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smaller grids. We obtain scaling parameters and compare with what theory prescribes.

DOI: 10.1103/PhysRevE.69.046104 PACS number(s): 05.501q, 05.10.2a, 02.70.Wz, 02.70.Rr

I. INTRODUCTION

The Lenz-Ising model[1,2] of ferromagnetism was solved
in the one-dimensional case by Ernst Ising in 1925 and in the
(infinite) two-dimensional case without an external field by
Lars Onsager[3] in 1944. Somewhat later Bruria Kaufman
[4] gave the zero field partition function for thesm3nd grid
with periodic boundary. Beale[5] has made an easy-to-use
program inMATHEMATICA which implements this solution.
Beale used this program to compute the partition function for
the s32332d grid, and with a modern desktop computer one
can use this program to compute the partition function for
the s64364d grid in about 30 h. We present an improved
form of the algorithm where this computation now runs in
under 6 h, using a simple implementation inMATHEMATICA .
We use aFORTRAN implementation of this algorithm to com-
pute the partition function for a large number of grids of side
up to 128, as well as thes1603160d, s2563256d, and
s3203320d grids.

The graphs we are dealing with are thesm3nd grids with
periodic boundary, i.e., the Cartesian productCm3Cn of a
cycle onm andn vertices, respectively. The total number of
vertices is thenmn and the number of edges is 2mn. A state
s is a function from the vertices to the seth−1, +1j. We let
sv denote the state, or spin, of the vertexv. The energy of a
states is Essd=Suvsusv where the sum is taken over all
edges. We then have that −2mnøEø2mn, but note that the
energy can not take any value in this interval. If bothm and
n are even theni can take the values 0, ±4, ±8, . . . , ±2mn
except for ±s2mn−4d. The relative energy is defined as
nssd=Essd2mn, that is −1ønø1. We now define the parti-
tion function as the formal Laurent polynomial

Zszd = o
s

zEssd = o
i

aiz
i ,

where the first sum is taken over all the 2mn states. The
second sum defines the coefficientsai as the number of
states at energyi. In graph theoretical language,ai is the
number of edge cuts of sizes2mn− id /2. However, it is com-
mon to work not withZszd as defined here but ratherZ0szd
=zmnZsz1/2d, which gives a polynomial with positive expo-
nents between 0 and 2mn. In order to be consistent with our
references we will do so too.

Whenever we need to distinguish between quantities for
different grids we will subscript them with just ann or both
m,n. Evaluating the partition functionZ in the pointz=eK,
whereK is the coupling, gives the partition functionZsKd
typically studied in statistical physics. HereK=J/kBT where
J is the interaction energy,kB is Boltzmann’s constant andT
is the absolute temperature. To avoid cluttering up our for-
mulae we setkB=J=1. FromZsKd we obtain, e.g., the free
energyFsKd, the internal energyUsKd and the specific heat
CsKd; we shall define them properly later.

II. THE FINITE SIZE SOLUTION IN TERMS OF
CHEBYSHEV POLYNOMIALS

Following Kaufman[4] and Kasteleyn[6], we know that
the partition function for the square grid graphCm3Cn can
be expressed as a linear combination of four polynomials.
These polynomials in turn are given by the Pfaffians of four
matrices and can be calculated as the square roots of the
corresponding determinants. So ifAi denote the mentioned
determinants we have that

Z0sCm 3 Cn,zd = c1
ÎA1 + c2

ÎA2 + c3
ÎA3 + c4

ÎA4.

EachAi is a polynomial given by a double product over its
roots. A comprehensive description of how to obtain these
products and the general Pfaffian method is given in Ref.f7g.

Let at=cosspt /nd, bt=cosspt /md, a=1+z2, and b
=zs1−z2d. In terms of these variables the fourAi’s are

A1 = p
i=1

n

p
j=1

m

sa2 − 2ba2i − 2bb2jd,
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A2 = p
i=1

n

p
j=1

m

sa2 − 2ba2i − 2bb2j+1d,

A3 = p
i=1

n

p
j=1

m

sa2 − 2ba2i+1 − 2bb2jd,

A4 = p
i=1

n

p
j=1

m

sa2 − 2ba2i+1 − 2bb2j+1d.

Computing these products directly and then taking formal
square roots is a quite arduous task and we want to find more
efficient ways to do this. A first step in this direction was
taken by Beale[5] who made use of the fact that most of the
roots of theAi can easily be seen to be double roots and that
one can avoid having to take square roots simply by restrict-
ing the index range in the products. Using aMATHEMATICA

program which evaluated the cosines numerically before per-
forming the simplified products Beale computed the partition
function of thes32332d square grid.

