture that illustrates Peter Paule’s
mathematical passion. Finally, we would like to thank all the authors for their
stimulating contributions and the referees in the background for their valuable
comments.

Linz, Austria Veronika Pillwein
Linz, Austria Carsten Schneider
November 2019
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When the Search for Solutions Can Be
Terminated

Sergei A. Abramov

Dedicated to Peter Paule on the occasion of his 60th birthday

1 Introduction

One of actual computer algebra problems is the development of algorithms for
finding solutions to differential equations and systems of such equations. Usually
solutions belonging to some fixed class are discussed. Often the proposed algorithms
are such that the absence of solutions of the desired form is detected only in the final
stages, when many of the quantities required to construct such a (potential) solution
are already computed.

However, it is possible that in the algorithm one can choose some checkpoints
and, accordingly, associate with them some tests which make it possible to ascertain
already at an early stage that there are no solutions of the desired type. This will
save time and other computing resources. Thus there is the problem of choosing
checkpoints and tests. On the one hand, one can think about this choice already in
the development of the algorithm and seek the appearance in the algorithm of such
points equipped with easily performable tests; on the other hand, one can take a
known algorithm and insert checkpoints in it. In this case, it may be necessary to
modify the algorithm in order for suitable checkpoints to be discovered and for these
points to precede some resource-consuming fragments of the algorithm.

In the present paper, we consider this problem as applied to the search for rational
solutions.

Let K be a field of characteristic 0. The ring of polynomials and the field of
rational functions of x are conventionally denoted as K[x] and K(x), respectively.
The ring of formal Laurent series is denoted as K((x)). If R is a ring (in particular,
a field), then Mat m(R) denotes the ring of m×m-matrices with entries from R. We

S. A. Abramov (�)
Dorodnicyn Computing Centre, Federal Research Center “Computer Science and Control”
of the Russian Academy of Sciences, Moscow, Russia

© Springer Nature Switzerland AG 2020
V. Pillwein, C. Schneider (eds.), Algorithmic Combinatorics: Enumerative
Combinatorics, Special Functions and Computer Algebra, Texts & Monographs
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2 S. A. Abramov

consider systems of the form

Ar(x)D
ry(x)+ · · · + A1(x)Dy(x)+ A0(x)y(x) = 0 (1)

where D = d
dx

, and Ai(x), for i = 0, 1, . . . , r , are matrices of size m × m with
entries from K[x]. Here Ar(x) is the leading matrix (we suppose that non-zero), and
y(x) = (y1(x), y2(x), . . . , ym(x))

T is a column of unknown functions (T denotes
transposition). The number r is called the order of the system. The system under
study is assumed to be of full rank; i.e., the equations of the system are linearly
independent over the ring of operators K(x)[D]. In some cases, the trailing matrix
of a system is also considered. (If k = min{l | Al �= 0} then Ak is the trailing matrix
of (1).)

The system (1) can be written in the form

L(y) = 0 (2)

where

L = Ar(x)D
r + · · · + A1(x)D + A0(x). (3)

A solution y(x) = (y1(x), y2(x), . . . , ym(x))
T ∈ K(x)m of (1) is called a rational

solution. If y(x) ∈ K[x]m, it is called a polynomial solution (a particular case of a
rational solution). Algorithms for finding all rational solutions to a first-order system
of the form

Dy(x) = A(x)y(x), (4)

where A(x) ∈ Mat m(K(x)), are well known (see, e.g., [3, 10]). The problem of
finding rational solutions for full-rank systems (1) in the case where the matrix
Ar(x) considered much less frequently. Nevertheless, an appropriate algorithm
was suggested in [7]. This algorithm is based on finding a universal denominator
of rational solutions to the original system (for brevity, we call it the universal
denominator for the original system), i.e., a polynomial U(x) ∈ K[x] such that,
if the system has a rational solution y(x) ∈ K(x)m, then it can be represented as

1
U(x)

z(x), where z(x) ∈ K[x]m. If a universal denominator is known, we can make
the substitution

y(x) = 1

U(x)
z(x) (5)

where z(x) = (z1, . . . , zm)T is a vector of new unknowns, and then apply one of the
algorithms for finding polynomial solutions (see, e.g., [3, 11, 15]). A denominator
bound for the original system is a rational function S(x) such that any rational
solution of the original system can be represented in the form S(x)f (x) with
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f (x) ∈ K[x]m. So a denominator bound can also be used for finding rational
solutions by using the substitution

y(x) = S(x)z(x)

instead of (5). (If U(x) is a universal denominator for (2) then 1
U(x)

is obviously a
denominator bound for the same system.)

Other approaches are also possible. For example, the approach presented in [2]
is based on expanding a general solution of the original system (2) into a series
whose coefficients linearly depend on arbitrary constants. After multiplication by a
universal denominator U(x) (or by S−1(x), where S(x) is a denominator bound) the
series corresponding to rational solutions turn into polynomials.

In the sequel, it will be useful to consider formal Laurent series, i.e., for example,
elements of the field K((x)) (or the field K̄((x)), where K̄ is the algebraic closure
of K). Recall that the valuation val y(x) of y(x) ∈ K((x)) is the minimal integer i
such that the coefficient of xi in y(x) is non-zero. If y(x) is the zero series then we
set val y(x) = +∞. We can also consider the field K((x − α)) of formal Laurent
series in x − α and, correspondingly, valx−αt (x) for t ∈ K((x − α)).

We consider also the formal series in terms of decreasing powers (this can also be
viewed as expansion at ∞); the field of such series is denoted by K((x−1)). Each
series of this kind contains only a finite number of powers of x with nonnegative
exponents and, possibly, an infinite number of powers with negative ones. The
greatest exponent of x with a nonzero coefficient occurring in a series y(x) is the
valuation val∞y(x). If y(x) ∈ K((x−1)) is the zero series, then we set val∞ y(x) =
−∞.

For a vector f (x) = (f1(x), . . . , fm(x))T ∈ K((x))m we set valf (x) =
minm

i=1 valfi (similarly for valx−αf (x)). For g(x) = (g1(x), . . . , gm(x))T ∈
K((x−1))m we set val∞ g(x) = maxm

i=1 val∞ gi . It is easy to see that val∞p(x) =
degp(x) for a polynomial p(x) and v(

f (x)
g(x)

) = v(f (x))− v(g(x)) for f (x), g(x) ∈
K[x], v ∈ {val, valx−α, val∞}. It is also significant that the valuation of any type
under consideration of a product is the sum of the valuations of the factors.

The checkpoints and tests mentioned at the beginning of the Introduction may
help detect situations where substitutions of the series in question lead to a system
that obviously has no polynomial solutions. In this case, we would like to obtain
tests that do not require a complete calculation of the universal denominators
or denominator bounds, but involve just some preliminary estimates. For scalar
difference equations, such points and tests were found by A. Gheffar in [12, 13].
In the present paper, we generalize those ideas for linear systems of differential
equations with polynomial coefficients.
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2 Preliminaries: Indicial Polynomials

A rational solution of a system of the form (1) can be represented by formal Laurent
series both at an arbitrary finite point α and at∞.

It is well known (see, e.g., [8, Sect. 7.2]) that it is possible to construct for (1) a
finite set of irreducible polynomials over K

p1(x), . . . , pk(x) (6)

such that if for some α ∈ K there exists a solution F ∈ K((x − α))m such that
valx−αF < 0 then pi(α) = 0 for some 1 ≤ i ≤ k, and for each pi(x) a polynomial
IL,pi (λ) ∈ K[λ] can be constructed such that for a solution F ∈ K((x − α))m,
pi(α) = 0, one has IL,pi (valx−αF ) = 0 [8]. It is also possible to construct such a
polynomial IL,∞(λ) ∈ K[λ] that if a system L(y) = 0 has a solution y ∈ K((x−1))

then IL,∞(val∞y(x)) = 0. In particular, the degree of a polynomial solution is a
root of IL,∞(λ). The polynomials IL,∞(λ), IL,p1(λ), . . . , IL,pk (λ) are the indicial
polynomials connected with L.

Remark In the context of this paper, by the indicial polynomial for a given operator
L we mean a certain polynomial, a root of which may give useful information
on solutions of the initial differential system. Absence of roots of a certain type
also gives information on solutions of the initial differential system. Note that
it is not necessary that every root of such a polynomial corresponds to some
specific solution of the initial system, as in classical theory. To construct the
needed polynomials we can use the so-called induced recurrence system and bring
its leading or trailing matrix to non-singular form. Based on the determinants of
those matrices, some polynomials can be obtained that play the role of the indicial
polynomials [1, 8]. (The mentioned induced recurrence system is satisfied by the
sequence of coefficients of any Laurent series solution of the original differential
system; the elements of such a sequence belong to Km or K̄m.)

3 Scheme Equipped with Control Tests

The following proposition is the main statement of the paper.

Proposition Let L, p1(x), . . . , pk(x) be as in (3), (6). Let IL,∞(λ), IL,p1(λ), . . . ,

IL,pk (λ) be the corresponding indicial polynomials. In this case

(i) if IL,∞(λ) has no integer root then (2) has no rational solution;
(ii) if at least one of the polynomials IL,p1(λ), . . . , IL,pk (λ) has no integer root

then (2) has no rational solution;
(iii) if b1, . . . , bk ∈ Z are lower bounds for integer roots of polynomials

IL,p1(λ), . . . , IL,pk (λ) (e.g., b1, . . . , bk can be equal to the minimal integer
roots of those polynomials), N is an upper bound for integer roots of the
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polynomial IL,∞(λ) (e.g., N can be equal to the maximal integer root of that
polynomial), and N −∑k

i=1 bi degpi < 0, then (2) has no rational solution;
(iv) if N − ∑k

i=1 bi degpi ≥ 0 (see (iii)) and the system (2) has a rational

solution then that solution is of the form p
b1
1 (x) . . . p

bk
k (x)f (x), where f (x) =

(f1(x), . . . , fm(x))T ∈ K[x]m with deg fj (x) ≤ N −∑k
i=1 bi degpi , j =

1, . . . ,m.

Proof (i), (ii): If (2) has a rational solution F ∈ K(x)m then (2) has a solution
in K((x−1))m as well, since F(x) can be represented by a series from K((x−1)).
Let s(x) be a formal Laurent series over Km for F(x−1), then t (x) = s(x−1) ∈
K((x−1)) is the series for F(x). So IL,∞(val∞t (x)) = 0, proving (i). Let α be such
that pi(α) = 0, 1 ≤ i ≤ k, and let s ∈ K((x−α))m be the Laurent series expansion
of F(x). Then IL,pi(x)(valx−αs) = 0, proving (ii).

(iii): S(x) = p
b1
1 (x) . . . p

bk
k (x) is a denominator bound for (2) (among b1, . . . , bk

there may be numbers of different signs). If F(x) ∈ K(x)m is a rational solution
of (2) then F(x) = S(x)f (x) for some f (x) ∈ K[x]m. We have 0 ≤ val∞f (x) =
val∞F(x) − val∞S(x) ≤ N − val∞S(x) = N −∑k

i=1 bi degpi . Thus, if there
exists a rational solution then N −∑k

i=1 bi degpi ≥ 0.
(iv): The upper bound N −∑k

i=1 bi degpi ≥ 0 for val∞f (x) = maxm
j=1 deg fj

was obtained in the proof of (iii). ��
A scheme equipped with control tests may be, for example, as follows.

1. Find IL,∞(λ). If this polynomial does not have integer roots, then STOP.
Otherwise, let N be the largest integer root of IL,∞(λ).

2. Find p1(x), . . . , pk(x) and polynomials IL,p1(λ), . . . , IL,pk (λ). If at least one of
IL,p1, . . . , IL,pk does not have integer roots, then STOP. Otherwise, let e1, . . . , ek
be the smallest integer roots of these indicial polynomials and d = e1 degp1 +
· · · + ek degpk .

3. If N + d < 0 then STOP. Otherwise, perform in (1) the substitution y = Sz,
where S(x) = p1(x)

e1 . . . pk(x)
ek , and z is a new unknown vector. Find all

polynomial solutions of the new system L̃(z) = 0, using the fact that the degree
of each such solution does not exceed N + d . If there are no such solutions, then
STOP. Otherwise, rational solutions of the system L(y) = 0 are obtained from
polynomial solutions of the system L̃(z) = 0 by multiplying each component of
z by S(x).

In this scheme, the STOP command means stopping all calculations with the
message to the user: “The system has no rational solutions”.

Having computed the upper bound N−d for the degrees of polynomial solutions
allows us to use the method of undetermined coefficients for finding polynomial
solutions of the system L̃(z) = 0 (the problem of finding polynomial solutions
is reduced to solving a system of linear algebraic equations). There exist methods
which are more effective than the method of undetermined coefficients (see, for
example, [15]). However, to apply the algorithm from [15], it is necessary to
construct an induced recurrent system and bring its trailing matrices to non-singular
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form (we have mentioned induced recurrent systems in Remark 2). This preparatory
work is equivalent in cost to obtaining the indicial polynomial IL̃,∞. One can also
use the approach from [2], for which one does not need the substitution y = Sz into
L(y) = 0 (we have mentioned it in Sect. 1).

4 Examples

Example For a system L(y) = 0 of the form

(
x 1
1 1

)

y ′ +
(
x2 x

1 x

)

y = 0

we get IL,∞(λ) as a non-zero constant. The polynomial has no integer roots and the
system has no rational solutions (there is no need to look for a universal denominator
and so on). If we apply the usual approach, then we would have to find the universal
denominator U(x) = x, make the substitution (5) into the original system, then a
search should be made for polynomial solutions. Finally, it would show that there
are no such solutions. ��
Example If a system L(y) = 0 is of the form

(
2 0
0 x(x + 1)

)

y ′ +
(−1 1

x 2(x + 1)

)

y = 0

then IL,∞(λ) = −λ − 3. The only integer root is −3. We can find U(x) = x2

as a universal denominator (or S(x) = x−2 as a denominator bound). We see that
−3 + 2 = −1 < 0. This implies that the system has no rational solutions (there is
no need to produce the substitution y = S(x)z and try to find polynomial solutions).

��

5 Conclusion

The present paper shows that an approach similar to the proposed in [12, 13] can
be applied not only to scalar equations, but to systems of equations as well. Small
changes in the scheme of the algorithm allow one to mark the points that we call
the checkpoints, and write down the corresponding control tests so that without
increasing the cost of the algorithm as a whole, in some cases, performing the tests
on the intermediate results makes it possible to stop the algorithm as soon as these
tests imply that no solutions of the desired type exist.

Apparently, this approach may be useful in the development of algorithms for
finding solutions that are more complicated than rational solutions (we would
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emphasize that the search for many types of solutions ultimately boils down to
finding rational solutions for some auxiliary systems).

This type of problem can also be posed for the case of systems of linear difference
equations. In the book [14] of P. Paule and M. Kauers, in particular, the basic tools
for working with scalar difference equations are described. Regarding systems, it is
possible, for example, to mention publications [3–6, 8, 9, 11, 16]. The question of
checkpoints and control tests for systems of linear difference equations remains a
topic for future research.

Acknowledgements The author would like to thank M.Petkovšek, A.Ryabenko and D.Khmelnov
for their valuable remarks to improve the paper. Supported by the Russian Foundation for Basic
Research (RFBR), project no. 19-01-00032.
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Euler’s Partition Theorem
and Refinements Without Appeal
to Infinite Products

Krishnaswami Alladi

Dedicated to Peter Paule for his 60th Birthday

1 Introduction

One of the first results an entrant to the theory of partitions encounters is Euler’s
fundamental and beautiful theorem:

Theorem E Let pd(n) and po(n) denote the number of partitions of n into distinct
parts and odd parts respectively. Then

pd(n) = po(n).

Euler’s proof of Theorem E made use of product representations of the generating
functions of pd(n) and po(n):

∞∑

n=0

pd(n)q
n =

∞∏

m=1

(1 + qm) =
∞∏

m=1

(1− q2m)

(1− qm)
=

∞∏

m=1

1

(1− q2m−1)
=

∞∑

n=0

po(n)q
n.

(1.1)

Euler’s theorem and the simple yet fundamental idea in his proof, namely the
replacement of expressions of the form 1 + y by (1 − y2)/(1 − y) in products
and the study of the resulting cancellations, plays a crucial role in the theory of
partitions (see Andrews [3], for instance). Many proofs of Euler’s theorem are
known and a variety of important refinements of it have been obtained by Sylvester

K. Alladi (�)
Department of Mathematics, University of Florida, Gainesville, FL, USA
e-mail: alladik@ufl.edu

© Springer Nature Switzerland AG 2020
V. Pillwein, C. Schneider (eds.), Algorithmic Combinatorics: Enumerative
Combinatorics, Special Functions and Computer Algebra, Texts & Monographs
in Symbolic Computation, https://doi.org/10.1007/978-3-030-44559-1_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44559-1_2&domain=pdf
mailto:alladik@ufl.edu
https://doi.org/10.1007/978-3-030-44559-1_2


10 K. Alladi

[10], Fine [7], Bessenrodt [5] and others. Our approach here (see Sect. 2) is to prove
Euler’s theorem by only considering the series generating function of pd(n) and
an important (but under-utilized) amalgamation property of this series. We then
convert the series generating function of pd(n) to the series generating function
of po(n) by a suitable dissection of the terms of the series. In doing so we use 2-
modular Ferrers graphs to establish the equivalence. We then combine these ideas
with the conjugation of the Ferrers graphs of partitions into distinct parts to improve
a refinement of Euler’s theorem due to Fine [7] and to obtain a dual of a refinement
due to Bessenrodt [5].

Sylvester [10] improved upon many partition theorems of Euler by combinatorial
methods. In particular, using a graphical representation he was led to the Theorem S
below, which is a refinement of Theorem E. It is not easy to establish that the
graphical representation yields a bijective proof of Theorem S; this was recently
done by Kim and Yee [8].

Theorem S The number of partitions of an integer n into odd parts of which exactly
k are different is equal to the number of partitions of n into distinct parts which can
be grouped into k (maximal) blocks of consecutive integers.

Yet another refinement of Theorem E was found by Fine, namely,

Theorem F Let pd(n; k) denote the number of partitions of n into distinct parts
with largest part k. Let po(n; k) denote the number of partitions of n into odd parts
such that the largest part plus twice the number of parts is 2k+1. Then

pd(n; k) = po(n; k).

Fine observed this in 1954 but published it only in his 1988 monograph [7].
Fine’s proof of Theorem F was not combinatorial, but q-theoretic; it is sketched in
[3]. Andrews [3, p. 27] provides a q-theoretic proof in detail, but prior to that in
1966 [2], noted that Theorem F also falls out from Sylvester’s graphical proof of
Theorem E. Theorems S and F are refinements of Theorem E because by summing
over k we get Theorem E. Our approach to Theorem E yields a much simpler and
very direct proof of Theorem F and this is given in Sect. 3.

Bessenrodt [5] obtained the following elegant reformulation of Theorem E from
Sylvester’s bijection for Theorem S. This refinement is also a limiting case of the
deep lecture hall partition refinement of Theorem E due to Bousquet-Melou and
Eriksson [6].

Theorem B Let pd,k(n) denote the number of partitions of n into distinct parts
such that the alternating sum starting with the largest part is k. Let po,k(n) denote
the number of partitions of n into odd parts with total number of parts equal to k.
Then

pd,k(n) = po,k(n).
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We will provide in Sect. 4 a simple direct proof of Theorem B by considering
conjugates of the Ferrers graphs of partitions into distinct parts and then using
the amalgamation-dissection ideas to convert the generating function of pd,k(n)

into that of po,k(n). This also yields a dual of Theorem B and an improvement
of Theorem F (see Sect. 5).

As examples of some recent works pertaining to Theorem E (including its
analogs and Glaisher’s generalization to all odd moduli) and Theorem B, emphasiz-
ing combinatorial arguments, we mention the papers of Berkovich-Uncu [4], Straub
[9], and of Xiong and Keith [11]. But our approach is quite different.

We shall use the standard notation

(a)n = (a; q)n =
n−1∏

j=0

(1− aqj ), (1.2)

and

(a)∞ = (a; q)∞ = lim
n→∞(a)n =

∞∏

j=0

(1− aqj ), when |q| < 1. (1.3)

When the base is q , we write (a)n as in (1.2) for simplicity, but when the base is
anything other than q , it will be displayed.

2 New Proof of Theorem E

The series generating function of pd(n) is

∞∑

n=0

pd(n)q
n =

∞∑

m=0

qm(m+1)/2

(q)m
. (2.1)

This is due to Euler who noted that the generating function of all partitions having
exactly m parts is qm/(q)m. From such partitions we get all partitions into m distinct
parts by adding 0 to the smallest part, 1 to the second smallest part, . . . , and m− 1
to the largest part. This procedure is reversible. So the term

qm(m+1)/2

(q)m
(2.2)

on the right in (2.1) is the generating function of partitions into distinct parts with
exactly m parts.

The terms in (2.2) have an interesting amalgamation property, namely,

q(2m−1)2m/2

(q)2m−1
+ q2m(2m+1)/2

(q)2m
= q2m2−m

(q)2m
, (2.3)
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and its companion

q2m(2m+1)/2

(q)2m
+ q(2m+1)(2m+2)/2

(q)2m+1
= q2m2+m

(q)2m+1
. (2.4)

These amalgamation properties have not been fully exploited, and we shall use them
here. In particular, we note from (2.1) and (2.3) that

∞∑

n=0

pd(n)q
n = 1+

∞∑

m=1

q2m2−m

(q)2m
. (2.5)

Next, having amalgamated consecutive pairs of terms in (2.1) to get (2.5), we
will dissect the denominator terms in (2.5) into its odd and even components. More
precisely, we rewrite (2.5) as

1+
∞∑

m=1

q2m2−m

(q)2m
= 1+

∞∑

m=1

q2m2−m

(q2; q2)m(q; q2)m
. (2.6)

We will now show that the series on the right of (2.6) is the generating function of
po(n).

Represent a partition into odd parts as a 2-modular Ferrers graph, namely a
Ferrers graph in which there is a 1 at the node on the extreme right of each row,
and there is a 2 at every other node. Consider the Durfee square in this 2-modular
Ferrers graph, namely the largest square of nodes starting from the upper left hand
corner. Let the Durfee square be of dimension m × m. Now the part below this
Durfee square is a partition into odd parts the largest of which is ≤ 2m − 1. The
generating function of such partitions is

1

(q; q2)m
. (2.7)

The portion consisting of the Durfee square and the nodes to its right forms a
partition into exactly m odd parts each ≥ 2m − 1. If 2m − 1 is removed from
each of the m rows of this part of the graph, we remove 2m2 − m in total. The
remaining portion is a 2-modular Ferrer’s graph with only twos in it, and which,
if read columnwise, is a partition into even parts each ≤ 2m. Thus the generating
function of the Durfee square and portion to its right is

q2m2−m

(q2; q2)m
. (2.8)
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Thus we have shown that

1+
∞∑

m=1

q2m2−m

(q2; q2)m(q; q2)m
=

∞∑

n=0

po(n)q
n. (2.9)

Theorem E follows from (2.9), (2.6) and (2.5).

3 Simple Proof of Theorem F

The amalgamation-dissection idea of Sect. 2 yields the refined Theorem F as we
show here. But first, we introduce the following notation for convenience: For any
partition π , we let

λ(π) = largest part ofπ,

ν(π) = number of parts ofπ,

and

σ(π) = the sum of the parts ofπ.

Thus σ(π) is the integer being partitioned. Finally let D denote the set of partitions
into distinct parts, and 	, the set of partitions into odd parts.

By following the ideas of Euler that we described prior to (2.2), we get

∞∑

n=0

zntnqn(n+1)/2

(tq)n
=

∑

π∈D
zν(π)tλ(π)qσ(π). (3.1)

Even though this two parameter refined generating function of partitions into distinct
parts is fundamental, it has not been given much attention because it does not have
a product representation. However, if we set t = 1 and count only the number of
parts, then we get a product representation for the expression in (3.1), namely

∞∏

k=0

(1+ zqk),

and this product has been investigated in detail since the time of Euler. When we
set z = 1 in (3.1) and keep track only of the largest part, we do not get a product
representation for the series

∞∑

n=0

tnqn(n+1)/2

(tq)n
=

∑

π∈D
tλ(π)qσ(π). (3.2)
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Our emphasis here is on series and not infinite products. The terms of the series on
the left in (3.2) amalgamate as in (2.3) and (2.4), and this is interesting and useful
even though we do not have a product representation. More precisely we have,

t2m−1q(2m−1)2m/2

(tq)2m−1
+ t2mq2m(2m+1)/2

(tq)2m
= t2m−1q2m2−m

(tq)2m
. (3.3)

and its companion

t2mq2m(2m+1)/2

(tq)2m
+ t2m+1q(2m+1)(2m+2)/2

(tq)2m+1
= t2mq2m2+m

(tq)2m+1
. (3.4)

Thus using (3.3) we get

∞∑

n=0

tnqn(n+1)/2

(tq)n
= 1+

∞∑

m=1

t2m−1q2m2−m

(tq)2m
. (3.5)

As in (2.6), we dissect the denominator on the right in (3.5) and rewrite it as

∞∑

n=0

tnqn(n+1)/2

(tq)n
= 1+

∞∑

m=1

t2m−1q2m2−m

(tq2; q2)m(tq; q2)m
. (3.6)

We will now combinatorially interpret the coefficient of tk in (3.6).
We know already from (2.7) and (2.8) that the expression

t2m−1q2m2−m

(tq2; q2)m(tq; q2)m
(3.7)

without the parameter t , is the generating function of partitions π∗ into odd parts
whose 2-modular Ferrers graphs have an m×m Durfee square. How are the powers
of t generated in the expression in (3.7) and what does the power of t represent in
relation to the partition π∗? To understand this, we write the exponent k in the power
of t , say tk , in (3.7) as

k = (2m− 1)+ i + j, (3.8)

where t i is generated from the factor (tq2; q2)m, tj is generated by the factor
(tq; q2)m, and t2m−1 comes from the numerator. Thus from the arguments underly-
ing (2.8), we see that in the 2-modular graphs under consideration, (2m− 1)+ 2i =
λ(π∗), the largest part. Also m + j = ν(π∗), the number of parts, because there
are j parts below the Durfee square, and the Durfee square is of size m × m. Note
that (3.8) yields

λ(π∗)+ 2ν(π∗) = (2m− 1)+ 2i + 2(m+ j) = 2k + 1. (3.9)
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On the other hand, the coefficient of tk in (3.2) is the generating function of
the number of partitions into distinct parts with largest part k. So by comparing
coefficients of tk on both sides of (3.6), we get Theorem F from (3.2) and (3.8).

Remark As mentioned in the introduction, Fine’s proof of Theorem F (see [7,
p. 29 and p. 46]) was not combinatorial but involved transformations of q-series.
Andrews [3, p. 27] provides details of a q-theoretic proof of Theorem F using
Heine’s transformation and its consequences. Our proof given above is simpler and
more direct because all that is needed is to amalgamate pairs of consecutive terms
of the series generating function for partitions into distinct parts, and then to dissect
the denominator of the resulting expression into its odd and even components. This
actually leads to a refinement of Theorem F described below.

A Further Refinement Note that in the amalgamation in (2.3) and (3.3), we are
adding the generating functions of partitions π into distinct parts for which the
number of parts ν(π) = 2m− 1 or 2m. After the amalgamation and the dissection,
we interpreted the expression in (3.7) as the generating function of partitions into
odd parts π∗ whose 2-modular Ferrer’s graphs have an m×m Durfee square. Thus
we have the the following refinement of Theorem F:

Theorem F* Let pd(n; k,m) denote the number of partitions π of n into distinct
parts with λ(π) = k and ν(π) = 2m− 1 or 2m. Let po(n; k,m) denote the number
of partitions π∗ of n into odd parts with λ(π∗) + 2ν(π∗) = 2k + 1 and such that
the 2-modular Ferrers graph of π∗ has a Durfee square of dimension m×m. Then

pd(n; k,m) = po(n; k,m).

4 Conjugation of Partitions into Distinct Parts

If π is a partition into distinct parts, then its conjugate π∗, namely the partition
obtained by representing π as a Ferrers graph and considering the conjugate of this
graph, is a partition whose set of parts is the set of consecutive integers from 1 up to
ν(π). Thus letting ν denote ν(π), we have

σ(π) = σ(π∗) =
ν∑

i=1

ifi, (4.1)

where fi represents the frequency with which i occurs in π∗. We may rewrite the
sum on the right in (4.1) as

σ(π∗) = (f1 + f2 + . . .+ fν)+ (f2 + f3 + . . .+ fν)+ . . .+ (fν), (4.2)
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where the quantities within the parenthesis represent the parts of π in decreasing
order.

If we denote by s(π) as in [5], the alternating sum of the parts of π starting with
the largest part, then

s(π) = (f1+f2+. . .+fν)−(f2+f3+. . .+fν)+(f3+f4+. . .+fν)−(f4+f5+. . .+fν)+. . .

= f1 + f3 + f5 + . . . =: νo(π∗), (4.3)

where

νo(π
∗) = the number of odd parts ofπ∗.

So let us reformulate Theorem B as follows:

Theorem C Let C denote the set of partitions with the property that all integers up
to the largest part occur as parts. Let p∗C(n; 
) denote the number of partitions π∗
of n, π∗ ∈ C, with νo(π

∗) = 
.

Let p∗o(n; 
) denote the number of partitions of n into odd parts such that the
number of parts is 
. Then

p∗C(n; 
) = p∗o(n; 
).

A partition with the property that all integers up to the largest part occur as parts
is known as a partition without gaps. We call such partitions as chain partitions, and
C is the set of such partitions. Having reformulated Theorem B in terms of chain
partitions, we give a simple proof of Theorem C.

Proof of Theorem C Using Series For π∗ ∈ C, consider its largest part λ(π∗). If
the largest part is 2j − 1, then the generating function of such chain partitions π∗ is

q2j2−j zj

(zq; q2)j (q2; q2)j−1
, (4.4)

where the power of z in (4.4) is νo(π
∗). If the largest part of π∗ is 2j , then the

generating function is

q2j2+j zj

(zq; q2)j (q2; q2)j
. (4.5)

Now if we add the expressions in (4.4) and (4.5), they amalgamate to

q2j2−j zj

(zq; q2)j (q2; q2)j
.
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So we get

∑
pC(n; 
)z
tn =

∞∑

j=0

q2j2−j zj

(zq; q2)j (q2; q2)j
. (4.6)

Just as we showed (2.9) via Durfee squares, it follows that the series on the right
in (4.6) is

∞∑

j=0

q2j2−j zj

(zq; q2)j (q2; q2)j
=

∑

n

∑




p∗o(n; 
)z
qn. (4.7)

Theorem C follows from (4.6) and (4.7) without any appeal to infinite products.

Graphical Proof of Theorem C We now provide a bijective proof of Theorem C
using 2-modular graphs.

Start by representing a partition π into odd parts as a 2-modular graph. We
illustrate our bijective proof by considering the partition

25+ 21+ 15+ 15+ 13+ 9+ 7+ 7+ 7+ 3+ 1+ 1.

In this 2-modular graph, mark out the Durfee square. This is illustrated in Fig. 1.

Next delete the right most column of the Durfee square, fill them with ones, and
move any twos that were in the right most column to the extreme right position
on the same row. Thus the integer entries in the modified Durfee square (say of
dimension j ) add up to 2j2 − j . Group the integer entries in the modified Durfee
square as indicated in Fig. 2 to see that these represent the integers 1, 2, . . . , 2j − 1.
The rows below the modified square represent odd parts ≤ 2j − 1. The columns
to the right of the modified square represent even parts ≤ 2j . Thus if the modified
graph is viewed in this fashion, we get a chain partition π∗ with largest part either
2j − 1 or 2j . Notice that the number of parts of π equals then number of odd parts
of π∗ and this proves Theorem C.

5 A Dual of Theorem C and an Improvement of Theorem F

The graphical proof of Theorem C has interesting implications.
In the graphical proof given above, we focused on the number of parts. We now

see what happens if we consider the largest part.
Suppose the size of the largest part of the partition π represented in Fig. 1 is

2k + 1. As before we let the size of the Durfee square and the modified Durfee
square to be j . This means that the largest odd part λo(π

∗) of the chain partition π∗
given by Fig. 2 is 2j − 1. Consequently, 2, 4, . . . , 2j − 2 occur as even parts of π∗
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2 2 2 2 2 2 2 2 2 2 2 1
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2 2 2 2 2 2 2 1
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1

1

2

Fig. 1 5× 5 Durfee Square
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2 2 2 2 1 2 2 2

2 2 2 2 1 2 2
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2 2 2 1

2 1

1

1

2

Fig. 2 Modified 5× 5 Durfee Square

and these account for j − 1 even parts. The number of even parts of π∗ is given by
j−1 plus the number of columns to the right of the modified Durfee square. We may
interpret j − 1 as the number of twos in the first row of the modified Durfee square
in Fig. 2. Thus the number of even parts of π∗ is k. This leads to the following dual
of Theorem C:
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Theorem C* Let p∗o,k(n) denote the number of partitions of n into odd parts with
largest part 2k + 1.

Let p∗C,k(n) denote the number of chain partitions of n with k even parts. Then

p∗o,k(n) = p∗C,k(n)

Remarks

(i) Theorem C* is a dual of Theorem C because in Theorem C we counted the
number of odd parts of π whereas in Theorem C* we count the size of the
largest odd part of π ; similarly in Theorem C we count the number of odd
parts of π∗ whereas in Theorem C* we count the number of even parts of π∗.
Thus by reformulating Theorem B in terms of Theorem C, we have arrived at
the dual Theorem C*.

(ii) By combining Theorems C and C* we get Fine’s Theorem F. This is because
with νe(π

∗) representing the number of even parts of π∗, we can write
Theorem C* in the form

λ(π) = 2νe(π
∗)+ 1. (5.1)

Similarly we may write Theorem C in the form

ν(π) = νo(π
∗). (5.2)

Thus (5.1) and (5.2) yield

λ(π)+ 2ν(π) = 2νe(π∗)+ 1+ νo(π
∗) = 2ν(π∗)+ 1. (5.3)

By taking the conjugate of π∗ the number of parts of π∗ is converted to
the largest part of the conjugate partition, which is a partition into distinct
parts, and this is precisely Fine’s theorem. Thus Theorems C and C* are
improvements of Fine’s theorem.

(iii) In Sect. 4 we noted that the infinite series in (4.6) and (4.7) can be interpreted in
two different ways to be realized as the generating function of the two partition
functions p∗C(n; 
) and p∗o(n; 
) in Theorem C. Similarly, the analytic version
of Theorem C* is

∑

n

∑

k

p∗o,k(n)wkqn = 1+
∞∑

k=0

wkq2k+1

(q; q2)k+1
(5.4)

= 1+
∞∑

j=1

wj−1q2j2−j

(q; q2)j (wq2; q2)j
=

∑

n

∑

k

p∗C,k(n)w
kqn.
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Note that the series on the right in (5.4) is the dual of the series in (4.6) and (4.7)
because in (4.6) the power of z is counting the number of odd parts, whereas
on the right in (5.4) the power of w is counting the number of even parts.

Identities (4.6), (4.7), and (5.4) can be combined into a single identity as follows:

1+
∞∑

k=0

wkzq2k+1

(zq; q2)2k+1
= 1+

∞∑

j=1

wj−1zjq2j2−j

(zq; q2)j (wq2; q2)j
. (5.5)

Note that in (4.6) and (4.7) we did not have the series on the left in (5.5) with w = 1
because we did not need it. Instead we interpreted the series on the right in (5.5)
with w = 1 in two different ways one of which relied on an amalgamation.

It turns out that the series on the right in (5.5) is a special case of a certain variant
of the Rogers-Fine identity as we shall see in the next section.

6 Connection with the Rogers-Fine Identity

In the previous section we studied the 2-modular graphs of partitions into odd parts
by keeping track of the largest part and the number of parts. What if we also keep
track of the number of different odd parts? This leads us to a variant of the Rogers-
Fine identity as we show now.

The Rogers-Fine identity in the form obtained by Fine [7, 14.1] is

F(α, β, τ ; q) =:
∞∑

n=0

(αq)nτ
n

(βq)n
=

∞∑

n=0

(αq)n(ατq/β)nβ
nτnqn2

(1− ατq2n+1)

(βq)n(τ )n+1
.

(6.1)

Fine proved it by considering transformation properties of F(α, β, τ ; q) defined by
the series on the left in (6.1).

In [1] we obtained the following variant of the Rogers-Fine identity:

f (a, b, c; q) =: 1+
∞∑

k=1

(1− a)(abq)k−1bc
kqk

(bq)k
(6.2)

= 1+
∞∑

j=1

bjcjqj2
(1− a)(abq)j−1(acq)j−1(1− abcq2j)

(bq)j (cq)j
.

Fine’s function f and our function f are connected by the relation

(1− bq)

(1− a)bcq
{f (a, b, c; q)− 1} = F(ab, bq, cq; q) (6.3)
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and so (6.1) and (6.2) are equivalent. The reason we investigated (6.2) was because
it is combinatorially more interesting, and also can be established combinatorially
in a very direct fashion.

The function f (a, b, c; q) defined by the series on the left in (6.2) is the
generating function of unrestricted partitions in which the power of b keeps track of
the number of parts, the power of c keeps track of the largest part, and the power
of 1 − a keeps track of the number of different parts. It is to be noted that for
unrestricted partitions the generating function f (a, b, c; q) has an infinite product
representation only when b or c equals 1. Thus when one keeps track of all three
statistics λ(π), ν(π), and νd(π) (= the number of different parts of π), then one
will NOT have a product representation but will have to deal only with a series
representation. This is in line with the philosophy of this paper emphasizing series
and removing dependence on infinite product representations. In order to pass from
the defining series of f to the series on the right in (6.2), we studied in [1] the
Ferrers graphs of unrestricted partitions using Durfee squares and the fact that
under conjugation λ(π) and ν(π) get interchanged, and νd(π) remains invariant.
We needed to use the invariance of νd(π) under conjugation only on the portion of
the Ferrers graph to the right of the Durfee square. This aspect will be crucial in the
remark below.

The ideas in [1] can be applied to the 2-modular Ferrers graphs of partitions into
odd parts. Without getting into details, we simply point out that what this means is
to replace

q �→ q2, and b �→ bq−1 (6.4)

in (6.2). This yields

∞∑

k=1

(1− a)(abq; q2)k−1bc
k−1q2k−1

(bq; q2)k
(6.5)

=
∞∑

j=1

bj cj−1q2j2−j (1− a)(abq; q2)j−1(acq; q2)j−1(1− abcq4j−1)

(bq; q2)j (cq2; q2)j
.

Note that if we set a = 0, that is if we do not count the number of different odd parts
in the graph, then (6.5) reduces to (5.5) with the identifications b = z and c = w.

We conclude by showing how Sylvester’s theorem can be deduced from (6.5).
For this purpose we state the dual of Sylvester’s theorem by replacing partitions
into distinct parts by chain partitions. Under conjugation, given a partition π into
distinct parts having k maximal blocks of consecutive integers, its conjugate, namely
the chain partition π∗ will have k−1 parts less than the largest part that repeat. Thus
the dual of Sylvester’s theorem is:

Theorem S* The number of partitions of an integer into odd parts of which exactly
k are different equals the number of chain partitions of that integer having k − 1
parts less than the largest part that repeat.
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Theorem S* can be deduced from (6.5) as follows. First decompose

1− abcq4j−1 = cq2j (1− abq2j−1)+ (1− cq2j ). (6.6)

When 1− abcq4j−1 is first replaced by cq2j (1− abq2j−1) on the right in (6.5), the
resulting series can be interpreted as the generating function of chain partitions with
largest part even. Similarly when 1 − abcq4j−1 is next replaced by (1 − cq2j ) on
the right in (6.5), the resulting series can be interpreted as the generating function
of chain partitions with largest part odd. Thus Theorem S* will fall out of (6.5)
and (6.6).

Remarks

(i) In the case of Ferrers graphs of unrestricted partitions, the number of different
parts is the number of corners and this is invariant under conjugation. When
one considers the 2-modular graphs of partitions into odd parts, the number of
different parts is the number of corners, but under conjugation we do not have
a 2-modular graph. This awkwardness is circumvented by replacing the graph
in Fig. 1 by the graph in Fig. 2 so that the portion to the right of the Durfee
square consists only of twos. The number of different odd parts that are at least
as large as 2j − 1 where j is the dimension of the Durfee square is given by
the number of corners to the right of the Durfee square and we can keep track
of this by conjugation since that portion of the graph in Fig. 2 has only twos in
it.

(ii) Zeng [9] has studied combinatorially the original Rogers-Fine identity (6.1)
under the dilation q �→ q2, and with α, β chosen suitably so as to deal
with partitions into odd parts. Our approach uses the variant (6.2) and so is
combinatorially more direct. Also we have preferred to replace partitions into
distinct parts by chain partitions. Hence there are essential differences between
our approach and Zeng’s.

Acknowledgements I thank the referee for a very careful reading of the manuscript and for helpful
suggestions. I also thank Frank Garvan for help with the figures.
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Sequences in Partitions, Double q-Series
and the Mock Theta Function ρ3(q)

George E. Andrews

Dedicated to an outstanding mathematician and my good
friend, Peter Paule.

1 Introduction

This paper is devoted to the partition-theoretic aspects of

Hr,s(k, a, x, q) =
∑

n,j≥0

(−1)jxaj+nq(aj+n)2+k(n2)+rn+2asj

(q; q)n(q2a; q2a)j
, (1)

where a ≥ 1 and k ≥ 0 are integers, and

(A; q)m = (1− A)(1− Aq) . . . (1− Aqm−1).

In particular, we study two subfamilies, namely

fr,s(a, x, q) = Hr,s(1, a, x, q), (2)

and

gr,s(a, x, q) = Hr,s(0, a, x, q). (3)

There are two main theorems. In each of these theorems, the generating function
in question will have the exponent of q recording the number being partitioned and
the exponent of x will record the number of parts of the partitions being considered.
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Theorem 1 g0,0(a, x, q) is the generating function for partitions wherein the
difference between parts is at least 2 and where maximal sequences of consecutive
odd parts must be of length congruent to 0, 1, 2, . . . , a− 1(mod 2a). Odd parts are
consecutive if they differ by 2.

g1,1(a, x, q) is the generating function for the same partition with the added
condition that 1 is not allowed as a part.

For example,

g0,0(2, 1, q) = 1+ q + q2 + q3 + q4 + 2q5 + 3q6 + 3q7 + 3q8 + 4q9 + . . .

and the four relevant partition of 9 are 9, 8 + 1, 7 + 2, 6 + 3. Note that 5 + 3 + 1
is excluded because it is a maximal sequence of odd parts of length 3 �≡ 0 or 1
(mod 4).

We shall also see that, as a corollary of Theorem 1 (cf. Theorem 8),

g0,0(1, 1, q) =
∏

n=1
n�=0,±3(mod 7)

(1− q2n)−1. (4)

Our second central result is related to overpartitions, the subject initiated by
Corteel and Lovejoy [10]. An overpartition is an ordinary integer partition with the
added condition that the first appearance of any given part may be overlined. Thus
the eight overpartitions of 3 are 3, 3̄, 2+ 1, 2̄+ 1, 2+ 1̄, 2̄+ 1̄, 1+ 1+ 1, 1̄+ 1+ 1.

Theorem 2 f0,0(a, xq
2, q)/(xq2; q2)∞ is the generating function for overparti-

tions subject to the following conditions (i) all parts are ≥ 2, (ii) 2̄ is never a
part, (iii) all odd parts are distinct and overlined, (iv) if a is odd, the following
subsequence of parts is not allowed for any j ≥ 0:

(2j + 3)+ (2j + 6)+ (2j + 6)+ (2j + 10)+ (2j + 10)+ · · · + (2j + 2a)+ (2j + 2a),
(5)

(v) if a is even, the following subsequence of parts is not allowed for any j ≥ 0:

(2j + 4)+(2j+4)+(2j + 8)+(2j+8)+(2j + 12)+(2j+12)+·+(2j + 2a)+(2j+2a).
(6)

(vi) the difference between overlined parts is ≥ 3.

When a = 1, Theorem 2 is connected to the Rogers-Ramanujan identities [2, Ch.
7] (see Sect. 9):

f0,0(1, x, q) =
∑

n≥0

xnq2n2

(q2; q2)n
. (7)
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When a = 3, Theorem 2 is related to the third order mock theta function ρ3(q)

[19, p. 62] (see Sect. 10), namely

f0,0(3, q2, q)

(q2; q2)∞
= (q3; q6)∞

(q; q2)∞
ρ3(q) = (q3; q6)∞

(q; q2)∞

∞∑

n=0

q2n(n+1)(q; q2)n+1

(q3; q2)n+1
(8)

= 1+ q2 + q3 + 3q4 + 2q5 + 5q6 + 4q7 + 9q8 + · · · ,

and the nine relevant partitions of 8 are 8, 8̄, 6 + 2, 6̄ + 2, 4̄ + 4, 4 + 4, 4 + 2+ 2,
4̄ + 2 + 2, 2 + 2 + 2 + 2. ρ3(q) is the third order mock theta function[19, p. 62]
defined by

ρ3(q) =
∑

n≥0

(q; q2)nq
2n(n+1)

(q3; q6)n
.

There is a somewhat scattered history of sequences in partitions dating back
to Sylvester [18]. In Sect. 2, we provide a sketch of previous work including the
joint paper with Bringmann and Mahlburg [6]. Section 3 provides the necessary
q-difference equation satisfied by Hr,s(k, a, x, q). The following three sections
then develop the theory surrounding gr,s(a, x, q) including Theorem 1 and Eq. (4).
Sections 7 through 10 study fr,s(a, x, q) including Theorem 2 and Eq. (5). We
conclude with some open questions.

2 History of Sequences in Partitions

J. J. Sylvester was the first to look at sequences in partitions [18, Th. 2.12].

Sylvester’s Theorem Let Ak(n) denote the number of partitions of n into odds with
exactly k different parts. Let Bk(n) denote the number of partitions of n into distinct
parts composed exactly k noncontiguous sequences of one or more consecutive
integers. Then

Ak(n) = Bk(n).

For example A3(13) = 5 enumerating 9+ 3 + 1, 7+ 5+ 1, 7+ 3+ 1+ 1+ 1,
5+3+1+1+1+1+1, and 5+3+3+1+1;B3(13) = 5 enumerating 9+3+1,
8+ 4+ 1, 7+ 5+ 1, 7+ 4+ 2, 6+ 4+ 2+ 1.

P. A. MacMahon [15, Sec. VII, Ch. IV, pp 49–58] was the next to consider
sequences in partitions. The most well-known of his theorems is the following.

MacMahon’s Theorem The number of partitions of n without sequences (i.e. no
consecutive integers) and no 1’s equals the number of partitions of n into parts
�≡ ±1 (mod 6).
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In 1978, in his unpublished Ph.D. thesis [13, Ch. 5, pp. 51–56] M. D. Hirschhorn
proved that the generating function for partitions into distinct parts with all
sequences of consecutive integers of length ≤ k and with all parts < n is given
by

∑

j≥0

xjq(
j+1

2 )
∑

j l≤j

(−1)lqk(l2)
[
n− j

l

]

qk

[
n− kl − 1

j − kl

]

q

, (9)

where

[
A

B

]

q

=
{

(q;q)A
(q;q)B(q;q)A−B

for 0 ≤ B ≤ A

0 otherwise.
(10)

Hirschhorn examined the case when n → ∞ and related the result to the Rogers-
Ramanujan identities when k = 2.

In 2015, Bringmann et al. [9] rediscovered some of Hirschhorn’s theorems
(owing to the fact that Hirschhorn’s result was never published outside of his Ph.D.
thesis).

In 2004, Holroyd et al. [14] looked at pk(n), the number of partitions of n that
do not contain a sequence of consecutive integers of length k. They proved that if

Gk(q) =
∑

n≥0

pk(n)q
n, (11)

then

logGk(q) ∼ π2

6

(

1− 2

k(k + 1)

)
1

1− q
, as q → 1− (12)

In 2005, a double series representation of Gk(q) was given [3]

Gk(q) = 1

(q; q)∞
∑

n,j≥0

(−1)jq(
k+1

2 )(n+j)2+(k−1)(n+1
2 )

(qk; qk)j (qk+1; qk+1)n
, (13)

and it was shown that

G2(q) = (−q3; q3)∞
(q2; q2)∞

χ3(q), (14)
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where χ3(q) is one of Ramanujan’s third order mock theta functions [18, p. 62]
given by

χ3(q) =
∞∑

n=0

(−q; q)nqn2

(−q3; q3)n
.

An analogous identity will arise in Sect. 10.
There have been subsequent studies related to pk(n), in [8] and [7].
In 2013, Bringmann et al. [7] studied p̄k(n), where the concept of sequences in

partitions was extended to overpartitions.
Namely, they define lower k-run overpartitions to be those overpartitions in

which any overlined part must occur within a run of exactly k consecutive overlined
parts that terminates below with a gap. More precisely, this means that if some
part m̄ is overlined, then there is an integer j with m ∈ [j + 1, j + k] such that
each of the k overlined parts j + 1, j + 2, . . . , j + k appear (perhaps together with
non-overlined versions), while no part j (overline or otherwise) appears, and no
overlined part j + k + 1 appears.

They proved that if

Gk(q) =
∑

n≥0

pk(n)q
n, (15)

then

Gk(q) = 1

(q; q)∞
∑

n,j≥0

(−1)j q(
k+1

2 )(n+j)2+(k+1)(j+1
2 )

(qk; qk)n(qk+1; qk+1)j
. (16)

In that paper, the third order mock theta function φ3(q) arises [19, p. 62], namely

G1(q) = (q; q)∞φ3(q), (17)

where

φ3(q) =
∞∑

n=0

qn2

(−q2; q2)n
. (18)

We now come to the precursor to the current paper, namely [6], a joint work with
Bringmann and Mahlburg. One of the main results there (and the one that inspired
this article), is, in our current notation

∑

n,j≥0

(−1)jxn+2j q(n+3j)2+(n2)
(q; q)n(q6; q6)j

= (x; q3)∞
∞∑

n=0

(−q; q3)n(−q2; q3)nx
n

(q3; q3)n
. (19)

From (19), one may deduce Schur’s 1926 theorem [16].
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Much of [6] is devoted to special cases of

R(s, t, l, u, v,w) =
∑

n,j≥0

(−1)jqs(n+uj
2 )+t (n+uj)+uv(j2)+(w+ul)j

(q; q)n(quv; quv)j
. (20)

It is easy to see that

R(3, 1, 0, 2, 3, 4) = f0,0(3, 1, q),

and this fact will lead to interesting identities is Sect. 11.
The only difference between the left side of (19) and f00(3, x, q) lies in the

exponent on x, and, as we will see in Sect. 11, this seems to be the subtle difference
between Schur’s original theorem [16] and what has become known as the Alladi-
Schur theorem [4–6].

3 q-Difference Equations for Hr,s(k, a, x, q)

Lemma 3 Hr+2,s+1(k, a, x, q) = Hr,s(k, a, xq
2, q).

Proof

Hr+2,s+1(k, a, x, q) =
∑

n,j≥0

(−1)jxaj+nq(aj+n)2+k(n2)+(r+2)n+2a(s+1)j

(q; q)n(q2a; q2a)j

=
∑

n,j≥0

(−1)j (xq2)aj+nq(aj+n)2+k(n2)+rn+2asj

(q; q)n(q2a; q2a)j

= Hr,s(k, a, xq
2, q).

Lemma 4

Hr,s(k, a, x, q)−Hr+1,s(k, a, x, q) = xq1+rHr+k,s(k, a, xq
2, q).

Proof

Hr,s(k, a, x, q)−Hr+1,s(k, a, x, q)

=
∑

n,j≥0

(−1)jxaj+nq(aj+n)2+k(n2)+rn+2asj (1− qn)

(q; q)n(q2a; q2a)j
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=
∑

n,j≥0

(−1)jxaj+n+1q(aj+n+1)2+k(n+1
2 )+r(n+1)+2asj

(q; q)n(q2a; q2a)j
(by shifting n to n+ 1)

=xqr+1Hr+k,s(k, a, xq
2, q).

Lemma 5

Hr,s(k, a, x, q)−Hr,s+1(k, a, x, q) = −xaqa2+2asHr,s(k, a, xq
2a, q).

Proof

Hr,s(k, a, x, q)−Hr,s+1(k, a, x, q)

=
∑

n,j≥0

(−1)j xaj+nq(aj+n)2+k(n2)+rn+2asj (1− q2aj)

(q; q)n(q2a; q2a)j

=
∑

n,j≥0

(−1)j xaj+n+aq(aj+a+n)2+k(n2)+rn+2asj+2as

(q; q)n(q2a; q2a)j
(by shifting j to j + 1)

=− xaqa2+2asHr,s(k, a, xq
2a, q).

Lemma 6

Hr,s(k, a, x, q)−Hr,s(k, a, xq
2, q)

=− xaqa2+2asHr,s(k, a, xq
2a, q)

+ xqr+1Hr+1,s+1(k, a, xq
2, q)

+ xqr+2Hr+k−1,s(k, a, xq
4, q).

Proof

Hr,s(k, a, x, q)−Hr,s(k, a, xq
2, q)

=
∑

n,j≥0

(−1)j xaj+nq(aj+n)2+k(n2)+rn+2asj ((1− q2aj)+ q2aj (1− q2n)
)

(q; q)n(q2a; q2a)j

=− xaqa2+2asHr,s(k, a, xq
2a, q)

+
∑

n,j≥0

(−1)j xn+1+ajq(aj+n)2+2(aj+n)+1+k(n2)+kn+r(n+1)+2asj+2aj(1+ qn+1)

(q; q)n(q2a; q2a)j

=− xaqa2+2asHr,s(k, a, xq
2a, q)
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+ xqr+1Hr+k,s+1(k, a, xq
2, q)

+ xqr+2Hr+k+1,s+1(k, a, xq
2, q)

=− xaqa2+2asHr,s(k, a, xq
2a, q)

+ xqr+1Hr+k,s+1(k, a, xq
2, q)

+ xqr+2Hr+k−1,s(k, a, xq
4, q) (by Lemma 3).

4 q-Difference Equation for g0,0(a, x, q)

The lemmas of Sect. 3 allow us to obtain defining q-difference equations for
g0,0(a, x, q). This will be the foundation for the partition-theoretic interpretation.

Theorem 7

g1,1(a, x, q) = g0,0(a, xq
2, q)+ xq2g1,1(a, xq

2, q), (21)

g0,0(a, x, q) = g1,1(a, x, q)+ xqg0,0(a, xq
2, q) (22)

− xaqa2
g0,0(a, xq

2a, q)+ xa+1q(a+1)2
g0,0(a, xq

2a+2, q).

Proof Recall that

gr,s(a, x, q) = Hr,s(0, a, x, q). (23)

Hence by Lemma 4 with r = s = 1, k = 0

g1,1(a, x, q) = g2,1(a, x, q)+ xq2q1,1(a, xq
2, q) (24)

= g0,0(a, xq
2, q)+ xq2g1,1(a, xq

2, q),

by Lemma 3, and (21) is established.
We now turn to (22). First, by Lemma 5, with r = 1, s = 0, k = 0

g1,0(a, x, q) = g1,1(a, x, q)− xaqa2
g1,0(a, xq

2a, q). (25)

By Lemma 4, with r = s = k = 0,

g0,0(a, x, q) = g1,0(a, x, q)+ xqg0,0(a, xq
2, q). (26)
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Utilizing (26) to eliminate g10 from (25), we obtain after simplification

g1,1(a, x, q) = g0,0(a, x, q)− xqg0,0(a, xq
2, q) (27)

+xaqa2
(
g0,0(a, xq

2a, q)− xq2a+1g0,0(a, xq
2a+2, q)

)
,

and isolating g0,0(a, x, q) on one side of the equation we find that (22) has been
proved. ��

5 Proof of Theorem 1

Here is what is required, we observe from (1), that both g0,0(a, x, q) and
g1,1(a, x, q) may (for integer a ≥ 1) be expanded into double power series in
x and q . We want the coefficient of xmqn in each series to be the number of
partitions of n into m parts as prescribed in Theorem 1. We also note that the initial
conditions,

gr,s(a, 0, q) = gr,s(a, x, 0) = 1, (28)

are fully consistent with the assertion that the empty partition of 0 is counted by
each class of partitions.

It is also clear that the q-difference equations (21) and (22) together with (28)
uniquely define both g0,0(a, x, q) and g1,1(a, x, q). So to conclude the proof of
Theorem 1 we only need to show that the generating functions for the partitions
described in Theorem 1 fulfill (21) and (22).

In the following, we note that the replacement of x by xqj in any of our
generating functions, in fact, adds j to each part of each partition being enumerated.

To treat (21), we split the partitions asserted to be enumerated by g1,1(a, x, q)

into two classes: (i) those partitions that do not contain a 2, and (ii) those that do
contain a 2. The partitions in (i) are clearly those enumerated by g0,0(a, xq

2, q).
The partitions considered by (ii) must have a 2 (hence xq2) and the remaining parts
must be≥ 4 (hence g1,1(a, xq

2, q)). Note that the last transformation does not alter
the parity of parts nor the length of subsequences of consecutive odd integers.

Equation (22) is rather more intricate. How does the right hand side of (22)
account precisely for the partitions being generated by g0,0(a, x, q), the left hand
side of (22)?

Clearly g1,1(a, x, q) covers the partitions that have no 1 as a part.
The term xqg0,0(a, xq

2, q) correctly generates the partitions that contain 1
as a part with the following exception: (A) we now have 1 in subsequences of
consecutive odd parts of length a(mod 2a), and (B) we do not have 1 in any
subsequences of consecutive odd parts of length 0(mod 2a).
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To rectify (A) and (B) requires the final two terms on the right side of (22). The
term

−xaqa2
g0,0(a, xq

2a, q) = −xaq1+3+4+···+(2a−1)g0,0(a, xq
2a, q)

does subtract off the offending sequences from (A), but it also introduces with a
minus sign sequences of odds (starting with 1) of length a + 1, a + 2, . . . , 2a − 1
(mod 2a).

To correct for this, the term

xa+1q(a+1)2
g0,0(a, xq

2(a+1), q)

=xa+1q1+3+5+···+(2a+1)g0,0(a, xq
2(a+1), q)

adds back in sequences of consecutive odd parts (starting with 1) of length a +
1, a+ 2, . . . , 2a (mod 2a). I.e. it cancels the newly introduced sequences of length
a + 1, a + 2, . . . , 2a − 1(mod 2a) and puts back in sequences of length 2a ≡ 0
(mod 2a).

Thus (22) has been established for g0,0(a, x, q) and g1,1(a, x, q) as generating
functions for the partitions described in Theorem 1. Hence Theorem 1 is proved.

6 Rogers-Ramanujan Aspects of gr,s(1, x, q)

We shall now reveal, both via analysis and via partitions, the relation of gr,s(1, x, q)
to the Rogers-Ramanujan identities at modulus 14.

Theorem 8

g0,0(1, 1, q) =
∞∏

n=1
n�≡0,±3(mod 7)

1

1− q2n , (29)

g1,1(1, 1, q) =
∞∏

n=1
n�≡0,0,±2(mod 7)

1

1− q2n , (30)

g0,0(1, q2, q) =
∞∏

n=1
n�≡0,±1(mod 7)

1

1− q2n . (31)
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Analytic Proof.

gr,s(1, x, q) =
∑

n,j≥0

(−1)jxn+j q(j+n)2+rn+2sj

(q; q)n(q2; q2)j

=
∑

n≥0

xnqn2+rn(xq1+2n+2s; q2)∞
(q; q)n (by [2, p. 19, eq. (2.2.6)])

=(xq; q2)∞
∑

n≥0

xnqn2+rn

(q; q)n(xq; q2)n+s

.

Hence

g0,0(1, 1, q) = (q; q2)∞
∑

n≥0

qn2

(q; q)n(q; q2)n

= (q; q2)∞(q6; q14)∞(q8; q14)∞(q14; q14)∞
(q; q)∞ (by [17, p. 158, eq. (61)])

=
∞∏

n=1
n �≡0,±3(mod 7)

1

1− q2n
.

Next

g1,1(1, 1, q) = (q; q2)∞
∑

n≥0

qn2+n

(q; q)n(q; q2)n+1

= (q; q2)∞(q4; q14)∞(q10; q14)∞(q14; q14)∞
(q; q)∞ (by [17, p. 158, eq, (60)])

=
∏

n=1
n �≡0,±2(mod 7)

1

1− q2n
.

Finally

g0,0(1, q
2, q) = (q3; q2)∞

∑

n≥0

qn2+2n

(q; q)n(q3; q2)n

= (q; q2)∞(q2; q14)∞(q12; q14)∞(q14; q14)∞
(q; q)∞ (by [17, p. 157, eq. (59)])

=
∞∏

n=1
n �≡0,±1(mod 7)

1

1− q2n
.
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Proof via Partitions We recall the following special case of B. Gordon’s general-
ization of the Rogers-Ramanujan identities [2, Ch. 7].

Theorem The number of partitions of an even 2N into even parts where: (1) none
appears more than twice, (2) if a part appears twice then all parts are at least 4 units
away, and (3) two appears at most j times (j = 0, 1, 2) EQUALS the coefficient of
q2N in

∞∏

n=1
n�≡0,±(j+1)(mod 7)

1

1− q2n .

Now we need only identify the partitions generated by g0,0(1, 1, q), g1,1(1, 1, q)
and g0,0(1, q2, q) respectively with the partitions given above in the special case of
Gordon’s Theorem.

We know that in g0,0(1, x, q) and g1,1(1, x, q) all parts differ by at least 2. Now
suppose we have a sequence of consecutive odd integers as parts (note that since
a = 1, the sequence must be of even length):

(
< (2h−3)

)+(2h−1)+(2h+1)+(2h+3)+(2h+5)+· · ·+(2i−1)+(2i+1)+(> 2i+3)

and we replace this by

(
< (2h−3)

)+ (2h)+ (2h)+ (2h+4)+ (2h+4)+· · ·+ (2i)+ (2i)+ (> 2i+3).

Thus whenever odd parts appear they must appear in pairs as indicated, and, as we
see, these directly transform into the repeated parts that are allowed in Gordon’s
theorem.

Finally g0,0(1, 1, q) would allow 1 + 3 to appear translating into two appearing
twice. So by the Theorem,

g0,0(1, 1, q) =
∞∏

n=1
n�≡0,±3(mod 7)

1

1− q2n ;

g1,1(1, 1, q) allows no 1’s so 2 can appear at most once after translation. Hence by
the theorem,

g1,1(1, 1, q) =
∏

n=1
n�≡0,±2(mod 7)

1

1− q2n ,
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and lastly g0,0(1, q2, q) has smallest part ≥ 3 so no 2’s appear at all. Hence by the
Theorem

g0,0(1, q
2, q) =

∞∏

n=1
n�≡0,±1(mod 7)

1

1− q2n .

7 q-Difference Equations for f00(a, x, q)

Paradoxically the q-difference equation is simpler than the one for g00(a, x, q)

while the partition theoretic interpretation is a good deal more complicated.

Theorem 9

f0,0(a, x, q) = f0,0(a, xq
2, q)+ (xq + xq2)f0,0(a, xq

4, q) (32)

+x2q5f0,0(a, xq
6, q)− xaqa2

f0,0(a, xq
2a, q).

Proof By Lemma 6, with r = s = 0, k = 1,

f0,0(a, x, q) = f0,0(a, xq
2, q)− xaqa2

f0,0(a, xq
2a, q) (33)

+xqf1,1(a, xq
2, q)+ xq2f0,0(a, xq

4, q).

Next by Lemma 4, with r = s = k = 1,

f1,1(a, x, q) = f2,1(a, x, q)+ xq2f2,1(a, xq
2, q) (34)

= f0,0(a, xq
2, q)+ xq2f0,0(a, xq

4, q). (by Lemma 3)

Using (34) to eliminate f1,1(a, xq
2, q) from (33), we obtain (32). ��

It would be lovely if we could use f0,0(a, x, q) directly as a generating function
for partitions. However if a > 1, the expansion of f0,0(a, x, q) has negative terms.
For example

f0,0(2, x, q) = 1+ xq + xq2 + xq3 + (−x2 + x)q4 + · · ·

This problem is overcome by introducing the factor 1/(xq2; q2)∞ in Theorem 2.
In addition, the replacement of x by xq2 yielding f0,0(a, xq

2, q)/(xq2; q2)∞ is
done primarily to produce (8) in the case a = 3.
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8 Proof of Theorem 2

Before we undertake this proof, a few comments are in order. First, this is a result
about overpartitions, where the generating function is

F(a, x, q) := f0,0(a, xq
2, q)

(xq2; q2)∞
. (35)

At first glance, it appears that the f0,0(a, xq
2, q) produces the overlined parts, and

1/(xq2; q2)∞ produces the non-overlined parts; so why mix the two. Of course, the
answer lies in conditions (v) and (vi) where interwoven sequences of overlined and
non-overlined parts are excluded.

We observe that the xq2 in f0,0(a, xq
2, q) is necessary for the proof of

Theorem 2, but f0,0(a, x, q) would be more natural for the cases a = 1 and 3
treated in Sects. 9 and 10.

We note for subsequent use that the sums in (5) and (6) are both equal to a2+ 2a
where j = 0, and each has exactly a summands.

In order to understand the intricacies of F(a, x, q), we rewrite (32) in terms of
F(a, x, q) with x replaced by xq2:

F(a, x, q) = F(a, xq2, q)

1− xq2 + (xq 3̄ + xq 4̄)

(1− xq2)(1− xq4)
F (a, xq4, q) (36)

+ x2q 3̄+6̄F(a, xq6, q)

(1− xq2)(1− xq4)(1− xq6)
− xaqa2+2aF (a, xq2a, q)

(1− xq2)(1− xq4) · · · (1− xq2a)
.

Now if we let a →∞, we see from (35) and (2) that

F(∞, x, q) = 1

(xq2; q2)∞

∑

n≥0

xnq3n(n+1)/2

(q; q)n . (37)

Thus clearly F(∞, x, q) is the generating function for overpartitions where only
even parts can avoid overlines, and the difference between overlined parts is ≥ 3,
and all overlined parts are ≥ 3.

Indeed, if we let a → ∞ in (36) we see that the final term vanishes and what
remains is a q-difference equation that uniquely defines the generating function for
the overpartitions listed in the previous paragraph.

In order to complete the proof of Theorem 2 we must determine the effect of
the final term in (36). This is, indeed, accounted for by condition (iv) and (v) in
Theorem 2. There are exactly a summands in each of (5) and (6). Also as noted
previously, when j = 0, the numerical sum in both (5) and (6) is a2 + 2a.

Thus final term in (36) excludes either

3̄+ 6̄+ 6+ 10+ 10+ · · · + 2a + 2a



Sequences in Partitions, Double q-Series and the Mock Theta Function ρ3(q) 39

if a is odd, and

4̄+ 4+ 8̄+ 8+ 12+ 12+ · · · + 2a + 2a

if a is even.
In addition, the instances of (5) and (6) with j > 0 are thus also excluded by the

action of (36) as it generates the partitions of Theorem 2.

9 Theorem 2 for a = 1

We shall provide two proofs of (7).

First Proof (Analytic)

f0,0(1, x, q) =
∑

n,j≥0

(−1)j xn+j q(n+j)2+(n2)
(q; q)n(q2; q2)j

(38)

=
∑

N≥0

xNqN2
N∑

j=0

(−1)j q(
N−j

2 )

(q; q)N−j (q2; q2)j
(39)

=
∑

N≥0

xNqN2

(q; q)N
N∑

j=0

(q−N ; q)jqj

(q; q)j(−q; q)j (40)

=
∑

N≥0

xNqN2

(q; q)N ·
qN2

(−q; q)N (by [12, p. 236, eq. (II.6)]) (41)

=
∑

n≥0

xNq2N2

(q2; q2)N
(42)

which is equivalent to (7).

Second Proof (Combinatorial) When a = 1, condition (iv) and (5) required that
no parts are odd. Hence the overlined parts are all even, ≥ 4, and differ by ≥ 3 and
thus must differ by ≥ 4. Hence

f0,0(1, xq2, q)

(xq2; q2)∞
= F(1, x, q) (43)

= 1

(xq2; q2)∞

∑

n≥0

q2n2+2nxn

(q2; q2)n
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where the product generates the non-overlined parts and the series generated the
overlined parts.

Clearly (43) is equivalent to (7).

10 Theorem 2 for a = 3

To treat (8), we first require two lemmas:

Lemma 10

ρ3(q) = (q2; q2)∞
∞∏

j=1

(1+ q2j−1 + q4j−2)

∑

n≥0

n∏

j=1

(1+ q2j−1 + q4j−2)q2n

(q2; q2)n
. (44)

Proof In [11, pg. 61, eq. (26.87)], N. J. Fine proved that if w = e2πi/3

ρ3(q) =
∑

n≥0

(w−1q)n

(wq; q2)n+1
. (45)

Now

∑

n≥0

n∏

j=1

(1+ q2j−1 + q4j−2)

(q2; q2)n
q2n

=
∑

n≥0

(wq; q2)n(w
−1q; q2)nq

2n

(q2; q2)n

= (w−1q; q2)∞(wq3; q2)∞
(q2; q2)∞

∑

n≥0

(w−1q)n

(wq3; q2)n
(by [12, p. 241, (III.1)])

=

∞∏

j=1

(1+ q2j−1 + q4j−2)

(q2; q2)∞
ρ3(q),

by (45). ��
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Lemma 11

f0,0(3, xq
2, q) = (xq2; q2)∞

∑

n≥0

n∏

j=1

(1+ q2j−1 + q4j−2)xnq2n

(q2; q2)n
. (46)

Proof It is clear that F(z, x, q) is uniquely determined by the initial conditions

f0,0(3, 0, q) = f0,0(3, x, 0) = 1,

and the q-difference equation (32) which simplifies to

f0,0(3, xq2, q) = f0,0(3, xq4, q)+ (xq3 + xq4)f0,0(3, xq6, q) (47)

+ x2q9(1− xq6)f0,0(3, xq8, q).

Now let

f (x) = f (x, q) :=
∑

n≥0

n∏

j=1

(1+ q2j−1 + q4j−2)xnq2n

(q2; q2)n
.

Then clearly f (0, q) = f (x, 0) = 1, and

f (x)− f (xq2) =
∑

n≥0

∏n
j=1(1+ q2j−1 + q4j−2)xnq2n(1− q2n)

(q2; q2)n

= xq2
∑

n≥0

n∏

j=1

(1+ q2j−1 + q4j−2)xnq2n(1+ q2n+1 + q4n+2)

(q2; q2)n

= xq2
(

f (x)+ qf (xq2)+ q2f (xq4)

)

,

and if

f1(x) := (xq2; q2)∞f (x), (48)

then multiplying the above equation by (xq4; q4)∞, we obtain

f1(x) = (1+ xq3)f1(xq
2)+ xq4(1− xq4)f1(xq

4). (49)
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Iterating (49), we obtain

f1(x) =f1(xq
2)+ xq3((1+ xq5)f1(xq

4)+ xq6(1− xq6)f1(xq
6)
)

(50)

+ xq4(1− xq4)f1(xq
4)

=f1(xq
2)+ (xq3 + xq4)f1(xq

4)+ x2q9(1− xq6)f1(xq
6).

Comparing (50) with (47), we see that f1(x) and f00(z, xq
2, q) satisfy the same

q-difference equation and have the same initial value of 1 at x = 0 dn q = 0. Hence

f1(x) = f0,0(3, xq2, q)

which is assertion (46).

First Proof of (8) Set x = 1 in (46) and compare with (44).

Second Proof of (8) (Combinatorial) We shall provide a combinatorial proof of the
assertion

f0,0(z, q
2, q)

(q2; q2)∞
=

∞∑

n=0

q2n
n∏

j=1

(1+ q2j−1 + q5j−2)

(q2; q2)n
(51)

which by Lemmas 10 and 11 is equivalent to (8).

It is immediate by inspection that the right-hand side of (51) is the generating
function for partitions in which the largest part is even and odd parts appear at most
twice.

Theorem 2 tells us that the left-hand side is the generating function for overparti-
tions where all parts are >1; 2 is never overlined, odd parts appear at most once and
are overlined; overlined parts differ by at least 3, and there is never a sequence of
parts of the form (2j + 3)+ (2j + 6)+ (2j + 6).

We provide a bijection between these two classes of partitions as follows.
We begin with the overpartitions, and we consider a modified Ferrers graph as

follows. Each odd part 2j + 1 is represented by the row

2 2 2 · · · 2︸ ︷︷ ︸
j

1

Each even, nonoverlined part 2j is given a row of j 2’s:

2 2 . . . 2︸ ︷︷ ︸
j times

.
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Each overlined 2j is given a row of j − 1 2’s and two 1’s

2 2 · · · 2︸ ︷︷ ︸
j−1 times

1 1.

However if both 2j and 2j are parts the two rows are to be:

2 2 2 · · · 2 2 1

2 2 2 · · · 2︸ ︷︷ ︸
j−1 times

1

This procedure produces from the given set of overpartitions a unique set of the
modified 2-modular Ferrers graphs. The uniqueness is guaranteed by exclusion of
part sequences of the form (2j + 3) + (2j + 6) + (2j + 6) because this sequence
would yield

2 2 2 · · · 2 2 2 1

2 2 2 · · · 2 2 1

2 2 2 · · · 2︸ ︷︷ ︸
(j+1) times

1

but (2j + 4)+(2j+4)+(2j + 7) yields exactly the same component of the modified
2-modular Ferrers graph.

Now to complete the bijection we read these Ferrers graphs via columns instead
of rows, and the resulting partitions are those generated by right-hand side of (51).

11 The Alladi-Schur Theorem

We remarked at the end of Sect. 2, that our work here was inspired by the discoveries
in [6]. In particular, the identity (Eq. (19) restated):

∑

n,j≥0

(−1)j xn+2j q(3j+n)2+(n2)
(q; q)n(q6; q6)j

= (x; q3)∞
∑

n≥0

xn(−q; q3)n(−q2; q3)n

(q3; q3)n
(52)

is naturally related to a proof of Schur’s 1926 partition theorem. Namely, as was
shown in [1, eq. (2.15)], an application of Abel’s lemma reveals

lim
x→1

(x; q3)∞
∑

n≥0

(−q; q3)n(−q2; q3)nx
n

(q3; q3)n

= (−q; q3)∞(−q2; q3)∞ = 1

(q; q6)∞(q5; q6)∞
.
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In the current context, by Lemma 11, with x replaced by xq−2

f0,0(3, 1, q) = lim
x→1−

(x, q2)∞
∑

n≥0

xn

n∏

j=1

(1+ q2j−1 + q4j−2)

(q2; q2)n

=
∞∏

j=1

(1+ q2j−1 + q4j−2)

= (q3; q6)∞
(q; q2)∞

= 1

(q; q6)∞(q5; q6)∞
.

Identifying f00(3, 1, q) with the left-hand side of (44) when x = 1, we see that the
Alladi formulation of Schur’s theorem is naturally related to Lemma 11.

12 Conclusion

The most unsatisfying aspect of this paper is that we have been unable to produce a
grand unified treatment of combinatorial aspects of semi-general double series such
as the one given in (1). If one contrasts the theorems listed in Sect. 2 with those
treated in Theorems 1 and 2, one sees the great diversity of theorems vaguely tied
together by the theme of the examination of sequences of parts in partitions.

However, at this stage, one only sees the glimmer of a general theory. Nonethe-
less, the variety of results found to date suggest that much remains to be found.
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Refined q-Trinomial Coefficients and Two
Infinite Hierarchies of q-Series Identities

Alexander Berkovich and Ali Kemal Uncu

Peter—king of the castle—Paule on the occasion of his 60th
birthday

1 Introduction

There are many important transformations for the q-binomial coefficients of the type

L∑

r=0

qr2
(q; q)2L

(q; q)L−r(q; q)2r

[
2r

r − j

]

q

= qj2
[

2L

L− j

]

q

(1)

in the q-series literature (see [8], and the references there). Throughout this work
|q| < 1. Here, the q-Pochhammer symbols are defined as

(a; q)n := (1− a)(1− aq)(1− aq2) . . . (1− aqn−1), (2)

for any non-negative integer n. In addition, we have

(a; q)∞ := lim
n→∞(a; q)n, (3)

(a1, a2, . . . , ak; q)n := (a1; q)n(a2; q)n . . . (ak; q)n. (4)
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We extend the definition of q-Pochhamer symbols to negative n using

(a; q)n = (a; q)∞
(aqn; q)∞ . (5)

Observe that (5) implies

1

(q; q)n = 0 if n < 0. (6)

The q-binomial coefficients are defined as

[
m+ n

m

]

q

:=
{

(q;q)m+n

(q;q)m(q;q)n , for m,n ≥ 0,

0, otherwise.
(7)

The salient features of (1) are that the sum over a q-binomial coefficient
multiplied by a simple factor yields a q-binomial coefficient, and the dependence
on the variable j is simple. Furthermore, this summation can be applied multiple
times in an iterative fashion. This type of transformations were used by Bailey [5]
and Slater [16], but the real value of the iterative power was first realized by Peter
Paule [12, 13] and George E. Andrews [1].

For example, we start with the simple identity

δL,0 =
L∑

j=−L

(−1)jq(
j
2)
[

2L

L+ j

]

q

, (8)

where δi,j is the Kronecker delta function. Following the change of variable L �→ r

in (8), we multiply both sides by

qr2
(q; q)2L

(q; q)L−r(q; q)2r
, (9)

and sum both sides with respect to r ≥ 0. This yields

(q; q)2L

(q; q)L =
L∑

j=−L

(−1)j qj2+(j2)
[

2L

L+ j

]

q

, (10)

using the identity (1).
It is well known that

lim
L→∞

[
L

m

]

q

= 1

(q; q)m . (11)
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For any j ∈ Z≥0 and ν = 0 or 1

lim
L→∞

[
2L+ ν

L+ j

]

q

= 1

(q; q)∞ . (12)

Using (12) to take the limit L→∞ of (10), we get

(q; q)∞ =
∞∑

j=−∞
(−1)j q

3j2−j
2 . (13)

This is nothing but Euler’s Pentagonal Number Theorem. Note that this can also be
viewed as a special case (q, z) �→ (q3/2,−q1/2) of the celebrated result:

Theorem 1 (Jacobi Triple Product Identity) For complex numbers z �= 0 and
|q| < 1, we have

∞∑

j=−∞
zjqj2 =

(

q2,−zq,−q

z
; q2

)

∞
. (14)

We can apply (1) to the identity (10) after changing the variable L �→ r in (10),
multiply both sides by (9) and sum both sides again with respect to r ≥ 0. This
yields

(q; q)2L

(q; q)L
L∑

r=0

qr2
[
L

r

]

q

=
L∑

j=−L

(−1)j q2j2+(j2)
[

2L

L+ j

]

q

. (15)

Letting L → ∞, using (11), (12), (14) with (q, z) �→ (q5/2,−q1/2), and doing
some simple simplifications one obtains the first Rogers–Ramanujan identity,

∑

r≥0

qr2

(q; q)r =
1

(q, q4; q5)∞
.

Proceeding in the same fashion, one can keep on applying (1) iteratively ν + 1
times to (8). This way one obtains the famous Andrews–Gordon infinite hierarchy
of identities as L→∞,

∑

n1,n2,...,nν≥0

qN2
1+N2

2+···+N2
ν

(q; q)n1(q; q)n2 . . . (q; q)nν
=

∏

n�≡0,±(ν+1) (mod 2ν+3)

1

1− qn
,

(16)
where Nk = nk + nk+1 + · · · + nν for k = 1, 2, . . . , ν.



50 A. Berkovich and A. K. Uncu

In [4], Andrews and Baxter defined the q-trinomial coefficients,
(
L, b

a
; q

)

2

:=
∑

n≥0

qn(n+b) (q; q)L
(q; q)n(q; q)n+a(q; q)L−2n−a

, (17)

T0

(
L

a
; q

)

:= q
L2−a2

2

(
L, a

a
; 1

q

)

2

. (18)

Following that Warnaar [17, 18] defined a refinement of these coefficients:

T
(
L, M

a, b
; q

)

:= (19)

∑

n≥0,
L−a≡n (mod 2)

q
n2
2

[
M

n

]

q

[
M + b + L−a−n

2
M + b

]

q

[
M − b + L+a−n

2
M − b

]

q

,

S
(
L, M

a, b
; q

)

:=
∑

n≥0

qn(n+a)

[
M + L− a − 2n

M

]

q

[
M − a + b

n

]

q

[
M + a − b

n+ a

]

q

.

(20)

These refined trinomials obey transformation properties somewhat similar to (1).
Therefore, they can be used in an iterative fashion [18].

In this paper, we prove a new doubly bounded polynomial identity using the
symbolic tools developed by the Algorithmic Combinatorics group at the Research
Institute for Symbolic Computation.

Theorem 2 For L and M being non-negative integers, we have

∑

m≥0,
L≡m (mod 2)

qm2
[

3M

m

]

q2

[
2M + L−m

2
2M

]

q6
=

∞∑

j=−∞
q3j2+2jT

(
L, M

j, j
; q6

)

.

(21)

Then we use transformation properties for the refined trinomials defined in (19)
and (20) to obtain two new infinite hierarchies of q-series identities. An unusual
feature of these identities is the presence of various q-factorial bases such as in the
following theorem with bases q2, q3, q6 etc.

Theorem 3 Let ν be a positive integer, and let Nk = nk + nk+1 + · · · + nν , for
k = 1, 2, . . . , ν. Then,

∑

n1,n2,...,nν≥0

q3(N2
1+N2

2+···+N2
ν )(−q; q2)3nν

(q6; q6)n1(q
6; q6)n2 . . . (q

6; q6)nν−1(q
6; q6)2nν

= (−q3; q3)∞
(q12; q12)∞

(q6(ν+1),−q3ν+1,−q3ν+5; q6(ν+1))∞.

(22)
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This paper is structured as follows. Section 2 has a short list of known identities
that will be needed later. Section 3 is totally dedicated to the proof of Theorem 2.
In Sect. 4, we discuss the asymptotics of q-trinomial coefficients, and present two
transformation formulas of Warnaar for the refined q-trinomial coefficients (19)
and (20). We also discuss an analog of the Bailey Lemma (Theorem 6). In Sect. 5, we
apply (45) to (21) in an iterative fashion. This application yields a doubly bounded
infinite hierarchy. The asymptotic analysis and the proof of Theorem 3 are also
given in Sect. 5. In Sect. 6, we use the second transformation (46) of Theorem 6,
which yields another doubly bounded hierarchy of polynomial identities, and do its
asymptotic analysis. In this way we see a connection with the Capparelli partition
theorem. In Sect. 7 we briefly discuss variants of Theorem 2.

2 q-Binomial Theorem and Its Corollaries

Theorem 4 (q-Binomial Theorem) For variables a, q, and z,

∑

n≥0

(a; q)n
(q; q)n t

n = (at; q)∞
(t; q)∞ . (23)

Note that by setting (a, t) �→ (q−L,−zqL) in (23), and using

[
L

n

]

q

= (q−L; q)n
(q; q)n (−1)nqLn−(n2),

we derive

∑

n≥0

q(
n
2)zn

[
L

n

]

q

= (−z; q)L. (24)

We remark that (24) implies

∑

n≥0,
n≡σ (mod 2)

q(
n
2)zn

[
L

n

]

q

= (−z; q)L + (−1)σ (z; q)L
2

, (25)

where σ = 0 or 1.
Another important corollary of the q-binomial theorem (Theorem 4) is the

polynomial analog of the identity (14) [3, p. 49, Ex. 1].

M∑

j=−M

qj2
zj
[

2M

M + j

]

q2
=

(

−zq,−q

z
; q2

)

M

. (26)
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Note that (8) is a special case of (26) with (q, z) �→ (q1/2,−q1/2). Another
special case of (26) with (q, z) �→ (q3, q2) is

M∑

j=−M

q3j2+2j
[

2M

M + j

]

q6
= (−q,−q5; q6)M. (27)

3 Proof of Theorem 2

Let

G (L,M, k, q) := q(L−2k)2
[

3M

L− 2k

]

q2

[
2M + k

k

]

q6
(28)

and

F (L,M, k, j, q) := (29)

q3j2+2j+3(L−j−2k)2
[

M

L− j − 2k

]

q6

[
M + j + k

k

]

q6

[
M + k

k + j

]

q6
.

(30)

Note that

∑

k≥0

G (L,M, k, q) and
∑

j,k≥0

F (L,M, k, j, q)

are the left-hand and right-hand sides of (21), respectively.
The Mathematica packages Sigma [15] and qMultiSum [14] (both implemented

by the Algorithmic Combinatorics group at the Research Institute for Symbolic
Computation) are both capable of finding and automatically proving recurrences
for these functions. Here we start with the recurrences that qMultiSum finds for the
summands (28) and (29):

q9+18 M
(

1− q12+6 L+6 M
)
G (L,M, k, q)

−
(

1− q12+24 M
)
G (L+ 3,M + 1, k, q)

+ q1+6 M
(

1− q24+6 L+18 M
) (

1+ q2 + q4
)
G (L+ 2,M, k, q)

− q4+12 M
(

1+ q2 + q4
) (
−1+ q18+6 L+12 M

)
G (L+ 1,M, k, q)
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+ q6+12 M
(

1+ q6
) (

1− q6+12 M
)
G (L+ 1,M + 1, k − 1, q)

+
(

1− q30+6 L+24 M
)
G (L+ 3,M, k, q) = 0

and

q9+18 M
(

1− q12+6 L+6 M
)
F (L,M, k − 1, j − 1, q)

+ q4+12 M
(

1− q18+6 L+12 M
)
F (L+ 1,M, k − 1, j, q)

+ q6+12 M
(

1− q18+6 L+12 M
)
F (L+ 1,M, k − 1, j − 1, q)

−
(

1− q12+24 M
)
F (L+ 3,M + 1, k, j − 1, q)

+ q3+6 M
(

1− q24+6 L+18 M
)
F (L+ 2,M, k, j − 1, q)

+ q5+6 M
(

1− q24+6 L+18 M
)
F (L+ 2,M, k, j − 2, q)

+ q1+6 M
(

1− q24+6 L+18 M
)
F (L+ 2,M, k − 1, j, q)

+
(

1− q30+6 L+24 M
)
F (L+ 3,M, k, j − 1, q)

+
(

1+ q6
)
q6+12 M

(
1− q6+12 M

)
F (L+ 1,M + 1, k − 1, j − 1, q)

+ q8+12 M
(

1− q18+6 L+12 M
)
F (L+ 1,M, k, j − 2, q) = 0.

Once summed over the variable k for G(L,M, k, q), and variables k and j for
F(L,M, k, j, q), we see that they satisfy the same recurrence,

q9+18 M
(

1− q12+6 L+6 M
)
Ŝ (L,M, q)

− q4+12 M
(

1+ q2 + q4
) (
−1+ q18+6 L+12 M

)
Ŝ (L+ 1,M, q)

+ q1+6 M
(

1− q24+6 L+18 M
) (

1+ q2 + q4
)
Ŝ (L+ 2,M, q) (31)

+
(

1− q30+6 L+24 M
)
Ŝ (L+ 3,M, q)

+ q6+12 M
(

1+ q6
) (

1− q6+12 M
)
Ŝ (L+ 1,M + 1, q)

−
(

1− q12+24 M
)
Ŝ (L+ 3,M + 1, q) = 0.

This is also the same recurrence one would get from the package Sigma. It remains
to show that the left-hand side and the right-hand side of (21) satisfy the same initial
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conditions. Observe that

Ŝ(L, 0, q) = 1+ (−1)L

2
, and Ŝ(0,M, q) = 1, (32)

for any non-negative integer L and M . Moreover, we have

Ŝ(1,M, q) = q

[
3M

1

]

q2
, and Ŝ(2,M, q) =

[
2M + 1

1

]

q6
+ q4

[
3M

2

]

q2
, (33)

for any non-negative integer M . The recurrence (31), and the boundary condi-
tions (32) and (33) uniquely define Ŝ(L,M, q). �

4 Asymptotics and Transformations of the Refined Trinomial
Coefficients

For σ = 0 or 1, we have the following limits.

lim
M→∞T

(
L, M

a, b
; q

)

= 1

(q; q)LT0

(
L

a
; q

)

, (34)

lim
L→∞,

L−a≡σ (mod 2)

T
(
L, M

a, b
; q

)

= (−q1/2; q)M + (−1)σ (q1/2; q)M
2(q; q)2M

[
2M

M − b

]

q

,

(35)

lim
L→∞,

L−a≡σ (mod 2)

T0

(
L

a
; q

)

= (−q1/2; q)∞ + (−1)σ (q1/2; q)∞
2(q; q)∞ . (36)

Moreover,

lim
M→∞S

(
L, M

a, b
; q

)

= 1

(q; q)L
(
L, a

a
; q

)

2

, (37)

5

lim
L→∞S

(
L, M

a, b
; q

)

= 1

(q; q)M
[

2M

M − b

]

q

, (38)

lim
L→∞

(
L, a

a
; q

)

2

= 1

(q; q)∞ . (39)

We would like to note that the limits (34), (37), and (38) can be found in
Warnaar’s work [18, (2.12),(2.13),(2.17)]. The limit (36) appears in Andrews–
Baxter work [4, (2.55),(2.56)]. The limit (39) is also discussed in [4, (2.48)]. The
authors could not find the limit (35) in the literature. This limit can be proven by
using (11) followed up with (25).
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Letting M →∞ in (21), and using (34), we get

∑

m≥0,
L≡m (mod 2)

qm2 (q6; q6)L

(q2; q2)m(q6; q6)(L−m)/2
=

L∑

j=−L

q3j2+2j T0

(
L

j
; q6

)

. (40)

Observe that after the change of variables n = (L−m)/2, this identity becomes [7,
(3.9)] with q �→ q2.