Our goal is to perform these products even more effi-
ciently, and with less risk for numerical errors, by using
some further observations about the products which both al-
low us to avoid numerics and use fewer polynomial multi-
plications. We start out by noting that the roots of theAi are
in fact sums of roots of Chebyshev polynomials, see Eqs.
(A4) and (A5) of Appendix A. HereTn and Un are the
Chebyshev polynomials of the first and second kind. LetY
=a2/b andXt=Y−2at, we can now rewrite the products as

A1 = p
i=1

n

p
j=1

m

sa2 − 2ba2i − 2bb2jd

= bnmp
i=1

n

p
j=1

m

sY − 2a2i − 2b2jd

=bnmp
i=1

n

p
j=1

m

sX2i − 2b2jd

= bnmp
i=1

n

p
j=1

m

2SX2i

2
− b2jD

= bnmp
i=1

n

2FTmSX2i

2
D − 1G , s1d

A4 = p
i=1

n

p
j=1

m

sa2 − 2ba2i+1 − 2bb2j+1d

= bnmp
i=1

n

p
j=1

m

sY − 2a2i+1 − 2b2j+1d

=bnmp
i=1

n

p
j=1

m

sX2i+1 − 2b2j+1d

= bnmp
i=1

n

p
j=1

m

2SX2i+1

2
− b2j+1D

= bnmp
i=1

n

2FTmSX2i+1

2
D + 1G . s2d

The expressions forA2 and A3 are similar toA4 and A1,
the difference being the index ofXt. In A2 the index is 2i and
in A3 it is 2i +1.

We now restrict our discussion to the case wheren=m
=2p. The cases for equal, but odd, sides or unequal sides are
very similar to the current case and can be handled in the
same way. We now use lemma A.4 of Appendix A to sim-
plify the products further. From Eq.(1) we get

A1 = b4p2p
i=1

2p

2FT2pSX2i

2
D − 1G = b4p2p

i=1

2p

sX2i
2 − 4dUp−1

2 SX2i

2
D = b4p2p

i=1

2p

sX2i
2 − 4dp

i=1

2p

Up−1
2 SX2i

2
D

=b4p2p
i=1

2p

sX2i + 2dsX2i − 2dp
i=1

2p

Up−1
2 SX2i

2
D=b4p2p

i=1

2p

sY − 2a2i + 2dsY − 2a2i − 2dp
i=1

2p

Up−1
2 SX2i

2
D

=b4p2p
i=1

2p

fsY + 2d − 2a2igfsY − 2d − 2a2igp
i=1

2p

Up−1
2 SX2i

2
D

= b4p2
2FT2pSY + 2

2
D − 1G 2 FT2pSY − 2

2
D − 1Gp

i=1

2p

Up−1
2 SX2i

2
D

= b4p2
4FSY + 2

2
D2

− 1GUp−1
2 SY + 2

2
D4FSY − 2

2
D2

− 1GUp−1
2 SY − 2

2
Dp

i=1

2p

Up−1
2 SX2i

2
D
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= b4p2
Y2sY2 − 16dUp−1

2 SY + 2

2
DUp−1

2 SY − 2

2
Dp

i=1

2p

Up−1
2 SX2i

2
D

= b4p2s1 + z2d4s− 1 − 2z+ z2d2s− 1 + 2z+ z2d2

b4 Up−1
2 SY + 2

2
DUp−1

2 SY − 2

2
Dp

i=1

2p

Up−1
2 SX2i

2
D .

Since all the terms are raised to an even power, we can
now take a formal square root by dividing each exponent by
2; the correctness of this choice of sign in the square roots
will be discussed in connection with the final linear combi-
nation of the polynomials.

ÎA1 = b2p2s1 + z2d2s− 1 − 2z+ z2ds− 1 + 2z+ z2d
b2 Up−1SY + 2

2
D

3Up−1SY − 2

2
Dp

i=1

2p

Up−1SX2i

2
DfSinceXt = X4p−tg

= b2p2−2s1 + z2d2s− 1 − 2z+ z2ds− 1 + 2z+ z2d

3Up−1
2 SY + 2

2
DUp−1

2 SY − 2

2
Dp

i=1

p−1

Up−1
2 SX2i

2
D

= b2p2−2s1 + z2d2s− 1 − 2z+ z2ds− 1 + 2z+ z2d

3Up−1
2 SY + 2

2
DUp−1

2 SY − 2

2
DFp

i=1

p−1

Up−1SX2i

2
DG2

. s3ad

Working the same way, we can rewrite identitys2d as

A4 = b4p2p
i=1

2p

2FT2pSX2i+1

2
D + 1G = b4p2p

i=1

2p

4Tp
2SX2i+1

2
D .

Once again can we take a formal square root

ÎA4 = b2p2p
i=1

2p

2TpSX2i+1

2
D = b2p2Fp

i=0

p−1

2TpSX2i+1

2
DG2

.

s3bd

Likewise for A2 andA3 we find that

ÎA2 = b2p2p
i=1

2p

2TpSX2i

2
DfSinceXt = X4p−tg

= b2p2
2TpSY − 2

2
D2TpSY + 2

2
Dp

i=1

p−1F2TpSX2i

2
DG2

= b2p2
2TpSY − 2

2
D2TpSY + 2

2
DFp

i=1

p−1

2TpSX2i

2
DG2

,

s3cd

ÎA3 = b2p2
2TpSY − 2

2
D2TpSY + 2

2
Dp

i=1

2p

Up−1SX2i+1

2
D .

s3dd

Note that we have not simplifiedA3 quite as much asA2 due
to the fact that we have to mix Chebyshev polynomials of the
first and second kind.