Replacing L �→ 2L+σ , with σ = 0, 1, letting L tend to∞, we get the following
with the aid of (35),

(−q; q2)3M + (−1)σ (q; q2)3M

= (−q3; q6)M

M∑

j=−M

q3j2+2j
[

2M

M + j

]

q6
(41)

+ (−1)σ (q3; q6)M

M∑

j=−M

(−1)jq3j2+2j
[

2M

M + j

]

q6
.

It is easy to check that (41) follows from the identity (27).

Theorem 5 (Warnaar [17, 18]) For L,M, a, b ∈ Z and ab ≥ 0

M∑

i=0

q
i2
2

[
L+M − i

L

]

q

T
(
L− i, i

a, b
; q

)

= q
b2
2 T

(
L, M

a + b, b
; q

)

. (42)

For L,M, a, b ∈ Z with ab ≥ 0, and |a| ≤M if |b| ≤ M and |a + b| ≤ L, then

M∑

i=0

q
i2
2

[
L+M − i

L

]

q

T
(
i, L− i

b, a
; q

)

= q
b2
2 S

(
L, M

a + b, b
; q

)

. (43)

The transformation formulas (42) and (43) directly imply the following theorem.

Theorem 6 Let FL,M(q) and αj (q) be sequences, and L,M,m, n ∈ Z≥0. If

FL,M(q) =
∞∑

j=−∞
αj (q)T

(
L, M

mj, nj
; q

)

(44)

holds, then

∑

i≥0

q
i2
2

[
L+M − i

L

]

q

FL−i,i (q) =
∞∑

j=−∞
q

(nj)2

2 αj (q)T
(

L, M

(m+ n)j, nj
; q

)

(45)
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and

∑

i≥0

q
i2
2

[
L+M − i

L

]

q

Fi,L−i (q) =
∞∑

j=−∞
q

(mj)2

2 αj (q)S
(

L, M

(m+ n)j, mj
; q

)

(46)

are true.

Note that (45) can be used in combination with an appropriately chosen identity
in an iterative fashion. This leads to an infinite hierarchy of identities. On the other
hand, the identity (46) can only be used once.

5 The First Doubly Bounded Infinite Hierarchy and Its
Asymptotics

We use (45) ν times with q �→ q6 on (21) and obtain the following infinite hierarchy.

Theorem 7 Let ν be a positive integer, and let Nk = nk + nk+1 + · · · + nν , for
k = 1, 2, . . . , ν. Then,

∑

m,n1,n2,...,nν≥0,
L+m≡N1+N2+···+Nν (mod 2)

qm2+3(N2
1+N2

2 ···+N2
ν )

[
L+M −N1

L

]

q6

[
3nν

m

]

q2
(47)

×
[

2nν + L−m−N1−N2−···−Nν

2
2nν

]

q6

ν−1∏

j=1

[
L−∑j

l=1 Nl + nj

nj

]

q6

=
∞∑

j=−∞
q3(ν+1)j2+2jT

(
L, M

(ν + 1)j, j
; q6

)

.

We replace L �→ 2L + σ , with σ = 0, 1, and sum over σ , in (47). Letting
L→∞ and using the (24) and (35), we get the following theorem.

Theorem 8 Let ν be a positive integer, and let Nk = nk + nk+1 + · · · + nν , for
k = 1, 2, . . . , ν. Then,

∑

n1,n2,...,nν≥0

q3(N2
1+N2

2+···+N2
ν )(−q; q2)3nν

(q6; q6)M−N1(q
6; q6)n1(q

6; q6)n2 . . . (q
6; q6)nν−1(q

6; q6)2nν

= (−q3; q6)M

(q6; q6)2M

M∑

j=−M

q3(ν+1)j2+2j
[

2M

M + j

]

q6
. (48)

The ν = 1 case of the identity (48) yields a finite analog of the identity [6, (6.7)].
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Corollary 1

M∑

n=0

q3n2
(−q; q2)3n

(q6; q6)M−n(q6; q6)2n
= (−q3; q6)M

(q6; q6)2M

M∑

j=−M

q6j2+2j
[

2M

M + j

]

q6
. (49)

We can also take the limit M →∞ in the identity (47). Using (34) we get another
infinite hierarchy.

Theorem 9 Let ν be a positive integer, and let Nk = nk + nk+1 + · · · + nν , for
k = 1, 2, . . . , ν. Then,

∑

m,n1,n2,...,nν≥0,
L+m≡N1+N2+···+Nν (mod 2)

qm2+3(N2
1+N2

2+···+N2
ν )

[
3nν

m

]

q2

×
[

2nν + L−m−N1−N2−···−Nν

2
2nν

]

q6

ν−1∏

j=1

[
L−∑j

l=1 Nl + nj

nj

]

q6
(50)

=
∞∑

j=−∞
q3(ν+1)j2+2j T0

(
L

(ν + 1)j
; q6

)

.

Letting M →∞ in (48) and using (12) and (14) proves Theorem 3.

6 The Second Doubly Bounded Infinite Hierarchy and Its
Asymptotics

Now we look at the implications of (46). First we apply this identity with q �→ q3

to (21) with q2 �→ q:

Theorem 10 For L and M non-negative integers, we have

∑

i,m≥0,
i+m≡0 (mod 2)

q
m2+3i2

2

[
L+M − i

L

]

q3

[
3(L− i)

m

]

q

[
2(L− i)+ i−m

2
2(L− i)

]

q3
(51)

=
∞∑

j=−∞
q3j2+jS

(
L, M

2j, j
; q3

)

.

We can also apply (46) with q �→ q3 to (47) with q2 �→ q . This yields the
following result.
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Theorem 11 Let ν be a positive integer, and let Nk = nk + nk+1 + · · · + nν , for
k = 1, 2, . . . , ν. Then,

∑

i,m,n1,n2,...,nν≥0,
i+m≡N1+N2+···+Nν (mod 2)

q
m2+3(i2+N2

1+N2
2 ···+N2

ν )

2

[
L+M − i

L

]

q3

[
L−N1

i

]

q3

[
3nν

m

]

q

(52)

×
[

2nν + i−m−N1−N2−···−Nν

2
2nν

]

q3

ν−1∏

j=1

[
i −∑j

l=1 Nl + nj

nj

]

q3

=
∞∑

j=−∞
q3(ν+2

2 )j2+jS
(

L, M

(ν + 2)j, (ν + 1)j
; q3

)

.

Taking the limit M → ∞ in (51), and changing the summation variable (i −
m)/2 = n we get

∑

n,m≥0

qQ(m,n)

[
3(L− 2n−m)

m

]

q

[
2(L− 2n−m)+ n

n

]

q3
(53)

=
∞∑

j=−∞
q3j2+j

(
L, 2j

2j
; q3

)

2

,

where Q(m, n) := 2m2 + 6mn+ 6n2.
The polynomials on the right-hand side of (53) were first discussed by Andrews

in [2]. The identity, on the other hand, was first proven in [6].
The limit L→∞ in (51) yields

∑

n,m≥0

qQ(m,n) (q3; q3)M

(q; q)m(q3; q3)n(q3; q3)M−2n−m

=
∞∑

j=−∞
q3j2+j

[
2M

M + j

]

q3
.

(54)

This formula was first discussed in [6], and it is proven in a wider context in [7].
Finally, when L and M both tend to ∞, a simple change of variables together

with the Jacobi Triple Product identity (14) yields

∑

m,n≥0

qQ(m,n)

(q; q)m(q3; q3)n
= (−q2,−q4; q6)∞(−q3; q3)∞, (55)

where Q(m, n) = 2m2 + 6mn+ 6n2, after simplifications.



Two Infinite Hierarchies 59

The identity (55) was recently proposed independently by Kanade–Russell [10]
and Kurşungöz [11]. They showed that (55) is equivalent to the following partition
theorem:

Theorem 12 (Capparelli’s First Partition Theorem [9]) For any integer n, the
number of partitions of n into distinct parts where no part is congruent to ±1
modulo 6 is equal to the number of partitions of n into parts, not equal to 1,
where the minimal difference between consecutive parts is 2; the difference between
consecutive parts is greater than or equal to 4 unless consecutive parts are 3k and
3k+ 3 (yielding a difference of 3), or 3k− 1 and 3k+ 1 (yielding a difference of 2)
for some k ∈ N.

Taking limits M → ∞ and L → ∞ in (52), we get Theorems 13 and 14,
respectively.

Theorem 13 Let ν be a positive integer, and let Nk = nk + nk+1 + · · · + nν , for
k = 1, 2, . . . , ν. Then,

∑

i,m,n1,n2,...,nν≥0,
i+m≡N1+N2+···+Nν (mod 2)

q
m2+3(i2+N2

1+N2
2+···+N2

ν )

2

[
L−N1

i

]

q3

[
3nν

m

]

q

×
[

2nν + i−N1−N2−···−Nν−m
2

2nν

]

q3

ν−1∏

j=1

[
i −∑j

k=1 Nk + nj

nj

]

q3

(56)

=
∞∑

j=∞
q3(ν+2

2 )j2+j

(
L, (ν + 2)j
(ν + 2)j

; q3
)

2

.

Theorem 14 Let ν be a positive integer, and let Nk = nk + nk+1 + · · · + nν , for
k = 1, 2, . . . , ν. Then,

∑

i,m,n1,n2,...,nν≥0,
i+m≡N1+N2+···+Nν (mod 2)

q
m2+3(i2+N2

1+N2
2+···+N2

ν )

2

[
M

i

]

q3

[
3nν

m

]

q

×
[

2nν + i−N1−N2−···−Nν−m
2

2nν

]

q3

ν−1∏

j=1

[
i −∑j

k=1 Nk + nj

nj

]

q3

(57)

=
∞∑

j=∞
q3(ν+2

2 )j2+j

[
2M

M + (ν + 1)j

]

q3
.

Finally, by letting L→∞ in (56), and using (39) and (14), we get the following
result.



60 A. Berkovich and A. K. Uncu

Theorem 15 Let ν be a positive integer, and let Nk = nk + nk+1 + · · · + nν , for
k = 1, 2, . . . , ν. Then,

∑

i,m,n1,n2,...,nν≥0,
i+m≡N1+N2+···+Nν (mod 2)

q
m2+3(i2+N2

1+N2
2+···+N2

ν )

2

(q3; q3)i

[
3nν

m

]

q

×
[

2nν + i−N1−N2−···−Nν−m
2

2nν

]

q3

ν−1∏

j=1

[
i −∑j

k=1 Nk + nj

nj

]

q3
(58)

= (q6(ν+2
2 ),−q3(ν+2

2 )+1,−q3(ν+2
2 )−1; q6(ν+2

2 ))∞
(q3; q3)∞

.

Note that Theorem 15 can also be proven by taking the limit M → ∞ in (57),
and using (12) together with (14).

7 Outlook

We would like to note that the identity (21) is not an isolated incident. This shows
that there is a more complex structure behind and there is much more to discover. We
would like to give two such example identities that we prove similarly to Theorem 2.
Let

T1

(
L, M

a, b
; q

)

:=
∑

n≥0,
L−a≡n (mod 2)

q(
n
2)
[
M

n

]

q

[
M + b + L−a−n

2
M + b

]

q

[
M − b + L+a−n

2
M − b

]

q

,

and

T−1

(
L, M

a, b
; q

)

:=
∑

n≥0,
L−a≡n (mod 2)

q(
n+1

2 )
[
M

n

]

q

[
M + b + L−a−n

2
M + b

]

q

[
M − b + L+a−n

2
M − b

]

q

.

Then we have the following theorem.

Theorem 16 For L and M being non-negative integers, we have

∑

m≥0
L≡m (mod 2)

qm2∓m

[
3M

m

]

q2

[
2M + L−m

2
2M

]

q6
=

∞∑

j=−∞
q3j2+jT±1

(
L, M

j, j
; q6

)

.

(59)

We are planning to address Theorem 16 and its implications elsewhere.
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Large Scale Analytic Calculations
in Quantum Field Theories

Johannes Blümlein

Dedicated to Peter Paule on the occasion of his 60th birthday

1 Introduction

Precise theoretical predictions within the Standard Model of elementary particles are
indispensable for the concise understanding of the fundamental parameters of this
physical theory and the discovery of its potential extensions. At the experimental
side highly precise measurements exist at e+e−, ep and pp-colliders as at LEP,
HERA, and the LHC. In the near future the high luminosity phase of the LHC will
even provide much more precise data. Other facilities, like the ILC [1] and a possible
FCC [2], are currently planned. During the last three decades enormous efforts have
been made to calculate key observables measured at these colliders at higher and
higher accuracy, to meet the challenge provided by the accuracy of the experiments.

For zero-scale quantities currently analytic massless calculations can be per-
formed at the five-loop and for massive calculations at the four-loop level. Single
scale calculations are performed in both cases at the three-loop level. To perform
these large scale calculations very demanding efforts are needed at the side of
their automation, computer-algebraic implementation, and the use of highly efficient
mathematical technologies. Therefore, the present problems can only be solved
within a very close interdisciplinary cooperation between experts in all these
different fields and it cannot be the sole tasks for theoretical physicists anymore.

While at one-loop order the mathematical solution for many scattering processes
has been known early, cf. [3–5], systematic representations at higher loop order
turned out to be more difficult. The core problem concerns the analytic integration of
Feynman parameter integrals. Here integration is understood as anti-differentiation.
An essential question is to determine the final solution space to which the respective
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integrals do belong and its mathematical structure, and to find the irreducible
objects through which the corresponding integrals are represented. Furthermore,
one needs efficient mathematical and computer-algebraic technologies to map the
given Feynman parameter integrals into the latter quantities.

In this paper we give a survey on the main technological steps to calculate higher
loop zero- and single-scale quantities in renormalizable quantum field theories, with
the focus on analytic integration techniques and the occurring function spaces. The
systematic theory of integration in this field is vastly developing and many more
new structures are expected to be revealed in the future at higher loop levels and
by considering the production of more particles in the final state of the respective
scattering processes. These calculations are needed to obtain stable theoretical
predictions for the experimental precision measurements at the present and future
colliders, which operate at high luminosity.

The paper is organized as follows. In Sect. 2 we summarize the main steps
in multi-loop perturbative calculations. Different methods used in symbolic cal-
culations of zero- and single-scale Feynman parameter integrals are described in
Sect. 3. In Sect. 4 a hierarchy of function spaces, mainly for single-scale integrals, is
discussed which emerge in present multi-loop calculations. Here we consider as well
the representations in Mellin-N and x-space. Section 5 contains the conclusions.1

2 Main Steps in Multi-Loop Perturbative Calculations

In most of the large projects, which are currently dealt with, the Feynman diagrams
are generated using packages like QGRAF [12] and performing the color algebra for
the gauge groups using Color [13]. Standardized algorithms to obtain Feynman
parameterizations exist, cf. e.g. [14–16]. At growing complexity, to perform the
Dirac- and spin-algebra will be a challenge even to FORM [17–20]. One further
maps the set of the contributing Feynman integrals to master integrals using the
integration-by-parts (IBP) technique [21] based on Laporta’s algorithm [22], of
which several implementations exist, cf. e.g. [23–27] and others. The remaining
main step is then the integration of the master integrals. One possibility to inspect
the problem on hand, is to analyze the associated system of first order differential
equations for the master integrals. Sometimes it is also useful to consider, in
addition, the related system of linear difference equations. One may decouple these
systems using the algorithms implemented in the packages [28, 29], as e.g. Zürcher’s
algorithm [30]. This leads to a single differential equation or difference equation
of large order and degree and associated determining equations for the remaining
master integrals. If the former equations can be factored at first order, it is known
that the master integrals can be obtained in terms of indefinitely nested sums or
iterated integrals over certain alphabets, which are revealed in the solution process,

1 For other recent surveys on integration methods for Feynman integrals see [6–11].
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e.g. using difference field and ring theory [31–43], algorithmically implemented in
the package Sigma [44, 45]. This applies to a wide class of physical cases. Most
of the integration and summation methods described in Sect. 3 apply to them and
allow to obtain the integrals analytically in terms of the mathematical functions
described in Sect. 4. Finally, efficient numerical representations of these functions
have to be provided to obtain numerical predictions of the different observables for
the experiments.

3 Symbolic Integration of Feynman Parameter Integrals

In the following we summarize main aspects of the analytic integration of multi-
loop Feynman parameter integrals. Of course these integrals can also be evaluated
numerically, without observing their particular analytic structure, to some accuracy
and methods exist to separate the different pole contributions in ε, cf. e.g. [46–56],
which we will not discuss in the following. These methods play a role, however,
also for testing analytic results. In calculating all the integrals required to solve a
large scale problem, it is usually necessary to combine different analytic methods, at
least for the sake of efficiency. This requirement finally led to the creation of these
methods. In the future even more and further refined technologies will be needed
to solve more enhanced problems. Finally, one ends up with sets of irreducible
functions which span the solutions, see Sect. 4. The numerical representation of
these functions is necessary and will be discussed in Sect. 4.3.

Non of the different techniques described in the following are of universal
character. In particular the solution of the most advanced problems will need a
combined and sensible use of various of them. All of them have to be handled
with care to achieve a steady stepwise reduction of the problem on hand and to
avoid to enlarge the complexity, given the limited time and memory resources
for the corresponding computer algebraic calculations. This will also apply to
future developments, since more complex calculations will require further new and
advanced technologies.

Many of the formalisms described below lead to summation problems. Their
solution requires dedicated and efficient algorithms in difference field theory
as implemented in the packages Sigma [44, 45], EvaluateMultiSums and
SumProduction [57–59], see also [60].

3.1 The PSLQ Method

The PSLQ method applies to the solution of zero dimensional quantities, i.e.
physical quantities given by pure numbers. If the pool of constants is known or can
be guessed over which the corresponding quantity has a polynomial representation
over Q, a highly precise numerical representation of the quantity and the individual
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monomials allows to determine the corresponding rational coefficients, cf. [61]. This
method has been applied recently in a massive calculation of the five-loop QCD β-
function [62]. Here the individual master integrals certainly contain also constants
of elliptic nature and probably beyond. However, they all cancel in the final result,
which is spanned by multiple zeta values (MZVs) [63, 64], more precisely by
{ζ2, ζ3, ζ5, ζ7}, beyond pure rational terms. Let us illustrate the method by an
example. We would like to determine the harmonic polylogarithm H−1,0,0,1(1),
cf. Sect. 4.2, which is given by a polynomial of MZVs up to weight w=4. I.e. we
have to apply the PSLQ method over all monomials up to w=4

{

ln(2), ζ2, ζ3,Li4

(
1

2

)}

. (1)

Here we defined

ζk =
∞∑

l=1

1

lk
, k ∈ N, k ≥ 2 (2)

Lik(x) =
∞∑

l=1

xk

lk
, k ∈ N, x ∈ R, x ∈ [−1, 1]. (3)

An approximate numerical value of H−1,0,0,1(1) is

0.3395454690873598695906678484608602061387815339795751791304750

222490137419723806082682624196443182167020255697096551752247012

11749559277 (4)

and PSLQ yields

H−1,0,0,1(1) = − 1

12
ln4(2)+ 1

2
ln2(2)ζ2 + 3

5
ζ 2

2 −
3

4
ln(2)ζ3 − 2Li4

(
1

2

)

.

(5)

In particular, monomials like ln(2), ln2(2), ln3(2), ζ2, ζ3 do not contribute here.

3.2 Hypergeometric Functions and Their Generalizations

Simpler Feynman-parameter integrals have representations in terms of general-
ized hypergeometric functions [65–67] and their generalizations such as Appell-,
Kampe-De-Feriet- and related functions [68–79]. This is due to the hyperexponen-
tial nature of the Feynman-parameter integrals, implying real exponents due to the
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dimensional parameter ε. These representations map multiple integrals to single
series (for generalized hypergeometric functions) and double infinite series (e.g. for
Appell series), which finally have to be solved by applying summation theory. The
simplest function is Euler’s Beta-function implying the series of p+1Fp functions

B(a1, a2) =
∫ 1

0
dt ta1−1(1− t)a2−1 (6)

3F2(a1, a2, a3; b1, b2; x) = �(b2)

�(a3)�(b2 − a3)

∫ 1

0
dt ta3−1(1− t)−a3+b2−1

×2F1(a1, a2; b1; tx). (7)

Representations of this kind are usually sufficient for massless and massive single-
scale two-loop problems [80–83]. In the case of three-loop ladder graphs Appell-
functions are appearing [84, 85]. There are some more classes of higher tran-
scendental functions of this kind, which have been studied in the mathematical
literature [71, 72, 76]. The corresponding representations allow the expansion
in the dimensional parameter ε. At a given level in the calculation of Feynman
diagrams one will not find corresponding known function representations and one
has to invoke other methods of integration. One way to derive analytic infinite sum
representations are Mellin–Barnes integrals to which we turn now.

3.3 Analytic Solutions Using Mellin–Barnes Integrals

The higher transcendental functions discussed in Sect. 3.2 have representations in
terms of Pochhammer–Umlauf integrals [65, 86, 87] and related to it, by Mellin–
Barnes integrals [88, 89]. They are defined by

1

(a + b)α
= 1

�(α)

1

2πi

∫ i∞

−i∞
dz�(α + z)�(−z)

bz

aα+z
, α ∈ R, α > 0, (8)

cf. e.g. [90]. Here the contour integral is understood to be either closed to the
left or the right surrounding the corresponding singularities. The Mellin–Barnes
decomposition is analogous to the binomial (series) expansion for α < 0. After
its application, various more Feynman parameters can be integrated using the
technique described in Sect. 3.2. In every application the decomposition introduces a
number of infinite sums of depth one according to the residue theorem. There exist
some packages for Mellin–Barnes integrals [91–94], allowing also for numerical
checks. Finally all the produced sums have to be solved using multi-summation
methods. Therefore one is advised to apply this method very carefully. Not all
expressions generated by this method can be analytically summed using the
presently know technologies, cf. [44, 45]. Sometimes Mellin-N space techniques
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may lead to elliptic structures, while x-space techniques do not, cf. [95], and sum-
representations have to be cast back into definite integral representations first.

3.4 Hyperlogarithms

In a wide class of cases Feynman integrals can be represented by combinations of
Kummer–Poincaré integrals [96–100] for (a part) of their expansion coefficients in
ε. Let us assume one can isolate these terms, see [101], and forms a corresponding
finite multi-integral. The method of hyperlogarithms [102] has originally intended
to reorganize these integrals such that one can find a sequence of integrations being
linear in the Feynman parameter on hand. If this is the case the result is given
in terms of Kummer–Poincaré integrals. For a corresponding implementation see
[103]. The method has first been applied to the usual massless Feynman integrals.
A generalization for massive integrals also containing local operator insertions has
been given in [104], with an implementation in [105]. Here also certain non-linear
Feynman parameter structures, breaking multi-linearity, could be integrated.

3.5 The Method of Differential Equations

In single-scale processes systems of ordinary differential equations for the master
integrals are naturally obtained by the IBP-relations differentiating for a parameter
x.2 The master integrals may then be calculated by solving these systems under
given physical boundary conditions [106–109]. One considers the system

d

dx

⎛

⎜
⎝

f1
...

fn

⎞

⎟
⎠ =

⎛

⎜
⎝

A11 . . . A1,n
...

...

An1 . . . An,n

⎞

⎟
⎠

⎛

⎜
⎝

f1
...

fn

⎞

⎟
⎠+

⎛

⎜
⎝

g1
...

gn

⎞

⎟
⎠ , (9)

which may also be transformed into the scalar differential equation

n∑

k=0

pn−k(x)
dn−k

dxn−k
f1(x) = g(x), (10)

with pn �= 0, and (n − 1) equations for the remaining solutions, which are fully
determined by the solution f1(x). In setting up these systems one has to perform the
expansion in ε in parallel in the decoupling.

2Correspondingly, in the case of more parameters, partial differential equation systems are
obtained.
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An important class of differential equations is formed by the first order factoriz-
ing systems, after applying the decoupling methods [8, 30] encoded in Oresys
[28], which appear as the simplest case. Equation (9) may be transformed into
Mellin space, decoupled there and solved using the efficient methods of the package
Sigma, cf. Ref. [85].

The decoupled differential operator of (10) can be written in form of a combina-
tion of iterative integrals, cf. Sect. 4.2,

f1(x) =
n+1∑

k=1

γkgk(x), γk ∈ C, (11)

gk(x) = h0(x)

∫ x

0
dy1h1(y1)

∫ y1

0
dy2h2(y2) . . .

∫ yk−2

0
dyk−1hk−1(yk−1)

×
∫ yk−1

0
dykqk(yk) (12)

with qk(x) = 0 for 1 ≤ k ≤ m. Further, γm+1 = 0 if ḡ(x) = 0 in (10),
and γm+1 = 1 and qm+1(x) being a mild variation of ḡ(x) if ḡ(x) �= 0. These
solutions are d’Alembertian [110] since the master integrals appearing in quantum
field theories obey differential equations with rational coefficients, the letters hi ,
which constitute the iterative integrals, have to be hyperexponential. The solution
can be computed using the package HarmonicSums [111]. More generally,
also Liouvillian solutions [112] can be calculated with HarmonicSums utilizing
Kovacic’s algorithm [113]. This algorithm has been applied in many massive three-
loop calculations so far, see also [85, 114–116].

If being transformed to the associated system of difference equations, the same
holds, if this system is also first order factorizing. The solution of the remaining
equations are directly obtained by the first solution.

In the multi-variate case, the ε-representation of a linear system of partial
differential equations

∂mf (ε, xn) = Am(ε, xn)f (ε, xn) (13)

is important, as has been recognized in Refs. [117, 118], see also [119]. The matrices
An can now be transformed in the non-Abelian case by

A′m = B−1AmB − B−1(∂mB), (14)

see also [120, 121], and one now intends to find a matrix B to transform (13) into
the form

∂mf (ε, xn) = εAm(xn)f (ε, xn), (15)
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if possible. This then allows solutions in terms of iterative integrals. A formalism
for the basis change to the ε-basis has been proposed in [122] and implemented in
the single-variate case in [123, 124] and in the multi-variate case in [125].

3.6 The Method of Arbitrary Large Moments

In the case of single-scale problems the corresponding class of Feynman integrals
depends on a real parameter x ∈ [0, 1], which is given e.g. as the ratio of two
Lorentz invariants. For any power in ε one would like to find the corresponding
function in x analytically. In a series of cases, cf. e.g. [116, 126–128], one may
represent the solution in terms of a formal Taylor series in the variable x. The
differential equations implied by the integration-by-parts method [21, 22, 25–27]
can now be turned into recurrences using the Taylor series (resp. holonomic [129])
ansatz. In solving the corresponding system one may generate a large number
of Mellin moments for the different projections on the individual color factors
and multiple zeta values [64]. This is the case independently of the fact that the
corresponding x- or N-space solution is given by iterative integrals or iterative–
noniterative integrals. The corresponding method has been described in Ref. [130].
These moments can then be used as an input to the method described in Sect. 3.7
to find the associated difference equations. In some applications for single scale
massive three-loop integrals [114] 8000 moments could be calculated. This is by
far more than possible using standard methods like Mincer [131], MATAD [132]
or Q2E [133, 134]. Based on this number of moments, the formal power series
may be used as highly precise semi-analytic numeric representations, in case the
corresponding series expansion has been performed for the physical quantity to be
evaluated. If analytic continuations are still necessary, the method cannot be applied
directly.

3.7 Guessing One-Dimensional Integrals

As has been described in Sect. 3.6 single-variate multiple Feynman parameter
integrals can be either expanded into formal Taylor series or can be Mellin-
transformed

G(N) = M[f (x)](N) =
∫ 1

0
dxxN−1f (x). (16)

In both cases one tries now to find the associated difference equation [135] to the
set of moments, e.g. {G(2),G(4), . . . .,G(2m)},m ∈ N [136–139]. Indeed such
an equation exists in many cases, as e.g. for (massive) operator matrix elements
[140], but also for single-scale Wilson coefficients, Ref. [141]. If a suitably large
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number of moments has been calculated analytically, the associated series of rational
numbers can now be used as input for the guessing algorithm [142], which is also
available in Sage [143], exploiting the fast integer algorithms available there. The
method finally returns the wanted difference equation, and tests it by a larger series
of further moments. This method has been applied in Ref. [144] to obtain from more
than 5000 moments the massless unpolarized three-loop anomalous dimensions
and Wilson coefficients in deep-inelastic scattering [141, 145, 146]. Recently, the
method has been applied ab initio in the calculation of three-loop splitting functions
[147] and the massive two- and three-loop form factor [116, 148]. In the case of
a massive operator matrix element 8000 moments [114] could be calculated and
difference equations were derived for all contributing color and ζ -value structures.
Analytic solutions can be found using the package Sigma [44, 45], provided the
problem is solvable in difference field theory. In other cases at least the first order
factorizing parts can be factored off. Other techniques are then needed to determine
the remainder part of the solution.

3.8 The Almkvist–Zeilberger Algorithm

Since Feynman parameter integrals, depending on an additional parameter x,
can be given as integrals over {xi |n1=1} ∈ [0, 1]n, they form the multi-integral
I (x), depending also on ε. The dependence on the real parameter x may be
transformed into one on an integer parameter N , see Sect. 3.6. The Almkvist–
Zeilberger algorithm [149, 150] is providing a method to find either an associated
differential equation for I (x) or a difference equation for I (N), the coefficients of
which are either polynomials in {x, ε} or {N, ε},

m∑

l=0

Pl(x, ε)
dl

dxl
I (x, ε) = N(x, ε) (17)

m∑

l=0

Rl(N, ε)I (N + l, ε) = M(N, ε). (18)

Both equations may be inhomogeneous, where the inhomogeneities emerge as
known functions from lower order problems. An optimized and improved algo-
rithm for the input class of Feynman integrals has been implemented in the
MultiIntegrate package [85, 151]. It can either produce homogeneous equa-
tions of the form (17, 18) or equations with an inhomogeneity formed out of already
known functions.
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3.9 Iterative-Noniterative Integrals and Elliptic Solutions

Non-first order factorizing systems of differential or difference equations for
the master integrals, cf. Sect. 3.5, occur at a certain order in massive Feynman
diagram calculations. Well-known examples for this are the sun-rise integral,
cf. e.g. [152–158], the kite integral [159–161], the three-loop QCD-corrections to
the ρ-parameter [162–164], and the three-loop QCD corrections to the massive
operator matrix element AQg [114]. After separating the first-order factorizing
factors a Heun differential equation [165] remains in the case of the ρ-parameter.
One may write the corresponding solution also using 2F1-functions with rational
argument [162, 166] and rational parameters. It is now interesting to see whether
these solutions can be expressed in terms of complete elliptic integrals, which can
be checked algorithmically using the triangle group [167].

In the examples mentioned one can find representations in terms of complete
elliptic integrals of the first and second kind, K and E, cf. [168, 169], and the
question arises whether an argument translation allows for a representation through
only K. Criteria for this have been given in [170, 171]. In the case of the three-loop
QCD-corrections to the ρ-parameter, however, this is not possible.

The homogeneous solution of the Heun equations are given by 2F1-solutions
ψ

(0)
k (x), k = 1, 2, at a specific rational argument. These integrals cannot be

represented such that the variable x just appears in the boundaries of the integral.
The inhomogeneous solution reads

ψ(x) = ψ
(0)
1 (x)

[

C1 −
∫

dxψ
(0)
2 (x)

N(x)

W(x)

]

+ {1 → 2}, (19)

with N(x) and W(x) the inhomogeneity and the Wronskian. C1,2 are the integration
constants. Through partial integration the ratio N(x)/W(x) can be transformed into
an iterative integral. Since ψ

(0)
k (x) cannot be written as iterative integrals, ψ(x) is

obtained as an iterative non-iterative integral [162, 172] of the type

Ha1,...,am−1;am,Fm(r(ym)),am+1,...aq (x) =
∫ x

0
dy1fa1(y1)

∫ y1

0
dy2 . . .

∫ ym−1

0
dymfam(ym)Fm[r(ym)]Ham+1,...,aq (ym), (20)

with r(x) a rational function and Fm a non-iterative integral. Usually more
than one non-iterative integral will appear in (20). Fm denotes any non-iterative
integral, implying a very general representation, cf. [162].3 In Ref. [174] an ε-
form for the Feynman diagrams of elliptic cases has been found recently. However,
transcendental letters contribute here. This is in accordance with our earlier finding,
Eq. (20), which, as well is an iterative integral over all objects between the individual

3This representation has been used in a more special form also in [173] later.
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iterations and to which now also the non-iterative higher transcendental functions
Fm[r(ym)] contribute. One may obtain fast convergent representations of H(x) by
overlapping series expansions around x = x0 outside possible singularities, see
Ref. [162] for details.

Let us return to the elliptic case now. Here one may transform the kinematic
variable x occurring as K(k2) = K(r(x)) into the variable q = exp[iπτ ]
analytically with

k2 = r(x) = ϑ4
2 (q)

ϑ4
3 (q)

, (21)

by applying a third order Legendre–Jacobi transformation, where ϑl, l = 1, . . . , 4
denote Jacobi’s ϑ-functions and Im(τ ) > 0. In this way Eq. (19) is rewritten in
terms of the new variable. The integrands are given by products of meromorphic
modular forms, cf. [175–177], which can be written as a linear combination of ratios
of Dedekind’s η-function

η(τ) = q
1

12

∞∏

k=1

(1− q2k) . (22)

Depending on the largest multiplier k ∈ N, km, of τ in the argument of the η-
function, the solution transforms under the congruence subgroup �0(km). One can
perform Fourier expansions in q around the different cusps of the problem, cf. [178,
179].

In the case that the occurring modular forms are holomorphic, one obtains
representations in Eisenstein series with character, while in the meromorphic case
additional η-factors in the denominators are present. In the former case the q-
integrands can be written in terms of elliptic polylogarithms in the representation
[156, 157]

ELin,m(x, y) =
∞∑

k=1

∞∑

l=1

xk

kn

yl

lm
qkl (23)

and products thereof, cf. [157]. The corresponding q-integrals can be directly per-
formed. The solution (19) usually appears for single master integrals. Other master
integrals are obtained integrating further other letters, so that finally representations
by H(x) occur. Iterated modular forms, resp. Eisenstein series, have been also
discussed recently in [180, 181]. Efficient numerical calculations of modular forms
based on q-series were obtained in [182].

For systems which factorize only to third and higher order much less is known.
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3.10 Iterative Integrals of Functions with More Variables

The occurrence of several masses or additional external non-factorizing scales in
higher order loop- and phase-space integrals leads in general to rational and root-
valued letters with real parameter letters in the contributing alphabet, cf. [95, 183,
186–188]. In the case of the loop integrals one obtains letters of the kind

1

1− x(1− η)
,

√
x(1− x)

η + x(1− η)
,
√
x(1− η(1− x), η ∈ [0, 1]. (24)

The iterative integrals and constants which appeared in [95, 183] could finally be
all integrated to harmonic polylogarithms containing complicated arguments, at
least up to one remaining integration, which allows their straightforward numerical
evaluation.

In the case of phase space integrals with more scales, e.g. [186, 187], also letters
contribute, which may imply incomplete elliptic integrals and iterated structures
thereof. Contrary to the functions obtained in Sect. 3.9 these are still iterative
integrals, because the boundaries of the phase-space integrals are real parameters
and not constants. The integrands could not by rationalized completely by variable
transformations, see also [189]. Contributing letters are e.g.

x√
1− x2

√
1− k2x2

,
x√

1− x2
√

1− k2x2(k2(1− x2(1− z2))− z2)
, (25)

with k, z ∈ [0, 1]. The corresponding iterative integrals are called Kummer-elliptic
integrals. They are derived using the techniques described in Refs. [190–192].

4 A Series of Function Spaces

Intermediary and final results for zero- and single-scale multi-loop calculations have
representations by special functions as polynomials over Q. In the case of zero-scale
quantities these are special numbers. For single scale quantities one either uses finite
nested sum representations in Mellin N-space or iterative integral representations in
x-space. Here x denotes a Lorentz invariant ratio of two physical quantities. Both
spaces are related to each other by the Mellin transform (16), where f (x) denotes an
iterative integral. The zero-scale quantities can be obtained e.g. in the limit N →∞
of these Mellin transforms or by the values f (x = 1).
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4.1 Classes of Nested Sums

The methods described in Sect. 3 very often lead to finite nested sum representations
for which algorithms exist [44, 45] to cast these sums into indefinitely nested sums.
They are given by

Sb,a(N) =
N∑

k=1

gb(k)Sa(n), S∅ = 1, gc ∈ Ā, (26)

with Ā the associated alphabet of functions. The sums obey quasi-shuffle relations
[193, 194]. The simplest structures are the finite harmonic sums [195, 196], where
gb(k) = (sign(b))k/k|b|, b ∈ N\{0}. A generalization is obtained in the cyclotomic
case [197]. Here the characteristic summands are ga,b,c(k) = (±1)k/(ak+b)c, with
a, b, c ∈ N\{0}. Further, the generalized harmonic sums have letters of the type
bk/kc, with c ∈ N\{0}, b �= 0, b ∈ R [198]. Another generalization are nested finite
binomial and inverse-binomial sums, containing also other sums discussed before.
An example is given by

N∑

i=1

(
2i

i

)

(−2)i
i∑

j=1

1

j

(
2j

j

)S1,2

(
1

2
, 1

)

(j) =
∫ 1

0
dx

(−x)N − 1

x + 1

√
x

8− x

×
[
Hw12,1,0(x)− 2Hw13,1,0(x)− ζ2

(
Hw12(x)− 2Hw13(x)

)]

− 5ζ3

8
√

3

∫ 1

0
dx

(−2x)N − 1

x + 1
2

√
x

4− x
+ c1

∫ 1

0
dx

(−8x)N − 1

x + 1
8

√
x

1− x
, (27)

with c1 ≈ 0.10184720 . . . , cf. [192]. Here the indices wk label specific letters given
in [192]. Infinite binomial and inverse binomial sums have been considered in [199,
200]. Given the general structure of (26) many more iterated sums can be envisaged
and may still appear in even higher order calculations.

4.2 Classes of Iterated Integrals

Iterated integrals have the structure

Hb,a(x) =
∫ x

0
dyfb(y)Ha(y), H∅ = 1, fc ∈ A, (28)
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where fc are real functions and are the letters of the alphabet A. Iterated integrals
obey shuffle relations [194, 201] which allows to represent them over a multinomial
basis of fewer terms.

The simplest iterative integrals having been considered in quantum field theory
are the Nielsen integrals for the two-letter alphabets {1/x, 1/(1−x)}or {1/x, 1/(1+
x)} [202–205], covering also the polylogarithms [205–207]. This class has later
been extended to the harmonic polylogarithms [208] build over the alphabet
{1/x, 1/(1 − x), 1/(1 + x)}. A further extension is to the real representations of
the cyclotomic polylogarithms, with {1/x, 1/�k(x)} [197], where �k(x) denotes
the kth cyclotomic polynomial. Another extension is given by Kummer–Poincaré
iterative integrals over the alphabet {1/(x − ai), ai ∈ C}, [96–100]. Properties of
these functions have been studied in Refs. [198, 209]. In general one may have also
more general denominator polynomials P(x), which one can factor into

P(x) =
n∏

k=1

(x − ak)

m∏

l=1

(x2 + blx + cl), ak, bl, cl ∈ R (29)

in real representations. One then performs partial fractioning for 1/P (x) and forms
iterative integrals out of the obtained letters. Further classes are found for square-
root valued letters as studied e.g. in Ref. [192]. In multi-scale problems, cf. e.g. [95,
186–188] and Sect. 3.10, further root-valued letters appear, like also the Kummer-
elliptic integrals [187].

4.3 Classes of Associated Special Numbers

For the sums of Sect. 4.1 which are convergent in the limit N → ∞ and the
iterated integrals of Sect. 4.2 which can be evaluated at x = 1 one obtains two
sets of special numbers. They span the solution spaces for zero-scale quantities
and appear as boundary values for single-scale problems. Examples for these
special numbers are the multiple zeta values [64], associated to the harmonic sums
and harmonic polylogarithms, special generalized numbers [198] like Li2(1/3),
associated to generalized sums and to Kummer–Poincaré iterated integrals, special
cyclotomic numbers [197] like Catalan’s number, special binomial numbers [192],
as e.g. arccot(

√
7), and special constants in the elliptic case [162, 210]. The latter

numbers are given by integrals involving complete elliptic integrals at special
rational arguments and related functions. In general these numbers obey more
relations than the finite sums and iterated integrals. One may use the PSLQ-method
to get a first information on relations between these numbers occurring in a given
problem and proof the conjectured relations afterwards.
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4.4 Numerical Representations

Physical observables based on single scale quantities can either be represented in
Mellin N-space or x-space. Representations in Mellin N-space allow the exact
analytic solution of evolution equations [211] and scheme-invariant evolution
equations can be derived in this way [212, 213]. The x-space representation is then
obtained by a single numerical integral around the singularities of the respective
quantity for N ∈ C, cf. [211], requiring to know the complex representation of the
integrand in N-space. In the case of harmonic sums semi-numerical representations
were given in [214, 215]. Furthermore, it is known that basic harmonic sums, except
of S1(N), which is represented by the Digamma function, and its polynomials, have
a representation by factorial series [216, 217], which has been used in [218, 219] for
their asymptotic representation, see also [220]. One uses then the recursion relations,
which can be obtained from (26), to move N ∈ C from the asymptotic region to the
desired point on the integration contour in the analyticity region of the problem. This
can be done for the sums of the type being described in Refs. [192, 197, 198] as well,
since also in this case asymptotic expansions can be provided, at least for certain
combinations of sums occurring in the respective physical problem, cf. [85, 104].
In the case that the corresponding relations are not given in tabulated form,
they can be calculated using the package HarmonicSums [111, 151, 192, 195–
198, 221, 222]. Relations for harmonic sums are also implemented in summer
[195], and for generalized harmonic sums in nestedsums [223], Xsummer
[224], and PolyLogTools [226].

In other applications one may want to work in x-space directly. Here numer-
ical representations are available for the Nielsen integrals [203], the harmonic
polylogarithms [227–231], the Kummer–Poincaré iterative integrals [231], and the
cyclotomic harmonic polylogarithms [116]. These representations are also useful to
lower the number of numerical integrations for more general problems, e.g. in the
multi-variate case. The relations for the corresponding quantities are implemented
for the harmonic polylogarithms in [208, 228] and for all iterative integrals
mentioned, including general iterative integrals, in the package HarmonicSums.

5 Conclusions

In parallel to the analytic higher-loop calculations in Quantum Field Theory the
associated mathematical methods have been developed by theoretical physicists
and mathematicians since the 1950s. We witness a very fast development since
the late 1990s approaching difficult massive problems at two-loop and higher
order and massless problems form three loops onward. The classical methods of
polylogarithms and Nielsen-integrals which were standard means, turned out to be
not sufficient anymore. Since then more and more special number- and function
spaces have been revealed, studied and were brought to flexible practical use in very
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many applications. Moreover, a wide host of analytic integration and summation
methods have been developed during a very short period. In this way very large
physics problems could be solved analytically—a triumph of the exact sciences,
also thanks to various groundbreaking methods in computer algebra. In this context
the goal is to improve the accuracy of the fundamental parameters of the Standard
Model of the elementary particles further. Within the present projects this concerns
in particular the relative precision of the strong coupling constant αs(M

2
Z) to less

than 1% and of the MS mass of the charm quark to better than 1.5%.
At even higher loop order and for more separated final state legs, introducing

more masses and kinematic invariants, one expects further mathematical structures
to contribute. Possible structures of this kind could be Abel-integrals [232] and
integrals related to K3-surfaces [233]. More inclusive methods, like the method of
differential equations, can certainly determine the degree of non-factorization of a
physical problem. However, one would like to know in a closer sense the respective
analytic solution. Here cutting methods can be of use since the underlying integrands
can be systematically related to the final integral by (various) Hilbert-transforms
[234–236].4 In this way integrand structures are revealed, which are somewhat
hidden in the case of differential equations. This method has been advocated early
by M. Veltman [238], see also [239].

This process to master highly complex Feynman integrals using analytic methods
is of course just at the beginning and will develop further given the present and
future challenges in the field. All of these results put experimental analyses in
precision measurements at the high energy colliders into the position to analyze the
data with much reduced theory errors and we will get far closer in our insight into
the structure of the micro cosmos to reveal its ultimate laws. The interdisciplinary
joined effort by mathematicians, theoretical and experimental particle physicists and
experts in computer algebra makes this possible and allows to answer quite a series
of fundamental scientific questions of our time.

I would like to give my warmest thanks to Peter Paule for his continuous
collaboration and support to the DESY–RISC collaboration, starting with our first
contacts in 2005, arranged by Bruno Buchberger. This scientific symbiosis has
produced a large number of methods to tackle quite a series of difficult problems
since, and is continuing to do so in the future. Physics, mathematics, and computer
algebra profit from this and reach new horizons, which, not at all, could have been
imagined. In this way we follow together the motto D. Hilbert has given to us:

Wir müssen wissen. Wir werden wissen.

Le but unique de la science, c’est l’honneuer de l’esprit humain.5

4For a recent application to the one-loop case, see e.g. [237].
5Jacobi to Legendre, July 2nd, 1830.
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An Eigenvalue Problem for the
Associated Askey–Wilson Polynomials
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Dedicated to Peter Paule on the occasion of his 60th birthday

1 Introduction

Throughout this paper, we use the standard notation for the q-shifted factorials:

(a; q)n :=
n−1∏

j=0

(
1− aqj

)
, (a1, a2, . . . , ar; q)n :=

r∏

k=1

(ak; q)n ,

(a; q)∞ := lim
n→∞ (a; q)n , (a1, a2, . . . , ar; q)∞ :=

r∏

k=1

(ak; q)∞ ,

provided |q| < 1. The basic hypergeometric series is defined by (cf. [9])

rϕs

(
a1, a2, . . . , ar

b1, . . . , bs
; q , z

)

:=
∞∑

n=0

(a1, a2, . . . , ar ; q)n
(q, b1, b2, . . . , bs ; q)n

((−1)nqn(n−1)/2)1+s−r zn.
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If 0 < |q| < 1, the series converges absolutely for all z if r ≤ s, and for |z| < 1 if
r = s + 1.

The Askey–Wilson polynomials are the most general extension of the classical
orthogonal polynomials [1–5, 11–13, 18]. They are most conveniently given in terms
of a 4ϕ3-series,

pn(x) = pn(x; a, b, c, d) = pn(x; a, b, c, d|q)

= a−n (ab, ac, ad; q)n 4ϕ3

(
q−n, abcdqn−1, az, a/z

ab, ac, ad
; q, q

)

,

where x = (
z+ z−1

)
/2, and |z| < 1. In this normalization, the Askey–Wilson

polynomials are symmetric in all four parameters due to Sears’ transformation [4].
The Askey–Wilson polynomials satisfy the 3-term recurrence relation

2x pn(x; a, b, c, d) = An pn+1(x; a, b, c, d) + Bn pn(x; a, b, c, d)
+ Cn pn−1(x; a, b, c, d), (1)

where

An = a−1(1− abqn)(1− acqn)(1− adqn)(1− abcdqn−1)

(1− abcdq2n−1)(1− abcdq2n − q2n)
, (2)

Cn = a(1− bcqn−1)(1− bdqn−1)(1− cdqn−1)(1− qn)

(1− abcdq2n−1)(1− abcdq2n)
, (3)

Bn = a + a−1 − An − Cn. (4)

The weight function with respect to which the polynomials pn(x) are orthogonal
was found by Askey and Wilson in [4]. The Askey–Wilson divided difference
operator is defined by

L(x)u := L (s; a, b, c, d) u (s)

= σ (−s)∇x (s) u (s + 1)+ σ (s)�x (s) u (s − 1)

�x (s)∇x (s)∇x1 (s)

− [σ (s)�x (s)+ σ (−s)∇x (s)] u (s)

�x (s)∇x (s)∇x1 (s)
, (5)

where σ (s) = q−2s (qs − a) (qs − b) (qs − c) (qs − d) and, by definition,

x(s) = 1

2

(
qs + q−s

)
, x1(s) = x

(

s + 1

2

)

,

�f (s) = f (s + 1)− f (s), ∇f (s) = f (s)− f (s − 1).
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(We follow the notation in [7] and [8].) We will make use of an analogue of
the power series expansion method, where a function is expanded in terms of
generalized powers. For a positive integer m, the generalized powers are defined
by

[x(s)− x(z)](m) =
m−1∏

k=0

[x(s)− x(z− k)], xn(z) = x
(
z+ n

2

)
(6)

(see [17, Exercises 2.9–2.11, 2.25] and [16] for more details).

2 The Associated Askey–Wilson Polynomials

The associated Askey–Wilson polynomials,

pα
n (x) = pα

n (x; a, b, c, d) = pα
n (x; a, b, c, d|q),

were introduced by Ismail and Rahman in [10]. They are solutions of the 3-term
recurrence relation

2x pα
n (x; a, b, c, d) = An+α pα

n+1(x; a, b, c, d) + Bn+α pα
n (x; a, b, c, d)

+ Cn+α pα
n−1(x; a, b, c, d), (7)

where 0 < α < 1, with initial values pα
−1(x) = 0, pα

0 (x) = 1, and An+α, Bn+α,

Cn+α are given as in (2)–(4) with n replaced by n+α. The two linearly independent
solutions to (1) found in [10] are

Rn+α = (abqn+α, acqn+α, adqn+α, bcdqn+α/z; q)∞
(bcqn+α, bdqn+α, cdqn+α, azdqn+α; q)∞

(
a

z

)n+α

× 8W7(bcd/qz; b/z, c/z, d/z, abcdqn+α−1, q−α−n; q, qz/a) (8)

and

Sn+α = (abcdq2n+2α, bzqn+α+1, czqn+α+1, dzqn+α+1, bcdzqn+α+1; q)∞
(bcqn+α, bdqn+α, cdqn+α, qn+α+1, bcdzq2n+2α+1; q)∞ (az)n+α

× 8W7(bcdzq
2n+2α; bcqn+α, bdqn+α, cdqn+α, qn+α+1, zq/a; q, az). (9)

The weight function for the associated Askey–Wilson polynomials and an explicit
polynomial representation were found by Ismail and Rahman in [10]. The latter is
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given by

pα
n (x) = pα

n (x; a, b, c, d|q)

=
n∑

k=0

(q−n, abcdq2α+n−1, abcdq2α−1, aeiθ , ae−iθ ; q)k
(q, abqα, acqα, adqα, abcdqα−1; q)k qk

× 10W9(abcdq
2α+k−1; qα, bcqα−1, bdqα−1, cdqα−1, qk+1,

abcdq2α+n+k−1, qk−n; q, a2). (10)

There is another useful representation of the associated Askey–Wilson polynomials
in terms of a double series due to Rahman,

pα
n (x) = pα

n (x; a, b, c, d|q)

= (abcdq2α−1, qα+1; q)n
(q, abcdqα−1; q)n q−αn

n∑

k=0

(q−n, abcdq2α+n−1; q)k
(qα+1, abqα; q)k qk (11)

× (aqαeiθ , aqαe−iθ ; q)k
(acqα, acqα; q)k

k∑

j=0

(qα, abqα−1, acqα−1, adqα−1; q)j
(q, abcdq2α−2, aqαeiθ , aqαe−iθ ; q)j q

j ,

where x = cos θ (see [9, Exercises 8.26–8.27] and [13–15]). This formula will be
the starting point for our investigation.

3 An Overview of the Main Result

To construct an eigenvalue problem for the associated Askey–Wilson polynomials,
let us consider an auxiliary function uα

n(x, y) in two variables, which for x = y

coincides with the associated Askey–Wilson polynomials (up to a factor). We
observe that the Askey–Wilson operator L0(x) (in one variable x) maps uα

n(x, y) to
the n-th degree ordinary Askey–Wilson polynomial (up to some factors). A similar
result is obtained for the operator L1(y) applied to uα

n(x, y) with respect to the
second independent variable y. We will find an operator L2(x), which maps certain
multiples of (L1(y)+ λ) uα

n(x, y) to (L0(x)+λ)uα
n(x, y). As a result, we obtain an

eigenvalue problem of the form

(aqs, aq−s; q)∞
(aqα+s−1, aqα−s−1; q)∞ (L2(x)+ λ)

(aqα+s , aqα−s; q)∞
(aqs, aq−s; q)∞ (L1(y) + μα) u

α
n(x, y)

= 4q9/2

(1− q)2γ
(L0(x) + λα+n)u

α
n(x, y) (12)
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related to the associated Askey–Wilson polynomials of Ismail and Rahman (see
Theorem 1 below for an exact statement).

We shall use the normalization

pn(x; a, b, c, d) = 4ϕ3

(
q−n, abcdqn−1, aqs, aq−s

ab, ac, ad
; q, q

)

, x = (
qs + q−s

)
/2).

(13)

for the ordinary Askey–Wilson polynomials throughout this paper.

Lemma 1 Let uα
n(x, y) be the function in the two variables x and y defined by

uα
n(x, y) :=

(aqs, aq−s, aqα+z, aqα−z; q)∞
(aqα+s, aqα−s, aqz, aq−z; q)∞

×
n∑

m=0

(q−n, γ q2α+n−1, aqα+s, aqα−s; q)m
(qα+1, abqα, acqα, adqα; q)m qm

×
m∑

k=0

(qα, abqα−1, acqα−1, adqα−1; q)k
(q, γ q2α−2, aqα+z, aqα−z; q)k qk, (14)

with x(s) = (qs + q−s)/2 and y(z) = (qz + q−z)/2. Then uα
n(x, y) satisfies an

equation of the form

(L0(x)+ λα+n)u
α
n(x, y) = f α

n (x, y), (15)

where L0(x) = L (s; a, b, c, d) is the Askey–Wilson divided difference operator in
the variable x given by (5). Here,

f α
n (x, y) = − 4q3/2−α

(1− q)2

(aqs, aq−s, aqα+z, aqα−z; q)∞
(aqα+s−1, aqα−s−1, aqz, aq−z; q)∞

× (qα, abqα−1, acqα−1, adqα−1; q)1

× pn(x; aqα−1, bcdqα−1, q1+z, q1−z),

and

λα+n = 4q3/2

(1− q)2

(
1− q−α−n

) (
1− γ qα+n−1

)
, γ = abcd.

Note that f α
n (x, y) contains the n-th degree ordinary Askey–Wilson polynomial

of the form (13) in the variable x. Our function uα
n(x, y) is the Askey–Wilson

polynomial when α = 0 and a constant multiple of the associated Askey–Wilson
polynomial if x = y.
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Lemma 2 The function uα
n(x, y) satisfies another equation, namely

(L1(y)+ μα)u
α
n(x, y) = gα

n (x, y),

where L1(y) := L (y; q/a, q/b, q/c, q/d) is the Askey–Wilson divided difference
operator in y.

Here,

gα
n (x, y) = −

4q9/2−α

(1− q)2γ

(aqs, aq−s, aqα+z+1, aqα−z+1; q)∞
(aqα+s, aqα−s, aqz, aq−z; q)∞

× (qα, abqα−1, acqα−1, adqα−1; q)1

× pn(x; aqα, bcdqα−2, q1+z, q1−z)

and

μα = 4q3/2

(1− q)2

(
1− qα

) (
1− q3−α/γ

)
.

Note that gα
n (x, y) contains another n-th degree Askey–Wilson polynomial (13)

in the same variable x.

Lemma 3 The difference differentiation formula

(L (x)+ λ)pn(x; a, b, c, d) = λpn(x; a/q, bq, c, d) (16)

holds for the Askey–Wilson polynomials given by (13). Here, L (x) =
L (s; a, a/q, c, d) is the Askey–Wilson divided difference operator (5) and

λ = 4q3/2

(1− q)2 (1− ac/q) (1− ad/q) .

Lemmas 1–3 allow us to establish the eigenvalue problem (12) for the associated
Askey–Wilson functions (14), see the next section.

4 Main Result

With the help of Lemmas 1–3, we now identify an operator L2(x) linking (L0(x)+
λα+n)u

α
n(x, y) and (L1(y)+λ−α)u

α
n(x, y) in such a way that an eigenvalue problem

is formulated.
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Theorem 1 Let L2(x) = L(s; aqα, aqα−1, q1+z, q1−z) be the Askey–Wilson
divided difference operator defined by (5) with

σ(s) = q−2s (qs − aqα
) (

qs − aqα−1
) (

qs − q1+z
) (

qs − q1−z
)

and

λ = 4q3/2

(1− q)2

(
1− aqα−z

) (
1− aqα+z

)
.

Then an eigenvalue problem for the associated Askey–Wilson functions uα
n(x, y) can

be stated as

γ

q3

(
aqs, aq−s; q)∞(

aqα+s−1, aqα−s−1; q)∞
(L2(x)+ λ)

(
aqα+s, aqα−s; q)∞(
aqs, aq−s; q)∞

(L1(y)+ μα) u
α
n(x, y)

= 4q3/2

(1− q)2 (L0(x)+ λα+n) u
α
n(x, y), (17)

where L0, L1, λα+n, μα and uα
n(x, y) are defined as in Lemmas 1–3.

Computational details are left to the reader. The explicit form of the difference
operator in two variables on the left-hand side of the last equation has also been
calculated, but it is too long to be displayed here.

5 Proofs

Proof of Lemma 1 Let λν be an arbitrary number. We are looking for solutions of
a generalization of the Eq. (15), namely,

(L0(x)+ λν)u
α
n(x, y) = f α

n (x, y),

in terms of generalized powers (see (6) for the definition)

uα
n(x, y) =

n∑

m=0

cmvm[x(s)− x(ξ)](α+m),

where

vm = vm(y) = (aqα+z, aqα−z; q)∞
(aqz, aq−z; q)∞

n∑

k=0

(qα, abqα−1, acqα−1, adqα−1; q)k
(q, γ q2α−2, aqα+z, aqα−z; q)k qk,
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and γ = abcd. (This is an analogue of the power series expansion; see [7], [16,
Exercises 2.9–2.11], and [17] for properties of the generalized powers.)

Apply the Askey–Wilson operator to uα
n(x, y) to obtain

(L0(x)+ λν)u
α
n(x, y) = λν

n∑

m=0

cmvm[x(s)− x(ξ)](α+m)

+
n∑

m=0

cmvm L0(x)[x(s)− x(ξ)](α+m),

since vm is independent of x. By [7], we have

L0(x)[x(s) − x(ξ)](α+m) = γ (α +m)γ (α +m− 1)σ (ξ − α −m+ 1)

× [x(s) − x(ξ − 1)](α+m−2)

+ γ (α +m)τα+m−1(ξ − α −m+ 1)[x(s) − x(ξ − 1)](α+m−1)

− λα+m[x(s)− x(ξ)](α+m).

We use the same notations as in [7], [16, Exercise 2.25], or [17]. Choose a0 :=
ξ − α −m+ 1 to be a root of the equation σ(a0) = 0. Then ξ = a0 + α +m− 1,
and one obtains

(L0(x)+ λν)u
α
n(x, y) =

n∑

m=0

cmvmγ (α +m)τα+m−1(a0)

× [x(s)− x(a0 + α +m− 2)](α+m−1)

+
n∑

m=0

cmvm(λν − λα+m)[x(s)− x(a0 + α +m− 1)](α+m)

= c0v0γ (α)τα−1(a0)[x(s)− x(a0 + α − 2)](α−1)

+
n∑

m=1

cmvmγ (α +m)τα+m−1(a0)[x(s)− x(a0 + α +m− 2)](α+m−1)

+
n∑

m=0

cmvm(λν − λα+m)[x(s)− x(a0 + α +m− 1)](α+m).

Letting m = k + 1, we get

(L0(x)+ λν)u
α
n(x, y) = c0v0γ (α)τα−1(a0)[x(s)− x(a0 + α − 2)](α−1)
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+
n−1∑

k=0

ck+1vk+1γ (α + k + 1)τα+k(a0)[x(s)− x(a0 + α + k − 1)](α+k)

+
n∑

k=0

ckvk(λν − λα+k)[x(s)− x(a0 + α + k − 1)](α+k). (18)

Note that for

vk =
k∑

l=0

el, el := (aqα+z, aqα−z; q)∞
(aqz, aq−z; q)∞

(qα, abqα−1, acqα−1, adqα−1; q)l
(q, γ q2α−2, aqα+z, aqα−z; q)l ql

one has

vk+1 = vk + ek+1 and v0 = e0.

After choosing λν = λα+n, Eq. (18) becomes

(L0(x)+ λα+n)u
α
n(x, y) =

n−1∑

k=−1

ck+1ek+1γ (α + k + 1)τα+k(a0)[x(s)− x(a0 + α + k − 1)](α+k)

+
n−1∑

k=0

ck+1vkγ (α + k + 1)τα+k(a0)[x(s)− x(a0 + α + k − 1)](α+k)

+
n−1∑

k=0

ckvk(λα+n − λα+k)[x(s)− x(a0 + α + k − 1)](α+k).

The latter two sums vanish if

ck+1γ (α + k + 1)τα+k(a0) = ck(λα+n − λα+k).

Therefore,

(L0(x)+ λα+n)u
α
n(x, y)

=
n−1∑

k=−1

ck+1ek+1γ (α + k + 1)τα+k(a0)[x(s)− x(a0 + α + k − 1)](α+k)

=
n∑

m=0

cmemγ (α+m)τα+m−1(a0)[x(s)−x(a0+α+m−2)](α+m−1) =: f α
n (x, y).
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Finally, we show that the function f α
n (x, y) is, up to a factor, the n-th ordinary

Askey–Wilson polynomial. The generalized powers have the property (see [16])

[x(s)− x(z)](n+1) = [x(s)− x(z)][x(s)− x(z− 1)](n),

which leads to

f α
n (x, y) =

n∑

m=0

cmemγ (α +m)τα+m−1(a0)
[x(s)− x(a0 + α +m− 1)](α+m)

[x(s)− x(a0 + α +m− 1)] .

Moreover,

cm[x(s)− x(a0 + α +m− 1)](α+m)

= c0
(q−n, γ q2α+n−1; q)m

(qα+1, abqα, acqα, adqα; q)m qm [x(s)− x(a0 + α +m− 1)](α+m)

= c0 ϕm(x) [x(s)− x(a0 + α − 1)](α),

where, by definition,

ϕm(x) := (aqs, aq−s; q)∞
(aqα+s, aqα−s; q)∞

(q−n, γ q2α+n−1, aqα+s, aqα−s; q)m
(qα+1, abqα, acqα, adqα; q)m qm.

Therefore,

f α
n (x, y) = (aqs, aq−s; q)∞

(aqα+s, aqα−s; q)∞
(q−n, γ q2α+n−1, aqα+s, aqα−s; q)m

(qα+1, abqα, acqα, adqα; q)m qm

× (aqα+z, aqα−z; q)∞
(aqz, aq−z; q)∞

(qα, abqα−1, acqα−1, adqα−1; q)m
(q, γ q2α−2, aqα+z, aqα−z; q)m qm

× γ (α +m)τα+m−1(a0)

[x(s)− x(a0 + α +m− 1)] . (19)

Recall that a = qa0 and

γ (α +m) = q−
α+m−1

2
1− qα+m

1− q
,

x(s)− x(a0 + α +m− 1) = − 1

2a
q−α−m+1(1− aqα−s+m−1)(1− aqα+s+m−1),

τα+m−1(a0) = 2

a(1− q)
q−2(α+m−1)+ α+m

2 (1− abqα+m−1)(1− acqα+m−1)(1 − adqα+m−1),
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which allows us to simplify the last term of (19) to

qm γ (α +m)τα+m−1(a0)

[x(s)− x(a0 + α +m− 1)]

= −4q
3
2−α 1− qα+m

1− q

(1− abqα+m−1)(1− acqα+m−1)(1− adqα+m−1)

(1− aqα−s+m−1)(1− aqα+s+m−1)
.

Thus f α
n (x, y) becomes

f α
n (x, y) = −4q

3
2−α

(1− q)2

(aqs, aq−s, aqα+z, aqα−z; q)∞
(aqα+s−1, aqα−s−1, aqz, aq−z; q)∞ (20)

× (qα, abqα−1, acqα−1, adqα−1; q)1

×
n∑

m=0

(q−n, γ q2α+n−1, aqα+s−1, aqα−s−1; q)m
(q, γ q2α−2, aqα+z, aqα−z; q)m qm

= −4q
3
2−α

(1− q)2

(aqs, aq−s, aqα+z, aqα−z; q)∞
(aqα+s−1, aqα−s−1, aqz, aq−z; q)∞

× (qα, abqα−1, acqα−1, adqα−1; q)1

× pn(x; aqα−1, bcdqα−1, q1+z, q1−z),

which completes the proof of the lemma.

Proof of Lemma 2 Consider the equation

(L1(y)+ λν)u
α
n(x, y) = gα

n (x, y),

and rewrite uα
n(x, y) in the form

uα
n(x, y) =

n∑

m=0

cαm(aq
α+s, aqα−s; q)m (aqs, aq−s; q)∞

(aqα+s, aqα−s; q)∞ vαm(y),

where

cαm =
(q−n, γ q2α+n−1; q)m

(qα+1, abqα, acqα, adqα; q)m qm, γ = abcd,

and

vαm(y) = (aqα+z, aqα−z; q)∞
(aqz, aq−z; q)∞

m∑

k=0

(qα, abqα−1, acqα−1, adqα−1; q)k
(q, γ q2α−2, aqα+z, aqα−z; q)k qk.
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Apply the Askey–Wilson operator L1(y) := L (y; q/a, q/b, q/c, q/d) to uα
n(x, y)

to obtain

(L1(y)+ λν)u
α
n(x, y)

=
n∑

m=0

cαm(aqα+s, aqα−s; q)m (aqs, aq−s; q)∞
(aqα+s, aqα−s; q)∞ (L1(y)+ λν) v

α
m(y).

Let

vαm(y) :=
m∑

k=0

ck

[x(s)− x(ξ)](α+k)

in analogy with [7]. Then

(L1(y)+ λν)v
α
m(y) = λν

m∑

k=0

ck

[x(s)− x(ξ)](α+k)
+

m∑

k=0

ck L1(y)

(
1

[x(s)− x(ξ)](α+k)

)

.

By [7], we have

L1(y)

(
1

[x(s)− x(ξ)](α+k)

)

= γ (α + k)γ (α + k + 1)σ (ξ + 1)

[x(z)− x(ξ + 1)](α+k+2)

− γ (α + k)τ−α−k−1(ξ + 1)

[x(z)− x(ξ)](α+k+1)
− λ−α−k

[x(z)− x(ξ)](α+k)

(see also [16, Exercise 2.25]). Upon choosing a0 := ξ+1 to be a root of the equation
σ(a0) = 0, we obtain

(L1(y)+ λν)v
α
m(y) = λν

m∑

k=0

ck

[x(s)− x(a0)](α+k)

−
m∑

k=0

ck

(
γ (α + k)τ−α−k−1(a0)

[x(z)− x(a0 − 1)](α+k+1)
+ λ−α−k

[x(z)− x(a0 − 1)](α+k)

)

=
m∑

k=0

ck
(
λν − λ−α−k

)

[x(z)− x(a0 − 1)](α+k)
−

m∑

k=0

ck γ (α + k)τ−α−k−1(a0)

[x(z)− x(a0 − 1)](α+k+1)

= c0 (λν − λ−α)

[x(z)− x(a0 − 1)](α) +
m∑

k=1

ck
(
λν − λ−α−k

)

[x(z)− x(a0 − 1)](α+k)

− cm γ (α +m)τ−α−m−1(a0)

[x(z)− x(a0 − 1)](α+m+1)
−

m−1∑

k=0

ck γ (α + k)τ−α−k−1(a0)

[x(z) − x(a0 − 1)](α+k+1)
.
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Now choose λν = λ−α and let k = l + 1. Then we obtain

(L1(y)+ λν)v
α
m(y) = − cm γ (α +m)τ−α−m−1(a0)

[x(z)− x(a0 − 1)](α+m+1)

+
m−1∑

l=0

cl+1 (λ−α − λ−α−l−1)

[x(z)− x(a0 − 1)](α+l+1)
−

m−1∑

l=0

cl γ (α + l)τ−α−l−1(a0)

[x(z)− x(a0 − 1)](α+l+1)
.

The latter two sums vanish if

cl+1 (λ−α − λ−α−l−1) = cl γ (α + l)τ−α−l−1(a0).

In that case, we have

(L1(y)+ λν)v
α
m(y) = − cm γ (α +m)τ−α−m−1(a0)

[x(z)− x(a0 − 1)](α+m+1)

= − cm+1 (λ−α − λ−α−m−1)

[x(z)− x(a0 − 1)](α+m+1)
=: hα

m(y).

Here,

cm+1

[x(z)− x(a0 − 1)](α+m+1)
= c0

[x(z)− x(a0 − 1)](α) ϕm+1(z),

ϕm+1(z) = (qα, abqα−1, acqα−1, adqα−1; q)m+1

(q, γ q2α−2, aqα+z, aqα−z; q)m+1
qm+1,

c0

[x(z)− x(a0 − 1)](α) =
(aqα+z, aqα−z; q)∞
(aqz, aq−z; q)∞ ,

λ−α − λ−α−m−1 = 4

(1− q)2γ
q

7
2−α−m(1− qm+1)(1− γ q2α+m−2)

and

hα
m(y) = − 4q

9
2−α

(1− q)2γ

(aqα+z, aqα−z; q)∞
(aqz, aq−z; q)∞

(qα, abqα−1, acqα−1, adqα−1; q)m+1

(q, γ q2α−2; q)m(aqα+z, aqα−z; q)m+1
.

Therefore,

(L1(y)+ λν)u
α
n(x, y)

=
n∑

m=0

cαm(aqα+s , aqα−s ; q)m (aqs , aq−s ; q)∞
(aqα+s , aqα−s ; q)∞L1(y)v

α
m(y)
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= −
n∑

m=0

cαm(aqα+s , aqα−s ; q)m (aqs , aq−s ; q)∞
(aqα+s , aqα−s ; q)∞

× 4q
9
2−α

(1− q)2γ

(aqα+z, aqα−z; q)∞
(aqz, aq−z; q)∞

(qα, abqα−1, acqα−1, adqα−1; q)m+1

(q, γ q2α−2; q)m(aqα+z, aqα−z; q)m+1

= − 4q
9
2−α

(1− q)2γ

(aqs , aq−s , aqα+z+1, aqα−z+1; q)∞
(aqα+s , aqα−s , aqz, aq−z; q)∞

×
n∑

m=0

(q−n, γ q2α+n−1, aqs , aq−s ; q)m
(qα+1, abqα, acqα, adqα; q)m qm

× (1− qα)(1− abqα−1)(1− acqα−1)(1− adqα−1)

(q, γ q2α−2; q)m(aqα+z+1, aqα−z+1; q)m

= − 4q
9
2−α

(1− q)2γ

(aqs , aq−s , aqα+z+1, aqα−z+1; q)∞
(aqα+s , aqα−s , aqz, aq−z; q)∞

×
(
qα, abqα−1, acqα−1, adqα−1; q

)

1

× 4ϕ3

(
q−n, γ q2α+n−1, aqα+s , aqα−s

γ q2α−2, aqα+z+1, aqα−z+1
; q, q

)

= − 4q
9
2−α

(1− q)2γ

(aqs , aq−s , aqα+z+1, aqα−z+1; q)∞
(aqα+s , aqα−s , aqz, aq−z; q)∞

×
(
qα, abqα−1, acqα−1, adqα−1; q

)

1
×pn(x; aqα, bcdqα−2, q1+z, q1−z).

This completes the proof of the lemma.

Proof of Lemma 3 The structure of the Askey–Wilson operator in (5) and the basic
hypergeometric series representation (13) suggest to look for a 4-term relation of
the form

K1 4ϕ3

(
A,B,C,D

F,G,H
; q, q

)

+K2 4ϕ3

(
A,B,Cq,D/q

F,G,H
; q, q

)

+K3 4ϕ3

(
A,B,C/q,Dq

F,G,H
; q, q

)

+K4 4ϕ3

(
A,B,C/q,D/q

F,G/q,H/q
; q, q

)

= 0, (21)

for some undetermined coefficients K1, K2, K3 and K4 (up to a common factor).
Doing a term-wise comparison, we may hope to find K1, K2, K3, K4 which satisfy

K1(1− C)(1−D)(1− Cqk−1)(1−Dqk−1)(1−G/q)(1−H/q)

+K2(1− Cqk)(1− Cqk−1)(1−D/q)(1−D)(1−G/q)(1−H/q)
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+K3(1−Dqk)(1−Dqk−1)(1− C/q)(1− C)(1−G/q)(1−H/q)

+K4(1− C/q)(1− C)(1−D/q)(1−D)(1−Gqk−1)(1−Hqk−1) = 0.

If we are successful, then the above equation does indeed imply the contiguous
relation (21). In the equation, we compare coefficients of powers of qk. This yields
a system of 3 linear equations in the 4 unknowns K1, K2, K3, K4. With the help of
Mathematica, we obtain the solution

K1 = (C− q)(D − q)(−GH −CDq +CGq +DGq +CHq +DHq −GHq −CDq2)

(G− q)(H − q)(Cq −D)(Dq − C)
,

K2 = (C − 1)(D −G)(D −H)(C − q)q

(D − C)(G− q)(H − q)(Cq −D)
,

K3 = (D − 1)(C −G)(C −H)(D − q)q

(C −D)(G− q)(H − q)(Dq − C)
,

where the free parameter K4 was chosen to be 1 (see Appendix 1 for the
Mathematica code). The required 4-term contiguous relation is then given by

(C − q)(D − q)(−GH − CDq + CGq +DGq + CHq +DHq −GHq − CDq2)

(G− q)(H − q)(Cq −D)(Dq − C)

× 4ϕ3

(
A,B,C,D

F,G,H
; q, q

)

+ 4ϕ3

(
A,B, C/q,D/q

F,G/q,H/q
; q, q

)

+ (C − 1)(D −G)(D −H)(C − q)q

(D − C)(G− q)(H − q)(Cq −D)
4ϕ3

(
A,B,Cq,D/q

F,G,H
; q, q

)

+ (D − 1)(C −G)(C −H)(D − q)q

(C −D)(G− q)(H − q)(Dq − C)
4ϕ3

(
A,B,C/q,Dq

F,G,H
; q, q

)

= 0.

(22)

(This 4-term contiguous relation for the 4ϕ3-functions can be extended to an
arbitrary rψs -function, see Appendix 1 for more details.)

When qABCD = FGH , in view of the structure of the Askey–Wilson operator
in (5), Eq. (22) should become

(L(x)+ λ) 4ϕ3

(
A,B,Cq,D/q

F,G,H
; q, q

)

= σ(−s)

�x(s)∇x1(s)
4ϕ3

(
A,B,Cq,D/q

F,G,H
; q, q

)

+ σ(s)

∇x(s)∇x1(s)
4ϕ3

(
A,B,C/q,Dq

F,G,H
; q, q

)

+ λ�x(s)∇x(s)∇x1(s)− σ(s)�x(s) − σ(−s)∇x(s)

�x(s)∇x(s)∇x1(s)
4ϕ3

(
A,B,C,D

F,G,H
; q, q

)

.
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Equating coefficients, one obtains

(1−C/q)(1−D/q)(D−C)(GH+CDq−CGq−DGq−CHq−DHq+GHq+CDq2)

= 2qa3

1− q
(σ(−s)∇x(s)+ σ(s)�x(s)− λ�x(s)∇x(s)∇x1(s))

and

(D − C)(D − C/q)(−C +D/q) = 2aq1/2

1− q
∇x1(s)

2a

1− q
�x(s)

2a

1− q
∇x(s),

(C − 1)(G−D)(H −D)(q − C) = −qa2σ(−s),

(D − C)(−C +D/q) = 2aq1/2

1− q
∇x1(s)

2a

1− q
�x(s),

(D − 1)(G− C)(H − C)(q −D) = −qa2σ(s),

(D − C)(D − C/q) = 2aq1/2

1− q
∇x1(s)

2a

1− q
∇x(s),

(G− q)(H − q) = q2 (1− q)2

4q3/2 λ.

This gives the required formula (16) for the Askey–Wilson operator with

σ(s) = q−2s (qs − a
) (

qs − a/q
) (

qs − c
) (

qs − d
)
,

λ = 4q3/2

(1− q)2 (1− ac/q) (1− ad/q) .

The proof of the lemma is complete.
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Appendix 1: Four-Term Contiguous Relations

In order to derive the contiguous relation (22), one can use the following Mathemat-
ica program1:

In[1]:= X1 = K1*(1 - C) (1 - D) (1 - C*K/q) (1 - D*K/q) (1 - G/q)
(1 - H/q)

+ K2*(1 - C*K) (1 - C*K/q) (1 - D/q) (1 - D) (1 - G/q)
(1 - H/q)

+ K3*(1 - D*K) (1 - D*K/q) (1 - C/q) (1 - C) (1 - G/q)
(1 - H/q)

+ K4*(1 - C/q) (1 - C) (1 - D/q) (1 - D) (1 - G*K/q) (1
- H*K/q);

X1 = Table[Coefficient[X1, K, i] == 0, i, 0, 2];

X1 = Solve[X1, K1, K2, K3, K4];

X1 = {K1 -> Factor[K1/.X1[[1]]], K2 -> Factor[K2/.X1[[1]]],

K3 -> Factor[K3/.X1[[1]]], K4 -> Factor[K4/.X1[[1]]] }

Out[1]= {K1 -> (K4 (C - q) (D - q)

> (G H + C D q - C G q - D G q - C H q - D H q + G H q + C D
q∧2)) /

> ((G - q) (H - q) (-D + C q) (C - D q)),

> K2 -> - ((-1 + C) (D - G) (D - H) K4 (C - q) q) /

> ((C - D) (G - q) (H - q) (-D + C q)),

> K3 -> - ((-1 + D) (C - G) (C - H) K4 (D - q) q) /

> ((C - D) (G - q) (H - q) (C - D q)),

> K4 -> K4 }

It is evident from the proof of (22) that, actually, an extension for bilateral series
(see [9, equation (5.1.1)] for the definition) with an arbitrary number of parameters
holds, namely:

(c − q) (d − q)
(−gh− cdq + cgq + dgq + chq + dhq − ghq − cdq2

)

(g − q) (h− q) (cq − d) (dq − c)

× rψs

(
a1, . . . , ai, c, d

b0, . . . , bk, g, h
; q, t

)

1A corresponding Mathematica notebook is available on the article’s website
http://www.mat.univie.ac.at/~kratt/artikel/AssAWPols.html.

http://www.mat.univie.ac.at/~kratt/artikel/AssAWPols.html
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+ (c − 1) (d − g) (d − h) (c − q) q

(d − c) (g − q) (h− q) (cq − d)
rψs

(
a1, . . . , ai, cq, d/q

b0, . . . , bk, g, h
; q, t

)

+ (d − 1) (c − g) (c − h) (d − q) q

(c − d) (g − q) (h− q) (dq − c)
rψs

(
a1, . . . , ai, c/q, dq

b0, . . . , bk, g, h
; q, t

)

+ rψs

(
a1, . . . , ai, c/q, d/q

b0, . . . , bk, g/q, h/q
; q, t

)

= 0. (23)

Furthermore, in the same way, the following variation can be obtained2:

(g − 1) (h− 1)
(−gh− cdq + cgq + dgq + chq + dhq − ghq − cdq2

)

(c − 1) (d − 1) (gq − h) (hq − g)

× rψs

(
a1, . . . , ai, c, d

b0, . . . , bk, g, h
; q, t

)

+ (c − g) (d − g) (h− 1) (h− q)

(c − 1) (d − 1) (h− g) (gq − h)
rψs

(
a1, . . . , ai, c, d

b0, . . . , bk, gq, h/q
; q, t

)

+ (c − h) (d − h) (g − 1) (g − q)

(c − 1) (d − 1) (g − h) (hq − g)
rψs

(
a1, . . . , ai, c, d

b0, . . . , bk, g/q, hq
; q, t

)

+ rψs

(
a1, . . . , ai, cq, dq

b0, . . . , bk, gq, hq
; q, t

)

= 0. (24)

Appendix 2: An Inverse of the Askey–Wilson Operator

The Askey–Wilson divided difference operator on the left-hand side of Eq. (16) can
be inverted by the method of Ref. [6]. The end result is

(
q, q2; q)∞

2π

∫ 1

−1
L (x, y) pn (x; a, b, c, d)ρ (x; a, b, c, d) dx

= pn (x; aq, b/q, c, d) , (25)

2Again, a corresponding Mathematica notebook is available on the article’s website
http://www.mat.univie.ac.at/\lower0.5ex\hbox~{}kratt/artikel/AssAWPols.html.

http://www.mat.univie.ac.at/lower 0.5exhbox {~{}}kratt/artikel/AssAWPols.html
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where ρ (x; a, b, c, d) is the weight function of the Askey–Wilson polynomials (13)
and the kernel is given by

L (x, y) =
(
ac, ad, qceiϕ, qde−iϕ; q

)

1

×
(
beiθ , be−iθ , qdeiθ , qde−iθ , qaeiϕ, qae−iϕ, qceiϕ, qce−iϕ; q)∞(

qeiθ+iϕ, qeiθ−iϕ, qeiϕ−iθ , qe−iθ−iϕ; q)∞

× 8ϕ7

(
qde−iϕ, q

√
qde−iϕ,−q

√
qde−iϕ, qeiθ−iϕ, qe−iθ−iϕ, qd/c, q

√
qde−iϕ,

√
qde−iϕ, qde−iθ , qdeiθ , q2, qce−iϕ, qde−iϕ

; q, ceiϕ
)

.

Here, x = cos θ and y = cosϕ. Computational details are left to the reader.
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Context-Free Grammars and Stable
Multivariate Polynomials over Stirling
Permutations

William Y. C. Chen, Robert X. J. Hao, and Harold R. L. Yang

Dedicated to Professor Peter Paule on the occasion of his 60th
birthday

1 Introduction

This paper presents an approach to the construction of stable combinatorial poly-
nomials from the perspective of context-free grammars. The framework of using
context-free grammars to generate combinatorial polynomials was proposed in [9].
We find context-free grammars leading to stable multivariate polynomials over
Legendre-Stirling permutations and marked Stirling permutations. These stable
multivariate polynomials provide solutions to two problems raised by Haglund and
Visontai [16] in their study of stable multivariate refinements of the second-order
Eulerian polynomials.

Let us first give an overview of the second-order Eulerian polynomials. These
polynomials were defined by Gessel and Stanley [13] as the generating functions
of the descent statistic over Stirling permutations. Let [n]2 denote the multiset
{1, 1, 2, 2, . . . , n, n}. A permutation π = π1π2 · · ·π2n−1π2n of [n]2 is called a
Stirling permutation if π satisfies the following condition: if πi = πj then πk > πi
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whenever i < k < j . For 1 ≤ i ≤ 2n, we say that i is a descent of π if i = 2n
or 1 ≤ i < 2n and πi > πi+1. Analogously, i is called an ascent of π if i = 1 or
1 < i ≤ 2n and πi−1 < πi . For the sake of consistency, we set π0 = π2n+1 = 0.
Let Qn denote the set of Stirling permutations on [n]2. Let C(n, k) be the number
of Stirling permutations of [n]2 with k descents, and let

Cn(x) =
n∑

k=1

C(n, k)xk.

Gessel and Stanley [13] showed that

∞∑

n=0

S(n+ k, k)xn = Cn(x)

(1− x)2k+1 ,

where S(n, k), as usual, denotes the Stirling number of the second kind. The num-
bers C(n, k) are called the second-order Eulerian numbers by Graham et al. [14],
and the polynomials Cn(x) are called the second-order Eulerian polynomials by
Haglund and Visontai [16]. Besides the connection with the enumeration of Stirling
permutations, the second-order Eulerian number C(n, k) has other combinatorial
interpretations, such as the number of Riordan trapezoidal words of length n with k

distinct letters [23], the number of rooted plane trees on n + 1 nodes with k leaves
[18] and the number of matchings on 2n vertices with n− k left-nestings [20].

The Stirling permutations were further studied by Bóna [1], Brenti [8], Janson
[18] and Janson et al. [19]. Bóna [1] introduced the notion of a plateau of a Stirling
permutation and studied the plateau statistic. Given a Stirling permutation π =
π1π2 . . . π2n ∈ Qn, an index 1 < i ≤ 2n is called a plateau of π if πi−1 = πi .
Bóna showed that the number of ascents, the number of descents and the number
of plateaux have the same distribution over Qn. Analogous to real-rootedness of the
classical Eulerian polynomials, Bóna [1] proved the real-rootedness of the second-
order Eulerian polynomials Cn(x).

Theorem 1 (Bóna [1]) For any positive integer n, the roots of the polynomial
Cn(x) are all real, distinct, and non-positive.

It should be noted that the real-rootedness of Cn(x) is essentially equivalent to
the real-rootedness of the generating function of generalized Stirling permutations
obtained by Brenti [8]. A permutation π of the multiset {1r1, 2r2, . . . , nrn} is called
a generalized Stirling permutation of rank n if π satisfies the same betweenness
condition for a Stirling permutation. Let Q∗n denote the set of generalized Stirling
permutations of rank n. In particular, if r1 = r2 = · · · = rn = r for some r ,
then π is called an r-Stirling permutation of order n. Let Qn(r) denote the set
of r-Stirling permutations of order n. It is clear that 1-Stirling permutations are
ordinary permutations and 2-Stirling permutations are Stirling permutations. Brenti
[8] showed that the descent generating polynomials over Q∗n have only real roots.
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Janson [18] defined the following trivariate generating function

Cn(x, y, z) =
∑

π∈Qn

xdes(π)yasc(π)zplat(π),

where des(π), asc(π), and plat(π) denote the number of descents, the number of
ascents, and the number of plateaux of π , respectively, and proved that Cn(x, y, z)

is symmetric in x, y, z. This implies the equidistribution of these three statistics
derived by Bóna [1].

The symmetry property of Cn(x, y, z) was further extended to r-Stirling per-
mutations by Janson et al. [19]. For an r-Stirling permutation, they introduced the
notion of a j -plateau. For an r-Stirling permutation π = π1π2 . . . πnr and an integer
1 ≤ j ≤ r − 1, a number 1 ≤ i < nr is called a j -plateau of π if πi = πi+1 and
there are j − 1 indices l < i such that πl = πi , i.e., the number πi appears j times
up to the i-th position of π . Let j -plat(π) denote the number of j -plateaux of π .
Define a descent and an ascent of π as in the case of ordinary permutations, and
let des(π) and asc(π) denote the number of descents and ascents of π . Janson et
al. [19] showed that the distribution of (des, 1-plat, 2-plat, . . . , (r − 1)-plat, asc) is
symmetric over the set of r-Stirling permutations.

Based on the theory of stable multivariate polynomials recently developed by
Borcea and Brändén [3–5], Haglund and Visontai [16] presented a unified approach
to the stability of the generating functions of Stirling permutations and r-Stirling
permutations. A polynomial f (z1, z2, . . . , zn) ∈ C[z1, z2, . . . , zn] is said to be
stable, if whenever the imaginary part Im(zi) > 0 for all i then f (z1, z2, . . . , zn) �=
0. Clearly, a univariate polynomial f (z) ∈ R[z] has only real roots if and only if it
is stable.

For the case of univariate real polynomials, Pólya and Schur [22] characterized
all diagonal operators preserving stability or real-rootedness. Recently, Borcea and
Brändén [3–5] characterized all linear operators preserving stability of multivariate
polynomials, see also the survey by Wagner [26]. This implies a characterization of
linear operators preserving stability of univariate polynomials.

A multivariate polynomial is called multiaffine if the degree of each variable is at
most 1. Borcea and Brändén [4] showed that each of the operators preserving stabil-
ity of multiaffine polynomials has a simple form. Using this property, Haglund and
Visontai [16] obtained a stable multiaffine refinement of the second-order Eulerian
polynomial Cn(x). Similar methods are employed for other related combinatorial
structures, see [2, 6, 7, 15, 24, 25] for a few of other instances.

Given a Stirling permutation π = π1π2 · · ·π2n ∈ Qn, let

A(π) ={i|πi−1 < πi, 1 ≤ i ≤ 2n},
D(π) ={i|πi > πi+1, 1 ≤ i ≤ 2n},
P (π) ={i|πi−1 = πi, 1 ≤ i ≤ 2n}
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denote the set of ascents, the set of descents and the set of plateaux of π , respec-
tively. We set π0 = π2n+1 = 0. Let X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , yn) and
Z = (z1, z2, . . . , zn). Define

Cn(X, Y,Z) =
∑

π∈Qn

∏

i∈D(π)

xπi

∏

i∈A(π)

yπi

∏

i∈P(π)

zπi .

Haglund and Visontai [16] proved the stability of Cn(X, Y,Z).

Theorem 2 (Haglund and Visontai [16]) The polynomial Cn(X, Y,Z) is stable.

It is worth mentioning that, as observed by Haglund and Visontai [16], the
recurrence relation between Cn−1(X, Y,Z) and Cn(X, Y,Z) can be used to derive
the symmetry of Cn(X, Y,Z), which implies the symmetry of Cn(x, y, z) obtained
by Janson et al. [19].

Moreover, Haglund and Visontai [16] extended the stability of Cn(X, Y,Z)

to generating polynomials of r-Stirling permutations by taking the j -plateau
statistic into consideration. Let Pj (π) denote the set of j -plateaux of π . For
i = 1, 2, . . . , r − 1, let Zi = (zi,1, zi,2, . . . , zi,n). Haglund and Visontai [16]
obtained the following stable multivariate polynomial over r-Stirling permutations

En(X, Y,Z1, . . . , Zr−1) =
∑

π∈Qn(r)

∏

i∈D(π)

xπi

∏

i∈A(π)

yπi

r−1∏

j=1

∏

i∈Pj (π)

zj,πi .

They also obtained a similar stable multivariate polynomial for generalized Stirling
permutations.

Motivated by the real-rootedness of Cn(x) and its stable multivariate refinement
Cn(X, Y,Z), Haglund and Visontai further considered the problem of finding
stable multivariate polynomials as refinements of the generating polynomials of the
descent statistic over Legendre-Stirling permutations. The Legendre-Stirling permu-
tations were introduced by Egge [12] as a generalization of Stirling permutations in
the study of Legendre-Stirling numbers of the second kind. For any n ≥ 1, let Mn

be the multiset {1, 1, 1̄, 2, 2, 2̄, . . . , n, n, n̄}. A permutation π = π1π2 . . . π3n on
Mn is called a Legendre-Stirling permutation if whenever i < j < k and πi = πk

are both unbarred, then πj > πi . For a Legendre-Stirling permutation π on Mn, we
say that i is a descent if either i = 3n or πi > πi+1. Let Bn,k denote the number of
Legendre-Stirling permutations of Mn with k descents. Define

Bn(x) =
2n−1∑

k=1

Bn,kx
k.

Egge [12] proved the real-rootedness of Bn(x).

Theorem 3 (Egge [12]) For n > 0, Bn(x) has distinct, real, non-positive roots.
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In order to derive a stable multivariate refinement of Bn(x), we introduce an
approach of generating stable polynomials by a sequence of grammars. Based on
the Stirling grammar given by Chen and Fu [10], we find a sequence G1,G2, . . . of
context-free grammars to generate Legendre-Stirling permutations. Let Dn denote
the differential operator associated with the grammar Gn, which leads to a stable
multivariate refinement Bn(X, Y,Z,U, V ) of Bn(x), that is,

Bn(X, Y,Z,U, V ) = D2nD2n−1 . . .D2D1(x0),

where U = (u1, u2, . . . , un) and V = (v1, v2, . . . , vn), respectively. Then by apply-
ing Borcea and Brändén’s characterization of linear operators and the grammatical
interpretation of Bn(X, Y,Z,U, V ), we prove the stability of Bn(X, Y,Z,U, V ).
On the other hand, according to the grammars, we obtain the following combinato-
rial interpretation

Bn(X, Y,Z,U, V ) =
∑

π

∏

i∈X(π)

xπi

∏

i∈Y (π)

yπi

∏

i∈Z(π)

zπi

∏

i∈U(π)

uπi

∏

i∈V (π)

vπi ,

where π runs over all Legendre-Stirling permutations on Mn. Here X(π), Y (π),
Z(π), U(π) and V (π) are defined as follows: For a Legendre-Stirling permutation
π on Mn,

X(π) ={i |πi−1 ≤ πi, πi is unbarred and appears for the first time},
Y (π) ={i |πi > πi+1 and πi is unbarred},
Z(π) ={i |πi−1 ≤ πi, πi is unbarred and appears for the second time},
U(π) ={i |πi−1 ≤ πi and πi is barred},
V (π) ={i |πi > πi+1 and πi is barred}.

Here we set π0 = π3n+1 = 0. Then the real-rootedness of Bn(x) is a consequence
of the stability of Bn(X, Y,Z,U, V ) by setting vi = yi = y and xi = zi = ui = 1
for 0 ≤ i ≤ n.

Haglund and Visontai [16] also raised the question of finding stable multivariate
refinements of the polynomials Tn(x), which are given by

Tn(x) = 2nCn

(x

2

)
=

∑

k

2n−kC(n, k)xk, (1)

where C(n, k) and Cn(x), as before, denote the second-order Eulerian numbers and
the second-order Eulerian polynomials respectively. The polynomials Tn(x) were
introduced by Riordan [23].
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In view of the relation (1) between Tn(x) and Cn(x), we mark the Stirling
permutations by some rule. We consider the following multivariate polynomials

Tn(X, Y,Z) =
∑

π

∏

i∈D(π)

xπi

∏

i∈A(π)

yπi

∏

i∈P(π)

zπi ,

where π ranges over marked Stirling permutations of [n]2. We shall show that the
polynomials Tn(X, Y,Z) are stable. The polynomial Tn(x) becomes the specializa-
tion of Tn(X, Y,Z) by setting xi = zi = 1 and yi = x for 0 ≤ i ≤ n. This implies
that Tn(x) is real-rooted.

This paper is organized as follows. In Sect. 2, we give an overview of dif-
ferential operators associated with context-free grammars and find context-free
grammars to generate the polynomials Cn(X, Y,Z). In Sect. 3, we give context-
free grammars to generate the multivariate polynomials Tn(X, Y,Z). In Sect. 4, we
obtain context-free grammars that lead to the multivariate generating polynomials
Bn(X, Y,Z,U, V ). In Sect. 5, based on Borcea and Brändén’s characterization
of linear operators preserving stability, we prove that the formal derivative with
respect to the grammar that generates Tn(X, Y,Z) preserves stability of multiaffine
polynomials. This leads to the stability of Tn(X, Y,Z). In Sect. 6, we provide an
approach to find a new stability preserving operator when a grammar is not suitable
to prove the stability of polynomials. In particular, we prove the stability of the
multivariate polynomials Bn(X, Y,Z,U, V ).

2 Context-Free Grammars

In this section, we give an overview of the idea of using context-free grammars
to generate combinatorial polynomials and combinatorial structures as developed
in [9]. A context-free grammar G over an alphabet A is defined to be a set of
production rules. A production rule means to substitute a letter in the alphabet A
by a polynomial in A over a field. Given a context-free grammar, one may define a
formal derivative D as a linear operator on polynomials in A, where the action of D
on a letter is defined by the substitution rule of the grammar, the action of D on a
sum of two polynomials u and v is defined by linear extension:

D(u+ v) = D(u)+D(v),

and the action of D on the product of u and v is defined by the Leibniz rule, that is,

D(uv) = D(u)v + uD(v).

Many combinatorial polynomials can be generated by context-free grammars.
Context-free grammars can also be used to generate combinatorial structures. More
precisely, one may use a word on an alphabet to label a combinatorial structure such
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that the context-free grammar serves as the procedure to recursively generate the
combinatorial structures. Such a labeling of a combinatorial structure is called a
grammatical labeling in [10].

For example, we consider the Eulerian grammar

G = {x → xy, y → xy}

introduced by Dumont [11].
For a permutation π = π1π2 · · ·πn of [n], let

A(π) ={i |πi−1 < πi},
D(π) ={i |πi > πi+1}

denote the set of ascents and the set of descents of π , respectively. Here, as usual,
we set π0 = πn+1 = 0. Let A(n, k) denote the Eulerian number, that is, the number
of permutations on [n] with k descents.

In order to show how to use the Eulerian grammar to generate permutations,
Chen and Fu [10] introduced a grammatical labeling of a permutation π on [n]: If i
is an ascent of π , then πi−1 is labeled by x; if i is a descent, then πi is labeled by y.
The weight of π is defined as the product of labels of elements in π , that is,

w(π) = x |A(π)|y |D(π)|.

For example, the grammatical labeling of the permutationπ = 325641 is as follows:

x

3

y

2

x

5

x

6

y

4

y

1

y
.

Thus the weight of π equals w(π) = x3y4. This grammatical labeling leads to
the following expression of the Eulerian polynomials. Dumont [11] obtained an
equivalent form in terms of cyclic permutations and gave an inductive proof.

Theorem 4 (Dumont [11]) Let D denote the formal derivative with respect to the
Eulerian grammar. For n ≥ 1, we have

Dn(x) =
n∑

m=1

A(n,m)ymxn+1−m.

Let us now consider the grammar to generate Stirling permutations. Chen and Fu
[10] introduced the grammar

G = {x → x2y, y → x2y}.
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They defined a grammatical labeling of a Stirling permutation π in Qn as
follows: Let 1 ≤ i ≤ 2n. If i ∈ A(π) or i ∈ P(π), the element πi−1 is labeled
by x; if i ∈ D(π), the element πi is labeled by y. The weight of π , denoted by
w(π), is defined as the product of labels of elements in π . For example, the Stirling
permutation π = 233211 has the following grammatical labeling

x

2

x

3

x

3

y

2

y

1

x

1

y
.

Then the weight of π is w(π) = x4y3.

Theorem 5 (Chen and Fu [10]) Let D denote the formal derivative with respect
to the above grammar G. For n ≥ 1, we have

Dn(x) =
n∑

m=1

C(n,m)x2n+1−mym.

We shall give two sequences of grammars based on the Eulerian grammar and
the Stirling grammar to solve the problems of Haglund and Visontai [16]. On one
hand, we use these grammars to construct multivariate polynomials over Legendre-
Stirling permutations and marked Stirling permutations. On the other hand, we use
the grammars to construct stability preserving operators leading to the stability of
the multivariate polynomials.

3 Marked Stirling Permutations

In this section, we obtain a stable multivariate refinement of the polynomial Tn(x),
denoted by Tn(X, Y,Z), which is defined as the generating function of marked
Stirling permutations on [n]2. This provides a solution to the problem of Haglund
and Visontai.

In order to prove the stability of Tn(X, Y,Z), we find grammars G1,G2, . . . that
can be used to generate Tn(X, Y,Z). More precisely, define

Gn = {xi, zi → xnynzn, yi → 2xnynzn | 0 ≤ i ≤ n− 1}.

Let Dn denote the formal derivative with respect to Gn. Using a grammatical
labeling of marked Stirling permutations, we shall show that the polynomial
Tn(X, Y,Z) can be generated by D1,D2, . . . ,Dn. The stability of Tn(X, Y,Z) can
be established in Sect. 6 by using the operators D1,D2, . . . ,Dn.

A marked Stirling permutation is defined as follows. Given a Stirling permutation
π = π1π2 · · ·π2n, if πi is an element of π such that πi occurs the second time in
π and πi < πi+1, then we may mark the element πi . We denote a marked element
i by ī. A marked Stirling permutation is a Stirling permutation with some elements
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marked according to the above rule. Let Q̄n denote the set of marked Stirling
permutations on [n]2. For example, there is only one marked Stirling permutation
on [1]2: 11, whereas there are four marked Stirling permutations on [2]2:

2211, 1221, 1122, 11̄22.

Let T (n, k) be the number of marked Stirling permutations on [n]2 with k descents.
Clearly,

T (n, k) = 2n−k · C(n, k),

where C(n, k) denotes the second-order Eulerian number. Recall that Tn(x) is
defined by

Tn(x) = 2n · Cn

(x

2

)
=

n∑

k=0

2n−kC(n, k)xk.

Hence Tn(x) is the generating function of marked Stirling permutations on [n]2, that
is,

Tn(x) =
n∑

k=0

T (n, k)xk =
∑

π∈Q̄n

x |D(π)|.

In fact, Riordan [23] introduced the polynomials Tn(x) and proved that Tn(1)
equals the Schröder number, namely, the number of series-reduced rooted trees with
n+ 1 labeled leaves.

We shall prove that the polynomials Tn(x) can be generated by the grammar

G = {x → x2y, y → 2x2y}.

The proof relies on the following grammatical labeling of a marked Stirling
permutation. Let π be a marked Stirling permutation on [n]2. If i ∈ D(π), we
label πi by y. If i ∈ A(π) or i ∈ P(π), we label πi−1 by x. The weight of a marked
Stirling permutation π on [n]2 with m descents is given by

w(π) = x2n+1−mym.

Theorem 6 Let G be the grammar G = {x → x2y, y → 2x2y} and D be the
formal derivative associated with G. For n ≥ 1,

Dn(x) =
n∑

k=1

T (n, k)x2n−k+1yk.
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Setting x = 1, we have

Dn(x)|x=1 = Tn(y).

Proof We aim to show that Dn(x) equals the sum of the weights of marked Stirling
permutations of [n]2 by induction on n, that is,

Dn(x) =
∑

π∈Q̄n

w(π). (2)

For n = 1, (2) follows from the fact that the weight of 11, the only marked
Stirling permutation on [1]2, is x2y. Assume that (2) holds for n− 1, that is,

Dn−1(x) =
∑

π∈Q̄n−1

w(π).

We now use an example to demonstrate the action of D on a marked Stirling
permutation of [n− 1]2. Let π = 122̄331 with the following grammatical labeling

x

1

x

2

x

2̄

x

3

x

3

y

1

y
.

If we apply the substitution rule x → x2y to the fourth letter x, then we insert
the two elements 44 after 2̄. We keep all the old labels and assign the labels x and y

to the two new letters 44 from left to right. It is not difficult to see that the generated
marked Stirling permutation has a consistent grammatical labeling

x

1

x

2

x

2̄

x

4

x

4

y

3

x

3

y

1

y
.

If we apply the substitution rule y → 2x2y to the first letter y, then we insert 44
after the second element 3. We change the label of the second element 3 from y to x

and assign x and y to the two new elements 44 from left to right. According to the
marking rule, the second element 3 may be marked or unmarked. These two choices
correspond the coefficient 2 in the substitution rule y → 2x2y. So we are led to the
following two marked Stirling permutations with consistent grammatical labelings,

x

1

x

2

x

2̄

x

3

x

3

x

4

x

4

y

1

y
,

and

x

1

x

2

x

2̄

x

3

x

3̄

x

4

x

4

y

1

y
.
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In general, it can be verified that the action of D on the weights of marked Stirling
permutations in Q̄n−1 generates the weights of marked Stirling permutations in Q̄n.
So we deduce that (2) holds for n, that is,

Dn(x) = D(Dn−1(x)) = D

⎛

⎝
∑

π∈Q̄n−1

w(π)

⎞

⎠ =
∑

σ∈Q̄n

w(σ).

Hence the proof is complete by induction. ��
As a multivariate refinement of Tn(x), we define the following generating

function of marked Stirling permutations on [n]2,

Tn(X, Y,Z) =
∑

π∈Q̄n

∏

i∈A(π)

xπi

∏

i∈D(π)

yπi

∏

i∈P(π)

zπi .

Let

Gn = {xi → xnynzn, zi → xnynzn, yi → 2xnynzn | 0 ≤ i ≤ n− 1}.

We give a grammatical labeling of a marked Stirling permutation. For a marked
Stirling permutation π on [n]2, if i ∈ A(π), we label πi−1 by xπi ; if i ∈ D(π), we
label πi by yπi ; and if i ∈ P(π), we label πi−1 by zπi . Then the weight of π equals

w(π) =
∏

i∈A(π)

xπi

∏

i∈D(π)

yπi

∏

i∈P(π)

zπi .

The following theorem shows that the polynomials Tn(X, Y,Z) can be generated
by the grammars G1,G2, . . . ,Gn.

Theorem 7 Let Dn denote the formal derivative associated with the grammar Gn.
For n ≥ 1,

Tn(X, Y,Z) = DnDn−1 · · ·D1(z0).

The proof of the above theorem is analogous to that of Theorem 6. Hence the
details are omitted. Here we use an example to illustrate the action of D4 on the
above marked Stirling permutation π = 122̄331 with the grammatical labeling

x1

1

x2

2

z2

2̄

x3

3

z3

3

y3

1

y1
.

Applying the substitution rule x3 → x4y4z4 to π , we get a marked Stirling
permutation by inserting the two elements 44 after 2̄ and the consistent grammatical
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labeling is given below:

x1

1

x2

2

z2

2̄

x4

4

z4

4

y4

3

z3

3

y3

1

y1
.

Similarly, applying the substitution rule y3 → 2x4y4z4 leads to two marked Stirling
permutations by inserting 44 after the second element 3, since the second element 3
can be marked. The consistent grammatical labelings are

x1

1

x2

2

z2

2̄

x3

3

z3

3

x4

4

z4

4

y4

1

y1
,

and

x1

1

x2

2

z2

2̄

x3

3

z3

3̄

x4

4

z4

4

y4

1

y1
.

For n = 0, the empty permutation is labeled by z0. We have T0(X, Y,Z) = z0.
For n = 1, 2, we have

T1(X, Y,Z) = D1(z0) = x1
1
z1

1
y1,

T2(X, Y,Z) = D2D1(z0) =D2(x1
1
z1

1
y1)

= x2
2
z2

2
y2

1
z1

1
y1 + x1

1
x2

2
z2

2
y2

1
y1 + x1

1
z1

1
x2

2
z2

2
y2

+ x1
1
z1

1̄
x2

2
z2

2
y2

=y1z1x2y2z2 + x1y1x2y2z2 + 2x1z1x2y2z2.

4 Legendre-Stirling Permutations

In this section, we give refinements of the Stirling grammar and the Eulerian
grammar, and we show that these refined grammars can be used to generate stable
multivariate polynomials. For n ≥ 1, let

G2n−1 = {xi, yi , zi, ui , vi → unvn | 0 ≤ i < n},
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and let

G2n = {un → xnznun, vn → xnynzn,

xi, yi , zi, ui , vi → xnynzn | 0 ≤ i < n}.

Clearly, G2n−1 is a refinement of the Eulerian grammar, and G2n is a refinement of
the Stirling grammar.

Let Dn denote the formal derivative with respect to the grammar Gn. We
give a grammatical labeling of Legendre-Stirling permutations, which leads to a
combinatorial interpretation of the multivariate polynomial D2nD2n−1 · · ·D1(x0).

To this end, we introduce several statistics of a Legendre-Stirling permutation. In
terms of these statistics, we obtain a multivariate polynomial Bn(X, Y,Z,U, V ) as
a refinement of Bn(x), which can be generated by the operators D1,D2, . . . ,D2n.

Recall that Mn denotes the multiset {1, 1, 1̄, 2, 2, 2̄, . . . , n, n, n̄}. Let Ln denote
the set of Legendre-Stirling permutations on Mn. For a Legendre-Stirling permuta-
tion π = π1π2 . . . π3n ∈ Ln, define

X(π) ={i |πi−1 ≤ πi, πi is unbarred and appears for the first time},
Y (π) ={i |πi > πi+1 and πi is unbarred},
Z(π) ={i |πi−1 ≤ πi, πi is unbarred and appears for the second time},
U(π) ={i |πi−1 ≤ πi and πi is barred},
V (π) ={i |πi > πi+1 and πi is barred}.

As usual, we set π0 = π3n+1 = 0.
For example, let π = 1̄12̄23323̄1. Then we have X(π) = {2, 4, 5}, Y (π) =

{6, 9}, Z(π) = {6}, U(π) = {1, 3, 8} and V (π) = {8}.
Define

Bn(X, Y,Z,U, V ) =
∑

π∈Ln

∏

i∈X(π)

xπi

∏

i∈Y (π)

yπi

∏

i∈Z(π)

zπi

∏

i∈U(π)

uπi

∏

i∈V (π)

vπi
. (3)

For example, there are only two Legendre-Stirling permutations on M1: 111̄ and
1̄11. So we have

B1(X, Y,Z,U, V ) = x1y1z1u1 + x1z1u1v1.

For n = 2, there are 40 Legendre-Stirling permutations on M2 and we have

B2(X, Y,Z,U, V ) = 2x2y2z2u2x1z1u1 + x2y2z2u2x1y1z1 + x2y2z2u2x1y1u1

+ x2y2z2u2y1z1u1 + x2y2z2u2x1u1v1 + x2y2z2u2z1u1v1

+ x2y2z2u2x1z1v1 + 2x2z2u2v2x1z1u1 + x2z2u2v2x1y1z1
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+ x2z2u2v2x1y1u1 + x2z2u2v2y1z1u1 + x2z2u2v2x1z1v1

+ x2z2u2v2x1u1v1 + x2z2u2v2z1u1v1 + 4x2y2z2u2v2x1z1

+ 4x2y2z2u2v2x1u1 + 4x2y2z2u2v2u1z1 + 2x2y2z2u2v2x1y1

+ 2x2y2z2u2v2y1z1 + 2x2y2z2u2v2y1u1 + 2x2y2z2u2v2x1v1

+ 2x2y2z2u2v2u1v1 + 2x2y2z2u2v2z1v1.

We now give a grammatical labeling of a Legendre-Stirling permutation. Let π be
a Legendre-Stirling permutation in Ln. For i ∈ X(π), i ∈ Z(π) or i ∈ U(π), we
label πi−1 by xπi , zπi or uπi , respectively; for i ∈ Y (π) or i ∈ V (π), we label
πi by yπi or vπi , respectively. The weight of π is defined as the product of these
letters labeled on entries of π and denoted by w(π). For example, the grammatical
labeling of the aforementioned Legendre-Stirling permutation π = 12̄1̄23323̄1 is
given below:

x1

1

u2

2̄

v2

1̄

x2

2

x3

3

z3

3

y3

2

u3

3̄

v3

1

y1
.

Theorem 8 For n ≥ 1, let Dn denote the differential operator with respect to the
grammar Gn, then we have

D2nD2n−1 · · ·D1(x0) = Bn(X, Y,Z,U, V ). (4)

Proof We proceed by induction on n to show that

D2nD2n−1 · · ·D1(x0) =
∑

π∈Ln

w(π). (5)

It can be checked that (5) holds for n = 1. For n ≥ 2, we assume that (5) holds
for n− 1, that is,

D2n−2D2n−3 · · ·D1(x0) =
∑

π∈Ln−1

w(π).

Note that any Legendre-Stirling permutation on Mn can be obtained from a
Legendre-Stirling permutation on Mn−1 by inserting nn and n̄. We use examples
to illustrate that the application of the operator D2nD2n−1 reflects the insertions of
nn and n̄.

Consider the Legendre-Stirling permutation π = 1̄12̄23323̄1 with the following
grammatical labeling:

u1

1̄

x1

1

u2

2̄

x2

2

x3

3

z3

3

y3

2

u3

3̄

v3

1

y1
.
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Let w be the weight of the above grammatical labeling, that is,

w = u1x1u2x2x3z3y3u3v3y1.

Let us consider the action of D7 on w. Recall that

G7 = {xi, yi, zi , ui , vi → u4v4 | i = 1, 2, 3}.

Consider a substitution rule that replaces a letter s by u4v4. Assume that πk is
labeled by s, where 0 ≤ k ≤ 9. This rule corresponds to an insertion of 4̄ after
the entry πk in π . Then the element πk is relabeled by u4, and the element 4̄ is
labeled by v4.

For example, the substitution rule z3 → u4v4 corresponds to the insertion of
4̄ after the first element 3 in π . After the insertion, we obtain a Legendre-Stirling
permutation with a consistent grammatical labeling:

u1

1̄

x1

1

u2

2̄

x2

2

x3

3

u4

4̄

v4

3

y3

2

u3

3̄

v3

1

y1
.

As for the action of D8, consider the above permutation σ = 1̄12̄234̄323̄1. Let
w′ denote the weight of σ , that is,

w′ = u1x1u2x2x3u4v4y3u3v3y1.

The two substitution rules u4 → x4z4u4 and v4 → x4y4z4 of G8 correspond to the
insertions of the element 44 into σ before 4̄ or after 4̄, respectively, resulting in two
Legendre-Stirling permutations: 1̄12̄23444̄323̄1 or 1̄12̄234̄44323̄1.

It remains to consider the substitution rules of G8 that are of the form s →
x4y4z4, where s ∈ {xi, yi, zi , ui, vi | i = 1, 2, 3}. Suppose that σi is the element in
σ that is labeled by s. The substitution rule s → x4y4z4 corresponds to the insertion
of 44 into σ after σi . Let τ denote the resulting permutation obtained from σ after the
insertion. Then one can obtain a consistent grammatical labeling of τ by relabeling
σi by x4 and assigning the two labels z4 and y4 to the inserted two elements 44 from
left to right. For example, by applying the substitution rule u2 → x4y4z4, we obtain
the Legendre-Stirling permutation by inserting 44 after the first element 1 with a
consistent grammatical labeling:

u1

1̄

x1

1

x4

4

z4

4

y4

2̄

x2

2

x3

3

u4

4̄

v4

3

y3

2

u3

3̄

v3

1

y1
.

In general, it can be verified that the action of D2nD2n−1 on the weights of the
Legendre-Stirling permutations in Ln−1 generates the weights of Legendre-Stirling
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permutations in Ln. So we conclude that (5) holds for n, that is,

D2nD2n−1 · · ·D1(x0) =
∑

π∈Ln

w(π).

Thus (5) holds for all n. This completes the proof. ��
We note that the grammars G2,G4, . . . are related to the polynomials

Cn(X, Y,Z) introduced by Haglund and Vistonai [16], as defined by

Cn(X, Y,Z) =
∑

π∈Qn

∏

i∈D(π)

xπi

∏

i∈A(π)

yπi

∏

i∈P(π)

zπi .

Clearly, C1(X, Y,Z) = x1y1z1. Based on the combinatorial interpretation of
Cn(X, Y,Z), Haglund and Visontai [16] established the following recurrence
relation for n ≥ 1:

Cn+1(X, Y,Z) = xn+1yn+1zn+1∂Cn(X, Y,Z), (6)

where

∂ =
n∑

i=1

∂

∂xi
+

n∑

i=1

∂

∂yi
+

n∑

i=1

∂

∂zi
. (7)

The following theorem shows that the grammar D2n has the same effect as the
operator xnynzn∂ when acting on Cn−1(X, Y,Z).

Theorem 9 For n ≥ 0,

D2n+2(Cn(X, Y,Z)) = xn+1yn+1zn+1∂Cn(X, Y,Z). (8)

The relation (8) implies that

D2n+2D2n · · ·D4D2(z0) = Cn+1(X, Y,Z).

To prove Theorem 9, we observe the following property of the formal derivative
D with respect to a grammar G. The verification is straightforward.

Proposition 10 Let X denote the set of variables of a grammar G. For a polynomial
f in X, we have

D(f ) =
∑

x∈X
D(x)

∂f

∂x
.
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5 The Stability of Tn(X, Y,Z)

In this section, we prove the stability of the multivariate polynomials Tn(X, Y,Z) by
showing that the related formal derivatives with respect to the generating grammars
are stability preserving operators. The proof relies on the characterization of stability
preserving linear operators on multiaffine polynomials due to Borcea and Brändén
[4].

Recall that a multivariate polynomial f (z1, z2, . . . , zn) is called multiaffine if the
degree of any variable in f is at most 1. An operator T is called a stability preserver
of multiaffine polynomials if T (f ) is either stable or identically 0 for any stable
multiaffine polynomial f ∈ C[z1, z2, . . . , zn].
Theorem 11 (Borcea and Brändén) Let T denote a linear operator acting on the
polynomials in C[z1, z2, . . . , zn]. If

T

(
n∏

i=1

(zi +wi)

)

∈ C[z1, . . . , zn,w1, . . . , wn]

is stable, then T is a stability preserver of multiaffine polynomials.

To prove the stability of Tn(X, Y,Z), we use the grammatical expression

Tn(X, Y,Z) = DnDn−1 · · ·D1(z0)

in Theorem 7, where Dn is the formal derivative with respect to the grammar

Gn = {xi, zi → xnynzn, yi → 2xnynzn | 0 ≤ i < n}.

We shall show that Dn is a stability preserver, and this proves the stability of
Tn(X, Y,Z).

Theorem 12 For n ≥ 1, Tn(X, Y,Z) is stable.

Proof Let

F =
n∏

i=0

(xi + ui)(yi + vi)(zi +wi), (9)

and let

ξ =
n−1∑

i=0

(
1

xi + ui

+ 2

yi + vi
+ 1

zi +wi

)

. (10)
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We have

Dn(F) =
n−1∑

i=0

D(xi)
∂F

∂xi
+

n−1∑

j=0

D(yj )
∂F

∂yj
+

n−1∑

k=0

D(zk)
∂F

∂zk

=
n−1∑

i=0

xnynzn
F

xi + ui

+
n−1∑

j=0

2xnynzn
F

yi + vi
+

n−1∑

k=0

xnynzn
F

zk + wk

= xnynznξF.

To prove that Dn preserves stability of multiaffine polynomials, we assume that
xi , yi , zi , ui , vi and wi have positive imaginary parts for all 0 ≤ i ≤ n. We proceed
to show that Dn(F) �= 0.

Under the above assumptions, for 0 ≤ i ≤ n, xi + ui , yi + vi and zi +wi also
have positive imaginary parts. It follows that 1

xi+ui
, 2
yi+vi

and 1
zi+wi

have negative
imaginary parts. By the definition (9), we see that F �= 0. By (10), we find that
ξ �= 0. Hence Dn(F) �= 0. Thus Dn is a stability preserver. This completes the
proof. ��

6 The Stability of Bn(X, Y,Z,U,V )

In this section, we prove the stability of the multivariate polynomials
Bn(X, Y,Z,U, V ). Unlike the proof for Tn(X, Y,Z), the formal derivatives with
respect to the grammars do not preserve stability. Fortunately, as for the multiaffine
polynomials that we are concerned with, the formal derivatives in our case are
equivalent to linear operators which turn out to be stability preserving.

More specifically, the idea goes as follows: Let G1,G2, . . . be context-free
grammars, and D1,D2, . . . be the formal derivatives with respect to G1,G2, . . ..
Suppose that we wish to prove the stability of the multivariate polynomials

fn = DnDn−1 · · ·D1(x),

for n ≥ 1, where D1,D2, . . . may not be stability preserving. We aim to construct
stability preservers T1, T2, . . . such that

TnTn−1 · · · T1(x) = DnDn−1 · · ·D1(x).

Once such stability preservers T1, T2, . . . are found, it can be asserted that the
multivariate polynomials fn are stable. The following lemma provides a way to
find such operators Tn.
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Lemma 13 Let G be a context-free grammar over the alphabet X ∪ Y , where

X = {x1, x2, . . . , xr }

and

Y = {y1, y2, . . . , ys}.

Let D denote the formal derivative with respect to G. Assume that D(xi) contains a
factor xi for i = 1, 2, . . . , r , namely, xi → xihi(X, Y ) is a substitution rule in G.
Let T denote the following operator

T =
r∑

i=1

hi(X, Y )I +
s∑

j=1

D(yj )
∂

∂yj
,

where I denotes the identity operator. Let g(Y ) be any polynomial in Y and let
f (X, Y ) = x1x2 . . . xrg(Y ). Then we have

D(f (X, Y )) = T (f (X, Y )).

Proof By Proposition 10, we find that

D(f (X, Y )) =
r∑

i=1

D(xi)
∂f (X, Y )

∂xi
+

s∑

j=1

D(yj )
∂f (X, Y )

∂yj

=
r∑

i=1

xihi(X, Y ) · f (X, Y )

xi
+

s∑

j=1

D(yj )
∂f (X, Y )

∂yj

=
r∑

i=1

hi(X, Y )f (X, Y )+
s∑

j=1

D(yj )
∂f (X, Y )

∂yj
,

which equals T (f (X, Y )). This completes the proof. ��
For example, the grammar

G = {a → ax, x → x}

is used in [9] to generate the set of partitions of [n] and the Stirling polynomials

Sn(x) =
n∑

i=0

S(n, k)xk,

where S(n, k) denotes the Stirling number of the second kind.



128 W. Y. C. Chen et al.

For n ≥ 1, we have

Dn(a) =
n∑

k=1

S(n, k)axk = aSn(x). (11)

Many properties of the Stirling polynomials follow from the above expression in
terms of the differential operator D with respect to the grammar G.

Let X = {a} and Y = {x}. Then D satisfies the conditions in Lemma 13. Thus
D(af (x)) = T (af (x)) for any polynomial f (x), where the operator T is given by

T = x

(

I + ∂

∂x

)

.

In particular, we have

T (aSn(x)) = D(aSn(x)).

In fact, the above operator T corresponds to the following recurrence relation for
Sn(x):

Sn(x) = T (Sn−1(x)),

which is equivalent to the recurrence relation of S(n, k):

S(n, k) = S(n− 1, k − 1)+ kS(n− 1, k), (12)

where n ≥ k > 1. Harper [17] proved that Sn(x) has only real roots for n ≥ 1. Liu
and Wang [21] showed that T preserves the real-rootedness of polynomials in x.

As a generalization of the real-rootedness of Sn(x), we consider the stability
of the multivariate polynomials Sn(a, x1, x2, . . . , xn), which can be viewed as a
refinement of the Stirling polynomial Sn(x). Let

Gn = {a → axn, xi → xn | 1 ≤ i < n},

and let Dn denote the formal derivative associated with Gn. It will be shown that for
n ≥ 1, Sn(a, x1, x2, . . . , xn) can be generated by G1,G2, . . . ,Gn.

The polynomial Sn(a, x1, x2, . . . , xn) is defined by using the following gram-
matical labeling of a partition P = {P1, P2, . . . , Pk} of [n]. The partition itself is
labeled by the letter a and a block Pi is labeled by the letter xmi , where mi is the
maximal element in Pi . The weight of P is given by the product of all labelings in
P , that is,

w(P) = a

k∏

i=1

xmi .
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Denote by Sn(a, x1, x2, . . . , xn) the sum of weights of partitions of [n]. Clearly,
Sn(a, x1, x2, . . . , xn) is the generating function of partitions of [n] involving not
only the number of blocks, but also the maximal elements of the blocks.

For example, for n = 1, 2, 3, we have

S1(a, x1) = ax1,

S2(a, x1, x2) = ax1x2 + ax2,

S3(a, x1, x2, x3) = ax1x2x3 + 2ax2x3 + ax1x3 + ax3.

The following theorem gives a grammatical expression of Sn(a, x1, x2, . . . , xn).

Theorem 14 For n ≥ 1,

Sn(a, x1, x2, . . . , xn) = DnDn−1 · · ·D1(a). (13)

Let us give an example to demonstrate the action of the differential operator D7
on a partition of {1, 2, 3, 4, 5, 6}. Recall that

G7 = {a → ax7, xi → x7 | 1 ≤ i ≤ 6}.

Consider the following partition along with its grammatical labeling:

{1, 3, 6}
x6

{2, 5}
x5

{4}
x4 a

.

Applying the substitution rule a → ax7 to the above partition leads to a partition
with a consistent grammatical labeling:

{1, 3, 6}
x6

{2, 5}
x5

{4}
x4

{7}
x7 a

.

Similarly, applying the substitution rule x5 → x7 to the partition, we get the
following partition with a consistent grammatical labeling

{1, 3, 6}
x6

{2, 5, 7}
x7

{4}
x4 a

.

In fact, the above arguments are sufficient to justify the expression (13).
It should be noticed that the relation (13) cannot be directly used to prove the

stability of Sn(a, x1, x2, . . . , xn), since the operator Dn does not preserve stability
in general. Take D2 as an example. Consider the polynomial (a+ 1)(x1+ 1), which



130 W. Y. C. Chen et al.

is clearly stable. But

D2((a + 1)(x1 + 1)) = x2(ax1 + 2a + 1)

is not stable since it vanishes when a = i and x1 = i − 2. It follows that D2 is not
stability preserving.

Fortunately, we can find a stability preserving operator Tn for the purpose of justi-
fying the stability of Sn(a, x1, x2, . . . , xn). It is easy to see that Sn(a, x1, x2, . . . , xn)

can be written as ah(X), where h(X) is a multivariate polynomial in x1, x2, . . . , xn
that is independent of the variable a. Let

Tn = xnI + xn

n∑

i=1

∂

∂xi
. (14)

According to Lemma 13, for each n ≥ 1, we have

Tn(Sn(a, x1, x2, . . . , xn)) = Dn(Sn(a, x1, x2, . . . , xn)).

It turns out that Sn(a, x1, x2, . . . , xn) can be obtained by using T1, T2, . . . , Tn.

Theorem 15 For n ≥ 1, we have

Sn(a, x1, x2, . . . , xn) = TnTn−1 · · · T1(a). (15)

The following theorem establishes the stability of Sn(a, x1, x2, . . . , xn).

Theorem 16 For n ≥ 1, the multivariate polynomial Sn(a, x1, x2, . . . , xn) is
stable.

Proof It suffices to show that the linear operator Tn preserves stability of multiaffine
polynomials. By Theorem 11, it is enough to prove that Tn(F ) is stable, where

F = (a + u)

n∏

i=1

(xi + vi).

Let

ξ = 1+
n−1∑

i=1

1

xi + vi
.
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Then

Tn(F ) =xnF + xn

n−1∑

i=1

∂F

∂xi

=xnF + xnF

n−1∑

i=1

1

xi + vi

=xnξF.

To prove that Tn(F ) is stable, we assume that a, u, x1, x2, . . . , xn and v1, v2, . . . , vn
have positive imaginary parts. It remains to show that Tn(F ) �= 0.

Under the above assumptions, for 1 ≤ i ≤ n, xi+vi has a positive imaginary part.
It follows that 1

xi+vi
has a negative imaginary part. Furthermore, the imaginary part

of ξ is also negative. Thus we have F �= 0 and ξ �= 0. Consequently, Tn(F ) �= 0.
This completes the proof. ��

Next we prove the stability of Bn(X, Y,Z,U, V ), where X = (x1, x2, . . . , xn),
Y = (y1, y2, . . . , yn), Z = (z1, z2, . . . , zn), U = (u1, u2, . . . , un) and V =
(v1, v2, . . . , vn). We shall show that D2n−1 is stability preserving for n ≥ 1. It
should be noticed that D2n is not always stability preserving for n ≥ 1. For example,
the polynomial (un + 1)(vn + 1) is clearly stable, but

D2n((un + 1)(vn + 1)) = xnzn(un(vn + 1)+ yn(un + 1))

is not stable since it vanishes for yn = i + 2, un = i, vn = i − 4. Nevertheless,
when restricted to polynomials ung, where g is a polynomial in X,Y,Z,U and V

that is independent of the variable un, there is a stability preserving operator Tn that
is equivalent to D2n.

Theorem 17 For n ≥ 1, the multivariate polynomial Bn(X, Y,Z,U, V ) is stable.

Proof For 1 ≤ k ≤ 2n, let

fk = DkDk−1 · · ·D1(x0),

which is a polynomial in

Ak = {xi, yi, zi , ui, vi | 1 ≤ i ≤ �(k + 1)/2�}.

So f2n = Bn(X, Y,Z,U, V ). For 1 ≤ k ≤ 2n, it can be seen that fk is multiaffine.
We proceed to prove the stability of f2n by induction on n. The stability of z0 is
evident. For n ≥ 1, assume that f2n−2 is stable. Let us consider the actions of
D2n−1 and D2n.
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First, we show that D2n−1 preserves stability of multiaffine polynomials. Let

A′k = {x ′i , y ′i , z′i , u′i , v′i | 1 ≤ i ≤ �(k + 1)/2�}.

According to Theorem 11, it suffices to show that the polynomial D2n−1(F ) is
stable, where

F =
n∏

i=1

(xi + x ′i )
n∏

i=1

(yi + y ′i )
n∏

i=1

(zi + z′i )
n∏

i=1

(ui + u′i )
n∏

i=1

(vi + v′i ).

Let

ξ =
n−1∑

i=1

(
1

xi + x ′i
+ 1

yi + y ′i
+ 1

zi + z′i
+ 1

ui + u′i
+ 1

vi + v′i

)

.

By Proposition 10,

D2n−1(F ) =
n−1∑

i=1

D2n−1(xi)
∂F

∂xi
+

n−1∑

i=1

D2n−1(yi)
∂F

∂yi
+

n−1∑

i=1

D2n−1(zi)
∂F

∂zi

+
n−1∑

i=1

D2n−1(ui)
∂F

∂ui

+
n−1∑

i=1

D2n−1(vi)
∂F

∂vi

= unvn

n−1∑

i=1

(
F

xi + x ′i
+ F

yi + y ′i
+ F

zi + z′i
+ F

ui + u′i
+ F

vi + v′i

)

= unvnξF.

Assume that all the variables in A2n and A′2n have positive imaginary parts. Then
each factor in F is nonzero, and so F �= 0. Similarly, each term in ξ has a negative
imaginary part, which implies that ξ �= 0. Hence D2n−1(F ) �= 0. This proves that
D2n−1 is stability preserving. By the induction hypothesis, we deduce that f2n−1 is
stable.

Next we turn to the operator D2n. Define

Tn = xnznI + xnynzn

n−1∑

i=1

(
∂

∂xi
+ ∂

∂yi
+ ∂

∂zi
+ ∂

∂ui

)

+ xnynzn

n∑

i=1

∂

∂vi
.
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Since f2n−1 can be written in the form ung, where g is a polynomial in X,Y,Z,U

and V that is independent of un, using Lemma 13, we find that

f2n = D2n(f2n−1) = Tn(f2n−1).

To prove that Tn preserves stability of multiaffine polynomials, let

F =
n∏

i=1

(xi + x ′i )
n∏

i=1

(yi + y ′i )
n∏

i=1

(zi + z′i )
n∏

i=1

(ui + u′i )
n∏

i=1

(vi + v′i ).

Then

Tn (F ) = xnynznF

n−1∑

i=1

(
1

xi + x ′i
+ 1

yi + y ′i
+ 1

zi + z′i
+ 1

ui + u′i

)

+ xnynznF

n∑

i=1

1

vi + v′i
+ xnznF

= xnynznξF,

where

ξ = 1

yn
+

n−1∑

i=1

(
1

xi + x ′i
+ 1

yi + y ′i
+ 1

zi + z′i
+ 1

ui + u′i

)

+
n∑

i=1

1

vi + v′i
.

Assume that all the variables in A2n and A′2n have positive imaginary parts. By
Theorem 11, it suffices to verify that Tn(F ) �= 0. For 1 ≤ i ≤ n, since xi + x ′i, yi +
y ′i , zi + z′i , ui + u′i , and vi + v′i all have positive imaginary parts, we see that

1

xi + x ′i
,

1

yi + y ′i
,

1

zi + z′i
,

1

ui + u′i
, and

1

vi + v′i

all have negative imaginary parts. Similarly, under the assumption that yn has a
positive imaginary part, it can be seen that 1

yn
has a negative imaginary part. Thus

we find that ξ �= 0 and F �= 0. Consequently, Tn (F ) �= 0. This leads to the
stability of Tn(F ). Finally, in light of Theorem 11, we conclude that f2n is stable.
This completes the proof. ��
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An Interesting Class of Hankel
Determinants

Johann Cigler and Mike Tyson

Dedicated to Professor Peter Paule on the occasion of his 60th
birthday

1 Introduction

Let (an)n≥0 be a sequence of real numbers with a0 = 1. For each n consider the
Hankel determinant

Hn = det(ai+j )
n−1
i,j=0.

We are interested in the sequence (Hn)n≥0 for the sequences an,r =
(2n+r

n

)
for some

r ∈ N. For n = 0 we let H0 = 1.
Let

dr(n) = det

((
2i + 2j + r

i + j

))n−1

i,j=0
.

For r = 0 and r = 1 these determinants are well known and satisfy d0(n) = 2n−1

and d1(n) = 1 for n > 0. Eğecioğlu et al. [3] computed d2(n) and d3(n) and stated
some conjectures for r > 3.
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Many of these determinants are easy to guess and show an interesting modular
pattern. For example

(d0(n))n≥0 = (1, 1, 2, 22, 23, . . . ),

(d1(n))n≥0 = (1, 1, 1, 1, 1, . . . ),

(d2(n))n≥0 = (1, 1,−1,−1,1, 1,−1,−1, . . . ),

(d3(n))n≥0 = (1, 1,−4, 3, 3,−8,5, 5,−12, 7, 7,−16, . . . ),

(d4(n))n≥0 = (1, 1,−8, 8, 1, 1,−16, 16,1, 1,−24, 24, . . . ),

(d5(n))n≥0 = (1, 1,−13,−16, 61, 9, 9,−178,−64, 370,25, 25,−695,−144, 1127, . . . )

These and other computations suggest the following evaluations:

d2k+1((2k + 1)n) = d2k+1((2k + 1)n+ 1) = (2n+ 1)k,

d2k+1((2k + 1)n+ k + 1) = (−1)(
k+1

2 )4k(n+ 1)k,

d2k(2kn) = d2k(2kn+ 1) = (−1)kn,

d2k(2kn+ k) = −d2k(2kn+ k + 1) = (−1)kn+(
k
2)4k−1(n+ 1)k−1.

The purpose of this paper is to prove these conjectures. Our methods seem to extend

to the Hankel determinants of the sequences
((2n+r

n−s

))

n≥0
, but we do not compute

these here.
In Sects. 2 and 3 we review some well-known facts from the theory of Hankel

determinants. In particular we compute d0(n) and d1(n). In Sect. 4 we define the
matrix γ and use it to compute d2(n). In Sect. 5 we introduce the matrices αn and
βn, which serve as the basis of our method. In Sect. 6 we write the Hankel matrices
in terms of these matrices. In Sects. 7 and 8 we use this information to compute
dr(n) in the aforementioned seven cases.

We would like to thank Darij Grinberg for his helpful suggestions.

2 Some Background Material

Let us first recall some well-known facts about Hankel determinants (cf. e.g. [1]). If
dn = det(ai+j )

n−1
i,j=0 �= 0 for each n we can define the polynomials

pn(x) = 1

dn
det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a0 a1 · · · an−1 1
a1 a2 · · · an x

a2 a3 · · · an+1 x2

...
...

an an+1 · · · a2n−1 xn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.
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If we define a linear functional L on the polynomials by L(xn) = an then
L(pnpm) = 0 for n �= m and L(p2

n) �= 0 (orthogonality).
By Favard’s Theorem there exist complex numbers sn and tn such that

pn(x) = (x − sn−1)pn−1(x)− tn−2pn−2(x).

For arbitrary sn and tn define numbers an(j) by

a0(j) = [j = 0],
an(0) = s0an−1(0)+ t0an−1(1), (1)

an(j) = an−1(j − 1)+ sj an−1(j)+ tj an−1(j + 1).

These numbers satisfy

n∑

j=0

an(j)pj (x) = xn. (2)

Let An = (ai(j))
n−1
i,j=0 and Dn be the diagonal matrix with entries d(i, i) =

∏i−1
j=0 tj . Then we get

(
ai+j (0)

)n−1
i,j=0 = AnDnA

�
n (3)

and

det
(
ai+j (0)

)n−1
i,j=0 =

n−1∏

i=1

i−1∏

j=0

tj .

If we start with the sequence (an)n≥0 and guess sn and tn and if we also can
guess an(j) and show that an(0) = an then all our guesses are correct and the
Hankel determinant is given by the above formula.

There is a well-known equivalence with continued fractions, so-called J-
fractions:

∑

n≥0

anx
n = 1

1− s0x − t0x
2

1− s1x − t1x
2

1− . . .

.

For some sequences this gives a simpler approach to Hankel determinants.
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As is well known Hankel determinants are intimately connected with the Catalan
numbers Cn = 1

n+1

(2n
n

)
. Consider for example the aerated sequence of Catalan

numbers (cn) = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, . . . ) defined by c2n = Cn and c2n+1 =
0. Since the generating function of the Catalan numbers

C(x) =
∑

n≥0

Cnx
n = 1−√1− 4x

2x

satisfies

C(x) = 1+ xC(x)2,

we get

C(x) = 1

1− xC(x)

and

C(x2) = 1

1− x2C(x2)
= 1

1− x2

1− x2

1− . . .

and therefore

det(ci+j )
n−1
i,j=0 = 1.

From C(x) = 1+ xC(x)2 we get C(x)2 = 1+ 2xC(x)2 + x2C(x)4 or

C(x)2 = 1

1− 2x − x2C(x)2 =
1

1− 2x − x2

1− 2x − x2

1− 2x − . . .

. (4)

The generating function of the central binomial coefficients Bn =
(2n
n

)
is

B(x) =
∑

n≥0

Bnx
n = 1√

1− 4x
= 1

1− 2xC(x)
= 1

1− 2x − 2x2C(x)2 .
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Therefore by (4) we get the J-fraction

B(x) = 1

1− 2x − 2x2C(x)2 =
1

1− 2x − 2x2

1− 2x − x2

1− 2x − x2

1− 2x − . . .

.

Thus the corresponding numbers tn are given by t0 = 2 and tn = 1 for n > 0 which
implies d0(n) = 2n−1 for n ≥ 1.

Let us also consider the aerated sequence (bn) with b2n = Bn and b2n+1 = 0.
Here we get

b(x) = B(x2) = 1

1− 2x2C(x)2
= 1

1− 2x2

1− x2

1− x2

1− . . .

.

In this case sn = 0, t0 = 2, and tn = 1 for n > 0. Here we also get det(bi+j )
n−1
i,j=0 =

2n−1 for n > 0. The corresponding orthogonal polynomials satisfy p0(x) = 1,
p1(x) = x, p2(x) = xp1(x)− 2 and pn(x) = xpn−1(x)− pn−2(x) for n > 2. The
first terms are 1, x, x2 − 2, x3 − 3x, . . . .

Now recall that the Lucas polynomials

Ln(x) =
� n2 �∑

k=0

(−1)k
(
n− k

k

)
n

n− k
xn−2k

for n > 0 satisfy Ln(x) = xLn−1(x)− Ln−2(x) with initial values L0(x) = 2 and
L1(x) = x. The first terms are 2, x, x2 − 2, x3 − 3x, . . . . Thus pn(x) = L̄n(x),
where L̄n(x) = Ln(x) for n > 0 and L̄0(x) = 1.

For the numbers an(j) we get

a2n(2j) =
(

2n

n− j

)

,

a2n+1(2j + 1) =
(

2n+ 1

n− j

)

,

and an(j) = 0 else. Equivalently an(n− 2j) = (
n
j

)
and an(k) = 0 else.
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For the proof it suffices to verify (1) which reduces to the trivial identities
(2n
n

) =
2
(2n−1
n−1

)
,
( 2n
n−j

) = (2n−1
n−j

) + ( 2n−1
n−1−j

)
, and

(2n+1
n−j

) = ( 2n
n−j

) + ( 2n
n−1−j

)
. Identity (2)

reduces to

� n2 �∑

k=0

(
n

k

)

L̄n−2k = xn. (5)

3 Some Well-Known Applications of These Methods

Now let us consider

d1(n) = det

(
2i + 2j + 1

i + j

)

.

The generating function of the sequence
(2n+1

n

)
is

∑

n≥0

(
2n+ 1

n

)

xn = 1

2

∑

n≥0

(
2n+ 2

n+ 1

)

xn = 1

2x

(
1√

1− 4x
− 1

)

= C(x)√
1− 4x

.

Now we have

√
1− 4x = 1− 2xC(x) = (C(x)− xC(x)2)− 2xC(x) = C(x)(1− 2x − xC(x))

= C(x)(1− 2x − x(1+ xC(x)2)) = C(x)(1− 3x − x2C(x)2).

Therefore

C(x)√
1− 4x

= 1

1− 3x − x2C(x)2 =
1

1− 3x − x2

1− 2x − x2

1− 2x − x2

1− 2x − . . .

.

The corresponding sequences sn, tn are s0 = 3, sn = 2 for n > 0 and tn = 1. Thus
d1(n) = 1. The corresponding ai(j) are ai(j) =

(2i+1
i−j

)
.
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To prove this one must verify (1) which reduces to

(
1

−j

)

= [j = 0],
(

2n+ 1

n

)

= 3

(
2n− 1

n− 1

)

+
(

2n− 1

n− 2

)

,

(
2n+ 1

n− j

)

=
(

2n− 1

n− j

)

+ 2

(
2n− 1

n− 1− j

)

+
(

2n− 1

n− 2− j

)

.

By (3) we see that with

An =
((

2i + 1

i − j

))n−1

i,j=0

we get

AnA
�
n =

((
2i + 2j + 1

i + j

))n−1

i,j=0
. (6)

Since An is a triangle matrix whose diagonal elements are
(2i+1
i−i

) = 1 we get

det(AnA
�
n ) = 1.

4 A New Method

Fix k > 0. Let us consider the determinants of the Hankel matrices Bn(k) =((2i+2j+2
i+j+1−k

))n−1

i,j=0
. These have already been computed in [2], Corollary 20. There

it is shown that

det(Bkm(k)) = (−1)(
m
2)k+m(k2) (7)

and det(Bn(k)) = 0 else.

Definition 4.1 For k ≥ 1, let γ (k) be the infinite matrix given by γ
(k)
ij = 1 if

|i − j | = k or i + j = k − 1 and 0 elsewhere, with rows and columns indexed by
Z≥0. Set γ (0) = 2I∞ and γ (−k) = γ (k). Let us also consider the finite truncations
γ (k)|N , where A|N denotes the submatrix consisting of the first N rows and columns
of a matrix A. We shall also write γ (1) = γ and γ (k)|N = γ

(k)
N .
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For example γ
(1)
5 and γ

(2)
5 are the following matrices:

γ
(1)
5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

γ
(2)
5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

An alternative description will be useful in this section and the next. Let Jn be
the n-by-n exchange matrix with 1’s on its antidiagonal and 0’s elsewhere. Let Qn

be the block matrix
(
Jn In

)
. Let σn be the n-by-n shift matrix with (i, j) entry equal

to 1 if j = i − 1 and 0 otherwise. Then γ
(k)
n = Qnσ

k
2nQ

�
n .

Theorem 4.2 For n ≥ 1 and all integer k,

Anγ
(k)
n A�n = Bn(k). (8)

Proof The k = 0 case of (8) is (6). By symmetry, it suffices to prove the k > 0 case.
We have (AnQn)ij =

( 2i+1
i+j−(n−1)

)
. Hence the (i, j) entry of AnQnσ2nQ

�
n A�n is

∑

0≤r,s≤n−1

(AnQn)ir (σ
k)rs(AnQn)js

=
∑

0≤r,s≤n−1

(
2i + 1

i + r − (n− 1)

)

δr−k,s

(
2j + 1

j + s − (n− 1)

)

=
n+i∑

r=n−1−i

(
2i + 1

i + r − (n− 1)

)(
2j + 1

j + r − k − (n− 1)

)

=
2i+1∑

r ′=0

(
2i + 1

r ′

)(
2j + 1

j − i + r ′ − k

)

=
(

2i + 2j + 2

i + j + 1− k

)

.

The last identity follows from the Chu–Vandermonde formula. ��
Lemma 4.3

det(γ (k)
2kn) = (−1)kn

det(γ (k)
2kn+k) = (−1)kn+(

k
2)

and all other determinants det(γ (k)
n ) vanish.
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Proof By the definition of a determinant we have

det(ai,j )
n−1
i,j=0 =

∑

π

sgn(π)a0,π(0)a1,π(1) · · · an−1,π(n−1)

where π runs over all permutations of the set {0, 1, . . . , n − 1}. We claim that the
determinants of the matrices γ

(k)
n either vanish or the sum over all permutations

reduces to a single term sgnπnγ
(k)(0, πn(0))γ (k)(1, πn(1)) · · · γ (k)(n − 1, πn(n −

1)).
Let us first consider k = 1. The last row of γ

(1)
n has only one non-vanishing

element γ (1)(n − 1, n − 2). Thus each π which occurs in the determinant must
satisfy π(n − 1) = n − 2. The next row from below contains two non-vanishing
elements γ (1)(n − 2, n − 3) and γ (1)(n − 2, n − 1). The last element is the only
element of the last column. Therefore we must have π(n − 2) = n − 1. The next
row from below contains again two non-vanishing elements, γ (1)(n− 3, n− 4) and
γ (1)(n − 3, n − 2). But since n − 2 already occurs as image of π we must have
π(n − 3) = n − 4. Thus the situation has been reduced to γ

(1)
n−2. In order to apply

induction we need the two initial cases γ
(1)
1 and γ

(1)
2 .

For n = 1 we get π(0) = 0 and for n = 2 π(0) = 1 and π(1) = 0 since

γ
(1)
2 =

(
1 1
1 0

)

.

If we write π = π(0) · · ·π(n−1) we get in this way π1 = 0, π2 = 10, π3 = 021,
π4 = 1032,. . . . This gives sgnπn = −sgnπn−2 and thus by induction det γ (1)

n =
(−1)(

n
2), which agrees with (7).

For general k the situation is analogous. The last k rows and columns contain
only one non-vanishing element. This implies π(n − j) = n − j − k and π(n −
j − k) = n − j for 1 ≤ j ≤ k and n ≥ 2k. Hence π restricts to a permutation of
{0, 1, . . . , n − 2k − 1}. Thus the determinant can be reduced to γ

(k)
n−2k and we get

det γ (k)
n = (−1)k det γ (k)

n−2k if n ≥ 2k.

For n = k γ
(k)
k reduces to the anti-diagonal and thus det γ (k)

k = (−1)(
k
2). For

0 < n < k the first row of γ (k)
n vanishes and thus det γ (k)

n = 0. For k < n < 2k there
are two identical rows because γ (k)(k−1, 0) = γ (k)(k, 0) = 1 and γ (k)(k−1, j) =
γ (k)(k, j) = 0 for 0 < j < n. Thus we see by induction that

det(γ (k)
2kn) = (−1)kn

det(γ (k)
2kn+k) = (−1)kn+(

k
2)

and all other determinants vanish. This is the same as (7) because (−1)(
2n
2 )k+2n(k2) =

(−1)kn and (−1)(
2n+1

2 )k+(2n+1)(k2) = (−1)kn+(
k
2). ��
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5 Two Useful Matrices

Recall that γ = γ (1). For the finite matrices γN = γ |N we have γ k
N �= γ k|N . In

order to compute γ k|N in the realm of N-by-N-matrices we introduce the auxiliary
matrices α

(k)
N and β

(k)
N .

Let JN be the exchange matrix with 1’s on its antidiagonal and 0’s elsewhere.
Let QN be the block matrix

(
JN IN

)
. Let σN(ε) be given by

(σN(ε))ij =

⎧
⎪⎪⎨

⎪⎪⎩

1 if i = j + 1

ε if (i, j) = (0, N − 1)

0 otherwise.

Define α
(k)
N and β

(k)
N as

QNσ2N(ε)kQ�N =

⎧
⎪⎪⎨

⎪⎪⎩

α
(k)
N if ε = 1

β
(k)
N if ε = −1

γ
(k)
N if ε = 0,

and the last line has been stated before. We shall again suppress the superscripts
when k = 1.

As a slight variation, consider the following infinite square matrices with rows
and columns indexed by Z \ {0} = {. . . ,−2,−1, 1, 2, . . . }. Let Ī be the identity
matrix and let J̄ be the exchange matrix with J̄n,−n = 1 for all n and 0 elsewhere.
Let σ̄ be given by σ̄n,n−1 = 1 and 0 elsewhere. Define also the infinite rectangular
matrix Q̄ with rows indexed by Z+ = {1, 2, . . . } and columns indexed by Z \ {0} by
Q̄|n|,n = 1 for n ∈ Z \ {0} and 0 elsewhere. Note that γ (k) = Q̄σ̄ kQ̄T , after shifting
indices from Z≥0 to Z+.

Theorem 5.1 When δ stands for either αN , βN , or γ one has δ(k) = δ · δ(k−1) −
δ(k−2) with initial values δ(1) = δ and δ(0) = 2.

Proof For αN and βN , take σ = σ2N(±1), Q = QN , J = J2N , and I = I2N . For
γ , take σ = σ̄ , Q = Q̄, J = J̄ , and I = Ī . Note that in either case Q�Q = I + J ,
σJσ = J , and QJ = Q. For k ≥ 2,

δ · δ(k−1) = QσQ�Qσk−1Q�

= Qσ(I + J )σ k−1Q�

= QσkQ� +Q(σJσ)σ k−2Q�

= δ(k) + δ(k−2).

��



An Interesting Class of Hankel Determinants 147

By induction we see that each γ (k) is a polynomial in γ . Therefore all γ (k)

commute. Theorem 5.1 shows that the matrices γ (k) are Lucas polynomials in γ .
More precisely

γ (k) = Lk(γ ). (9)

By the same argument, α(k)
N = Lk(αN ) and β

(k)
N = Lk(βN).

Theorem 5.2 For any polynomial p with degp ≤ 2N , p(αN)+p(βN)
2 = p(γ )|N .

Proof Note that (L0, . . . , L2N) is a basis of the vector space of degree at most 2N ,
since deg(Lk) = k. Therefore it suffices to show that (Lk(αN ) + Lk(βN))/2 =
Lk(γ )|N for k ≤ 2N . To wit,

(Lk(αN )+ Lk(βN))/2 = (α
(k)
N + β

(k)
N )/2

= QN(σ2N(1)k + σ2N(−1)k)Q�N/2

= QNσ2N(0)kQ�N

= γ
(k)
N

= Lk(γ )|N. ��

6 Relating the Determinant to the γ Matrices

Let an, bn, and gn be the characteristic polynomials of αn, βn, and γn, respectively.
By cofactor expansion along the last row we get gn(x) = xgn−1(x) − gn−2(x),
an(x) = gn(x) − gn−1(x), and bn(x) = gn(x) + gn−1(x). This plus the initial
conditions of the n = 1 and 2 cases gives bn(x) = Ln(x),

gn(x) =
n∑

k=0

(−1)n−kL̄k(x), (10)

and

an(x) = Ln(x)+ 2
n−1∑

k=0

(−1)n−kL̄k(x).

Here L̄n(x) is the Lucas polynomial Ln(x) except when n = 0, in which case it is 1.
By Theorem 4.2, Aφ(γ )A� is Hankel for all polynomials φ. Here A represents

the infinite matrix
((2i+1

i−j

))

i,j≥0
with finite truncations A|n = An. This is because

φ(x) can be expanded as a sum of Lucas polynomials Lk(x), each of which gives a
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Hankel matrix. Moreover, multiplying the polynomial by (x + 2) shifts the Hankel
matrix forward by 1. It suffices to show this for Lk(x). Recall that

ALk(γ )A
� = Aγ (k)A� =

((
2i + 2j + 2

i + j + 1− k

))

i,j≥0
.

Then by Theorem 5.1,

ALk(γ )(γ + 2)A� = A(γ (k−1) + γ (k+1) + 2γ (k))A�

has (i, j) entry

(
2i + 2j + 2

i + j + 2− k

)

+ 2

(
2i + 2j + 2

i + j + 1− k

)

+
(

2i + 2j + 2

i + j − k

)

=
(

2i + 2j + 4

i + j + 2− k

)

by Pascal’s identity, which is the (i + 1, j) entry of the original matrix.
We will now write the Hankel matrices of the sequence (

(2n+r
n

)
)n≥0 explicitly in

terms of the γ matrices and A.

Theorem 6.1 For r ≥ 1, let k = � r2� and l = � r−1
2 �, and define the function

hr(x) =
{
gk(x) if r = 2k + 1

bk(x) if r = 2k.

For N ≥ k + l, dr(N) equals

det
(
hr(γ )(γ + 2)l|N

)
= det

(
1

2

(
hr(αN)(αN + 2)l + hr(βN)(βN + 2)l

))

.

Proof By the above results, when i + j = n we have

(Abk(γ )A
�)ij = (ALk(γ )A

�)ij =
(

2n+ 2

n+ 1− k

)

and

(Abk(γ )(γ + 2)k−1A�)ij =
(

2(n+ k − 1)+ 2

(n+ k − 1)+ 1− k

)

=
(

2n+ 2k

n

)

.

By induction on k, we will show (Agk(γ )A
�)ij =

(2n+1
n−k

)
. The k = 0 case is (6).

For k ≥ 1,

(Agk(γ )A
�)ij = (A(bk(γ )− gk−1(γ ))A

�)ij

=
(

2n+ 2

n+ 1− k

)

−
(

2n+ 1

n− (k − 1)

)

=
(

2n+ 1

n− k

)

.
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Hence

(Agk(γ )(γ + 2)kA�)ij =
(

2(n+ k)+ 1

(n+ k)− k

)

=
(

2n+ 2k + 1

n

)

.

The final claimed formula with α and β follows from Theorem 5.2. ��

7 Structure of the Matrices

In this section we determine the structure of the matrices (βN + 2)−1, gk(αN),
gk(βN), bk(αN), and bk(βN), as well as the determinants of gk(γ )|N and bk(γ )|N .

To determine p(αN) and p(βN) for a polynomial p of degree less than N , we
begin by writing p(γ ) as a sum of γ (k) matrices using the multiplicative formula of
Theorem 5.1. We then apply Prop 7.2 to show that p(αN ) and p(βN) are the same
as p(γ )|N on and above the anti-diagonal. The structure of p(αN ) follows from the
symmetry of αN across its anti-diagonal. The structure of p(βN) can be computed
from p(αN ) and p(γ )|N with Theorem 5.2.

Proposition 7.1 The determinant of a block matrix

(
A B

C D

)

where A and D are square and D is invertible is det(D) det(A− BD−1C).

Proof Note that

(
A B

C D

)(
I 0

−D−1C I

)

=
(
A− BD−1C B

0 D

)

,

and that the determinant of a block-triangular matrix is the product of the determi-
nants of its diagonal blocks. ��
Proposition 7.2 Let T be an N-by-N tridiagonal matrix and let p be a polynomial
of degree d . Let v be the N-by-1 column vector with a 1 in its last entry and 0
elsewhere. Then the (i, j) entries of p(T ) and p(T + vv�) agree when i + j ≤
2(N − 1)− d .

Proof It suffices to prove this for p(x) = xd . Call an N-by-N matrix “k-small” if
and only if its entries (i, j) with i + j ≤ 2(N − 1)− k are all 0. For instance, vv�
is 1-small.

Suppose a matrix M is k-small. For i + j ≤ 2(N − 1) − k − 1, the (i, j) entry
of TM is

∑N−1
l=0 TilMlj = Ti,i−1Mi−1,j + Ti,iMi,j + Ti,i+1Mi+1,j . Since M is k-

small, its (i − 1, j), (i, j), and (i + 1, j) entries are 0, which implies that TM is
(k + 1)-small. Similarly, MT , vv�M , and Mvv� are (k + 1)-small.
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Consider (T +vv�)d−T d . Expanding the binomial product yields 2d−1 terms,
all of which are products of d T ’s and vv�’s and contain at least one vv�. It follows
from the above that each of these terms is d-small, so p(T + vv�) − p(T ) is d-
small. ��
Lemma 7.3 The inverse of (βN + 2) is ( 1

2 (−1)i+j (2 min{i, j } + 1))N−1
i,j=0. The

determinant of (βN + 2) is 2. For example,

(β5 + 2)−1 = 1

2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 −1 1 −1 1
−1 3 −3 3 −3

1 −3 5 −5 5
−1 3 −5 7 −7

1 −3 5 −7 9

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Proof For i �= 0, N − 1 the row i of (βN + 2) is (2δil + δi,l−1 + δi,l+1)
N−1
l=0 . The

product of this with column j of the claimed inverse is

N−1∑

l=0

(2δil + δi,l−1 + δi,l+1)
1

2
(−1)l+j (2 min{l, j } + 1)

= 1

2
(−1)i+j (4 min{i, j } + 2− 2 min{i + 1, j } − 1− 2 min{i − 1, j } − 1)

= (−1)i+j (2 min{i, j } −min{i + 1, j } −min{i − 1, j }).

This is 0 if i + 1 ≤ j or i − 1 ≥ j and is 1 if i = j .
The first row of (βN + 2) is (3, 1, 0, . . . , 0), and the last row is (0, . . . , 0, 1, 1).

Column j �= 0, N − 1 of the claimed inverse begins and ends as

1

2
((−1)j , (−1)j+13, . . . , (−1)j+N−2(2j + 1), (−1)j+N−1(2j + 1)),

so it kills the first and last rows of (βN + 2). Column 0 of the claimed inverse
begins and ends as 1

2 (1,−1, . . . , (−1)N−2, (−1)N−1) while column N − 1 begins
and ends as 1

2 ((−1)N−1, (−1)N3, . . . ,−(2N − 3), 2N − 1). It is easy to verify that
these columns have the correct products with rows of (βN + 2).

The determinant det(β + 2) is (−1)NbN(−2), which can be computed with
recurrence in Sect. 6 to be 2. ��
Lemma 7.4 For k < N , the (i, j) entry of gk(αN) is (−1)i+j+k if k ≤ i + j ≤
2N−k−2 and |i−j | ≤ k and is 0 otherwise. The (i, j) entry of gk(βN) is (−1)i+j+k

if k ≤ i + j ≤ 2N − k − 2 and |i − j | ≤ k, is 2(−1)i+j+k if 2N − k − 1 ≤ i + j ,



An Interesting Class of Hankel Determinants 151

and is 0 otherwise. For example,

g2(β6) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0 0 0
0 1 −1 1 0 0
1 −1 1 −1 1 0
0 1 −1 1 −1 1
0 0 1 −1 1 −2
0 0 0 1 −2 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Proof Recall that gj (γ ) = γ (j) − γ (j−1) + · · · ± γ (1) ∓ 1, by (10). Therefore
1
2 (gk(αN ) + gk(βN)) = gk(γ )|N = γ

(k)
N − γ

(k−1)
N + · · · ± γ

(1)
N ∓ 1. From the

definition of the γ
(j)
N , the (i, j) entry of gk(γ )|N is (−1)i+j+k if k ≤ i + j and

|i − j | ≤ k and is 0 otherwise.
Note that polynomials in αN are symmetric about their anti-diagonal. Since the

degree of gk is k < N , Proposition 7.2 says that gk(αN) agrees with gk(γ )|N on
and above its anti-diagonal. Thus, the (i, j) entry of gk(αN) is (−1)i+j+k if k ≤
i + j ≤ 2N − k − 2 and |i − j | ≤ k and is 0 otherwise. Similarly, the (i, j) entry
of gk(βN) = 2gk(γ )|N − gk(αN) is (−1)i+j+k if k ≤ i + j ≤ 2N − k − 2 and
|i − j | ≤ k, 2(−1)i+j+k if 2N − k − 1 ≤ i + j , and 0 otherwise. ��
Lemma 7.5

det gk(γ )|N =

⎧
⎪⎪⎨

⎪⎪⎩

1 if N = (2k + 1)n

(−1)(
k+1

2 ) if N = (2k + 1)n+ k + 1

0 otherwise.

Proof When N = 0 the determinant is vacuously 1. When 0 < N < k+ 1, the first
column is 0. When N = k + 1 the matrix is 0 above its antidiagonal and 1 on its

antidiagonal, so its determinant is (−1)(
k+1

2 ). When k + 1 < N < 2k + 1, columns
k − 1 and k + 1 are equal. Thus the claim holds for all N < 2k + 1. We will show
that for N ≥ 2k + 1, detgk(γ )|N = detgk(γ )|N−2k−1.

Fix N ≥ 2k + 1 and let M = gk(γ )|N . Subdivide M into a block matrix
consisting of the leading principal order-N − 1 submatrix M11, the bottom-right
entry M22, and the remainders of the last column and row M12 and M21. The
determinant of M is det(M22) det(M ′), where M ′ is the N − 1-by-N − 1 matrix
M11 −M12M

−1
22 M21 by Proposition 7.1.

We will perform cofactor expansion in the bottom right of M ′. Since M22 =
(−1)k, the bottom right k-by-k submatrix of M ′ is the zero matrix. As a result, the
only entry in the bottom row of M ′ is the 1 at (N − 2, N − k− 2). After deleting its
row and column, the only entry in the bottom row of M ′ is the 1 at (N−3, N−k−3).
This pattern continues up to the 1 at (N−k−1, N−2k−1). Since M ′ is symmetric,
a similar sequence of lone 1’s can be removed in the last k columns.
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After the last 2k rows and columns have been removed, M ′ has been reduced to
gk(γ )|N−2k−1. The 2k removed 1’s contribute a factor of (−1)k to the determinant,
which comes from the parity of the permutation (0 k)(1 k + 1) · · · (k − 1 2k). This
cancels with the sign of M22. ��
Lemma 7.6 For k < N , the (i, j) entry of bk(αN) is 1 if |i− j | = k, i+ j = k−1,
or i + j = 2(N − 1) − (k − 1) and is 0 otherwise. The (i, j) entry of bk(βN) is 1
if |i − j | = k or i + j = k − 1, is −1 if i + j = 2(N − 1) − (k − 1), and is 0
otherwise. In particular bk(γ ) = γ (k). Moreover,

det bk(γ )|N =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)kn if N = 2kn

(−1)kn+(
k
2) if N = 2kn+ k

0 otherwise.

Proof The first set of claims follow from the Lemma 7.4 and the fact that bk(x) =
gk(x)+ gk−1(x). The determinant of γ (k) was calculated in Lemma 4.3. ��

8 Calculation of the Determinant

In this section we prove the seven formulas mentioned in the introduction. Recall
Theorem 6.1 and its notation.

Let μi = 1
2 ((αN + 2)ihr (αN)+ (βN + 2)ihr (βN)) for 0 ≤ i ≤ l. From here on

we will suppress the subscripts on αN and βN . By Theorem 6.1, we are interested
in calculating dr(N) = detμl . Note that

μi+1 = μi(β + 2)+ (α + 2)ihr (α)vv
�. (11)

The results of the previous section give us control over μ0. We will induct on the
above equation to screw the smoothing operators α + 2 and β + 2 into place, using
the matrix determinant lemma to keep track of the determinants. In the seven cases
proven here, the determinant or adjugate of μi is multiplied by a constant factor at
each step.

Proposition 8.1 (Matrix Determinant lemma) If A is an n-by-n matrix and u and
v are n-by-1 column vectors, then

det(A+ uv�) = det(A)+ v� adj(A)u.

Proof This is a polynomial identity in the entries of A, u, and v, so it suffices to
prove it for the dense subset where A is invertible. Consider

(
I 0
v� 1

)(
I + A−1uv� u

0 1

)(
I 0
−v� 1

)

=
(
I u

0 1+ v�A−1u

)

,
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which shows that 1 ·det(I +A−1uv�) ·1 = det(1+ v�A−1u). Multiplying through
by detA yields det(A+ uv�) = det(A)(1+ v�A−1u) = det(A)+ v� adj(A)u. ��

8.1 The Case Where μ0 Is Invertible

Lemma 8.2 Suppose there is an N-dimensional column vector w such that μ0w =
hr(αN)v and that the last l − 1 entries of hr(βN)w are 0. Then

det(μl) = det(μ0)2l
(

1+ v�(βN + 2)−1w
)l

.

Proof By Proposition 7.2, (α + 2)i and (β + 2)i differ only in the last i columns.
It follows from the second hypothesis that (β + 2)ihr (β)w = (α + 2)ihr (β)w for
0 ≤ i < l. Thus

μiw = (α + 2)ihr (α)v

and

det(μi)w = adj(μi)(α + 2)ihr (α)v

for 0 ≤ i < l. By (11) and the matrix determinant lemma,

det(μi+1) = det(β + 2)
(

det(μi)+ v�(β + 2)−1 adj(μi)(α + 2)ihr (α)v
)

= det(β + 2)
(

det(μi)+ v�(β + 2)−1 det(μi)w
)
.

Hence

det(μi+1) = 2 det(μi)
(

1+ v�(βN + 2)−1w
)
.

��
Theorem 8.3 For n, k ≥ 1,

d2k+1((2k + 1)n) = (2n+ 1)k

d2k+1((2k + 1)n+ k + 1) = (−1)(
k+1

2 )4k(n+ 1)k

d2k(2kn) = (−1)kn

d2k(2kn+ k) = (−1)kn+(
k
2)4k−1(n+ 1)k−1.
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Proof Given w, it is straightforward to verify the hypotheses and evaluate the final
expression of Lemma 8.2 with the lemmas of Sect. 7. For the first formula, take w

to be the (2k + 1)n-dimensional column vector

w1 = (−1)n−1

(
n−1∑

m=0

(−1)me(2k+1)m −
n−1∑

m=0

(−1)me(2k+1)m+2k

)

+ eN−1,

where {ei}N−1
i=0 is the standard basis. Then gk(α)w1 = gk(β)w1 = eN−k−1.

For the second formula, take w to be the (2k + 1)n+ k + 1-dimensional column
vector

w2 = (−1)n
(

n∑

m=0

(−1)me(2k+1)m+k−1 −
n−1∑

m=0

(−1)me(2k+1)m+k+1

)

+ eN−1,

which gives gk(α)w2 = eN−k−1 + eN−k and gk(β)w2 = eN−k−1 − eN−k .
For the third formula, take w to be the 2kn-dimensional column vector

w3 = (−1)n−1

(
n−1∑

m=0

(−1)me2km −
n−1∑

m=0

(−1)me2km+2k−1

)

+ eN−1,

which gives bk(α)w3 = bk(β)w3 = eN−k−1 + eN−k .
For the fourth formula, take w to be the 2kn+ k-dimensional column vector

w4 = (−1)n
(

n∑

m=0

(−1)me2km+k−1 −
n−1∑

m=0

(−1)me2km+k+1

)

+ eN−1,

which gives bk(α)w4 = eN−k−1 + 3eN−k and bk(β)w4 = eN−k−1 − eN−k . ��

8.2 The Case Where μ0 Is Singular

We will make use of the following fact about the adjugate matrix.

Proposition 8.4 The rank of the adjugate adj(M) of an n-by-n matrix M satisfies

rk adj(M) =

⎧
⎪⎪⎨

⎪⎪⎩

n if rkM = n

1 if rkM = n− 1

0 otherwise.

Proof Recall that adj(M) ·M = det(M)I . If rkM = n then M is invertible with
inverse 1

det(M)
adj(M), which also has rank n.



An Interesting Class of Hankel Determinants 155

If rkM = n − 1, then det(M) = 0, in which case adj(M) must send all vectors
into the kernel of M , which has rank 1. In this case M also has a nonzero order-n−1
minor, so adj(M) has rank 1.

If rkM ≤ n− 2, then all order-n− 1 minors of M are zero, so adj(M) = 0. ��
Lemma 8.5 Suppose there is a nonzero N-dimensional column vector w such that
det(μ0) = 0, det(μ0|N−1) �= 0, μ0w = 0, v�w = 1, v�(β + 2)−1w �= 0, and
entries N − k − l through N − 3 of w are 0. Then

det(μl) = det(μ0|N−1)
(

2v�(βN + 2)−1w
)l (

w�(α + 2)l−1hr(α)v
)
.

Proof Let c = det(μ0|N−1). We will show by induction that

adj(μi) = c
(

2v�(βN + 2)−1w
)i

ww�,

for 0 ≤ i < l. For the base case of i = 0, note that the first two hypotheses
imply that μ0 has rank N − 1. Since w generates the kernel and μ0 is symmetric,
Proposition 8.4 implies that adj(μ0) is a constant d times ww�. In fact c =
v� adj(μ0)v = dv�ww�v = d .

Suppose the claim holds for i. Since α + 2 is tridiagonal, the last hypothesis
combined with Lemmas 7.4 and 7.6 imply that w�(α+2)ihr (α)v = 0. By (11) and
the matrix determinant lemma,

det(μi+1) = det(β + 2)
(

det(μi)+ v�(β + 2)−1 adj(μi)(α + 2)ihr(α)v
)

= det(β + 2)

(

0+ c
(

2v�(βN + 2)−1w
)i

v�(β + 2)−1ww�(α + 2)ihr(α)v

)

= 0,

so μi+1 has rank at most n− 1. Since (α+ 2)ihr (α)vv
� does not affect the bottom-

right cofactor,

v� adj(μi+1)v = v� adj
(
μi(β + 2)+ (α + 2)ihr (α)vv

�) v

= v� adj (μi(β + 2)) v

= c det(β + 2)v�(β + 2)−1
(

2v�(βN + 2)−1w
)i

ww�v

= c(2v�(βN + 2)−1w)i+1.

This is nonzero by assumption, so adj(μi+1) is nonzero. By Proposition 8.4, it is
rank 1. The matrix μi+1 is symmetric and w lies in its kernel:

w�μi+1 = w�μi(β + 2)+w�(α + 2)ihr (α)vv
� = 0+ 0,
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so it is of the form adj(μi+1) = c(2v�(βN + 2)−1w)i+1ww�. This completes the
induction.

The final μl has determinant

det(μl) = det(β + 2)
(

det(μl−1)+ v�(β + 2)−1 adj(μl−1)(α + 2)l−1hr(α)v
)

= 2
(

0+ 2l−1c(v�(βN + 2)−1w)lw�(α + 2)l−1hr(α)v
)

= c
(

2v�(βN + 2)−1w
)l (

w�(α + 2)l−1hr(α)v
)
.

��
Theorem 8.6 For n, k ≥ 1,

d2k+1((2k + 1)n+ 1) = (2n+ 1)k

d2k(2kn+ 1) = (−1)kn

d2k(2kn+ k + 1) = −(−1)kn+(
k
2)4k−1(n+ 1)k−1

Proof Given w, it is straightforward to verify the hypotheses and evaluate the final
expression of Lemma 8.5 with the lemmas of Sect. 7.

For the first formula, take w to be

w5 = (−1)n
(

n∑

m=0

(−1)me(2k+1)m −
n−1∑

m=0

(−1)me(2k+1)m+2k

)

,

where {ei}N−1
i=0 is the standard basis.

For the second formula, take w to be

w6 = (−1)n
(

n∑

m=0

(−1)me2km −
n−1∑

m=0

(−1)me2km+2k−1

)

.

For the third formula, use

w7 = (−1)n−1

(
n∑

m=0

(−1)me2km+k−1 −
n∑

m=0

(−1)me2km+k

)

.

��
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9 Conjectures

Let

d ′r (n) = det

(
r

2i + 2j + r

(
2i + 2j + r

i + j

))n−1

i,j=0
.

These sequences are considered alongside dr(n) in [1]. Computer experiments
suggest the following conjectures:

d ′2k+1((2k + 1)n) = d ′2k+1((2k + 1)n+ 1) = (−1)kn,

d ′2k+1((2k + 1)n+ k) = −d ′2k+1((2k + 1)n+ k + 2)

= (−1)kn+(
k
2)((2k + 1)(n+ 1))k−1,

d ′2k+1((2k + 1)n+ k + 1) = 0,

d ′2k(kn) = −d ′2k(kn+ 1) = (−1)n(
k
2)(n+ 1)k−1.

Moreover, it seems that

(
r

2i + 2j + r

(
2i + 2j + r

i + j

))

i,j≥0

=
{
A(−ak(γ )(γ + 2)k−1)A� if r = 2k

A((−1)k+1gk(−γ )(γ − 2)(γ + 2)k−1)A� if r = 2k + 1.
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A Sequence of Polynomials Generated
by a Kapteyn Series of the Second Kind

Diego Dominici and Veronika Pillwein

Dedicated to Peter Paule, friend and mentor. Thank you for
sharing your insight and enthusiasm.

1 Introduction

Series of the form

∞∑

k=0

αν
k Jν+k [(ν + k) z] , (1)

and

∞∑

k=0

α
μ,ν
k Jμ+k [(μ+ ν + 2k) z] Jν+k [(μ+ ν + 2k) z] , (2)

where μ, ν ∈ C and Jn (z) is the Bessel function of the first kind [32, 10.2.2]

Jν (z) =
∞∑

j=0

(−1)j

� (ν + j + 1) j !
( z

2

)ν+2j
, (3)
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and �(·) is the Gamma function [32, Chapter 5.], are called Kapteyn series of the
first kind and Kapteyn series of the second kind respectively.

Kapteyn series have a long history, going back to Lagrange’s 1771 paper Sur le
Problème de Képler [23], where he solved Kepler’s equation [8]

M = E − ε sin (E) , (4)

using his method for solving implicit equations [22] (now called Lagrange inversion
theorem) and obtained [12]

E(M) = M +
∞∑

n=1

εn

n!
dn−1

dMn−1
sinn (M) .

Here M is the mean anomaly (a parameterization of time) and E is the eccentric
anomaly (an angular parameter) of a body orbiting on an ellipse with eccentricity ε.

In 1819 Bessel published his paper Analytische Auflösung der Kepler’schen
Aufgabe [3], where he approached (4) using a different method. First of all he
observed that the function g(M) = E(M) − M defined implicitly by g =
ε sin (g +M) is 2π−periodic and satisfies g(0) = 0 = g(π). Hence, g(M) can
be expanded in a Fourier sine series

g(M) =
∞∑

n=1

bn sin (nM) ,

where

bn = 2

π

π∫

0

g(M) sin(nM)dM = 2

πn

π∫

0

cos (nE − nε sin E) dE.

He then introduced the functions Jn(z) defined by

Jn(z) = 1

π

π∫

0

cos (nE − z sinE) dE, n ∈ Z (5)

which now bear his name and obtained

E(M) = M +
∞∑

n=1

2

n
Jn(nε) sin (nM) . (6)

Bessel’s work on (5) was continued by other researchers including Lommel [28],
who defined the Bessel function of the first kind by (3).
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In 1817, Francesco Carlini [4] found an expression for the true anomaly v (an
angular parameter), defined in terms of E and ε by

tan
(v

2

)
=

√
1+ ε

1− ε
tan

(
E

2

)

.

Carlini’s expression reads [7]

v = M +
∞∑

n=1

Bn sin (nM) ,

where

Bn = 2

n
Jn(nε)+

∞∑

k=0

αk [Jn−k(nε)+ Jn+k(nε)] ,

with ε = 2α
1+α2 . The problem considered by Carlini was to determine the asymptotic

behavior of the coefficients Bn for large values of n [14]. The astronomer Johann
Encke drew Jacobi’s attention to the work of Carlini. In 1849, Jacobi published a
paper improving and correcting Carlini’s article [16] and in 1850 Jacobi published
a translation from Italian into German [5], with critical comments and extensions of
Carlini’s investigation.

Bessel’s research on series of the type (6) was continued by Ernst Meissel [34] in
his papers [29, 30] and in a systematic way by Willem Kapteyn (not to be confused
with his brother Jacobus Cornelius Kapteyn [1]) in the articles [17] and [18]. Most
of the early work on Kapteyn series can be found in the books by Niels Nielsen [31,
Chapter XXII] and Watson [38, Chapter 17]. For additional properties, see [9, 10,
36, 37], and especially the book [2].

In recent years, there has been a renewed interest on Kapteyn series, particularly
from researchers in the fields of Astrophysics and Electrodynamics, see [13, 26],
and [27]. In [24], Ian Lerche and Robert Tautz studied the Kapteyn series of the
second kind

S1(a) =
∞∑

k=1

k4J2
k (ka)

and derived the formula

S1(a) = a2
(
64+ 592a2 + 472a4 + 27a6

)

256
(
1− a2

) 13
2

.
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They continued their investigations in [25], where they outlined a way for calculat-
ing more general Kapteyn series of the form

S1(n, a) =
∞∑

k=1

k2nJ2
k (ka) , n ∈ N0, (7)

where N denotes the set of natural numbers and

N0 = N ∪ {0} = {0, 1, 2, . . .} .

Motivated by (7), we considered in [11] the Kapteyn series of the second kind
with μ = ν = 0 and α

μ,ν
k = k2n

gn (z) =
∞∑

k=0

k2n J2
k (2kz) , n ∈ N0.

Using the formula [32, 10.8.3]

J2
k (w) =

∞∑

j=0

(−1)j

(2k + j)!j !
(

2k + 2j

k + j

)(
w2

4

)k+j

, k ∈ N0, (8)

it is clear that gn (z) is an even function of z and therefore we can write

gn (z) =
∞∑

k=0

bn,k z2k, n ∈ N0. (9)

In [11] we computed the first few gn (z) and obtained

g0 (z) = 1

2
+ 1

2
√

1− 4z2
, g1 (z) = z2

(
1+ z2

)

(
1− 4z2

) 7
2

,

g2 (z) = z2
(
1+ 37z2 + 118z4 + 27z6

)

(
1− 4z2

) 13
2

,

g3 (z) = z2
(
1+ 217z2 + 5036z4 + 23630z6 + 22910z8 + 2250z10

)

(
1− 4z2

) 19
2

,

which seemed to suggest that gn (z) should be of the form

gn (z) = Pn

(
z2
)

(
1− 4z2

)3n+ 1
2

+ 1

2
δn,0, n ∈ N0, (10)
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where Pn (x) ∈ R [x], deg (Pn) = 2n, and δn,k is Kronecker’s delta, defined by

δn,k =
{

1, n = k

0, n �= k
.

The purpose of this paper is to show that this conjecture is true.

2 The Coefficients bn,k

To begin, we find some representations of the coefficients bn,k appearing in the
Taylor series (9).

Proposition 1 Let bn,k be defined by

∞∑

k=0

k2nJ2
k (2kz) =

∞∑

k=0

bn,k z2k.

Then,

bn,k =
(

2k

k

) k∑

j=0

(−1)k−j

(k + j)! (k − j)!j
2k+2n, n, k ∈ N0. (11)

Proof Using (8), we have

∞∑

k=0

k2nJ2
k (2kz) =

∞∑

l=0

(−1)l

(2k + l)!l!
(

2k + 2l

k + l

)(
k2z2

)k+l

.

Setting k + l = j, we get

∞∑

k=0

bn,k z2k =
∞∑

k=0

(
2k

k

)

z2k
k∑

j=0

(−1)k−j

(k + j)! (k − j)!j
2(k+n),

and the result follows. ��
Remark 1 Note that

bn,0 = 02n = δn,0.
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Proposition 2 Let bn,k be defined by (11). Then,

bn,k = 1

2

(
2k

k

) 2k∑

j=0

(−1)2k−j

j ! (2k − j)! (k − j)2k+2n + 1

2
δn+k,0. (12)

Proof Changing the summation variable from j to k − j, we have

k∑

j=0

(−1)k−j

(k + j)! (k − j)!j
2k+2n =

k∑

j=0

(−1)j

(2k − j)!j ! (k − j)2k+2n .

Also, changing the summation variable from j to k + j, we have

k∑

j=0

(−1)k−j

(k + j)! (k − j)!j
2k+2n =

2k∑

j=k

(−1)2k−j

j ! (2k − j)! (j − k)2k+2n .