In fact we find that whenn=m, A2 andA3 are equal and
we could have worked with only one of them above, but we
include both cases separately in order to simplify for readers
wishing to work on more general cases. Since the expression
for A2 is somewhat simpler than that forA3, we shall use the
former in our calculations. Here it is computationally very
favorable to compute the products first and then square the
resulting polynomials.

III. AVOIDING NUMERICS: A DETOUR DE GALOIS

In order to calculate theAi we see that we need to evalu-
ate expressions such as Up−1sX2i /2d and 2TpsX2i+1/2d for
several values ofi. The most direct route here is of course to
evaluate the cos terms of theX2i+1 to very high precision and
perform the products with floating point numbers as coeffi-
cients, and later round all coefficients to integers. Doing this
performs well in comparison to Beale’s method and using an
Alpha workstation andMATHEMATICA one of us was able to
computeZsC1283C128,zd already a few years ago.

The drawback with this numerical, by which we mean
using floating point arithmetic, approach is twofold. First we
must make sure that we use high enough precision, linear in
the number of vertices in the graph, to get a correct answer
and it is not a trivial matter to choose a suitable precision
which guarantees that both the products and the final addi-
tions behave well. Second, the computational effort increases
with increasing precision, thus making the size of the graph
work against us in two ways. With this in mind our next step
is to remove the need for numerical calculations and as far as
possible stick to integer coefficients throughout the entire
process.

A. When to use only integers

The first question we need to answer is at which point of
our calculation we actually will have integer coefficients.
The time when one would usually resort to numerics is when
one wants to compute one of the three large products

P1p
i=1

p−1

Up−1SX2i

2
D , s4d
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P2 = p
i=1

p−1

2TpSX2i

2
D , s5d

P4 = p
i=0

p−1

2TpSX2i+1

2
D , s6d

wherePi is the product part of our expression forÎAi. Let us
focus onP2 for a moment. Every zero ofP2 is of the form
2ai +2b j, where 2b j is a zero of Up−1sx/2d and 2ai is a
zero of Tpsx/2d, see Appendix A, Eq.sA4d, and lemma
A.4. In fact the set of zeros ofP2 consists of all such
pairwise sums of zeros of Up−1sx/2d and Tpsx/2d.

We now make use of the following theorem(the theorem
is not new but we include a proof for completeness). Recall
that a polynomial is said to bemonicif its leading coefficient
is 1.

Theorem III.1. Let Psxd and Qsxd be monic polynomials
with integer coefficients and define P% Q to be

sP % Qdsxd = p
aPZsPd

p
bPZsQd

sx − a − bd,

whereZsPd is the set of zeros of P andZsQd is the set of
zeros of Q, here the zeros are not necessarily distinct. Then
P% Q is a polynomial with integer coefficients.

Proof. From Ref. [8], p. 177, we know that there exist
matricesMP andMQ, with integer entries, such thatP andQ
are the characteristic polynomials ofMP and MQ, respec-
tively. From Ref.[9], p. 30, we know that the eigenvalues of
the matrixMPQ=MP % MQ, where % denote the Kronecker
sum, is the set of pairwise sums of zeros fromP andQ. Thus
we know thatP% Q is the characteristic polynomial ofMPQ
and since all entries ofMPQ are integers it follows thatP
% Q has integer coefficients. j

Corollary III.2. Let P, Q1, and Q2 be polynomials with
integer coefficients. Then

sQ1Q2d % P = sQ1 % PdsQ2 % Pd,

where both Q1 % P and Q2 % P are polynomials with integer
coefficients.

From corollary A.3 of Appendix A we know that both
Up−1sx/2d and 2Tpsx/2d have integer coefficients and so the
theorem implies thatP2 has integer coefficients too. Identical
arguments show thatP1 and P4 have integer coefficients as
well.

This result is very useful in our context since it means that
if we use numerics we can round our coefficients to integers
once thePi’s have been computed. Since the final polyno-
mial is obtained after squaring thePi’s we have effectively
halved the precision needed in our numerics. This also means
that if we can compute thePi’s without numerics we can
avoid numerics at all stages of our computation.

B. Galois theory: Basic facts

Before we proceed let us recall some of the basic facts of
Galois theory(for a nice introduction to this topic see Ref.
[10]). Let K denote a field[20], such asQ or R and letKfxg

be the ring of polynomials in the indeterminatex. A polyno-
mial is said to bemonic if its leading coefficient is 1. A
polynomial inKfxg is said to beirreducible if it can not be
written as a product of two nonconstant polynomials from
Kfxg. Thus every polynomial inKfxg can be written as a
product of irreducible polynomials fromKfxg.

Given a numbera such thatpsad=0 for somepPKfxg
we can find a unique irreducible monic polynomialq
PKfxg of minimal degree such thatqsad=0; we call this
polynomial theminimum polynomialof a overK. The mini-
mum polynomial ofa will divide any polynomial of whicha
is a zero.

Given a polynomialpPKfxg we can form a new field by
adding the zeros ofp to K. The smallest field formed in this
way is called thesplitting fieldof p and in this fieldp can be
factored into linear factors. Given a numbera such that
psad=0 for somepPKfxg we denote byKsad the splitting
field of the minimum polynomial ofa. Given a polynomialp
there is always a zeroa of p such that the first degspd powers
of a form a basis forKsad as a vector space overK.