Thus,

2
k∑

j=0

(−1)k−j

(k + j)! (k − j)!j
2k+2n =

2k∑

j=0

(−1)j

(2k − j)!j ! (k − j)2k+2n + (−1)k

(k!)2 δn+k,0,

and we obtain

bn,k = 1

2

(
2k

k

) 2k∑

j=0

(−1)j

(2k − j)!j ! (k − j)2k+2n + 1

2
δn+k,0.

��
Next, we analyze the sum in the representation (12).

Lemma 1 Let the functions qn (k) be defined by

qn (k) =
2k∑

j=0

(−1)2k−j

j ! (2k − j)! (k − j)2k+2n , n, k ∈ N0. (13)

Then, we can write qn (k) as the forward difference of a polynomial

qn (k) = 1

(2k)!�
2k
x

[
(x − k)2k+2n

]

x=0
. (14)

Proof The forward difference operator (with respect to x) �x is defined by

�xf (x) = f (x + 1)− f (x) . (15)
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Iterating (15), one obtains an expression for the m-th order forward difference of a
function

�m
x f (x) =

m∑

j=0

(
m

j

)

(−1)m−j f (x + j) . (16)

Comparing (13) with (16), the result follows. ��
The Stirling numbers of the second kind are defined by [32, 26.8.6]

{
n

k

}

= 1

k!
k∑

j=0

(
k

j

)

(−1)k−j jn = 1

k!
[
�k

xx
n
]

x=0
.

They have many amazing properties, including:

1. The exponential generating function [32, 26.8.12]

∞∑

n=0

{
n

k

}
tn

n! =
(
et − 1

)k

k! .

Since
{
n
k

} = 0, for k > n, we can write

∞∑

n=0

{
n

k

}
tn

n! =
∞∑

n=k

{
n

k

}
tn

n! =
∞∑

n=0

{
n+ k

k

}
tn+k

(n+ k)! ,

and therefore

∞∑

n=0

{
n+ k

k

}
tn

(n+ k)! =
1

k!
(
et − 1

t

)k

. (17)

2. The difference-differential transformation [32, 26.8.37]

1

k!�
k
x =

∞∑

n=0

{
n

k

}
1

n!
dn

dxn
. (18)

Remark 2 In the next results, we will need some material from the theory of
generating functions (see [39] for additional information).

1. Given a generating function

F (z) =
∞∑

n=0

anz
n, (19)
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we define [zn]F(z) to be the coefficient of zn in the Maclaurin series of F (z) ,

i.e.,

[
zn
]
F(z) = an. (20)

2. The even part of the generating function (19) is given by

F (z)+ F (−z)

2
=

∞∑

n=0

a2nz
2n. (21)

3. Given two sequences defined by their generating functions

F (z) =
∞∑

n=0

anz
n, G (z) =

∞∑

n=0

bnz
n,

the Cauchy product of the sequences is defined by
(
aj ∗ bj

)
n
=

n∑

j=0

ajbn−j . The

generating function of the Cauchy product of two sequences is the product of
their generating functions,

∞∑

n=0

(
aj ∗ bj

)
n
zn = F (z)G (z) . (22)

We have now all the elements to get new representations of the functions qn (k) .

Proposition 3 Let qn (k) be defined by (13). Then,

qn (k) =
2n∑

j=0

{
j + 2k

2k

}(
2n+ 2k

2n− j

)

(−k)2n−j . (23)

Proof Using (18) in (14), we have

qn (k) =
∞∑

j=0

{
j

2k

}
1

j !
[

dj

dxj
(x − k)2k+2n

]

x=0
.
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But

1

j !
[

dj

dxj
(x − k)2k+2n

]

x=0
=

[
xj

]
(x − k)2k+2n

=
[
xj

] 2k+2n∑

j=0

(
2k + 2n

j

)

xj (−k)2k+2n−j =
(

2k + 2n

j

)

(−k)2k+2n−j ,

where
[
xj

]
was defined in (20).

Therefore,

qn (k) =
∞∑

j=0

{
j

2k

}
1

j !
(

2k + 2n

j

)

(−k)2k+2n−j .

However, since

{
j

2k

}(
2k + 2n

j

)

= 0, j > 2k + 2n,

we have

qn (k) =
2k+2n∑

j=2k

{
j

2k

}
1

j !
(

2k + 2n

j

)

(−k)2k+2n−j =
2n∑

j=0

{
j + 2k

2k

}(
2n+ 2k

j + 2k

)

(−k)2n−j ,

and the result follows from the identity [32, 26.3.1]

(
n

k

)

=
(

n

n− k

)

.

��
Corollary 1 Let qn (k) be defined by (13). Then, qn (k) = (2k + 1)2n rn (k) , where
rn (k) is defined by

rn (k) =
2n∑

j=0

{
2k + j

2k

}
(2k)!

(2k + j)!
(−k)2n−j

(2n− j)! . (24)

In particular, the first few rn (k) are given by,

r0 (k) = 1, r1 (k) = k

12
, r2 (k) = k (5k − 1)

1440
. (25)

Next, we find a generating function for the sequence rn (k) .
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Proposition 4 Let rn (k) be defined by (24). Then, rn (k) has the ordinary generat-
ing function

Rk (t) =
∞∑

n=0

rn (k) t
2n =

[
2

t
sinh

(
t

2

)]2k

. (26)

Proof From (24), we see that we can write rn (k) as a Cauchy product

rn (k) = (2k)!
({

2k + j

2k

}
1

(2k + j)! ∗
(−k)j

j !

)

2n

,

where (x)n denotes the Pochhammer symbol (also called shifted or rising factorial)
[32, 5.2(iii)] defined by (x)0 = 1 and

(x)n = x (x + 1) · · · (x + n− 1) , n ∈ N,

or as the ratio of two Gamma functions

(x)n =
� (x + n)

� (x)
, − (x + n) /∈ N0.

Using (21), we get

1

(2k)!Rk (t) =
∞∑

n=0

t2n

({
2k + j

2k

}
1

(2k + j)! ∗
(−k)j

j !

)

2n

= Gk (t)+Gk (−t)

2
,

where

Gk (t) =
∞∑

n=0

tn

({
2k + j

2k

}
1

(2k + j)! ∗
(−k)j

j !

)

n

=
⎡

⎣
∞∑

j=0

{
2k + j

2k

}
tj

(2k + j)!

⎤

⎦

⎡

⎣
∞∑

j=0

(−k)j

j ! tj

⎤

⎦ ,

after using (22).
From (17), we have

∞∑

n=0

{
n+ 2k

2k

}
tn

(n+ 2k)! =
1

(2k)!
(
et − 1

t

)2k

,
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and clearly

∞∑

j=0

(−k)j

j ! tj = e−kt .

Thus,

(2k)!Gk (t) =
(
et − 1

t

)2k

e−kt =
(
et − 1

t

)2k

e−2k t
2 =

(
e

t
2 − e− t

2

t

)2k

,

and we conclude that

Gk (t) = 1

(2k)!
[

2

t
sinh

(
t

2

)]2k

.

Since 2
t

sinh
(
t
2

)
is an even function, we get

Rk (t) = (2k)!Gk (t)+Gk (−t)

2
=

[
2

t
sinh

(
t

2

)]2k

.

��
Corollary 2 Let rn (k) be defined by (24). Then, rn ∈ Q [k] and deg (rn) = n.

Proof From (26), we have

∞∑

n=0

rn (x + y) t2n =
[

2

t
sinh

(
t

2

)]2(x+y)

=
[

2

t
sinh

(
t

2

)]2x [2

t
sinh

(
t

2

)]2y

,

and using (22) we get

rn (x + y) =
n∑

j=0

rj (x) rn−j (y) . (27)

In particular, setting y = 1

�xrn (x) = rn (x + 1)− rn (x) =
n−1∑

j=0

rn−j (1) rj (x) ,

where we have used (25). Using induction, the result follows. ��
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To summarize, in this section, we have shown that

bn,k = 1

2

(
2k

k

)

qn (k)+ 1

2
δn+k,0

and

qn (k) = (2k + 1)2n rn (k) ,

where rn ∈ Q [k] and deg (rn) = n.

3 Main Result

In this section, we use our previous results to prove (10). We start with a few
formulas that we will need in the sequel. All of them can be verified using
Zeilberger’s algorithm [33, 35]. We leave the proofs to the reader.

Lemma 2 For all j, k, n ∈ N0, we have

(
3n+ 1

2
k − j

)

(−4)k−j

(
2j

j

)

(2j + 1)2n (28)

= 4n+k

k!
(

1

2

)

3n+1

(
k

j

)

(−1)k−j

(

j − k + 3n+ 3

2

)

k−2n−1
(j + 1)n .

Lemma 3 For all j ∈ N0 we have

∞∑

k=0

(
2k

k

)(
k

j

)

zk =
(

2j

j

)
zj

(1− 4z)j+
1
2

, |z| < 1

4
(29)

Corollary 3 Let um (k) be a polynomial in k of degree m. Then,

∞∑

k=0

(
2k

k

)

um (k) zk = Um (z)

(1− 4z)m+ 1
2

, |z| < 1

4
,

where Um (z) is a polynomial in z with deg (Um) ≤ m.

Proof Let’s write um (k) in the basis of binomial polynomials.

um (k) =
m∑

j=0

am,j

(
k

j

)

.
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Using (29), we get

∞∑

k=0

(
2k

k

)

um (k) zk =
m∑

j=0

am,j

(
2j

j

)
zj

(1− 4z)j+ 1
2

= 1

(1− 4z)m+
1
2

m∑

j=0

am,j

(
2j

j

)

zj (1− 4z)m−j ,

and we conclude that

Um (z) =
m∑

j=0

am,j

(
2j

j

)

zj (1− 4z)m−j .

��
We can now prove our main result.

Theorem 1 Let rn (k) be a polynomial in k of degree n and Pn (z) be defined by

Pn (z) = (1− 4z)3n+ 1
2

∞∑

k=0

(
2k

k

)

(2k + 1)2n rn (k) zk.

Then, Pn (z) is a polynomial in z of degree 2n.

Proof We know from Corollary 3 that Pn (z) is a polynomial with deg (Pn) ≤ 3n.
Thus, we write

Pn (z) =
3n∑

j=0

cn,j zj .

Using the Cauchy product between power series, we have

cn,k =
k∑

j=0

(
3n+ 1

2
k − j

)

(−4)k−j

(
2j

j

)

(2j + 1)2n rn (j) .

From (28), we get

cn,k = 4n+k

k!
(

1

2

)

3n+1

k∑

j=0

(
k

j

)

(−1)k−j

(

j − k + 3n+ 3

2

)

k−2n−1
(j + 1)n rn (j) ,
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which we can write as the finite difference

cn,k = 4n+k

k!
(

1

2

)

3n+1

[
�k

xCn,k (x)
]

x=0
,

where

Cn,k (x) =
(

x − k + 3n+ 3

2

)

k−2n−1
(x + 1)n rn (x) .

Cn,k (x) is a polynomial of degree k − 1 for k ≥ 2n+ 1 and therefore

�k
xCn,k (x) = 0, k ≥ 2n+ 1.

We conclude that cn,k = 0 for k > 2n, and the result is proved. ��

4 Symbolic Computation

In this section, we apply computer algebra methods to derive further results about
the coefficient sequence cn,k . Using algorithms for symbolic summation, it is
possible to discover and prove a recurrence relation for fast computation of these
coefficients. As a side result, we obtain a simple closed form for the leading
coefficients that would otherwise not be easily discovered.

Holonomic functions form a class of functions for which a wide variety of
algorithms is available to discover and prove non-trivial identities. In one variable,
they are functions satisfying a linear difference or differential equation with
polynomial coefficients. The classical (continuous) orthogonal polynomials are
holonomic both in the degree n (satisfying a three term recurrence) and in the
variable x (satisfying a second order ordinary differential equation with polynomial
coefficients) and also holonomic as multivariate functions in n and x. For a non-
expert introduction to holonomic functions in one and several variables as well as
some algorithms for them, see [20].

Stirling numbers are an example of a sequence that is just outside the class of
holonomic functions. They also satisfy recurrence relations, but of a different type.
Methods like automated guessing of recurrence based on given data can certainly
be applied to Stirling-type sequences, however tools for symbolic summation will
not work the same way. There has been work on extending these algorithms [6]
and these methods are also implemented in the Mathematica package Holonomic-
Functions [21] by Christoph Koutschan. The sequence bn,k defined in (9) is of this
Stirling-type and below we use automated guessing and a variation of Zeilberger’s
algorithm [40] to derive recurrence relations for it. The Mathematica notebook
containing all computations carried out in this notebook can be found at https://
www3.risc.jku.at/people/vpillwei/kapteyn/.

https://www3.risc.jku.at/people/vpillwei/kapteyn/
https://www3.risc.jku.at/people/vpillwei/kapteyn/
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As a first step, we compute a recurrence relation for bn,k using HolonomicFunc-
tions. There are different ways to write the sequence and it does make a difference
for the algorithm. We use the definition (11),

bn,k =
(

2k

k

) k∑

j=0

(−1)k−j

(k + j)! (k − j)!j
2k+2n, n, k ∈ N0,

instead of one involving Stirling numbers. Using the command

Annihilator[b[n, k], {S[n], S[k]}]

in HolonomicFunctions gives the recurrence,

(−k − 1)SnSk + 2(2k + 1)Sn + (k + 1)3Sk = 0.

The output is in operator form, where Sm denotes the forward shift in the variable m.
The recurrence then reads as stated in the following lemma. To avoid the case
distinction with the Kronecker delta for the case of both n and k being zero, in
the following we always assume that k ≥ 1. Note that bn,0 = 0 for n ≥ 1. Hence,
we may even consider n, k ≥ 1.

Lemma 4 Let the sequence bn,k be defined by (11). Then,

(k + 1)bn+1,k+1 = 2(2k + 1)bn+1,k + (k + 1)3bn,k+1, n ≥ 0, k ≥ 1,

with initial values

bn,1 = 1, b0,k = 1

2

(
2k

k

)

.

Proof The recurrence can be derived as shown above and the initial values bn,1

are trivially verified for k ≥ 1. It remains to show that b0,k = 1
2

(2k
k

)
. For this first

observe that for n = 0 and k ≥ 1 we can rewrite

k∑

j=0

(−1)k−j

(k + j)! (k − j)!j
2k = 1

2

1

(2k)!
2k∑

j=0

(
2k

j

)

(−1)j (k − j)2k.

Here we first reverse the order of summation and then using the fact that k ≥ 1
extend the summation symmetrically to go up to j = 2k. Analogously as in the
proof of Proposition 2. Note that for j = k the summand vanishes if k ≥ 1. Using
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[15, (5.42)]

m∑

j=0

(
m

j

)

(−1)j (a0 + a1j + · · · + amj
m) = (−1)mm!am,

the result follows with m = 2k and a2k = 1. ��
The objects we are actually interested in are the polynomials Pn(z) in the

numerator of gn(z). Recall that they were defined as

Pn(z) = (1− 4z)3n+1/2
∑

k≥1

bn,kz
k =

∑

k≥1

cn,kz
k,

with

cn,k =
k∑

j=1

(−3n− 1
2 )k−j

(k − j)! 4k−j bn,j =
k∑

j=1

an,k−j bn,j . (30)

In order to derive a recurrence relation for the coefficient sequence cn,k we employ
creative telescoping [41]. The basic principle is as follows: given the summand

f (n, k, j) = an,k−j bn,j ,

an operator of the form

A+ (Sj − 1)D

is determined that annihilates the input, i.e., when applied to the summand
f (n, k, j) gives zero. Moreover, A has coefficients depending only on n and k and
not on the summation variable j and uses only shifts of f in n and k, i.e.,

A =
∑

a,b

γa,b(n, k)S
a
nS

b
k .

Note, that the summation runs over a finite index set only. Because of the nature of
this operator and the factor �j = Sj − 1 in front of the second operator D, one
can sum over the equation and the delta-part can be evaluated using telescoping. In
the ideal case, the summand has natural boundaries and the delta-part telescopes to
zero. In this case the final recurrence for the sum is just A · cn,k = 0. But even
in a less lucky case, at least an inhomogeneous recurrence can be determined that
possibly can be simplified further. Indeed, this is the case in our application.

The method of creative telescoping is implemented in the package Holonomic-
Functions, even for the non-holonomic case. However, the size of the input for cn,k
is too large and the computations are very expensive. Still, it is possible to guess a
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recurrence for cn,k first and use the support of the guessed recurrence as an input for
creative telescoping. This speeds up the process considerably as the ansatz becomes
much smaller. Of course the procedure is still rigorous—if there would not be an
operator of this form, HolonomicFunctions will return the empty set.

For guessing we use the Mathematica implementation of Manuel Kauers [19]
and find that

(k + 3)cn+1,k+3 − (k + 3)3cn,k+3 − 4(k − 3n− 1)cn+1,k+2

+ 2
(

6k3 − 18k2n+ 33k2 − 90kn+ 57k − 114n+ 29
)
cn,k+2

− 4
(

12k3 − 72k2n+ 24k2 + 108kn2 − 144kn+ 9k + 216n2 − 24n+ 2
)
cn,k+1

+ 8(2k − 6n− 1)3cn,k = 0, n, k ≥ 1.
(31)

From this we obtain an input for the support of the shifts in n and k in the method
CreativeTelescoping of HolonomicFunctions. Once more note that a notebook with
all these calculations can be downloaded and checked.

Given the summand as an,k−j bn,k in terms of their defining annihilators and the
support

{1, Sk, S2
k , S

3
k , S

2
k Sn, S

3
k Sn}

as an input, CreativeTelescoping returns the two following operators

A = (k + 3)S3
k Sn − (k + 3)3S3

k − 4(k − 3n− 1)S2
k Sn

+ 2
(

6k3 − 18k2n+ 33k2 − 90kn+ 57k − 114n+ 29
)
S2
k

− 4
(

12k3 − 72k2n+ 24k2 + 108kn2 − 144kn+ 9k + 216n2 − 24n+ 2
)
Sk

+ 8(2k − 6n− 1)3,

which is the operator form of recurrence (30) above, and

D = 8j (2j − 2k + 6n+ 3)(2j − 2k + 6n+ 5)(2j − 2k + 6n+ 7)

(j − k − 3)(j − k − 2)(j − k − 1)
Sn

− 24j3(2n+ 1)(6n+ 5)(6n+ 7)

(j − k − 3)(j − k − 2)(j − k − 1)

for the delta part. In this case, we run into two difficulties. First, the summand cn,k
does not have natural bounds for summation, i.e., it does not vanish outside the
range of summation. On the other hand, we cannot sum j up to k+ 3 as we run into
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poles. Hence, we proceed by summing from j = 1 to k − 1 over the equation

A · (an,k−j bn,j )+ (Sj − 1)D · (an,k−j bn,j ) = 0.

In order to obtain a recurrence for cn,k we have to add and subtract the missing
summands in the first part

∑k−1
j=1 A · (an,k−j bn,j ). As bn,k is given as a sum

itself, it is easier to plug in only an,k−j explicitly and use the recurrence satisfied
by bn,k to simplify the equations. All this can be executed automatically in
HolonomicFunctions. Moreover, all steps can also be easily verified using paper
and pencil.

Theorem 2 Let cn,k be defined by (30), then for n, k ≥ 1, the sequence satisfies the
recurrence (30) with initial values

cn,1 = 1, cn,2 = 22n+2 − 3(4n+ 1), cn,2n = 24n−1 (
1
2 )

3
n

n! , cn,k = 0, k ≥ 1.

Proof The recurrence can be computed as described above with computational
details in the accompanying Mathematica notebook available at https://www3.risc.
jku.at/people/vpillwei/kapteyn/.

The initial values cn,1 and cn,2 follow easily by plugging in the formula (30). In
order to compute cn,2n, first we plug in k = 2n in the recurrence relation (30) and
obtain

0 = −8
(

12n3 + 12n2 − 3n+ 1
)
cn,2n+1 − 2

(
24n3 + 48n2 − 29

)
cn,2n+2

− 8(2n+ 1)3cn,2n − (2n+ 3)3cn,2n+3 + 4(n+ 1)cn+1,2n+2 + (2n+ 3)cn+1,2n+3.

Next, observe that cm,k = 0 for k ≥ 2m+ 1 by Theorem 1. Hence, cn,2n+1, cn,2n+2,
cn,2n+3, and cn+1,2n+3 are all zero and the relation above simplifies to

4(n+ 1)cn+1,2n+2 − 8(2n+ 1)3cn,2n = 0.

This recurrence can easily be solved and with c1,2 = 1 we obtain the result above.
��

Note that this recurrence with the given initial values can actually be used to
compute the sequence cn,k . In Fig. 1 the support of the recurrence is indicated by
circles around the dots in the lattice, the dark gray area are the indices for which
cn,k = 0 and the light gray area depicts the non-zero initial values. The lattice is
centered at (1, 1). The first value to compute is c2,3 and from there one always
continues first along the (n, 2n − 1)-line and then downwards (n, i) for 2n − 2 ≥
i ≥ 3. This way all values of the sequences can be computed recursively.

https://www3.risc.jku.at/people/vpillwei/kapteyn/
https://www3.risc.jku.at/people/vpillwei/kapteyn/
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n

k

Fig. 1 Recurrence for cn,k

Remark 3 It is worth remarking that the closed form of cn,2n is not easily proven
without the recurrence relation and really gives the double sum evaluation

2n∑

j=1

(−3n− 1
2 )2n−j

(2n− j)! 42n−j

(
2j

j

) j∑

i=0

(−1)j−i

(j + i)! (j − i)! i
2j+2n = 24n−1 (

1
2 )

3
n

n! .

5 Conclusions

We have proved that the Kapteyn series of the second kind

gn (z) =
∞∑

k=0

k2n J2
k (2kz)

can be represented as

gn (z) = Pn

(
z2
)

(
1− 4z2

)3n+ 1
2

+ 1

2
δn,0, n ∈ N0,

where Pn (x) is a polynomial of degree 2n.
Writing

Pn(z) = (1− 4z)3n+ 1
2

∞∑

k=1

bn,kz
k =

∞∑

k=1

cn,kz
k,

we have obtained several properties of the coefficients bn,k, and a recurrence for the
coefficients cn,k.
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Numerical evidence suggests that all coefficients cn,k should be nonnegative
integers, but so far we haven’t been able to prove this, except for particular cases
such as the leading coefficients cn,2n based on the closed form representation. Thus,
we propose the following conjecture.

Conjecture 1 Let the polynomials Pn(z) be defined by

∞∑

k=0

k2n J2
k (2kz) =

Pn

(
z2
)

(
1− 4z2

)3n+ 1
2

, n ∈ N.

Then, Pn (x) ∈ N0 [x] .
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1 Introduction

Randomness is an indispensable tool in computer algebra. Even for the basic and
apparently simple task of factoring univariate polynomials over finite fields the only
known efficient (= polynomial-time) algorithms are probabilistic, and finding a
deterministic solution is the central theoretical problem in that area. For many, but
not all, tasks of computational linear algebra the most efficient algorithms today
use pre- and post-multiplication by random matrices, as introduced in Borodin et al.
(1982) and refined in many ways since then; it is now a staple tool in that field.

Even greater is the importance in cryptography, say for generating all kinds of
secret keys. Deterministic or predictable keys would allow an adversary to reproduce
them and break the cryptosystem. Since the random keys are only known to the
legitimate user, a brute-force attack would require an exhaustive search of a key
space that is prohibitively large, thus preventing a feasible or practical search.

Now a fundamental problem is that we treat our computers as deterministic
entities that, by their nature, cannot generate randomness. This is not literally true
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because tiny random influences may come from effects like cosmic radiation, but
these are easily controlled by error-correcting measures. Furthermore, quantum
computers provide randomness naturally. Even more, they can factor integers in
polynomial time and break most of the classical cryptosystems, say RSA, due to
the famous algorithm by Shor (1999). But it is a matter of opinion whether or
when scalable quantum computing will become a reality. Some central problems are
described in Dyakonov (2018) and Clarke (2019), with a professionally optimistic
view in the latter article.

How can we deal with this basic impossibility to generate randomness on our
computers? After all, we do want secure internet connections and much more. A
common solution works in two steps:

1. Produce values that are supposed to carry a reasonable amount of randomness,
using an outside source, say measuring some physical process that looks chaotic
to us.

2. Extend a small amount of true randomness to an arbitrarily large amount of
pseudorandomness.

And what does that mean? True randomness refers to uniform randomness. A
uniformly random source with values in a finite set produces each element of the set
with the same probability. A pseudorandom source, usually called a pseudorandom
generator, produces values that cannot be distinguished efficiently from uniformly
random ones. That is, no efficient (polynomial-time) machine, deterministic or
probabilistic, exists which can ask for an arbitrarily long stream of values, is given
either a uniformly random stream or a stream generated by the pseudorandom
generator, and then decides (with non-negligible probability of correctness) which
of the two is the case.

Given a generator claimed to be pseudorandom, how do you prove that no such
distinguishing machine exists? Unfortunately, we cannot, and there is no proof of
any “provable security” in sight. The difficulty is embodied in the question P �=
NP posed by Cook (1971) and, almost half a century later, is still an open one-
million-dollar millennium problem. But computational complexity offers a solution:
reductions. We take some algorithmic problem which is considered to be hard (not
solvable in (random) polynomial time) and show that the existence of an efficient
distinguisher implies a solution to the problem. A well-known such problem is the
factorization of large integers. Many researchers have looked at it and no solution is
known (except on the as yet hypothetical quantum computers). Such a reduction is
currently the best way of establishing pseudorandomness.

Probability theory suggest a different approach: measure the entropy. It expresses
the “amount” of randomness that a source produces. Unfortunately, entropy cannot
be measured practically (Goldreich et al. 1999; von zur Gathen and Loebenberger
2018). As a way out, sometimes the block entropy is measured, see below. It
will show large statistical abnormalities, if present, within the output stream, but
cannot indicate their absence. In our context, this is rather useless, since even
cryptographically weak generators may possess high block entropy.

An intermediate step before seeding a pseudorandom generator from a source is
randomness extraction. Some of the methods in that area only require a lower bound
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on the source’s min-entropy, a more intuitive measure for randomness. By their
nature, physical random generators are not amenable to mathematically rigorous
proofs of such bounds. Quite justifiably, reasonable engineering standards ignore
such theoretical stipulations in practice, but we give some weight to them.

For physical hardware generators, applying a series of statistical tests like the
above seems to be the only approach, and we also use it for lack of alternatives. For
instance, lack of sufficient entropy caused severe weakening of Debian’s OpenSSL
implementation, see Schneier (2008). However, experts know the dangers of this
approach quite well:

The main part of a security evaluation considers the generic design and its implementation.
The central goal is to quantify (at least a lower bound for) the entropy per random bit.
Unfortunately, entropy cannot be measured as voltage or temperature. Instead, entropy is
a property of random variables and not of observed realizations (here: random numbers).
(Killmann and Schindler 2008)

This warning is often ignored in the literature.
Pseudorandom generators come in two flavors: based on a symmetric cryptosys-

tem like the Advanced Encryption Standard (AES), or based on number-theoretic
hard problems such as factoring integers. The general wisdom is that the latter are
much slower than the former. The main goal of this paper is to examine this opinion
which, to our surprise, turns out to be untenable.

We study one hardware generator; by its nature, it is out of scope for theoretical
comparisons. Among the software pseudorandom generators, AES and some of the
number-theoretic ones perform roughly equally well, provided they are run with fair
implementations. We use corresponding home-brew code to run them, implemented
with the same care. However, if the AES generator is run on specialized AES-
friendly hardware, it outperforms the others by a large distance. This comes as no
surprise.

Our comparative analysis covers some popular pseudorandom generators and
two physical sources of randomness. Of course, the choice of possible generators is
vast. We thus try to select examples of the respective classes to get a representative
picture of the whole situation. Our measurements were reported in Burlakov et al.
(2015a), so that their absolute values are somewhat outdated. But that is not the point
here: we strive for a fair comparison of the generators, and that can be expected to
carry through to later hardware versions, with a grain of salt.

An example of the insatiable thirst for randomness are TLS transactions, which
consume at 43.000 new transactions per second (cipher suite ECDHE-ECDSA-
AES256-GCM-SHA384) on a single Intel Xeon based system (cf. NGINX 2016
product information) 1376 KB/s of randomness to generate pre-master secrets of
256 bits each—ideally, using only negligible CPU resources.

In our setup we use as a source of random seeds one particular output of the
hardware generator PRG310-4, which was analyzed in Schindler and Killmann
(2003). On the software side we discuss several number-theoretic generators,
namely the linear congruential generator, the RSA generator, and the Blum–
Blum–Shub generator, all at carefully selected truncation rates of the output. The
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generators come with certain security reductions. For comparison we add to our
analysis pseudorandom generators based on a well-studied block cipher, in our case
AES in counter mode.

The article is structured as follows: We first present previous work on generator
analysis in Sect. 2 before giving a detailed overview of the generators in Sect. 3. The
main contribution is the evaluation regarding throughput and entropy consumption
in Sect. 4. We conclude and elaborate on future work in Sect. 5.

All algorithms except the one employing AES-NI were implemented in a
textbook manner using non-optimized C-code, thus providing a fair comparison.
The source code of the algorithms is available at Burlakov et al. (2015b).

2 Related Work

Concerning physical generators, Killmann and Schindler (2008) analyze noisy
diodes as a random source, providing a model for its entropy. One example of
a noisy diodes based generator is the commercial generator PRG310-4, which is
distributed by Bergmann (2019). Concerning non-physical true random generators,
Linux’ VirtIO generator as used in /dev/random is illustrated by Gutterman
et al. (2006) and explained by Lacharme et al. (2012). Combined, they provide
a clear picture of its inner workings. Additionally, there is the study by Müller
(2019) in which the quality of /dev/random and /dev/urandom is studied
with respect to the functionality classes for random generators as given by Killmann
and Schindler (2011).

Referring to pseudorandom generators, the RSA based generator is explained
in Shamir (1983), Fischlin and Schnorr (2000), and Steinfeld et al. (2006). Its
cryptographic security is shown in Alexi et al. (1988) and extended in Steinfeld
et al. (2006). Linear congruential generators were first proposed by Lehmer (1951).
Attacks were discussed in Plumstead (1982) and Håstad and Shamir (1985). They
all exploited its simple linear structure and come with a specific parameterization.
Not all parameterizations—such as truncating its output to a single bit—have been
attacked successfully as of today. Contini and Shparlinski (2005) analyze this in
depth concluding that (for some cases)

[. . . ] we do not know if the truncated linear congruential generator can still be cryptana-
lyzed.

Blum et al. (1986) introduced the Blum–Blum–Shub generator. Alexi et al.
(1988) and Fischlin and Schnorr (2000) show that the integer modulus can be
factored, given a distinguisher for the generator.

A totally different approach for the construction of pseudorandom generators
are the ones based on established cryptographic primitives. NIST (2015) specifies
several standards for producing cryptographically secure random numbers. Besides
hash-based techniques, there is also a standard employing a block cipher in counter
mode, see also NIST (2001b) for this purpose.
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RFC 4086, see Eastlake et al. (2005), compares different techniques and provides
a de-facto standard focussing on internet engineering. There, several entropy
pool techniques and randomness generation procedures are specified. However,
RFC 4086 lacks recommendations for the ciphers to be used in OFB (output
feedback) and CTR (counter mode) generation. We show here that such a general
recommendation would also be ill-suited since the optimal choice depends heavily
on the platform used.

We are not aware of any comprehensive fair benchmarking survey for all the
generators mentioned above that integrates them into the Linux operating system.

3 The Generators

In the following, each generator which was implemented or applied for the
comparative analysis is briefly presented. The output of a pseudorandom generator
is, by definition, not efficiently distinguishable from uniform randomness, see for
example Goldreich (2001). When assuming that certain problems in algorithmic
number theory (such as factoring integers) are difficult to solve, the Blum–Blum–
Shub, and RSA generators with suitable truncation have this property, but the
linear congruential generator does not. Also the AES-based generator does not, but
assuming AES to be a secure cipher, the AES-based generator is pseudorandom as
well.

3.1 Linux /dev/random and /dev/urandom

The German Federal Office for Information Security1 sets cryptographic standards
in Germany and judges /dev/random to be a non-physical true random number
generator (i.e., an NTG.1 generator in the terminology of Killmann and Schindler
2011) for most Linux kernel versions, see BSI (2019b).
/dev/urandom, however, does not fulfill the requirements for the class

NTG.1, since property NTG.1.1 requires:

The RNG shall test the external input data provided by a non-physical entropy source
in order to estimate the entropy and to detect non-tolerable statistical defects [. . . ], see
Killmann and Schindler (2011).

Additionally, /dev/urandom violates NTG 1.6 which states

The average Shannon entropy per internal random bit exceeds 0.997.

Both are clearly not met by /dev/urandom due to the fact that the device is
non-blocking.

1Bundesamt für Sicherheit in der Informationstechnik (BSI).
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However, /dev/urandom fulfills all other requirements of the class NTG.1,
i.e. the conditions NTG 1.2 up to NTG 1.5. In particular, it is a DRG.3 generator if
it is properly seeded.

As already mentioned, system events are used to gather entropy on Linux
Systems. These events are post-processed and made available to the devices
/dev/random and /dev/urandom. This includes estimating the entropy of the
event and mixing.

However, /dev/urandomwill still supply the user with “randomness” without
checking whether the entropy-pool is still sufficiently filled. In fact, the user is
instead supplied with pseudorandom data in favor of speed requirements.

In the OpenBSD operating system, none of the random devices is implemented
in a blocking mode. The idea is that much potentially bad randomness is still better
than the parsimonious use of high-quality randomness. This is in contrast to the
opinion, as for example held by the BSI, that one should require all used randomness
to be of guaranteed good quality. As of now, there is still no consensus on this issue.

Since the /dev/urandom device has undergone a major change introduced by
Ts’o (2016) in kernel version 4.8, two kernel versions were benchmarked to test
the differences. Namely the original Ubuntu 16.04 kernel 4.4.0 and the more recent
version 4.10.0.

3.2 PRG310-4

The PRG310-4 gathers entropy from a system of two noisy diodes, see Bergmann
(2019), and is connected to a computer via USB. Similar variants exist for different
interface types. According to Bergmann (2019), its behavior follows the stochastic
model in Killmann and Schindler (2008), who argue that

[. . . ] the true conditional entropies should be indeed very close to 1 [. . . ], which gives an
output of slightly more than 500 kBit internal random numbers per second.

Bergmann (2019) mentions that this device satisfies all requirements for class
PTG.3, which are “hybrid physical random number generator with cryptographic
post-processing” in the terminology of Killmann and Schindler (2011).

3.3 AES in Counter Mode

Due to the fact that since 2008 there is AES-NI,2 realizing dedicated processor
instructions on Intel and AMD processors for the block cipher AES as standardized
by NIST (2001a), we add to our comparison the AES counter mode generator. This

2For a white paper of AES-NI, see Gueron (2010).
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generator is also standardized by NIST (2015) and produces a sequence of 128
bit blocks. We aim at security level of 128 bits, thus employing AES-128 as the
underlying block cipher.

The security of the AES generator directly reduces to the security of AES.
Indeed, any distinguisher for the pseudorandom generator gives an equally good
distinguisher for AES in counter mode. Assuming the latter to be secure, one
concludes that also the pseudorandom generator is secure.

However, in contrast to the number-theoretic generators described below, we do
not have any reductionist argument in our hands to actually prove that the generator
is secure if some presumably hard mathematical problem is intractable. We need to
trust that the cipher AES is secure—and the dedicated processor instructions on our
CPU work as specified.

When one looks carefully at the definition of a DRG.3 generator in the sense of
Killmann and Schindler (2011), AES in counter mode is not DRG.3. Specifically,
it violates the condition DRG.3.3 of backward secrecy, since the NIST document
allows in a single request multiple outputs before the transition function is applied,
while the BSI requires that the state transition function of the generator is applied
after each new random number.

3.4 Linear Congruential Generators

The linear congruential generator as presented in Lehmer (1951) produces for i ≥ 1
a sequence of values in xi ∈ ZM , generated by applying for a, b ∈ ZM iteratively

xi = a · xi−1 + b in ZM

to a secret random seed x0 ∈ ZM provided by an external source. The parameters a,
b, and M are also kept secret and chosen from the external source.

While the bytes of linear congruential generator outputs are generally well-
distributed, with byte entropy close to maximal, the generated sequences are
predictable and therefore cryptographically insecure.

Plumstead (1982) describes how to recover the secrets a, b and M from the
sequence of (xi)i≥0 alone. A possible mitigation against this attack is to output only
some least significant bits of the xi . Håstad and Shamir (1985) describe a lattice
based attack on such truncated linear congruential generator where all parameters
are public. Stern (1987) shows that also in the case when the parameters are kept
secret. This attack can be used to predict linear congruential generators that output
at least 1

3 of the bits of the xi . Contini and Shparlinski (2005) write that there is
no cryptanalytic attack known when only approximately k = log2 log2M bits are
output per round.

We are neither aware of a more powerful attack on the linear congruential gen-
erator nor of a more up-to-date security argument for truncated linear congruential
generators.
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In our evaluation we used a prime modulus M with 2048 bits. Per round we
output k = 11 bits, which coincides with the value from Contini and Shparlinski
(2005) mentioned above. For comparison, we also run the generator with modulus
M = 22048 and full output, that is, no truncation, which is basically the fastest
number-theoretic generator we can hope for.

The full linear congruential generator is not a pseudorandom generator in the
terminology of Killmann and Schindler (2011), since it does not provide forward
secrecy. If the sketched truncated version of the linear congruential generator can
indeed not be cryptanalyzed then it belongs to the class DRG.3.

3.5 The Blum–Blum–Shub Generator

The Blum–Blum–Shub generator was introduced in 1982 to the cryptographic
community and later published in Blum et al. (1986). The generator produces a
pseudorandom bit sequence from a random seed by repeatedly squaring modulo a
so called Blum integer N = p · q , where p and q are distinct large random primes
congruent to 3 mod 4. In its basic variant, in each round the least significant bit
of the intermediate result is returned. Vazirani and Vazirani (1984) proved that the
Blum–Blum–Shub generator is secure if k = log2 log2N least significant bits are
output per round.

Alexi et al. (1988) proved that factoring the Blum integer N can be reduced to
being able to guess the least significant bit of any intermediate square with non-
negligible advantage. The output of this generator is thus cryptographically secure
under the assumption that factoring Blum integers is a hard problem.

In our evaluation p and q are randomly selected 1024 bit primes with p = q = 3
mod 4, which corresponds—as above—to the security level of 128 bits following
again the BSI (2019a) guideline TR-02102-1.

If factoring Blum integers is hard then the Blum–Blum–Shub generator—
properly seeded—is a DRG.3 generator in the terminology of Killmann and
Schindler (2011).

3.6 The RSA Generator

The RSA generator was first presented by Shamir (1983) and is one of the
pseudorandom generators that are proven to be cryptographically secure under
certain number-theoretical assumptions. Analogously to the RSA cryptosystem, the
generator is initialized by choosing a modulus N as the product of two large random
primes, and an exponent e with 1 < e < ϕ(N) − 1 and gcd(e, ϕ(N)) = 1. Here,
ϕ denotes Euler’s totient function. Starting from a seed x0 provided by an external
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source, the generator iteratively computes

xi+1 = xe
i mod N,

extracts the least significant k bits of each intermediate result xi and concatenates
them as output.

Our implementation uses a random 2048-bit Blum integer (see Sect. 3.5) as
modulus N and various choices for the parameters e and k.

In Alexi et al. (1988) it is shown that the RSA generator is pseudorandom for
k = log2 log2N = 11, under the assumption that the RSA inversion problem
is hard. For our tests, we choose e = 3, as for small exponents the generator is
expected to work fast and because it allows us to compare the results to the runtime
of the Blum–Blum–Shub generator.

Under a stronger assumption called the SSRSA assumption, Steinfeld et al.
(2006) prove the security of the generator for k ≤ n · ( 1

2 − 1
e
− ε − o(1)) for

any ε > 0, giving for e = 3 the parameter value k = 238. Additionally, we test the
larger exponent e = 216 + 1, which is widely used in practice, for it is a prime and
its structure allows efficient exponentiation, with k = 921.

If the RSA inversion problem is hard then the RSA generator—properly
seeded—is a DRG.3 generator in the terminology of Killmann and Schindler
(2011).

4 Evaluation

To evaluate the efficiency of the generators considered, we developed a framework
that runs the software generators based on seed data from the PRG310-4. To this end,
we implemented the generators in C, using the GMP library, see Granlund (2014),
to accomplish large integer arithmetic. The evaluation framework sequentially runs
all generators, reading from one true random source file of 512 kB and producing
512 kB each, while measuring the runtime of each generator and the byte entropy of
each output.

All algorithms were run on an Acer V Nitro notebook with a Intel Core i5-4210U
CPU at 1.70 GHz with 8 GB RAM. We used Ubuntu 16.04 64-bit with kernel version
4.10.0-32, as well version 4.4.0-92 as reference for the kernel random devices.

This process was repeated 750 times specifically, so that the average runtime of
the generators should not deviate considerably from its expectation.

To see this, let A be a randomized algorithm. Then the runtime t (A) is a random
variable. Without loss of generality let the runtime be bounded in the interval I =
[0..1]. We write t = Et (A) for the expected runtime of A. Consider running the
randomized algorithm k times. Then the average runtime of this experiment is

Xk = 1

k
· (t (A)1 + . . .+ t (A)k).
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For its expectation we have

EXk = Et (A) = t ∈ I.

Thus, the expectation of the average runtime of k runs is equal to the expectation of
a single run. If we observe after k runs an average runtime of Xk , then we can ask:

How large should k be so that the probability that the observed value Xk significantly differs
from its expectation EXk is very small?

By Hoeffding’s inequality we have

prob(|Xk − EXk| ≥ δ) ≤ ε

for a real number δ ∈ R>0 and ε = 2 exp(−2kδ2). To be statistically significant, we
set ε = δ = 0.05, as typically done in statistics. Then we require that prob(|Xk −
t| ≥ 0.05) ≤ 0.05 = 2 exp(−2k · 0.052), i.e., k > 737.

Thus we need at least 737 runs of the algorithm so that the probability that the
observed result deviates statistically significant from the actual expected runtime is
smaller than 1/20. Thus, 750 runs will do the job.

In order to reduce the impact of other operating system components during our
benchmarking, we decided to split up the initialization and generation processes
and measure the time for the generation only after a certain amount of data was
generated. This way, the throughput of the generators had time to stabilize and
we thus omit possible noise that is produced when the generator is started up. To
determine the appropriate amount of data to be generated before the measurement,
we measured throughput for increasing amounts of data so that we could see at
which point the throughput stabilizes.

Figure 1 shows the pseudorandom software generators along with the two
versions of /dev/urandom as reference points. In the logarithmic scale on
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the throughput axis, an AES implementation on AES-friendly hardware has a
throughput of about 2.5 GB/s of pseudorandom data, while the RSA generator
with 921 bit truncation and 65,537 as public exponent, i.e., the fastest number-
theoretic generator assumed to be secure, provides about 2.7 MB/s of pseudorandom
data. This makes the latter about 1000 times slower than the AES generator.
The linear congruential generator can compete with the fast AES implementation,
when not truncating the output, generating about 922 MB/s, but as explained in
Sect. 3.4 without truncation the generator is not cryptographically secure. As a fairer
comparison to the textbook implementations of the number theoretic generators, the
textbook version of AES still generates 32.7 MB/s, beating the RSA implementation
by a factor of ten.

A second benchmark was performed for the different physical generators consid-
ered, depicted in Fig. 2. Again a logarithmic scale is employed to allow having the
/dev/urandom devices with up to 166.8 MB/s of output and the /dev/random
device with 2.2 B/s of output in the same picture. The most surprising observation is
the jump in performance regarding the /dev/urandom device introduced by the
re-implementation described in Sect. 3.1. When only considering blocking physical
devices, i.e., taking out /dev/urandom completely, the Bergmann generator
outperforms the /dev/random device easily both with (13 kB/s) and without post-
processing (29 kB/s).

The amount of randomness needed for seeding the software generators differs
considerably. The least amount is needed by the AES based generators, which
need 128 bits for the textbook and 256 bits for the OpenSSL implementation.
The latter randomizes initial counter and key, whereas the former only randomizes
the key. Both the RSA and the Blum–Blum–Shub generator need to generate two
1024 bit primes. The textbook method chooses uniformly random integers of the
appropriate size and tests them successively for compositeness. This requires tests
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on expectedly 2 · 1024 · ln1024 ≈ 14,200 different integers by the prime number
theorem, thus consuming approximately 1.8 MB of seed randomness. The primality
tests themselves might consume additional randomness if a probabilistic variant
is employed. There are cheaper methods, though, reducing the necessary amount
of randomness to 2048 bits only. For details on this matter see Loebenberger and
Nüsken (2014).

The linear congruential generator additionally randomizes the initial state and
thus consumes further 2048 bits for seeding.

Taking the throughput of the physical generators into account, the amount of
time needed between possible reseeding ranges from 128

8 · 1
29,000 = 0.00055 s for

the textbook AES generator seeded by the Bergmann generator to 6144
8 · 1

2.2 = 349 s
for the linear congruential generator seeded by /dev/random.

While the statistical quality of each generators output is not dependent on the
reseeding, the amount of total entropy is not raised by any internal calculation,
making regular reseeding sensible. Using the Bergmann generator for seeding, even
the linear congruential generator can be reseeded every 0.026 s, which seems a
reasonable time span especially in networking contexts.

5 Conclusion and Future Work

We implemented a number of software random generators and compared their
performance to physical generators. A blocking /dev/random is way too slow
to be of practical use as the only source of (pseudo-)randomness, except for seeding
software generators. The generator PRG310-4 is roughly as fast as our Blum–Blum–
Shub implementation. However, both are surpassed by the RSA generator when run
with a fast parameter set, which offers the same level of security.

The most interesting result is the vast difference between blocking and non-
blocking random devices. This illustrates in a nice way the still open question
whether lots of potentially bad randomness surpass the parsimonious use of
guaranteed high-quality randomness.

The results also suggest a profitable symbiosis of hardware-generated seeds
and number-theoretic high throughput—rather the reverse of the situation in other
cryptographic contexts, say, the Diffie–Hellman exchange of keys for fast AES
encryption.

The speedup introduced by the AES-NI instruction-set allows to generate
151 MB/s on a laptop computer, surpassing the requirements of the NGINX cluster
(1.3 MB/s) by far, implying a negligible CPU-load.

Practical use of our findings has not taken place yet. Depletion of
/dev/random is a realistic issue—workarounds for implied problems even
suggest using the non-blocking /dev/urandom as a physical generator, see
Searle (2008). However, prohibiting the use of /dev/urandom for key generation
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is also under debate, see Bernstein (2014), and there seems to be no consensus in
the near future.

As a next step, implementing and testing on kernel level using optimized
implementations is recommended.

Implementing an AES based random generator in the Linux kernel appears to be
reasonable, but other platforms (i.e. ARM) may favor other hardware-accelerated
ciphers for better performance and less CPU load. Thus the cipher must be made
configurable.
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1 Introduction

“Difference equations” and “mathematical finance” appearing in one sentence may
evoke the association of numerical derivative pricing by discretizing PDEs. This is
not what this paper is about. Rather, it deals with a nineteenth century result from
complex analysis (Pringsheim’s theorem) and two asymptotic methods (saddle point
asymptotics; Hankel contour asymptotics) that have been applied to some problems
from the theory of difference equations, and more recently in financial mathematics.
Sections 2 and 3 of the present paper are surveys of articles that have appeared
elsewhere, whereas most of Sect. 4 has not been published in a journal, but only in
Arpad Pinter’s PhD thesis [31]. The reader might be a bit surprised that the content
of this paper is only peripherally related to Peter Paule’s research interests. The
reason is that my (Gerhold’s) research during my PhD studies soon started to deviate
from symbolic summation towards asymptotics and other problems, followed by a
switch to mathematical finance. I am very grateful to Peter for tolerating this as my
supervisor, for sparking my interest in combinatorics with his marvellous lectures
and lively weekly seminar, and for many useful pieces of advice.
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2 Pringsheim’s Theorem: Oscillations and the Rough Heston
Model

A part of the PhD thesis [14] is devoted to proving inequalities by computer
algebra. The proving method presented there and in [1, 17, 18] has received further
attention, e.g. in [29, 30]. Here, we recall another problem on inequalities that was
investigated in [14] and the subsequent paper [2]. With difference equations being
a very common topic in Peter Paule’s lectures and research seminar, it seemed to
be a natural question to study the positivity of solutions of the simplest kind of
linear difference equations: those with constant (real) coefficients, whose solutions
are commonly referred to as recurrence sequences. In [2], the following result was
established in this direction:

Theorem 1 (Bell, Gerhold 2007) Let (fn)n∈N be a nonzero recurrence sequence
with no positive dominating characteristic root. Then the sets {n ∈ N : fn > 0} and
{n ∈ N : fn < 0} have positive density.

The dominating characteristic roots are the roots of maximal modulus among
the roots of the characteristic polynomial. They occur in the leading term of
the well-known explicit representation of recurrence sequences. Applying the
following theorem to the generating function

∑∞
n=1 fnz

n immediately implies the
weaker statement that these index sets are both infinite. This has been noted in
Theorem 7.1.1 of [21].

Theorem 2 (Pringsheim’s Theorem) Suppose that the power series F(z) =∑∞
n=0 anz

n has positive finite radius of convergence R, and that all the coefficients
are non-negative real numbers. Then F has a singularity at R.

Alfred Pringsheim (1850–1941), father in law of Thomas Mann, proved this result
in 1894. For a proof, see Remmert [32, p. 235], or Flajolet and Sedgewick [8,
p. 240]. I (Gerhold) must admit that I was not aware of Pringsheim’s theorem when
writing [2]. Shortly after the paper was published in 2007, Alan Sokal informed my
coauthor Jason Bell and me that our proof of Theorem 1 can be shortened, since it is
a corollary of Theorem 1 in [2] and a generalized version of Pringsheim’s theorem
(see p. 242 in [4]). This shortcut did not make our paper obsolete, since the existence
of the densities in Theorem 1 is a non-trivial fact, and moreover there are further
results in [2]. See also [15] and, for more recent results on the sign of recurrence
sequences [28].

We now switch to an apparently completely unrelated topic. In mathematical
finance, continuous time stochastic processes are used to model the unknown
future behavior of assets such as stocks, FX rates, and others. In recent years,
so-called rough models have received a lot of attention. We just mention that
rough refers to the “low” Hölder continuity of the paths, and that these models
feature excellent statistical properties when applied to real market data, while their
numerical treatment poses some challenges. One particular such model is El Euch
and Rosenbaum’s rough Heston model [6], with parameters ρ ∈ (−1, 1), and λ, ξ,
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v̄ > 0, α ∈ ( 1
2 , 1). It is defined by the SDE (stochastic differential equation)

dSt = St
√
Vt dWt, S0 > 0,

Vt = V0 + 1

�(α)

∫ t

0
(t − s)α−1λ(v̄ − Vs) ds

+ 1

�(α)

∫ t

0
(t − s)α−1ξ

√
Vs dZs, (1)

d〈W,Z〉t = ρ dt.

Here, W and Z are correlated Brownian motions, and 〈·, ·〉 denotes the cross-
variation (see Definition 5.5 in [23]). The process S models an asset price, and√
V its stochastic volatility. In [19], we investigated the moment explosion time of

the rough Heston model. Briefly, this amounts to finding the domain of the map
(u, t) �→ E[Su

t ]. Knowing the time, depending on u, at which the moment E[Su
t ]

ceases to exist is important when implementing option pricing, as we elucidate
in [19]. In [6], it was shown that E[Su

t ] can be expressed by the solution of a
fractional Riccati equation:

E[Su
t ] = exp

(
v̄λI 1

t ψ(u, t) + v0I
1−α
t ψ(u, t)

)
,

where ψ satisfies

Dα
t ψ(u, t) = R(u,ψ(u, t)) (2)

with initial condition I 1−α
t ψ(u, 0) = 0. Here, D and I denote the Riemann–

Liouville fractional derivative resp. integral (see section 2.1 in [24]), and R is a
certain polynomial whose coefficients depend on the model parameters. In [19] a
fractional power series

∞∑

n=1

an(u)t
αn (3)

representing this solution was found. Thus, the problem of finding the moment
explosion time is transferred to finding the explosion time of (3). The radius of
convergence of the power series

∞∑

n=1

an(u)z
n (4)

can be easily computed, because the fractional ODE (2) yields a recurrence that
allows to compute the coefficients an(u). However, a priori this need not yield the



200 S. Gerhold and A. Pinter

explosion time. To wit, the explosion time is related to the smallest singularity
of (4) on the positive real axis, whereas there might be singularities closer to the
origin that are negative or non-real, and therefore practically meaningless. This
is where Pringsheim’s theorem enters the stage. Under some restrictions on the
parameters, we could show that an(u) ≥ 0 holds, and so Theorem 2 guarantees
that the explosion time can be computed from the radius of convergence of (4).
Thus, we can determine the domain of finiteness of E[Su

t ], which is the basis for
efficiently evaluating integrals needed to price options in the rough Heston model.

3 Saddle Point Asymptotics: Non-holonomic Sequences and
the Heston Model

A holonomic sequence is a sequence of numbers that satisfies a linear difference
equation with polynomial coefficients. This class of sequences, and their generating
functions, has received a lot of attention, in particular from the viewpoint of
automatic identity proving. Among a very large number of papers, we just cite
[5, 25, 33]. When looking for problems to solve during my PhD thesis, I (Gerhold)
started to think about the theoretical question of proving the non-holonomicity of
certain sequences [3, 9, 13]. Asymptotic expansions are a very useful tool for this,
because a holonomic generating function satisfies a linear ODE with polynomial
coefficients, and it is well known that functions of this kind have a very restricted
asymptotic behavior. This method was applied to a good deal of examples in [9].
In 2005, I sent an email to Philippe Flajolet, asking whether the approach could be
used to prove that the sequence e1/n is not holonomic. I quote from his response:

This is interesting and here’s a way we think it can be done. We didn’t reflect
too much about it however and didn’t work out details. Take fn = exp(1/n) and
let F(z) = ∑

fn(−z)n be the corresponding OGF, taken for convenience with
alternating signs. We want to prove, right in line with our joint paper, that there
is some nonholonomic element in F(z) as z→∞. Start from the Lindelöf integral

F(z) = 1

2iπ

∫

exp(1/s)zs
π

sin(πs)
ds,

taken along 1/2 − i∞ to 1/2 + i∞. [Proved by residues upon closing by a large
semicircle on the right, seems to work well here.] Then, move the integration line
close to Re(s) = 0 where the integrand blows up. There’s a saddle point, a function
of z, at

s0 = 1/
√

log z

roughly. Then, F(z) should behave more or less like exp(2
√

log z) as z → +∞.
This is nonholonomic. The full argument [to contradict the structure theorem] needs
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making sure we can shake the argument of z a little, betwen some [−ε,+ε], but
usually the sin in the denominator of the integrand plays in your favour.

This proof strategy worked, of course, although it took us some years of
intermittent work to finish the corresponding paper [10], which contains several
other asymptotic results (see also Sect. 4 of the present paper). Concerning the
generating function of e1/n, the above saddle point approach yields

∑

n≥1

e1/n(−z)n ∼ − e2
√

log z

2
√
π(log z)1/4

, z→∞, (5)

where the left hand side is to be understood in the sense of analytic continuation.
This shows that e1/n is a non-holonomic sequence, since the right hand side
cannot be asymptotically equivalent to any holonomic function. The latter statement
follows from a well-known result on the asymptotic behavior of ODE solutions,
summarized in Theorem 2 of [9]. Moreover, using (5), we evaluated the alternating
sum

n∑

k=1

(
n

k

)

(−1)ke1/k ∼ − e2
√

log n

2
√
π(logn)1/4

asymptotically for n→∞, which would be hard by elementary methods.
Again, we now jump to mathematical finance. Among the many asset price

models that have been suggested and studied, sending α → 1 in the model from
the previous section yields a particularly well-known one: The classical (non-rough)
Heston model. Since its introduction in 1993 (see [22]), it has been used by many
practitioners and studied by many researchers. The main advantages of this model
are its explicit characteristic function, which allows for fast and easy option price
computation, and its reasonable fit to market data. Its dynamics are as in (1), but
with α = 1, which removes the weakly singular kernel (t−s)α−1. This dramatically
improves the regularity of the processes S, V and the numerical tractability of the
model, at the price of a less satisfactory fit to financial market data.

My (Gerhold’s) work on the Heston model began in 2009 at the ÖMG-DMV
congress in Graz, when Peter Friz (TU Berlin) asked my colleague Friedrich
Hubalek (TU Wien) about applying the saddle point method to option prices.
Friedrich Hubalek directed Peter Friz to me, and we started to analyze option prices
given by the Heston model asymptotically. A call option gives the option holder the
right, but not the obligation, to buy a unit of the underlying asset at time T for the
strike price K , where T and K are fixed. The payoff of this option at maturity T is
(ST − K)+, because a share price ST > K yields a profit of ST − K , whereas the
option becomes worthless in the case ST ≤ K . At time zero, the price of the call
option is

C(K, T ) = E[(ST −K)+].
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We assumed zero interest rate here, and skipped the subtle but very important
point that the expectation is to be taken under a special—so-called risk neutral—
probability measure that does not coincide with the “real world” probability. The
question we dealt with in [12] is the asymptotic behavior of C(K, T ) for large
strike K , if ST has the probability distribution given by the Heston model. The call
price can be recovered by Fourier inversion from the moment generating function:

C(K, T ) = K

2πi

∫ β+i∞

β−i∞
K−u E[Su

T ]
u(u− 1)

du. (6)

Implementing this numerically requires knowing the domain of the characteristic
function (equivalently, of the moment generating function), because this yields the
possible values of β, the real part of the integration contour. This is the question we
mentioned in Sect. 2 for the rough Heston model. For classical Heston, this domain
is well-known, because the characteristic function has an explicit expression. It turns
out that, at the border of this domain, it has a singularity of the form “exponential
of a pole”. Thus, a saddle point analysis with some similarities to the one above
could be applied to the problem of approximating (6) (see also [16]). While the tail
estimates are quite different, the local expansion, yielding the dominant term, is very
similar. The formulas are somewhat tedious, and so we refer to [12] for details. We
just mention that there are constants ci , positive for i = 1, 2, 3, such that the Heston
call price satisfies

C(K, T ) ∼ c1K
−c2ec3

√
logK(logK)c4, K →∞,

for T > 0 fixed. The dominating factor K−c2 was known before and follows
quite easily from the explicit moment generating function. The sub-polynomial
factor ec3

√
logK was the main contribution of [12], improving numerical accuracy

significantly. We recall here the role of the asymptotic factor e2
√

log z in (5), which
came from a very similar saddle point analysis, and proves the non-holonomicity of
the function on the left hand side of (5).

4 Hankel Contour Asymptotics: Non-holonomic Sequences
and the 3/2–Model

4.1 Setup

At the beginning of Sect. 3, we described an asymptotic evaluation of the generating
function of e1/n. In [10], we studied the natural extension ecn

θ
with parameters c
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and θ , and also more general sequences and their generating functions.1 We quote
here the following result:

∑

n≥1

e±
√
n(−z)n = −1∓ 1√

π log z
+O

(
(log z)−3/2). z→∞. (7)

As above, (7) not only proves non-holonomicity of e±
√
n, but also approximations

such as

n∑

k=0

(
n

k

)

(−1)ke±
√
k ∼ − ±1√

π logn
, n→∞.

The proof of (7) again starts with the Lindelöf representation

∞∑

n=1

e±
√
n(−z)n = − 1

2iπ

∫ 1/2+i∞

1/2−i∞
e±
√
szs

π

sin πs
ds. (8)

This time, a saddle point approach is not appropriate, because the singularity of
e±
√
s at zero is too “tame”, and a somewhat larger integration contour is needed to

extract sufficient asymptotic information. The method of choice is to use a contour
that goes around the branch cut of e±

√
s , and part of which is transformed to a

Hankel contour by a substitution. Recall that a well-known application of Hankel
contour asymptotics is Flajolet and Odlyzko’s singularity analysis of generating
functions [7, 8]. We refer to [10] for details on the asymptotic analysis of (8), but
use the same method in the present section on a different problem.

Maybe unsurprisingly at this point, the problem we consider comes from
mathematical finance. The model we consider is again a stochastic volatility model,
which goes under the name of 3/2–model. The logarithmic stock price process
Xt = log St in this model solves the SDE (stochastic differential equation)

dXt = − 1
2Vt dt +

√
Vt dWt , X0 = x0 ∈ R,

dVt = κVt (θ − Vt) dt + ξV
3/2
t dZt , V0 = v0 > 0,

d〈W,Z〉t = ρ dt,

with correlated Brownian motions W and Z and parameters κ > 0, θ > 0, ξ > 0
and |ρ| < 1. Define ρ̄ := √

1− ρ2 and κ̄ := 2κ + ξ2. The moment-generating

1Needless to say, Philippe Flajolet and Bruno Salvy needed no help from a PhD student to set
up the various asymptotic methods used in [10], but I (Gerhold) was of some use working out
the technical estimates. Among many episodes worth remembering, I vividly recall Philippe’s
statement after having written the introduction of [10]: “We need brains (pointing at Bruno Salvy),
we need strength (pointing at me), and we need blah-blah (pointing at himself).”
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function (mgf) of XT for T > 0 can be computed as

M(u, T ) := E[euXT ] = eux0
�(μu − αu)

�(μu)
z
αu

T 1F1(αu, μu,−zT ), (9)

at least for all u ∈ C in the vertical strip a < Re(u) < b with a ≤ 0 and b ≥ 1, and
with the confluent hypergeometric function 1F1 and the auxiliary functions

αu := 1

ξ2 (γu − χu), γu :=
√
χ2
u − ξ2u(u− 1),

μu := 1

ξ2 (ξ
2 + 2γu), χu := 1

2 κ̄ − ρξu,

zT := 2

ξ2βT

, βT := v0

κθ
(eκθT − 1).

(10)

Without loss of generality, from now on, we assume x0 = 0. Define the two real
numbers

u± := 1

2ξρ̄2

(

ξ − ρκ̄ ±
√

(ξ − ρκ̄)2 + κ̄2ρ̄2

)

, (11)

which are the unique roots of the quadratic term under the square root of γ . After
factorization of the polynomial, we have the following representation of γ

γu = ξρ̄
√
(u+ − u)(u− u−). (12)

Throughout, we make the technical assumption

μu+ − αu+ > 0

which is always satisfied if ρ < 0. Under this assumption, the right boundary b of
the vertical strip, where Eq. (9) holds, can be extended until b = u+. Note that the
mgf has a branch cut along [u+,+∞) due to the branch cut of (12). For further
information on the 3/2–model, see e.g. Lewis [26].

4.2 Tail Asymptotics of the Density

We are interested in tail asymptotics of the density function ϕ(k, T ) := ϕXT (k) of
XT for T > 0, i.e., the asymptotic behaviour as k → ∞ for fixed T > 0. The
density function ϕ can be expressed via Fourier-transform as

ϕ(k, T ) = 1

2πi

∫ a+i∞

a−i∞
e−kuM(u, T ) du, k ∈ R, (13)
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Fig. 1 In the left panel, the critical path C(k) and the neglectable path N(k) (dashed line) are
illustrated in the complex plane, whereas the right panel displays the transformed path H(k) after
the transformation w �→ u+ − w

k

with a ∈ (u−, u+). For the analysis, we adjust the integration path in (13) similarly
to Friz and Gerhold [11] and split it into two parts, the critical path C(k) and the
neglectable pathN(k), depending on the strike parameter k ≥ 1. The critical contour
C(k) embraces the critical moment u+, see the left panel of Fig. 1.

The critical path C(k) starts at u+ + 2 log(k)/k− i/k, goes horizontally to u+ −
i/k, then clockwise along the half-circle with center u+ and radius 1/k until it
reaches u+ + i/k, and again horizontally to the end point u+ + 2 log(k)/k + i/k.
The remaining part, denoted by N(k), starts at the points u++2 log(k)/k± i/k and
goes straight to u+ + 2 log(k)/k + i∞ resp. u+ + 2 log(k)/k − i∞. This allows us
to write the density function as

ϕ(k, T ) = 1

2πi

∫

C(k)∪N(k)

e−kuM(u, T ) du, k ∈ R. (14)

Theorem 3 (Tail Asymptotics) Assume μu+ − αu+ > 0. Then the first term in the
tail expansion of the density function of XT in the 3/2–model, with T > 0 fixed, is
given by

ϕ(k, T ) ∼ c
e−ku+

k3/2 , k →∞, (15)

where c = −m1/(2
√
π) with m1 defined in (30).

Proof The integral over N(k) in (14) is negligible; this will be proved in Lemma 1
below. Now consider the integral over the critical part C(k) in (14). The change of
variables u = u+ −w/k yields, as k →∞,

1

2πi

∫

C(k)
e−kuM(u, T ) du = e−ku+

k

1

2πi

∫

H(k)

ewM
(
u+ − w

k
, T

)
dw, (16)
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where H(k) is the transformed path of C(k), see the right panel of Fig. 1. In
Lemma 2 below we give an expansion of M which yields

1

2πi

∫

H(k)

ewM
(
u+ − w

k
, T

)
dw

= M(u+, T )
1

2πi

∫

H(k)

ew dw

︸ ︷︷ ︸

O
(

1
k2

)

+m1√
k

1

2πi

∫

H(k)

eww1/2 dw

︸ ︷︷ ︸

→1/�
(
− 1

2

)
=− 1

2
√
π

+ 1

2πi

∫

H(k)

ewO
(w

k

)
dw

︸ ︷︷ ︸

O
(

1
k

)

.

The first integral is an easy computation. In the second and third integral, we used
Hankel’s integral representation for the gamma function, see [27]. Therefore,

1

2πi

∫

C(k)
e−kuM(u, T ) du ∼ c

e−ku+

k3/2 , k →∞,

for c = −m1
2
√
π

. ��
While we established just first order asymptotics in Theorem 3, we note that the
same method easily yields further terms in the asymptotic expansion, if desired.

Lemma 1 The integral over N(k) in (14) satisfies

1

2πi

∫

N(k)

e−kuM(u, T ) du = o
(
e−ku+k−3/2

)
, k →∞.

Proof By symmetry, it suffices to consider only the integral over the upper part of
the contourN(k). We define the path uk(t) := u++2 log k/k+it with t ∈ [1/k,∞),

1

2πi

∫

uk

e−kuM(u, T ) du = e−ku+

k2

1

2π

∫ ∞

1/k
e−itkM(uk(t), T ) dt.

By showing the boundedness of the latter integral, the proof is finished. We use the
triangular inequality for integrals and split the integral into two parts,

∣
∣
∣
∣

∫ ∞

1/k
e−itkM(uk(t), T ) dt

∣
∣
∣
∣ ≤

∫ t1

1/k
|M(uk(t), T )| dt +

∫ ∞

t1

|M(uk(t), T )| dt,
(17)
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where t1 ≥ 1 will be determined later. For the first integral in (17), note that
2 log k/k ∈ [0, 1] for any k ≥ 1. Recall that M(·, T ) has a branch cut along
[u+,∞), but a continuous extension M̃ of M exists on the half-plane �(s) ≥ 0.
Hence |M(·, T )| attains a maximum value on [u+, u+ + 1] + i(0, t1],

∫ t1

1/k
|M(uk(t), T )| dt ≤ t1 max

u∈[u+,u++1]+i(0,t1]
|M(u, T )| <∞

In order to show the boundedness of the second integral in (17) and to determine
t1 ≥ 1, we have to take a closer look at the mgf and the auxiliary functions defined
in (10). The fact that 2 log k/k ∈ [0, 1] for k ≥ 1 ensures uk(t) = it + O(1) for
t → ∞ uniformly for all k ≥ 0. Thus, the following asymptotic expansions of the
auxiliary functions χ and γ in (10) hold

χ(uk(t)) = −iξρt +O(1),

γ (uk(t)) =
√

−ξ2ρ2t2 + ξ2t2 +O(t) = ξρ̄t +O(1),

and simple computations then yield

α(uk(t)) = 1
ξ
(ρ̄ + iρ)t +O(1), (18)

μ(uk(t)) = 2
ξ
ρ̄t +O(1),

μ(uk(t))− α(uk(t)) = 1
ξ
(ρ̄ − iρ)t +O(1), (19)

for t →∞ uniformly for all k ≥ 1. Due to (18), (19) and ρ̄ > 0, there exists t0 ≥ 1,
such that Re(μ(uk(t)) − α(uk(t))) > 1 and Re(α(uk(t))) > 1 for all k ≥ 1 and
t ≥ t0. In particular, in this region we have

Re(μ(uk(t))) > Re(α(uk(t))) > 0,

and so we can use the representation (34) of the confluent hypergeometric function,
which reduces the mgf to

M(uk(t), T ) = z
α(uk(t))
T

�(α(uk(t)))

∫ 1

0
e−zT yyα(uk(t))−1(1− y)μ(uk(t))−α(uk(t))−1 dy.

(20)

Note that the absolute value of the integral is bounded by 1. Furthermore, we have
uniformly for all k ≥ 1

|zα(uk(t))
T | = exp

(
1
ξ
ρ̄ log(zT )t

(
1+ o(1)

))
, t →∞. (21)
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Our choice Re(α(uk(t))) > 1 guarantees | arg(α(uk(t)))| < π
2 and Stirling’s

formula (35) is applicable to �(α(uk(t))) for all t ≥ t0 and all k ≥ 1. Combining
with (18) we have, uniformly for all k ≥ 1,

|�(α(uk(t)))| ∼
√

2π |e−zzzz−1/2|
z= 1

ξ
(ρ̄+iρ)t

= √
2πξ x−1/2 exp

(
1
ξ
ρ̄t log( t

ξ
)− 1

ξ
ρ arg(ρ̄ + iρ)t − 1

ξ
ρ̄t

)

= exp
(

1
ξ
ρ̄t log t

(
1+ o(1)

))
, t →∞. (22)

Putting (21) and (22) back into formula (20), we can find a sufficiently large t1 ≥ t0
such that

|M(uk(t), T )| ≤ exp
(
−(1+ ε) 1

ξ
ρ̄t log t

)
(23)

for all t ≥ t1 and all k ≥ 1, with a constant ε > 0. The integrability of the right-hand
side of (23) proves that the third integral in (17) is bounded. ��
Lemma 2 Assume μu+ − αu+ > 0. Near the critical moment u+, the following
expansion of the mgf holds uniformly for all w ∈ H(k),

M
(
u+ − w

k
, T

)
=M(u+, T )+m1

√
w

k
+O

(w

k

)
, k →∞,

where m1 is defined in (30).

Proof First, we expand the functions χ and γ in a neighborhood of u+.
Using the representation (12) of γ we only have to expand

√
u− u− =√

(u+ − u−)− (u+ − u) near u+. Thus, as u→ t+,

γu = ξρ̄
√
u+ − u−(u+ − u)1/2 +O

(
(u+ − u)3/2

)
, (24)

χu = χu+ + ρξ(u+ − u). (25)

With these results, expansions for α and μ near u+ can easily be computed,

αu = αu+ +
ρ̄

ξ

√
u+ − u−(u+ − u)1/2 +O(u+ − u), u→ u+ (26)

μu = μu+ + 2
ρ̄

ξ

√
u+ − u−(u+ − u)1/2 +O

(
(u+ − u)3/2

)
, u→ u+.

(27)



Difference Equation Theory Meets Mathematical Finance 209

Define uk(w) := u+ − w
k

, w ∈ H(k), for k ≥ 1. From the uniform convergence
supw∈H(k) |uk(w)− u+| → 0 for k →∞, we have

�α := α(uk(w))− αu+ =
ρ̄

ξ

√
u+ − u−

(w

k

)1/2 +O
(w

k

)
, k →∞ (28)

�μ := μ(uk(w))− μu+ = 2
ρ̄

ξ

√
u+ − u−

(w

k

)1/2 +O

((w

k

)3/2
)

, k →∞,

(29)

uniformly for all w ∈ H(k). Define the function

M̃(α,μ) := �(μ− α)

�(μ)
(zT )

α
1F1(α,μ,−zT ),

for all (α,μ) ∈ C
2 where μ − α,μ �∈ Z

−
0 . In this region M̃ is jointly analytic

in both variables. Note the relation M(u, T ) = M̃(αu, μu). Since μu+ = 1 and
μu+ − αu+ > 0, we can make a Taylor expansion of M̃ at the point (αu+ , μu+).
Combining this with (28) and (29) gives us, uniformly for all w ∈ H(k),

M(uk(w), T ) = M̃(α(uk(w)), μ(uk(w)))

= M̃(αu+ , μu+)+�α
∂

∂α
M̃(αu+, μu+)+�μ

∂

∂μ
M̃(αu+, μu+ )

+O
(
(�α)2

)
+O

(
(�μ)2

)

= M(u+, T )+
(
∂M̃

∂α
+ 2

∂M̃

∂μ

)

(αu+ , μu+)
ρ̄

ξ

√
u+ − u−

︸ ︷︷ ︸
=:m1

(w

k

)1/2 +O
(w

k

)
, k →∞.

(30)

��

4.3 Large-Strike Asymptotics for the Implied Volatility

From tail asymptotics for the density function, it is possible to obtain large strike
asymptotics for the implied volatility, see Gulisashvili [20] and Friz, Gerhold,
Gulisashvili and Sturm [12]. Recall that the implied volatility is the volatility
parameter that has to be used in the Black–Scholes model to recover given option
prices. The statement is, that if the density function ϕ satisfies, for fixed T > 0,

c1k
−ξ h(k) ≤ ϕ(k) ≤ c2k

−ξ h(k),



210 S. Gerhold and A. Pinter

for all sufficiently large k, with ξ > 2, h slowly varying and constants c1, c2 > 0,
then the implied volatility σimp(K, T ) satisfies

σimp(K, T )

√
T√
2
=
√

logK + log
1

K2−ξh(K)
+ 1

2 log log
1

K2−ξh(K)
(31)

−
√

log
1

K2−ξh(K)
+ 1

2 log log
1

K2−ξ h(K)

+O
(
(logK)−1),

as K →∞. In Theorem 3, we have established tail asymptotics for the density ϕXT

of the log-price XT = log(ST ) in the 3/2–model. Because the density ϕST of ST is
given by

ϕST (K) = ϕXT (logK)

K
, K > 0,

we clearly have the tail asymptotics for ϕST

ϕST (K) ∼ cK−(u++1)h(K), K →∞, (32)

with the slowly varying function h(K) = (logK)−3/2. Note that the critical moment
always satisfies u+ ≥ 1, and u+ = 1 if and only if 2ξρ = κ̄. Hence, the previous
statement is applicable.

Theorem 4 Assume μu+ − αu+ > 0 and 2ξρ �= κ̄ . The large-strike expansion of
the implied volatility function in the 3/2–model, with T > 0 fixed, is given by, as
K →∞,

σimp(K, T )

√
T√
2
= (
√
u+ −

√
u+ − 1)

√
logK (33)

+ 1

2

(
1√
u+
− 1√

u+ − 1

)
log logK√

logK
+O

(
log log logK√

logK

)

.

Proof A straightforward calculation, using (31) and (32), shows

σimp(K, T )

√
T√
2
=

√
logK − log(K1−u+h(K))− 1

2 log
(− log(K1−u+h(K))

)

−
√
− log(K1−u+h(K)) − 1

2 log
(− log(K1−u+h(K))

)

+O
(
(logK)−1)

= √
u+ logK + log logK +O(log log logK))
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−√
(u+ − 1) logK + log logK +O(log log logK)

+O
(
(logK)−1),

= √u+
√

logK

(

1+ log logK

u+ logK
+O

(
log log logK)

logK

))

−√
(u+ − 1)

√
logK

(

1+ log logK

(u+ − 1) logK
+O

(
log log logK

logK

))

+O
(
(logK)−1),

as K →∞. This easily yields the statement. ��
We state the following lemmas which are used in the proof of the tail asymptotics

of the density function. The first lemma describes a representation of the confluent
hypergeometric function 1F1, whereas the second lemma is the well-known Stirling
formula for the Gamma function. For further details, see e.g. [27].

Lemma 3 If Re(μ) > Re(α) > 0, then the confluent hypergeometric function 1F1
has the integral representation

1F1(α,μ, z) = �(μ)

�(α)�(μ − α)

∫ 1

0
ezyyα−1(1− y)μ−α−1 dy. (34)

Lemma 4 (Stirling) The Gamma function satisfies

�(z) = √2πe−zzzz−1/2(1+ o(1)), z→∞ with | arg(z)| < π − ε, (35)

where ε > 0 is arbitrary.
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Evaluations as L-Subsets

Adalbert Kerber

Dedicated to Professor Peter Paule on the occasion of his 60th
birthday

1 Introduction

In “Pure Mathematics” a statement like x ∈ X is either true or false, in formal terms:
it has a truth value, “yes” or “no”, in numerical terms: tv(x ∈ X) ∈ L = {0, 1}.
But in “Applied Mathematics” multivalued parameters are used. For example, if
a given refrigerant is ecologically worthwhile may be answered by its values
of ODP (ozone depletion potential), GWP (general warming potential) and ALT
(atmospheric lifetime), i.e. by a triple of real numbers. Let us call such answers
evaluations. They are elements of a lattice L, in this particular case of L = [0, 1]3,
if the parameters are normalized. And we can consider such evaluations as L-subsets
(see below) of the cartesian product O × A of the set O of objects and the set A
of attributes. The crucial point is that this allows a choice of a suitable set theory
together with the corresponding logic, in a problem-orientable way, since we can
use a more or a less strict argumentation.

2 The Usual Model of Evaluation

Assume, together with a lattice L, a set of objects o ∈ O and a set of attributes
a ∈ A. By an evaluation E, of the o w.r.t. the a and over L, we mean a mapping

E : O ×A→ L : (o, a) �→ E((o, a)) = tv(o has a),
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i.e., an L-subset of O × A, containing (o, a) with the truth value tv(o has a) =
E((o, a)). Here is an example: A fictive evaluation of reading and writing devices
a, b, c, d for CDs and DVDs,

L = {� � /��, . . . ,⊕⊕ /⊕⊕} ≡ {−2,−1, 0, 1, 2}2,

in the usual notation of the computer journal c’t, where the attributes are reading
and writing abilities of the devices, both on CDs and DVDs. A test result may look
like that:

wDVD wCD rDVD rCD

a ⊕⊕ /⊕ �/� �� /� ⊕/�
b ⊕/� ⊕/� �/� �/�
c �/� ⊕⊕ /⊕⊕ �/⊕ ⊕/�
d ⊕/⊕ �/� �/� ⊕/�

and L looks as follows:

E can be considered as an L-subset of O × A, where E((o, a)) = tv((o, a) ∈ E),
the truth value of (o, a) being an element of E. This Ansatz has advantages over the
standard situation, where the values are contained in {0, 1} as we shall see.
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3 Evaluation as an L-Subset

Instead of YX = {0, 1}O×A, the set of all mappings from O × A to {0, 1}, or the
set of (classical) subsets of O ×A (if we identify a mapping with its inverse image
of 1), we consider LO×A, the set of all L-subsets of O × A, E ∈ LO×A, for a
given lattice L, where E is a formal description of the set of pairs (o, a) where
E((o, a)) �= 0. The advantage of this Ansatz is that we can choose a set theory (with
its logic) over L, in order to allow a problem-orientation, and we can explore the
evaluation in order to deduce “all the knowledge” contained in it.

We recall that we can identify the set of classical subsets of a set X with the
following set of mappings:

{0, 1}X = {S | S : X→ {0, 1}},

associating with S the subset {x ∈ X | S(x) �= 0} ⊆ X. Correspondingly, the set of
L-subsets of X can be identified with the set

LX = {S | S : X→ L},

when we associate with S the subset {x ∈ X | S(x) �= 0} ⊆L X. The L-inclusion of
two such L-subsets is defined in terms of the partial order ≤ on L in the following
way:

S ≤ S′ ⇐⇒ ∀ x ∈ X : S(x) ≤ S′(x).

The crucial point is that we can define various set theories on LX since the
intersections of two such sets can be introduced using different t-norms τ : L×L→
L. These are the mappings which are symmetric, monotone (in both the coordinates),
associative and fulfill the side condition τ (λ, 1L) = λ. Each one of these mappings
defines an L-intersection S of M, N ∈ LX, where

S(x) = (M ∩τ N)(x) = τ (M(x),N(x)).

Here are the most important t-norms:

– The standard norm is defined by

s(λ, μ) = λ ∧ μ.
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– The drastic norm is

d(λ,μ) =
⎧
⎨

⎩

λ μ = 1L,

μ λ = 1L,

0L otherwise.

– And if L = [0, 1], we have the algebraic product and the bounded difference,
also called the Lukasiewicz-norm

a(λ,μ) = λ · μ, b(λ,μ) = Max{0, λ+ μ− 1}.

– In particular the following is true:

d(λ,μ) ≤ τ (λ,μ) ≤ s(λ, μ).

Specific t-norms lead to a corresponding logic:

– τ̃ : L× L→ L is a residuum of τ , iff

τ (λ,μ) ≤ ν ⇐⇒ λ ≤ τ̃ (μ, ν).

– If τ (α,
∨

M) =∨
β∈M τ(α, β) holds, then

τ̃ (α, β) =
∨
{γ | τ (α, γ ) ≤ β}.

In this case τ is called a residual t-norm.
– This yields a logic τ̃ , corresponding to L and τ .

Example Models SA of strong and WA of weak acid

pK
2 4 6 8

1
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If we choose the t-norm τ = s, an acid with pKa -value 4 is both strong and weak,
while, if τ = d , (SA∩d WA)(r) = 0 (although SA(4) =WA(4) = 0.5). We are
in fact using kind of semantic notion of truth, based on τ !

Residua, for L = [0, 1]

s̃(α, β) =
{

1 if α ≤ β,

β otherwise,

d̃(α, β) =
{
β if α = 1,
1 otherwise,

ã(α, β) =
{
β/α if α �= 0,
1 otherwise,

b̃(α, β) = Min{1, 1− α + β}.

Hence, we have several choices and this opens a way to

Problem-Orientation Choose a suitable lattice L as set of values, pick a suitable
residual t-norm τ obtaining a set theory, its residuum τ̃ gives the corresponding
logic. Apply that to E ∈ LO×A, the evaluation considered, and get a basis of the
implications (see below).

4 Mathematical Tools for the Exploration

We say that object o ∈ O has the attribute a ∈ A if and only if E((o, a)) > 0.
Moreover, we introduce, for A ∈ LA, an A′ ∈ LO by putting

A′(o) = τ̃ (A⇒ E) =
∧

a∈A
τ̃ (A(a),E(o, a)).

And we evaluate “A ∈ LA implies B ∈ LA in E” by:

τ̃ (A⇒ B) =
∧

o∈O
τ̃ (A′(o),B′(o)).

A ⇒ B holds in E if and only if τ̃ (A ⇒ B) = 1, i.e., if and only if A′ ≤ B′. A
basis for the implications is obtained as follows: We define pseudo-contents P by

P �= P′′ and for each pseudo-contentQ ⊂L P : Q′′ ≤ P .
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The Duquenne/Guigues-basis,

P = {P⇒ (P′′ \ P) | P pseudo-content},

implies every attribute implication following from E.

Example An exploration of an evaluation. We consider an extended evaluation of
the refrigerants, adding molecular substructures, Cl-, F-, Br-, I-atoms, and using
simplified binary parameters, so that the interested reader can check the basis
online. The simplified parameters are denoted nODP∗, nGWP∗, nALT∗, obtaining
the following evaluation:

C nODP∗ nGWP∗ nALT∗ nC Cl F Br I ether CO2 NH3

1 1 0 0 0 1 1 0 0 0 0 0
2 0 1 0 0 1 1 0 0 0 0 0
6 0 0 0 1 1 1 0 0 0 0 0
7 0 0 0 1 1 1 0 0 0 0 0
8 0 1 1 0 0 1 0 0 0 0 0

16 0 0 0 1 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 1 0
22 1 0 0 0 1 1 1 0 0 0 0
23 0 1 1 1 0 1 0 0 0 0 0
29 0 1 1 1 0 1 0 0 1 0 0
32 0 0 0 0 1 0 0 0 0 0 0
33 1 0 0 1 1 1 0 0 0 0 0
35 1 0 1 1 1 1 0 0 0 0 0
36 0 0 0 0 0 1 0 1 0 0 0
37 0 0 0 1 0 0 0 0 1 0 0
38 0 0 0 0 0 0 0 0 0 0 1
39 0 0 0 1 0 1 0 0 1 0 0
40 0 0 0 1 0 1 0 0 1 0 0
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As it is binary, the reader can obtain the Duquenne/Guigues basis of it online,
using CONEXP-1.3 by Yevtushenko [1], getting:
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The reduced Duquenne/Guigues basis is

{nODP∗} (⇒ {Cl, F }
{nGWP∗} (⇒ {F }
{nALT∗} (⇒ {F }
{nC,Cl} (⇒ {F }

{nALT∗, Cl, F } (⇒ {nODP∗, nC}
{nGWP∗, nC, F } (⇒ {nALT ∗}

{Br} (⇒ {nODP∗, Cl, F }
{I } (⇒ {F }

{ether} (⇒ {nC}
{nALT∗, nC, F, ether} (⇒ {nGWP∗}

and it can be considered as a set of hypotheses on refrigerants in general!
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Exact Lower Bounds for Monochromatic
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Dedicated to Peter Paule, our academic father and grandfather.
Peter, we wish you many more happy, healthy, and productive
years.

1 Introduction and Historical Background

Let N denote the set of positive integers. A triple (x, y, z) ∈ N
3 is called a Schur

triple if its entries satisfy the equation x + y = z. The set {1, . . . , n} of all positive
integers up to n will be denoted by [n]. A coloring of [n] is a map χ : [n] → C for
some finite set C of colors. For example, a map χ : [n] → {red, blue} is a 2-coloring.
We say that a Schur triple is monochromatic (with respect to a given coloring) if all
of its entries have been assigned the same color; we will abbreviate “monochromatic
Schur triple” by MST.

With these notations, one can ask questions like: given n ∈ N and a coloring χ

of [n], how many MSTs are there in [n]3? Let us denote this number as follows:

M(n, χ) := ∣
∣
{
(x, y, z) ∈ [n]3 : z = x + y ∧ χ(x) = χ(y) = χ(z)

}∣
∣. (1)

For our purposes, two Schur triples (x, y, x+y) and (y, x, x+y) are considered
distinct if x �= y. We emphasize this convention since sometimes in the literature
these two triples are counted only once, which is equivalent to imposing the extra
condition x ≤ y. For example, there are exactly four monochromatic Schur triples
on [6] = {1, . . . , 6} when 2 and 4 are colored red and 1, 3, 5, 6 are colored blue,
namely (1, 5, 6), (2, 2, 4), (3, 3, 6), and (5, 1, 6). We will use a short-hand notation
for 2-colorings, namely as words on the alphabet {R,B}: the i-th letter is R if the
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integer i is colored red and B if it is blue. So the above 2-coloring would be denoted
by BRBRBB. We will also make use of the power notation for words, e.g., R2B3 =
RRBBB.

The namesake of the triples in this work refers to Issai Schur [11], who in 1917
studied a modular version of Fermat’s last theorem (first formulated and proved by
Leonard Dickson). In order to give a simpler proof of the theorem, Schur introduced
a Hilfssatz confirming the existence of a least positive integer n = n(m) such that for
any m-coloring of [n] an MST exists (this is nowadays known as Schur’s theorem).
In 1927, Van der Waerden [15] generalized this result to monochromatic arithmetic
progressions of any length k. Then in 1928, Ramsey proved his eponymous theorem,
showing the existence of a least positive integer n such that every edge-coloring of a
complete graph on n vertices, with the colors red and blue, admits either a complete
red subgraph or a complete blue subgraph. However, a real increase in the popularity
of these kinds of Ramsey-theoretic problems came with the rediscovery of Ramsey’s
theorem in a 1935 paper of Erdős and Szekeres [4], which ultimately led to a simpler
proof of Schur’s theorem, indicating their close connections. For the curious reader,
this rich history is beautifully depicted in a book by Landman and Robertson [8].

We now arrive at a point of more than just questions of existence. In 1959, Alan
Goodman [5] studied the minimum number of monochromatic triangles under a 2-
edge coloring of a complete graph on n vertices. Then in 1996, Graham, Rödl, and
Ruciński [6] found it natural to extend the problem of “determining the minimum
number under any 2-coloring” to Schur triples. In fact, Graham offered a prize of
100 USD for an answer to such a question; it has subsequently been successfully
answered many times over, in an asymptotic sense. In order to give some more
context to this problem, we first introduce some additional notation.

We start by wondering about what we can say about the number of MSTs on
[n] if we do not prescribe a particular coloring. It is not difficult to calculate that
there are exactly

∑n−1
i=1 i = 1

2n(n − 1) = (
n
2

)
Schur triples on [n]. Trivially, this

yields an upper bound for the number of MSTs, which can be achieved by coloring
all numbers with the same color. This is the reason why it is more natural (and
more interesting!) to ask for a lower bound for M(n, χ), that is: for given n ∈ N,
what is the “best” lower bound for the number of MSTs regardless of the choice of
coloring? Of course, 0 is a trivial such lower bound, but we are aiming for something
sharp, in the sense that for each n there exists a coloring for which this bound
is actually attained. Differently stated, we are looking for the minimal number of
monochromatic Schur triples among all possible colorings of [n]:

M(n) := min
χ : [n]→{R,B}M(n, χ). (2)

For example, for n = 6, one cannot avoid the occurrence of monochromatic
Schur triples, but there exists a 2-coloring for which only a single such triple
occurs, namely the triple (1, 1, 2) for the coloring RRBBBR. Therefore, we have
M(6) =M(6, RRBBBR) = 1.
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As mentioned before, this problem was only studied from an asymptotic point of
view: Robertson and Zeilberger [9] was first to give the lower bound 1

22n
2 + O(n)

as n → ∞ (and consequently won Graham’s cash prize), where it has to be noted
that they count only Schur triples (x, y, x + y) with the condition x ≤ y imposed.
This lower bound was independently confirmed by Datskovsky [3], Schoen [10],
and Thanatipanonda [13]. Schoen also provided a proof of an “optimal” coloring
of [n] that would give such a minimum number, and such a coloring is what we
assume later in this paper. The asymptotic lower bounds for the generalized Schur
triples case (x, y, x + ay) for a ≥ 2 is 1

2a(a2+2a+3)
n2 + O(n) as n → ∞, without

the requirement of x ≤ y. This was conjectured by Thanatipanonda [13] and Butler
et al. [1], and subsequently proven in 2017 by Thanatipanonda and Wong [14].

In this paper, we take a slightly different approach by using known computer
algebra techniques and creative simplifications to develop exact formulas for the
minimum number of such triples (in both the Schur triples case and the generalized
Schur triples case) and give an analysis of the transitional behavior between the
cases. Thus, in order to keep some consistency for comparison, we will remove
the assumption of x ≤ y when counting MSTs. In this way, we can explain why
the behavior of the minimum number of triples jumps when moving from the case
a = 1 to the case a ≥ 2 (note that the above asymptotic formula does not specialize
to the expected prefactor 1

11 when a = 1 is substituted).
The overall plan is to systematically exploit the full force of symbolic compu-

tation and perform a complete analysis of determining the minimum number of
monochromatic triples (x, y, x + ay) in both the discrete context (a ∈ N) and
the continuous context (a ∈ R

+). This requires three courses of a mathematical
meal. We serve an appetizer in Sect. 2, showing how to derive an exact formula
for the minimum in the classic Schur triple case (corresponding to a = 1 in the
general equation). This sets us up for the main course in Sect. 3, where we perform
a full analysis for a > 0, illustrating that a global minimum can always be found.
Interesting transitional behaviors occur at many locations for a ∈ (0, 1) and one
key transition occurs at a ≈ 1.17. Admittedly, this course may be a bit difficult to
swallow, and we hope that the reader will not suffer from indigestion. For dessert,
we follow the procedure described in Sect. 2, and illustrate how it can systematically
produce (ostensibly, an infinite number) of exact formulas for the minimum number
of generalized Schur triples. Accordingly, in Sect. 4, we leave the reader with exact
formulas for the minimum number of generalized Schur triples for a = 2, 3, 4, and
a = 1

2 , with the hope that s/he will leave satisfied.
For the reader’s convenience, all computations and diagrams are in the Mathe-

matica notebook [7] that accompanies this paper, freely available at the first author’s
website. This material may also be of independent interest, since we believe that also
other problems can be attacked in a similar fashion, see for example the recent study
on the peaceable queens problem [16].
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2 Exact Lower Bound for Monochromatic Schur Triples

It has been shown previously [9, 10] that for fixed n the number M(n, χ) is
minimized when χ consists of three blocks of numbers with the same color (“runs”),
i.e., when χ is of the form RsBt−sRn−t , where s and t are approximately 4

11n and
10
11n, respectively. In this section, we derive exact expressions for the optimal choice
of s and t , as well as for the corresponding minimum M(n).

Lemma 1 Let n, s, t ∈ N be such that 1 ≤ s ≤ t ≤ n. Moreover, assume that the
inequalities t ≥ 2s and s ≥ n − t hold. Then the number of monochromatic Schur
triples on [n] under the coloring RsBt−sRn−t , denoted by M(n, s, t), is exactly

M(n, s, t) = s(s − 1)

2
+ (t − 2s)(t − 2s − 1)

2
+ (n− t)(n − t − 1). (3)

Proof In Fig. 1 the situation is depicted for n = 33, s = 12, and t = 30. One sees
that the dots representing the MSTs are arranged in four regions of right triangular
shape. The triangles arise as follows:

1. The dots in the lower left corner correspond to red MSTs, whose components are
taken from the first block of red numbers; hence there are s − 1 dots in the first
row of this triangle.

2. The central triangle contains all blue MSTs, whose first two components (x, y)

satisfy the inequalities x > s, y > s, and x + y ≤ t . Note that such MSTs only
exist if t ≥ 2s + 2 (for t = 2s + 1 and t = 2s the second term in (3) vanishes
and the formula is still correct). The number of dots on each side is therefore
t − 2s − 1.

Fig. 1 All M(33) = 87
monochromatic Schur triples
for s = 12 and t = 30 with
corresponding coloring
R12B18R3; each triple
(x, y, x + y) is represented
by a dot at position (x, y).
The vertical lines are given by
x = s, x = t , and x = n, the
horizonal ones by y = s,
y = t , and y = n. The three
diagonal lines visualize the
equations x + y = s,
x + y = t , and x + y = n
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3. The two triangles in the upper left and lower right corners correspond to red
MSTs, whose first two entries belong to different blocks of red numbers. By
symmetry they have the same shape and they have n− t − 1 dots on their sides.
Here we use the condition s ≥ n− t , because otherwise these two regions would
no longer be triangles and we would be counting different things beyond the
scope of our assumptions.

Adding up the contributions from these three cases, one obtains the claimed
formula. ��

The optimal values for s and t are easily derived using the techniques of
multivariable calculus, once the form RsBt−sRn−t is assumed: by letting n go to
infinity and by scaling the square [0, n]2 ⊂ R

2 to the unit square [0, 1]2, we see
that the portion of pairs (x, y) ∈ [n]2 for which (x, y, x + y) is an MST among all
pairs in [n]2 equals the area of a certain region in the unit square; for example, see
the shaded regions in Fig. 1. In this limit process, the integers s and t turn into real
numbers satisfying 0 ≤ s ≤ t ≤ 1. According to (3) the area of the shaded region
in Fig. 1 is given by the formula

A(s, t) = s2

2
+ (t − 2s)2

2
+ 2 · (1− t)2

2
= 5s2

2
+ 3t2

2
− 2st − 2t + 1.

Equating the gradient

(
∂A

∂s
,
∂A

∂t

)

= (5s − 2t, 3t − 2s − 2)

to zero, one immediately gets the location of the minimum (s, t) = ( 4
11 ,

10
11

)
.

Lemma 2 For fixed n ∈ N, the integers s0 and t0 that minimize the function
M(n, s, t) are given by

s0 =
⌊4n+ 2

11

⌋
and t0 =

⌊10n

11

⌋
.

Proof Strictly speaking, we prove the minimality of the function M(n, s, t) under
the additional assumption t ≥ 2s ∧ s ≥ n − t from Lemma 1. The fact that this is
also the global minimum for all 1 ≤ s ≤ t ≤ n follows as a special case from the
more general discussion as described in the proof of Lemma 4.

The statement is proven by case distinction into 11 cases, according to the
remainder n modulo 11. Here we show details for the case n = 11k + 5, and the
remaining cases can be similarly verified with a computer; for these cases we refer
the reader to the accompanying electronic material [7].

By setting n = 11k + 5 we can eliminate the floors from the definitions of s0
and t0; we obtain s0 = � 1

11 (4n + 2)� = 4k + 2 and t0 = � 10
11n� = 10k + 4. Our
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goal is to show that among all integers i, j ∈ Z the expression M(n, s0 + i, t0 + j)

is minimal for i = j = 0. Using (3) one gets

M(11k+5, 4k+2+i, 10k+4+j)= 1

2

(
2+5i+5i2−3j−4ij+3j2+12k+22k2).

The stated goal is equivalent to showing that the polynomial

p(i, j) = 5i + 5i2 − 3j − 4ij + 3j2

is nonnegative for all (i, j) ∈ Z
2. Such a task can, in principle, be routinely executed

by cylindrical algebraic decomposition (CAD) [2]. In this method, the variables
i and j are treated as real variables, which causes some problems in the present
application. The reason is that p(i, j) ≥ 0 does not hold for all i, j ∈ R. The
situation is depicted in Fig. 2, where the ellipse represents the zero set of p(i, j) and
its inside consists of values (i, j) for which the polynomial p(i, j) is negative. To
our relief, we see that no integer lattice points lie inside the ellipse, since such points
would be counterexamples to our claim.

Our strategy now is the following: we prove that p(i, j) ≥ 0 for all integer points
that are close to (0, 0), e.g., for all (i, j) with −2 ≤ i ≤ 2 and −2 ≤ j ≤ 2. These
points are shown in Fig. 2, with the respective value of p(i, j) attached to them. In
particular, we see that the minimum p(i, j) = 0 is attained several times, namely
on the three points that lie exactly on the boundary of the ellipse.

Fig. 2 Zero set of the
polynomial p(i, j) from
Lemma 2 and its values at
integer lattice points
(i, j) ∈ Z

2
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Then we invoke cylindrical algebraic decomposition on the formula

∀i, j ∈ R : (−2 ≤ i ≤ 2 ∧ −2 ≤ j ≤ 2)∨ p(i, j) ≥ 0, (4)

which states that if the point (i, j) lies outside the square that we have
already considered, then p(i, j) ≥ 0 holds. Calling the Mathematica command
CylindricalDecompositionwith input (4), we immediately get True. ��

We are ready to state the main theorem of this section, which is an exact
formula for the minimal number of MSTs for any 2-coloring of [n]. Apart from the
asymptotic results mentioned in Sect. 1, there is only one paper [10] where a similar
result is stated, but only for the case n = 22k and for Schur triples (x, y, x+y) with
x ≤ y. In contrast, we consider all x, y ∈ [n] and our formula holds for all n ∈ N.

Theorem 1 The minimal number of monochromatic Schur triples that can be
attained under any 2-coloring of [n] is

M(n) =
⌊n2 − 4n+ 6

11

⌋
.

Proof As in Lemma 2, we argue by case distinction n = 11k + 
, 0 ≤ 
 ≤ 10.
Using s0 = � 1

11 (4n+ 2)� and t0 = � 10
11n� from the lemma, we obtain the following

values for M(n, s0, t0):


 = 0 : M(11k, 4k, 10k) = 11k2 − 4k = 1
11 (n

2 − 4n)


 = 1 : M(11k + 1, 4k, 10k) = 11k2 − 2k = 1
11 (n

2 − 4n+ 3)


 = 2 : M(11k + 2, 4k, 10k + 1) = 11k2 = 1
11 (n

2 − 4n+ 4)


 = 3 : M(11k + 3, 4k + 1, 10k + 2) = 11k2 + 2k = 1
11 (n

2 − 4n+ 3)


 = 4 : M(11k + 4, 4k + 1, 10k + 3) = 11k2 + 4k = 1
11 (n

2 − 4n)


 = 5 : M(11k + 5, 4k + 2, 10k + 4) = 11k2 + 6k + 1 = 1
11 (n

2 − 4n+ 6)


 = 6 : M(11k + 6, 4k + 2, 10k + 5) = 11k2 + 8k + 1 = 1
11 (n

2 − 4n− 1)


 = 7 : M(11k + 7, 4k + 2, 10k + 6) = 11k2 + 10k + 2 = 1
11 (n

2 − 4n+ 1)


 = 8 : M(11k + 8, 4k + 3, 10k + 7) = 11k2 + 12k + 3 = 1
11 (n

2 − 4n+ 1)


 = 9 : M(11k + 9, 4k + 3, 10k + 8) = 11k2 + 14k + 4 = 1
11 (n

2 − 4n− 1)


 = 10 : M(11k + 10, 4k + 3, 10k + 9) = 11k2 + 16k + 6 = 1
11 (n

2 − 4n+ 6)
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One easily observes that in each case, the result is of the form 1
11 (n

2 − 4n) + δ
,
where− 1

11 ≤ δ
 ≤ 6
11 holds for all 
. Hence the claimed formula follows. ��

The first 25 terms of the sequence
(
M(n)

)
n≥1 are

0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 7, 9, 11, 13, 15, 18, 20, 23, 26, 29, 33, 36, 40, 44, 48, . . .

We have added this sequence to the Online Encyclopedia of Integer Sequences [12]
under the number A321195.

3 Asymptotic Lower Bound for Generalized Schur Triples

We now turn to generalized Schur triples, i.e., triples (x, y, z) subject to z = x+ ay

for some parameter a ∈ N, as studied by Thanatipanonda and Wong [14]. Here,
we allow a to be even more general, i.e., a ∈ R

+. Consequently, we have to adapt
the definition of generalized Schur triples: we use the condition z = x + �ay�. The
case a < 0 does not add new aspects to the analysis, as it can be transformed to the
a > 0 case by exchanging the roles of x and z and by changing the floor function to
a ceiling.

Again, we choose to use the assumption that the minimal number of monochro-
matic generalized Schur triples (MGSTs) occurs at a coloring in the form of
three blocks RsBt−sRn−t . We justify using this assumption with the experimental
evidence of Butler, Costello, and Graham [1] (who argued for the generalized Schur
triple case a > 1) and adapting the intuition in the argument of Schoen [10] (who
only argued for the Schur triple case a = 1).

We would like to know for which choice of s and t (depending on n and a) the
minimum occurs. Similar to the previous section, we let n go to infinity and correlate
the number of MGSTs with the area of polygonal regions in the unit square. We
then define a function A(s, t, a) that determines this area, and minimize it. Hence,
throughout this section, s and t are real numbers with 0 ≤ s ≤ t ≤ 1.

Figure 3 shows two situations for different choices of a, s, t . In contrast to
the previous section, we do a very careful case analysis and do not impose extra
conditions on s and t as in Lemma 1, at the cost of introducing a “few” more
case distinctions. The full case analysis for normal Schur triples then follows by
specializing to a = 1 in the resulting formulas.
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Fig. 3 Regions (in red and blue) corresponding to monochromatic generalized Schur triples for
a = 3

2 , s = 1
2 , t = 3

5 (left) and a = 2, s = 3
11 , t = 10

11 (right); their area being measured by
A(s, t, a) from Lemma 3

In the process of analyzing the different cases, we encounter several conditions
on a, s, t . For our referencing convenience, we distinguish these conditions here
using the following abbreviations:

C1 ≡ 1− as ≥ 0, C2 ≡ 1− as − s ≥ 0,

C3 ≡ 1− as − t ≥ 0, C4 ≡ t − as ≥ 0,

C5 ≡ t − as − s ≥ 0, C6 ≡ 1− at ≥ 0,

C7 ≡ 1− at − s ≥ 0, C8 ≡ 1− at − t ≥ 0,

C9 ≡ 1− a ≥ 0, C10 ≡ 1− a − s ≥ 0,

C11 ≡ s − a ≥ 0, C12 ≡ 1− a − t ≥ 0,

C13 ≡ t − a ≥ 0, C14 ≡ t − a − s ≥ 0,

C15 ≡ s − at ≥ 0, C16 ≡ t − at − s ≥ 0.

(5)

In Figs. 5 and 6, the lines that represent some of these conditions are depicted.
They split the triangle 0 ≤ s ≤ t ≤ 1 into several regions, depending on the value
of a.

Lemma 3 Let a, s, t ∈ R with a > 0 and 0 ≤ s ≤ t ≤ 1. Then the area A(s, t, a)

of the region

{
(x, y) ∈ R

2 : (x, y, x + ay) ∈ ([0, s] ∪ (t, 1])3 ∨ (x, y, x + ay) ∈ (s, t]3}

is given by a piecewise defined function, where 70 case distinctions have to be made.
For the sake of brevity, only the first 17 cases are listed below, since they will be the
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most important ones in the subsequent analysis; in fact they are sufficient to describe
A(s, t, a) for a ≥ 1. We label the region corresponding to the i-th case as (Ri). They
are expressed in terms of the conditions (5) (where overlines denote negations):

conditions on a, s, t A(s, t, a)

(R1) C1
s2−2t s+2s+t2−2t+1

2a

(R2) C3 ∧ C4 ∧ C6
2as2+2s2+2as−4ats−2t s+t2

2a

(R3) C3 ∧ C4 ∧ C6
−a2s2+2as2+2s2+2as−2ats−2t s

2a

(R4) C2 ∧ C4 ∧ C6
s2+2as−2ats−2t s+2s+2t2−2t

2a

(R5) C2 ∧ C4 ∧ C6
−a2s2+s2+2as−2t s+2s+a2t2+t2−2at−2t+1

2a

(R6) C1 ∧ C2 ∧ C4 ∧ C6
−a2s2+s2+2as−2t s+2s+t2−2t

2a

(R7) C2 ∧ C3 ∧ C4 ∧ C6
a2s2+2as2+2s2−2ats−2t s+2t2−2t+1

2a

(R8) C2 ∧ C3 ∧ C4 ∧ C6
2as2+2s2−2t s+a2t2+t2−2at−2t+2

2a

(R9) C2 ∧ C3 ∧ C4 ∧ C6
2as2+2s2−2t s+t2−2t+1

2a

(R10) C3 ∧ C4 ∧ C6 ∧ C7
2as2+2s2+2as−4ats−2t s+a2t2+t2−2at+1

2a

(R11) C3 ∧ C4 ∧ C6 ∧ C7
−a2s2+2as2+2s2+2as−2ats−2t s+a2t2−2at+1

2a

(R12) C4 ∧ C8
(1+2a−a2)s2+2s(1−2at+a−t )+(at+t−1)2

2a

(R13) C4 ∧ C7 ∧ C8
−a2s2+2as2+s2+2as−4ats−2t s+2s

2a

(R14) C4 ∧ C8 ∧ C9
(a2+2a+2)t2−2t (3as+a+s+1)+(s+1)(2as+s+1)

2a

(R15) C4 ∧ C7 ∧ C8 ∧ C9
2as2+s2+2as−6ats−2t s+2s+t2

2a

(R16) C2 ∧ C4 ∧ C6 ∧ C9
s2+2as−2ats−2t s+2s+a2t2+2t2−2at−2t+1

2a

(R17) C2 ∧ C3 ∧ C4 ∧ C6 ∧ C9
a2s2+2as2+2s2−2ats−2t s+a2t2+2t2−2at−2t+2

2a

Proof As can be seen in Fig. 3, the region whose area we would like to determine
is the union of several polygons. Let I1 = [0, s], I2 = (s, t], and I3 = (t, 1]
denote the intervals that correspond to the different blocks of the coloring (I1 and
I3 being red and I2 being blue). Then x, y ∈ I1 ∧ x + ay ∈ I3 is allowed while
x, y ∈ I1 ∧ x + ay ∈ I2 is not. From this point on, we will refer to the case
(x, y, x + ay) ∈ Ii × Ij × Ik by ijk. It is easy to see that we have to consider only
seven cases: 111, 222, 113, 131, 133, 313, 333. The cases 311 and 331 are clearly
impossible since x ≥ t contradicts x + ay ≤ s. All other combinations of 1, 2, 3
violate the monochromatic coloring condition.
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In both parts of Fig. 3, case 111 corresponds to the triangle that touches the origin.
The coordinates of its other two vertices are (s, 0) and (0, s

a
), hence its area is 1

2 ·s· sa .
However, this is valid only for a ≥ 1. If a < 1, then the point (0, s

a
) is above the line

y = s and so the top of the triangle is cut off. As a result, one obtains a quadrilateral
with vertices (0, 0), (s, 0), (s−as, s), (0, s), whose area is given by 1

2 · s · (2s−as).
The case 222 is similar, with the difference being that the corresponding polygon

disappears if t−s
a

< s; in the right part of Fig. 3 the polygon 222 is present while
in the left part it is not. The polygons 313, 333, and 131 are characterized by
comparably simple case distinctions, while 133 and 113 require a much more
involved analysis. In Fig. 4, we present such an analysis for 133, and refer to the
accompanying electronic material [7] for 113.

What we have achieved so far is a representation of A(s, t, a) as a sum of seven
piecewise functions. However, what is required is a representation of A(s, t, a) as a
single piecewise function, since that will be needed for determining the location of
the minimum.

The conditions that are used to characterize the different pieces in Fig. 4 (and
in the remaining cases that have not been discussed explicitly), are listed in (5). In
order to combine the seven piecewise functions, we need a common refinement of
the regions on which they are defined. We start with the finest possible refinement,
which is obtained by considering all 216 = 65536 logical combinations of Ci and Ci

for 1 ≤ i ≤ 16. Using Mathematica’s simplification procedures, we remove those
cases that contain contradictory combinations of conditions, such as C1 ∧ C2 for
example. After this purging, we are left with a subdivision of the set

{(s, t, a) : 0 ≤ s ≤ t ≤ 1 ∧ a ≥ 0} ⊂ R
3, (6)

which is an infinite triangular prism, into 114 polyhedral regions. Finally, we merge
regions on which A(s, t, a) is defined by the same expression into a single region,
yielding a representation of A(s, t, a) as a piecewise function defined by 70 different
expressions. Each of them is of the form 1

a
p(s, t, a) where p is a polynomial in

s, t, a of degree at most 2 in each of the variables. For more details, and to see the
definition of A(s, t, a) in its full glory, see the accompanying electronic material [7].

��
We have seen that the different domains of definition for A(s, t, a) are polyhedra

in R
3 (some of which are unbounded). In Figs. 5 and 6 two 2-dimensional slices of

the set (6) for particular choices of a are shown. Note that in Fig. 5 condition C5 is
not shown since it was eliminated in the process of merging regions on which A is
defined by the same expression. Moreover, C9 ≡ a ≤ 1 is not visible since its plane
a = 1 is parallel to the depicted cross section a = 1.4.
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Fig. 4 Case distinctions for polygon 133, showing all possibilities of admissible regions in the top
left corner (depending on conditions for a, s, t). The empty cases (not shown) correspond to the
conditions 1/a ≤ t or t − a ≥ s
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Fig. 5 Domains of definition of A(s, t, a) for a = 1.4, according to Lemma 3. Note that not all
17 cases listed in the lemma are present for this particular choice of a

Lemma 4 For a > 0, the minimum of the function A(s, t, a) (defined in Lemma 3)
on the triangle 0 ≤ s ≤ t ≤ 1,

m(a) := min
0≤s≤t≤1

A(s, t, a)

is given by a piecewise rational function, depending on a, according to the following
case distinctions (where we also give the location (s0, t0) of the minimum):

s0 t0 m(a)

0 ≤ a ≤ α1
(a−4)a
a3−a−4

−2a2+4a+2
−a3+a+4

−a4+2a3−2a2+6a−4
2(a3−a−4)

α1 ≤ a ≤ α2
a
(
a2−3

)

a4−8a−1
a3+a2−5a−1

a4−8a−1
a3−2a2+a−2
2(a4−8a−1)

α2 ≤ a ≤ α3
−2a3+2a+1
−a4+8a+3

2a3+a2−6a−2
a4−8a−3

a6+a4−12a3+4a2−1
2a(a4−8a−3)

α3 ≤ a ≤ α4
−2a2+a+1

−4a3+5a2+6a+1
−2a3+a2+4a+1
−4a3+5a2+6a+1

4a4−9a3+2a2+a−2
2(4a3−5a2−6a−1)
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Fig. 6 Domains of definition of the area function A(s, t, a) for a = 0.44

α4 ≤ a ≤ α5
a3+a+1

−4a3+3a2+6a+1
2a2+4a+1

−4a3+3a2+6a+1
4a4−4a3+a−2

2(4a3−3a2−6a−1)

α5 ≤ a ≤ α6 − 3a2+a−1
4a3−4a2−4a+1

−4a2−2a+1
4a3−4a2−4a+1

8a3−4a2−5a+2
2(4a3−4a2−4a+1)

α6 ≤ a ≤ α7
2a+1
7a+1

8a2+6a+1
7a2+8a+1

−2a2+3a+2
2(a+1)(7a+1)

α7 ≤ a ≤ 1 (a+1)2

a(7a+4)
(a+1)(4a+1)

a(7a+4)
−7a4+6a3+6a2−2a−1

2a2(7a+4)

1 ≤ a ≤ α8
(a+1)2

a4+2a3+3a2+2a+3
(a+1)

(
a2+2a+2

)

a4+2a3+3a2+2a+3
a4−a2−2a+4

2a(a4+2a3+3a2+2a+3)

α8 ≤ a a+1
a2+2a+3

a2+2a+2
a2+2a+3

1
2a(a2+2a+3)

Here, the quantities α1, . . . , α8 stand for the following algebraic numbers, where
Root(p, I) denotes the unique real root of the polynomial p in the interval I :

α1 = 0.295597 . . .= Root
(
a3 + a2 + 3a − 1, [0, 1]),

α2 = 0.395065 . . .= Root
(
a5 − 9a2 + a + 1, [0, 1]),

α3 = 0.405669 . . .= Root
(
2a4 − a3 − 6a2 + 1, [0, 1]),

α4 = 0.553409 . . .= Root
(
12a4 − 15a3 − 24a2 + 5a + 6, [0, 1]),
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α5 = 0.622179 . . .= Root
(
4a3 − 8a2 − 3a + 4, [0, 1]),

α6 = 0.647363 . . .= Root
(
8a2 + a − 4, [0, 1]) = 1

16

(√
129− 1

)
,

α7 = 0.931478 . . .= Root
(
7a3 − 5a − 1, [0, 1]),

α8 = 1.174559 . . .= Root
(
a3 + a2 − 3, [1, 2]).

Proof We locate the minimum in a similar fashion as in Sect. 2, by identifying
points (s, t) where the gradient of the area function A vanishes. What complicates
our task is the additional parameter a. Since A is defined in pieces, it may not be
differentiable at the boundaries between different regions, and therefore, we should
be aware that such locations could contain the minimum. For each region (Ri),
1 ≤ i ≤ 70, on which A(s, t, a) is defined, we perform the following steps:

• compute the gradient
(
∂A
∂s

, ∂A
∂t

)
,

• find all points (s, t) where the gradient is zero, and
• for each such point determine for which values of a it actually lies in (Ri).

On the region (R1) from Lemma 3, the gradient of A is 1
a
(s − t + 1, t −

s − 1), which vanishes on all points (s, s + 1); however, since the region (R1)

is characterized by C1 ≡ s > 1
a

(and the general condition s ≤ t ≤ 1), one sees
that none of these points lie in it. Continuing in this manner, we find that in each of
the regions (R2)− (R70) there is exactly one point (s, t) for which the gradient of A
vanishes, but in most cases this point lies outside the region for all a. For example,
on (R2) the gradient is 1

a
(2as − 2at + 2s − t + a, t − 2as − s), which equals zero

for

(s, t) =
(

a

4a2 + 2a − 1
,

a(2a + 1)

4a2 + 2a − 1

)

. (7)

In order to find the values of a that give us that (s, t) ∈ (R2), the conditions defining
(R2) (plus the global assumptions) need to be satisfied, namely:

as + t ≤ 1 ∧ t ≥ as ∧ at > 1 ∧ 0 < s < t < 1.

After substituting s and t with the right hand side of (7) and clearing denominators,
one gets a system of polynomial inequalities, involving only the variable a.
Cylindrical algebraic decomposition simplifies it to

a ≥ Root
(
2a3 − 3a2 − 2a + 1, [1, 2]) = 1.889228559 . . .

Hence, for each a satisfying this condition we have a local minimum at the point
given in (7).

We proceed in similar fashion and identify 17 local minima, each occurring only
for a in a certain interval. Some of these intervals partly overlap, which means that
we have to study a subdivision of the positive real line that is a refinement of all 17
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Fig. 7 Plot of A(s, t, a) on the 17 different intervals of a identified from the 17 local minima in
the proof of Lemma 4 for 0 ≤ a ≤ 3; the shading under the graph indicates the main 10 intervals
that are needed to describe the global minimum function m(a)

intervals. When two functions intersect in the interior of an interval, it is split into
two subintervals. CAD is once again employed to find the smallest among the local
minima; this is done individually for each of the refined intervals. As a result, we
obtain the piecewise description of the function m(a) given above; see Fig. 7 and
the accompanying electronic material [7] for details.

It is clear from construction that A(s, t, a) must be a continuous function, since
the admissible polygons (shaded regions in Fig. 3) cannot jump or disappear if the
parameters a, s, t are changed infinitesimally, i.e., if the lines in Fig. 3 are shifted or
slanted by a little bit. In contrast, it is not obvious why it should be differentiable.
Therefore, there is a possibility that the minimum can occur where the derivative
does not exist. Hence, it is necessary to study the values of A(s, t, a) along the
boundaries of the different domains of definition. To accomplish this task, we view
A as a bivariate function in s and t , with a parameter a. For each inequality in the
list of conditions (5), the corresponding equation defines a line in R

2. For each such
line, we proceed to determine the range of a for which the line intersects the triangle
0 ≤ s ≤ t ≤ 1. On the resulting line segment, the pieces of A(s, t, a) are given by
univariate polynomials, still involving the parameter a. Equating their derivatives to
zero, we find all of the local minima on this line segment, which could give rise to
local minima of A(s, t, a). After looking at all 16 lines, each of which splits into
at most 70 segments, we find 225 candidates for minima. CAD confirms that none
of them are actually smaller than the one given by m(a). This fact also becomes
apparent by plotting these candidates against the function m(a), as shown in Fig. 8
(top part).
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Fig. 8 Global minimum of A(s, t, a) (red curve) compared to potential minima along lines (green
curves, top part) and potential minima on intersection points (blue curves, bottom part)

Finally, we should also check all points where any two lines defined by (5)
intersect. We find 54 points that lie inside the triangle 0 ≤ s ≤ t ≤ 1, at least
for certain choices of a. The value of A(s, t, a) at a particular point is given by a
piecewise function depending on a. Assembling all pieces for all points, we obtain
348 cases. For each of them, CAD confirms (rigorously!) that the value of A(s, t, a)

does not go below m(a). A “non-rigorous proof” of this fact is shown in Fig. 8
(bottom part).

Summarizing, we have shown that, for each particular choice of a > 0, the
minimum of the function A(s, t, a) on the triangle 0 ≤ s ≤ t ≤ 1 is given by m(a),
and we have determined the location (s0, t0) where this minimum is attained. This
immediately establishes an asymptotic lower bound for MGSTs on[n], as n goes to
infinity. ��
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We wrap up this section with some remarks on the consequences of Lemma 4
and on what appears to be erratic (jumpy) behavior for some values of a in Fig. 8.
We assure the reader that it is not due to the amount of alcohol that was consumed
throughout this meal, but rather an indication of the appearance and disappearance
of certain admissible regions for the MGSTs as a changes.

First, we would like to note that Lemma 4 explains why the asymptotic formula
for MGSTs for integral a ≥ 2 given in [1, 13, 14] does not specialize to the
previously known case a = 1: this phenomenon is due to the piecewise definition
of m(a), with a transition at 1 < α8 < 2. Geometrically speaking, α8 marks the
point where the polygon 133 (see Fig. 3) disappears, when a increases from 1 to 2,
and s = s0(a) and t = t0(a) are updated constantly.

A second interesting finding that follows from Lemma 4 is that there is a jump
of

(
s0(a), t0(a)

)
at a = α4 = 0.5534 . . .; the function m(a) however is continuous.

In Fig. 7 one sees that at a = α4 the functions of two local minima intersect, and
therefore this point marks the jump from one branch to another one. In Fig. 9 the
situation is shown for two different values of a close to α4: while the shaded area
in both parts of the figure is almost the same, the values of s and t change quite
dramatically. We invite the reader to play with such transitions in the accompanying
electronic material [7].

In the next section, we bring up the fact that the coloring pattern of three blocks
that we generously assumed for a > 0 does not actually give the global minimum
on 0 < a < 1 over any 2-coloring of [n] and we take care to emphasize this in the
statement of the theorems. This will therefore explain the erratic behavior at a = 1
in both graphs of Fig. 8.

Fig. 9 The red and blue polygons correspond to monochromatic generalized Schur triples for
a = 1

2 , s = 4
19 , t = 12

19 (left) and a = 0.56, s = 0.377, t = 0.841 (right)
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4 Exact Bounds for Generalized Schur Triples

In this section we apply the results from the last section, i.e., from the continuous
setting, to the discrete enumeration problem of monochromatic generalized Schur
triples (MGSTs). Hence, s and t are now integers with 1 ≤ s ≤ t ≤ n that describe
the coloring RsBt−sRn−t of [n]. Throughout this section we use the convention that
a sum whose lower bound is greater than its upper bound is zero, i.e.,

j∑

x=i

f (x) =
{
f (i)+ · · · + f (j), if i ≤ j,

0, if i > j.

Analogous to Sect. 2 we use the notation M(a) to count MGSTs. More precisely,
we define M(a)(n, s, t) and M(a)(n), as follows:

M(a)(n, s, t) := ∣
∣
{
T = (x, y, x + �ay�) ∈ [n]3 :
T ∈ ([s] ∪ {t + 1, . . . , n})3 ∨ T ∈ {s + 1, . . . , t}3}∣∣,

M(a)(n) := min
1≤s≤t≤n

M(a)(n, s, t).

In contrast to the previous section, we will now mostly look at special cases for a,
since we cannot hope to get an exact formula for the minimal number of MGSTs
for general a ∈ R

+.

Lemma 5 Let a ∈ R with a ≥ 1 and let n, s, t ∈ N with 1 ≤ s ≤ t ≤ n.
Furthermore, assume that the inequalities as + t ≥ n, t ≥ as, and s + as ≤ t

hold. Then the number M(a)(n, s, t) of monochromatic generalized Schur triples of
[n] under the coloring RsBt−sRn−t is given by

�s/a�∑

y=1

s−�ay�∑

x=1

1 +
�(t−s)/a�∑

y=s+1

t−�ay�∑

x=s+1

1 +
�(n−t )/a�∑

y=1

n−�ay�∑

x=t+1

1 +
�n/a�∑

y=t+1

n−�ay�∑

x=1

1.

Moreover, the explicit list of these MGSTs (x, y, x + �ay�) can be directly read off
from the above formula.

Proof Under the given assumptions, we have to consider monochromatic triples of
types 111, 222, 313, and 133, see, e.g., Fig. 3. Obviously, the four sums correspond
exactly to these four cases. Note that if at > n, then the case 133 is not present,
which is reflected by the fact that the corresponding sum is zero in this case. ��

The assumed inequalities in Lemma 5 tell us that we are either in (R7) (when
at > n) or in (R17) (when at ≤ n); these regions were introduced in Lemma 3.
Recall α8 = 1.174559 . . . from Lemma 4, and also that the global minimum of
the area function A(s, t, a) is located in (R7) (when a ≥ α8) or in (R17) (when
1 ≤ a ≤ α8).
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Theorem 2 The minimal number of monochromatic generalized Schur triples of
the form (x, y, x + 2y) that can be attained under any 2-coloring of [n] of the form
RsBt−sRn−t is

M(2)(n) =
⌊
n2 − 10n+ 33

44

⌋

.

Proof For a = 2 we clearly have α8 ≤ a, and by Lemma 4 it follows that the
optimal choice for s and t is expected around the point

n ·
(

a + 1

a2 + 2a + 3
,
a2 + 2a + 2

a2 + 2a + 3

)

=
(

3n

11
,

10n

11

)

.

The three conditions 2s + t ≥ n, t ≥ 2s, 3s ≤ t are satisfied (at least for large n),
and therefore we can use Lemma 5 to compute the exact number of MGSTs:

M(2)(n, s, t) =
�s/2�∑

y=1

s−2y∑

x=1

1 +
�(t−s−1)/2�∑

y=s+1

t−2y∑

x=s+1

1 +
�(n−t )/2�∑

y=1

n−2y∑

x=t+1

1 =

=
⌊
s

2

⌋⌊
s − 1

2

⌋

+
⌊
n− t

2

⌋⌊
n− t − 1

2

⌋

+
⌊
t − s

2

⌋⌊
t − s − 1

2

⌋

+2s2−st+s.

From now on, we proceed in an analogous fashion as in the proofs of Lemma 2 and
Theorem 1. Empirically, we find that for each n ∈ N, the minimum of M(2)(n, s, t)

is attained at

s0 =
⌊

3n+ 1

11

⌋

, t0 =
⌊

10n

11

⌋

+
{
−1, if n = 22k + 10,

0, otherwise.

When we plug in s0+ i and t0+ j into the above formula for M(2)(n, s, t), we need
to make a case distinction n = 22k + 
 for 0 ≤ 
 ≤ 21 in order to get rid of the
floors. Moreover, we need to distinguish even and odd i (resp. j ). Evaluating and
simplifying

M(2)(22k + 
, s0 + 2i1 + i2, t0 + 2j1 + j2), 0 ≤ 
 ≤ 21, i2, j2 ∈ {0, 1},

we obtain 88 polynomials in i1, j1, k. Applying CAD individually to each of these
polynomials and by checking a few values explicitly (not unlike what we did in
the proof of Lemma 5), one proves that the minimum is indeed attained at (s0, t0).
Finally, one evaluates M(2)(22k + 
, s0, t0) for all 
 = 0, . . . , 21 and finds that it is
always of the form 1

44

(
n2 − 10n

)+ δ
, where the values δ0, . . . , δ21 are

0, 9
44 ,

4
11 ,

21
44 ,

6
11 ,

25
44 ,

6
11 ,

21
44 ,

4
11 ,

9
44 , 0, 3

4 ,
5

11 ,
5
44 ,

8
11 ,

13
44 ,− 2

11 ,
13
44 ,

8
11 ,

5
44 ,

5
11 ,

3
4 .
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Since the largest value is 3
4 and since the smallest value is greater than − 1

4 (i.e., all
values δ
 lie inside an interval of length 1), the claimed formula follows.

One last detail: we still have to examine for which n the conditions 2s + t ≥ n,
t ≥ 2s, 3s ≤ t are satisfied, as it could happen that for small n the point (s0, t0) lies
not inside the correct region (R17), due to the rounding errors. With the (somewhat
generous) assumptions 3n+1

11 − 1 ≤ s ≤ 3n+1
11 and 10n

11 − 2 ≤ t ≤ 10n
11 we find that

the above conditions are satisfied for all n ≥ 25. For the remaining values n < 25,
the claimed formula can be verified by an explicit computation. ��
Theorem 3 The minimal number of monochromatic generalized Schur triples of
the form (x, y, x + 3y) that can be attained under any 2-coloring of [n] of the form
RsBt−sRn−t is

M(3)(n) =
⌊
n2 − 18n+ 101

108

⌋

+

⎧
⎪⎪⎨

⎪⎪⎩

1, if n = 54k + 36,

−1, if n = 54k + 30 or n = 54k + 42,

0, otherwise.

Proof For a = 3, it follows by Lemma 4 that the optimal choice for s and t is
expected around the point

n ·
(

a + 1

a2 + 2a + 3
,
a2 + 2a + 2

a2 + 2a + 3

)

=
(

4n

18
,

17n

18

)

.

This means that the proof will require 18 · a = 54 case distinctions n = 54k+ 
 for
0 ≤ 
 ≤ 53. Empirically, we find that for each n ∈ N, the minimum of M(3)(n, s, t)

is attained at

s0 =
⌊

4n

18

⌋

−
{

1, if n = 54k + 18,

0, otherwise,

t0 =
⌊

17n

18

⌋

−

⎧
⎪⎪⎨

⎪⎪⎩

1, if n = 9k + i for i ∈ {3, 4, 7, 8},
2, if n = 54k + 18,

0, otherwise.

Applying CAD to the 486 polynomials

M(3)(54k + 
, s0 + 3i1 + i2, t0 + 3j1 + j2), 0 ≤ 
 ≤ 53, i2, j2 ∈ {0, 1, 2},

proves that our choice of (s0, t0) locates the minimum. Evaluating M(3)(n, s0, t0)

for n = 54k + 
, one obtains 1
108

(
n2 − 18n

)+ δ
, where δ36 = 1, δ30 = δ42 = − 1
3 ,

and all remaining δ
 range from− 1
27 to 101

108 . Hence, the claimed formula follows.
��
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Theorem 4 The minimal number of monochromatic generalized Schur triples of
the form (x, y, x + 4y) that can be attained under any 2-coloring of [n] of the form
RsBt−sRn−t is

M(4)(n) =
⌊
n2 − 28n+ 245

216

⌋

−
{

1, if n = 108k + i for i ∈ I,

0, otherwise,

where I = {0, 1, 27, 28, 43, 47, 48, 53, 58, 63, 67, 68, 69, 73, 78, 83, 88, 89, 93}.
Proof For a = 4, it follows by Lemma 4 that the optimal choice for s and t is
expected around the point

n ·
(

a + 1

a2 + 2a + 3
,
a2 + 2a + 2

a2 + 2a + 3

)

=
(

5n

27
,

26n

27

)

.

This means that the proof will require 27 · a = 108 case distinctions of the form
n = 108k + 
 for 0 ≤ 
 ≤ 107. Empirically, we find that for each n ∈ N, the
minimum of M(4)(n, s, t) is attained at

s0 =
⌊

5n− 4

27

⌋

+

⎧
⎪⎪⎨

⎪⎪⎩

−1, if n = 108k + 28,

1, if n = 108k + i for i ∈ {0, 87, 103},
0, otherwise.

t0 =
⌊

26n− 34

27

⌋

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−1, if n = 108k + i for i ∈ {28, 33, 38, 43},
1, if n = 108k + i

for i ∈ {1, 77, 78, 82, 83, 88, 93, 98, 104},
2, if n = 108k + i for i ∈ {0, 87, 103},
0, otherwise.

Applying CAD to the 1728 polynomials

M(4)(108k + 
, s0 + 4i1 + i2, t0 + 4j1 + j2), 0 ≤ 
 ≤ 107, i2, j2 ∈ {0, 1, 2, 3},

proves that our choice of (s0, t0) locates the minimum. Evaluating M(4)(n, s0, t0)

for n = 108k + 
, 0 ≤ 
 ≤ 107, one obtains 108 polynomials of the form
1

216

(
n2 − 28n

)+ δ
. At this point, the analysis deviates a bit from the previous two
theorems, because we observe that the range of the computed δ
’s is much larger
than 1. Therefore, we would like to choose an appropriate interval to contain the
largest number of δ
 such that we minimize the number of exceptional cases (i.e.,
the necessary corrections resulting from applying the floor function to numbers that
are out of range).
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To accomplish this, we find that shifting all of the values down by 29
216 gives the

minimum number (19, to be precise) of δ
 that are not within range (i.e., not in
[0, 1)). We now realize that these are the values that give us our desired count, so
we add 1 to make sure it is recognized by the floor function. Hence, the optimal
delta is 29

216 + 1 = 245
216 . Finally, for each of the 19 δ
’s that are out of bounds (in this

case, less than 0), we remove 1 and this gives us our claimed formula. ��
Theorem 5 The minimal number of monochromatic generalized Schur triples of
the form

(
x, y, x + � 1

2y�
)

that can be attained under any 2-coloring of [n] of the
form RsBt−sRn−t is given by

M(1/2)(n) =
⌊

15n2 + 72

76

⌋

+

⎧
⎪⎪⎨

⎪⎪⎩

1, if n = 38k + 18 or n = 38k + 20,

−1, if n = 38k + 19,

0, otherwise.

Proof For a = 1
2 , it follows by Lemma 4 that the optimal choice for s and t is

expected around the point

n ·
( −2a2 + a + 1

−4a3 + 5a2 + 6a + 1
,
−2a3 + a2 + 4a + 1

−4a3 + 5a2 + 6a + 1

)

=
(

4n

19
,

12n

19

)

.

For this choice of parameters we end up in region (R69) (see Fig. 6). Under the
conditions that characterize this region, more precisely

n

2
≤ t ≤ 2n

3
∧ t − s ≤ n

2
∧ 2s ≤ t,

the number of MGSTs is given by

M(1/2)(n, s, t) =
s∑

y=1

s−�y/2�∑

x=1

1 +
t∑

y=s+1

t−�y/2�∑

x=s+1

1 +
s∑

y=1

n−�y/2�∑

x=t+1

1 +

+
n∑

y=2t−2s+1

s∑

x=t+1−�y/2�
1 +

2n−2t−1∑

y=t+1

n−�y/2�∑

x=t+1

1.

The five double sums correspond to the cases 111, 222, 313, 133, 333, respectively,
and the summation ranges are chosen such that they actually agree with the first two
coordinates of the monochromatic triples in question, see Fig. 9.
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In order to eliminate all floor functions, a case distinction n = 38k + 
 is made.
It is conjectured that the minimum is attained at (s, t) = (s0, t0) with

s0 =
⌊

4n+ 7

19

⌋

+
{

1, if n = 19k + 17,

0, otherwise,

t0 =
⌊

12n+ 6

19

⌋

+
{

1, if n = 19k + 4,

0, otherwise.

This conjecture is proven by case distinction and CAD, as in Theorem 2. As a final
result, one obtains the claimed formula, see [7] for the details. ��

It has to be noted that all results presented so far in this section (Theorems 2–5)
are based on the assumption of the optimal coloring being of the form RsBt−sRn−t .
While we have strong evidence that this assumption is valid for a > 1 (and in fact
we know it to be true [10] for a = 1), it seems to be inappropriate for 0 < a < 1.
More concretely, we can construct explicit examples where we get fewer MGSTs
for a = 1

2 than predicted in Theorem 5: the first instance is n = 4, where Theorem 5
yields four MGSTs for the coloring RBBR, namely (1, 1, 1), (4, 1, 4), (2, 2, 3),
(2, 3, 3), but where the better coloring RBRB exists, that allows only three MGSTs,
namely (1, 1, 1), (3, 1, 3), and (2, 4, 4). Note, however, that this is not a counter-
example to the theorem because the coloringRBRB is not of the formRsBt−sRn−t .

We close this section by stating a conjecture about what we believe is the true
minimum for a = 1

2 .

Conjecture 1 For n ≥ 12, the minimal number of monochromatic generalized
Schur triples of the form

(
x, y, x +� 1

2y�
)

that can be attained under any 2-coloring
of [n] is given by

⌊
n2 + 5

6

⌋

,

and it occurs at the coloring RsBt−sRu−tBn−u for

s =
⌊
n+ 3

6

⌋

, t =
⌊
n+ 1

2

⌋

, u =
⌊

5n+ 3

6

⌋

.

Curiously, the conjectured formula is not valid for n = 11, where it would give
a minimum number of 21 MGSTs with a four-block coloring. The true minimum
is 20 and it is attained at the coloring RBRBBRRBRBB.
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5 Conclusions and Outlook

In this paper we have presented, for the first time, exact formulas for the minimum
number of monochromatic (generalized) Schur triples. We give such formulas
explicitly only for the few cases a = 1, 2, 3, 4, but we want to point out that we
could do many more special cases, say a = 5, 6, 7, . . . or a = 3

2 ,
5
4 , . . . , based

on the general analysis carried out in Sect. 3. In fact, the proofs would be done
in completely analogous fashion, requiring only little human interaction, but an
increasing amount of computation time. In this sense, our paper contains a hidden
treasure, which is an infinite set of theorems that just have to be unveiled.

For future research, we propose to look more closely at the cases of generalized
Schur triples (x, y, x + �ay�) with 0 < a < 1. Our analysis is based on the
assumption that the optimal coloring that produces the least number of monochro-
matic triples consists of three blocks. Computational experiments suggest that this
assumption is not valid for 0 < a < 1. For example, we believe that four blocks are
necessary to capture the minimum in the case a = 1

2 , as conjectured in the previous
section. For some less nice rational numbers a < 1 we were even not able to detect
a block pattern in the optimal coloring, but that may be an artifact due to the limited
size of n for which we can do exhaustive searches (note that there are 2n possible
colorings).

Our results are heavily based on symbolic computation techniques, such as
cylindrical algebraic decomposition and symbolic summation. Often our proofs
require case distinctions into several dozens or even several hundred cases, and
it would be too tedious to check all of them by hand. The reader should be
convinced by now that symbolic computation can be very useful and that it could
be adapted to solve problems in other areas of mathematics. We provide all details
of our calculations in the supplementary electronic material [7], which we hope
is instructive for readers who would like to become more acquainted with the
techniques that we used here.
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Evaluation of Binomial Double Sums
Involving Absolute Values

Christian Krattenthaler and Carsten Schneider

Dedicated to Peter Paule on the occasion of his 60th
birthday

1 Introduction

Motivated by work in [3] concerning the Hadamard maximal determinant prob-
lem [10], Brent and Osborn [2] proved the double sum evaluation

n∑

i,j=−n

|i2 − j2|
(

2n

n+ i

)(
2n

n+ j

)

= 2n2
(

2n

n

)2

. (1)

It should be noted that the difficulty in evaluating this sum lies in the appearance
of the absolute value. Without the absolute value, the summand would become
antisymmetric in i and j so that the sum would trivially vanish. Together with
Ohtsuka and Prodinger, they went on in [6] (see [5] for the published version) to
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consider more general double sums of the form

n∑

i,j=−n

|isj t (ik − jk)β |
(

2n

n+ i

)(
2n

n+ j

)

, (2)

mostly for small positive integers s, t, k, β. Again, without the absolute value, the
summation would not pose any particular problem since it could be carried out
separately in i and j by means of a relatively straightforward application of the
binomial theorem. In several cases, they found explicit evaluations of such sums—
sometimes with proof, sometimes conjecturally.

The purpose of the current paper is to provide a complete treatment of double
sums of the form (2) and of the more general form

∑

i,j

|isj t (ik − jk)β |
(

2n

n+ i

)(
2m

m+ j

)

, (3)

with an independent parameter m. More precisely, using the computer algebra
package Sigma [15], we were led to the conjecture that these double sums of
the form (2) can always be expressed in terms of a linear combination of just four

functions, namely
(4n

2n

)
,
(2n
n

)2
, 4n

(2n
n

)
, and 16n, with coefficients that are rational

in n, while in many instances double sums of the form (3) can be expressed in terms
of a linear combination of the four functions

(2n+2m
n+m

)
,
(2n
n

)(2m
m

)
, 4n

(2m
m

)
, and 4m

(2n
n

)
,

with coefficients that are rational in n and m. We demonstrate this observation in
Theorems 1–4, in a much more precise form.

It is not difficult to see that the problem of evaluation of double sums of the
form (2) and (3) can be reduced to the evaluation of sums of the form

∑

0≤i≤j

isj t

(
2n

n+ i

)(
2m

m+ j

)

(4)

(and a few simpler single sums). See the proofs of Theorems 1–4 in Sect. 7 and
Remark 3(1). We furthermore show (see the proofs of Propositions 1 and 2 in Sect. 5,
which may be considered as the actual main result of the present paper) that for the
evaluation of double sums of the form (4) it suffices to evaluate four fundamental
double sums, given in Lemmas 1–4 in Sect. 2. While Lemmas 2–4 are relatively
easy to prove by telescoping arguments (see the proofs in Sect. 2), the proof of
Lemma 1 is more challenging. We provide two different proofs, one using computer
algebra, and one using complex contour integrals. We believe that both proofs are
of intrinsic interest. The algorithmic proof is described in Sect. 3. There, we explain
that the computer algebra package Sigma can be used in a completely automatic
fashion to evaluate double sums of the form (4). In particular, the reader can see
how we empirically discovered our main results in Sects. 5 and 7. The second proof,
based on the power of complex integration, is explained in Sect. 4.
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We close our paper by proving another conjecture from [6, Conj. 3.1], namely
the inequality (see Theorem 5 in Sect. 8)

∑

i,j

∣
∣
∣j2 − i2

∣
∣
∣

(
2n

n+ i

)(
2m

m+ j

)

≥ 2nm

(
2n

n

)(
2m

m

)

.

We show moreover that equality holds if and only if m = n, in which case the
evaluation (1) applies. Although Lemmas 1–4 would provide a good starting point
for a proof of the inequality, we prefer to use a more direct approach, involving an
application of Gosper’s algorithm [7] at a crucial point.

We wish to point out that Bostan et al. [1] have developed an algorithmic
approach—based on contour integrals—that is capable of automatically finding a
recurrence for the double sum (2) for any particular choice of s, t, k, β, and, thus,
is able to establish an evaluation of such a sum (such as (1), for example) once the
right-hand side is found.

Our final remark is that some of the double sums (2) and (3) can be embedded
into infinite families of multidimensional sums that still allow for closed form
evaluations, see [4].

2 The Fundamental Lemmas

In this section, we state the summation identities which form the basis of the
evaluation of double sums of the form (4) (and, thus, of double sums of the form (2)
and (3)). As it turns out, Lemmas 2–4 are very easy to prove since at least one
summation of the double sum can be put in telescoping form, see the proofs
below. Lemma 1 is much more subtle. We provide two different proofs, the first
being algorithmic—see Sect. 3, the second making use of complex integration—see
Sect. 4.

Lemma 1 For all non-negative integers n and m, we have

∑

0≤i≤j

(
2n

n+ i

)(
2m

m+ j

)

= 22n+2m−3 + 1

4

(
2n+ 2m

n+m

)

+ 1

2

(
2n

n

)(
2m

m

)

+ 22m−2
(

2n

n

)

− 1

8

n−m∑


=0

(
2n− 2


n− 


)(
2m+ 2


m+ 


)

, (5)

where the sum on the right-hand side has to be interpreted as explained in Lemma 7.
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Lemma 2 For all non-negative integers n and m, we have

∑

0≤i≤j
i

(
2n

n+ i

)(
2m

m+ j

)

= −n

4

(
2n+ 2m

n+m

)

+ n 22m−2
(

2n

n

)

+ nm

4(n+m)

(
2n

n

)(
2m

m

)

.

(6)

Lemma 3 For all non-negative integers n and m, we have

∑

0≤i≤j

j

(
2n

n+ i

)(
2m

m+ j

)

= m

4

(
2n+ 2m

n+m

)

+ m(m+ 2n)

4(n+m)

(
2n

n

)(
2m

m

)

. (7)

Lemma 4 For all non-negative integers n and m, we have

∑

0≤i≤j

i j

(
2n

n+ i

)(
2m

m+ j

)

= mn

2(n+m)

(
2n+ 2m− 2

n+m− 1

)

+ nm2

4(n+m)

(
2n

n

)(
2m

m

)

.

(8)

Proof of Lemma 2 We have1

i

(
2n

n+ i

)

= n+ i

2

(
2n

n+ i

)

− n+ i + 1

2

(
2n

n+ i + 1

)

.

Thus, we obtain

∑

0≤i≤j

i

(
2n

n+ i

)(
2m

m+ j

)

= 1

2

∑

j≥0

(

n

(
2n

n

)

− (n+ j + 1)

(
2n

n+ j + 1

))(
2m

m+ j

)

= n

2

(
2n

n

)∑

j≥0

(
2m

m+ j

)

− 1

2

∑

j≥0

(n− j )

(
2n

n+ j

)(
2m

m+ j

)

.

The first sum is, essentially, one half of a binomial theorem,

∑

j≥0

(
2m

m+ j

)

= 1

2

(
2m

m

)

+ 22m−1.

1The informed reader will have guessed that the telescoping form of the summand was discovered
by using Gosper’s algorithm [7] (see also [14]). The particular implementation that we applied is
the one due to Paule and Schorn [13].
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In order to evaluate the second sum, we observe that2

∑

j≥0

(n− j)

(
2n

n+ j

)(
2m

m+ j

)

= n
∑

j≥0

(
2n

n+ j

)(
2m

m+ j

)

−
∑

j≥0

j

(
2n

n+ j

)(
2m

m+ j

)

= n

2

∞∑

j=−∞

(
2n

n+ j

)(
2m

m+ j

)

+ n

2

(
2n

n

)(
2m

m

)

−
∑

j≥0

(
(n+ j)(m+ j)

2(m+ n)

(
2n

n+ j

)(
2m

m+ j

)

− (n+ j + 1)(m+ j + 1)

2(m+ n)

(
2n

n+ j + 1

)(
2m

m+ j + 1

))

= n

2

∞∑

j=−∞

(
2n

n+ j

)(
2m

m− j

)

+ n

2

(
2n

n

)(
2m

m

)

− nm

2(m+ n)

(
2n

n

)(
2m

m

)

.

The sum in the last line can be evaluated by means of the Chu–Vandermonde
summation formula (cf. [9, Sec. 5.1, (5.27)]). Substitution of these findings and
little simplification then leads to the right-hand side of (6). ��
Proof of Lemma 3 We have

j

(
2m

m+ j

)

= m+ j

2

(
2m

m+ j

)

− m+ j + 1

2

(
2m

m+ j + 1

)

. (9)

Thus, we obtain

∑

0≤i≤j

j

(
2n

n+ i

)(
2m

m+ j

)

= 1

2

∑

i≥0

(
2n

n+ i

)

(m+ i)

(
2m

m+ i

)

= m

2

∑

i≥0

(
2n

n+ i

)(
2m

m+ i

)

+ 1

2

∑

i≥0

i

(
2n

n+ i

)(
2m

m+ i

)

.

We have evaluated the same sums in the previous proof. We leave it to the reader to
fill in the details in order to arrive at the right-hand side of (7). ��

2For the finding of the telescoping form of the sum over j ≥ 0 below see footnote 1.
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Proof of Lemma 4 Using (9), we have

∑

0≤i≤j

i j

(
2n

n+ i

)(
2m

m+ j

)

= 1

2

∑

i≥0

i

(
2n

n+ i

)

(m+ i)

(
2m

m+ i

)

= 1

2

∑

i≥0

(n+ i)

(
2n

n+ i

)

(m+ i)

(
2m

m+ i

)

− n

2

∑

i≥0

(
2n

n+ i

)

(m+ i)

(
2m

m+ i

)

= 2nm
∑

i≥0

(
2n− 1

n+ i − 1

)(
2m− 1

m+ i − 1

)

− n

2

∑

i≥0

(
2n

n+ i

)

(m+ i)

(
2m

m+ i

)

.

We have evaluated the second sum in the previous proof. In order to evaluate the
first sum, we do the substitution i →−i + 1 and obtain

∑

i≥0

(
2n− 1

n+ i − 1

)(
2m− 1

m+ i − 1

)

= 1

2

∑

i≥0

(
2n− 1

n+ i − 1

)(
2m− 1

m+ i − 1

)

+ 1

2

∑

i≤1

(
2n− 1

n− i

)(
2m− 1

m− i

)

= 1

2

∞∑

i=−∞

(
2n− 1

n+ i − 1

)(
2m− 1

m+ i − 1

)

+ 1

2

(
2n− 1

n− 1

)(
2m− 1

m− 1

)

+ 1

2

(
2n− 1

n

)(
2m− 1

m

)

= 1

2

∞∑

i=−∞

(
2n− 1

n+ i − 1

)(
2m − 1

m− i

)

+
(

2n− 1

n

)(
2m− 1

m

)

.

Again, the sum can be evaluated by means of the Chu–Vandermonde summation
formula, and then substitution of these findings and little simplification leads to the
right-hand side of (8). ��

3 Proof of Lemma 1 Using the Computer Algebra Package
Sigma

Here we show how Lemma 1 can be established by using the algorithmic tools
provided by the summation package Sigma [15] of the second author. Algorithmic
proofs of Lemmas 2–4 are much simpler and could be obtained completely
analogously.
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We seek an alternative representation of the double sum

S(n,m) =
∑

0≤i≤j

(
2n

n+ i

)(
2m

m+ j

)

(10)

for all non-negative integers m,n with the following property: if one specialises m

(respectively n) to a non-negative integer or if one knows the distance between n

and m, then the evaluation of the double sum should be performed in a direct and
simple fashion. In order to accomplish this task, we utilise the summation package
Sigma [15].

The sum (10) can be rewritten in the form

S(n,m) =
m∑

j=0

f (n,m, j) (11)

with

f (n,m, j) =
(

2m

j +m

) j∑

i=0

(
2n

i + n

)

. (12)

Given this sum representation we will exploit the following summation spiral that
is built into Sigma:

1. Calculate a linear recurrence in m of order d (for an appropriate positive
integer d) for the sum S(n,m) by the creative telescoping paradigm;

2. solve the recurrence in terms of (indefinite) nested sums over hypergeomet-
ric products with respect to m (the corresponding sequences are also called
d’Alembertian solutions, see [14]);

3. combine the solutions into an expression RHS(n,m) such that S(n, l) =
RHS(n, l) holds for all n and l = 0, 1, . . . , d − 1.

Then this implies that S(n,m) = RHS(n,m) holds for all non-negative integers
m,n.

Remark 1 This summation engine can be considered as a generalisation of [14] that
works not only for hypergeometric products but for expressions in terms of nested
sums over such hypergeometric products. It is based on a constructive summation
theory of difference rings and fields [17, 18] that enhances Karr’s summation
approach [11] in various directions.

In the following paragraphs, we assume that m ≤ n. We activate Sigma’s
summation spiral.
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Step 1. Observe that our sum (11) with summand given in (12) is already in the
right input form for Sigma: the summation objects of (12) are given in terms
of nested sums over hypergeometric products. More precisely, let Sj denote the
shift operator with respect to j , that is, SjF (j) := F(j+1). Then, if one applies
this shift operator to the arising objects of f (n,m, j), one can rewrite them again
in their non-shifted versions:

Sj

(
2m

j +m

)

= m− j

1+ j +m

(
2m

j +m

)

,

Sj

j∑

i=0

(
2n

i + n

)

=
j∑

i=0

(
2n

i + n

)

+ n− j

1+ j + n

(
2n

j + n

)

.

(13)

With the help of these identities, we can look straightforwardly for a linear
recurrence in the free integer parameter m as follows. First, we load Sigma into
the computer algebra system Mathematica,

In[1]:= << Sigma.m

Sigma - A summation package by Carsten Schneider © RISC-Linz

and enter our definite sum S(n,m):

In[2]:= mySum = SigmaSum[Binomial[2m, j + m]SigmaSum[Binomial[2n, i + n], {i, 0, j}], {j, 0, m}]

Out[2]=

m∑

j=0

(
2m

j+ m

) j∑

i=0

(
2n

i+ n

)

Then we compute a recurrence in m by executing the function call

In[3]:= rec = GenerateRecurrence[mySum, m][[1]]

Out[3]= SUM[m+ 1] − 4SUM[m] == − 1

1+ m+ n

m∑

i=0

(
2m

i+ m

)(
2n

i+ n

)

+ mn

(m+ 1)(1+ m+ n)

(
2m

m

)(
2n

n

)

This means that SUM[m] = S(n,m)(= mySum) is a solution of the output recur-
rence. But what is going on behind the scenes? Roughly speaking, Zeilberger’s
creative telescoping paradigm [14] is carried out in the setting of difference rings.
More precisely, one tries to compute a recurrence for the summand f (n,m, j)

of the form

c0(n,m)f (n,m, j)+ c1(n,m)f (n,m+ 1, j)+ · · ·+ cd(n,m)f (n,m+ d, j)

= g(n,m, j + 1)− g(n,m, j), (14)
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for d = 0, 1, 2, . . . . In our particular instance, Sigma is successful for d = 1
and delivers the solution c0(n,m) = −4, c1(n,m) = 1, and

g(n,m, j) = (2j − 1)

−1+ j −m

(
2m

j +m

) j∑

i=0

(
2n

i + n

)

+ j − n

1+m+ n

(
2m

j +m

)(
2n

j + n

)

+ 1

−1−m− n

j∑

i=0

(
2m

i +m

)(
2n

i + n

)

,

(15)

which holds for all non-negative integers j,m, n with 0 ≤ j ≤ m ≤ n. The
correctness can be verified by substituting the right-hand side of (12) into (14),
rewriting the summation objects in terms of

( 2m
j+m

)
and

∑j
i=0

( 2n
i+n

)
using the

relations given in (13) and Sm

( 2m
j+m

) = 2(m+1)(2m+1)
(m−j+1)(1+j+m)

( 2m
j+m

)
, and applying

simple rational function arithmetic. We recall that we assumed m ≤ n, and this
restriction is indeed essential for being allowed to use Sigma in the described
setup. However, the above check reveals that the result is in fact correct without
any restriction on the relative sizes of m and n.
Finally, by summing (14) over j from 0 to m, we obtain the linear recurrence

m∑

j=0

f (n,m+ 1, j)− 4
m∑

j=0

f (n,m, j) = −
m+1∑

j=0

(
2n

i + n

)

+ 1

−1−m− n

m∑

i=0

(
2m

i +m

)(
2n

i + n

)

+ mn

(m+ 1)(1+m+ n)

(
2m

m

)(
2n

n

)

.

which, by the above remark, holds for all non-negative integers m,n. As is
straightforward to see, this is indeed equivalent to Out[3].

Step 2. We now apply our summation toolbox to the definite sum
∑m

i=0

( 2m
i+m

)( 2n
i+n

)

and obtain

m∑

i=0

(
2m

m+ i

)(
2n

n+ i

)

= 1

2

(
2m

m

)(
2n

n

)

+ 1

2

(
2m+ 2n

m+ n

)

. (16)

Note that the calculations can be verified rigorously and as a consequence we
obtain a proof that the identity holds for all non-negative integers m,n. Since we
remain in this particular case purely in the hypergeometric world, one could also
use the classical toolbox described in [14]. Yet another (classical) proof consists
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in observing that the sum on the left-hand side of (16) can be rewritten as

1

2

( m∑

i=0

(
2m

m+i

)(
2n

n−i

)

+
m∑

i=0

(
2m

m−i

)(
2n

n+i

))

= 1

2

( 2m∑

i=0

(
2m

i

)(
2n

n+m−i

)

+
(

2m

m

)(
2n

n

))

,

and then evaluating the sum on the right-hand side by means of the Chu–
Vandermonde summation formula.
As a consequence, we arrive at the linear recurrence

In[4]:= rec = rec/.
m∑

i=0

(
2m

i + m

)(
2n

i + n

)
→ 1

2

(
2m
m

)(
2n
n

)
+ 1

2

(
2m + 2n
m + n

)

Out[4]= SUM[m+ 1] − 4SUM[m] == −
(2m+2n
m+n

)

1+ m+ n

1

2
+ (−1− m+ 2mn)

(2m
m
)(2n

n
)

2(m+ 1)(1+ m+ n)

Now we can activate Sigma’s recurrence solver with the function call

In[5]:= recSol = SolveRecurrence[rec, SUM[m]]

Out[5]= {{0,22m}, {1, 1
4

(
2m

m

)(
2n

n

)

+ 1

4

(
2m+ 2n

m+ n

)

+ 22m
(
2n

n

)(
− 1

4
+ 1

4
n

m∑

i=0

2−2i(2ii
)

i+ n

)
}}

This means that the first entry of the output is the solution of the homogeneous
version of the recurrence, and the second entry is a solution of the recurrence
itself. Hence, the general solution is

c 22m + 1

4

(
2m

m

)(
2n

n

)

+ 1

4

(
2m+ 2n

m+ n

)

+ 22m
(

2n

n

)(

− 1

4
+ 1

4
n

m∑

i=0

2−2i
(2i
i

)

i + n

)

,

(17)

where the constant c (free of m) can be freely chosen. We note that this solution
can be easily verified by substituting it into rec computed in Out[4] and using
the relations

Sm

(
2m

m

)

= 2(2m+ 1)

m+ 1

(
2m

m

)

,

Sm

(
2m+ 2n

m+ n

)

= 2(2m+ 2n+ 1)

m+ n+ 1

(
2m+ 2n

m+ n

)

,

Sm

m∑

i=0

2−2i
(2i
i

)

i + n
=

m∑

i=0

2−2i
(2i
i

)

i + n
+ 2−2m(2m+ 1)

2(m+ 1)(1+m+ n)

(
2m

m

)

.

Step 3. Looking at the initial value S(n, 0) = (2n
n

)
, we conclude that the

specialisation c = 1
2

(2n
n

)
in (17) equals S(n,m) for all n ≥ 0 and m = 0.
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Summarising, we have found (together with a proof) the representation

S(n,m) = 22m−2
(

2n

n

)

n

m∑

i=0

2−2i
(2i
i

)

i + n
+ 22m−2

(
2n

n

)

+ 1

4

(
2m

m

)(
2n

n

)

+ 1

4

(
2m+ 2n

m+ n

)

,

(18)

which holds for all non-negative integers m,n. This last calculation step can be also
carried out within Sigma, by making use of the function call

In[6]:= FindLinearCombination[recSol, {0, {(2n
n

)}}, m, 1]

Out[6]= 22m−2
(
2n

n

)

n
m∑

i=0

2−2i(2ii
)

i+ n
+ 22m−2

(
2n

n

)

+ 1

4

(
2m

m

)(
2n

n

)

+ 1

4

(
2m+ 2n

m+ n

)

Strictly speaking, the above derivations contained one “human” (= non-automa-
tic) step, namely at the point where we checked (15) and observed that this relation
actually holds without the restriction m ≤ n. For the algorithmic “purist” we point
out that it is also possible to set up the problem appropriately under the restriction
m > n (by splitting the double sum S(n,m) into two parts) so that Sigma is
applicable. Not surprisingly, Sigma finds (18) again.

In this article, we are particularly interested in the evaluation of S(n,m) if one
fixes the distance r = n − m ≥ 0 (or r = m − n ≥ 0). In order to find such a
representation for the case m ≤ n, we manipulate the obtained sum

m∑

i=0

2−2i
(2i
i

)

i + n
=

m∑

i=0

2−2i
(2i
i

)

i + r +m
:= T (m, r) (19)

in (18) further by applying once more Sigma’s summation spiral (where r takes
over the role of m).

Step 1. Using Sigma (alternatively one could use the Paule and Schorn imple-
mentation [13] of Zeilberger’s algorithm), we obtain the recurrence

2(m+ r)T (m, r)+ (−1− 2m− 2r)T (m, r + 1) = 2−2m(2m+ 1)
(2m
m

)

2m+ r + 1
.

Step 2. Using Sigma’s recurrence solver we obtain the general solution

d
22rm

(2m
m

)

(2m+2r
m+r

)
(m+ r)

+ 2−2m
(2m
m

)

m+ r
− 2−2m+2r (4m+ 1)

(2m
m

)2

2
(2m+2r

m+r

)
(m+ r)

− 22r−2mm
(2m
m

)

(2m+2r
m+r

)
(m+ r)

r∑

i=0

2−2i(2m+2i
m+i )

2m+i
,

where the constant d (free of r) can be freely chosen.
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Step 3. Looking at the initial value

T (m, 0) =
m∑

i=0

2−2i
(2i
i

)

i +m
= 22m−1

m
(2m
m

) + 2−2m−1
(2m
m

)

m
,

which we simplified by another round of Sigma’s summation spiral, we
conclude that we have to specialise d to

d = 22m−1

m
(2m
m

) + 2−2m−1(4m+ 1)
(2m
m

)

m
.

With this choice, we end up at the identity

T (m, r) = − 22r−2mm
(2m
m

)

(2m+2r
m+r

)
(m+ r)

r∑

i=0

2−2i
(2i+2m

i+m

)

i + 2m
+ 2−2m

(2m
m

)

m+ r
+ 22m+2r−1

(2m+2r
m+r

)
(m+ r)

,

being valid for all non-negative integers r,m. Finally, performing the substitution
r → n−m, we find the identity

T (m, n−m) = −22n−4m
(2m
m

)

n
(2n
n

) m

n−m∑

i=0

2−2i
(2i+2m

i+m

)

i + 2m
+22n−1

n
(2n
n

)+2−2m
(2m
m

)

n
, (20)

which holds for all non-negative integers n,m with n ≥ m. By substituting this
result into (18), we see that we have discovered and proven that

S(n,m) = −2−2m+2n−2
(

2m

m

)

m

n−m∑

i=0

2−2i
(2i+2m

i+m

)

i + 2m

+ 22m−2
(

2n

n

)

+ 1

2

(
2m

m

)(
2n

n

)

+ 1

4

(
2m+ 2n

m+ n

)

+ 22m+2n−3, (21)

which is valid for all non-negative integers n,m with n ≥ m. In a similar fashion,
if m ≥ n, we obtain

S(n,m) = 22m−2n−2
(

2n

n

)

n

m−n∑

i=0

2−2i
(2i+2n

i+n

)

i + 2n

+ 22m−2
(

2n

n

)

+ 1

4

(
2m

m

)(
2n

n

)

+ 1

4

(
2m+ 2n

m+ n

)

+ 22m+2n−3. (22)

We note that the interaction of the summation steps 1–3 is carried out at various
places in a recursive manner. In order to free the user from all these mechanical but
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rather subtle calculation steps, the additional packageEvaluateMultiSums [16]
has been developed recently. It coordinates all these calculation steps cleverly and
discovers identities as above completely automatically whenever such a simplifica-
tion in terms of nested sums over hypergeometric products is possible. For instance,
after loading the package

In[7]:= << EvaluateMultiSum.m

EvaluateMultiSums by Carsten Schneider © RISC-Linz

we can transform the sum (10) into the desired form by executing the function call

In[8]:= res = EvaluateMultiSum[( 2n
n+i

)( 2m
m+j

)
, {{i, 0, j}, {j, 0, m}}, {m, n}, {0, 0}, {n, ∞}]

Out[8]=
(2n+ 1)22m−3(2n)!

n2((n− 1)!)2
m∑

i=1

2−2i(2ii
)

1+ i+ n

+ (4n+ 3)22m−3(2n)!
n2(n+ 1)((n− 1)!)2 +

(3+ 4m+ 2n)
(2m
m

)
(2n)!

8n2(1+ m+ n)((n− 1)!)2 +
(2m+ 2n)!

4n2((n− 1)!)2((n+ 1)m
)2

Here, Sigma uses the Pochhammer symbol (α)m defined by

(α)m =

⎧
⎪⎪⎨

⎪⎪⎩

α(α + 1)(α + 2) · · · (α +m− 1), for m > 0,

1, for m = 0,

1/(α − 1)(α − 2)(α − 3) · · · (α +m), for m < 0,

(23)

which we shall also use later. The parameters m,n in the calculation above are
bounded from below by 0, 0 and from above by n,∞, respectively. If one prefers
a representation purely in terms of binomial coefficients, one may execute the
following function calls:

In[9]:= res = SigmaReduce[res, m, Tower → {(2m
m

)
,
(2n+2m

n+m
)}];

In[10]:= res = SigmaReduce[res, n, Tower → {(2n
n

)}];

Out[10]= 22m−3(2n + 1)

(
2n

n

) m∑

i=1

2−2i(2ii
)

1+ i+ n
+ (4n+ 3)22m−3(2nn

)

n+ 1
+ (3+ 4m+ 2n)

(2m
m
)(2n

n
)

8(1+ m+ n)
+

1

4

(
2m+ 2n

m+ n

)

If one rewrites the arising sum manually by means of the function call below, one
finally ends up exactly at the result given in (18):

In[11]:= res = SigmaReduce[res, m, Tower → {
m∑

i=1

2−2i(2i
i
)

i+n }]

Out[11]= 22m−2
(
2n

n

)

n
m∑

i=1

2−2i(2ii
)

i+ n
+ 22m−1

(
2n

n

)

+ 1

4

(
2m

m

)(
2n

n

)

+ 1

4

(
2m+ 2n

m+ n

)

Analogously one can carry out these calculation steps to calculate the simplifica-
tion given in (20) automatically.
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Comparison with Lemma 1 reveals that (21) or (22) do not quite agree with the
right-hand side of (5). For example, in order to prove that (21) is equivalent with (5),
we would have to establish the identity

1

8

n−m∑

l=0

(
2m+ 2l

m+ l

)(
2n− 2l

n− l

)

= 2−2m+2n−2
(

2m

m

)

m

n−m∑

i=0

2−2i
(2i+2m

i+m

)

i + 2m
.

This can, of course, be routinely achieved by using the Paule and Schorn imple-
mentation [13] of Zeilberger’s algorithm. Alternatively, we may use our Sigma
summation technology again. Let

T ′(n,m) :=
n−m∑

l=0

(
2m+ 2l

m+ l

)(
2n− 2l

n− l

)

.

The above described summation spiral leads to

T ′(n,m) = −22m+1n

(
2n

n

) m∑

i=0

2−2i
(2i
i

)

i + n
+ 2

(
2m

m

)(
2n

n

)

+ 22m+2n.

If this relation is substituted in (18), then we arrive exactly at the assertion of
Lemma 1.

Clearly, the case where m ≥ n can be treated in a similar fashion. This finishes
the algorithmic proof of Lemma 1. ��

4 Proof of Lemma 1 Using Complex Contour Integrals

In this section, we show how to prove Lemma 1 by making use of complex contour
integrals. Before we can embark on the proof of the lemma, we need to establish
several auxiliary evaluations of specific contour integrals.

Remark In order to avoid a confusion of the summation index i with the usual short
notation for

√−1, throughout this section we write i for
√−1.

Lemma 5 For all non-negative integers n, we have

1

2π i

∫

C

dz

zn+1(1− z)n+1

1

(1− 2z)
= 22n, (24)

where C is a contour close to 0, which encircles 0 once in the positive direction.

Proof Let I1 denote the expression on the left-hand side of (24). We blow up the
contour C so that it is sent to infinity. While doing this, we must pass over the poles
z = 1/2 and z = 1 of the integrand. This must be compensated by taking the
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residues at these points into account. Since the integrand is of the order O(z−2) as
|z| → ∞, the integral along the contour near infinity vanishes. Thus, we obtain

I1 = −Resz=1/2
1

zn+1(1− z)n+1

1

(1− 2z)
− Resz=1

1

zn+1(1− z)n+1

1

(1− 2z)

= 22n+1 − 1

2π i

∫

C

1

(1+ z)n+1(1− (1+ z))n+1

1

(1− 2(1+ z))
dz.

As the substitution z → −z shows, the last integral is identical with I1. Thus, we
have obtained an equation for I1, from which we easily get the claimed result. ��
Lemma 6 For all non-negative integers n and m, we have

1

(2π i)2

∫

C1

∫

C2

1

(u− t)

du

un+1(1− u)n+1

dt

tm(1− t)m
= −1

2

(
2n+ 2m

n+m

)

, (25)

where C1 and C2 are contours close to 0, which encircle 0 once in the positive
direction, and C2 is entirely in the interior of C1.

Proof We treat here the case where n ≥ m. The other case can be disposed of
completely analogously.

Let I2 denote the expression on the left-hand side of (25). Clearly, interchange
of u and t in the integrand does not change I2. In that case however, we must also
interchange the corresponding contours. Hence, I2 is also equal to one half of the
sum of the original expression and the one where u and t are exchanged, that is,

I2 = 1

2 (2π i)2

∫

C1

∫

C2

1

(u− t)

du

un+1(1− u)n+1

dt

tm(1− t)m

− 1

2 (2π i)2

∫

C2

∫

C1

1

(u− t)

dt

tn+1(1− t)n+1

du

um(1− u)m
.

We would like to put both expressions under one integral. In order to do so, we must
blow up the contour C2 in the second integral (the contour for t) so that it passes
across C1. When doing so, the term u− t in the denominator will vanish, and so we
shall collect a residue at t = u. This yields

I2 = 1

2 (2π i)2

∫

C1

∫

C2

du dt

(u− t)
(
u(1− u) t (1− t)

)n+1

·
((

t (1− t)
)n−m+1 − (

u(1− u)
)n−m+1

)

+ 1

2 (2π i)

∫

C1

Rest=u

1

(u− t)

dt

tn+1(1− t)n+1

du

um(1− u)m
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= 1

2 (2π i)2

∫

C1

∫

C2

du dt (u+ t − 1)
(
u(1− u) t (1− t)

)n+1

n−m∑


=0

(
t (1− t)

)
(
u(1− u)

)n−m−


− 1

2 (2π i)

∫

C1

du

un+m+1(1− u)n+m+1

=
n−m∑


=0

1

2 (2π i)2

∫

C1

∫

C2

du dt

um+
(1− u)m+
+1
(
t (1− t)

)n−
+1

−
n−m∑


=0

1

2 (2π i)2

∫

C1

∫

C2

du dt
(
u(1− u)

)m+
+1
tn−
+1(1− t)n−


− 1

2

(
2n+ 2m

n+m

)

= 1

2

n−m∑


=0

(
2n− 2


n− 


)(
2m+ 2
− 1

m+ 


)

− 1

2

n−m∑


=0

(
2n− 2
− 1

n− 
− 1

)(
2m+ 2


m+ 


)

− 1

2

(
2n+ 2m

n+m

)

= −1

2

(
2n+ 2m

n+m

)

,

the last equality following from
(2k
k

) = 2
(2k−1

k

)
. ��

Lemma 7 For all non-negative integers n and m with n ≥ m, we have

1

(2π i)2

∫

C1

∫

C2

1

(u− t)(1− 2t)

du

un+1(1− u)n+1

dt

tm(1− t)m

= −1

4

n−m∑


=0

(
2n− 2


n− 


)(
2m+ 2


m+ 


)

− 3 · 22n+2m−2, (26)

where C1 and C2 are contours close to 0, which encircle 0 once in the positive
direction, and C2 is entirely in the interior of C1. The sum on the right-hand side
must be interpreted according to

N−1∑

k=M

Expr(k) =

⎧
⎪⎪⎨

⎪⎪⎩

∑N−1
k=M Expr(k), N > M,

0, N = M,

−∑M−1
k=N Expr(k), N < M.

(27)

Proof Again, here we treat the case where n ≥ m. The other case can be disposed
of completely analogously.

Let I3 denote the expression on the left-hand side of (26). We apply the same
trick as in the proof of Lemma 6 and observe that I3 is equal to one half of the sum
of the original expression and the one where u and t are exchanged, plus the residue
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of the latter at t = u. To be precise,

I3 = 1

2 (2π i)2

∫

C1

∫

C2

du dt

(u− t) (1 − 2u) (1 − 2t)
(
u(1− u) t (1 − t)

)n+1

·
(
(1 − 2u)

(
t (1 − t)

)n−m+1 − (1− 2t)
(
u(1− u)

)n−m+1
)

+ 1

2 (2π i)2

∫

C1

Rest=u

1

(u− t)(1− 2u)

1

tn+1(1 − t)n+1

du

um(1 − u)m

= 1

2 (2π i)2

∫

C1

∫

C2

du dt

(u− t) (1 − 2t)
(
u(1− u) t (1 − t)

)n+1

·
((

t (1 − t)
)n−m+1 − (

u(1− u)
)n−m+1

)

− 1

(2π i)2

∫

C1

∫

C2

du dt

(1 − 2u) (1 − 2t)
(
u(1− u)

)m(
t (1 − t)

)n+1

− 1

2 (2π i)2

∫

C1

1

(1 − 2u)

du

un+m+1(1− u)n+m+1

= 1

2 (2π i)2

∫

C1

∫

C2

du dt (u+ t − 1)

(1−2t)
(
u(1−u) t (1−t)

)n+1

n−m∑


=0

(
t (1−t)

)
(
u(1− u)

)n−m−


− 22m−2+2n − 22n+2m−1

=
n−m∑


=0

1

2 (2π i)2

∫

C′1

∫

C′2

du dt

(1− 2t) um+
(1− u)m+
+1
(
t (1 − t)

)n−
+1

−
n−m∑


=0

1

2 (2π i)2

∫

C′1

∫

C′2

du dt

(1 − 2t)
(
u(1− u)

)m+
+1
tn−
+1(1 − t)n−


− 3 · 22m+2n−2

= 1

2

n−m∑


=0

(
2m+ 2
− 1

m+ 


)

22n−2


− 1

2

n−m∑


=0

(
2m+ 2


m+ 


)(

22n−2
−1 + 1

2

(
2n− 2


n− 


))

− 3 · 22n+2m−2

= −1

4

n−m∑


=0

(
2n− 2


n− 


)(
2m+ 2


m+ 


)

− 3 · 22n+2m−2,

which is again seen by observing
(2k
k

) = 2
(2k−1

k

)
. ��

We are now in the position to prove Lemma 1 from Sect. 2.
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Proof of Lemma 1 Using complex contour integrals, we may write

∑

0≤i≤j

(
2n

n+ i

)(
2m

m+ j

)

=
∑

0≤i≤j

(
2n

n− i

)(
2m

m− j

)

=
∑

0≤i≤j

1

(2π i)2

∫

C1

∫

C2

(1+ x)2n

xn−i+1

(1+ y)2m

ym−j+1
dx dy

= 1

(2π i)2

∫

C1

∫

C2

(1+ x)2n

xn+1

(1+ y)2m

ym+1

dx dy

(1− xy)(1− y)
,

where C1 and C2 are contours close to 0, which encircle 0 once in the positive
direction.

Now we do the substitutions x = u/(1 − u) and y = t/(1 − t), implying dx =
du/(1− u)2 and dy = dt/(1 − t)2. This leads to

∑

0≤i≤j

(
2n

n+ i

)(
2m

m+ j

)

= 1

(2π i)2

∫

C′1

∫

C′2

du

un+1(1− u)n+1

dt

tm+1(1− t)m+1

(1− u)(1− t)2

(1− u− t)(1− 2t)

= 1

2 (2π i)2

∫

C′1

∫

C′2

du

un+1(1− u)n+1

dt

tm+1(1− t)m+1

− 1

(2π i)2

∫

C′1

∫

C′2

du

un+1(1− u)n+1

dt

tm(1− t)m

1

(1− 2t)

+ 1

2 (2π i)2

∫

C′1

∫

C′2

du

un+1(1− u)n+1

dt

tm+1(1− t)m+1

1

(1− 2t)

+ 1

2 (2π i)2

∫

C′1

∫

C′2

du

un+1(1− u)n+1

dt

tm(1− t)m

1

(1− u− t)

+ 1

2 (2π i)2

∫

C′1

∫

C′2

du

un+1(1− u)n+1

dt

tm(1− t)m
1

(1− u− t)(1− 2t)
.

(28)

We now discuss the evaluation of the five integrals on the right-hand side one by
one. First of all, we have

1

2 (2π i)2

∫

C′1

∫

C′2

du

un+1(1− u)n+1

dt

tm+1(1− t)m+1

= 1

2

〈
un

〉
(1− u)−n−1 〈

tm
〉
(1− t)−m−1

= 1

2

(
2n

n

)(
2m

m

)

. (29)
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Next, by Lemma 5, we have

1

(2π i)2

∫

C′1

∫

C′2

du

un+1(1− u)n+1

dt

tm(1− t)m

1

(1− 2t)
= 22m−2

(
2n

n

)

(30)

and

1

2 (2π i)2

∫

C′1

∫

C′2

du

un+1(1− u)n+1

dt

tm+1(1− t)m+1

1

(1− 2t)
= 22m−1

(
2n

n

)

.

(31)
In order to evaluate

I4 := 1

2 (2π i)2

∫

C′1

∫

C′2

du

un+1(1− u)n+1

dt

tm(1− t)m

1

(1− u− t)
,

we blow up the contour C′1 (the contour for u) so that it is sent to infinity. While
doing this, we pass over the poles u = 1 − t and u = 1 of the integrand. This
must be compensated by taking the residues at these points into account. Since the
integrand is of the order O(u−2) as |u| → ∞, the integral along the contour near
infinity vanishes. Thus, we obtain

I4 = − 1

2 (2π i)

∫

C′2
Resu=1−t

1

un+1(1− u)n+1

dt

tm(1− t)m
1

(1− u− t)

− 1

2 (2π i)

∫

C′2
Resu=1

1

un+1(1− u)n+1

dt

tm(1− t)m

1

(1− u− t)

= 1

2 (2π i)

∫

C′2

dt

tn+m+1(1− t)n+m+1

− 1

2 (2π i)2

∫

C′1

∫

C′2

du

(1+ u)n+1(1− (1+ u))n+1

dt

tm(1− t)m
1

(1− (1+ u)− t)

= 1

2

(
2n+ 2m

n+m

)

− 1

4

(
2n+ 2m

n+m

)

= 1

4

(
2n+ 2m

n+m

)

, (32)

which is seen by performing the substitution u → −u in the second expression in
the next-to-last line and applying Lemma 6.

Finally, in order to evaluate

I5 := 1

2 (2π i)2

∫

C′1

∫

C′2

du

un+1(1− u)n+1

dt

tm(1− t)m

1

(1− u− t)(1 − 2t)
(33)

we again blow up the contour C1 so that it is sent to infinity. While doing this, we
pass over the poles u = 1− t and u = 1 of the integrand. This must be compensated
by taking the residues at these points into account. Since the integrand is of the order
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O(u−2) as |u| → ∞, the integral along the contour near infinity vanishes. Thus, we
obtain

I5 = − 1

2 (2π i)

∫

C′2
Resu=1−t

1

un+1(1− u)n+1
dt

tm(1− t)m

1

(1− u− t)(1− 2t)

− 1

2 (2π i)

∫

C′2
Resu=1

1

un+1(1− u)n+1

dt

tm(1− t)m

1

(1− u− t)(1− 2t)

= 1

2 (2π i)

∫

C′2

dt

tn+m+1(1− t)n+m+1
1

(1− 2t)

− 1

2(2π i)2

∫

C′1

∫

C′2

du

(1+u)n+1(1−(1 + u))n+1
dt

tm(1− t)m

1

(1− (1+ u)− t)(1− 2t)

= 22n+2m−1 − 1

8

n−m∑


=0

(
2n− 2


n− 


)(
2m+ 2


m+ 


)

− 3 · 22n+2m−3, (34)

which is seen by applying Lemma 5 to the first expression in the next-to-last
line, performing the substitution u → −u in the second expression, and applying
Lemma 7. By combining (28)–(34) and simplifying, we obtain the right-hand side
of (5). ��

5 Main Results

This section contains our main results concerning double sums of the form

∑

0≤i≤j

isj t

(
2n

n+ i

)(
2m

m+ j

)

.