We let Gsad denote the set of automorphisms ofKsad
which fixes the elements ofK. From Galois theory we know
thatGsad acts as a permutation of the zeros of the minimum
polynomial ofa and it acts transitively on the set of zeros.

C. When Galois theory is not needed,n=2q

In each of our three products we want to evaluate a poly-
nomial inX2i or X2i+1. We recall thatXt=Y−2at and for later
convenience we denotegt=2at. Since our gt represent
2 cosstp /nd we have the following multiplication rule forgt:

gtgu = gt+u + gt−u

which for squaring means that

gt
2 = gtgt = g2t + g0 = g2t + 2. s7d

Furthermore, we find that if we multiplygt andgn−t we get

gn−tgt = gsn−td+t + gsn−td−t = gn + gsn−2td = − 2 +gsn−2td. s8d

Here we should keep in mind thatgp=0 and use this to
eliminate terms wheregp appears. In both Eqs.s7d and s8d
we find that we now have indices ofg which correspond to
a term of the form

cosS tp

n/2
D ,

meaning that we have halved the denominator.
Let us now look at the productP1 and assume thatn is of

the form 2q. Rather than computingP1 directly we compute
a sequence of auxiliary polynomials, using the multiplication
rules to simplify the products

p1,n−2k = 5Up−1SX2k

2
D , 1 ø k ø p − 1,

1, otherwise,
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pt,n−2k = 5pt−1,k pt−1,n−k, 0 ø k ø p − 1,

pt−1,p, k = p,

1, otherwise.

From our observations above it follows that eachpt,k will be
a polynomial inY and terms of the form coss jp /2d / sn/2t−1d,
i.e., when we increaset by 1 we halve the denominators in
the cos terms. Thus our final polynomialpq+1,n will have
only cos terms of the form coss jp /2d, that is, it will have
only integer coefficients. Nowpq+1,n is our entire product
and so is actuallyP1. This means that the product forP1
will have no remaining cos terms and there is no need for
numerical evaluations. That this result will hold for any
order of multiplication follows from the commutativity of
polynomial multiplication. The same argument applies for
P2 and P4.

D. When Galois theory comes into use

Let us now look atn of the formn=2p, wherep is not a
power of 2. In this case we find that each of our three prod-
ucts can be rewritten as

P1 = Up−1sY/2d % Up−1sY/2d, s9d

P2 = f2TpsY/2dg % Up−1sY/2d, s10d

P4 = f2TpsY/2dg % f2TpsY/2dg s11d

or, in the terminology of Appendix A 3,

P1 = Sp−1sYd % Sp−1sYd, s12d

P2 = CpsYd % Sp−1sYd, s13d

P4 = CpsYd % CpsYd. s14d

We now have several choices regarding how to compute our
Pi’s.

A first way to compute our products is to use the obser-
vation of corollary III. 2 in combination with our knowledge
of the irreducible factors ofCp and Sp to define several in-
termediate polynomials

P1,h = Sp−1sYd % GhsYd = p Sp−1sX2id, s15d

P2,h = CpsYd % GhsYd = p CpsX2id, s16d

P4,h = CpsYd % FhsYd = p Sp−2sX2i−1d, s17d

where the products range over the set ofi ’s corresponding to
h; see Appendix A. We now have that

P1 = p
h

P1,h , P2 = p
h

P2,h , P4 = p
h

P4,h.

The corollary implies that eachPi,h will be a polynomial
with integer coefficients and so we can return to integer co-
efficients after eachPi,h has been computed. We also note
that all the computations performed when computingP1,h,

and similarly for the other products can be performed in the
splitting field of Ghsxd. Here we can use the multiplication
rule defined earlier to compute products of ourgt as formal
variables. We recall that the splitting fieldKsad of Gh is
generated by some roota of Gh. This means that once we
have expanded the product forP1,h we will have a polyno-
mial in Y and a with integer coefficients. Since the Galois
group Gsad acts transitively on the powers ofa and the
value of P1,h is invariant under this action, we find that the
coefficients of the powers ofa in the coefficient ofYk must
all be equal and our polynomial thus has terms of the form

Fa + bSo
j

bja
jDGYk,

where thebj are either 0 or 1. We can now evaluate each sum
S jbja

j to an integer and we will have our desired polyno-
mial, computed without need for numerics.

As a second alternative we can make full use of the fac-
torizations ofCp andSp−1 to define products

P1,h,k = Gh % Gk, s18d

P2,h,k = Fh % Gk, s19d

P4,h,k = Fh % Fk, s20d

with

P1 = p
h,k

P1,h ,k, P2 = p
h,k

P2,h ,k, P4 = p
h,k

P4,h,k.