If both s and t are even, then we are only able to provide a result in the special case
where m = n. (It would also be possible to provide a similar result for the case
where the difference n −m is some fixed integer.) The reason is that the identity in
Lemma 1, on which an evaluation of the above sum will have to be based, contains
the sum over 
 that cannot be simplified if n and m are generic. Proposition 1
restricts attention to this special case. On the other hand, if s and t are not both
even, then it is possible to provide a general result for the above double sum without
any restriction on n and m. The evaluations are then based on Lemmas 2–4, and
the corresponding results are presented in Proposition 2. It should be noted that, for
the three cases of parity of s and t that are treated in both propositions, it is not
true that Proposition 1 is a direct consequence of Proposition 2 as the assertions in
Proposition 1 are more refined.
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Proposition 1 For all non-negative integers s, t, k and n, we have

∑

0≤i≤j≤n

isj t
(

2n

n+ i

)(
2n

n+ j

)

= P
(1)
s,t (n)

(4n− 1)(4n− 3) · · · (4n− 2S − 2T + 1)

(
4n

2n

)

+ P
(2)
s,t (n)

(2n−1)(2n−3) · · · (2n−2 �(S + T )/2�+1)

(
2n

n

)2
+P

(3)
s,t (n)·4n

(
2n

n

)

+P
(4)
s,t (n)·16n,

(35)

where the P
(i)
s,t (n), i = 1, 2, 3, 4, are polynomials in n, S = �s/2� and T = �t/2�.

More specifically,

1. if s and t are even, then, as polynomials in n, P (1)
s,t (n) is of degree at most 3S+3T ,

P
(2)
s,t (n) is of degree at most 2S+2T +�(S + T )/2�, P (3)

s,t (n) is identically zero if

s �= 0, P (3)
0,t (n) is of degree at most 2T , and P

(4)
s,t (n) is of degree at most 2S+2T ;

2. if s is odd and t is even, then, as polynomials in n, P (1)
s,t (n) is of degree at most

3S + 3T + 1, P (2)
s,t (n) is of degree at most 2S + 2T + 1+ �(S + T )/2�, P (3)

s,t (n)

is of degree at most 2S + 2T + 1, and P
(4)
s,t (n) is identically zero;

3. if s is even and t is odd, then, as polynomials in n, P (1)
s,t (n) is of degree at most

3S + 3T + 1, P (2)
s,t (n) is of degree at most 2S + 2T + 1 + �(S + T )/2�, and

P
(3)
s,t (n) and P

(4)
s,t (n) are identically zero;

4. if s and t are odd, then, as polynomials in n, P (1)
s,t (n) is of degree at most 3S +

3T + 2, P (2)
s,t (n) is of degree at most 2S + 2T + 2 + �(S + T )/2�, and P

(3)
s,t (n)

and P
(4)
s,t (n) are identically zero.

Remark 2 As the proof below shows, explicit formulae for the polynomialsP (i)
s,t (n),

i = 1, 2, 3, 4, can be given that involve the coefficients ca,S(n) and cb,T (n) in (36)
and (37), for which an explicit formula exists as well, see Lemma 10. Admittedly,
these explicit formulae are somewhat cumbersome, and therefore we refrain from
presenting them in full here.

Proof of Proposition 1 We start with the case in which both s and t are even. With
the notation of the proposition, we have s = 2S and t = 2T . We write

i2S =
S∑

a=0

ca,S(n)
(
n2 − i2

) (
(n− 1)2 − i2

)
· · ·

(
(n− a + 1)2 − i2

)
, (36)

where ca,S(n) is a polynomial in n of degree 2S − 2a, a = 0, 1, . . . , S, and

j2T =
T∑

b=0

cb,T (n)
(
n2 − j2

) (
(n− 1)2 − j2

)
· · ·

(
(n− b + 1)2 − j2

)
, (37)
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where cb,T (n) is a polynomial in n of degree 2T − 2b, b = 0, 1, . . . , T . It should
be noted that cS,S(n) = (−1)S and cT ,T (m) = (−1)T . For an explicit formula for
the coefficients ca,S(n) see Lemma 10.

If we use the expansions (36) and (37) on the left-hand side of (35), then we
obtain the expression

S∑

a=0

T∑

b=0

ca,S(n) cb,T (n)

(

(2n− 2a + 1)2a (2n− 2b + 1)2b

∑

0≤i≤j

(
2n− 2a

n+ i − a

)(
2n− 2b

n+ j − b

))

=
S∑

a=0

T∑

b=0

ca,S(n) cb,T (n)

(

(2n− 2a + 1)2a (2n− 2b + 1)2b

·
(

24n−2a−2b−3 + 1

4

(
4n− 2a − 2b

2n− a − b

)

+ 1

2

(
2n− 2a

n− a

)(
2n− 2b

n− b

)

+22n−2b−2
(

2n− 2a

n− a

)

− 1

8

b−a∑


=0

(
2n− 2a − 2


n− a − 


)(
2n− 2b + 2


n− b+ 


)))

,

due to Lemma 1 with n replaced by n − a and m = n − b. This expression can be
further simplified by noting that

S∑

a=0

ca,S(n) (2n− 2a + 1)2a

(
2n− 2a

n− a

)

= 02S
(

2n

n

)

, (38)

which is equivalent to the expansion (36) for i = 0. Thus, we obtain

1

2
02S+2T

(
2n

n

)2

+ 02S
(

2n

n

) T∑

b=0

cb,T (n) 22n−2b−2 (2n− 2b + 1)2b

+
S∑

a=0

T∑

b=0

ca,S(n) cb,T (n)

(

(2n−2a+1)2a (2n−2b+1)2b

·
(

24n−2a−2b−3 + 1

4

(
4n− 2a − 2b

2n− a − b

)

− 1

8

b−a∑


=0

(
2n− 2a − 2


n− a − 


)(
2n− 2b + 2


n− b + 


)))

.

Taking into account the properties of ca,S(n) and cb,T (n), from this expression
it is clear that P (4)

s,t (n), the coefficient of 24n = 16n, has degree at most 2S + 2T
as a polynomial in n. It is furthermore obvious that, due to the term 02S = 0s , the
polynomial P (3)

s,t (n), the coefficient of 22n
(2n
n

) = 4n
(2n
n

)
, vanishes for s �= 0, while

its degree is at most 2T if s = 0.
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In order to verify the claim about P (1)
s,t (n), the coefficient of

(4n
2n

)
, we write

ca,S(n) cb,T (n) (2n − 2a + 1)2a (2n − 2b + 1)2b

(
4n− 2a − 2b

2n− a − b

)

= ca,S(n) cb,T (n)
(2n− 2a + 1)2a (2n − 2b + 1)2b (2n− a − b + 1)2

a+b

(4n− 2a − 2b + 1)2a+2b

(
4n

2n

)

.

It is easy to see that (2n− a − b+ 1)a+b divides numerator and denominator. After
this division, the denominator becomes

2a+b(4n− 1)(4n− 3) · · · (4n− 2a − 2b + 1),

that is, part of the denominator below P (1)(n) in (35). The terms which are missing
are

(4n− 2a − 2b − 1)(4n− 2a − 2b − 3) · · · (4n− 2S − 2T + 1).

Thus, if we put everything on the denominator

(4n− 1)(4n− 3) · · · (4n− 2S − 2T + 1),

then we see that the numerator of the coefficient of
(4n

2n

)
has degree at most

(2S−2a)+ (2T −2b)+2a+2b+2(a+b)+ (S+T −a−b)− (a+b)= 3S+3T ,

as desired.
Finally, we turn our attention to P

(2)
s,t (n), the coefficient of

(2n
n

)2
. We have

ca,S(n) cb,T (n) (2n− 2a + 1)2a (2n− 2b + 1)2b

(
2n− 2a − 2


n− a − 


)(
2n− 2b+ 2


n− b + 


)

= ca,S(n) cb,T (n)
(n− a − 
+ 1)2

a+
 (n− b + 
+ 1)2
b−
 (2n− 2b + 1)2


(2n− 2a − 2
+ 1)2


(
2n

n

)2

(39a)

= ca,S(n) cb,T (n)

× (n− a − 
+ 1)2
a+
 (n− b + 
+ 1)2

b−
 (2n− 2b + 1)2b−2a−2


(2n− 2b + 2
+ 1)2b−2a−2


(
2n

n

)2

.

(39b)

Let us assume a ≤ b, in which case we need to consider non-negative indices 
. (If
a > b, then, according to the convention (27), we have to consider negative 
. Using
the definition (23) of the Pochhammer symbol for negative indices, the arguments
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would be completely analogous.) We make the further assumption that 
 ≤ 1
2 (b−a)

and use expression (39a). (If 
 > 1
2 (b− a), then analogous arguments work starting

from expression (39b).)
It is easy to see that (n − a − 
 + 1)
 divides numerator and denominator

(as polynomials in n) of the prefactor in (39a). Second, the (remaining) factor
22
(n − a − 
 + 1

2 )
 in the denominator and the factor (2n − 2b + 1)2
 in the
numerator do not have common factors for 
 ≤ 1

2 (b − a). The denominator is a

factor of the denominator below P
(2)
s,t (n) in (35). If in (39a) we extend denominator

and numerator by the “missing” factor

(n− �(S + T )/2� + 1
2 )�(T+S)/2�−�b+a�/2 (n− a + 1

2 )a,

then, due to the properties of ca,S(n) and cb,T (n), the numerator polynomial is of
degree at most

(2S − 2a)+ (2T − 2b)+ 2(a + 
)+ 2(b − 
)+ 2
− 


+ �(T + S)/2� − �(b + a)/2� + a

= 2S + 2T + 
+ �(T + S)/2� − �(b + a)/2� + a

≤ 2S + 2T + �(b − a)/2� + �(T + S)/2� − �(b + a)/2� + a

≤ 2S + 2T + �(S + T )/2� ,
as desired.

For the other cases, namely (s, t) being (odd, even), (even, odd), respectively
(odd, odd), we proceed in the same way. That is, we apply the expansions (36)
and (37) on the left-hand side of (35). Then, however, instead of Lemma 1, we
apply Lemma 2, Lemma 3, and Lemma 4, respectively. The remaining arguments
are completely analogous to those from the case of (s, t) being (even,even) (and, in
fact, much simpler since the right-hand sides of the identities in Lemmas 2–4 are
simpler than the one in Lemma 1). ��
Proposition 2 Let s, t and n,m be non-negative integers.

If s and t are not both even or both odd, then

∑

0≤i≤j

isj t

(
2n

n+ i

)(
2m

m+ j

)

= Q
(1)
s,t (n,m)

(2n+ 2m− 1)(2n+ 2m− 3) · · · (2n+ 2m− 2S − 2T + 1)

(
2n+ 2m

n+m

)

+ Q
(2)
s,t (n,m)

(n+m)(n+m− 1)(n+m− 2) · · · (n+m− S − T )

(
2n

n

)(
2m

m

)

+Q
(3)
s,t (n,m) · 4m

(
2n

n

)

, (40)
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where the Q
(i)
s,t (n,m), i = 1, 2, 3, are polynomials in n and m, S = �s/2� and

T = �t/2�. More specifically,

1. if s is odd and t is even, then, as polynomials in n and m, Q(1)
s,t (n,m) is of degree

at most 3S+3T +1, Q(2)
s,t (n,m) is of degree at most 3S+3T +2, and Q

(3)
s,t (n,m)

is of degree at most 2S + 2T + 1;
2. if s is even and t is odd, then, as polynomials in n and m, Q(1)

s,t (n,m) is of degree

at most 3S+3T +1, Q(2)
s,t (n,m) is of degree at most 3S+3T +2, and Q

(3)
s,t (n,m)

is identically zero.

If s and t are odd, then

∑

0≤i≤j

isj t

(
2n

n+ i

)(
2m

m+ j

)

= Q
(1)
s,t (n,m)

(2n+ 2m− 1)(2n+ 2m− 3) · · · (2n+ 2m− 2S − 2T − 1)

(
2n+ 2m

n+m

)

+ Q
(2)
s,t (n,m)

(n+m)(n+m− 1)(n+m− 2) · · · (n+m− S − T )

(
2n

n

)(
2m

m

)

,

(41)

where S = �s/2� and T = �t/2�, and, as polynomials in n and m, Q(1)
s,t (n,m) and

Q
(2)
s,t (n,m) are of degree at most 3S + 3T + 3.

The proof of this proposition is completely analogous to the proof of Proposi-
tion 1 and is therefore left to the reader. Also here (cf. Remark 2), explicit formulae
for the polynomials Q

(i)
s,t (n,m), i = 1, 2, 3, can be given that involve coefficients

ca,S(n) and cb,T (m) for which an explicit formula exists (see Lemma 10).

6 Some More Auxiliary Results

In this section we derive some single sum evaluations that we shall need in the
proofs in Sect. 7.

Lemma 8 For all non-negative integers n and k, we have

n∑

j=1

j2k
(

2n

n+ j

)

= −02k

2

(
2n

n

)

+ 4n
k∑

b=0

cb,k(n) (2n− 2b+ 1)2b 2−2b−1, (42)
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and

n∑

j=1

j2k+1
(

2n

n+ j

)

= 1

2

(
2n

n

) k∑

b=0

cb,k(n) (n− b)b+1 (n− b + 1)b , (43)

where the coefficients cb,k(n) are defined in (37) (with explicit formula provided in
Lemma 10).

Proof We use the expansion (37) with T = k on the left-hand side of (42). This
gives

n∑

j=1

j2k
(

2n

n+ j

)

=
n∑

j=1

k∑

b=0

cb,k(n) (2n− 2b + 1)2b

(
2n− 2b

n+ j − b

)

=
k∑

b=0

cb,k(n) (2n− 2b + 1)2b

(

22n−2b−1 − 1

2

(
2n− 2b

n− b

))

= −02k

2

(
2n

n

)

+
k∑

b=0

cb,k(n) (2n− 2b + 1)2b 22n−2b−1,

where we used (37) with T = k and j = 0 in the last line. This is exactly the
right-hand side of (42).

Now we do the same on the left-hand side of (43). This leads to

n∑

j=1

j2k+1
(

2n

n+ j

)

=
n∑

j=1

j ·
k∑

b=0

cb,k(n) (2n− 2b + 1)2b

(
2n− 2b

n+ j − b

)

=
k∑

b=0

cb,k(n) (2n− 2b)2b+1

n∑

j=1

((
2n− 2b − 1

n+ j − b − 1

)

− 1

2

(
2n− 2b

n+ j − b

))

=
k∑

b=0

cb,k(n) (2n− 2b)2b+1

(

22n−2b−2 − 1

2
22n−2b−1 + 1

4

(
2n− 2b

n− b

))

= 1

2

k∑

b=0

cb,k(n) (n− b)b+1 (n− b + 1)b

(
2n

n

)

.

This is exactly the right-hand side of (43). ��
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Lemma 9 For all non-negative integers n and h, k, we have

∑

j≥1

j2k
(

2n

n+ j

)(
2m

m+ j

)

= −02k

2

(
2n

n

)(
2m

m

)

+ 1

2

k∑

b=0

cb,k(n) (2n− 2b + 1)2b

(
2n+ 2m− 2b

n+m− b

)

(44)

and

∑

j≥1

j 2h+2k+1
(

2n

n+ j

)(
2m

m+ j

)

=
h∑

a=0

k∑

b=0

ca,h(n) cb,k(m) (n−a+1)2
a (m−b+1)2

b

(n− a)(m− b)

2(n+m− a − b)

(
2n

n

)(
2m

m

)

,

(45)

where the coefficients ca,h(n) and cb,k(m) are defined in (36) (with explicit formula
provided in Lemma 10).

Proof We start by using the expansion (37) with T = k on the left-hand side of (44).
This gives

∑

j≥1

j 2k
(

2n

n+ j

)(
2m

m+ j

)

=
∑

j≥1

k∑

b=0

cb,k(n) (2n − 2b + 1)2b

(
2n− 2b

n+ j − b

)(
2m

m+ j

)

.

(46)

We have

∑

j≥1

(
2n− 2b

n+ j − b

)(
2m

m+ j

)

=
∑

j≤−1

(
2n− 2b

n+ j − b

)(
2m

m+ j

)

and hence

∑

j≥1

(
2n− 2b

n+ j − b

)(
2m

m+ j

)

= −1

2

(
2n− 2b

n− b

)(
2m

m

)

+ 1

2

∑

j

(
2n− 2b

n+ j − b

)(
2m

m+ j

)

= −1

2

(
2n− 2b

n− b

)(
2m

m

)

+ 1

2

(
2n+ 2m− 2b

n+m− b

)

,
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due to the Chu–Vandermonde summation. We substitute this back into (46) and
obtain

∑

j≥1

j2k
(

2n

n+ j

)(
2m

m+ j

)

=
k∑

b=0

cb,k(n) (2n− 2b + 1)2b

·
(

−1

2

(
2n− 2b

n− b

)(
2m

m

)

+ 1

2

(
2n+ 2m− 2b

n+m− b

))

= −02k

2

(
2n

n

)(
2m

m

)

+ 1

2

k∑

b=0

cb,k(n) (2n− 2b + 1)2b

(
2n+ 2m− 2b

n+m− b

)

,

where we used (37) with T = k and j = 0 in the last line.
In order to establish (45), we write j2h+2k+1 = j · j2h · j2k and use (37) with

T = h and with T = k. This leads to

n∑

j=1

j2h+2k+1
(

2n

n+ j

)(
2m

m+ j

)

=
∑

j≥1

j ·
h∑

a=0

k∑

b=0

ca,h(n) cb,k(m) (2n−2a+1)2a (2m−2b+1)2b

(
2n− 2a

n+ j − a

)(
2m− 2b

m+ j − b

)

.

(47)

Using the standard hypergeometric notation

pFq

[
a1, . . . , ap

b1, . . . , bq
; z

]

=
∞∑

m=0

(a1)m · · · (ap)m
m! (b1)m · · · (bq)m zm ,

where the Pochhammer symbol (α)m is defined in (23), we have

∑

j≥1

j

(
2n− 2a

n+ j − a

)(
2m− 2b

m+ j − b

)

=
(

2n− 2a

n− a + 1

)(
2m− 2b

m− b + 1

)

3F2

[
2,−n+ a + 1,−m+ b + 1

n− a + 2,m− b + 2
; 1

]

.

This 3F2-series can be evaluated by means of (the terminating version of) Dixon’s
summation (see [19, Appendix (III.9)])

3F2

[
A,B,−N

1+ A− B, 1 + A+N
; 1

]

= (1+ A)N (1+ A
2 − B)N

(1+ A
2 )N (1+ A− B)N

,
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where N is a non-negative integer. Indeed, if we choose A = 2, B = −n + a + 1,
and N = m− b − 1 in this summation formula, then we obtain

n∑

j=1

j

(
2n− 2a

n+ j − a

)(
2m− 2b

m+ j − b

)

= (n− a + 1)(m− b + 1)

2(n+m− a − b)

(
2n− 2a

n− a + 1

)(
2m− 2b

m− b + 1

)

.

If this is substituted back in (47), then we obtain the right-hand side of (45) after
little manipulation. ��

For the proof of our theorems it is not necessary to have an explicit formula for
the coefficients ca,S(n) in the expansion (36)—the coefficients that appeared in the
proof of Proposition 1, and in Lemmas 8 and 9—at our disposal. However, it is still
of intrinsic interest to provide such an explicit formula.

Lemma 10 The coefficient ca,S(n) in the expansion (36) is given by

ca,S(n) =
a∑

r=0

2(−1)a+r (n− r)2S+1

r! (a − r)! (2n− a − r)a+1
. (48)

Proof Substituting n − b for i in (36), b = 0, 1, . . . , S, we obtain the triangular
system of linear equations for the ca,S’s

(n−b)2S =
b∑

a=0

ca,S(n) (2n−a−b+1)a (b−a+1)a, b = 0, 1, . . . , S. (49)

Now, using the inversion formula of Gould and Hsu [8] (in the statement
[12, Eq. (1.1)] of the formula put n = b, k = a, l = r , aj = 2n − j , bj = −1, in
this order), we see that the matrix

(
(2n− a − b + 1)a (b − a + 1)a

)
b,a≥0

is inverse to the matrix

(
(−1)a+r (2n− 2r)

r! (a − r)! (2n− a − r)a+1

)

a,r≥0
.

Hence, if the system (49) is inverted, that is, the coefficients ca,S(n), a =
0, 1, . . . , S, are expressed in terms of the (n − b)2S, b = 0, 1, . . . , S, then the
connection coefficients are given by the latter matrix. This proves (48). ��
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7 Summation Formulae for Binomial Double Sums Involving
Absolute Values

In this section we present the implications of Propositions 1 and 2 on sums of the
form (2) and (3) with β = 1. As we point out in Remark 3(1) below, it would also
be possible to derive similar theorems for arbitrary β. (An example of an evaluation
with β = 3 is given in (66).)

We start with results for double sums of the form (3) with even k (and β = 1).
First, we also let m = n. The corresponding evaluations are given in Theorem 1
below. In Theorem 2 we address these same double sums for generic n and m.
Similarly to Proposition 2, for that case we have results only if s and t are not both
even.

Theorem 1 Let s, t, k and n be non-negative integers.
If s and t are even, then

∑

−n≤i,j≤n

∣
∣
∣isj t (j2k − i2k)

∣
∣
∣

(
2n

n+ i

)(
2n

n+ j

)

= U
(2)
s,t,k(n)

(2n− 1)(2n− 3) · · · (2n− 2 �(S + T + k)/2� + 1)

(
2n

n

)2

, (50)

where U
(2)
s,t,k(n) is of degree at most 2S + 2T + 2k + �(S + T + k)/2�.

If s and t are both odd, then

∑

−n≤i,j≤n

∣
∣
∣isj t (j2k − i2k)

∣
∣
∣

(
2n

n+ i

)(
2n

n+ j

)

= U
(2)
s,t,k(n)

(2n− 1)(2n− 3) · · · (2n− 2 *(S + T + k)/2, + 1)

(
2n

n

)2

, (51)

where U
(2)
s,t,k(n) is of degree at most 2S + 2T + 2k + *(S + T + k)/2,.

If s and t have different parity, then

∑

−n≤i,j≤n

∣
∣
∣isj t (j2k − i2k)

∣
∣
∣

(
2n

n+ i

)(
2n

n+ j

)

= U
(1)
s,t,k(n)

(4n− 1)(4n− 3) · · · (4n− 2S − 2T − 2k + 1)

(
4n

2n

)

+ U
(3)
s,t,k(n) · 4n

(
2n

n

)

,

(52)

where U
(1)
s,t,k(n) and U

(3)
s,t,k(n) are polynomials in n, S = �s/2� and T = �t/2�.
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More specifically,

1. if s is odd and t is even, then, as polynomials in n, U(1)
s,t,k(n) is of degree at most

3S + 3T + 3k + 1, and U
(3)
s,t,k(n) is of degree at most 2S + 2T + 2k + 1;

2. if s is even and t is odd, then, as polynomials in n, U(1)
s,t,k(n) is of degree at most

3S + 3T + 3k + 1, and U
(3)
s,t,k(n) is of degree at most 2S + 2T + 2k + 1.

Remark As the proof below shows, also here (cf. Remark 2) explicit formulae for
the polynomials U(i)

s,t,k(n), i = 1, 2, 3, can be given that involve coefficients ca,A(n),
for various specific choices of A. As we pointed out at several places already,
Lemma 10 provides an explicit formula for these coefficients.

Proof of Theorem 1 The claim is trivially true for k = 0. Therefore we may assume
from now on that k > 0.

Using the operations (i, j) → (−i, j), (i, j) → (i,−j), and (i, j) → (j, i),
which do not change the summand, we see that

∑

−n≤i,j≤n

∣
∣
∣isj t (j 2k − i2k)

∣
∣
∣

(
2n

n+ i

)(
2n

n+ j

)

= 4
∑

0≤i≤j≤n

α(i = 0) α(j = 0)
(
isj t + it j s

) (
j 2k − i2k

)(
2n

n+ i

)(
2n

n+ j

)

= 4
∑

0≤i≤j≤n

(
isj t + it j s

) (
j 2k − i2k

)(
2n

n+ i

)(
2n

n+ j

)

− 2

(
2n

n

) n∑

j=1

(
0sj t + 0t j s

)
j 2k

(
2n

n+ j

)

, (53)

where α(A) = 1
2 if A is true and α(A) = 1 otherwise. Now one splits the sums

into several sums of the form

∑

0≤i≤j≤n

iAjB

(
2n

n+ i

)(
2n

n+ j

)

, respectively
n∑

j=1

jB

(
2n

n+ j

)

.

To sums of the second form, we apply Lemma 8. In order to evaluate the sums
of the first form, we proceed as in the proof of Proposition 1. That is, we apply
the expansions (36) and (37), and subsequently we use Lemmas 1–4 to evaluate
the sums over i and j . Inspection of the result makes all assertions of the theorem
obvious, except for the implicit claims in (50) and (51) that the term 4n

(2n
n

)
does not

appear.
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In order to verify these claims, we have to figure out what the coefficients of
4n

(2n
n

)
of the various sums in (53) are precisely. For the case of even s and t , from

Lemma 1 we obtain that the coefficient of 4n
(2n
n

)
in the expression (53) equals

4
S∑

a=0

T+k∑

b=0

ca,S(n) cb,T+k(n) (2n−2a+1)2a (2n−2b+1)2b 2−2b−2
(

2n− 2a

n− a

)(
2n

n

)−1

+4
T∑

a=0

S+k∑

b=0

ca,T (n) cb,S+k(n) (2n−2a+1)2a (2n−2b+1)2b 2−2b−2
(

2n− 2a

n− a

)(
2n

n

)−1

−4
S+k∑

a=0

T∑

b=0

ca,S+k(n) cb,T (n) (2n−2a+1)2a (2n−2b+1)2b 2−2b−2
(

2n− 2a

n− a

)(
2n

n

)−1

−4
T+k∑

a=0

S∑

b=0

ca,T+k(n) cb,S (n) (2n−2a+1)2a (2n−2b+1)2b 2−2b−2
(

2n− 2a

n− a

)(
2n

n

)−1

− 2 · 02S
T+k∑

b=0

cb,T+k(n) (2n− 2b + 1)2b 2−2b−1

− 2 · 02T
S+k∑

b=0

cb,S+k(n) (2n− 2b + 1)2b 2−2b−1.

We may use (38) to simplify the double sums. In this manner, we arrive at the
expression

02S
T+k∑

b=0

cb,T+k(n) (2n−2b+1)2b 2−2b+02T
S+k∑

b=0

cb,S+k(n) (2n−2b+1)2b 2−2b

−02S+2k
T∑

b=0

cb,T (n) (2n−2b+1)2b 2−2b−02T+2k
S∑

b=0

cb,S (n) (2n−2b+1)2b 2−2b

−02S
T+k∑

b=0

cb,T+k(n) (2n−2b+1)2b 2−2b−02T
S+k∑

b=0

cb,S+k(n) (2n−2b+1)2b 2−2b,

which visibly vanishes due to our assumption that k > 0.
The proof for the analogous claim in the case of odd s and t proceeds along the

same lines. The only difference is that, instead of Lemma 1, here we need Lemma 4,
and instead of (42) we need (43). ��
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Theorem 2 Let s, t, k and n,m be non-negative integers. If s and t are not both
even, then

∑

i,j

∣
∣
∣isj t (j2k − i2k)

∣
∣
∣

(
2n

n+ i

)(
2m

m+ j

)

= V
(1)
s,t,k(n,m)

(2n+ 2m− 1)(2n+ 2m− 3) · · · (2n+ 2m− 2S − 2T − 2k + 1)

(
2n+ 2m

n+m

)

+ V
(2)
s,t,k(n,m)

(n+m− 1)(n+m− 2) · · · (n+m− S − T − k)

(
2n

n

)(
2m

m

)

+ V
(3)
s,t,k(n,m) · 4m

(
2n

n

)

+ V
(4)
s,t,k(n,m) · 4n

(
2m

m

)

, (54)

where the V
(i)
s,t,k(n,m), i = 1, 2, 3, 4, are polynomials in n and m, S = �s/2� and

T = �t/2�.
More specifically,

1. if s is odd and t is even, then, as polynomials in n and m, V (1)
s,t,k(n,m) is of degree

at most 3S + 3T + 3k + 1, V (3)
s,t,k(n,m) is of degree at most 2S + 2T + 2k + 1,

and V
(2)
s,t,k(n,m) and V

(4)
s,t,k(n,m) are identically zero,

2. if s is even and t is odd, then, as polynomials in n and m, V (1)
s,t,k(n,m) is of degree

at most 3S + 3T + 3k + 1, V (4)
s,t,k(n,m) is of degree at most 2S + 2T + 2k + 1,

and V
(2)
s,t,k(n,m) and V

(3)
s,t,k(n,m) are identically zero,

3. if s and t are odd, then, as polynomials in n and m, V (2)
s,t,k(n,m) is of degree

at most 3S + 3T + 3k + 2, and V
(1)
s,t,k(n,m), V (3)

s,t,k(n,m), and V
(4)
s,t,k(n,m) are

identically zero.

Remark Again (cf. Remark 2), from the proof below it is obvious that explicit
formulae for the polynomials V

(i)
s,t,k(n,m), i = 1, 2, 3, 4, are available in terms

of coefficients ca,A(n) and cb,B(m), for various specific choices of A and B, with
Lemma 10 providing an explicit formula for these coefficients.

Proof of Theorem 2 Again, the claim is trivially true for k = 0. Therefore we may
assume from now on that k > 0.

We follow the same idea as in the proof of Theorem 1, that is, we observe that
the operations (i, j) → (−i, j) and (i, j) → (i,−j) leave the summand invariant.
However, a notable difference here is that the interchange of summation indices
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(i, j) → (j, i) does not leave the summand invariant. Consequently, here we see
that

∑

i,j

∣
∣
∣isj t (j2k − i2k)

∣
∣
∣

(
2n

n+ i

)(
2m

m+ j

)

= 4
∑

0≤i≤j

α(i = 0) α(j = 0) isj t
(
j2k − i2k

)(
2n

n+ i

)(
2m

m+ j

)

+ 4
∑

0≤i≤j

α(i = 0) α(j = 0) itj s
(
j2k − i2k

)(
2n

n+ j

)(
2m

m+ i

)

= 4
∑

0≤i≤j

isj t
(
j2k − i2k

)(
2n

n+ i

)(
2m

m+ j

)

+ 4
∑

0≤i≤j

it j s
(
j2k − i2k

)(
2n

n+ j

)(
2m

m+ i

)

− 2

(
2n

n

) m∑

j=1

0sj t+2k
(

2m

m+ j

)

− 2

(
2m

m

) n∑

j=1

0t j s+2k
(

2n

n+ j

)

,

(55)

where α(A) has the same meaning as in the proof of Theorem 1. Now one splits the
sums into several sums of the form

∑

0≤i≤j

iAjB

(
2n

n+ i

)(
2m

m+ j

)

and
∑

0≤i≤j

iAjB

(
2m

m+ i

)(
2n

n+ j

)

,

respectively
n∑

j=1

jB

(
2n

n+ j

)

and
m∑

j=1

jB

(
2m

m+ j

)

.

To sums of the second form, we apply Lemma 8. In order to evaluate the sums of
the first form, we proceed as in the proof of Proposition 1. That is, we apply the
expansions (36) and (37) (with n replaced by m if appropriate), and subsequently
we use Lemmas 2–4 to evaluate the sums over i and j . Inspection of the result makes
all assertions of the theorem obvious, except for the claims in Items (1) and (2) that
the polynomial V (2)

s,t,k(n,m), the coefficient of
(2n
n

)(2m
m

)
in (54), vanishes.

Below we treat Item (1), that is, the case where s is odd and t is even. Item (2)
can be handled completely analogously.
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After having done the above described manipulations, we see that, for odd s and
even t , the coefficient of

(2n
n

)(2m
m

)
in the expression (55) equals

S∑

a=0

T+k∑

b=0

ca,S(n) cb,T+k(m) (2n− 2a + 1)2a (2m− 2b + 1)2b
(n− a)(m− b)

n+m− a − b

×
(

2n− 2a

n− a

)(
2m− 2b

m− b

)(
2n

n

)−1(2m

m

)−1

−
S+k∑

a=0

T∑

b=0

ca,S+k(n) cb,T (m) (2n− 2a + 1)2a (2m− 2b + 1)2b
(n− a)(m − b)

n+m− a − b

×
(

2n− 2a

n− a

)(
2m− 2b

m− b

)(
2n

n

)−1(2m

m

)−1

+
T∑

a=0

S+k∑

b=0

ca,T (m) cb,S+k(n) (2m− 2a + 1)2a (2n− 2b + 1)2b

× (n− b)(n− b + 2(m− a))

n+m− a − b

(
2n− 2b

n− b

)(
2m− 2a

m− a

)(
2n

n

)−1(2m

m

)−1

−
T+k∑

a=0

S∑

b=0

ca,T+k(m) cb,S(n) (2m− 2a + 1)2a (2n− 2b + 1)2b

× (n− b)(n− b + 2(m− a))

n+m− a − b

(
2n− 2b

n− b

)(
2m− 2a

m− a

)(
2n

n

)−1(2m

m

)−1

− 0t

S+k∑

b=0

cb,S+k(n) (n− b)b+1 (n− b + 1)b.

In the last two double sums above, we interchange the summation indices a and b.
Then the first and fourth double sum can be combined into one double sum, as well
as the second and third double sum. Thus, the above expression simplifies to

−
S∑

a=0

T+k∑

b=0

ca,S(n) cb,T+k(m) (2n− 2a + 1)2a (2m− 2b + 1)2b(n− a)

×
(

2n− 2a

n− a

)(
2m− 2b

m− b

)(
2n

n

)−1(2m

m

)−1

+
S+k∑

a=0

T∑

b=0

ca,S+k(n) cb,T (m) (2n− 2a + 1)2a (2m− 2b + 1)2b(n− a)

×
(

2n− 2a

n− a

)(
2m− 2b

m− b

)(
2n

n

)−1(2m

m

)−1

− 0t
S+k∑

b=0

cb,S+k(n) (n− b)b+1 (n− b + 1)b.
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In both double sums, the sum over b can be evaluated by means of (38). This leads
us to the expression

−02T+2k
S∑

a=0

ca,S(n) (n−a)a+1 (n−a+1)a+02T
S+k∑

a=0

ca,S+k(n) (n−a)a+1 (n−a+1)a

− 0t

S+k∑

b=0

cb,S+k(n) (n− b)b+1 (n− b + 1)b,

which visibly vanishes due to our assumptions that k > 0 and that t is even. ��
We now turn to our results for double sums of the form (3) with odd k (and

β = 1). We first state our results for m = n and immediately thereafter the one we
obtain for generic n and m in the case where s and t are both odd. We then indicate
the proofs of both theorems.

Theorem 3 Let s, t, k and n be non-negative integers.
If s and t are not both odd, then

∑

−n≤i,j≤n

∣
∣
∣isj t (j2k+1 − i2k+1)

∣
∣
∣

(
2n

n+ i

)(
2n

n+ j

)

= X
(1)
s,t,k(n)

(4n− 1)(4n− 3) · · · (4n− 2S − 2T − 2k + 1)

(
4n

2n

)

+ X
(2)
s,t,k(n)

(2n− 1)(2n− 3) · · · (2n− 2 *(S + T + k)/2, + 1)

(
2n

n

)2

+ X
(3)
s,t,k(n) · 4n

(
2n

n

)

+X
(4)
s,t,k(n) · 16n, (56)

where the X
(i)
s,t,k(n), i = 1, 2, 3, 4, are polynomials in n, S = �s/2� and T = �t/2�.

More specifically,

1. if s and t are even, then, as polynomials in n, X
(1)
s,t,k(n) is of degree at most

3S + 3T + 3k, and X
(2)
s,t,k(n), X

(3)
s,t,k(n), and X

(4)
s,t,k(n) are identically zero;

2. if s is odd and t is even, then, as polynomials in n, X(2)
s,t,k(n) is of degree at most

2S + 2T + 2k+ 1+ *(S + T + k)/2,, X(4)
s,t,k(n) is of degree at most 2S + 2T +

2k + 1, and X
(1)
s,t,k(n) and X

(3)
s,t,k(n) are identically zero;

3. if s is even and t is odd, then, as polynomials in n, X(2)
s,t,k(n) is of degree at most

2S + 2T + 2k+ 1+ *(S + T + k)/2,, X(4)
s,t,k(n) is of degree at most 2S + 2T +

2k + 1, and X
(1)
s,t,k(n) and X

(3)
s,t,k(n) are identically zero.
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If s and t are odd, then

∑

−n≤i,j≤n

∣
∣
∣isj t (j2k+1 − i2k+1)

∣
∣
∣

(
2n

n+ i

)(
2n

n+ j

)

= X
(1)
s,t,k(n)

(4n− 1)(4n− 3) · · · (4n− 2S − 2T − 2k − 1)

(
4n

2n

)

+ X
(3)
s,t,k(n) · 4n

(
2n

n

)

,

(57)

where S = �s/2� and T = �t/2�, and, as polynomials in n, X(1)
s,t,k(n) is of degree at

most 3S + 3T + 3k + 2, and X
(3)
s,t,k(n) is of degree at most 2S + 2T + 2k + 2.

Theorem 4 Let s, t, k and n,m be non-negative integers. If s and t are both odd,
then

∑

i,j

∣
∣
∣isj t (j2k+1 − i2k+1)

∣
∣
∣

(
2n

n+ i

)(
2m

m+ j

)

= Y
(1)
s,t,k(n,m)

(2n+ 2m− 1)(2n+ 2m− 3) · · · (2n+ 2m− 2S − 2T − 2k − 1)

(
2n+ 2m

n+m

)

+ Y
(3)
s,t,k(n,m) · 4m

(
2n

n

)

+ Y
(4)
s,t,k(n,m) · 4n

(
2m

m

)

, (58)

where S = �s/2� and T = �t/2�, and, as polynomials in n and m, Y (1)
s,t,k(n,m) is of

degree at most 3S + 3T + 3k+ 3, and Y
(3)
s,t,k(n,m) and Y

(4)
s,t,k(n,m) are of degree at

most 2S + 2T + 2k + 1.

Remark From the proof below it is obvious that also here (cf. Remark 2) explicit
formulae for the polynomials X(i)

s,t,k(n) and Y
(i)
s,t,k(n,m), i = 1, 2, 3, 4, exist in terms

of coefficients ca,A(n) and cb,B(m), for various specific choices of A and B, with
Lemma 10 providing an explicit formula for these coefficients.

Proof of Theorems 3 and 4 We use the operations (i, j) → (−i, j) and (i, j) →
(i,−j) (but not (i, j) → (j, i)). What we get is (for the proof of Theorem 3 we
have to assume that m = n)

∑

i,j

∣
∣
∣is j t (j2k+1 − i2k+1)

∣
∣
∣

(
2n

n+ i

)(
2m

m+ j

)

= 1

2

∑

i,j

( ∣
∣
∣is j t (j2k+1 − i2k+1)

∣
∣
∣+

∣
∣
∣is j t (j2k+1 + i2k+1)

∣
∣
∣
)( 2n

n+ i

)(
2m

m+ j

)
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= 2
∑

0≤i,j
α(i = 0) α(j = 0)

( ∣
∣
∣isj t (j2k+1 − i2k+1)

∣
∣
∣

+
∣
∣
∣is j t (j2k+1 + i2k+1)

∣
∣
∣
)( 2n

n+ i

)(
2m

m+ j

)

= 2
∑

0≤i≤j

( ∣
∣
∣is j t (j2k+1 − i2k+1)

∣
∣
∣+

∣
∣
∣isj t (j2k+1 + i2k+1)

∣
∣
∣
)( 2n

n+ i

)(
2m

m+ j

)

+ 2
∑

0≤i<j

( ∣
∣
∣it j s(j2k+1 − i2k+1)

∣
∣
∣+

∣
∣
∣it j s(j2k+1 + i2k+1)

∣
∣
∣
)( 2n

n+ j

)(
2m

m+ i

)

− 2

(
2n

n

)

0s
∑

0≤j
j t+2k+1

(
2m

m+ j

)

− 2

(
2m

m

)

0t
∑

0≤i
is+2k+1

(
2n

n+ i

)

= 4
∑

0≤i≤j
isj t+2k+1

(
2n

n+ i

)(
2m

m+ j

)

+ 4
∑

0≤i≤j
it j s+2k+1

(
2n

n+ j

)(
2m

m+ i

)

− 2

(
2n

n

)

0s
∑

0≤j
j t+2k+1

(
2m

m+ j

)

− 2

(
2m

m

)

0t
∑

0≤i
is+2k+1

(
2n

n+ i

)

− 4
∑

j≥1

j s+t+2k+1
(

2n

n+ j

)(
2m

m+ j

)

, (59)

where α(A) has the same meaning as in the proof of Theorem 1. To the single
sums over i and over j , we apply Lemmas 8 and 9. In order to evaluate the sums
over 0 ≤ i ≤ j , we proceed as in the proof of Proposition 1. That is, we apply the
expansions (36) and (37) (with n replaced by m if appropriate), and subsequently we
use Lemmas 1–4 to evaluate the sums over 0 ≤ i ≤ j . Inspection of the result makes
all assertions of the theorem obvious, except for the claims of the vanishing of the
polynomial X(2)

s,t,k(n) in Theorem 3, Item (1), of the vanishing of the polynomial

X
(1)
s,t,k(n) in Theorem 3, Items (2) and (3), and of the claim that the coefficient of

(2n
n

)2
in Theorem 3, right-hand side of (57), vanishes, as well as the coefficient of

(2n
n

)(2m
m

)
in Theorem 4, right-hand side of (58).

Below we treat the last case, that is, the case of generic n and m where s and t

are both odd. The other claims can be handled completely analogously.
Following the above described procedure, using (45) with h = S+T +k+1 and

k = 0 for the evaluation of the sum over j in the last line of (59), we obtain from
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Lemma 2 that the coefficient of
(2n
n

)(2m
m

)
in the expression (59) equals

4
S∑

a=0

T+k+1∑

b=0

ca,S(n) cb,T+k+1(m) (n− a + 1)2
a (m− b + 1)2

b

(n− a)(m− b)

4(n+m− a − b)

+ 4
T∑

b=0

S+k+1∑

a=0

cb,T (m) ca,S+k+1(n) (n− a + 1)2
a (m− b + 1)2

b

(n− a)(m− b)

4(n+m− a − b)

− 4
S+T+k+1∑

b=0

cb,S+T+k+1(n) (n− b)b+1 (n− b + 1)b
m

2(n+m− b)
.

If we now use (45) with (S, T + k + 1), (S + k + 1, T ), and (S + T + k + 1, 0)
in place of (h, k), we see that the above expression vanishes. This establishes the
assertion about the “non-appearance” of the term

(2n
n

)(2m
m

)
in Theorem 4, and thus

also the assertion about the “non-appearance” of
(2n
n

)2
in Eq. (57) of Theorem 3. ��

Remark 3

(1) It is obvious from the proofs of Theorems 1–4 that we could deduce analogous
theorems for the more general sums (2) and (3). We omit this here for the sake
of brevity, but provide an example of such an evaluation in (66) below.

(2) Theorems 1–4 imply an obvious algorithm to evaluate a sum of the form (2)
or (3) for any given s, t, k and β = 1. (Again, an extension to arbitrary β would
be possible.) Namely, addressing the case of odd k and m = n, one makes
an indeterminate Ansatz for the polynomialsX(1)

s,t (n),X
(2)
s,t (n),X

(3)
s,t (n),X

(4)
s,t (n)

in Theorem 3, one evaluates the sum on the left-hand side of (56) for n =
S + T + k, . . . , N + S + T + k, where N is the number of indeterminates
involved in the Ansatz, giving rise to a system of N + 1 linear equations for the
N indeterminates. One solves the system and substitutes the solutions on the
right-hand side of (56).

In this manner, we can establish any of the proved or conjectured double sum
evaluations in [6]. For example, we obtain

∑

−n≤i,j≤n

∣
∣
∣j3 − i3

∣
∣
∣

(
2n

n+ i

)(
2n

n+ j

)

= 4n2(5n− 2)

4n− 1

(
4n− 1

2n− 1

)

, (60)

∑

−n≤i,j≤n

∣
∣
∣j5 − i5

∣
∣
∣

(
2n

n+ i

)(
2n

n+ j

)

= 8n2(43n3 − 70n2 + 36n− 6)

(4n− 2)(4n− 3)

(
4n− 2

2n− 2

)

,

(61)

∑

i,j

∣
∣
∣ij (j2 − i2)

∣
∣
∣

(
2n

n+ i

)(
2m

m+ j

)

= mn(n2 − n +m2 −m)

n+m− 1

(
2n

n

)(
2m

m

)

, (62)
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∑

i,j

∣
∣
∣i3j3(j2 − i2)

∣
∣
∣

(
2n

n+ i

)(
2m

m+ j

)

= 2n2m2P1(n,m)

(n+m− 1)(n+m− 2)(n+m− 3)

×
(

2n

n

)(
2m

m

)

,

(63)

∑

−n≤i,j≤n

∣
∣
∣j7 − i7

∣
∣
∣

(
2n

n+ i

)(
2n

n+ j

)

= 16n2P2(n)

(4n− 3)(4n− 4)(4n− 5)

(
4n− 3

2n− 3

)

,

(64)

where

P1(n,m) = n4 + 2n3m− 6n3 − 6n2m+ 11n2 + 2nm3 − 6nm2 + 12nm

− 10n+m4 − 6m3 + 11m2 − 10m+ 4

and

P2(n) = 531n5 − 1960n4 + 2800n3 − 1952n2 + 668n− 90.

These identities (with m = n for (62) and (63)) establish the conjectured
identities (5.7)–(5.9), (5.12), (5.14) from [6]. However, our machinery also
yields

∑

−n≤i,j≤n

∣
∣
∣i4j3(j5 − i5)

∣
∣
∣

(
2n

n+ i

)(
2n

n+ j

)

= n4
(
414n6 − 2968n5 + 8332n4 − 11853n3 + 9105n2 − 3592n+ 565

)

2(2n− 5)(2n− 3)(2n− 1)

(
2n

n

)2

+ 1

128
n2(3n− 1)

(
105n3 − 210n2 + 147n− 34

)
16n (65)

or

∑

−n≤i,j≤n

∣
∣
∣ij (j3 − i3)3

∣
∣
∣

(
2n

n+ i

)(
2n

n+ j

)

= 1

16
n2

(
1377n4 − 3870n3 + 4503n2 − 2442n+ 496

)
4n

(
2n

n

)

− 4n3P3(n)

(4n− 7)(4n− 5)(4n− 3)(4n− 1)

(
4n

2n

)

, (66)
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where

P3(n) = 1917n7−11160n6+26439n5−33189n4+23945n3−9951n2+2206n−201,

for example. Obviously, one could also use the summation tools described in
Sect. 3 to simplify the left-hand sides to their right-hand sides.

(3) In case the reader wonders what would happen if, instead of double sums of the
form (3), we would consider double sums of the form

∑

i,j

|isj t (ik − jk)β |
(

2n+ 1

n+ i

)(
2m+ 1

m+ j

)

(67)

or mixed sums

∑

i,j

|isj t (ik − jk)β |
(

2n+ 1

n+ i

)(
2m

m+ j

)

, (68)

we point out that
(

2n+ 1

n+ i

)

= n+ i + 1

2n+ 2

(
2(n+ 1)

n+ 1+ i

)

= 1

2

(
2(n+ 1)

n+ 1+ i

)

+ i

2n+ 2

(
2(n+ 1)

n+ 1+ i

)

,

and thus double sums of the form (67) or (68) can be written as a linear
combination of our familiar double sums (3).

8 An Inequality for a Binomial Double Sum

In this final section, we establish Conjecture 3.1 from [6], which provides a lower
bound on sums of the form (3) with s = t = 0, k = 2, β = 1.

Theorem 5 For all non-negative integers m and n, we have

∑

i,j

∣
∣
∣j2 − i2

∣
∣
∣

(
2n

n+ i

)(
2m

m+ j

)

≥ 2nm

(
2n

n

)(
2m

m

)

, (69)

and equality holds if and only if m = n.

Proof Without loss of generality, we assume m ≥ n.
Using the operations (i, j)→ (−i, j) and (i, j)→ (i,−j), which do not change

the summand, we see that (69) is equivalent to

∑

0≤i,j

α(i = 0) α(j = 0)
∣
∣
∣j2 − i2

∣
∣
∣

(
2n

n+ i

)(
2m

m+ j

)

≥ nm

2

(
2n

n

)(
2m

m

)

, (70)
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where α(i = 0) has the same meaning as in the proof of Proposition 1. By
Lemma 11, we see that the claim would be established if we were able to show
that

∑

0≤i<j

α(i = 0)

((
2n

n+ i

)(
2m− 2

m+ j − 1

)

−
(

2n− 2

n+ j − 1

)(
2m

m+ i

))

(71)

is non-negative, with equality holding only if m = n. Indeed, Lemma 13 says that
these two last assertions hold even for each summand in (71) individually. (It is at
this point that our assumption m ≥ n comes into play.) This completes the proof of
the theorem. ��
Lemma 11 For all non-negative integers m and n, we have

∑

0≤i,j

α(i = 0) α(j = 0)
∣
∣
∣j2 − i2

∣
∣
∣

(
2n

n+ i

)(
2m

m+ j

)

= nm

2

(
2n

n

)(
2m

m

)

+ 2(m − n)
∑

0≤i<j

α(i = 0)

((
2n

n+ i

)(
2m− 2

m+ j − 1

)

−
(

2n− 2

n+ j − 1

)(
2m

m+ i

))

.

(72)

Proof We write

j2 − i2 = (n2 − i2)− (m2 − j2)+ (m2 − n2)

and decompose the sum on the left-hand side of (72) into two parts according to
whether i < j or i > j . Thereby, the sum on the left-hand side of (72) becomes

(2n− 1)2

∑

0≤i<j

α(i = 0)

(
2n− 2

n+ i − 1

)(
2m

m+ j

)

− (2m− 1)2

∑

0≤i<j

α(i = 0)

(
2n

n+ i

)(
2m− 2

m+ j − 1

)

− (2n− 1)2

∑

0≤j<i

α(j = 0)

(
2n− 2

n+ i − 1

)(
2m

m+ j

)

+ (2m− 1)2

∑

0≤j<i

α(j = 0)

(
2n

n+ i

)(
2m− 2

m+ j − 1

)

+ (m2 − n2)
∑

0≤i<j

α(i = 0)

((
2n

n+ i

)(
2m

m+ j

)

−
(

2n

n+ j

)(
2m

m+ i

))

. (73)
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We next show how to evaluate the first two (double) sums in (73). In the first line
of (73), we use the decomposition

(
2m

m+ j

)

=
(

2m− 2

m+ j

)

+ 2

(
2m− 2

m+ j − 1

)

+
(

2m− 2

m+ j − 2

)

, (74)

while in the second line we use the same decomposition with m replaced by n and
j by i. This leads to

(2n− 1)2

∑

0≤i<j

α(i = 0)

(
2n− 2

n+ i − 1

)(
2m

m+ j

)

− (2m− 1)2

∑

0≤i<j

α(i = 0)

(
2n

n+ i

)(
2m− 2

m+ j − 1

)

= (2n− 1)2

∑

0≤i<j

α(i = 0)

(
2n− 2

n+ i − 1

)(
2m− 2

m+ j

)

+ (2n− 1)2

∑

0≤i<j

α(i = 0)

(
2n− 2

n+ i − 1

)(
2m− 2

m+ j − 2

)

− (2n− 1)2

∑

0≤i<j

α(i = 0)

(
2n− 2

n+ i

)(
2m− 2

m+ j − 1

)

− (2n− 1)2

∑

0≤i<j

α(i = 0)

(
2n− 2

n+ i − 2

)(
2m− 2

m+ j − 1

)

+ (
(2n− 1)2 − (2m− 1)2

) ∑

0≤i<j

α(i = 0)

(
2n

n+ i

)(
2m− 2

m+ j − 1

)

.

By a simultaneous shift of i and j by one, one sees that the first and fourth sum on
the right-hand side cancel each other largely, and the same is true for the second and
the third sum. Thus, we have

(2n− 1)2

∑

0≤i<j

α(i = 0)

(
2n− 2

n+ i − 1

)(
2m

m+ j

)

− (2m− 1)2

∑

0≤i<j

α(i = 0)

(
2n

n+ i

)(
2m− 2

m+ j − 1

)

= −1

2
(2n− 1)2

∑

0<j

(
2n− 2

n− 1

)(
2m− 2

m+ j

)
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− 1

2
(2n− 1)2

∑

0<j

(
2n− 2

n− 2

)(
2m− 2

m+ j − 1

)

+ 1

2
(2n− 1)2

∑

0<j

(
2n− 2

n− 1

)(
2m− 2

m+ j − 2

)

+ 1

2
(2n− 1)2

∑

0<j

(
2n− 2

n

)(
2m− 2

m+ j − 1

)

+ (
(2n− 1)2 − (2m− 1)2

) ∑

0≤i<j

α(i = 0)

(
2n

n+ i

)(
2m− 2

m+ j − 1

)

.

Here, there is more cancellation: the second and fourth sum on the right-hand side
cancel each other, while the first and third cancel each other in large parts, with only
two terms remaining. As a result, we obtain

(2n− 1)2

∑

0≤i<j

α(i = 0)

(
2n− 2

n+ i − 1

)(
2m

m+ j

)

− (2m− 1)2

∑

0≤i<j

α(i = 0)

(
2n

n+ i

)(
2m− 2

m+ j − 1

)

= 1

2
(2n− 1)2

(
2n− 2

n− 1

)(
2m− 1

m

)

+ (
(2n− 1)2 − (2m− 1)2

) ∑

0≤i<j

α(i = 0)

(
2n

n+ i

)(
2m− 2

m+ j − 1

)

= n2

4

(
2n

n

)(
2m

m

)

+ (
(2n− 1)2 − (2m− 1)2

) ∑

0≤i<j

α(i = 0)

(
2n

n+ i

)(
2m− 2

m+ j − 1

)

.

The same calculation, with n and m interchanged, yields

− (2n− 1)2

∑

0≤j<i

α(j = 0)

(
2n− 2

n+ i − 1

)(
2m

m+ j

)

+ (2m− 1)2

∑

0≤j<i

α(j = 0)

(
2n

n+ i

)(
2m− 2

m+ j − 1

)
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= m2

4

(
2n

n

)(
2m

m

)

+ (
(2m− 1)2 − (2n− 1)2

) ∑

0≤i<j

α(i = 0)

(
2m

m+ i

)(
2n− 2

n+ j − 1

)

.

If we put everything together, then we have shown that the sum on the left-hand side
of (72) equals

n2 +m2

4

(
2n

n

)(
2m

m

)

+ (
4(m2 − n2)− 2(m− n)

)

×
∑

0≤i<j

α(i = 0)

((
2n− 2

n+ j − 1

)(
2m

m+ i

)

−
(

2n

n+ i

)(
2m− 2

m+ j − 1

))

+ (m2 − n2)
∑

0≤i<j

α(i = 0)

((
2n

n+ i

)(
2m

m+ j

)

−
(

2n

n+ j

)(
2m

m+ i

))

.

If we finally use Lemma 12 in this expression, then the result is the right-hand side
of (72). ��
Lemma 12 For all non-negative integers m and n, we have

4
∑

0≤i<j

α(i = 0)

((
2n− 2

n+ j − 1

)(
2m

m+ i

)

−
(

2n

n+ i

)(
2m− 2

m+ j − 1

))

+
∑

0≤i<j

α(i = 0)

((
2n

n+ i

)(
2m

m+ j

)

−
(

2n

n+ j

)(
2m

m+ i

))

= − m− n

4(m+ n)

(
2n

n

)(
2m

m

)

. (75)

Proof Using the decomposition (74) in the second line of (75), we compute

4
∑

0≤i<j

α(i = 0)

((
2n− 2

n+ j − 1

)(
2m

m+ i

)

−
(

2n

n+ i

)(
2m − 2

m+ j − 1

))

+
∑

0≤i<j

α(i = 0)

((
2n

n+ i

)(
2m

m+ j

)

−
(

2n

n+ j

)(
2m

m+ i

))

=
∑

0≤i<j

α(i = 0)

(

2

(
2n− 2

n+ j − 1

)(
2m

m+ i

)
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−
(

2n− 2

n+ j

)(
2m

m+ i

)

−
(

2n− 2

n+ j − 2

)(
2m

m+ i

)

+
(

2n

n+ i

)(
2m− 2

m+ j

)

+
(

2n

n+ i

)(
2m− 2

m+ j − 2

)

− 2

(
2n

n+ i

)(
2m− 2

m+ j − 1

))

=
∑

0≤i

α(i = 0)

((
2n− 2

n+ i

)(
2m

m+ i

)

−
(

2n− 2

n+ i − 1

)(
2m

m+ i

)

+
(

2n

n+ i

)(
2m − 2

m+ i − 1

)

−
(

2n

n+ i

)(
2m− 2

m+ i

))

= m− n

m+ n

∑

0≤i

α(i = 0)

(
(2n− 2)! (2m − 2)! (4nm− 4(i + 1)n− 4(i + 1)m+ 1)

(n+ i)! (n− i − 1)! (m+ i)! (m− i − 1)!

− (2n− 2)! (2m− 2)! (4nm− 4in− 4im + 1)

(n+ i − 1)! (n− i)! (m+ i − 1)! (m− i)!
)

= m− n

m+ n

(

− 1

2

(2n− 2)! (2m − 2)! (4nm− 4n− 4m + 1)

n! (n− 1)!m! (m− 1)!

− 1

2

(2n− 2)! (2m − 2)! (4nm+ 1)

(n− 1)! n! (m− 1)!m!
)

= − m− n

4(m+ n)

(
2n

n

)(
2m

m

)

,

which is the desired result.3 ��
Lemma 13 For all non-negative integers m,n, i, j with m ≥ n and i < j , we have

(
2n

n+ i

)(
2m− 2

m+ j − 1

)

≥
(

2n− 2

n+ j − 1

)(
2m

m+ i

)

,

with equality if and only if m = n.

Proof We have

( 2n
n+i

)( 2m−2
m+j−1

)

( 2n−2
n+j−1

)( 2m
m+i

) = 2n(2n− 1)

2m(2m− 1)

(m− j + 1)(m− j)

(n− j + 1)(n− j)

j−1∏

k=i+1

(n+ k)(m− k + 1)

(n− k + 1)(m+ k)

=
(

2+ 2j−2
n−j+1

)(
2+ 2j−1

n−j

)

(
2+ 2j−2

m−j+1

) (
2+ 2j−1

m−j

)

j−1∏

k=i+1

nm+ km− (k − 1)n− k(k − 1)

nm− (k − 1)m+ kn− k(k − 1)
≥ 1,

and visibly equality holds if and only if m = n. ��

3For the finding of the telescoping form of the sum over i see footnote 1.
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On Two Subclasses of Motzkin Paths
and Their Relation to Ternary Trees

Helmut Prodinger, Sarah J. Selkirk, and Stephan Wagner

To Peter Paule, a vibrant mathematician and a true innovator,
on the occasion of his 60th birthday.

1 Introduction

A Motzkin path is a non-negative lattice path with steps from the step set
{ , , } such that the path starts and ends on the x-axis. By placing further
restrictions on Motzkin paths we obtain an interesting subclass.

Definition 1 An S-Motzkin path is a Motzkin path of length 3n with n of each type
of step such that the following conditions hold

1. The initial step must be , and
2. and steps alternate.

This definition was inspired by a question at the recent International Mathematics
Competition [10] involving restricted three-dimensional walks which can be trans-
lated into the two-dimensional S-Motzkin paths. These paths are enumerated by the
generalized Catalan number, 1

2n+1

(3n
n

)
, and thus are bijective to ternary trees and

non-crossing trees, as well as many other combinatorial objects [2, 5, 8, 11, 13].
We define another subclass of Motzkin paths which is related to both S-Motzkin
paths and ternary trees.

Definition 2 A T-Motzkin path is a Motzkin path of length 3n with n of each type
of step such that

1. The initial step is , and
2. and steps alternate.
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Note that although similar in definition, the class of T-Motzkin paths is larger
than the class of S-Motzkin paths. Interchanging the and steps in an arbitrary
S-Motzkin path provides a T-Motzkin path, but the converse is not true. T-Motzkin
paths of length 3n are enumerated by 1

n+1

(3n+1
n

)
and thus bijective to the class

of ordered pairs of ternary trees introduced by Knuth [6]. There are several other
equinumerous objects which can be found on the Online Encyclopedia of Integer
Sequences A006013 [13].

Introducing another type of path is necessary for finding generating function
equations for S-Motzkin and T-Motzkin paths, and thus we define a U-path to be
an S-Motzkin path without the initial step. Symbolic equations for T-Motzkin
paths and U-paths can be obtained in terms of each other by making use of a
decomposition based on the first return of the path. Since S-Motzkin paths and U-
paths are ‘almost’ the same, the generating function for S-Motzkin paths can be
easily obtained from that of U-paths.

Various parameters associated with different types of lattice paths have been
studied [1, 9, 12] and we provide analysis of the number of returns, peaks, valleys,
and valleys on the x-axis in both S-Motzkin and T-Motzkin paths. This analysis
is done using the symbolic equations and generating functions that are derived, as
well as methods from the seminal book Analytic Combinatorics by Flajolet and
Sedgewick [4]. During this analysis some interesting identities were found and are
discussed briefly in Sect. 5.

The study of these paths as well as parameters related to them has resulted
in some generalizations and developments which will be reported in further
publications.

2 Bijections

2.1 S-Motzkin Paths and Ternary Trees

A bijection between S-Motzkin paths of length 3n and ternary trees with n nodes is
provided.

2.1.1 S-Motzkin Paths to Ternary Trees

We define ∅ to be the empty path. For an arbitrary S-Motzkin path M, the canonical
decomposition is given by

�(M) = (
A, B, C

)
,

where A, B, and C represent the S-Motzkin paths associated with the left, middle,
and right subtrees respectively. Furthermore,
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Fig. 1 Canonical decomposition of an arbitrary S-Motzkin path

• C is the path from the penultimate to the final return of M, with the initial and
final step removed,

• A is the path from y to x (not including x), where x is the first to the left of
C, y is a step, and the path from y to x is a Motzkin path of maximal length,
and

• B is what remains of M after removing the path from the penultimate to the final
return of M, as well as the path from y to x (including x).

This process is performed recursively and terminates at an empty path. Note that
each application of � adds one node and removes one of each type of step. This
proves inductively that an S-Motzkin path of length 3n maps to a ternary tree with
n (internal) nodes (Fig. 1).

2.1.2 Ternary Trees to S-Motzkin Paths

The inverse mapping is performed recursively on the end nodes as follows. Each
node of a ternary tree has three (possibly empty) subtrees. Call the paths associated
with the left, middle, and right subtrees A, B, and C respectively.

Starting at the end nodes, replace each node with B1 A B2 C , where B1
is the path from the start of B to the final step of B. The path B2 is what remains
of B after removing B1. This process is continued recursively on each set of end
nodes and terminates at the root to produce an S-Motzkin path. Note that for each
node that is removed one of each type of step is added, and thus a ternary tree with
n nodes produces an S-Motzkin path of length 3n.

2.1.3 Example

As an example, we map the following S-Motzkin path into a ternary tree. Since
the steps are reversible, the inverse mapping can be seen by reading the example in
reverse. Let M be the S-Motzkin path
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The canonical decomposition of M is then �(M) =
Hence

Continuing recursively:

2.2 T-Motzkin Paths and Pairs of Ternary Trees

2.2.1 T-Motzkin Paths to Pairs of Ternary Trees

Since a bijection between S-Motzkin paths and ternary trees is already provided, we
show that every T-Motzkin path can be decomposed uniquely into an ordered pair
of S-Motzkin paths (possibly including an empty path) (Table 1).

Given an arbitrary T-Motzkin path N, we perform a canonical decomposition
	(N) = (A,B) where

• B is the path from y to x (not including x) where x is the rightmost step of N,
y is a step, and the path from y to x is a Motzkin path of maximal length, and

• A is what remains of N after removing the path from y to x (including x), with
an additional step at the start of the path. In Fig. 2 this is the path A1A2.

Note that both A and B are S-Motzkin paths.

2.2.2 Pairs of Ternary Trees to T-Motzkin Paths

Given an arbitrary pair of ternary trees, we can use the bijection given in Sect. 2.1
to obtain an ordered pair of S-Motzkin paths, (A,B). All S-Motzkin paths start
with a step and end in an step followed by a series of steps. To obtain a
T-Motzkin path from (A,B) we

• remove the initial step from A, and
• insert the path B immediately after the final step of A.
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Table 1 Bijection for n = 3

Fig. 2 Canonical decomposition of an arbitrary T-Motzkin path

2.2.3 Example

We provide an example of the mapping from T-Motzkin paths to ternary trees. The
inverse mapping can be seen by reading this example in reverse. Let N be
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Then 	(N) is given by

2.3 S-Motzkin Paths and Non-crossing Trees

We use the definition and representation of non-crossing trees given in [8]. For the
convenience of the reader, these are repeated here. A non-crossing tree with n nodes
is a tree whose nodes are arranged on a circle and numbered (counter-clockwise)
from 1 to n, with 1 being the root of the tree. Furthermore, all edges lie entirely
inside the circle and no two edges intersect.

An equivalent representation of this, and the representation that will be used in
this text, is obtained by drawing a plane tree with markers to separate left and right
children. Consider an arbitrary node numbered i and one of its children numbered j .
If a child is a left child, then j < i, and a right child is a child such that j > i. Note
that we do not distinguish between left and right children at the root. Below is the
usual representation of a non-crossing tree as well as the equivalent representation
that we will use. Numbering the nodes in the second tree is not necessary, but done
in this case for clarity (Fig. 3).

To assist in describing the bijection, we define a piece to be a maximal subpath of
a Motzkin path consisting of (in order) one up step, a series of down steps (possibly
empty), one horizontal step, and a series of down steps (possibly empty) (Fig. 4).
Note that an arbitrary S-Motzkin path of length 3n consists of an initial step
followed by n− 1 pieces, and a final step followed by a series of steps. Each
piece is uniquely determined by the number of steps and the position of the
step. The characteristic pair of a piece is the ordered pair (t, i) with t denoting the
number of steps in the piece, and i denoting the position of the step (with the

step in position 0).

1

2

3

4 5

6

7

8 1

4 7

82

3

5 6

Fig. 3 A non-crossing tree represented in two different ways
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Fig. 4 The four pieces in the
given S-Motzkin path of
length 15

1 2 3 4

2.3.1 S-Motzkin Paths to Non-crossing Trees

Given an arbitrary S-Motzkin path of length 3n, we let c denote the number of steps
in the final series of steps of the path. In the resulting non-crossing tree, draw a
root with c children. Considering the pieces of the path from right to left, we find
the characteristic pair (t, i) and draw i − 1 left subtrees and t − i + 1 right subtrees
on the rightmost available node.

2.3.2 Non-crossing Trees to S-Motzkin Paths

Given an arbitrary non-crossing tree, let c denote the number of children of the root.
Associate with each non-root node an ordered pair (u, j + 1) where u equals the
number of children of the node and j equals the number of left subtrees of the node.
Then remove the leftmost leaf. Draw an initial step and repeat the following until
only the root remains: consider the leftmost leaf’s ordered pair (u, j + 1) and add
an step, j steps, a step and u − j steps to the path, and then remove
the leftmost leaf from the tree. Finally, add an step, and c steps to the path
(Table 2).

3 Generating Functions and Related Paths

Let T be the class of T-Motzkin paths, U be the class of U-paths, and

T (z) =
∑

n≥0

tnz
n and U(z) =

∑

n≥0

unz
n

be their respective generating functions, where tn and un represent the number of
paths of length n in the given class.

We derive symbolic equations for the two types of paths based on a first return
decomposition. Note that the only U-path of length less than five is given by .
Taking into account the first return of a U-path, it is clear that a U-path of length
five or more can be decomposed as either

(a)
X

Y or (b) Z .
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Table 2 Bijection for n = 3

S-Motzkin path Non-crossing tree S-Motzkin path Non-crossing tree

In (a), X can either be a U-path or a T-Motzkin path. If X is a U-path, then Y
is either empty or Y is a step followed by a U-path. If X is a T-Motzkin path,
then Y is a U-path. In (b), Z has to be a U-path. This then results in the symbolic
equation

U = +
T U + U + U +

U
U ,

from which we obtain the equation

U(z) = z2 + z3T (z)U(z)+ 2z3U(z)+ z4U(z)2. (1)

Again, any T-Motzkin path of length 3n is either empty or, considering the first
return of the path, of the form (a) or (b) as given in the U-path case.

In (a), X can either be a U-path or a T-Motzkin path. If X is a U-path, then an
‘extra’ step needs to appear in Y, and thus Y is given by a step followed by
a T-Motzkin path. If X is a T-Motzkin path, then Y is also a T-Motzkin path. With
analogous reasoning we can see that for (b) the only possibility forZ is a T-Motzkin
path. Using this we obtain the symbolic equation

T = ε + T T + T +
U

T
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which results in the equation

T (z) = 1+ z3T (z)2 + z3T (z)+ z4U(z)T (z). (2)

Solving the system of equations given by (1) and (2) yields

T (z) = 1+ 2z3T (z)2 − z6T (z)3,

U(z) = z2 + 3z3U(z)+ 3z4U(z)2 + z5U(z)3

which, with substitutions, is amenable to application of the Lagrange inversion
formula [4, Theorem A.2]. To demonstrate this, consider the equation

T (z) = 1+ 2z3T (z)2 − z6T (z)3.

This can be factorised as T (z)(1−z3T (z))2 = 1, and with substitutions R = z3T (z)

and x = z3 we find that x = R(1 − R)2. Therefore

[z3n]T (z) = [xn+1]R = 1

n+ 1
[wn] 1

(1− w)2n+2 =
1

n+ 1

(
3n+ 1

n

)

,

which results in

T (z) =
∑

n≥0

1

n+ 1

(
3n+ 1

n

)

z3n and similarly U(z) =
∑

n≥1

1

2n+ 1

(
3n

n

)

z3n−1.

Since U-paths are S-Motzkin paths without the initial horizontal step, the generating
function for S-Motzkin paths is given by S(z) =∑

n≥1
1

2n+1

(3n
n

)
z3n. Note that (1+

S(z))2 = T (z), which was pointed out by Knuth in his 2014 Christmas lecture [6].
We have proved this by means of the bijection provided in Sect. 2.2.

4 Analysis of Various Parameters

In this section the analysis of the number of returns is done in detail, and results
for the number of peaks, the number of valleys, and the number of valleys on the
x-axis are done similarly. The study of these parameters in Dyck paths can be found
in [1, 7].
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4.1 The Number of Returns

From the generating functions for U-paths and T-Motzkin paths along with the
substitutions x = z3 and x = t (1− t)2, we obtain

T (z) = 1

(1− t)2 and S(z) = t

1− t
.

We introduce the variable u to count the number of returns, and also count the right
end of a step on the x-axis as a return in this context. From the symbolic equations
for U-paths and T-Motzkin paths we obtain the bivariate generating functions:

S(z, u) = u2z3 + uz3S(z, u)T (z, 1)+ u2z3S(z, u)+ u2z3S(z, 1)+ u2z3S(z, 1)S(z, u),

T (z, u) = 1+ uz3T (z, 1)T (z, u)+ u2z3T (z, u)+ u2z3S(z, 1)T (z, u).

Solving this system of equations we find that

S(z, u) = (1− t)tu2

1− tu− tu2 + t2u2 and T (z, u) = 1

1− tu− tu2 + t2u2 .

4.1.1 Mean and Variance

For a bivariate generating function K(z, u) with u representing the parameter of
interest, we obtain the mean and variance as follows. The mean is given by

Kave = [zn] ∂
∂u

K(z, u)

∣
∣
∣
u=1

/
[zn]K(z, 1),

and the variance is

Kvar = [zn] ∂2

(∂u)2
K(z, u)

∣
∣
∣
u=1

/
[zn]K(z, 1)+Kave −

(
Kave

)2
.

In the sections that follow some simplifications occur when calculating variances.
These are discussed in more detail in Sect. 5.

To determine the average number of returns we calculate the derivative of S(z, u)
and T (z, u) with respect to u,

∂

∂u
S(z, u)

∣
∣
∣
u=1

= (2− t)t

(1− t)3 and
∂

∂u
T (z, u)

∣
∣
∣
u=1

= t (3− 2t)

(1− t)4 .
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The total number of returns in all paths of length 3n is then obtained by extracting
the coefficients of these expressions by means of Cauchy’s integral formula. For S-
Motzkin paths this results in

[xn] (2− t)t

(1− t)3 =
1

2πi

∮
1

(t (1− t)2)n+1 ·
t (2− t)

(1− t)3 · (1− t)(1− 3t) dt

= 1

2πi

∮
1

tn
· 2− 7t + 3t2

(1− t)2n+4 dt = [tn−1]2− 7t + 3t2

(1− t)2n+4

= 2

(
3n+ 2

n− 1

)

− 7

(
3n+ 1

n− 2

)

+ 3

(
3n

n− 3

)

,

and for T-Motzkin paths we obtain

[xn] t (3− 2t)

(1− t)4 = 3

(
3n+ 3

n− 1

)

− 11

(
3n+ 2

n− 2

)

+ 6

(
3n+ 1

n− 3

)

.

Therefore in S-Motzkin paths the average number of returns for paths of length 3n
is

2
(3n+2
n−1

)− 7
(3n+1
n−2

)+ 3
( 3n
n−3

)

1
2n+1

(3n
n

) = n(23n+ 17)

2(2n+ 3)(n+ 1)
= 23

4
− 81

8n
+ O

( 1

n2

)

and for T-Motzkin paths the average number of returns is

3
(3n+3
n−1

)− 11
(3n+2
n−2

)+ 6
(3n+1
n−3

)

1
n+1

(3n+1
n

) = (19n+ 26)n

2(2n+ 3)(n+ 2)
= 19

4
− 81

8n
+ O

( 1

n2

)
.

To calculate the variance in the number of returns for paths of length 3n, we find
the second derivatives of S(z, u) and T (z, u) with respect to u:

∂2

(∂u)2
S(z, u)

∣
∣
∣
u=1

= 2t(1+ 3t − 4t2 + t3)

(1− t)5

and

∂2

(∂u)2
T (z, u)

∣
∣
∣
u=1

= 2t(1+ 6t − 9t2 + 3t3)

(1− t)6
.

We again determine the coefficients using Cauchy’s integral formula,

[xn]2t (1+ 3t − 4t2 + t3)

(1− t)5
= 2

[(
3n+ 4

n− 1

)

− 13

(
3n+ 2

n− 3

)

+ 13

(
3n+ 1

n− 4

)

− 3

(
3n

n− 5

)]
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and

[xn]2t (1+ 6t − 9t2 + 3t3)

(1− t)6 = 2

[(
3n+ 5

n− 1

)

+ 3

(
3n+ 4

n− 2

)

− 27

(
3n+ 3

n− 3

)

+ 30

(
3n+ 2

n− 4

)

− 9

(
3n+ 1

n− 5

)]

,

with which we find that the variance for the number of returns for S-Motzkin paths
of length 3n is

2(313n3 + 652n2 + 53n− 178)n

(2n+ 5)(2n+ 4)(2n+ 3)(2n+ 2)
+ n(23n+ 17)

2(2n+ 3)(n+ 1)
−

( n(23n+ 17)

2(2n+ 3)(n+ 1)

)2

= 3(14n2 + 31n+ 8)(3n+ 2)(3n+ 1)(n− 1)n

4(2n+ 5)(2n+ 3)2(n+ 2)(n+ 1)2
.

Similarly, the variance for the number of returns for T-Motzkin paths of length 3n
is given by

3(79n3 + 252n2 + 91n− 142)n

2(2n+ 5)(2n+ 3)(n+ 3)(n+ 2)
+ (19n+ 26)n

2(2n+ 3)(n+ 2)
−

( (19n+ 26)n

2(2n+ 3)(n+ 2)

)2

= 3(14n3 + 45n2 + 19n− 18)(3n+ 4)(3n+ 2)n

4(2n+ 5)(2n+ 3)2(n+ 3)(n+ 2)2
.

4.1.2 Limiting Distributions

We have defined t implicitly by t (1 − t)2 = x. It is well known that this type
of implicit equation leads to a square root singularity [4, Section VII.4]. In this
particular case, the singularity occurs at x = 4

27 , t = 1
3 , where d

dt
t (1 − t2) =

(1− t)(1− 3t) = 0. At this point, the singular expansion of t with respect to x is

t = 1

3
− 2

3
√

3

(
1− 27x

4

)1/2 + O
(

1− 27x

4

)
.

The generating function for the number of returns in S-Motzkin paths is given by

S(z, u) = (1− t)tu2

1− tu− tu2 + t2u2 .

Note that for |x| ≤ 4
27 and |u| ≤ 1, we have |t| ≤ 1

3 and thus

|1− tu− tu2 + t2u2| ≥ 1− |t ||u| − |t ||u|2 − |t |2|u|2 ≥ 1− 1

3
− 1

3
− 1

9
= 2

9
> 0,
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so the denominator is nonzero and the singularity of t remains the dominant
singularity. This generating function has the Taylor expansion (with substitution
of the singular expansion of t):

S(z, u) = 2u2

9− 3u− 2u2 +
9u2

27− 27u+ 4u3

(
t − 1

3

)
+ O

((
t − 1

3

)2)

= 2u2

9− 3u− 2u2 −
2
√

3 u2

27− 27u+ 4u3

(
1− 27x

4

) 1
2 + O

(
1− 27x

4

)
.

Applying singularity analysis [4, Section VI], we obtain

[xn]S(z, u) ∼ 2
√

3u2

27− 27u+ 4u3 ·
1

2
√
π
· n−3/2

(27

4

)n

.

Therefore, the probability generating function for the number of returns in S-
Motzkin paths of length 3n, which is given by [xn]S(x, u)/[xn]S(x, 1), converges
to

4u2

27− 27u+ 4u3 =
4u2

(2u− 3)2(u+ 3)
= 4

27
u2 + 4

27
u3 + 4

27
u4 + 92

729
u5 + · · · .

By [4, Theorem IX.1], the distribution of the number of returns in S-Motzkin paths
converges to the discrete distribution given by this probability generating function.
The probability that the number of returns is precisely k converges to

[uk] 4u2

(2u− 3)2(u+ 3)
= 4

3k+3 (3k · 2k−1 − 2k + (−1)k).

In a similar manner, we find that the limiting probability generating function for
the number of returns in T-Motzkin paths of length 3n is given by

4u

(2u− 3)2(u+ 3)
= 4

27
u+ 4

27
u2 + 4

27
u3 + 92

729
u4 + 76

729
u5 + · · · ,

and the probability that the number of returns is precisely k converges to

[uk] 4u

(2u− 3)2(u+ 3)
= 4

3k+4 (3k · 2k + 2k − (−1)k).
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The convergence in both cases is demonstrated in the figures below.

4.2 The Number of Peaks

There are two possible types of peaks:

(1) and (2)

We first consider peaks of type (1) and again use the variable u to count them. Then
from the symbolic equations

S(z, u) = uz3 + z3T (z, u)S(z, u)+ uz3S(z, u)+ z3S(z, u)+ z3S(z, u)2,

T (z, u) = 1+ z3T (z, u)2 + uz3T (z, u)+ z3S(z, u)T (z, u)

we obtain the results in Table 3.

Table 3 Results for peaks of type (1)

K(z, u) S(z, u) T (z, u)

∂
∂u

K(z, u)

∣
∣
∣
u=1

t (1−2t)
(1−3t)(1−t)

t
(1−3t)(1−t)

[xn] ∂
∂u

K(z, u)

∣
∣
∣
u=1

( 3n
n−1

)− 2
(3n−1
n−2

) ( 3n
n−1

)

Mean n
3 + 2

3
n(n+1)
3n+1

∂2

(∂u)2 K(z, u)

∣
∣
∣
u=1

2t2(1−5t+8t2−3t3)

(1−3t)3(1−t)

2t2(1−2t)
(1−3t)3(1−t)

[xn] ∂2

(∂u)2 K(z, u)

∣
∣
∣
u=1

(3n−2
n−3

)
n(n+3)
(n−2)

(3n−1
n−2

)
n

Variance 2(2n+1)(n−1)
9(3n−1) ∼ 4

27n
2(2n+1)(n+1)n

3(3n+1)2
∼ 4

27n
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The system of equations for S(z, u) and T (z, u) satisfies the technical conditions
of [3], where it is shown that we have convergence to a normal law in a rather general
setting. By the main result of [3], the number of peaks (of both types) asymptotically
follows a Gaussian distribution.

We now consider peaks of type (2), and again use the variable u to count them.
From the symbolic equations we obtain

S(z, u) = z3 + z3T (z, u)S(z, u)+ uz3S(z, u)+ z3S(z, u)+ z3S(z, u)2,

T (z, u) = 1+ z3T (z, u)2 + uz3T (z, u)+ z3S(z, u)T (z, u).

Note here that T contains an empty path. As a result, for paths of the form

T U and T T ,

we obtain uz3S(z, u) and uz3T (z, u) respectively. If the path is not empty we obtain
z3(T (z, u) − 1)S(z, u) and z3(T (z, u) − 1)T (z, u). Using the generating function
equations we obtain the results in Table 4.

Table 4 Results for peaks of type (2)

K(z, u) S(z, u) T (z, u)

∂
∂u

K(z, u)

∣
∣
∣
u=1

t2

1−3t
t

1−3t

[xn] ∂
∂u

K(z, u)

∣
∣
∣
u=1

(3n−2
n−2

) (3n−1
n−1

)

Mean (2n+1)(n−1)
3(3n−1) ∼ 2

9n
(2n+1)(n+1)

3(3n+1) ∼ 2
9n

∂2

(∂u)2 K(z, u)

∣
∣
∣
u=1

2(1−2t)(1−t)t3

(1−3t)3
2(1−3t+3t2)(1−t)t2

(1−3t)3

[xn] ∂2

(∂u)2 K(z, u)

∣
∣
∣
u=1

(3n−3
n−3

) 2n
3

(3n−3
n−2

)
n

Variance 2(10n2−11n+2)(2n+1)(n−1)
9(3n−1)2(3n−2)

2(30n3−23n2−3n+2)(2n+1)(n+1)
9(3n+1)2(3n−1)(3n−2)

∼ 40
243n ∼ 40

243n
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4.3 Valleys

There are two possible types of valleys:

(1) and (2)

For valleys of type (1), using the variable u to count them we obtain generating
function equations

S(z, u) = z3 + uz3T (z, u)S(z, u)+ z3S(z, u)+ z3S(z, u)+ z3S(z, u)2,

T (z, u) = 1+ uz3T (z, u)(T (z, u)− 1)+ 2z3T (z, u)+ z3S(z, u)T (z, u).

This is taking into account that the empty T-Motzkin path does not contribute a
valley of type (1). From the generating function equations we obtain the results in
Table 5.

As in our analysis of peaks in the previous subsection, we can apply the main
result of [3] to prove that the number of valleys (of both types) asymptotically
follows a Gaussian distribution.

The generating function equations for valleys of type (2), again using u to count
the number of valleys, are given by

S(z, u) = z3 + z3T (z, u)S(z, u)+ uz3S(z, u)+ z3S(z, u)+ uz3S(z, u)2,

T (z, u) = 1+ z3T (z, u)2 + uz3(T (z, u)− 1)+ z3 + uz3S(z, u)(T (z, u)− 1)

+ z3S(z, u).

Again, we take into account the absence of a valley in the case of an empty
T-Motzkin path. The equations yield the results in Table 6.

Table 5 Results for valleys of type (1)

K(z, u) S(z, u) T (z, u)

∂
∂u

K(z, u)

∣
∣
∣
u=1

t2

(1−3t)(1−t)
2t2

(1−3t)(1−t)2

[xn] ∂
∂u

K(z, u)

∣
∣
∣
u=1

(3n−1
n−2

)
2
( 3n
n−2

)

Mean n
3 − 1

3
n(n−1)
3n+1

∂2

(∂u)2 K(z, u)

∣
∣
∣
u=1

2(1−t−3t2)t3

(1−3t)3(1−t)

2(2−t−9t2)t3

(1−3t)3(1−t)2

[xn] ∂2

(∂u)2 K(z, u)

∣
∣
∣
u=1

(n− 1)
(3n−2
n−3

)
(n−1)(n−2)

(n+1)

(3n−1
n−2

)

Variance 2(2n+1)(n−1)
9(3n−1) ∼ 4

27n
2(2n+1)(n+1)(n−1)

3(3n+1)2 ∼ 4
27n
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Table 6 Results for valleys of type (2)

K(z, u) S(z, u) T (z, u)

∂
∂u

K(z, u)

∣
∣
∣
u=1

t2

(1−3t)
2t2

(1−3t)(1−t)

[xn] ∂
∂u

K(z, u)

∣
∣
∣
u=1

(3n−2
n−2

)
2
(3n−1
n−2

)

Mean (n−1)(2n+1)
3(3n−1) ∼ 2

9n
2(n+1)(n−1)

3(3n+1) ∼ 2
9n

∂2

(∂u)2 K(z, u)

∣
∣
∣
u=1

2(1−2t)(1−t)t3

(1−3t)3
2(2−3t−3t2)t3

(1−3t)3

[xn] ∂2

(∂u)2 K(z, u)

∣
∣
∣
u=1

2n
3

(3n−3
n−3

)
2(n − 1)

(3n−3
n−3

)

Variance 2(10n2−11n+2)(2n+1)(n−1)
9(3n−1)2(3n−2)

∼ 40
243n

4(15n2−19n+8)(2n+1)(n+1)(n−1)
9(3n+1)2(3n−1)(3n−2)

∼ 40
243n

Table 7 Results for valleys on the x-axis of type (1)

K(z, u) S(z, u) T (z, u)

∂
∂u

K(z, u)

∣
∣
∣
u=1

t2

(1−t)3
(2−t)t2

(1−t)4

[xn] ∂
∂u

K(z, u)

∣
∣
∣
u=1

(3n+1
n−2

)− 3
( 3n
n−3

)
2
(3n+2
n−2

)− 7
(3n+1
n−3

)+ 3
( 3n
n−4

)

Mean 7(n−1)n
2(2n+3)(n+1) ∼ 7

4
(19n+18)(n−1)n

2(3n+1)(2n+3)(n+2) ∼ 19
12

∂2

(∂u)2 K(z, u)

∣
∣
∣
u=1

2t3

(1−t)5
2(2−t)t3

(1−t)6

[xn] ∂2

(∂u)2 K(z, u)

∣
∣
∣
u=1

2
(3n+2
n−3

)− 6
(3n+1
n−4

)
4
(3n+3
n−3

)− 14
(3n+2
n−4

)+ 6
(3n+1
n−5

)

Variance v1(3n+1)(n−1)n
4(2n+5)(2n+3)2(n+2)(n+1)2

v2(n−1)n
4(3n+1)2(2n+5)(2n+3)2(n+3)(n+2)2

∼ 45
16 ∼ 389

144

4.4 Valleys on the x-Axis

We now consider valleys that lie on the x-axis. Keeping the two types of valleys
discussed in the previous subsection, a valley of type (1) contributes one return, and
a valley of type (2) contributes two returns.

(1) and (2)

For valleys on the x-axis of type (1), using the variable u to count them we obtain
generating function equations

S(z, u) = z3 + uz3T (z, 1)S(z, u)+ z3S(z, u)+ z3S(z, 1)+ z3S(z, u)S(z, 1),

T (z, u) = 1+ uz3T (z, 1)(T (z, u)− 1)+ z3T (z, 1)+ z3T (z, u)+ z3S(z, 1)T (z, u).

Let v1 = 30n3 + 43n2 + 154n + 288 and v2 = 778n6 + 3953n5 + 11212n4 +
24373n3 + 30064n2 + 16260n+ 2160, then we obtain the results in Table 7.
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Table 8 Results for valleys on the x-axis of type (2)

K(z, u) S(z, u) T (z, u)

∂
∂u

K(z, u)

∣
∣
∣
u=1

t2

(1−t)2
(2−t)t2

(1−t)3

[xn] ∂
∂u

K(z, u)

∣
∣
∣
u=1

( 3n
n−2

)− 3
(3n−1
n−3

)
2
(3n+1
n−2

) − 7
( 3n
n−3

)+ 3
(3n−1
n−4

)

Mean n−1
n+1 ∼ 1 (11n+6)(n−1)

2(3n+1)(2n+3) ∼ 11
12

∂2

(∂u)2 K(z, u)

∣
∣
∣
u=1

2t3

(1−t)3
2(2−t)t3

(1−t)4

[xn] ∂2

(∂u)2 K(z, u)

∣
∣
∣
u=1

2
( 3n
n−3

)− 6
(3n−1
n−4

)
4
(3n+1
n−3

) − 14
( 3n
n−4

)+ 6
(3n−1
n−5

)

Variance (3n+1)(n−1)n
(2n+3)(n+1)2 ∼ 3

2
(203n3+437n2+268n+12)(n−1)n

4(3n+1)2(2n+3)2(n+2)
∼ 203

144

In a similar manner to that of Sect. 4.1.2, we find that the limiting probability
generating function for valleys of type (1) on the x-axis are given by 4(u+3)

(7−3u)2 for

S-Motzkin paths, and 4(u+11)
3(7−3u) for T-Motzkin paths (both of length 3n).

For valleys on the x-axis of type (2), again using u to count the number of valleys,
we obtain the generating function equations

S(z, u) = z3 + z3T (z, 1)S(z, u) + uz3S(z, u)+ z3S(z, 1) + uz3S(z, u)S(z, 1),

T (z, u) = 1+ z3T (z, u)T (z, 1) + z3 + uz3(T (z, u)− 1) + uz3S(z, 1)(T (z, u)− 1)

+ z3S(z, 1).