As before, each of these polynomials will have integer
coefficients and we can compute each polynomial either us-
ing the multiplication rule as above or, for low degree poly-
nomials, making use of the methods described in the proof of
theorem III.1. Breaking the polynomials into small pieces
like this will save us a lot in memory usage and we will be
able to return to integer coefficients at the earliest possible
stage. If we look at the products forP1 andP4 we can note
another possible optimization. These products can be rewrit-
ten as

P1 = p
h,k

P1,h,k = Sp
h,k

P1,h,kD2
2p−2Sp−2sY/2d, s21d

P4 = p
h,k

P4,h,k = Sp
h,k

P1,h,kD2
2pCpsY/2d. s22d

We can thus compute only about half as many products and
then square the resulting polynomials instead. In casep is an
odd number we can take this even further by noticing that
now the factors of Up−1sx/2d come in pairs, so that ifqsxd is
a factor thenqs−xd is also a factor. Thus we can compute
half of the products just by evaluating the other half in −x.

IV. SUMMING IT UP, BOTH STRAIGHT
AND ROUND

Our final step is to take the proper linear combination of
the ÎAi’s in order to getZ0. Here we are faced with two
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choices. There is one choice of signs which gives us the
generating function for the set of Euler subgraphs[21] of
size k of Cm3Cn, this is the classical approach following
Kasteleyn and Kaufman, however, there is also another
choice of signs which gives us the generating function for
the number of states of energyk on Cm3Cn. For a fixed
energyk these numbers will be equal, apart from a factor 2,
for a large enough grid,k,minhm,nj, but for a finite grid
they will differ for most values ofk.

The first thing to consider here is the fact that we have to
take a formal square rootÎAi in order to get the polynomials
we wish to add. The square root of a polynomial is unique up
to the choice of sign, just as it is for numbers, and we need
some way to see which sign is right in our context. This
problem is solved as soon as we realize thatÎAi is in fact a
generating function in itself, counting weighted Euler sub-
graphs of our grid[7]. Using this fact we see that the first
k=minhm,nj−1 coefficients should be positive for all four
ÎAi’s and so our earlier choice of sign is correct.

In order not to make our presentation too long we will
now make use of some facts from chapters 4 and 5 of Ref.
[7]. From Ref.[7] we know that if we take the linear com-
bination

1

2
s− ÎA1 + ÎA2 + ÎA3 + ÎA4d

we get the generating function for the number of Euler sub-
graphs ofCm3Cn and that these are typically considered
equal in number to Ising states of a corresponding energy by
virtue of the purported self-duality of the square grid. What
is typically not mentioned is that this duality work only for
self-dual planar graphs such asPm3 Pn, the product of two
paths, and in this particular case only for the infinite grid.
sNote that a finite self-dual graph onN vertices has 2N−2
edges, which is not the case forPm3 Pn.d To see this let us
consider a cycle inCm3Cn which “goes around” the torus
on which the graph is naturally embedded, a noncontractible
cycle in the language of topology. In the dual graph this
cycle will correspond to a set of edges which does not form
an edge cut and thus not to an Ising state on the dual graph.
For cycles shorter thank=minhm,nj this can not occur and
so, by duality, the first and lastk−1 coefficients will be
equal.

However, the problem just described can be remedied in a
quite simple way. From basic topological graph theory[11]
we know that an Euler subgraph of our grid will correspond
to an Ising state on the dual graph if it either does not contain
a noncontractible cycle, being of kind(0,0) in the terminol-
ogy of Ref. [7], p. 66, or contains an even number of such
cycles in each of the two possible directions, being of kind
(even,even). Making use of this observation and the sign
table on p. 66 of Ref.[7] we deduce that

1

2
sÎA1 + ÎA2 + ÎA3 + ÎA4d

will give us the generating function for the set of Euler sub-
graphs of the right kind and so, by duality, the generating
function for Ising states with a given energy.

V. IMPLEMENTATION: MORE OF THE
PRACTICAL DETAILS

Here we comment on how to perform some of the calcu-
lations described so far in practice and how to verify that we
have in the end the correct answer.

A. Making the initial polynomials

To calculate the product(3a)–(3d) we first calculate the
Chebyshev polynomials Un−1sx/2d and 2Tnsx/2d, then evalu-
ate them inY−gt wheregt=2at andY are considered formal
variables. That is, we do not choose a value fort at this
stage. We end up with a polynomial with integer coefficients
and in two variablesY and gt. Since gt represents
2 cosstp /nd we have the following multiplication rule, as we
already noted in Sec. III C:

gtgu = gt+u + gt−u

and for squaring this simplifies to

gt
2 = gtgt = g2t + g0 = g2t + 2.

Using this rule we can transform the polynomial to a poly-
nomial linear ingt1

,gt2
, . . . .

By using the symmetries of the cos function we can fur-
ther reduce the index ofgt to the interval 0ø tøn/2. This
reduces the number ofg variables and the memory consump-
tion of our calculation. This means that we are now working
with signed roots rather than the orginal roots.

In order to make sure that all thegt j
represent nonrational

zeros, as required for our conclusions based on the Galois
group to apply, we also make use of the rules

g0 = 2, gn/2 = 0, gn/3 = 1.

These are the only indices which correspond to rational val-
ues of the cos function, see, e.g., Ref.f12g.

Should we wish to use one of the more optimized versions
of the algorithm, and work withGh andFh instead, we can
obtain the needed polynomials, e.g., by factoring the respec-
tive Chebyshev polynomials inMATHEMATICA .