From these the results in Table 8 are obtained.
The limiting probability generating functions for the number of valleys of type

(2) on the x-axis is given by 4
(3−u)2 for S-Motzkin paths and 13−u

3(3−u)2 for T-Motzkin
paths (both of length 3n).

5 Identities

In Sects. 4.2 and 4.3 the coefficients of the generating functions used to find
the variance were greatly simplified by using derivatives (compared to extracting
coefficients using Cauchy’s integral formula). An example of this simplification is
given: Using Cauchy’s integral formula as in Sect. 4.1.1 we obtain the coefficients

[xn] 2t2(1− 2t)

(1− 3t)3(1− t)
= 2

∑

k≥0

(k + 1)3k

[(
3n− k − 1

n− k − 2

)

− 2

(
3n− k − 2

n− k − 3

)]

.
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On the other hand, the generating function can be expressed as a derivative, and by

using the formula t3

1−3t =
∑

n≥3

(3n−3
n−3

)
xn we find that

[xn] 2t2(1− 2t)

(1− 3t)3(1− t)
= [xn]2

3
· d

dx

t3

1− 3t
=

(
3n− 1

n− 2

)

n.

It follows that

2
∑

k≥0

(k + 1)3k

[(
3n− k − 1

n− k − 2

)

− 2

(
3n− k − 2

n− k − 3

)]

=
(

3n− 1

n− 2

)

n,

which is a special case of the more general identity

2
∑

k≥j

3k(k + 1)

[(
3n− k − 1

n− k − 2

)

− 2

(
3n− k − 2

n− k − 3

)]

=
(

3n− j − 1

n− j − 2

)

(n+ j)3j .

This and other beautiful identities such as

2
∑

k≥0

3k(k + 2i)

(
3n− k + i − 4

n− k − i − 1

)

=
(

3n+ i − 3

n− i

)

(n− i)

and

2
∑

k≥0

3k(k + 2i + 1)

(
3n− k + i − 2

n− k − i − 1

)

=
(

3n+ i − 1

n− i

)

(n− i).

can be proved directly by induction. A table of the simplifications used to calculate
variances in Sect. 4 is given in Table 9.

Table 9 Generating functions and their coefficients

Generating function In terms of derivatives Power series expansion
2t2(1−5t+8t2−3t3)

(1−3t)3(1−t)
− 2

3
d
dx

t3

1−3t + 2x d
dx

t2

1−3t

∑

n≥3

(3n−2
n−3

)
n(n+3)
(n−2) x

n

2t2(1−2t)
(1−3t)3(1−t)

2
3

d
dx

t3

1−3t

∑

n≥2

(3n−1
n−2

)
nxn

2t3(1−2t)(1−t)

(1−3t)3
2
3x

d
dx

t3

1−3t

∑

n≥3

(3n−3
n−3

) 2n
3 xn

2t2(1−3t+3t2)(1−t)

(1−3t)3 x d
dx

t2

1−3t − x d
dx

t3

1−3t

∑

n≥2

(3n−3
n−2

)
nxn

2t3(1−t−3t2)

(1−3t)3(1−t)

1
2

d
dx

t5

1−3t + 1
2

d
dx

t4

1−3t

∑

n≥3

(3n−2
n−3

)
(n − 1)xn

2t3(2−t−9t2)

(1−3t)3(1−t)2
1
x

d
dx

(
4
5

t5

1−3t + 3
5

t6

1−3t − t7

1−3t

) ∑

n≥2

(3n−1
n−2

)
(n−1)(n−2)

n+1 xn

2t3(2−3t−3t2)

(1−3t)3 − 2
5

d
dx

t6

1−3t − 1
5

d
dx

t5

1−3t + d
dx

t4

1−3t

∑

n≥3
2
(3n−3
n−3

)
(n − 1)xn
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A Theorem to Reduce Certain Modular
Form Relations Modulo Primes

Cristian-Silviu Radu

Dedicated to my advisor and friend Peter Paule on the
occasion of his 60th birthday

1 Introduction

Let p be a prime. Let A1
k(N) be the set of meromorphic modular forms of

weight k for the group �1(N) and A1(N) := ⊕∞k=−∞A1
k(N). Let fj (τ ) =∑∞

n=mj
aj (n)q

n ∈ A1(N), j = 0, . . . , ν and q = e2πiτ such that the aj (n) are
integers. The main result of this paper is that

f0(τ )+ qf1(τ )+ q2f2(τ )+ · · · + qνfν(τ ) ≡ 0 (mod p) (1)

iff

f0(τ ) ≡ f1(τ ) ≡ f2(τ ) ≡ · · · ≡ fν(τ ) ≡ 0 (mod p). (2)

This result is also important from an algorithmic point of view because if we want
to design an algorithm to prove relations like (1) we see that we only need to prove
congruences modulo p between meromorphic modular forms. For this situation
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there are well-known proving tools like Sturm’s theorem, etc. In this regard there
is a lot of theory developed which allows automatization of proving such relations.

The organization of this paper is as follows. In Sect. 2 we introduce basic
definitions and notions. In Sect. 3 the main result of this paper is proven, namely
the implication (1)⇒(2).

2 Basic Notions and Definitions

Let

M2(Z) :=
{(

a b

c d

)

: a, b, c, d ∈ Z, ad − bc > 0
}

and

SL2(Z) :=
{(

a b

c d

)

∈ M2(Z), ad − bc = 1
}
.

For N a positive integer let

�0(N) :=
{(

a b

c d

)

∈ SL2(Z) : c ≡ 0 (mod N)
}
,

�1(N) :=
{(

a b

c d

)

∈ �0(N) : a ≡ d ≡ 1 (mod N)
}
,

and

�(N) :=
{(

a b

c d

)

∈ �1(N) : b ≡ 0 (mod N)
}
.

Let

H := {τ ∈ C : Im(τ ) > 0}.

If f, g are meromorphic functions on H and f (τ) = g(τ) for all values τ ∈ H

where f, g are defined, we simply write f (τ) = g(τ) and omit to write where τ

lives. There will be no confusion because we will always use the symbol τ for a
generic τ ∈ H. For special values we will use τ with a subscript for example τ0,
τ1,. . . , etc. Since the symbol τ is always used for generic τ ∈ H we will often write
f (τ) for the function f and for specializations of f at a point we use for the point
the symbol τj for j ∈ N. That is, f (τj ) is the value of f at the point τj .
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For k ∈ Z, f meromorphic on H and γ =
(
a b

c d

)

∈ M2(Z) we define

(f |kγ )(τ ) := (ad − bc)k/2(cτ + d)−kf
(aτ + b

cτ + d

)
.

Then for γ1, γ2 ∈ M2(Z):

f |kγ1|kγ2 = f |kγ1γ2.

A good reference for properties like this e.g. is [3].
Let N be a positive integer and k an integer. Let � be a subgroup of SL2(Z) such

that �(N) ⊆ �. A meromorphic modular form of weight k for � is a meromorphic
function f on H such that:

(i) for all γ ∈ �, f |kγ = f ;

(ii) for all γ ∈ SL2(Z), (f |kγ )(τ ) admits a Laurent expansion in powers of e
2πiτ
N

with finite principal part.

We denote the set of meromorphic modular forms of weight k for � by Ak(�).
A weak modular form of weight k for � is a meromorphic modular form of weight

k for � which is holomorphic on H. We denote the set of weak modular forms of
weight k for � by M !

k(�).
A modular form of weight k for � is a weak modular form of weight k for � such

that (f |kγ )(τ ) admits a Laurent expansion in powers of e
2πiτ
N with principal part 0.

We denote the set of modular forms of weight k for � by Mk(�).

Remark 2.1 Let T :=
(

1 1
0 1

)

. We note that if f is a meromorphic modular form of

weight k for �1(N), then since T ∈ �1(N) and because of (i) we have

(f |kT )(τ ) = f (τ + 1) = f (τ).

Because of (ii), there exist m ∈ Z and a(n) ∈ C, n ≥ m, such that

f (τ) =
∞∑

n=m

a(n)e
2πinτ
N and consequently f (τ + 1) =

∞∑

n=m

a(n)e
2πin
N e

2πinτ
N .

In particular f (τ +1) = f (τ) implies that a(n)e
2πin
N = a(n) which is only possible

iff a(n) = 0 unless N |n. This implies that there exist m′ ∈ Z and b(n) ∈ C, n ≥ m′,
such that

f (τ) =
∞∑

n=m′
b(n)qn (3)
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where here and in the following

q = q(τ) := e2πiτ .

Note that in the sum (3) q should be understood as q(τ).

Note 2.2 When f ∈ Ak(�1(N)) for convenience we will write

f (τ) =
∞∑

n=−∞
a(n)qn (4)

although because of (ii), there exists an integer m such that a(n) = 0 for all n < m.

For simplicity we define

A1
k(N) := Ak(�1(N)).

As we observed in Remark 2.1, if f ∈ A1
k(N) then f (τ) =∑∞

n=−∞ a(n)qn. Let R
be a subring of C. If a(n) ∈ R for all n ∈ Z, we say that f ∈ A1

k(N,R).

Similarly if f ∈ Ak(�(N)), then f (τ) = ∑∞
−∞ b(n)qN with qN := e

2πiτ
N . If

b(n) ∈ R (for R as above), for all n ∈ Z, then we say that f ∈ Ak(�(N),R).
Analogously we define M !

k(�,R) and Mk(�,R) for an arbitrary subgroup � ⊆
SL2(Z).

3 Main Result

The goal of this section is to prove Theorem 3.18 which says that for given fj (τ ) ∈
A1(N) = ∪∞k=−∞A1

k(N) for j = 0, . . . , ν, we have

f0(τ )+ qf1(τ )+ · · · + qνfν(τ ) ≡ 0 (mod p)

iff

f0(τ ) ≡ f1(τ ) ≡ · · · ≡ fν(τ ) ≡ 0 (mod p).

We will need a couple of results for proving this and, for the sake of logical
transparence we explain here shortly how they depend on each other. Lemmas 3.1
and 3.2 are used for proving Lemma 3.3. Lemma 3.8 does not depend on any lemma
proven in this paper. One of the crucial results of this section is Theorem 3.10,
which is proven by using Lemmas 3.8, 3.2, 3.3, and Deligne and Rapoport’s result
Lemma 3.9. Theorem 3.10 says that for a given positive integer N , a prime p, and
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� ∈ A1
k(N,Z(p)) with

�(τ) =
∞∑

n=−∞
b(n)qn,

we have for any given prime 
 and integers a and t with gcd(a, 
N) = 1:

∀n∈Z b(
n+ t) ≡ 0 (mod p)⇒ ∀n∈Z b(
n+ a2t) ≡ 0 (mod p).

Here for p a prime

Z(p) := {a/b|a, b ∈ Z, p � b}.

Theorem 3.10 is only used to prove Theorem 3.11 which simply says that the
q-expansion of a meromorphic modular form with integer coefficients cannot be
congruent modulo p to a polynomial in q , unless this polynomial is a constant. As
we will see this is the key tool needed in every intermediate result until we arrive
at the proof of Theorem 3.18. A very simple but crucial ingredient needed for the
induction proof of Theorem 3.18 is Lemma 3.13. For the proof of Lemma 3.13 one
only needs Lemma 3.1. Lemma 3.14 is just a simple result needed when one divides
two meromorphic modular forms modulo p. Theorem 3.15 is a weaker version of
Theorem 3.18 which is based on Lemmas 3.14, 3.13 and Theorem 3.11. One obtains
Corollary 3.16 from Theorem 3.15 which is used to prove Lemma 3.17. Finally by
using Lemmas 3.17, 3.14 and 3.13 one proves Theorem 3.18.

Lemma 3.1 Let m,N be positive integers with m|N and k an integer. For λ ∈ Z

let Mλ,m :=
(

1
0

λ
m

)
. Let � ∈ A1

k(N) and γ =
(
a
c
b
d

)
∈ �0(N). Then �|kMλ,mγ =

(�|kγ )|kMbd+λd2,m.

Proof The statement is equivalent to proving.

�|kMλ,mγM
−1
bd+λd2,m

γ−1 = �.

We have that

Mλ,mγM
−1
bd+λd2,m

γ−1 =
(
a + λc − (bd+λd2)(a+λc)+b+λd

m

mc (−bd + λd2)c + d

)

γ−1 ∈ �1(N)

because c ≡ 0 (mod m) and therefore ad ≡ 1 (mod m) which implies that

−(bd + λd2)(a + λc)+ b + λd ≡ −b − λd + b + λd ≡ 0 (mod m).

��
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Lemma 3.2 Let m be a positive integer and t an integer. Let � be meromorphic on
H and �(τ) =∑∞

n=−∞ a(n)qn. Then

1

m

m−1∑

λ=0

e−
2πiλt
m �

(τ + λ

m

)
= q

t
m

∞∑

n=−∞
a(mn+ t)qn.

Proof

1

m

m−1∑

λ=0

e−
2πiλt
m �

(τ + λ

m

)

= 1

m

m−1∑

λ=0

e−
2πiλt
m

∞∑

n=−∞
a(n)e2πin τ+λ

m

= 1

m

∞∑

n=−∞
a(n)e

2πinτ
m

m−1∑

λ=0

e
2πiλ(n−t)

m

=e
2πitτ
m

∞∑

n=−∞
a(mn+ t)e2πinτ .

��
Lemma 3.3 Let m,N be positive integers and t an integer. Let γ =

(
a
c
b
d

)
∈

�0(mN) ∩ �1(N) and � ∈ A1
k(N) with �(τ) =∑∞

n=−∞ a(n)qn. Then

q
t
m

∞∑

n=−∞
a(mn+ t)qn|kγ = q

a2t
m e

2πibat
m

∞∑

n=−∞
a(mn+ a2t)qn.

Proof We have

q
t
m

∞∑

n=−∞
a(mn+ t)qn|kγ = 1

m

m−1∑

λ=0

e−
2πiλt
m mk/2(�|kMλ,m)|kγ

because of Lemma 3.2

= 1

m

m−1∑

λ=0

e−
2πiλt
m mk/2(�|kγ )|kMλd2+bd,m
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because of Lemma 3.1

= 1

m

m−1∑

λ=0

e−
2πiλt
m mk/2�|kMλd2+bd,m

because of � ∈ A1
k(N)

= 1

m
e

2πibat
m

m−1∑

λ′=0

e−
2πia2λ′ t

m �
(τ + λ′

m

)

by using the substitution λ′ ≡ λd2 + bd (mod m), with inverse λ ≡ a2λ′ − ba

(mod m).

=q
a2t
m e

2πibat
m

∞∑

n=−∞
a(mn+ a2t)qn

because of Lemma 3.2.

��
Definition 3.4 We define η : H→ C by

η(τ) = e
πiτ
12

∞∏

n=1

(1− qn)

and

� := η24.

Remark 3.5 By [5, Th. 1.64] we find that (η(24τ ))2 ∈ M1(�0(576)) ⊆
M1(�1(576)) and � ∈ M12(SL2(Z)).

Definition 3.6 We denote by j (τ ) the classical modular invariant.

Remark 3.7 Note that j (τ ) ∈ M !
0(SL2(Z),Z). Furthermore, j (τ ) = q−1 + . . . .

For meromorphic functions f, g on H which additionally have Laurent expansions
in q with coefficients in Z(p) for some prime p, that is f (τ) =∑∞

n=−∞ a(n)qn and
g(τ) =∑∞

n=−∞ b(n)qn, with a(n), b(n) ∈ Z(p) for all n ∈ Z, we write

f (τ) ≡ g(τ) (mod p)

iff a(n)−b(n)
p

∈ Z(p) for all n ∈ Z.
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Lemma 3.8 Let p be a prime. Let f ∈ A1
k(N,Z(p)). Then there exist g ∈

M !
k(�1(N)),Z) and a monic p(X) ∈ Z[X] such that

g(τ)

p(j (τ ))
≡ f (τ) (mod p).

Proof Assume that the f (τ) has n poles in the fundamental domain of �1(N)

counted with multiplicity. Let τ1, . . . , τn be the poles of f (τ). Then

G(τ) := f (τ)

n∏

j=1

(j (τ )− j (τj )) (5)

has no poles in H, that is G ∈ M !
k(�1(N)). Furthermore, there exists an u ∈ Z such

that �(τ)uG(τ) ∈ Mk+12u(�1(N)). From [7, Th. 3.52] we know that there exist

b1, . . . , bs ∈ Mk+12u(�1(N),Z)

such that

Mk+12u(�1(N)) = {c1b1(τ )+ · · · + csbs(τ ), c1, . . . , cs ∈ C}.

In particular there exist c1, . . . , cs ∈ C such that

�(τ)uG(τ) = c1b1(τ )+ · · · + csbs(τ )

or equivalently

G(τ) = c1
b1(τ )

�(τ)u
+ · · · + cs

bs(τ )

�(τ)u
. (6)

Let

p(X) :=
n∏

j=1

(X − j (τj )) = Xn + an−1X
n−1 + · · · + a1X + a0. (7)

Let an := 1 and V be the vector space over Q generated by

{c1, . . . , cs} ∪ {a0, . . . , an}.

Let r1, . . . , rm be a basis of V over Q. Then for i = 1, . . . ,m

ai = d
(i)
1 r1 + · · · + d(i)

m rm
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for some rational numbers d(i)
k , k = 1, . . . ,m. Then by (7)

p(X) =
n∑

i=0

Xiai =
n∑

i=0

Xi
m∑

j=1

d
(i)
j rj =

m∑

j=1

rj

n∑

i=0

d
(i)
j Xi

︸ ︷︷ ︸
=djpj (X)

.

where p1(X), . . . , pm(X) ∈ Z[X] and d1, . . . , dm ∈ Q are chosen such that
p1(X), . . . , pm(X) are primitive in the sense of Gauss. Hence

p(X) = r1d1p1(X)+ r2d2p2(X)+ · · · + rmdmpm(X). (8)

Similarly for i = 1, . . . , s

ci = e
(i)
1 r1 + · · · + e(i)m rm

for some rational numbers e(i)k , k = 1, . . . ,m. Then by (6) we have that

G(τ) =
s∑

i=1

ci
bi(τ )

�(τ)u
=

s∑

i=1

m∑

j=1

e
(i)
j rj

bi(τ )

�(τ)u
=

m∑

j=1

rj

s∑

i=1

e
(i)
j

bi(τ )

�(τ)u

︸ ︷︷ ︸
=ej fj (τ )

where fj (τ ) =∑∞
n=−∞ bj (n)q

n and e1, . . . , em ∈ Q are chosen such that

�
 prime∀n∈Z
|bj (n). (9)

Hence

G(τ) = e1r1f1(τ )+ · · · + emrmfm(τ) (10)

Note that fi(τ ) = 1
ei

∑s
i=1 e

(i)
j

bi(τ )
�(τ)u

∈ M !
k(�1(N),Z).

In particular (5), (8) and (10) implies

e1r1f1(τ )+ · · · + emrmfm(τ)

={r1d1p1(j (τ ))+ r2d2p2(j (τ ))+ · · · + rmdmpm(j (τ ))}f (τ).

(11)

Since r1, . . . , rm is a basis, (11) implies that

eifi(τ ) = dif (τ )pi(j (τ )), i = 1, . . . ,m.
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In particular, writing e1
d1
= a

b
with a, b ∈ Z and gcd(a, b) = 1 we obtain

af1(τ )

bp1(j (τ ))
= f (τ).

This implies that

af1(τ )

b
= f (τ)p1(j (τ ))

Since the coefficients in the q-expansion of f (τ)p1(j (τ )) are in Z(p) and because
of (9) it follows that p � b. Let b′ be an integer such that bb′ ≡ 1 (mod p) and
define

g(τ) := ab′f1(τ ).

Then g(τ) ∈ M !
k(�1(N),Z). In particular

g(τ) ≡ f (τ)p1(j (τ )) (mod p).

Next we observe that there exists c ∈ {1, . . . , p − 1} and monic r(X) ∈ Z[X] such
that p1(X) ≡ cr(X) (mod p), since p1(X) is primitive. This implies that

g(τ) ≡ cf (τ )r(j (τ )) (mod p)

or equivalently

c′g(τ)
r(j (τ ))

≡ f (τ) (mod p),

where c′ is an integer such that cc′ ≡ 1 (mod p). ��
As a simple consequence of [1, VII, Cor. 3.12] we have:

Lemma 3.9 Let k,N be positive integers and f ∈ Mk(�(N),Z[ξ ]) where ξ :=
e

2πi
N . Then for all γ ∈ �0(N), f |kγ ∈ Mk(�(N),Z[ξ ]).

Theorem 3.10 Let 
, p be primes. Let N be a positive integer and t an integer. Let

γ =
(
a
c
b
d

)
∈ �0(
N) ∩ �1(N). Let � ∈ A1

k(N,Z(p)) and
∑∞

n=−∞ b(n)qn :=
�(τ). Then

∞∑

n=−∞
b(
n+ t)qn ≡ 0 (mod p)⇒

∞∑

n=−∞
b(
n+ a2t)qn ≡ 0 (mod p).
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Proof By Lemma 3.8 there exists f ∈ M !
k(�1(N),Z) and a monic p(X) ∈ Z[X]

such that

�(τ) ≡ f (τ)

p(j (τ ))
(mod p).

Let

∞∑

n=−∞
a(n)qn := f (τ)

p(j (τ ))
.

We define

F(τ) := p(j (
τ))


−1∏

λ=0

p
(
j
(τ + λ




))
. (12)

If the degree of p(X) is n, we observe directly from (12) that the q-expansion of
F(τ) has the form

F(τ) = q−n(
+1) +O(q−n(
+1)+1), (13)

and we need later in the proof that the coefficient of q−n(
+1) is 1. Let

Q(X) := (X − j (
τ ))


−1∏

λ=0

(
X − j

(τ + λ




))
, (14)

and define en(τ ) by the relation

Q(X) = X
+1 +

∑

n=1

en(τ )X
n.

By [6, §4, Th. 16], Q(X) ∈ Z[j (τ )][X]. We observe from (14) that en(τ ) =
En(Y0(τ ), Y1(τ ), . . . , Y
(τ )) where

(Y0(τ ), Y1(τ ), . . . , Y
(τ )) :=
(
j (
τ ), j

(τ




)
, . . . , j

(τ + 
− 1




))

and En(X0,X1, . . . , X
) ∈ Z[X0,X1, . . . , X
] are the elementary symmetric
polynomials. Furthermore, F(j (τ )) = f (Y0(τ ), Y1(τ ), . . . , Y
(τ )) where
f (X0,X1, . . . , X
) ∈ Z[X0,X1, . . . , X
] is a symmetric polynomial and since
every integer symmetric polynomial in X0, . . . , X
 is an integer polynomial in the
elementary symmetric functions E1, . . . , En by [2, p. 20, (2.4)], it follows that

f (X0, . . . , Xn) = h(E0(X0, . . . , Xn), . . . , En(X0, . . . , Xn))
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for some h(X0, . . . , Xn) ∈ Z[X0, . . . , Xn]. This implies that

F(τ) = h(e0(τ ), . . . , en(τ )) ∈ Z[j (τ )]

or, in other words, there exists r(X) ∈ Z[X] such that F(τ) = r(j (τ )) and because
of (13) it follows that r(X) is monic.

Next we see that

G(τ) := r(j (τ ))

(
q

t



∞∑

n=−∞

a(
n+ t)

p
qn

)
 ∈ A1
k
(N,Z)

because of Lemma 3.3. Furthermore, by Lemma 3.2,

r(j (τ ))× q
t



∞∑

n=−∞

a(
n+ t)

p
qn = F(τ)× 1

p2


−1∑

λ=0

e−
2πiλt



f
(
τ+λ



)

p
(
j
(
τ+λ



))

=p(j (
τ))× 1


2


−1∑

λ=0

e−
2πiλt


 f
(τ + λ




) ∏

α �=λ

p
(
j
(τ + α




))
,

which is holomorphic on H because j (τ ) and f (τ) are holomorphic on H. This
implies that G(τ) is holomorphic on H so that G(τ) ∈ M !

k(�1(N),Z).
Because of � ∈ M12(SL2(Z)), we also have � ∈ M12(�1(N)) and �|12γ is a q-

series with positive order for all γ ∈ SL2(Z). Because of this there exists a positive
integer i such that

r(j (τ ))
�(τ)i
(
q

t



∞∑

n=−∞

a(
n+ t)

p
qn

)
 ∈ M12i+k(�1(N),Z).

By Lemma 3.3:

r(j (τ ))
�(τ)i
(
q

t



∞∑

n=−∞

a(
n+ t)

p
qn

)
|k+12iγ

= r(j (τ ))
�(τ)i
(
q

a2t



∞∑

n=−∞

a(
n+ a2t)

p
qn

)


.

Then by Lemma 3.9 the q-series

r(j (τ ))
�(τ)i
(
q

a2t



∞∑

n=−∞

a(
n+ a2t)

p
qn

)


,
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has integer coefficients. This implies that

∞∑

n=−∞
a(
n+ a2t) ≡ 0 (mod p),

finishing the proof. ��
Theorem 3.11 Let p be a prime. Let N be a positive integer and let f ∈
A1

k(N,Z(p)). Assume that for some r(q) ∈ Z[q, q−1] we have

f (τ) =
∞∑

n=−∞
a(n)qn ≡ r(q) (mod p).

Then f (τ) ≡ a(0) (mod p).

Proof Let r and u be such that

r(q) ≡ a(r)qr + a(r − 1)qr−1 + · · · + a(u+ 1)qu+1 + a(u)qu.

Let t �= 0 be such that a(t) �≡ 0 (mod p) and let v := r + 1 if r �= −1 or v := 1 if
r := −1. Let a, b, c, d ∈ Z and 
 a prime such that


 > r + 2− u, (15)

a2v ≡ t (mod 
), (16)

a ≡ 1 (mod N), (17)

c ≡ 0 (mod 
N), (18)

ad − bc = 1. (19)

Then γ =
(
a
c
b
d

)
∈ �0(
N) ∩ �1(N). Furthermore,

∑∞
n=−∞ a(
n + v) ≡ 0

(mod p). Then because of Theorem 3.10,

∞∑

n=−∞
a(
n+ a2v)qn =

∞∑

n=−∞
a(
n+ t)qn ≡ 0 (mod p).

This is false because a(t) �≡ 0 (mod p). It is left to show that there exist a, b, c, d, 

satisfying (15)–(19). Let vt = 2sm where m is odd. By standard properties of the
Legendre symbol we obtain for any prime 
 �= 2:

(vt




) = (2sm




) = (2




)s(m




) = (−1)s

2−1

8 (−1)
m−1

2

−1

2
( 


m

)
.
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Assuming that 
 ≡ 1 (mod 8) we obtain

(vt




) = ( 


m

)
.

Assuming further that 
 ≡ 1 (mod m) we obtain that

(vt




) = 1. (20)

We have proven that vt is a square modulo 
 for all primes 
 ≡ 1 (mod 8m). By
Dirichlet’s theorem there are infinitely many such primes 
. In particular there exists
a prime 
 with 
 � N and such that (15) is satisfied. We fix such an 
. Then vt ≡ x2

(mod 
) because of (20). Let a ∈ Z such that

a ≡ xv−1 (mod 
) and

a ≡ 1 (mod N).

Such an a clearly exists because of the Chinese remainder theorem. In particular for
this a, (16)–(17) are satisfied. Set c := 
N . Then we can find integer b, d such that
ad − bc = 1 because gcd(a, c) = 1. Hence we have constructed a, b, c, d and 


with the desired properties. ��
Definition 3.12 Let d be a positive integer. For f meromorphic on H we define
Ud(f ) and Vd(f ) meromorphic on H by

Ud(f )(τ ) := 1

d

d−1∑

λ=0

f
(τ + λ

d

)

and Vd(f )(τ ) := f (dτ).

Lemma 3.13 Let k and t be integers and m a positive integer and f (τ) ∈ A1
k(N).

Then

VmUm(qtf )(τ ) = qtG(τ),

where G ∈ A1
k(Nm2).

Proof

Um(q
tf )(τ ) = 1

m

m−1∑

λ=0

e
2πit (τ+λ)

m f
(τ + λ

m

)

= e
2πitτ
m

1

m

m−1∑

λ=0

e
2πitλ
m f

(τ + λ

m

)

= qt/mg(τ ).
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If f ∈ Ak(�1(N)) then f |Mλ,m ∈ Ak(�1(N) ∩ �(m)) because of Lemma 3.1. In
particular g(τ) ∈ Ak(�1(N) ∩ �(m)). Consequently, G := Vmg ∈ Ak(�1(Nm2)),

because for
(
a
c
b
d

)
∈ �1(Nm2) we have

(
a

c/m
bm
d

)
∈ �1(N) ∩ �(m) which implies

Vmg|k
(
a

c

b

d

)

= Vm

(
g|k

(
a

c/m

bm

d

))
= Vmg.

��
Lemma 3.14 Let p be a prime and a(τ) ∈ A1

k(576N,Z(p)). Let

a(τ) = pbsq
s + pbs+1q

s+1 + · · · + pbs+m−1q
s+m−1 +

∑

n≥s+m

bnq
n, p � bs+m.

Then there exists ã(τ ) = ∑
n≥s+m cnq

n ∈ A1
k(576N,Z(p)) such that ã(τ ) ≡ a(τ)

(mod p).

Proof Let

a1(τ ) := a(τ)− pbsj (τ )
−s+2k(η(24τ ))2k.

Then

a1(τ ) = pb
(1)
s+1q

s+1 + · · · + pb
(1)
s+m−1q

s+m−1 +
∑

n≥s+m

b(1)n qn.

Let

a2(τ ) := a1(τ )− pb
(1)
s+1j (τ )

−(s+1)+2k(η(24τ ))2k.

Then

a2(τ ) = pb
(2)
s+2q

s+2 + · · · + pb
(2)
s+m−1q

s+m−1 +
∑

n≥s+m

b(2)n qn.

Define analogously a3(τ ), . . . , am(τ). Then ã(τ ) := am(τ) satisfies a(τ) ≡ ã(τ )

(mod p). By Remarks 3.7 and 3.5 it follows that ã(τ ) ∈ A1
k(576N,Z(p)). ��

Theorem 3.15 Let N be a positive integer. Let φ0(τ ), . . . , φn(τ ) ∈ A1
0(N,Z(p)).

Assume that

φn(τ )q
n + φn−1(τ )q

n−1 + · · · + φ0(τ ) ≡ 0 (mod p).

Then φ0(τ ) = φ1(τ ) = · · · = φn(τ ) ≡ 0 (mod p).
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Proof We proceed by induction on the degree with respect to q of the left hand
side of the relation. We assume now that the theorem is valid for any relation of
degree less than n. We assume that φ0(τ ) �≡ 0 because otherwise we may divide the
relation by q and by the induction hypothesis we are finished. So assume φ0(τ ) �≡ 0
(mod p). We can also assume that φn(τ ) �≡ 0 (mod p) because otherwise again we
are finished by induction.

By Lemma 3.14 there exists φ̃0 ∈ A1
0(576N,Z(p)) such that φ̃0(τ ) = bsq

s +
O(qs+1), p � bs and φ̃0(τ ) ≡ φ0(τ ) (mod p). Then φκ (τ )

φ̃0(τ )
∈ A1

0(576N,Z(p)), for

κ ∈ 0, . . . , n. Let κ > 0 be minimal such that φκ (τ )

φ̃0(τ )
�≡ 0 (mod p). We divide the

relation by qκφ̃0(τ ) and obtain:

φn(τ )

φ̃0(τ )
qn−κ + φn−1(τ )

φ̃0(τ )
qn−2−κ + · · · + φκ(τ )

φ̃0(τ )
+ q−κ ≡ 0 (mod p). (21)

Let

φκ(τ )

φ̃0(τ )
=

∞∑

j=−∞
a(j)qj .

By Theorem 3.11 there exists a minimal d > κ such that a(d) �≡ 0 (mod p) or∑∞
n=m a(n)qn ≡ a(0) (mod p). Let

s :=
{
κ + 1 if

∑
a(n)qn ≡ a(0) (mod p),

d otherwise.

Then applying the operator VsUs to the relation (21) yields

bn(τ )q
n−κ + bn−1(τ )q

n−κ−1 + · · · + bκ(τ ) ≡ 0 (mod p), (22)

where for i = κ, . . . , n:

bi(τ ) := qκ−iVsUs

(
qi−κ φi(τ )

φ̃0(τ )

)
.

Note that since s > κ we have VsUs(q
−κ) = 0.

In particular by Lemma 3.13 bi(τ ) ∈ A1
k(576Ns2,Z(p)). Next note that

bκ(τ ) = VsUs(
∑

a(n)qn) =
∑

a(ns)qns

and hence bκ(τ ) ≡ a(0) (mod p) if
∑

a(n)qn ≡ a(0) (mod p) or bκ(τ ) contains
the term qda(d) �≡ 0 (mod p), in any case bκ(τ ) �≡ 0 (mod p).
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However by the induction hypothesis bn(τ ) ≡ · · · bκ(τ ) ≡ 0 (mod p). This
contradicts bκ(τ ) �≡ 0 (mod p) hence we have φn(τ ) ≡ · · · ≡ φ0(τ ) ≡ 0 (mod p).

��
Corollary 3.16 Let p be a prime. Let a0(τ ), a1(τ ), . . . , an(τ ) ∈ M !

0(�1(N),Z(p)).
Let r(q) ∈ Z[q, q−1] be non-constant modulo p. Assume that

an(τ )r(q)
n + an−1(τ )r(q)

n−1 + · · · + a0(τ ) ≡ 0 (mod p).

Then a0(τ ) ≡ a1(τ ) ≡ · · · ≡ an(τ ) ≡ 0 (mod p).

Proof We proceed by induction on n. Assume that r(q) has positive degree and let
d be its degree. Then there exist bdn−1(τ ), . . . , b0(τ ) ∈ M !

0(�1(N),Z(p)) such that

an(τ )q
dn + bdn−1(τ )q

dn−1 + · · · + b0(τ ) ≡ 0 (mod p)

Then by Theorem 3.15 we have an(τ ) ≡ 0 (mod p). By induction we are finished.
Next assume that r(q) has negative degree and let −d be its low-degree. Then

there exist b−dn+1(τ ), . . . , b0(τ ) ∈ M !
0(�1(N),Z(p)) such that

an(τ )q
−dn + b−dn+1(τ )+ · · · + b0(τ ) ≡ 0 (mod p).

After multiplication of both sides by qdn, we obtain by Theorem 3.15 that an(τ ) ≡ 0
(mod p). By induction we are finished. ��
Lemma 3.17 Let N be a positive integer and p a prime. For i = 1, . . . , n let
�i ∈ A1

ki
(N,Z(p)), ki ∈ Z. Let r(q) ∈ Z[q, q−1] be such that

�1(τ )+�2(τ )+ · · · +�n(τ) ≡ r(q) (mod p). (23)

Then r(q) ≡ j (mod p) for some j ∈ Z.

Proof Let

ν := 12(p − 1)

gcd(p2 − 1, 24)
.

Let b
(0)
i (τ ) := ∑

1≤j≤n
kj≡i (mod ν)

�j (τ )
(

η(τ)p

η(pτ)

) 2(i−kj )

p−1
. Then �1(τ ) + · · · + �n(τ) ≡

b
(0)
0 (τ )+ b

(0)
1 (τ ) + · · · + b

(0)
ν−1(τ ) (mod p) because of

(
η(τ)p

η(pτ)

) 2ν
p−1 ≡ 1 (mod p).

In particular b
(0)
i (τ ) ∈ A1

i (576pN) because by [5, Th. 1.64],
(

η(τ)p

η(pτ)

) 2ν
p−1 ∈

Aν(�0(p)) ⊆ A1
ν(p). This shows in particular that any sum �′1(τ ) + · · · + �′

n′(τ )
with �′j (τ ) ∈ A1

j (576pN) can be written as b′0(τ ) + · · · + b′ν(τ ) with b′i (τ ) ∈
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A1
j (576pN). Taking both sides of (23) to the power of k for k = 1, . . . , ν and

applying this rewriting to the left hand side we obtain the following system:

r(q) ≡ b
(0)
0 (τ )+ b

(0)
1 (τ )+ · · · + b

(0)
ν−1(τ ),

r(q)2 ≡ b
(1)
0 (τ )+ b

(1)
1 (τ )+ · · · + b

(1)
ν−1(τ ),

...
...
...

r(q)ν ≡ b
(ν−1)
0 (τ )+ b

(ν−1)
1 (τ )+ · · · + b

(ν−1)
ν−1 (τ ),

for some b
(j)

i ∈ A1
i (N). Let T (τ) := η(24τ )2. By Remark 3.5, T ∈

A1
1(576pN,Z(p)). We define

A :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b
(0)
0 (τ )

T (τ )0
b
(0)
1 (τ )

T (τ )
· · · b

(0)
ν−1(τ )

T (τ )ν−1

b
(1)
0 (τ )

T (τ )0
b
(1)
1 (τ )

T (τ )1 · · · b
(1)
ν−1(τ )

T (τ )ν−1

b
(2)
0 (τ )

T (τ )0
b
(2)
1 (τ )

T (τ )1 · · · b
(2)
ν−1(τ )

T (τ )ν−1

...
...

...
...

b
(ν−1)
0 (τ )

T (τ )0
b
(ν−1)
1 (τ )

T (τ )1 · · · b
(ν−1)
ν−1 (τ )

T (τ )ν−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then

⎛

⎜
⎜
⎜
⎝

r(q)

r(q)2

...

r(q)ν

⎞

⎟
⎟
⎟
⎠
≡ A

⎛

⎜
⎜
⎜
⎝

T (τ)0

T (τ)1

...

T (τ )ν−1

⎞

⎟
⎟
⎟
⎠

(mod p). (24)

Note that the entries of A are in A1
0(576pN). If A is not invertible modulo p, then

there exists modular functions x1(τ ), x2(τ ), . . . , xν(τ ) not all identically zero such
that

(x1, x2, . . . , xν)A ≡ (0, 0, . . . , 0)

which together with (24) implies that

x1(τ )r(q)+ x2(τ )r(q)
2 + · · · + xν(τ )r(q)

ν ≡ 0 (mod p).

which is impossible by Corollary 3.16 unless r(q) is constant modulo p.
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If A is invertible modulo p, then

adj(A)

⎛

⎜
⎜
⎜
⎝

r(q)

r(q)2

...

r(q)ν

⎞

⎟
⎟
⎟
⎠
= det(A)

⎛

⎜
⎜
⎜
⎝

T (τ)0

T (τ)1

...

T (τ )ν−1

⎞

⎟
⎟
⎟
⎠

.

where adj(A) is the adjoint of A and det(A) �≡ 0 (mod p). In particular, since A is
invertible modulo p it follows that the first row of adj(A) contains at least one entry
which is nonzero modulo p. This leads to a relation of the form

r(q)a1(τ )+ r(q)2a2(τ )+ · · · + r(q)νaν(τ ) ≡ det(A)T (τ)0 = det(A) (mod p)

which is impossible because of Corollary 3.16 unless r(q) is constant modulo p.
��

Theorem 3.18 Let p be a prime. Let N be a positive integer. Let Sj ⊂ Z be finite
for 0 ≤ j ≤ m. Assume that we have a relation of the form

∑

0≤j≤m

qj
∑

i∈Sj
�i,j (τ ) ≡ 0 (mod p),

where �i,j ∈ A1
i (N,Z(p)) and �i,j (τ ) �≡ 0 (mod p), for 0 ≤ j ≤ m and i ∈ Sj .

Then
∑

i∈Sj �i,j (τ ) ≡ 0 (mod p) for j ∈ {0, . . . ,m}.
The proof of this theorem follows similar steps as the proof of Lemma 3.15,
therefore in this proof we will not repeat certain minor arguments.

Proof We proceed using induction on the length |S0| + |S1| + · · · + |Sm| of the
relation. Assume that the statement hold for all relations of length less than M and
we wish to prove it for a relation of length M .

Therefore assume that the length of the relation is M . Assume that the theorem is
false. Without loss of generality we may assume that

∑
i∈S0

�i,0(τ ) �≡ 0 (mod p)

because in case not we divide the relation by an appropriate power of q to make it
into the desired form. Then there exists a minimal κ > 0 such that

∑
i∈Sκ �i,κ �≡ 0

(mod p).
Take I ∈ S0, then by assumption �I,0(τ ) �≡ 0 (mod p). By Lemma 3.14 there

exists �̃I,0 ∈ A1
I (576N,Z(p)) such that �̃I,0(τ ) ≡ �I,0(τ ) and

�̃I,0(τ ) = brq
r +O(qr+1), p � br .

Divide the relation by �̃I,0(τ )q
κ . We obtain the relation

∑

κ≤j≤M

qj−κ
∑

i∈Sj

�i,j (τ )

�̃I,0(τ )
+ q−κ +

∑

i∈S0,i �=I

q−κ �i,0(τ )

�̃I,0(τ )
≡ 0 (mod p). (25)
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Let
∑

a(n)qn = ∑
i∈Sκ

�i,κ (τ )

�̃I,0(τ )
. By Lemma 3.17 there exists a minimal integer

d > κ such that a(n) �≡ 0 (mod p) or
∑

a(n)qn ≡ a(0) (mod p). Let

s :=
{
κ + 1 if

∑
a(n)qn ≡ a(0) (mod p),

d otherwise.

Then applying VsUs to the relation (25) and defining for j ∈ {0} ∪ {κ, . . . ,m}
and i ∈ Sj :

Bi−I,j (τ ) := q−j+κVsUs(q
j−κ �i,j (τ )

�̃I,0(τ )
)

yields a relation of the form

∑

κ≤j≤M

qj−κ
∑

i∈Sj
Bi−I,j (τ )+

∑

i∈S0,i �=I

Bi−I,0(τ ) ≡ 0 (mod p) (26)

and
∑

i∈Sκ Bi−I,κ (τ ) �≡ 0 (mod p) by construction. Multiplying the above relation
by qκ we obtain

∑

κ≤j≤M

qj
∑

i∈Sj
Bi−I,j (τ )+

∑

i∈S0,i �=I

Bi−I,0(τ ) ≡ 0 (mod p) (27)

Note that Bi,j (τ ) ∈ A1
i (576Ns2) because of Lemma 3.13. Thus we obtain a new

relation with length < M which implies by induction that
∑

i∈Sj Bi−I,j (τ ) ≡ 0
(mod p) for all j ∈ {0, . . . ,m} in particular also for j = κ which is a contradiction.

��

4 An Immediate Consequence

Corollary 4.1 Assume p0(X), . . . , pn(X) ∈ Z[q] and B(τ) ∈ A1(N), if

p0(q)+ p1(q)B(τ)+ · · · + pn(q)B(τ)n ≡ 0 mod p,

then B(τ) ≡ c (mod p), for some c ∈ Z.

Proof Assume B(τ) =∑∞
n=m b(n)qn, and let C(τ) := B(τ)− b(0). Then

p̃0(q)+ p̃1(q)C(τ)+ · · · + p̃n(q)C(τ)n ≡ 0 mod p,
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for some p̃i (X) ∈ Z[X]. We can rewrite this identity as

r0(C(τ)+ qr1(C(τ))+ · · · + ru(C(τ))qu ≡ 0 (mod p)

with ri(X) ∈ Z[X] not all 0 modulo p. Take one j such rj (X) �= 0 (mod p). Then
by our main theorem rj (C(τ)) ≡ 0 (mod p). This is possible only if C(τ) ≡ c

(mod p) for some c ∈ Z. ��
We will use this result in an upcoming paper to prove the even case of Subbarao’s
conjecture [8] already proven by Ono in [4].

5 Conclusion

The conclusion of this paper is that relations of the general form in the abstract can
be reduced to much simpler relations, therefore it is not very likely that one would
find in the literature such general relations, at least we are not aware of any. This
paper can serve as a proof of nonexistence of nontrivial relations of such general
form. Here by nontrivial we mean such that are not composed by simpler relations,
that is irreducible in some sense. This paper also answers a question by Peter Paule
communicated to the author in a private discussion. For this reason it is published
with the occasion of his 60th birthday.
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Trying to Solve a Linear System for Strict
Partitions in ‘Closed Form’

Volker Strehl

For Peter@60, and to the memory of Alain Lascoux

1 Introduction

1.1 History and Motivation

The problem treated and partially solved in this article has its roots in work
that I have been involved in since almost 10 years. At the 63th meeting of the
Séminaire Lotharingien de Combinatoire Christian Krattenthaler acquainted me
with Arvind Ayyer, who at that time was working as a postdoc with the physicist
Kirone Mallick at Saclay (France). Together they were investigating a particular
combinatorial model in statistical physics: an asymmetric exclusion process, which
is a continuous-time Markov process on a finite number of sites in linear order (like
the familiar TASEP model). In addition to moving particles to empty sites ‘to their
right’, the possibility of annihilation between neighboring particles is a particular
feature. They had managed to compute the partition functions using the technique
of transfer matrices, from which many interesting probabilistic properties of the
model could be computed. One aspect, however, was left as an open problem in their
article [1]: determining the eigenvalues of the generator matrices of the process, for
which the transfer matrices act as intertwining matrices. They had a very precise
(and surprisingly simple!) conjecture for the characteristic polynomial, but they—
and a number of colleagues they had been asking for help—were unable to prove
it. Christian Krattenthaler knew that I have an affinity for eigenvalue problems, and
thus he encouraged Arvind Ayyer to tell me about his conjecture. I was lucky to
rather quickly find a proof using a technique that I was familiar with due to my
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interest in quantum computing: consider the Hadamard conjugates of the generator
matrices, i.e., consider the problem in an other system of coordinates, obtained by a
particular orthogonal transform. The surprise was that (up to tricky an additional
permutation conjugation) the generator matrices do not change a lot, but in the
new coordinates they become triangular. This approach to solving the eigenvalue
problem has been reported in our joint FPSAC article [2].

Since this “Hadamard trick” had proved so successful, I augmented the
exclusion-annihilation-model with parameters (one free parameter per site) in a
way that made the same proof technique still work. In this generalized model I was
able to give a concise algebraic description of the generator and transfer matrices,
and thus obtain the partition functions and eigenvalues.

Over the years I have presented the results in several seminar and colloquium
talks, but only recently I have started writing down all the details—see the article
[3] written in parallel to the present one. It appeared to me that the “Hadamard trick”
also suggests a very different approach to the partition functions, which avoids the
rather laborious work with the transfer matrices. This different approach passes by a
problem that is interesting by itself—and that is what the present article is about. It
is a problem about an infinite linear system of equations, with rational functions as
coefficients, obtained from the Hadamard-transformed fully parametrized model,
and for which the knowledge of properties of the solution would easily lead to
the partition functions. In particular, the components of the (unique) solution are
rational functions in the site parameters of the physical model, and the knowledge of
their denominators is of high interest. But even partially solving the linear system in
question is not an easy task. It appered to me that the mentioned rational functions
of the solution, though they themselves aren’t symmetric functions in most cases
(which seems natural because in the original model there is no symmetry in the site
parameters), they are nonetheless closely related to symmetric functions. With lots
of data at hand, I contacted Alain Lascoux, the grand-master of symmetric functions.
He got interested in the problem, started his own computations, made valuable (and
sometimes cryptic) suggestions on how to express these rational functions in terms
of ‘known’ functions, and how one might try to prove this. We had just agreed to
jointly work on the problem—when in 2013 Alain suddenly died, which stalled
my enthusiasm for quite some time. Anyway, the work presented here owes a lot
to Alain and my imagination says that he would have appreciated the outcome. I
gratefully dedicate this work to his memory.

1.2 Outline

In this article I refrain from outlining the physical model that motivated the work
exposed here. See [1] for the original model and [2] for the solution of the eigenvalue
conjecture using what I call the “Hadamard trick”. The present paper is technically
completely self-contained. A detailed explanation of why the solution of the linear
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system studied here is of interest for obtaining the partition functions for the general
fully parametrized model is contained in [3].

The original model, and the work on transfer matrices, partition functions and
eigenvalues, uses matrices indexed by binary vectors of fixed length n, which
is the number of sites. Binary vectors can be interpreted as strict partitions, i.e.
partitions of integers with distinct parts, in an obvious way. Since the solution of
the problem, i.e., solving a linear system indexed by binary state vectors, has to do
with symmetric functions, Schur functions in particular, it is only natural to set up
the stage in terms of partitions and tableaux from the beginning. The variables of
the symmetric and related functions are essentially the site variables of the physical
model: for a model with n sites there are n + 1 relevant variables x0, x1, . . . , xn.
Throughout the article the number n will carry this meaning.

In Sect. 2 the scenario involving (strict) partitions and (shifted) tableaux and a
valuation in terms of rational functions will be presented. After the terminological
generalities of Sect. 2.1 the valuation problem, which runs over the lattice S of
strict partitions, will be spelled out in Sect. 2.2, see Eq. (2) and Fig. 10, showing
the first 15 equations of the (infinite) system. To each strict partition λ there is
attached a rational function �λ�, and these functions are related through the covering
relation of the lattice S. For a number of small strict partitions λ the function �λ� is
given explicitely, and properties of these solutions are observed. An explicit general
solution for the particular 2-part partitions of the type λ = (n, 1) (Sect. 2.2.5)
indicates the direction in which journey goes: symmetric functions, and Schur
functions in particular.

In Sect. 3 a main technical tool from the field of symmetric functions and
its relatives, see, e.g., Alain Lascoux’ view in [4], will enter the stage: divided
differences. Their importance for the main problem becomes strikingly apparent
in Lemma 2, which I call the Main Lemma: it relates the covering relation of the
lattice S with the application of divided differences to the rational functions �λ� of
the solution for the partitions λ ∈ S involved. This way one can determine �λ� for
all staircase partitions λ = (n, n − 1, n − 2, . . . , 2, 1) = �n (Sect. 3.5), and one
can say what the denominators of the �λ� are in general (Sect. 3.6). It is precisely
this aspect which is of particular interest for the application to the physical model,
because these denominators are precisely the partition functions.

Nice as these results look, actually computing values �λ� for ‘general’ λ is
tedious even for a computer, because of the rapid expression swell. The mention
of ‘closed form’ in the title of this paper hints at the problem of finding compact
expressions in terms of “known” functions. To say it right away: I don’t have a
complete solution for this problem—far from that, but at least for two important
subclasses of partitions of S, the so-called join-irreducibles and the partitions
consisting of two (distinct) parts I have been able to express the �λ� in terms of
Schur functions, where usually a pair of two alphabets is required. In Sect. 4 the
necessary terminology about Schur functions is introduced. Actually, not much is
needed—everything done here relies on generating functions and the Jacobi-Trudi
type description of the Schur polynomials, taken as a definition, see any text on
symmetric functions like [4], or [5] or [6]. After the necessary tools have been
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prepared in Sect. 4, the general results for the cases just mentioned are proved in
Sect. 5.1 for the join-irreducibles and in Sect. 5.2 for the two-part partitions. The
proofs given here are technically elementary, but somewhat tedious.

2 Partitions, Tableaux, and a Rational Valuation Problem

In the first part of this section the relevant definitions and notations for partitions in
general, for strict partitions in particular, and for the join-irreducibles in the lattice
of strict partitions are given. The second part presents the statement of main problem
addressed in this article, and together with computed data it gives an outlook of what
can be expected.

2.1 The Lattice S of Strict Partitions

2.1.1 Basic Definitions and Notation

As usual, we write partitions (of nonnegative integers) as vectors λ =
(λ1, λ2, . . . , λk) of positive integers, with λ1 ≥ λ2 ≥ · · · ≥ λk > 0. If there
is no danger of ambiguity, the shorter sequence notation λ1λ2 . . . λk will be used.
The usual way of visualizing partitions is via (Ferrers) diagrams, like in Figs. 1 and 2
and in the left part of Fig. 3. These are arrangements of unit boxes with coordinates
(i, j), with 1 ≤ j ≤ λi for 1 ≤ i ≤ k, i.e., with k rows, numbered from bottom to
top, and with λi boxes in the i-th row (1 ≤ i ≤ k). The number of parts is denoted
by |λ| = k, the number partitioned or size of λ is ‖λ‖ = λ1 + λ2 + · · · + λk . In the
case k = 0 we would have the empty sequence ∅ as the unique partition of 0. For a
positive integer 
 we say that 
 occurs in λ, denoted by 
 ∈ λ, if λj = 
 for some
j with 1 ≤ j ≤ k. The conjugate λ̃ = λ̃1λ̃2 . . . λ̃
 of a partition λ = λ1λ2 . . . λk

is the partition obtained from λ by interchanging the role of rows and columns,
i.e., 
 = λ1, λ̃1 = k, and λ̃j is the number of λi ≥ j . Obviously, the conjugation
mapping λ → λ̃ is an involution.

The set P of all partitions is a distributive lattice under the ordering by inclusion
of diagrams, with the size ‖λ‖ as its rank function, i.e.,

λ = λ1λ2 . . . λk ≤ μ1μ2 . . . μ
 = μ ⇔ k ≤ 
 and λi ≤ μi (1 ≤ i ≤ k).

The covering relation of P, verbally described as “adding one box in a legal
position”, is given by

λ = λ1 . . . λk � λ+ εi for i = 1 or for some 1 < i ≤ k with λi−1 > λi,

or λ = λ1 . . . λk � λ+ εk+1 = λ1 . . . λk1,
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Fig. 1 Lower end (ranks between 1 and 6) of the lattice P of partitions

Fig. 2 Lower end (ranks between 1 and 6) of the lattice S of strict partitions (colored) as sublattice
of the lattice P of all partitions

where the εi are the “unit vectors” εi = 0i−1.1.0k−i (of length k) for 1 ≤ i ≤ k,
and εk+1 = 0k.1 (of length k+1, with the understanding that λk+1 = 0). The lower
part of the lattice P is visualized in Fig. 1.

Our concern will be mostly with strict partitions, i.e., partitions with distinct parts
(λ1 > λ2 > · · · > λk > 0), which form the sublattice S of P.

When dealing with S it is often convenient to visualize strict partitions by shifted
diagrams: take the standard diagram of λ = λ1λ2 . . . λk and push the boxes of the
i-th row i − 1 units to the right (1 ≤ i ≤ k), starting with the bottom row and going
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Fig. 3 The strict partition λ = 7641 displayed as diagram (left) and as shifted diagram (right)

Fig. 4 The strict partition λ = 7641 as join of the join-irreducibles <4, 3>= 4321, <6, 2>= 654
and <7, 1>= 76

upward. The coordinates of the boxes are now (i, j) for i ≤ j < i + λi , where
1 ≤ i ≤ k. This transition is illustrated in Fig. 3.

The covering relation of S reads

λ = λ1 . . . λk � λ+ εi for i = 1 or for some 1 < i ≤ k with λi−1 > λi + 1,

or λ = λ1 . . . λk � λ+ εk+1 = λ1 . . . λk1 if λk ≥ 2.

Visually this means “adding a single box in a legal position for obtaining again a
shifted diagram”.

2.1.2 Join-Irreducibles in S

The join-irreducible elements of a distributive lattice are the ‘backbone’ of the
lattice, as each element of the lattice is the supremum of the elements of an antichain
in the poset of join-irreducibles in a unique way. The join-irreducible elements of
P are easily identified as the ‘rectangular’ partitions (r, r, . . . , r)—these will not be
used in the sequel. The join-irreducibles of S, however, will play an important role.
Again, they are easily identified as the partitions

<n, k>= (n, n − 1, . . . , n− k) (0 ≤ k < n).

Figure 4 shows an example of how strict partitions are represented as joins of join-
irreducibles in S.

The lower part of the lattice S, with the join-irreducible elements marked by
framing them, is reproduced in Fig. 5, and the lower end of the poset of join-
irreducibles is displayed in Fig. 6.
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Fig. 5 The lower end of the lattice S with join-irreducible elements marked by framing

Fig. 6 The lower end of the poset of join-irreducibles of S

Fig. 7 A shifted standard tableau of shape λ = 6421

2.2 Shifted Tableaux and a Valuation Problem

2.2.1 Shifted Standard Tableaux

In analogy to the well known concept of standard (Young) tableaux for general
partitions one can define shifted standard tableaux (sst) for the case of strict
partitions. For a strict partition λ of size ‖λ‖ = n a shifted standard tableau of
shape λ is a filling t of the n boxes of the shifted diagram representing λ with the
integers {1, 2, . . . , n} such that the numbers filled in increase strictly along rows,
i.e., t (i, j) < t(i, j + 1), and along columns, i.e., t (i, j) < t(i + 1, j). An example
of an sst for λ = 6421 is given in Fig. 7. The set of all shifted standard tableaux of
a given shape λ is denoted by sST (λ). An example is displayed in Fig. 8.
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Fig. 8 The set sST (42) of shifted standard tableaux of shape λ = 42

Fig. 9 A shifted tableau t of shape λ = (4, 2, 1), and its representation as a nested sequence of
strict partitions, together with their weights

A shifted standard tableau of shape λ can be seen a covering sequence of strict
partitions:

t : ∅� λ(1)
� λ(2)

� λ(3)
� · · ·� λ(s)

� λ(s+1)
� · · ·� λ‖λ‖ = λ, (1)

by taking as λ(s) the diagram consisting of the boxes filled with the numbers
{1, 2, . . . , s}, see Fig. 9 for an example.

2.2.2 A Valuation Problem for Shifted Standard Tableaux

In the sequel we will be considering polynomials and rational functions in variables
taken from a finite subset of X = {x0, x1, x2, . . .}. Generally, for integers 0 ≤ a ≤ b

the subset {xa, xa+1, xa+2, . . . , xb−1, xb} ⊂ X of the variables will be denoted by
Xa,b. The subset Xa,a = {xa} will be identified with xa .

For each strict partition λ = λ1λ2 . . . λk ∈ S we define its weight as the linear
polynomial

w(λ) = xλ1 + xλ2 + · · · + xλk(+x0),

where the additional term x0 is taken or not so as to make the total number of
summands even. As a shorthand, we occasionally write xijk... in place of xi + xj +
xk + . . ..
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For a shifted tableau t of shape λ, written as a nested sequence of strict partitions,
as in Eq. (1), we define its total weight as

w(t) =
∏

1≤s≤‖λ‖
w(λ(s)).

For the shifted tableau of Fig. 9 the total weight is

w(t) = (x0 + x1)(x0 + x2)(x0 + x3)(x1 + x3)(x1 + x4)(x2 + x4)(x0 + x1 + x2 + x4)

= (x01)(x02)(x03)(x13)(x14)(x24)(x0124).

I admit that at this point the use of the variable x0 is not well motivated. It
comes from the investigation of the model for the asymmetric exclusion process
mentioned in the Introduction. For the purpose of this article, x0 could be set to 0
without loosing much, but keeping it makes the formulas more homogeneous, so I
will continue to do so.

Here is now the central problem for the remainder of this article:

For λ ∈ S compute �λ� =
∑{

1

w(t)
; t ∈ sST (λ)

}

. (2)

For a strict partition λ, written as λ1λ2 . . . λk or as (λ1, λ2, . . . , λk), the expres-
sion �λ� represents a rational function in the variables x0, x1, x2, . . . , xλ1 . The
notation �λ1λ2 . . . λk� will usually be used, sometimes with separating commas.

A task equivalent to (2) is: solve—as explicitly as possible—the linear system
that runs over the lattice S of strict partitions with its covering relation �:

�λ� = 1

w(λ)

∑

μ�λ

�μ�, with �∅� = 1 (λ ∈ S). (3)

In Fig. 10 the first 15 equations of this infinite system are displayed.
The first equation with three terms on the right hand side would be

�531� = �431�+ �521�+ �53�.

Conceptually, hardly anything could be simpler: this is a (very sparse) triangular
system—but writing down the solution by backward substitution requires repeated
division, where the divisors are sums (of even length) of the variables, so that the
�λ� are rational functions in the variables x0, x1, x2, . . ., and it is easy to see that
the numerator and denominator polynomials are homogeneous. If we define for any
rational function f/g the rank of f/g as the difference between denominator degree
and numerator degree deg g − degf , i.e., the negative of the degree as defined in
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Fig. 10 The first 15 equation of the linear system

Sect. 3.2, then it is simply checked that the rank of �λ� equals the size of the partition
λ, as defined above.

2.2.3 Some Computed Data

The explicit values of the solution �λ� for very small λ are given in Fig. 11.
So far everything looks pretty simple, except for the following observation: from

the definition we have

�321� = 1

x0 + x1 + x2 + x3
�32�,

but the quadrinomial x0 + x1 + x2 + x3 from the division is cancelled, because
it occurs in �32� as numerator. This matching numerator has been ‘created’ in the
previous step

�31� = 1

x1 + x3
(�21�+ �3�).

This is apparently not an accident. If one continues the evaluation one never finds
multinomials of four or more terms in the denominator. The denominators are
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Fig. 11 First values of the solution

always products of binomials—this will be proved later, see Sect. 3.6—but at this
point this looks like magic.

Continuing the evaluation one finds that the expressions soon become
‘unwieldy’, e.g.,

�42� = 1

x2 + x4
(�32�+ �41�)

is a rational function with numerator

x1x
2
0 + x2x

2
0 + x3x

2
0 + x4x

2
0 + x2

1x0 + x2
2x0 + x2

3x0 + x2
4x0

+ 2x1x2x0 + 2x1x3x0 + 2x2x3x0 + 2x1x4x0 + 2x2x4x0 + 2x3x4x0 + x1x
2
2

+ x1x
2
3 + x2x

2
3 + x1x

2
4 + x2x

2
4 + x3x

2
4 + x2

1x2 + x2
1x3 + x2

2x3

+ 2x1x2x3 + x2
1x4 + x2

2x4 + x2
3x4 + 2x1x2x4 + 2x1x3x4 + 2x2x3x4

and denominator

(x0+x1)(x0+x2)(x1+x2)(x0+x3)(x1+x3)(x2+x3)(x0+x4)(x1+x4)(x2+x4) .

The numerator can be ‘simplified’ into

(x1 + x2 + x3 + x4) x
2
0 + (x1 + x2 + x3 + x4)

2x0 + x1 (x2 + x3 + x4)
2

+ (x2 + x3) (x2 + x4) (x3 + x4)+ x2
1 (x2 + x3 + x4) ,
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but this still looks mysterious. If we look at

�531� = 1

x0 + x1 + x3 + x5
(�431�+ �521�+ �53�),

we get (using xijk... again as an abbreviation for xi + xj + xk · · · ) as numerator (as
simplified by Mathematica)

x2
5 (x234)

3 + x3
5 (x234)

2 + (x23)
2x4 (x24) (x34)+ (x23) (x24) (x34) (x234) x5

+ x1

(
(x234) x

3
5 + 2 (x234)

2x2
5 +

(
x3

2 + 4 (x34) x
2
2 + 4 (x34)

2x2

+ (x34)
(
x2

3 + 3x4x3 + x2
4

))
x5 + (x23) (x24) (x34) (x234)

+ x2
1

(
(x345) x

2
2 + (x345)

2x2 + (x34) (x35) (x45)
)

+x2
0

(
(x2345) x

2
1 + (x2345)

2x1 + (x234) x
2
5 + (x23) (x24) (x34)+ (x234)

2x5

))

+x0 (x2345)
(
(x2345) x

2
1+(x2345)

2x1+(x234) x
2
5+(x23) (x24) (x34)+(x234)

2x5

))

and as denominator a product of binomials

∏

0≤i≤3

∏

i<j≤5

(xi + xj ).

Again, the combination of the three rational functions �431�, �521�, and �53� (not
shown here, due to their size) with hard to digest expressions in their numerators
somehow produces the factor x0 + x1 + x3 + x5 in the numerator, that finally gets
cancelled.

2.2.4 About Denominators

As far as the denominators of the �λ� are concerned, let us define for n > k ≥ 0
what we call the standard denominator polynomials:

qn,k(x0, x1, x2, . . .) =
∏

0≤i≤k

∏

i<j≤n

(xi + xj ) =
∏

(j,i)≤(n,k)

(xi + xj ), (4)

where the second way of writing the product implicitly refers to the poset of join-
irreducibles of the lattice S of strict partitions. Indeed, the polynomials qn,k are in
1-1-correspondence with the join irreducibles in the lattice S, see Sect. 2.1.2.

Note that qn,k(x0, x1, x2, . . .) is a polynomial that is separately symmetric in the
two sets of variables X0,k = {x0, x1, . . . , xk} and Xk+1,n = {xk+1, xk+2, . . . , xn}.
The case k = n−1 is special, however, because qn,n−1 is symmetric in all variables
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X0,n = {x0, x1, . . . , xn}. The degree of qn,k is

k∑

i=0

(n− i) = (k + 1)n−
(
k + 1

2

)

= (k + 1)(2n− k)

2
.

Looking back to the data given above, we can state that in these examples the
qn,k appear as the denominator polynomials of �λ� precisely if λ = (n, k, . . .), i.e.,
the denominator of the function �λ� depends only on the two largest parts of λ. This
is true in general, as will be shown in Sect. 3.6, Corollary 2.

The case of partitions consisting of one part is very simple, see the next
subsection.

2.2.5 Outlook: Evaluating �n, 1� in General

As an encouraging experience, we will now compute the rational functions �λ�
for the very special case of 2-part partitions of type λ = (n, 1) for all n ≥ 2.
Even this task is not completely trivial, and a bit of intuition is needed to guess the
‘good’ form of the solution. The final statement makes use of the elementary and
homogeneous symmetric functions over distinct alphabets (sets of variables), which
will be amalgamated later (Sect. 4.3) in the notion of Schur functions over a pair of
alphabets.

To start with, note that for partitions λ = (n) consisting of one part the situation
is trivial. Because of

�n� = 1

x0 + xn
�n− 1� for n > 0,

we have

�n� = 1
∏

1≤i≤n(x0 + xi)
= 1

qn,0
. (5)

But already the computation of �n, 1� in general is not obvious. One gets as first
values (with the usual abbreviations)

�21� = 1

x12
�2� = 1

x01x02x12
= 1

q2,1
,

�31� = 1

x13
(�21� + �3�) = x0123

x01x02x03x12x13
= x03 + x12

q3,1
,

�41� = 1

x14
(�31� + �4�) = . . . = x03x04 + x12x04 + x12x13

q4,1
,

�51� = 1

x15
(�41� + �5�) = . . . = x05x04x03 + x05x04x12 + x05x13x12 + x14x13x12

q5,1
.
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The way of writing the numerators on the right was not obtained by machine
simplification, but by human inspection and trial. It suggests that in general

�n, 1� =
∑

λ

∏n−2
i=1 (xλi + xλ′i )

qn,1
, (6)

where
∑

λ runs over all λ ∈ S with

τ (n) = (n− 1, n− 2, . . . , 3, 2) ≤ λ ≤ τ (n) = (n, n− 1, . . . 4, 3) and λ′ = τ (n) − λ.

Here λ′ is not a strict partition, but a vector of type 0
1n−2−
.
To illustrate this in the case n = 5: the relevant λ with τ (5) = 432 ≤ λ ≤ τ (5) =

543 are 543 (with λ′ = 000), 542 (with λ′ = 001), 532 (with λ′ = 011), and 432
(with λ′ = 111).

The claim (6) is routinely verified by induction:

�n+ 1, 1� = 1

x1 + xn+1
(�n, 1�+ �n+ 1�)

= 1

x1 + xn+1

(∑
λ

∏n−2
i=1 (xλi

+ xλ′i )

qn,1
+ 1

qn+1,0

)

= 1

qn+1,1

1

(x1 + xn+1)
×

×
⎛

⎝
∑

λ

n−2∏

i=1

(xλi
+ xλ′i ) · (x0 + xn+1)(x1 + xn+1)+

∏

1<j≤n+1

(x1 + xj )

⎞

⎠

= 1

qn+1,1

⎛

⎝
∑

λ

n−2∏

i=1

(xλi
+ xλ′i ) · (x0 + xn+1)+

∏

1<j≤n
(x1 + xj )

⎞

⎠ .

The expression in parentheses is precisely the corresponding
∑

μ-summation for

n + 1, running over strict partitions μ with τ (n+1) ≤ μ ≤ τn+1. The
∑

λ-part
covers all μ = (n + 1,λ), whereas the last term gives the contribution from μ =
(n, n− 1, . . . , 3, 2).

This form of �n, 1� does not look particularly attractive, but it is possible to
rewrite it in a much neater way in terms of symmetric functions. Indeed,

�n, 1� = 1

qn,1

n−2∑

k=0

hk(X0,1) · en−2−k(X2,n),

where the hk(A) resp.e
(B) denote the homogeneous resp. elementary symmetric
functions over the alphabets A resp. B—see Sect.4 for notation.
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Once one has made this guess, it is a routine matter to verify that indeed both
sides of

∑

λ

n−2∏

i=1

(xλi + xλ′i ) =
n−2∑

k=0

hk(X0,1) · en−2−k(X2,n) (7)

contain the same monomials. As an illustration for n = 4:

h2(X0,1)+ h1(X0,1)e1(X2,4)+ e2(X2,4)

= x2
1 + (x0 + x1 + x2 + x3)(x0 + x4)+ x1(x2 + x3)+ x2x3

= (x0 + x3)(x0 + x4)+ (x2 + x3)(x0 + x4)+ (x1 + x2)(x2 + x3).

The term on the right hand side of (7) can also be written as a Schur polynomial
over a pair alphabets, viz.

n−2∑

k=0

hk(X0,1) · en−2−k(X2,n) = Sn−2(X0,1|X2,n).

This view is interesting because the numerator polynomials qn,1, and the qn,m in
general, can be written as Schur polynomials over a pair of alphabets:

qn,m = S<̃n,m>(X0,m|Xm+1,n) = S<n,m>(Xm+1,n|X0,m), (8)

where <n,m>= (n, n−1, . . . , n−m) is join-irreducible, and where <̃n,m> is the
conjugate partition of <n,m>. See Sect. 4.3 for the definition of Schur functions
over a pair of alphabets.

3 Divided Differences

The main technical tool for computing �λ� is a standard one when computing in the
area of symmetric functions and its vicinity: divided differences. It turns out that
there is an intimate connection between the lattice structure of S and the nature of
divided differences as symmetrizing operators.

3.1 Definitions and Properties

We consider functions (here polynomials and rational functions only) in the
variables X = {x0, x1, . . .}. For r ≥ 0 let σr : X → X denote the transposition
of variables xr ↔ xr+1. For a function f = f (X) we write f σr in place of the
composition f ◦ σr .
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If f (x0, x1, . . .) is any function, then we define the divided difference of f w.r.t.
σr , denoted by f ∂r , as the function given by

(f ∂r )(X) = f σr (X)− f (X)

xr − xr+1
.

We adopt here Lascoux’ habit to write the operator ∂r on the right of the function it
acts on. Thus iterations (‘cascades’) of divided differences like ∂b∂b−1 . . . ∂a mean
that ∂b is executed first and ∂a is executed last.

Note that our definition differs from the usual one, where one takes f σr−f
xr+1−xr

instead, by the sign. The reason for this trivial change is to avoid carrying minus-
signs around when taking iterated divided differences.

A function f is symmetric w.r.t. σr , if f σr = f , and this is precisely the case if
f ∂r = 0.

As an operator on functions, ∂r has the usual properties, like linearity, product
rule, quotient rule (see below, and generally refer to [4]). The relations among the
∂r for different r that are derived from the (Coxeter-) relations for the transpositions
σr are:

∂r∂r = 0 if r ≥ 0,

∂r∂s = ∂s∂r if |r − s| ≥ 2,

∂r∂r+1∂r , = ∂r+1∂r∂r+1 if r ≥ 0.

Well known rules for computing with divided differences are the product rule,

(f · g)∂r = f σr · g∂r + f ∂r · g
= f ∂r · gσr + f · g∂r

and the rules for reciprocals and quotients

f−1∂r = − 1

f · f σr
· (f ∂r ),

(f/g) ∂r = 1

g · gσr
(g · f ∂r − f · g∂r)

= 1

g · gσr
(gσr · f ∂r − f σr · g∂r).

3.2 Divided Differences for Rational Functions

Define the degree of a rational function f/g, where f and g are polynomials, not
necessarily coprime, as deg(f/g) = deg(f ) − deg(g). Divided differences change
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the degree of rational functions

deg((f/g)∂r ) =
{

deg(f/g)− 1 if (f/g)∂r �= 0,

undefined if (f/g)∂r = 0.

For a single polynomial q we set

q̃ = q

gcd(q, qσr )
= lcm(q, qσr )

qσr
.

Then
(

1

q

)

∂r = 1

xr − xr+1
·
(

1

qσr
− 1

q

)

= 1

lcm(q, qσr )
· q̃σr − q̃

xr − xr+1

= 1

lcm(q, qσr )
· q̃∂r .

Similarly one gets for polynomials p and q

(
p

q

)

∂r = 1

lcm(q, qσr )

(
q̃σr · p∂r + p · q̃∂r

)
.

3.3 Standard Denominator Polynomials

Recall from Sect. 2.2.4 and Eq. (4) the notion of standard denominator polynomials,
qn,k(X) =∏

0≤i≤k
i<j≤n

(xi + xj ), and their properties. We will now compute the divided

differences

1

qn,k
∂r .

From the remark about symmetry in Sect. 2.2.4 it follows that the only interesting
cases are r = k < n−1 and r = n. In all other cases the divided difference vanishes
because then qn,k is symmetric w.r.t. σr = xr ↔ xr+1.

– In the case r = n, it follows from the geometric picture of the join-irreducibles
that

gcd(qn,k, q
σn
n,k) = qn−1,k, lcm(qn,k, q

σn
n,k) = qn+1,k.
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In the case k = 0 the term qn,−1 has to be taken as 1. Then

q̃n,k = q

gcd(qn,k, q
σn
n,k)

=
∏

0≤i≤k

(xi + xn)

and

1

qn,k
∂n = 1

qn+1,k
· q̃n,k∂n.

– In the case r = k < n− 1 we have

qn,k = qn,k−1 · (xk + xk+1) ·
∏

j>k

(xk + xj ),

q
σk
n,k = qn,k−1 · (xk + xk+1) ·

∏

j>k

(xk+1 + xj ),

and so from the ‘geometry’ of the join-irreducibles it follows that

gcd(qn,k, q
σk
n,k) = (xk + xk+1)qn,k−1, lcm(qn,k, q

σk
n,k) = qn,k+1.

Then

q̃n,k = q

gcd(qn,k, q
σn
n,k)

=
∏

k+2≤j≤n

(xk + xj )

and

1

qn,k
∂k = 1

qn,k+1
· q̃n,k∂k.

For later reference we state the following consequences:

Lemma 1 For any polynomial p and 0 ≤ k < n we have

[
p

qn,k

]

∂r =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f

qn+1,k
if r = n,

g

qn,k+1
if r = k < n− 1,

1

qn,k
· p∂r otherwise,

where f and g are polynomials.
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3.4 The Main Lemma

In this section we will prove the main technical result that relates the valuations �λ�
and divided differences. For convenience, we set �λ� = 0 if λ is a partition that is
not strict, i.e., λ ∈ P\S. In what follows, the εj are the “unit vectors” of Sect. 2.1.1.

Lemma 2 (Main Lemma) Let λ = λ1λ2 . . . λk ∈ S and 
 ≥ 1. Then

�λ� ∂
 =
⎧
⎨

⎩

�λ+ εj � if 
 ∈ λ, 
 = λj ,

0 if 
 �∈ λ.

The first alternative includes the case where �λ� ∂
 = 0, when λ+ εj �∈ S.

Proof To start with, consider the action of a divided difference ∂
 on the defining
expression

�λ� = 1

xλ

∑

1≤i≤k

�λ− εi�,

viz.

�λ� ∂
 = 1

x
σ

λ

·
∑

1≤i≤k

�λ− εi� ∂
 + 1

xλ
∂
 · xλ · �λ�.

Various situations can occur, depending on whether 
 and 
 + 1 belong or don’t
belong to λ. Thus the proof has to deal with four distinct cases.

(i) 
 = λj ∈ λ, 
+ 1 �∈ λ

Here λ′ = λ + εj ∈ S, xλ contains x
 as a summand, but not x
+1, and thus
x
σ

λ = xλ − x
 + x
+1 = xλ′ . Therefore

1

xλ
∂
 = (

1

xλ
− 1

x
σ

λ

)/(x
+1 − x
) = 1

xλ

1

x
σ

λ

= 1

xλ

1

xλ′

and

�λ� ∂
 = 1

xλ′

⎛

⎝
∑

1≤i≤k

�λ− εi�∂
 + �λ�

⎞

⎠ .

By induction we may use

�λ− εi�∂
 = �λ− εi + εj �
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in all cases where i �= j without problems. But the case i = j has to be
considered separately. We have to show that �λ− εj �∂
 = 0, because then we
would get

1

xλ′

⎛

⎝
∑

1≤i≤k

�λ− εi�∂
 + �λ�

⎞

⎠ = 1

xλ′

⎛

⎜
⎝

∑

1≤i≤k
i �=j

�λ− εi + εj �+ �λ�

⎞

⎟
⎠ ,

which, by definition of the valuation, equals �λ′� = �λ+ εj �.
Now for �λ−εj �∂
 there are two possibilities: either λ−εj �∈ S (i.e., λj −1 =
λj+1), then �λ − εj � = 0 anyway; or λ − εj ∈ S, then neither λj = 
 nor
λj + 1 = 
 + 1 belong to λ − εj and we have �λ − εj �∂
 = 0, by induction
making use of case (iii).

(ii) 
 �∈ λ, 
+ 1 = λj ∈ λ

In this situation, contrary to case (i), we have, with λ′ = λ − εj and xλ′ =
xλ − x
+1 + x
,

1

xλ
∂
 = (

1

x
σ

λ

− 1

xλ
)/(x
+1 − x
) = − 1

xλ

1

x
σ

λ

= − 1

xλ

1

xλ′
.

Hence

�λ� ∂
 = 1

xλ′

⎛

⎝
∑

1≤i≤k

�λ− εi�∂
 − �λ�

⎞

⎠ .

Now 
 �∈ λ − εi for all i �= j , so that �λ − εi�∂
 = 0 by induction. The only
exception is the case i = j , which by induction gives

�λ− εj �∂
 = �λ− εj + εj � = �λ�,

so that in the expression for �λ� ∂
 only the two terms �λ� and −�λ� survive,
but cancelling each other.

(iii) 
 �∈ λ, 
+ 1 �∈ λ

Now xλ is symmetric w.r.t. σ
 : x
 ↔ x
+1, so that

�λ� ∂
 = 1

xλ
·
∑

1≤i≤k

�λ− εi�∂
.

Assume λj > 
+ 1 > 
 > λj+1. There are two possible cases:

– If λj − 1 > 
+ 1, the both 
 and 
 + 1 do not occur in λ − εj , nor in any
other λ− εi , so, by induction, �λ− εi�∂
 = 0 for all i.



A Linear System for Strict Partitions 359

– If, however, λj = 
 + 2 > 
 + 1 > 
 > λj+1, then for λ′ = λ − εj we
have λ′j = 
+ 1 > 
 > λj+1 and �λ− εj �∂
 = 0 by induction for case (ii),

whereas �λ− εi�∂
 = 0 for all i �= j as before.

(iv) 
 = λj ∈ λ, 
+ 1 = λj−1 ∈ λ

Then λ+ εj �∈ S and one has to show that �λ�∂
 = 0. Since both x
 and x
+1
belong to λ, xλ is symmetric w.r.t. σ
 and the expression for �λ�∂
 reduces to

�λ�∂
 = 1

xλ
·
∑

1≤i≤k

�λ− εi�∂
.

The following situations occur:

– If i < j − 1 or i > j , then either λ′ = λ− εi �∈ S, or 
 = λ′j , 
+ 1 = λ′j−1
and �λ′�∂
 = 0 follows by induction.

– If i = j−1, λ′ = λ−εj−1, we have λ′j−1 = λj−1−1 = 
 and λ′j = λj = 
,
so that λ′ is not strict and already �λ′� = 0.

– If i = j , λ′ = λ − εj , we have λ′j−1 = λj−1 = λj + 1 = 
 + 1 and
λ′j = λj − 1 = 
− 1, so that λ′ does not contain 
 = λj and �λ′�∂
 = 0 by
induction from case (iii).

All summands vanish and thus �λ�∂
 = 0. ��
Remark The situation of augmenting a strict partition λ = λ1λ2 . . . λk with λk ≥ 2
by adding a new (k + 1)-st part λk+1 = 1 is not covered by the lemma. We state
without proof that

�λ1λ2 . . . λk�∂0 =
⎧
⎨

⎩

�λ1λ2 . . . λk1� if k is odd and λk ≥ 2,

0 if k is even or λk = 1.

Lemma 2 suggests a method for computing �λ� using divided differences: let
λ = λ1λ2 . . . λk ∈ S then:

– Start with the staircase partition

�k = (k, k − 1, k − 2, . . . , 1) =<k, k − 1>,

see Sect. 3.5, where ��k� is given.
– Then (in terms if shifted diagrams) extend the first row of �k from k boxes to λ1

boxes, which amounts to applying the cascade ∂k∂k+1 . . . ∂λ1−1 to ��k�, which
gives �(λ1, k − 1, k − 2, . . . , 1)�.

– Then extend the second row from k−1 boxes to λ2 boxes, which means applying
the cascade ∂k−1∂k . . . ∂λ2−1 to the function �(λ1, k − 1, k − 2, . . . , 1)�, which
gives �(λ1, λ2, k − 2, . . . , 1)�.
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– Continue this way row by row until extending the top row of the shifted diagram,
which means applying the cascade ∂1∂2 . . . ∂λk−1 to the result from extending the
previous row, which gives �λ1, λ2, . . . , λk�.

– In all, we get

�λ� = ��k�∂k∂k+1 . . . ∂λ1−1 ∂k−1∂k . . . ∂λ2−1 · · · ∂1∂2 . . . ∂λk−1.

3.5 Application: Staircase Partitions

In this subsection we will use divided differences to compute �λ� for the staircase
partitions �n = (n, n−1, n−2, . . . , 2, 1) =<n, n−1> and the truncated staircase
partitions �′n = (n, n− 1, n− 2, . . . , 3, 2) =<n, n− 2>. From what has just been
stated, cascades of divided differences will be used, without computing explicitly
the intermediate expressions.

Theorem 1 For all n ≥ 1,

��′n� =
w(�n)

qn,n−1
= (x0+)x1 + x2 + . . .+ xn

∏
0≤i<j≤n(xi + xj )

, (9)

��n� = 1

qn,n−1
= 1

∏
0≤i<j≤n(xi + xj )

. (10)

Proof From the fact that in the lattice S the staircase partition �n covers only the
truncated staircase partition �′n one has

��n� = 1

w(�n)
��′n�,

and thus (10) follows immediately from (9).
We will now use the cascade operation

��′n+1� = ��n�∂n∂n−1 . . . ∂1.

Writing down the claim explicitly gives

w(�n+1)
∏

0≤i<j≤n+1(xi + xj )
=

[
1

∏
0≤i<j≤n(xi + xj )

]

∂n∂n−1 . . . ∂1

=
[ ∏

0≤i≤n(xi + xn+1)
∏

0≤i<j≤n+1(xi + xj )

]

∂n∂n−1 . . . ∂1.



A Linear System for Strict Partitions 361

Now
∏

0≤i<j≤n+1(xi + xj ) is symmetric w.r.t. all σr (1 ≤ r ≤ n), so that this term
cancels on both sides and we are left with the task to prove the equivalent assertion
about polynomials:

w(�n+1) =
⎡

⎣
∏

0≤i≤n

(xi + xn+1)

⎤

⎦ ∂n∂n−1 . . . ∂1.

This will be shown in the proposition that follows. ��
Denote Qn = ∏

0≤i<n(xi + xn). In terms of elementary and homogeneous
symmetric functions this can be written as

Qn =
n∑

k=0

ek(X0,n−1)hn−k(Xn,n).

In the terminology of symmetric functions this is a Schur polynomial of degree n

over two sets X0,n−1 = {x0, x1, . . . , xn−1} and Xn,n = {xn} of variables, denoted
as Sn(xn|X0,n−1)—see Sect. 4.3 for the notation.

Proposition 1 For all n ≥ 1,

Qn+1∂n∂n−1 . . . ∂1 =
{
x0 + x1 + . . .+ xn+1 if n is even,

x1 + x2 + · · · + xn+1 if n is odd.
(11)

Proof One way to prove Eq. (11) goes by working through the following sequence
of statements:

– The left hand side of (11) is a homogeneous polynomial of degree 1.
– The left hand side of (11) is symmetric in X0,n+1, resp. X1,n+1.

(this can be done by using the braid relations for the divided differences).
– The coefficient of xn+1 in the left hand side is 1 (which is not so obvious).

An alternative way proceeds follows:

– Apply ∂n to Qn+1 to obtain

Qn+1∂n =
n∑

k=0

ek(X0,n)hn−k(Xn,n+1)

︸ ︷︷ ︸
Q


n

−
n∑

k=0

ek(X0,n−1)hn−k(Xn,n)

︸ ︷︷ ︸
Qr

n

.

– As for Qr
n, this is nothing but Qn. We can use induction to obtain

(Qr
n)∂n−1 . . . ∂1 = (x0+)x1 + . . .+ xn.
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– As for Q

n, note that the factors ek(X0,n) are symmetric in the variables X0,n and

thus behave like scalars w.r.t. ∂n, ∂n−1, . . . , ∂1. Hence

(Q

n)∂n−1∂n−2 . . . ∂1 =

n∑

k=0

ek(X0,n) · hn−k(Xn,n+1)∂n−1 . . . ∂1

=
n∑

k=0

ek(X0,n) · h1−k(X1,n+1)

= e0(X0,n)h1(X1,n+1)+ e1(X0,n)h0(X1,n+1)

= h1(X1,n+1)+ e1(X0,n)

= x0 + 2x1 + 2x2 + · · · + 2xn + xn+1.

Thus

Qn+1∂n . . . ∂1 =
{
x0 + x1 + · · · + xn+1 if Qn∂n−1 . . . ∂n = x1 + x2 + · · · + xn,

x1 + x2 + · · · + xn+1 if Qn∂n−1 . . . ∂n = x0 + x1 + · · · + xn.

��

3.6 Application: Denominators

Now it can be shown that the rational functions �λ� can be written by using the
standard denominator polynomials qn,m of Sects. 2.2.4 and 3.3 as denominators,
showing that the denominator of �λ� depends only on the two largest parts of λ. The
proof of Theorem 2 does not show immediately that this representation is indeed
reduced, i.e. numerator and denominator polynomials have no common factor. A
further short argument is needed to make this clear.

Theorem 2 For strict partitions λ ∈ S, the rational functions �λ� can be written as

�λ� =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

qn,0
if λ = (n),

pλ

qn,m
if λ = (n,m, . . .),

where pλ is a homogeneous polynomial in the variables X0,n.

Proof The one-part case λ = (n) has been mentioned in Sect. 2.2.5, see Eq. (5).
Let now λ = (λ1, λ2, . . . , λk) = (n,m, r, . . .) be a strict partition with k ≥

2 parts. We look at the construction of λ as shown in Sect. 3.4, starting with the



A Linear System for Strict Partitions 363

staircase partition �k and applying divided differencing cascades:

�λ� = ��k� ∂k∂k+1 . . . ∂n−1︸ ︷︷ ︸
∂k...n−1

∂k−1∂k . . . ∂m−1︸ ︷︷ ︸
∂k−1...m−1

∂k−2∂k−1 . . . ∂r−1︸ ︷︷ ︸
∂k−2...r−1

. . .

We know from Theorem 1, Eq. (10), that

��k� = 1

qk,k−1
.

Applying the cascade ∂k...n−1 to it means applying n − 1 − k times the first part of
Lemma 1, which gives

��k�∂k..n−1 = p(n,k−1,k−2,...,1)

qn,k−1
.

Applying now the cascade ∂k−1...m−1 to this gives, see the second part of Lemma 1,

��k�∂k...n−1∂k−1...m−1 = p(n,m,k−2,...,1)

qn,m
.

If k = 2 then we are finished. Otherwise assume that there is a third part
λ3 = r . When applying the cascade ∂k−2...r−1 to the last expression note that the
denominator polynomial qn,m = ∏

0≤i≤m,i<j≤n(xi + xj ) is symmetric w.r.t. all σ

with k − 2 ≤ 
 ≤ r − 1 because r < m. Thus the denominator behaves like a scalar
when acting with ∂k−2...r−1 and thus

��k�∂k...n−1∂k−1...m−1∂k−2...r−1 = 1

qn,m
· [p(n,m,k−2,...,1)

]
∂k−2..r−1

= p(n,m,k−2,...,1)∂k−2..r−1

qn,m
= p(n,m,r,...)

qn,m
.

If k = 3 we are done, the same argument can be played repeatedly for any
k > 3. ��

For a partition λ ∈ S let sdp(λ) denote the standard denominator polynomial of
λ, i.e., sdp(λ) = qn,m if λ = (n,m, . . .) (or = qn,0 if λ = (n)). In view of the
relation of the standard denominator polynomials to the join-irreducibles of S on
can draw the immediate consequence.

Corollary 1 For strict partitions λ,μ ∈ S, if λ ⊆ μ then sdp(λ)| sdp(μ).
In particular,

sdp(�n) = qn,n−1 =
∏

0≤i<j≤n

(xi + xj )

is the least common multiple for all denominators coming from the �λ� with λ ⊆ �n.
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The statement about the lcm-property of the sdp(�n) is of major interest for the
physical model that triggered the investigations presented here. More details are
given in [3].

The statement about the denominators of the �λ� can be made even more precise.
What is observed from the examples given Sects. 2.2.3 and 2.2.4 is indeed true in
general.

Corollary 2 For strict partitions λ = (n,m, . . .) ∈ S the standard denominator
polynomial sdp(λ) = qn,m is the true denominator of �λ�, when written as a reduced
fraction.