B. Multiplying the polynomials

Next we multiply all the polynomials and use the above
rules to multiplygt. In this way we will end up with a poly-
nomial in Y and ourgt j

’s with terms of the form

fa + bso
j
bjgt jdgYk.

We now evaluate the appearing sums of the formS jbjgt j
,

either using known formulas for trigonometric sums such as

o
k=0

n

cosskxd =

cosSnx

2
DsinS sn + 1dx

2
D

sin
x

2

,

or “cheating” by evaluating them numerically, rounding to
the actual integer, and substituting the values back into the
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polynomial. Using numerics at this stage is actually safe
since the sums have few terms, all of similar and small size.

The specific order of multiplication described earlier for
the case whenn is a power of 2 has some practical advan-
tages as well. Since at each stage we halve the denominator
we also reduce the number of cos terms in our polynomials.
This means that memory usage is reduced and since there are
fewer terms we also save some time in the multiplication of
coefficients.

Whenn is not a power of 2 it is noteworthy that since the
number of irreducible factors of the Chebyshev polynomials
depend on the divisors of the side length of our grid we can
end up with large differences in the amount of work needed
to compute the partition function for grids of nearly equal
sides. For example, we expect the 510 grid to be significantly
easier to handle than the 512 grid. Thus some care should be
taken in the choice of grid side, when one is free to do so.

C. Substituting back to z

To get back to a polynomial inz we have to substitute
back

Y =
a2

b
=

s1 + z2d2

zs1 − z2d
.

This is a rational function inz and we would like to avoid
working with rational functions and work only with polyno-
mials. This is accomplished by using the Horner form of the
polynomial f13g. Since we know that the answer is a
polynomial and we multiply by a large enough power ofb
=zs1−z2d, we have the following scenario:

b2p2
Y„c0 + Yhc1 + ¯ Yfc2p2−1 + c2p2sYdgj…

= b2p2
c0Xa2

b
+ c1Ha2

b
+ ¯ Fc2p2−1 + c2p2Sa2

b
DGJC

= c0„a
2bp2−1 + c1ha2b2p2−2 + ¯ fa2b + c2p2sa2dgj…,

and by using the Horner rule for multiplication of polynomi-
als we end up only using polynomial arithmetic.

D. Squaring

We now square our polynomials. After that we multiply
A1 andA2 with appropriate factors according to Eqs.(3a) and
(3c).

When n is large, say 200 or more, some care should be
taken here. First, this stage is very suitable for paralleliza-
tion; second, since the coefficients of the polynomials now
become very large one should use an FFT-based multiplica-
tion algorithm when multiplying the coefficients, such as the
one implemented in Ref.[14].

Whenn is very large, say 500 or more with present day
machines, it becomes hard to handle the full polynomial. The
Ising polynomial forn=512 would need around 8 Gb of disk
space. However, since one is usually interested in some spe-
cific range of coefficients rather than the whole polynomial
one can settle for computing only the needed range in the
squaring process.

E. The final linear combination

Finally we add our polynomials with either of the choices
of signs and we are now done.

F. Checksums

In order to be reasonably certain that our calculated poly-
nomial is correct we will also make some checksums. Here
we focus onZ as the generating function for the number of
Ising states of a given energy, with exponents running be-
tween −2mn and 2mn.

The first test to make is of course that the coefficients sum
to 2mn, and more generally we make use of the momentsmk
of the density of states to verify our calculations. The gener-
ating function for the number of states with a given energy is
ZsG,zd and thus the moment generating function is
Z(G,expsKd)=ZsG,Kd.

Since the firstk=minhm,nj−1 Taylor coefficients of the
free energyFsKd for four finite m3n grid coincide with the
first k Taylor coefficients ofF`sKd for the infinite grid(see,
e.g., Ref.[15]) andFsKd is the exponential generating func-
tion for the moments, see Ref.[16], we have that the firstk
derivatives of expfmnF`sKdg are equal to the firstk moments
of our Fsxd.

In fact we have

m j = o
i=−2mn

2mn

aii
j = UdjZsKd

dKj U
K=0

for j øk. We can now calculate these moments both for the
Onsager solution for the infinite grid and for our polynomial
and if the firstk moments agree we have a very strong indi-
cator that no computational error has occurred.

In practice it seems easier to calculatefdjZsKd /dKjguK=0

by using the Taylor expansion of the internal energyUsKd
and evaluate

dj

dKj expSmnE UsKddKD
in the ring of formal power series.

A final test can be obtained by observing that the firstk
Taylor coefficients ofs1/mndln A1, . . . ,s1/mndlnA4 are all
equal to those ofF`sxd. This is the case since each of the
three polynomials count the small Euler subgraphs with the
same weight.

G. What we have done

We have implemented our method for bothn=2k as well
as general evenn using formal variables forgt but not uti-
lizing full factorization of the Chebyshev polynomials. We
began by evaluating Chebyshev polynomials in the formal
variables inMATHEMATICA . Next thePi are computed, sub-
stitution is made, squaring is done and finally multiplication
with the appropriate prefactors, all using four separate F90
programs. In this way we have computed the Ising partition
function for the followingn: all multiples of 4 up to 80, all
multiples of 16 from 80 to 128, all multiples of 32 from 128
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up to 160, and finally forn=256 andn=320.
The smaller cases were handled on ordinary workstations.