Proof Consider the possible one-step extensions leading from λ = (n,m, . . .) to
λ′ = λ + εk i.e., by “adding one box in a legal position”, and what this does to
the denominators. The new binomials xi + xj with i < j that may appear in the
denominator are (see Lemma 1) those where for

• k = 1: 0 ≤ i ≤ m and j = n+ 1;
• k = 2: i = m+ 1 and m+ 1 < j ≤ n (observe that m < n− 1 in this case);
• k > 2: none new terms.

Imagine that one extends λ′ further and that immediately or later one of the new
binomials just created, xi0 + xj0 , say, disappears due to cancellation with the
numerator polynomials. Due to the same argument just made for the appearance
of this ‘lost’ binomial xi0 + xj0 , this term cannot reappear at any later stage of
extension. But since λ′ ⊆ �N for N big enough (N = n + 1 will do), and the fact
that by Theorem 1 the binomial xi0 + xj0 definitely belongs to the denominator of
��N �, it cannot have disappeared before. No binomials in the denominators of the
�λ� ever ‘get lost’ in the extension process. ��

4 Schur Functions and Variants

For two families of strict partitions the answer to the problem of saying how the
rational function �λ� can be expressed in terms of ‘known’ functions will be given in
this article. It turns out that symmetric functions, and Schur functions in particular,
nicely do the job. The present section contains just the necessary definitions and
facts required here. As stated in the introduction, the reader who is less familiar with
this concepts is invited to consult standard texts like [4–6] for more information.
The essential tool for working here with Schur functions is what is known as Jacobi-
Trudi determinants. This is taken for the definitions, other combinatorial or algebraic
definitions of Schur functions won’t be used here and are therefore not introduced.
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4.1 Elementary and Homogeneous Symmetric Functions

For any alphabet A (or set of variables, usually finite, and for us always of type
A = Xa,b = {xa, xa+1, . . . , xn}, as before) the elementary symmetric functions
en(A) and the homogeneous (complete) symmetric functions hn(A) are defined by
their generating functions1

e(A) =
∑

n≥0

en(A) =
∏

α∈A
(1+ α),

h(A) =
∑

n≥0

hn(A) = 1
∏

α∈A(1− α)
,

where en(A) resp. hn(A) are the homogeneous parts of degree n if the products on
the right hand side are expanded ‘as usual’. The definition implies that en(A) = 0 if
n ≥  A, that e0(A) = 1 = h1(A), and that en(A) = 0 = hn(A) for n < 0.

Both families can be used to define (multiplicative) bases of the vector space of
symmetric functions, parametrized by partitions, where the basis elements are the
products eλ(A) = eλ1eλ2 · · · eλk resp. hλ(A) = hλ1hλ2 · · · hλk for partitions λ =
λ1λ2 . . . λk . These products will not be used in the sequel. But the en(A) and hn(A)

can be used to defined another, non multiplicative basis of the space of symmetric
functions, the Schur functions, undeniably the most interesting and most important
family in the realm of classical symmetric functions. There are several equivalent
ways, of algebraic and of combinatorial character, to define Schur functions. For the
purpose of this work I will restrict the formalism to the definition (and use) of the
so-called Jacobi-Trudi determinants.

4.2 Schur Functions Over a Single Alphabet

The particular Schur functions Sn(A), where n is a single integer, and where A is
an alphabet (usually finite), are nothing but the homogeneous symmetric functions:
Sn(A) = hn(A). In particular, Sn(A) = 0 for n < 0.

1Often one writes e(A; t) = ∑
n≥0 en(A) tn = ∏

α∈A(1 + α t), etc., using an explicit counting
variable t for the degree. This is not really necessary, so t is left implicit, except for a situation in
and after Eq. (23) in Sect. 5.1, where it improves readability. Note that using ‘negative alphabets’
e(−A) mean the same using e(A;−t), etc.
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For any partition λ = (λ1, λ2, . . . , λk) and any alphabet A the Schur function
Sλ(A) is defined as

Sλ(A) = det
[
Sλk−j−i+j (A)

]
0≤i,j<k

= det

⎡

⎢
⎢
⎢
⎣

Sλk Sλk−1+1 . . . Sλ1+k−1

Sλk−1 Sλk−1 . . . Sλ1+k−2
...

...
. . .

...

Sλk−k+1 Sλk−1−k+2 . . . Sλ1

⎤

⎥
⎥
⎥
⎦

A

, (12)

where the subscript A to the matrix indicates that all the Schur functions appearing
in the matrix have to be taken over the alphabet A. Note that the parts of λ appear as
indices in increasing order along the main diagonal of the defining matrix, and that
the indices decrease by 1 along each column.

The entries of the matrix that defines Sλ(A) are all homogeneous symmetric
functions. One may as well define Schur functions using the elementary symmetric
functions. Indeed,

Sλ̃(A) = det
[
eλk−j−i+j (A)

]
0≤i,j<k

= det

⎡

⎢
⎢
⎢
⎣

eλk eλk−1+1 . . . eλ1+k−1

eλk−1 eλk−1 . . . eλ1+k−2
...

...
. . .

...

eλk−k+1 eλk−1−k+2 . . . eλ1

⎤

⎥
⎥
⎥
⎦

A

, (13)

where λ̃ denotes the conjugate partition of λ.

4.3 Schur Functions Over a Pair of Alphabets

If A and B are two alphabets (usually finite and disjoint), for any integer n the
Schur function Sn(A|B) is defined as a convolution of homogeneous and elementary
symmetric functions:

Sn(A|B) =
∑

0≤k≤n

hk(A) · en−k(B).

In particular, Sn(A|∅) = hn(A) and Sn(∅|B) = en(B). The generating function of
the Sn(A|B) is

S(A|B) =
∑

n≥0

Sn(A|B) =
∏

β∈B(1+ β)
∏

α∈A(1− α)
= h(A) · e(B).
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For any partition λ = λ1λ2 . . . λk the Schur function Sλ(A|B) is defined by a
Jacobi-Trudi determinant:

Sλ(A|B) = det
[
Sλk−j−i+j (A|B)

]
0≤i,j<k

,

i.e., by the same determinant as for Sn(A), but with the alphabet A replaced by the
pair (A|B) of alphabets.

The following way of writing Schur functions Sn(A|B) over a pair of alphabets
in terms of functions over a single alphabet will be useful later.

Proposition 2 For integer n and any pair (A|B) of alphabets one has

Sn(A|B) =
∑

k

(−1)kek(B2) · Sn−2k(A+ B).

In this statement, the term ek(B
2) denotes the k-th elementary symmetric

function over an alphabet which consists of the squares of the elements of B. The
sum A + B is nothing but the union of the two alphabets A and B. Furthermore,
if A is any alphabet, then −A is an alphabet which consists of the negatives of the
elements of A. Thus

e(−A) =
∏

α∈A
(1− α) and h(−A) = 1

∏
α∈A(1+ α)

.

The close relationship between elementary and homogeneous symmetric functions
is thus concisely expressed as reciprocity between the generating series

e(−A) · h(A) = 1.

Proof of Proposition 2 This follows from expanding both sides of the generating
function identity:

S(A|B) =
∑

n≥0

Sn(A|B) =
∏

β∈B(1+ β)
∏

α∈A(1− α)

=
∏

β∈B(1− β2)
∏

α∈A(1− α)
∏

β∈B(1− β)

=
∏

β∈B
(1− β2) ·

∑

n≥0

Sn(A+ B)

= e(−B2) · S(A+ B). ��
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As we will often deal with staircase partitions, it is good to know the following
property of their Schur functions over two alphabets. It shows that in this particular
case the Schur functions over a pair of alphabets may be considered over their union
as a single alphabet.

Proposition 3 For staircase partitions �n, let X = A 1 B = A′ 1 B ′ be two
decompositions of the alphabet X. Then

S�n(A|B) = S�n(A
′|B ′) = S�n(X).

Proof Let γ ∈ A, A′ = A \ γ and B ′ = B ∪ {γ }. Then

S(A′|B ′) =
∏

β∈B ′(1+ β)
∏

α∈A′(1− α)
= (1− γ 2)

∏
β∈B(1+ β)

∏
α∈A(1− α)

= (1− γ 2)S(A|B),

so that

Sn(A
′|B ′) = Sn(A|B)− γ 2Sn−2(A|B).

Writing down the Jacobi-Trudi determinant defining S�n(A
′|B ′) and using this

property one obtains the matrix defining S�n(A|B) by elementary column opera-
tions. ��

It has been mentioned before, see Eq. (8), that all standard denominator
polynomials qn,m are indeed Schur functions (over two alphabets, which in the case
of S�n reduces to one, if desired). A proof of this can be given by using the so-called
Pieri rules for the Schur functions.

4.4 Block Schur Functions

Only a special case of this construct is needed here. For a partition λ, an integer m
and two alphabets A,C (not necessarily disjoint) we define

Sλ;m(A;C) = det

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Sλk Sλk−1+1 . . . Sλ1+k−1 Sm+k

Sλk−1 Sλk−1 . . . Sλ1+k−2 Sm+k−1
...

...
. . .

...
...

Sλk−k+1 Sλk−1−k+2 . . . Sλ1 Sm+1

Sλk−k Sλk−1−k+1 . . . Sλ1−1 Sm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

A;C

.

The matrix is like the usual matrix for the Schur function of a partition λ =
λ0λ1 . . . λk over the alphabet A, in which the last column (the one which would
refer to λ0) is replaced by [Sm+k, Sm+k−1, . . . , Sm+1, Sm]� over the alphabet C.



A Linear System for Strict Partitions 369

This construction can be extended to cover the situation where the alphabet A
is replaced by a pair of alphabets (A|B), and C is replaced by a pair (C|D) of
alphabets.

Another extension, which will be used below, is by adjoining two columns (and
extending the matrix by two rows accordingly)

Sλ;m,n(A;C) = det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Sλk Sλk−1+1 . . . Sλ1+k−1 Sm+k Sn+k+1

Sλk−1 Sλk−1 . . . Sλ1+k−2 Sm+k−1 Sn+k

...
...

. . .
...

...
...

Sλk−k+1 Sλk−1−k+2 . . . Sλ1 Sm+1 Sn+2

Sλk−k Sλk−1−k+1 . . . Sλ1−1 Sm Sn+1

Sλk−k−1 Sλk−1−k . . . Sλ1−2 Sm−1 Sn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A;C

.

Now the last two columns are to be taken over the alphabet C.
The next proposition illustrates the use of these constructions.

Proposition 4 For any partition λ and alphabets A,B and a letter x not belonging
to A ∪ B one has

Sλ;0(A+ x|B; x) = Sλ(A|B), (14)

Sλ;0(A|B; −x) = Sλ(A+ x|B). (15)

Proof From the generating functions

S(A+ x|B) =
∏

β∈B(1+ β)

(1− x)
∏

α∈A(1− α)
= 1

1− x
S(A|B),

which is

e(−x) · S(A+ x|B) = S(A|B),

or

Sm(A+ x|B)− x Sm−1(A+ x|B) = Sm(A|B).

Now use row operations to turn the matrix defining Sλ;0(A+ x|B) (the last column

of which is
[
. . . , x3, x2, x, 1

]�
into

⎡

⎢
⎢
⎢
⎢
⎣

0

Sλ(A|B)
...

0
∗ · · · ∗ 1

⎤

⎥
⎥
⎥
⎥
⎦

,
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where Sλ(A|B) stands for the matrix defining Sλ(A|B). This proves the first
identity.

The second one is proved in a similar way by using

S(A|B + x) = (1+ x) · S(A|B) = e(x) · S(A|B). ��
The extensions for separating two elements from an alphabet are similar and are

given next.

Proposition 5 For any partition λ and alphabets A,B and letters x, y not belong-
ing to A ∪ B one has

Sλ;0,0(A+ x + y|B; x + y) = Sλ(A|B), (16)

Sλ;0,0(A|B; −x − y) = Sλ(A|B + x + y). (17)

The proofs are very similar to those for Proposition 2, now based on

e(x + y) · S(A+ x + y|B) = S(A|B),

S(A|B + x + y) = e(−x − y) · S(A|B).

5 Results

There are two families of strict partitions for which a complete answer can be given
for the problem of expressing �λ� in ‘closed form’: join irreducible strict partitions
and strict partitions consisting of two parts. The notion of ‘closed form’ means: in
terms of symmetric functions, and Schur functions in particular.

5.1 Evaluating �λ� for the Join-Irreducibles in S

In this section we will prove a ‘closed-form’ evaluation of �λ� for the case of join-
irreducible strict partitions λ.

Theorem 3 For the join-irreducible elements λ =<n, k>= (n, n − 1, . . . , n − k)

of the lattice S of strict partitions, where 0 ≤ k < n, one has

�λ� = S�n−k−1(Xk+1 mod 2,n)

S�n(X0,n)
. (18)
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Special cases that we have seen (Sect. 2.2.5 and Theorem 1) are:

– the one-part partitions <n, 0>= (n)

� <n, 0> � = �n� = S�n−1(X1,n)

S�n(X0,n)
=

∏
1≤i<j≤n(xi + xj )

∏
0≤i<j≤n(xi + xj )

= 1
∏

1≤j≤n(x0 + xj )
;

– the truncated staircases �′n =<n, n− 2>= (n, n − 1, . . . , 2)

��′n� =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S�1(X1,n)

S�n(X0,n)
= x1 + x2 + · · · + xn

∏
0≤i<j≤n(xi + xj )

if n is even,

S�1(X0,n)

S�n(X0,n)
= x0 + x1 + x2 + · · · + xn

∏
0≤i<j≤n(xi + xj )

if n is odd;

– the staircases �n =<n, n− 1>= (n, n− 1, . . . , 1)

��n� =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S�0(X0,n)

S�n(X0,n)
= 1

∏
0≤i<j≤n(xi + xj )

if n is even,

S�0(X1,n)

S�n(X0,n)
= 1

∏
0≤i<j≤n(xi + xj )

if n is odd.

Proof The proof of the theorem is quite intricate and requires repeated rewriting of
expressions involving symmetric functions over varying alphabets. It proceeds by
induction over n for fixed k, which is the number of parts of each of the partitions
involved in this process. The induction basis is �k =<k, k−1>, for which the result
has been established in Theorem 1. In the induction step the join-irreducible strict
partition <n, k− 1>= (n, n− 1, . . . , n− k+ 1) is extended in k divided difference
steps to the join-irreducible strict partition <n + 1, k − 1>= (n + 1, n, . . . , n +
2 − k), which amounts to applying the difference cascade ∂n∂n−1 . . . ∂n−k+1 to
� <n, k − 1> �:

� <n, k − 1> �
∂n∂n−1...∂n−k+1−→ � <n+ 1, k − 1> �, (19)

via

<n, k − 1> = (n, n− 1, n− 2 . . . , n− k + 1)
�n (n+ 1, n− 1, n− 2 . . . , n− k + 1)
�n−1 (n+ 1, n, n − 2, . . . , n− k + 1)

...
...

�n−k+1 (n+ 1, n, n − 1, . . . , n− k + 2)
= <n+ 1, k − 1>,

as displayed in Fig. 12.
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Fig. 12 Showing <n, k − 1>=<5, 3> −→ <6, 3>=<n + 1, k − 1>

By plugging in the asserted expressions from (18) on both sides, the induction
step (19) requires the verification of the identities

S�n−k (Xε,n)

S�n(X0,n)
∂n∂n−1 · · · ∂n−k+1 = S�n−k+1(Xε,n+1)

S�n+1(X0,n+1)
with ε = k mod 2.

Now S�n+1(X0,n+1) is symmetric w.r.t. all the variables {x0, x1, . . . , xn+1}, hence
behaves like a scalar w.r.t. the cascade ∂n∂n−1 . . . ∂n−k+1. Multiplying both sides by
S�n+1(X0,n+1) yields the equivalent claim

[
S�n+1(X0,n+1)

S�n(X0,n)
S�n−k (Xε,n)

]

∂n∂n−1 . . . ∂n−k+1 = S�n−k+1(Xε,n+1),

which in view of

S�n+1(X0,n+1)

S�n(X0,n)
=

∏
0≤i<j≤n+1(xi + xj )
∏

0≤i<j≤n(xi + xj )
=

∏

0≤i≤n

(xi + xn+1) = Sn+1(xn+1|X0,n)

can be written as a polynomial identity

[
Sn+1(xn+1|X0,n) · S�n−k (Xε,n)

]
∂n∂n−1 . . . ∂n−k+1 = S�n+1−k (Xε,n+1). (20)

For better readability the notation will be changed a bit. In place of n we will
write b, in place of n − k write a, so that k gets replaced b − a. The alphabet X0,a
will be denoted by A, for the alphabet Xa+1,b resp. Xa+1,b+1 we write B resp. B ′,
so that A+ B means the same as X0,b and A+ B ′ stands for X0,b+1.

The goal is now to evaluate the left-hand side of (20), viz.

[
Sb+1(xb+1|A+ B) · S�a (A+ B)

]
∂b∂b−1 . . . ∂a+1. (21)

This is presented in a sequence of steps.

(i) The inconvenience of (21) is that the divided differences ∂b etc. act on both
factors in the bracket. It is therefore plausible to try to pass to an equivalent
expression which avoids that. We claim that

Sb+1(xb+1|A+ B) · S�a (A+ B) = S�a ;b+1(A+ B + xb+1; xb+1|A+ B).
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For the proof of this, note that the last column of the matrix for the block
Schur function S�a ;b+1(A+ B + xb+1; xb+1|A+ B) is

[Sb+1+m(xb+1|A+ B)]�a≥m≥0 .

Since ek(A + B) = 0 if k >  (A + B) = b + 1, we have for the terms in
question

Sb+1+m(xb+1|A+ B) = xm
b+1

b+1∑

j=0

x
b+1−j

b+1 ej (A+ B)

= xm
b+1 · Sb+1(xb+1|A+ B),

and therefore, taking Proposition 2 (with A resp. A+ B replaced by B resp.
∅, and x by xb+1) into account, we get

S�a;b+1(A+ B + xb+1; xb+1|A+ B)

= S�a;0(A+ B + xb+1; xb+1) · Sb+1(xb+1|A+ B)

= S�a (A+ B) · Sb+1(xb+1|A+ B).

(ii) In view of Proposition 3 we can rewrite

S�a ;b+1(A+ B + xb+1; xb+1|A+ B)

by replacing the Sb+1+m(xb+1|A+B) in the last column of the corresponding
matrix by sums over products of e
(A2+B2) and S�a ;b+1−2
(A+B+xb+1)

terms. This gives

S�a;b+1(A+B+xb+1; xb+1|A+B) =
∑


≥0

(−1)
e
(A
2+B2)·S�a;b+1−2
(A+B ′),

where A+ B ′ = A+ B + xb+1.
(iii) The expression to be evaluated is now

⎡

⎣
∑


≥0

(−1)
e
(A2 + B2) · S�a;b+1−2
(A+ B ′)

⎤

⎦ ∂b∂b−1 . . . ∂a+1.

Here the terms S�a;b+1−2
(A+ B ′) are symmetric in the variables of A+ B ′,
hence they behave as scalars w.r.t. the difference cascade ∂b∂b−1 · · · ∂a+1.
Now the difference cascade acts only as for

e
(A
2 + B2)∂b∂b−1 · · · ∂a+1.



374 V. Strehl

(iv) The required result is

e
(A
2 + B2)∂b∂b−1 · · · ∂a+1 =

∑

j≥0

(−1)je
−b+a+j (A
2)eb−a−2j (B

′),

which can be demonstrated by induction.
(v) The expression to be evaluated has turned into

∑




(−1)
S�a;b+1−2
(A+ B ′)
∑

j

(−1)je
−b+a+j (A
2)eb−a−2j (B

′).

Putting m = 2
− b + a and replacing j �→ j −m+ 
, hence


− b + a + j �→ j, b − a − 2j �→ m− 2j,

j + 
 �→ a − b + j, b + 1− 2
 �→ a + 1+m,

gives

∑

m≡2b−a

S�a;a+1−m(A+ B ′)
∑

j

(−1)j ej (A2)em−2j (B
′),

or

∑

j

(−1)jej (A2)
∑

m≡2b−a

S�a ;a+1−m(A+ B ′)em−2j (B
′). (22)

(vi) Consider now the sum (22) for the position (r, a) (where rows and columns
are indexed from 0 to a) in the matrix used to define S�a ;a+1−m(A + B ′).
This is

(∗r )
∑

j

(−1)j ej (A2)
∑

m≡2b−a

h2a+1−r−m(A+ B ′)em−2j (B
′).

Put Nr = 2a + 1− r . Then this can be written as

[tNr ]
∏

α∈A
(1− α2t2)

∏

α∈A

1

1− αt

∏

β∈B ′
1

1− βt

⎡

⎣
∏

β∈B ′
(1+ βt)

⎤

⎦

′
, (23)

where [tN ](. . .) means “the coefficient of tN (=homogeneous part of degree
N) in (. . .), and where in [. . .]′ only the terms of degree≡ b− a mod 2 have
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to be taken. Equivalently,

[tNr ]
∏

a∈A
(1+ αt)

∏

β∈B ′
1

1− βt
· 1

2

⎧
⎨

⎩

∏

β∈B ′
(1+ βt)±

∏

β∈B ′
(1− βt)

⎫
⎬

⎭

= [tNr ]
∏

a∈A
(1+ αt)

∏

β∈B ′
(1+ βt) · 1

2

⎧
⎨

⎩

∏

β∈B ′
1

1− βt
±

∏

β∈B ′
1

1+ βt

⎫
⎬

⎭

= [tNr ] e(A+ B ′, t) · 1

2
(h(B ′, t)± h(B ′,−t)).

(vii) This turns the problem into the evaluation of

∑

0≤k≤2a+1
k≡2b−a

hk(B
′) · det

⎡

⎢
⎢
⎢
⎢
⎢
⎣

e1 e3 . . . e2a−1 e2a+1−k

e0 e2 . . . e2a−2 e2a−k

...
...

. . .
...

...

. . . . . . . . . ea ea+2−k

. . . . . . . . . ea−1 ea+1−k

⎤

⎥
⎥
⎥
⎥
⎥
⎦

A+ B ′

. (24)

It has to be shown that this expression evaluates to S�a+1(A+ B ′). There are
two different cases to consider, according to the parity of b − a.

• If b − a is even, then the k in the sum of (24) runs over the even numbers
0, 2, 4, . . . , 2a. In all cases, except k = 0, the last column of the respective
matrix is identical to one of the earlier columns, hence the determinant
vanishes. In the case k = 0 the matrix is precisely the matrix that defines
S�a+1(∅|A+B ′), which in view of Proposition 4 is the same as S�a+1(A+
B ′).

• If b − a is odd, then the k in the sum of (24) runs over the odd numbers
1, 3, . . . , 2a + 1. Here the last column of the respective matrix is never
identical to one of the earlier columns. But the matrix nevertheless defines
a Schur function—but since the index of the last entry ea+1−k is (except
for the case k = 1) strictly less than the index of the next to last diagonal
element ea , the last column has to be moved to the left in order to re-
establish the condition of (weak) growth of the diagonal elements as
required for the definition of Schur functions.
An example will make this point clear. The case a = 3 is displayed
in Fig. 13. Note that since the determinants are expressed in terms of
elementary symmetric functions, the Schur functions that appear are are
not indexed by the partitions corresponding to the indices of the diagonal
elements, but rather by their conjugates—see Eq. (13).

(viii) We continue with the treatment in the case a �≡ b mod 2. It should be clear
from the example given in Fig. 13 how this part of the procedure works in
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Fig. 13 Evaluation steps in the case b − a odd, here a = 3
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general. One obtains

∑

0≤
≤a

(−1)
h2
+1(B
′) · S

λ
(
)
a
(A+ B ′)

= [
h1 h3 . . . h2a+1

]

B ′ ·

⎡

⎢
⎢
⎢
⎢
⎣

S
λ
(0)
a

S
λ
(1)
a

...

S
λ
(a)
a

⎤

⎥
⎥
⎥
⎥
⎦

A+ B ′

, (25)

where for a ≥ 1 the sequence of partitions λ
(0)
a ,λ

(1)
a , . . . ,λ

(a)
a (starting with

λ
(0)
a = (a + 1, a, . . . , 3, 2) and then subtracting 2 from the last, the next to

last, etc. parts) given in vector notation

λ
(j)
a = (a + 1, a, a − 1, . . . , j + 3, j + 2, j − 1, j − 2, . . . , 2, 1, 0).

The next two steps will also be illustrated in the case a = 3, which is
sufficiently general to show how the ideas work.

(ix) Note that in the expressions showing up in (25) the h- and the Sλ-factors have
different alphabets attached. This can easily be cured.
It follows from the duality between elementary and homogeneous symmetric
functions, namely

e(−A) · h(A+ B ′) = h(B ′),

that

[
e0 −e1 e2 −e3

]
A

⎡

⎢
⎢
⎣

h1 h3 h5 h7

h0 h2 h4 h6

0 h1 h3 h5

0 h0 h2 h4

⎤

⎥
⎥
⎦

A+ B ′

= [
h1 h3 h5 h7

]

B ′ .

(x) Using this fact in (25) brings up the problem of computing

⎡

⎢
⎢
⎣

h1 h3 h5 h7

h0 h2 h4 h6

0 h1 h3 h5

0 h0 h2 h4

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

S432

−S43

S41

−S21

⎤

⎥
⎥
⎦ (26)

over an arbitrary alphabet. This could be done directly by an argument
that uses Pieri’s rule for computing the product of Schur functions and
homogeneous symmetric functions as a sum of Schur functions, by referring
to the diagrams of the partitions involved. Here we content ourselves with
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simple application of Cramer’s rule, which shows that the unique solution of
the linear system

⎡

⎢
⎢
⎣

h1 h3 h5 h7

h0 h2 h4 h6

0 h1 h3 h5

0 h0 h2 h4

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

y0

y1

y2

y3

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

S4321

0
0
0

⎤

⎥
⎥
⎦

is given (over any alphabet) by
[
y0 y1 y2 y3

] = [
S432 −S43 S41 −S21

]
.

Indeed,

y0 = 1

S4321

⎡

⎢
⎢
⎣

S4321 h3 h5 h7

0 h2 h4 h6

0 h1 h3 h5

0 h0 h2 h4

⎤

⎥
⎥
⎦ =

⎡

⎣
h2 h4 h6

h1 h3 h5

h0 h2 h4

⎤

⎦ = S432,

y1 = 1

S4321

⎡

⎢
⎢
⎣

h1 S4321 h5 h7

h0 0 h4 h6

0 0 h3 h5

0 0 h2 h4

⎤

⎥
⎥
⎦ = −

[
h3 h5

h2 h4

]

= −S43, etc.

Finally we get

[
h1 h3 h5 h7

]

B ′

⎡

⎢
⎢
⎢
⎣

S432

−S43

S41

−S21

⎤

⎥
⎥
⎥
⎦

A+B ′

=
[
e0 −e1 e2 −e3

]

A

⎡

⎢
⎢
⎢
⎣

h1 h3 h5 h7

h0 h2 h4 h6

0 h1 h3 h5

0 h0 h2 h4

⎤

⎥
⎥
⎥
⎦

A+B ′

⎡

⎢
⎢
⎢
⎣

S432

−S43

S41

−S21

⎤

⎥
⎥
⎥
⎦

A+B ′

=
[
e0 −e1 e2 −e3

]

A

⎡

⎢
⎢
⎢
⎣

S4321

0

0

0

⎤

⎥
⎥
⎥
⎦

A+B ′

= S�4(A+B ′).

This way it is shown that also in the second case (a �≡ b mod 2) the expression
in (24) evaluates to S�a+1(A+ B ′). This concludes the proof of Theorem 3. ��

5.2 Evaluating �λ� for the Two-Part Partitions in S

In this last part the result of the evaluation of �λ� for the class of strict partitions
with two parts will be stated and proved. There are two ways of obtaining results,
depending on which of the two parts will be extended. Figure 14 shows an example
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Fig. 14 Showing the extensions (n,m) = (5, 2) → (6, 2) = (n + 1,m) and (n,m) = (5, 2) →
(5, 3) = (n,m + 1)

both possibilities: (n,m) is always extendable to (n + 1,m), but extendable to
(n,m+ 1) only if m+ 1 < n. See Eq. (28) for the view of divided difference.

Theorem 4 For two-part strict partitions (n,m) with 0 < m < n:

�n,m� = S<n−2,m−1>(X0,m|Xm+1,n)

S<̃n,m>(X0,m|Xm+1,n)
. (27)

Recall that the denominator

S<̃n,m>(X0,m|Xm+1,n) =
∏

0≤i<j≤n
i≤m

(xi + xj ) = qn,m

is the standard denominator for strict partitions with largest part n and second largest
part m.

Note that Theorems 3 and 4 both cover the case of two-part strict partitions
(n, n − 1) =<n, 1>, and that in these cases the expressions in (18) and (27) agree
indeed.

The proof of Theorem 4 will not be given in full detail, sometimes exemplary data
(with an obvious way of generalizing) will suffice. A few preliminary indications are
in order. The basic facts are, of course,

�n+ 1,m� = �n,m� ∂n and �n,m+ 1� = �n,m� ∂m. (28)

By plugging in the representation asserted in (27) and clearing denominators
(respecting the compatiblity with ∂n resp. ∂m) one is left with the task to prove the
polynomial relations, i.e., for ∂n with 1 ≤ m < n:

[
Sm+1(xn+1|X0,m) · S<n−2,m−1>(X0,m|Xm+1,n)

]
∂n

= S<n−1,m−1>(X0,m|Xm+1,n+1), (29)

and for ∂m with 1 ≤ m ≤ n− 2:

[
Sn−m−1(xm+1|Xm+2,n) · S<n−2,m−1>(X0,m|Xm+1,n)

]
∂m

= S<n−2,m>(X0,m+1|Xm+2,n). (30)

Note a particular feature of these identities, which shows that they are not plain
obvious: in (29) the right-hand side is symmetric w.r.t. the variables Xm+1,n+1, but
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for the expression on the left-hand side this is not clear, because the symmetrizing
operator ∂n creates a symmetry between xn and xn+1 (or else annihilates the
expression, if the symmetry was already there), but usually symmetries between
xn and other variables like xn−1 are destroyed. A similar observation can be made
w.r.t. the terms in (30). A way to resolve this for (29) is to expand both sides over
the triple of alphabets (X0,m , Xm+1,n−1 , Xn,n+1), and similarly for (30).

Proof of (29) As mentioned, rather than writing out the proof in full detail, I will
go through it using a generic example—it should become obvious that and how the
procedure generalizes.

Let us consider the case n = 5,m = 3, so that (29) becomes

[
S4(x6|X0,3) · S<3,2>(X0,3|X4,5)

]
∂5 = S<4,2>(X0,3|X4,6),

where <3, 2> is the partition (3, 2, 1) and <4, 2> is the partition (4, 3, 2).
The expression in the brackets of the left hand side may be written as

4∑

i=0

hi(x6)e4−i (X0,3) · S<3,2>;0(X0,3|x4; x5),

where the second identity in Proposition 4 has been used to rewrite the defining
matrix for the Schur function S<3,2>(X0,3|X4,5). Now use

hi(x6) = hi(X5,6)− x5hi−1(X5,6) (first term for each i),

hi(x5) = hi(X5,6)− x6hi−1(X5,6) (last col. of matrix for S<3,2>;0),

to rewrite this as

4∑

i=0

e4−i (X0,3) · (hi(X5,6)− x5hi−1(X5,6)) · (D0 − x6D−1), (31)

where

D0 = S<3,2>;0(X0,3|x4;X5,6) = det

⎡

⎢
⎢
⎣

S1 S3 S5 −h3

S0 S2 S4 h2

0 S1 S3 −h1

0 S0 S2 h0

⎤

⎥
⎥
⎦

(X0,3|x4);X5,6

,
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where the Si are taken over the alphabet (X0,3, x4) and the hj are taken over the
alphabet X5,6, and where

D−1 = S<3,2>;−1(X0,3|x4;X5,6) = det

⎡

⎢
⎢
⎣

S1 S3 S5 h2

S0 S2 S4 −h1

0 S1 S3 h0

0 S0 S2 −h−1

⎤

⎥
⎥
⎦

(X0,3|x4);X5,6

.

Now, expand (31) into

4∑

i=0

e4−i · (hiD0 − x5hi−1D0 − x6hiD−1 + x5x6hi−1D−1).

Note that the first and the last terms of the expression in parentheses are symmetric
w.r.t. σ5 : x5 ↔ x6 because D0 and D−1 and the hi are. Hence they will disappear
under application of ∂5 and we obtain

[
4∑

i=0

hi(x6)e4−i (X0,3) · S<3,2>;0(X0,3|x4; x5)

]

∂5

=
4∑

i=0

e4−i [−x5∂5 · hi−1D0 − x6∂5 · hiD−1] =
4∑

i=0

e4−i [hi−1D0 − hiDi−1]

= S3(X5,6|X0,3) ·D1 − S4(X5,6|X0,3) ·D−1.

Consequently, the left hand side of (29) can be written in determinantal form as

det

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 −S′3 S′4
S1 S3 S5 h2 −h3

S0 S2 S4 −h1 h2

0 S1 S3 h0 −h1

0 S0 S2 0 h0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where all the Si are taken over the alphabet (X0,3|x4), the S′i are taken over
(X5,6|X0,3), and all the hi are taken over the alphabet X5,6.

Now look at the right hand side of (29) and rewrite it according to the second
identity in Proposition 5 as

S<4,3>(X0,3|X4,6) = det

⎡

⎢
⎢
⎢
⎢
⎢
⎣

S2 S4 S6 −h3 h4

S1 S3 S5 h2 −h3

S0 S2 S4 −h1 h2

0 S1 S3 h0 −h1

0 S0 S2 0 h0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,
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with the same alphabets as just stated. Hence we are left with the task of showing

det

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 −S′3 S′4
S1 S3 S5 h2 −h3

S0 S2 S4 −h1 h2

0 S1 S3 h0 −h1

0 S0 S2 0 h0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= det

⎡

⎢
⎢
⎢
⎢
⎢
⎣

S2 S4 S6 −h3 h4

S1 S3 S5 h2 −h3

S0 S2 S4 −h1 h2

0 S1 S3 h0 −h1

0 S0 S2 0 h0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

But this is easily explained. Multiply the matrix on the right hand side by the row
vector

[
e4(−X0,3), e3(−X0,3), e2(−X0,3), e1(−X0,3), e0(−X0,3)

]
,

and then replace the first row by the resulting vector, which as a row operation does
not change the determinant. Then the first three entries vanish, because

e(−X0,3) · 1+ x4
∏3

i=0(1− xi)
= 1+ x4

has no terms of degree ≥ 1. As for the last two entries, just note that they are
coefficients (for the correct degree and with the correct sign) of

e(−X0,3) · 1

(1− x5)(1− x6)
.

This finishes the example proof of (29). ��
Proof of (30) Similar to the general formula (see Proposition 2)

Sn(A|B) =
∑

k

(−1)kek(B
2)Sn−2k(A+ B),

one has in the particular case of shifting just one element from right to left in the
alphabets

Sn(A+ a|B + b) = Sn(A+ a + b|B)− b2Sn−2(A+ a + b|B),

and hence for the divided difference ∂a,b related to σa,b : a ↔ b

Sn(A+ a|B + b) ∂a,b = −(a + b)Sn−2(A+ a + b|B),

since, except for the b2, everything else is symmetric w.r.t. σa,b.
These two facts can be used to write down divided differences of Schur functions

of the type Sλ(A+a|B+b)∂a,b in general. We will consider here only the particular
situation of join-irreducible partitions <n,m>, for which the result is easy to state.
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Let now 1 ≤ m ≤ n and further denote X0,m−1 = A, xm = n, xm+1 = b,
Xm+2,n+2 = B. Then the m × m-matrix defining S<n,m−1>(A + a|B + b) for the
join-irreducible partition <n,m− 1>= (n, n− 1, . . . , n−m+ 1) is

⎡

⎢
⎢
⎢
⎢
⎣

Sn−m+1 Sn−m+3 . . . Sn+m−1

Sn−m Sn−m+2 . . . Sn+m−2
...

...
. . .

...

Sn−2m+2 Sn−2m+4 . . . Sn

⎤

⎥
⎥
⎥
⎥
⎦

(A+a|B+b)

=

⎡

⎢
⎢
⎢
⎢
⎣

Sn−m+1 − b2Sn−m−1 Sn−m+3 − b2Sn−m+1 . . . Sn+m−1 − b2Sn+m−3

Sn−m − b2Sn−m−2 Sn−m+2 − b2Sn−m . . . Sn−m−2 − b2Sn+m−4
...

...
. . .

...

Sn−2m+2 − b2Sn−2m Sn−2m+4 − b2Sn−2m+2 . . . Sn − b2Sn−2

⎤

⎥
⎥
⎥
⎥
⎦

(A+a+b|B)

.

The fact that the S-terms without b2-factor in each column appear with a b2-factor
in the subsequent column can be used to considerably simplify the writing of the
determinant of this matrix. The result that one gets is in terms of a (m+1)×(m+1)-
matrix

S<n,m−1>(A+a|B+b) =

det

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 b2 b4 . . . b2m

Sn−m−1 Sn−m+1 Sn−m+3 . . . Sn+m−1

Sn−m−2 Sn−m Sn−m+2 . . . Sn+m−2
...

...
...

. . .
...

Sn−2m Sn−2m+2 Sn−2m+4 . . . Sn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(A+a+b|B)

. (32)

This allows to write the divided difference S<n,m−1>(A+ a|B + b)∂a,b in concise
form, because the ∂a,b acts only on the terms of the first row.

S<n,m−1>(A+ a|B + b)∂a,b =

(a + b) · det

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 h0(a
2, b2) h1(a

2, b2) . . . hm−1(a
2, b2)

Sn−m−1 Sn−m+1 Sn−m+3 . . . Sn+m−1

Sn−m−2 Sn−m Sn−m+2 . . . Sn+m−2
...

...
...

. . .
...

Sn−2m Sn−2m+2 Sn−2m+4 . . . Sn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(A+a+b|B)

(33)
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What needs to be shown, is

[
Sn−m+1(b|B) · S<n,m−1>(A+ a|B + b)

]
∂a,b = S<n,m>(A+ a + b|B).

We have

[
Sn−m+1(b|B) · S<n,m−1>(A+ a|B + b)

]
∂a,b

= Sn−m+1(a|B) · [S<n,m−1>(A+ a|B + b)
]
∂a,b

+ [Sn−m+1(b|B)] ∂a,b · S<n,m−1>(A+ a|B + b)

= Sn−m+1(a|B) · (a + b) ·D−1 + Sn−m(a + b|B)×D0

= Sn−m+2(a|B + b) ·D−1 + Sn−m(a + b|B)×D0

=
[
Sn−m+2(a + b|B)− b2Sn−m(a + b|B)

]
×D−1 + Sn−m(a + b|B)×D0,

where D0 resp. D−1 are the determinants showing up in (32) resp. (33). The
elements in positions k (for 0 ≤ k ≤ m) in the top row of the corresponding matrix
are
(
Sn−m+2(a + b|B)− b2Sn−m(a + b|B)

)
hk−1(a

2, b2)+ Sn−m(a + b|B)hk(b
2).

These are is easily seen to be the same as Sn−m+2k(a + b|B).
For the verification the alphabet B plays no role here, it suffices to check the

identity

(hn+1(a+b)−b2hn−1(a+b))·hk−1(a
2+b2)+hn−1(a+b)hk(b

2) = hn−1+2k(a+b),

or, equivalently (and exhibiting the symmetry),

hk(a + b)h
(a
2 + b2)− a2b2hk−2(a + b)h
−1(a

2 + b2) = hk+2
(a + b).

What we have shown up to this point is

[
Sn−m+1(b|B) · S<n,m−1>(A+ a|B + b)

]
∂a,b = det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S′n−m S′
n−m+2 . . . S′n+m

Sn−m−1 Sn−m+1 . . . Sn+m−1

Sn−m−2 Sn−m . . . Sn+m−2
...

...
. . .

...

Sn−2m Sn−2m+2 . . . Sn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the unprimed S-functions are to be taken over the alphabet (A + a + b|B)

and the primed S-functions are to be taken over the alphabet (a+b|B), whereas our
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goal was to arrive at

S<n,m>(A+ a + b|B) = det

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Sn−m Sn−m+2 . . . Sn+m

Sn−m−1 Sn−m+1 . . . Sn+m−1

Sn−m−2 Sn−m . . . Sn+m−2
...

...
. . .

...

Sn−2m Sn−2m+2 . . . Sn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

But the last two determinants are easily seen to be equal by executing successive
row operations that are based on

Sn(A|B) =
∑

k≥0

(−1)kSn−k(A+ X|B)ek(X).

This terminates the proof of (30). ��
Both of (29) and (30) independently yield the validity of Theorem 4 for strict

two-part partitions.

6 Conclusion and Outlook

In this article I have investigated a simple linear system with rational function
coefficients, indexed by the elements of the lattice of strict partitions. The interest in
this particular system comes from a model in combinatorial physics, an asymmetric
exclusion process with annihilation. Explaining the precise relation between the
the problem of determining the partition functions of that model and the work
presented here has been deferred to the article [3]—but it can be stated that the
partition function for the n-site model in question appears as the denominator of
the solution ��n� attached to the staircase partition �n. It is therefore important to
know what ��n� is—see Eq. (10) in Theorem 1, and that the denominator is indeed
the least common multiple of the denominators of all the solutions �λ� that appear
for partitions λ ⊆ �n, as stated in Corollaries 1 and 2.

The behavior of the denominators – only products of binomials appear as factors,
despite the denominators in the definition of the system—provoked me to look into
the numerators of the solutions as well, which is way more complicated. It leads into
expressions that can be concisely presented in terms of Schur functions as ‘closed
forms’. A general solution is still far away, but I have been able to give a precise
answer for two interesting families of strict partitions:

– the join-irreducible elements of the lattice S of strict partitions (Theorem 3);
– the strict-partitions consisting of two parts (Theorem 4).



386 V. Strehl

In both cases, as before in the investigation of the denominators, the main technical
tool, i.e., the use of divided differences for the iterative construction of solution
components λ ⊆ �n along the covering relation of the lattice S—see the Main
Lemma 2—plays a decisive role.

On the ‘to-do’ side, I have already hinted at exposing the precise relevance
of the results obtained here for the model of combinatorial physics that inspired
the investigations presented here. Furthermore, I think that determining ‘closed-
form’ solutions for other classes of partitions will be very difficult. Experimental
experience suggests that Schur functions over more than two alphabets and with
blocks will show up.

References

1. Ayyer, A., Mallick, K.: Exact results for an asymmetric annihilation process with open
boundaries. J. Phys. A 43(4), 045003, 22 pp. (2010) . MR2578722

2. Ayyer, A., Strehl, V.: The spectrum of an asymmetric annihilation process. In: 22nd International
Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010). Discrete
Mathematics & Theoretical Computer Science Proceedings, AN. Association of Discrete
Mathematics & Theoretical Computer Science, Nancy (2010), pp. 461–472. MR2673858

3. Strehl, V.: The fully parametrized asymmetric exclusion process with annihilation. Seminaire
Lotharingien de Combinatoire B81a, 35 pp. (2020)

4. Lascoux, A.: Symmetric functions and combinatorial operators on polynomials. In: CBMS
Regional Conference Series in Mathematics, vol. 99, xii+268 pp. American Mathematical
Society, Providence, RI (2003). ISBN: 0-8218-2871-1. MR2017492

5. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Mono-
graphs, viii+180 pp. The Clarendon Press, Oxford University Press, New York (1979). ISBN:
0-19-853530-9. MR0553598

6. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge Studies in Advanced Mathematics,
vol. 62, xii+581 pp. Cambridge University Press, Cambridge (1999). ISBN: 0-521-56069-1; 0-
521-78987-7. MR1676282



Untying the Gordian Knot via
Experimental Mathematics

Yukun Yao and Doron Zeilberger

This article is dedicated to Peter Paule, one of the great
pioneers of experimental mathematics and symbolic
computation. In particular, it is greatly inspired by his
masterpiece, co-authored with Manuel Kauers, ‘The Concrete
Tetrahedron’ [3], where a whole chapter is dedicated to our
favorite ansatz, the C-finite ansatz

1 Introduction

Once upon a time there was a knot that no one could untangle, it was so complicated.
Then came Alexander the Great and, in one second, cut it with his sword.

Analogously, many mathematical problems are very hard, and the current party
line is that in order for it be considered solved, the solution, or answer, should be
given a logical, rigorous, deductive proof.

Suppose that you want to answer the following question:
Find a closed-form formula, as an expression in n, for the real part of the n-th

complex root of the Riemann zeta function, ζ(s).
Let’s call this quantity a(n). Then you compute these real numbers, and find out that
a(n) = 1

2 for n ≤ 1000. Later you are told by Andrew Odlyzko that a(n) = 1
2 for

all 1 ≤ n ≤ 1010. Can you conclude that a(n) = 1
2 for all n? We would, but, at

this time of writing, there is no way to deduce it rigorously, so it remains an open
problem. It is very possible that one day it will turn out that a(n) (the real part of
the n-th complex root of ζ(s)) belongs to a certain ansatz, and that checking it for
the first N0 cases implies its truth in general, but this remains to be seen.

There are also frameworks, e.g. Pisot sequences (see [5, 10]), where the inductive
approach fails miserably.
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On the other hand, in order to (rigorously) prove that 13 + 23 + 33 + · · · + n3 =
(n(n+ 1)/2)2, for every positive integer n, it suffices to check it for the five special
cases 0 ≤ n ≤ 4, since both sides are polynomials of degree 4, hence the difference
is a polynomial of degree ≤ 4, given by five ‘degrees of freedom’.

This is an example of what is called the ‘N0 principle’. In the case of a
polynomial identity (like this one), N0 is simply the degree plus one.

But our favorite ansatz is the C-finite ansatz. A sequence of numbers {a(n)}
(0 ≤ n < ∞) is C-finite if it satisfies a linear recurrence equation with constant
coefficients. For example the Fibonacci sequence that satisfies F(n) − F(n − 1)−
F(n− 2) = 0 for n ≥ 2.

The C-finite ansatz is beautifully described in chapter 4 of the masterpiece ‘The
Concrete Tetrahedron’ [3], by Manuel Kauers and Peter Paule, and discussed at
length in [9].

Here the ‘N0 principle’ also holds (see [8]), i.e. by looking at the ‘big picture’
one can determine a priori, a positive integer, often not that large, such that checking
that a(n) = b(n) for 1 ≤ n ≤ N0 implies that a(n) = b(n) for all n > 0.

A sequence {a(n)}∞n=0 is C-finite if and only if its (ordinary) generating function
f (t) := ∑∞

n=0 a(n) t
n is a rational function of t , i.e. f (t) = P(t)/Q(t) for some

polynomials P(t) and Q(t). For example, famously, the generating function of the
Fibonacci sequence is t/(1 − t − t2).

Phrased in terms of generating functions, the C-finite ansatz is the subject of
chapter 4 of yet another masterpiece, Richard Stanley’s ‘Enumerative Combina-
torics’ (volume 1) [6]. There it is shown, using the ‘transfer matrix method’ (that
originated in physics), that in many combinatorial situations, where there are finitely
many states, one is guaranteed, a priori, that the generating function is rational.

Alas, finding this transfer matrix, at each specific case, is not easy! The human
has to first figure out the set of states, and then using human ingenuity, figure out
how they interact.

A better way is to automate it. Let the computer do the research, and using
‘symbolic dynamical programming’, the computer, automatically, finds the set of
states, and constructs, all by itself (without any human pre-processing) the set of
states and the transfer matrix. But this may not be so efficient for two reasons.
First, at the very end, one has to invert a matrix with symbolic entries, hence
compute symbolic determinants, that is time-consuming. Second, setting up the
‘infra-structure’ and writing a program that would enable the computer to do
‘machine-learning’ can be very daunting.

In this article, we will describe two case studies where, by ‘general nonsense’, we
know that the generating functions are rational, and it is easy to bound the degree of
the denominator (alias the order of the recurrence satisfied by the sequence). Hence
a simple-minded, empirical, approach of computing the first few terms and then
‘fitting’ a recurrence (equivalently rational function) is possible.

The first case-study concerns counting spanning trees in families of grid-graphs,
studied by Paul Raff [4], and F.J. Faase [2]. In their research, the human first
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analyzes the intricate combinatorics, manually sets up the transfer matrix, and only
at the end lets a computer-algebra system evaluate the symbolic determinant.

Our key observation, that enabled us to ‘cut the Gordian knot’ is that the terms of
the studied sequences are expressible as numerical determinants. Since computing
numerical determinants is so fast, it is easy to compute sufficiently many terms, and
then fit the data into a rational function. Since we easily have an upper bound for
the degree of the denominator of the rational function, everything is rigorous.

The second case-study is computing generating functions for sequences of
determinants of ‘almost diagonal Toeplitz matrices’. Here, in addition to the ‘naive’
approach of cranking enough data and then fitting it into a rational function, we
also describe the ‘symbolic dynamical programming method’, that surprisingly
is faster for the range of examples that we considered. But we believe that for
sufficiently large cases, the naive approach will eventually be more efficient, since
the ‘deductive’ approach works equally well for the analogous problem of finding
the sequence of permanents of these almost diagonal Toeplitz matrices, for which
the naive approach will soon be intractable.

This article may be viewed as a tutorial, hence we include lots of implementation
details, and Maple code. We hope that it will inspire readers (and their computers!)
to apply it in other situations.

2 Accompanying Maple Packages

This article is accompanied by three Maple packages, GFMatrix.txt,
JointConductance.txt, and SpanningTrees.txt, all available from
the http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/gordian.html.
In that page there are also links to numerous sample input and output files.

3 The Human Approach to Enumerating Spanning Trees of
Grid Graphs

In order to illustrate the advantage of “keeping it simple”, we will review the human
approach to the enumeration task that we will later redo using the ‘Gordian knot’
way. While the human approach is definitely interesting for its own sake, it is rather
painful.

Our goal is to enumerate the number of spanning trees in certain families of
graphs, notably grid graphs and their generalizations. Let’s examine Paul Raff’s
interesting approach described in his paper Spanning Trees in Grid Graph [4]. Raff’s
approach was inspired by the pioneering work of F.J. Faase [2].

The goal is to find generating functions that enumerate spanning trees in grid
graphs and the product of an arbitrary graph and a path or a cycle.

http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/gordian.html
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Grid graphs have two parameters, let’s call them k and n. For a k× n grid graph,
let’s think of k as fixed while n is the discrete input variable of interest.

Definition The k × n grid graph Gk(n) is the following graph given in terms of its
vertex set V and edge set E:

V = {vij |1 ≤ i ≤ k, 1 ≤ j ≤ n},

S = {{vij , vi′j ′ }||i − i ′| + |j − j ′| = 1}.

The main idea in the human approach is to consider the collection of set-
partitions of [k] = {1, 2, . . . , k} and figure out the transition when we extend a
k × n grid graph to a k × (n+ 1) one.

Let Bk be the collection of all set-partitions of [k]. Bk = |Bk| is called the
k-th Bell number. Famously, the exponential generating function of Bk , namely∑∞

k=0
Bk

k! t
k , equals ee

t−1.
A lexicographic ordering on Bk is defined as follows:

Definition Given two partitions P1 and P2 of [k], for i ∈ [k], let Xi be the block
of P1 containing i and Yi be the block of P2 containing i. Let j be the minimum
number such that Xi �= Yi . Then P1 < P2 iff

1. |P1| < |P2| or
2. |P1| = |P2| and Xj ≺ Yj where ≺ denotes the normal lexicographic order.

For example, here is the ordering for k = 3:

B3 = {{{1, 2, 3}}, {{1}, {2, 3}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2}, {3}}} .

For simplicity, we can rewrite it as follows:

B3 = {123, 1/23, 12/3, 13/2, 1/2/3}.

Definition Given a spanning forest F of Gk(n), the partition induced by F is
obtained from the equivalence relation

i ∼ j ⇐⇒ vn,i , vn,j are in the same component of F .

For example, the partition induced by any spanning tree of Gk(n) is 123 . . . k

because by definition, in a spanning tree, all vn,i , 1 ≤ i ≤ k are in the same
component. For the other extreme, where every component only consists of one
vertex, the corresponding set-partition is 1/2/3/ . . . /k − 1/k because no two
vn,i , vn,j are in the same component for 1 ≤ i < j ≤ k.

Definition Given a spanning forest F of Gk(n) and a set-partition P of [k], we say
that F is consistent with P if:

1. The number of trees in F is precisely |P |.
2. P is the partition induced by F .
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Let En be the set of edges E(Gk(n))\E(Gk(n−1)), then En has 2k−1 members.
Given a forest F of Gk(n−1) and some subset X ⊆ En, we can combine them to

get a forest of Gk(n) as follows. We just need to know how many subsets of En can
transfer a forest consistent with some partition to a forest consistent with another
partition. This leads to the following definition:

Definition Given two partitions P1 and P2 in Bk , a subset X ⊆ En transfers from
P1 to P2 if a forest consistent with P1 becomes a forest consistent with P2 after the
addition of X. In this case, we write X 3 P1 = P2.

With the above definitions, it is natural to define a Bk ×Bk transfer matrix Ak by
the following:

Ak(i, j) = |{A ⊆ En+1|A 3 Pj = Pi}|.

Let’s look at the k = 2 case as an example. We have

B2 = {12, 1/2}, En+1 = {{v1,n, v1,n+1}, {v2,n, v2,n+1}, {v1,n+1, v2,n+1}}.

For simplicity, let’s call the edges in En+1 e1, e2, e3. Then to transfer
the set-partition P1 = 12 to itself, we have the following three ways:
{e1, e2}, {e1, e3}, {e2, e3}. In order to transfer the partition P2 = 1/2 into P1,
we only have one way, namely: {e1, e2, e3}. Similarly, there are two ways to transfer
P1 to P2 and one way to transfer P2 to itself Hence the transfer matrix is the
following 2× 2 matrix:

A =
[

3 1
2 1

]

.

Let T1(n), T2(n) be the number of forests of Gk(n) which are consistent with the
partitions P1 and P2, respectively. Let

vn =
[
T1(n)

T2(n)

]

,

then

vn = Avn−1.

The characteristic polynomial of A is

χλ(A) = λ2 − 4λ+ 1.

By the Cayley-Hamilton Theorem, A satisfies

A2 − 4A+ 1 = 0.
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Hence the recurrence relation for T1(n) is

T1(n) = 4T1(n− 1)− T1(n− 2),

the sequence is

{1, 4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, . . .} (OEIS A001353)

and the generating function is

x

1− 4x + x2 .

Similarly, for the k = 3 case, the transfer matrix

A3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

8 3 3 4 1
4 3 2 2 1
4 2 3 2 1
1 0 0 1 0
3 2 2 2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The transfer matrix method can be generalized to general graphs of the form G×Pn,
especially cylinder graphs.

As one can see, we had to think very hard. First we had to establish a ‘canonical’
ordering over set-partitions, then define the consistence between partitions and
forests, then look for the transfer matrix and finally worry about initial conditions.

Rather than think so hard, let’s compute sufficiently many terms of the enu-
meration sequence, and try to guess a linear recurrence equation with constant
coefficients, that would be provable a posteriori just because we know that there
exists a transfer matrix without worrying about finding it explicitly. But how do we
generate sufficiently many terms? Luckily, we can use the celebrated Matrix Tree
Theorem.

4 The Matrix Tree Theorem

Matrix Tree Theorem If A = (aij ) is the adjacency matrix of an arbitrary graph
G, then the number of spanning trees is equal to the determinant of any co-factor of
the Laplacian matrix L of G, where

L =

⎡

⎢
⎢
⎢
⎣

a12 + · · · + a1n −a12 . . . −a1,n

−a21 a21 + · · · + a2n . . . −a2,n
...

...
. . .

...

−an1 −an2 . . . an1 + · · · + an,n−1

⎤

⎥
⎥
⎥
⎦

.
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For instance, taking the (n, n) co-factor, we have that the number of spanning
trees of G equals

∣
∣
∣
∣
∣
∣
∣
∣
∣

a12 + · · · + a1n −a12 . . . −a1,n−1

−a21 a21 + · · · + a2n . . . −a2,n−1
...

...
. . .

...

−an−1,1 −an−1,2 . . . an−1,1 + · · · + an−1,n

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Since computing determinants for numeric matrices is very fast, we can find the
generating functions for the number of spanning trees in grid graphs and more
generalized graphs by experimental methods, using the C-finite ansatz.

5 The GuessRec Maple Procedure

Our engine is the Maple procedure GuessRec(L) that resides in the Maple
packages accompanying this article. We used the ‘vanilla’, straightforward, linear
algebra approach for guessing, using undetermined coefficients. A more efficient
way is via the celebrated Berlekamp-Massey algorithm [7]. Since the guessing part
is not the bottle-neck of our approach (it is rather the data-generation part), we
preferred to keep it simple.

Naturally, we need to collect enough data. The input is the data (given as a list)
and the output is a conjectured recurrence relation derived from that data.

Procedure GuessRec(L) inputs a list, L, and attempts to output a linear
recurrence equation with constant coefficients satisfied by the list. It is based on
procedure GuessRec1(L,d) that looks for such a recurrence of order d .

The output of GuessRec1(L,d) consists of the the list of initial d values
(‘initial conditions’) and the recurrence equation represented as a list. For instance,
if the input is L = [1, 1, 1, 1, 1, 1] and d = 1, then the output will be [[1], [1]]; if
the input is L = [1, 4, 15, 56, 209, 780, 2911, 10864, 40545, 151316] as the k = 2
case for grid graphs and d = 2, then the output will be [[1, 4], [4,−1]]. This means
that our sequence satisfies the recurrence a(n) = 4a(n− 1)− a(n − 2), subject to
the initial conditions a(0) = 1, a(1) = 4.

Here is the Maple code:

GuessRec1:=proc(L,d) local eq,var,a,i,n:
if nops(L)<=2*d+2 then
print(‘The list must be of size >=‘, 2*d+3 ):
RETURN(FAIL):

fi:
var:={seq(a[i],i=1..d)}:
eq:={seq(L[n]-add(a[i]*L[n-i],i=1..d),n=d+1..nops(L))}:
var:=solve(eq,var):
if var=NULL then
RETURN(FAIL):
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else
RETURN([[op(1..d,L)],[seq(subs(var,a[i]),i=1..d)]]):

fi:
end:

The idea is that having a long enough list L (|L| > 2d + 2) of data, we use the
data after the d-th one to discover whether there exists a linear recurrence relation,
the first d data points being the initial condition. With the unknowns a1, a2, . . . , ad ,
we have a linear systems of no less than d + 3 equations. If there is a solution, it is
extremely likely that the recurrence relation holds in general. The first list of length
d in the output constitutes the list of initial conditions while the second list, R, codes
the linear recurrence, where [R[1], . . .R[d]] stands for the following recurrence:

L[n] =
d∑

i=1

R[i]L[n− i].

Here is the Maple procedure GuessRec(L):

GuessRec:=proc(L) local gu,d:
for d from 1 to trunc(nops(L)/2)-2 do
gu:=GuessRec1(L,d):
if gu<>FAIL then
RETURN(gu):

fi:
od:
FAIL:
end:

This procedure inputs a sequence L and tries to guess a recurrence equation with
constant coefficients satisfying it. It returns the initial values and the recurrence
equation as a pair of lists. Since the length of L is limited, the maximum degree
of the recurrence cannot be more than �|L|/2 − 2�. With this procedure, we just
need to input L = [1, 4, 15, 56, 209, 780, 2911, 10864, 40545, 151316] to get the
recurrence (and initial conditions) [[1, 4], [4,−1]].

Once the recurrence relation, let’s call it S, is discovered, procedureCtoR(S,t)
finds the generating function for the sequence. Here is the Maple code:

CtoR:=proc(S,t) local D1,i,N1,L1,f,f1,L:
if not (type(S,list) and nops(S)=2 and type(S[1],list)
and type(S[2],list) and nops(S[1])=nops(S[2])
and type(t, symbol) ) then
print(‘Bad input‘):
RETURN(FAIL):

fi:
D1:=1-add(S[2][i]*t**i,i=1..nops(S[2])):
N1:=add(S[1][i]*t**(i-1),i=1..nops(S[1])):
L1:=expand(D1*N1):
L1:=add(coeff(L1,t,i)*t**i,i=0..nops(S[1])-1):
f:=L1/D1:
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L:=degree(D1,t)+10:
f1:=taylor(f,t=0,L+1):
if expand([seq(coeff(f1,t,i),i=0..L)])

<>expand(SeqFromRec(S,L+1))
then
print([seq(coeff(f1,t,i),i=0..L)],SeqFromRec(S,L+1)):
RETURN(FAIL):

else
RETURN(f):

fi:
end:

Procedure SeqFromRec used above (see the package) simply generates many
terms using the recurrence.

Procedure CtoR(S,t) outputs the rational function in t , whose coefficients are
the members of the C-finite sequence S. For example:

CtoR([[1,1], [1,1]],t) = 1

−t2 − t + 1
.

Briefly, the idea is that the denominator of the rational function can be easily
determined by the recurrence relation and we use the initial condition to find the
starting terms of the generating function, then multiply it by the denominator,
yielding the numerator.

6 Application of GuessRec for Enumerating Spanning Trees
of Grid Graphs and G × Pn

With the powerful procedures GuessRec and CtoR, we are able to find generating
functions for the number of spanning trees of generalized graphs of the form G×Pn.
We will illustrate the application of GuessRec to finding the generating function
for the number of spanning trees in grid graphs.

First, using procedure GridMN(k,n), we get the k × n grid graph.
Then, procedureSpFn uses the Matrix Tree Theorem to evaluate the determinant

of the co-factor of the Laplacian matrix of the grid graph which is the number
of spanning trees in this particular graph. For a fixed k, we need to generate
a sufficiently long list of data for the number of spanning trees in Gk(n), n ∈
[l(k), u(k)]. The lower bound l(k) can’t be too small since the first several terms
are the initial condition; the upper bound u(k) can’t be too small as well since
we need sufficient data to obtain the recurrence relation. Notice that there is a
symmetry for the recurrence relation, and to take advantage of this fact, we modified
GuessRec to get the more efficient GuessSymRec (requiring less data). Once the
recurrence relation, and the initial conditions, are given, applying CtoR(S,t)will
give the desirable generating function, that, of course, is a rational function of t . All
the above is incorporated in procedure GFGridKN(k,t) which inputs a positive
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integer k and a symbol t , and outputs the generating function whose coefficient of
tn is the number of spanning trees in Gk(n), i.e. if we let s(k, n) be the number of
spanning trees in Gk(n), the generating function

Fk(t) =
∞∑

n=0

s(k, n)tn.

We now list the generating functions Fk(t) for 1 ≤ k ≤ 7: except for k = 7, these
were already found by Raff [4] and Faase [2], but it is reassuring that, using our new
approach, we got the same output. The case k = 7 seems to be new.

Theorem 1 The generating function for the number of spanning trees in G1(n) is:

F1(t) = t

1− t
.

Theorem 2 The generating function for the number of spanning trees in G2(n) is:

F2 = t

t2 − 4 t + 1
.

Theorem 3 The generating function for the number of spanning trees in G3(n) is:

F3 = −t3 + t

t4 − 15 t3 + 32 t2 − 15 t + 1
.

Theorem 4 The generating function for the number of spanning trees in G4(n) is:

F4 = t7 − 49 t5 + 112 t4 − 49 t3 + t

t8 − 56 t7 + 672 t6 − 2632 t5 + 4094 t4 − 2632 t3 + 672 t2 − 56 t + 1
.

For 5 ≤ k ≤ 7, since the formulas are too long, we present their numerators and
denominators separately.

Theorem 5 The generating function for the number of spanning trees in G5(n) is:

F5 = N5

D5

where

N5 = −t15 + 1440 t13 − 26752 t12 + 185889 t11 − 574750 t10 + 708928 t9

−708928 t7 + 574750 t6 − 185889 t5 + 26752 t4 − 1440 t3 + t,

D5 = t16 − 209 t15 + 11936 t14 − 274208 t13 + 3112032 t12 − 19456019 t11

+70651107 t10− 152325888 t9+ 196664896 t8 − 152325888 t7
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+70651107 t6− 19456019 t5+ 3112032 t4 − 274208 t3

+11936 t2 − 209 t + 1.

Theorem 6 The generating function for the number of spanning trees in G6(n) is:

F6 = N6

D6

where

N6 = t31 − 33359 t29 + 3642600 t28 − 173371343 t27 + 4540320720 t26

−70164186331 t25 + 634164906960 t24 − 2844883304348 t23

−1842793012320 t22 + 104844096982372 t21 − 678752492380560 t20

+2471590551535210 t19 − 5926092273213840 t18 + 9869538714631398 t17

−11674018886109840 t16 + 9869538714631398 t15

−5926092273213840 t14 + 2471590551535210 t13

−678752492380560 t12 + 104844096982372 t11 − 1842793012320 t10

−2844883304348 t9 + 634164906960 t8 − 70164186331 t7

+4540320720 t6 − 173371343 t5 + 3642600 t4 − 33359 t3 + t,

D6 = t32 − 780 t31 + 194881 t30 − 22377420 t29 + 1419219792 t28

−55284715980 t27 + 1410775106597 t26 − 24574215822780 t25

+300429297446885 t24 − 2629946465331120 t23 + 16741727755133760 t22

−78475174345180080 t21 + 273689714665707178 t20

−716370537293731320 t19 + 1417056251105102122 t18

−2129255507292156360 t17 + 2437932520099475424 t16

−2129255507292156360 t15 + 1417056251105102122 t14

−716370537293731320 t13 + 273689714665707178 t12

−78475174345180080 t11 + 16741727755133760 t10

−2629946465331120 t9 + 300429297446885 t8 − 24574215822780 t7

+1410775106597 t6 − 55284715980 t5

+1419219792 t4 − 22377420 t3 + 194881 t2 − 780 t + 1.
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Theorem 7 The generating function for the number of spanning trees in G7(n) is:

F7 = N7

D7

where

N7 = −t47 − 142 t46 + 661245 t45 − 279917500 t44 + 53184503243 t43

−5570891154842 t42 + 341638600598298 t41 − 11886702497030032 t40

+164458937576610742 t39 + 4371158470492451828 t38

−288737344956855301342 t37 + 7736513993329973661368 t36

−131582338768322853956994 t35 + 1573202877300834187134466 t34

−13805721749199518460916737 t33 + 90975567796174070740787232 t32

−455915282590547643587452175 t31 + 1747901867578637315747826286 t30

−5126323837327170557921412877 t29 + 11416779122947828869806142972 t28

−18924703166237080216745900796 t27 + 22194247945745188489023284104 t26

−15563815847174688069871470516 t25 + 15563815847174688069871470516 t23

−22194247945745188489023284104 t22 + 18924703166237080216745900796 t21

−11416779122947828869806142972 t20 + 5126323837327170557921412877 t19

−1747901867578637315747826286 t18 + 455915282590547643587452175 t17

−90975567796174070740787232 t16 + 13805721749199518460916737 t15

−1573202877300834187134466 t14 + 131582338768322853956994 t13

−7736513993329973661368 t12 + 288737344956855301342 t11

−4371158470492451828 t10 − 164458937576610742 t9

+11886702497030032 t8 − 341638600598298 t7 + 5570891154842 t6

−53184503243 t5 + 279917500 t4 − 661245 t3 + 142 t2 + t,

D7 = t48 − 2769 t47 + 2630641 t46 − 1195782497 t45 + 305993127089 t44

−48551559344145 t43 + 5083730101530753 t42 − 366971376492201338 t41

+18871718211768417242 t40 − 709234610141846974874 t39

+19874722637854592209338 t38 − 422023241997789381263002 t37

+6880098547452856483997402 t36 − 87057778313447181201990522 t35

+862879164715733847737203343 t34 − 6750900711491569851736413311 t33

+41958615314622858303912597215 t32 − 208258356862493902206466194607 t31

+828959040281722890327985220255 t30 − 2654944041424536277948746010303 t29

+6859440538554030239641036025103 t28 − 14324708604336971207868317957868 t27

+24214587194571650834572683444012 t26 − 33166490975387358866518005011884 t25
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+36830850383375837481096026357868 t24 − 33166490975387358866518005011884 t23

+24214587194571650834572683444012 t22 − 14324708604336971207868317957868 t21

+6859440538554030239641036025103 t20 − 2654944041424536277948746010303 t19

+828959040281722890327985220255 t18 − 208258356862493902206466194607 t17

+41958615314622858303912597215 t16 − 6750900711491569851736413311 t15

+862879164715733847737203343 t14 − 87057778313447181201990522 t13

+6880098547452856483997402 t12 − 422023241997789381263002 t11

+19874722637854592209338 t10 − 709234610141846974874 t9

+18871718211768417242 t8 − 366971376492201338 t7 + 5083730101530753 t6

−48551559344145 t5 + 305993127089 t4 − 1195782497 t3 + 2630641 t2 − 2769 t + 1.

Note that, surprisingly, the degree of the denominator of F7(t) is 48 rather than
the expected 64 since the first six generating functions’ denominator have degree
2k−1, 1 ≤ k ≤ 6. With a larger computer, one should be able to compute Fk for
larger k, using this experimental approach.

Generally, for an arbitrary graph G, we consider the number of spanning trees in
G×Pn. With the same methodology, a list of data can be obtained empirically with
which a generating function follows.

7 Joint Resistance

The original motivation for the Matrix Tree Theorem, first discovered by Kirchhoff
(of Kirchhoff’s laws fame) came from the desire to efficiently compute joint
resistances in an electrical network.

Suppose one is interested in the joint resistance in an electric network in the form
of a grid graph between two diagonal vertices [1, 1] and [k, n]. We assume that each
edge has resistance 1 Ohm. To obtain it, all we need is, in addition for the number of
spanning trees (that’s the numerator), the number of spanning forests SFk(n) of the
graph Gk(n) that have exactly two components, each component containing exactly
one of the members of the pair {[1, 1], [k, n]} (this is the denominator). The joint
resistance is just the ratio.

In principle, we can apply the same method to obtain the generating function
Sk . Empirically, we found that the denominator of Sk is always the square of the
denominator of Fk times another polynomial Ck . Once the denominator is known,
we can find the numerator in the same way as above. So our focus is to find Ck .
The procedure DenomSFKN(k,t) in the Maple package JointConductance
.txt, calculates Ck . For 2 ≤ k ≤ 4, we have

C2 = t − 1,

C3 = t4 − 8t3 + 17t2 − 8t + 1,
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C4 = t12 − 46t11 + 770t10 − 6062t9 + 24579t8 − 55388t7

+ 72324t6 − 55388t5 + 24579t4 − 6062t3 + 770t2 − 46t + 1.

Remark By looking at the output of our Maple package, we conjectured that
R(k, n), the resistance between vertex [1, 1] and vertex [k, n] in the k × n grid
graph, Gk(n), where each edge is a resistor of 1 Ohm, is asymptotically n/k, for
any fixed k, as n → ∞. We proved it rigorously for k ≤ 6, and we wondered
whether there is a human-generated “electric proof”. Naturally we emailed Peter
Doyle, the co-author of the delightful masterpiece [1], who quickly came up with
the following argument.

Making the horizontal resistors into almost resistance-less gold wires gives the
lower bound R(k, n) ≥ (n − 1)/k since it is a parallel circuit of k resistors of
n − 1 Ohms. For an upper bound of the same order, put 1 Ampere in at [1,1] and
out at [k, n], routing 1/k Ampere up each of the k verticals. The energy dissipation
is k(n− 1)/k2 + C(k) = (n− 1)/k + C(k), where the constant C(k) is the energy
dissipated along the top and bottom resistors. Specifically, C(k) = 2(1 − 1/k)2 +
(1− 2/k)2 + · · · + (1/k)2). So (n− 1)/k ≤ R(k, n) ≤ (n− 1)/k + C(k).

We thank Peter Doyle for his kind permission to reproduce this electrifying
argument.

8 The Statistic of the Number of Vertical Edges in Spanning
Trees of Grid Graphs

Often in enumerative combinatorics, the class of interest has natural ‘statistics’, like
height, weight, and IQ for humans. Recall that the naive counting is

|A| :=
∑

a∈A
1,

getting a number. Define:

|A|x :=
∑

a∈A
xf (a),

where f := A→ Z is the statistic of interest. To go from the weighted enumeration
(a certain Laurent polynomial) to straight enumeration, one simply plugs-in x = 1,
i.e. |A|1 = |A|.

The scaled random variable is defined as follows. Let E(f ) and V ar(f ) be the
expectation and variance, respectively, of the statistic f defined on A, and define
the scaled random variable, for a ∈ A, by

X(a) := f (a)− E(f )√
V ar(f )

.
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In this section, we are interested in the statistic ‘number of vertical edges’, defined
on spanning trees of grid graphs. For given k and n, let, as above, Gk(n) denote
the k × n grid-graph. Let Fk,n be its set of spanning trees. If the weight is 1, then∑

f∈Fk,n
1 = |Fk,n| is the naive counting. Now let’s define a natural statistic ver(T )

= the number of vertical edges in the spanning tree T , and the weight w(T ) =
vver(T ), then the weighted counting follows:

V erk,n(v) =
∑

T ∈Fk,n

w(T )

where Fk,n is the set of spanning trees of Gk(n).
We define the bivariate generating function

gk(v, t) =
∞∑

n=0

V erk,nt
n.

More generally, with our Maple package GFMatrix.txt, and procedure VerGF,
we are able to obtain the bivariate generating function for an arbitrary graph of the
form G × Pn. The procedure VerGF takes inputs G (an arbitrary graph), N (an
integer determining how many data we use to find the recurrence relation) and two
symbols v and t .

The main tool for computing VerGF is still the Matrix Tree Theorem and
GuessRec. But we need to modify the Laplacian matrix for the graph. Instead
of letting aij = −1 for i �= j and {i, j } ∈ E(G× Pn), we should consider whether
the edge {i, j } is a vertical edge. If so, we let ai,j = −v, aj,i = −v. The diagonal
elements which are (−1)× (the sum of the rest entries on the same row) should
change accordingly. The following theorems are for grid graphs when 2 ≤ k ≤ 4
while k = 1 is a trivial case because there are no vertical edges.

Theorem 8 The bivariate generating function for the weighted counting according
to the number of vertical edges of spanning trees in G2(n) is:

g2(v, t) = vt

1− (2 v + 2) t + t2 .

Theorem 9 The bivariate generating function for the weighted counting according
to the number of vertical edges vertical edges of spanning trees in G3(n) is:

g3(v, t) = −t3v2 + v2t

1− (
3 v2 + 8 v + 4

)
t − (−10 v2 − 16 v − 6

)
t2 − (

3 v2 + 8 v + 4
)
t3 + t4

.
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Theorem 10 The bivariate generating function for the weighted counting accord-
ing to the number of vertical edges of spanning trees in G4(n) is:

g4(v, t) = numer(g4)

denom(g4)

where

numer(g4) = v3t +
(
−16 v5 − 24 v4 − 9 v3

)
t3 +

(
8 v6 + 40 v5 + 48 v4 + 16 v3

)
t4

+
(
−16 v5 − 24 v4 − 9 v3

)
t5 + v3t7

and

denom(g4) = 1−
(

4 v3 + 20 v2 + 24 v + 8
)
t

−
(
−52 v4 − 192 v3 − 256 v2 − 144 v − 28

)
t2

−
(

64 v5 + 416 v4 + 892 v3 + 844 v2 + 360 v + 56
)
t3

−
(
−16 v6 − 160 v5 − 744 v4 − 1408 v3 − 1216 v2 − 480 v − 70

)
t4

−
(

64 v5 + 416 v4 + 892 v3 + 844 v2 + 360 v + 56
)
t5

−
(
−52 v4 − 192 v3 − 256 v2 − 144 v − 28

)
t6

−
(

4 v3 + 20 v2 + 24 v + 8
)
t7 + t8.

With the Maple package BiVariateMoms.txt and its Story procedure
from http://sites.math.rutgers.edu/~zeilberg/tokhniot/BiVariateMoms.txt, the
expectation, variance and higher moments can be easily analyzed. We calculated
up to the 4th moment for G2(n). For k = 3, 4, you can find the output files from
http://sites.math.rutgers.edu/~yao/OutputStatisticVerticalk=3.txt; http://sites.math.
rutgers.edu/~yao/OutputStatisticVerticalk=4.txt.

Theorem 11 The moments of the statistic: the number of vertical edges in the
spanning trees of G2(n) are as follows:

Let b be the largest positive root of the polynomial equation

b2 − 4b + 1 = 0

whose floating-point approximation is 3.732050808, then the size of the n-th family
(i.e. straight enumeration) is very close to

bn+1

−2+ 4 b
.

http://sites.math.rutgers.edu/~zeilberg/tokhniot/BiVariateMoms.txt
http://sites.math.rutgers.edu/~yao/OutputStatisticVerticalk=3.txt
http://sites.math.rutgers.edu/~yao/OutputStatisticVerticalk=4.txt
http://sites.math.rutgers.edu/~yao/OutputStatisticVerticalk=4.txt
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The average of the statistics is, asymptotically

1

3
+ 1

3

(−1+ 2 b)n

b
.

The variance of the statistics is, asymptotically

−1

9
+ 1

9

(7 b − 2) n

−1+ 4 b
.

The skewness of the statistics is, asymptotically

780 b− 209

(4053 b− 1086) n3 + (−7020 b+ 1881) n2 + (4053 b− 1086) n− 780 b+ 209
.

The kurtosis of the statistics is, asymptotically

3
(32592 b− 8733) n2 + (−56451 b+ 15126) n+ 21728 b− 5822

(32592 b− 8733) n2 + (−37634 b+ 10084) n+ 10864 b− 2911
.

9 Application of the C-finite Ansatz to Computing
Generating Functions of Determinants (and Permanents)
of Almost-Diagonal Toeplitz Matrices

So far, we have seen applications of the C-finite ansatz methodology for automat-
ically computing generating functions for enumerating spanning trees/forests for
certain infinite families of graphs.

The second case study is completely different, and in a sense more general, since
the former framework may be subsumed in this new context.

Definition Diagonal matrices A are square matrices in which the entries outside the
main diagonal are 0, i.e. aij = 0 if i �= j .

Definition An almost-diagonal Toeplitz matrix A is a square matrices in which
ai,j = 0 if j − i ≥ k1 or i − j ≥ k2 for some fixed positive integers k1, k2 and
∀i1, j1, i2, j2, if i1 − j1 = i2 − j2, then ai1j1 = ai2j2 .

For simplicity, we use the notation L =[n, [the first k1 entries in the first row],
[the first k2 entries in the first column]] to denote the n × n matrix with these
specifications. Note that this notation already contains all information we need to
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reconstruct this matrix. For example, [6, [1,2,3], [1,4]] is the matrix

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 0 0 0
4 1 2 3 0 0
0 4 1 2 3 0
0 0 4 1 2 3
0 0 0 4 1 2
0 0 0 0 4 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The following is the Maple procedure DiagMatrixL (in our Maple package
GFMatrix.txt), which inputs such a list L and outputs the corresponding matrix.

DiagMatrixL:=proc(L) local n, r1, c1,p,q,S,M,i:
n:=L[1]:
r1:=L[2]:
c1:=L[3]:
p:=nops(r1)-1:
q:=nops(c1)-1:
if r1[1] <> c1[1] then
return fail:

fi:
S:=[0$(n-1-q), seq(c1[q-i+1],i=0..q-1), op(r1),
0$(n-1-p)]:

M:=[0$n]:
for i from 1 to n do
M[i]:=[op(max(0,n-1-q)+q+2-i..max(0,n-1-q)+q+1
+n-i,S)]:

od:
return M:
end:

For this matrix, k1 = 3 and k2 = 2. Let k1, k2 be fixed and M1,M2 be two
lists of numbers or symbols of length k1 and k2 respectively, Ak is the almost-
diagonal Toeplitz matrix represented by the list Lk = [k,M1,M2]. Note that the
first elements in the lists M1 and M2 must be identical.

Having fixed two lists M1 of length k1 and M2 of length k2, (where M1[1] =
M2[1]), it is of interest to derive automatically, the generating function (that is
always a rational function for reasons that will soon become clear),

∑∞
k=0 ak t

k ,
where ak denotes the determinant of the k × k almost-diagonal Toeplitz matrix
whose first row starts with M1, and first column starts with M2. Analogously, it
is also of interest to do the analogous problem when the determinant is replaced by
the permanent.
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Here is the Maple procedure GFfamilyDet which takes inputs (i) A: a name
of a Maple procedure that inputs an integer n and outputs an n×n matrix according
to some rule, e.g., the almost-diagonal Toeplitz matrices, (ii) a variable name t , (iii)
two integers m and n which are the lower and upper bounds of the sequence of
determinants we consider. It outputs a rational function in t , say R(t), which is the
generating function of the sequence.

GFfamilyDet:=proc(A,t,m,n) local i,rec,GF,B,gu,Denom,
L,Numer:

L:=[seq(det(A(i)),i=1..n)]:
rec:=GuessRec([op(m..n,L)])[2]:
gu:=solve(B-1-add(t**i*rec[i]*B,i=1..nops(rec)), B):
Denom:=denom(subs(gu,B)):
Numer:=Denom*(1+add(L[i]*t**i, i=1..n)):
Numer:=add(coeff(Numer,t,i)*t**i, i=0..degree
(Denom,t)):

Numer/Denom:
end:

Similarly we have procedure GFfamilyPer for the permanent. Let’s look at an
example. The following is a sample procedure which considers the family of almost
diagonal Toeplitz matrices which the first row [2, 3] and the first column [2, 4, 5].

SampleB:=proc(n) local L,M:
L:=[n, [2,3], [2,4,5]]:
M:=DiagMatrixL(L):
end:

Then GFfamilyDet(SampleB, t, 10, 50) will return the generating
function

− 1

45 t3 − 12 t2 + 2 t − 1
.

It turns out, that for this problem, the more ‘conceptual’ approach of setting up a
transfer matrix also works well. But don’t worry, the computer can do the ‘research’
all by itself, with only a minimum amount of human pre-processing.

We will now describe this more conceptual approach, that may be called symbolic
dynamical programming, where the computer sets up, automatically, a finite-state
scheme, by dynamically discovering the set of states, and automatically figures out
the transfer matrix.
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10 The Transfer Matrix Method for Almost-Diagonal
Toeplitz Matrices

Recall from Linear Algebra 101, the

Cofactor Expansion Let |A| denote the determinant of an n× n matrix A, then

|A| =
n∑

j=1

(−1)i+j aijMij , ∀i ∈ [n],

where Mij is the (i, j)-minor.

We’d like to consider the Cofactor Expansion for almost-diagonal Toeplitz
matrices along the first row. For simplicity, we assume while ai,j = 0 if j−i ≥ k1 or
i− j ≥ k2 for some fixed positive integers k1, k2, and if−k2 < j1− i1 < j2− i2 <

k1, then ai1j1 �= ai2j2 . Under this assumption, for any minors we obtain through
recursive Cofactor Expansion along the first row, the dimension, the first row and
the first column should provide enough information to reconstruct the matrix.

For an almost-diagonal Toeplitz matrix represented by L =[Dimension, [the first
k1 entries in the first row], [the first k2 entries in the first column]], any minor can
be represented by [Dimension, [entries in the first row up to the last nonzero entry],
[entries in the first column up to the last nonzero entry]].

Our goal in this section is the same as the last one, to get a generating function
for the determinant or permanent of almost-diagonal Toeplitz matrices Ak with
dimension k. Once we have those almost-diagonal Toeplitz matrices, the first step is
to do a one-step expansion as follows:

ExpandMatrixL:=proc(L,L1)
local n,R,C,dim,R1,C1,i,r,S,candidate,newrow,newcol,
gu,mu,
temp,p,q,j:

n:=L[1]:
R:=L[2]:
C:=L[3]:
p:=nops(R)-1:
q:=nops(C)-1:
dim:=L1[1]:
R1:=L1[2]:
C1:=L1[3]:
if R1=[] or C1=[] then
return :

elif R[1]<>C[1] or R1[1]<>C1[1] or dim>n then
return fail:

else
S:={}:
gu:=[0$(n-1-q), seq(C[q-i+1],i=0..q-1),
op(R), 0$(n-1-p)]:

candidate:=[0$nops(R1),R1[-1]]:
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for i from 1 to nops(R1) do
mu:=R1[i]:

for j from n-q to nops(gu) do
if gu[j]=mu then
candidate[i]:=gu[j-1]:

fi:
od:

od:
for i from n-q to nops(gu) do
if gu[i] = R1[2] then
temp:=i:
break:

fi:
od:
for i from 1 to nops(R1) do
if i = 1 then
mu:=[R1[i]*(-1)**(i+1),
[dim-1,[op(i+1..nops(candidate), candidate)],
[seq(gu[temp-i],i=1..temp-n+q)]]]:

S:=S union mu:
else
mu:=[R1[i]*(-1)**(i+1), [dim-1, [op(1..i-1,
candidate),
op(i+1..nops(candidate), candidate)],
[op(2..nops(C1), C1)]]]:

S:=S union mu:
fi:

od:
return S:

fi:
end:

The ExpandMatrixL procedure inputs a data structure L = [Dimension,
first_row=[ ], first_col=[ ]] as the matrix we start and the other data structure L1
as the current minor we have, expands L1 along its first row and outputs a list of
[multiplicity, data structure].

We would like to generate all the “children” of an almost-diagonal Toeplitz
matrix regardless of the dimension, i.e., two lists L represent the same child as long
as their first_rows and first_columns are the same, respectively. The set of “children”
is the scheme of the almost diagonal Toeplitz matrices in this case.

The following is the Maple procedure ChildrenMatrixLwhich inputs a data
structure L and outputs the set of its “children” under Cofactor Expansion along the
first row:

ChildrenMatrixL:=proc(L) local S,t,T,dim,U,u,s:
dim:=L[1]:
S:={[op(2..3,L)]}:
T:={seq([op(2..3,t[2])],t in ExpandMatrixL(L,L))}:
while T minus S <> {} do
U:=T minus S:
S:=S union T:
T:={}:
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for u in U do
T:=T union {seq([op(2..3,t[2])],t
in ExpandMatrixL(L,[dim,op(u)]))}:

od:
od:
for s in S do
if s[1]=[] or s[2]=[] then
S:=S minus {s}:

fi:
od:
S:
end:

After we have the scheme S, by the Cofactor Expansion of any element in the
scheme, a system of algebraic equations follows. For children in S, it’s convenient
to let the almost-diagonal Toeplitz matrix be the first one C1 and for the rest, any
arbitrary ordering will do. For example, if after Cofactor Expansion for C1, c2
“copies” of C2 and c3 “copies” of C3 are obtained, then the equation will be

C1 = 1+ c2tC2 + c3tC3.

However, if the above equation is for Ci, i �= 1, i.e. Ci is not the almost-diagonal
Toeplitz matrix itself, then the equation will be slightly different:

Ci = c2tC2 + c3tC3.

Here t is a symbol as we assume the generating function is a rational function of t .
Here is the Maple code that implements how we get the generating function for

the determinant of a family of almost-diagonal Toeplitz matrices by solving a system
of algebraic equations:

GFMatrixL:=proc(L,t) local S,dim,var,eq,n,A,i,result,
gu,mu:

dim:=L[1]:
S:=ChildrenMatrixL(L):
S:=[[op(2..3,L)], op(S minus {[op(2..3,L)]})]:
n:=nops(S):
var:={seq(A[i],i=1..n)}:
eq:={}:
for i from 1 to 1 do
result:=ExpandMatrixL(L,[dim,op(S[i])]):
for gu in result do
if gu[2][2]=[] or gu[2][3]=[] then
result:=result minus {gu}:

fi:
od:
eq:=eq union {A[i] - 1
- add(gu[1]*t*A[CountRank(S, [op(2..3, gu[2])])],
gu in result)}:

od:
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for i from 2 to n do
result:=ExpandMatrixL(L,[dim,op(S[i])]):
for gu in result do
if gu[2][2]=[] or gu[2][3]=[] then
result:=result minus gu:

fi:
od:
eq:=eq union {A[i]
- add(gu[1]*t*A[CountRank(S, [op(2..3, gu[2])])],
gu in result)}:

od:
gu:=solve(eq, var)[1]:
subs(gu, A[1]):
end:

GFMatrixL([20, [2, 3], [2, 4, 5]], t) returns

− 1

45 t3 − 12 t2 + 2 t − 1
.

Compared to empirical approach, the ‘symbolic dynamical programming’ method is
faster and more efficient for the moderate-size examples that we tried out. However,
as the lists will grow larger, it is likely that the former method will win out, since
with this non-guessing approach, it is equally fast to get generating functions for
determinants and permanents, and as we all know, permanents are hard.

The advantage of the present method is that it is more appealing to humans,
and does not require any ‘meta-level’ act of faith. However, both methods are
very versatile and are great experimental approaches for enumerative combinatorics
problems. We hope that our readers will find other applications.

11 Summary

Rather than trying to tackle each enumeration problem, one at a time, using ad
hoc human ingenuity each time, building up an intricate transfer matrix, and only
using the computer at the end as a symbolic calculator, it is a much better use of
our beloved silicon servants (soon to become our masters!) to replace ‘thinking’
by ‘meta-thinking’, i.e. develop experimental mathematics methods that can handle
many different types of problems. In the two case studies discussed here, everything
was made rigorous, but if one can make semi-rigorous and even non-rigorous
discoveries, as long as they are interesting, one should not be hung up on rigorous
proofs. In other words, if you can find a rigorous justification (like in these two case
studies) that’s nice, but if you can’t, that’s also nice!
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