For n from 160 and upwards we used a linux cluster for the
squaring stage. Computation of thePi for the 256 grid was
done on an SGI Origin 3800, using the large integer libraries
or Ref. [14]. The squaring stage for the 256 grid took the
equivalent of 30 CPU days on an Athlon MP2000
+s1.667 GHzd.

For n=160 andn=320 we used the full Galois method.
The factor polynomials were computed usingMATHEMATICA

on a Macintosh, the larger products giving thePi,k and the
substitutions were done on a Linux workstation, and the final
multiplications and squarings were done on a Linux cluster.
For n=320 the final multiplications and squarings took a
total of 165 CPU days. The polynomial itself takes up
1.86 Gb of disk space. The polynomials can be downloaded
via the papers homepage at URL http://abel.math.umu.se/
Combinatorics/ising.html

Here we can also mention that in the course of computing
these polynomials our checksums as described above have
identified one faulty compiler, a malfunctioning hard disk as
well as a bug in a well used standardFORTRAN package—a
testimony to how sensitive to software and hardware errors
an exact computation like this is, as well as to the accuracy
of our checksums.

VI. DEFINITION OF QUANTITIES

Having computed the partition function for a number of
grids, our aim is now to do an analysis of the data. The
quantities divide into two groups: those expressed in terms of
the couplingK and those expressed in terms of the energyn.
To the first category belongs the free energyFsKd and its
derivatives, the second category contains the entropySsnd
and its derivatives. Since the free energy depends on the
entire sequence of coefficientsai whereas the entropy de-
pends on only oneai, we will see some different behavior.
Note that asymptotically we may translate betweenK and a
correspondingn through the relationn=UsKd /2. For ex-
ample, we may writeSsncd=FsKcd−Kc UsKcd to obtain the
asymptotic value of the entropy at the critical point, but this
does not throw any light on how this value scales with the
size of the grid. Quantities depending on couplingK are
written in script, e.g.,FsKd, while those depending on en-
ergy, e.g.,Ssnd are written in a normal style. Whenever loga-
rithms are used they are natural logarithms in basee.

A. Entropy and coupling

We define the entropy at relative energyn= i /2mn as

Ssnd =
ln ai

mn
. s23d

Should we desire the entropy at some energy whereai is not
defined, then we will happily circumvent this problem with
linear interpolation. The couplingK is defined as

K =
− 1

2
S8snd. s24d

This is in line with the maximum term methodssee Ref.f17g,
Vol. 1, Chap. 2.6d which could give us an alternative defini-
tion. Consider the terms in the sumZ=oiaiz

i. Given a num-
berz we assume that there is a maximum termaiz

i such that

ai−kz
i−k ø aiz

i ù ai+kz
i+k,

wherek is the difference in energy between two consecutive
levels of energy. From this inequality we obtain

ai−k

ai
ø zk ø

ai

ai+k
.

It also follows, as an aside, thatai−kai+køai
2, i.e., the se-

quence is log concave at energyi. Assuming now thatz
=eK we have thatK is a number in the interval

1

k
ln

ai−k

ai
ø K ø

1

k
ln

ai

ai+k
,

where we let the lower bound be denoted byKI and the upper

boundK̄. Consider now the derivativeS8 which we define to
be

S8S i + k/2

2mn
D =

SS i + k

2mn
D − SS i

2mn
D

k/2mn

=
2mn

mnk
sln ai+k − ln aid =

− 2

k
ln

ai

ai+k
= − 2K̄.

Note that we will associate the derivative with the middle of
i /2mn andsi +kd /2mn since we are dealing with data at dis-
crete points, though this will make little difference for large
grids.

As the grid grows we expect thatK̄→KI makingK a well-
defined number in the limit. Alternatively we may, as we

have done, associateK with the upper boundK̄. This has the
benefit of making the coupling well defined for all finite
systems rather than a number in an interval that exists(pos-
sibly) only in the limit.

B. Physical quantities

For the physical quantities we evaluate the partition func-
tion Z in eK and writeZsKd for simplicity. We assume the
Boltzmann distribution on the states, that is,

Prssd =
eKEssd

Z and Z = o
s

eKEssd,

so that the sum of probabilities becomes 1. The derivative
then becomes

] ln ZsKd
] K

=
Z8

Z =
oiaiie

iK

Z = o
i

i Prsid = kEl,

wherek¯l denotes the expected value. Analogously for the
second derivative we get
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]2 ln ZsKd
] K2 =

Z9

Z − SZ8

Z D2

= kE2l − kEl2 = varsEd,

that is, the variance ofE. We define the following physical
quantities:

free energy FsKd =
1

mn
ln ZsKd,

internal energy UsKd =
] F
] K

,

specific heat CsKd = K2
] U
] K

,

entropy SsKd = F − KU.

We try the reader’s patience here somewhat by using a non-
standard, yet clean, simple, and dimensionless definition of
the free energy and entropy. That they are internally consis-
tent follows, again, from the maximum-term method. For a
large system we simply expect a given couplingK to corre-
spond to a certain energyE and a term that dominates the
partition function, thus having logZsKd< ln aEeKE. This
gives

FsKd <
1

mn
ln aEeKE =

ln aE

mn
+ K

E

mn
= S+ KU

so thatSsE/2mnd<SsKd=FsKd−KUsKd.

C. The Onsager solutions

For completeness we shall state the Onsager solutions
which we will view as the limit functions asm,n→`. Let
K1 be the complete elliptic integral of the first kind defined
by

K1sxd =E
0

p/2

s1 − x sin ud−1/2 du.

Let K2 be the complete elliptic integral of the second kind
defined by

K2sxd =E
0

p/2

s1 − x sin ud1/2 du.

The free energy for the infinite grid, depicted in Fig. 1, is

FsKd = ln 2 +
1

2p 2E
0

p E
0

p

lnfcosh2s2Kd − sinhs2Kd

3scosu + cosvdgdu dv.

Define z as

z=
2 sinhs2Kd
cosh2s2Kd

.

Then the internal energy for the infinite grid, depicted in
Fig. 1, is

UsKd = coths2KdS1 +
2

p
K1sz2df2 tanh2s2Kd − 1gD

and the specific heat for the infinite grid, depicted in Fig. 2,
is

CsKd =
2

p
K2 coth2s2Kd

3F2K1sz2d − 2K2sz2d − 2f1 − tanh2s2Kdg

3Sp

2
+ K1sz2df2 tanh2s2Kd − 1gDG

We shall need the following constants, whereKc is the criti-
cal coupling andG<0.915966 isCatalan’s constant:

Kc =
1

2
lns1 +Î2d < 0.440687,

Fc = FsKcd =
ln 2

2
+

2G

p
< 0.929695,

Uc = UsKcd = Î2 < 1.414214,

Sc = SsKcd =
ln 2

2
+

2G

p
− Î2Kc < 0.306470.

FIG. 1. (Color online) Free energyFsKd (top) and internal en-
ergy UsKd (bottom) vs K /Kc for the infinite grid.
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VII. THE FREE ENERGY AND ITS DERIVATIVES

Henceforth we will only consider the casem=n. The val-
ues atKc of the free energy etc. are shown in Table I along
with the maximum value ofC and the location of the maxi-
mum. We denote byKn

* the location of the maximum ofCn.
In Fig. 3 we show howF andU differ from their respec-

tive critical values asn increases. It was shown by Ferdinand
and Fisher[18] how these differences should behave:

FnsKcd − Fc ,
1

n2lns21/4 + 2−1/2d <
0.639912

n2 ,

UnsKcd − Uc ,
2

n

u2u3u4

u2 + u3 + u4
<

0.622439

n
,

SnsKcd − Sc < −
0.274301

n
+

0.639912

n2 ,

where the last formula follows from our definition of entropy
S=F−KU. For the constantsu2,u3,u4 we have used the

elliptic theta functions u2=u2s0,e−pd<0.913579, u3

=u3s0,e−pd<1.08643, andu4=u4s0,e−pd<0.913579.
If we fit a straight line through the origin and the last

point sn=320d for the free energy it will have formula
0.639913x, wherex=1/n2, which matches well indeed with
the value in Ref.[18]. Analogously, for the internal energy
we get 0.622437x, wherex=1/n, again only a slight devia-
tion in the sixth decimal.

A. Specific heat

The specific heat should go to infinity with logarithnic
speed if we stay close toKc. It was shown by Onsager[3]
that

maxCn,` = A ln n + B` + os1d,

A =
2

p
Sln cot

p

8
D2

< 0.494539,

B` = ASln
25/2

p
+ gE −

p

4
D < 0.187903,

wheregE<0.5772 isEuler’s gamma. However, it should
be noted that the B-constant depends on the shape of the

TABLE I. Values atKc and extremal data onC.

n FnsKcd UnsKcd SnsKcd CnsKcd maxCn Kn
*

4 0.970120 1.56562 0.280170 0.78327 0.81646 0.410012

8 0.939715 1.49159 0.282392 1.14556 1.19184 0.423374

12 0.934143 1.46596 0.288114 1.35295 1.40391 0.428687

16 0.932196 1.45306 0.291850 1.49870 1.55220 0.431498

20 0.931296 1.44531 0.294367 1.61116 1.66628 0.433239

24 0.930807 1.44013 0.296159 1.70273 1.75898 0.434424

28 0.930512 1.43643 0.297494 1.77997 1.83706 0.435282

32 0.930320 1.43366 0.298526 1.84677 1.90451 0.435933

36 0.930189 1.43150 0.299346 1.90561 1.96386 0.436444

40 0.930095 1.42977 0.300014 1.95818 2.01686 0.436855

44 0.930026 1.42836 0.300568 2.00570 2.06473 0.437194

48 0.929973 1.42718 0.301034 2.04906 2.10839 0.437477

52 0.929932 1.42618 0.301432 2.08891 2.14850 0.437718

56 0.929899 1.42533 0.301777 2.12579 2.18561 0.437925

60 0.929873 1.42459 0.302077 2.16012 2.22013 0.438106

64 0.929852 1.42394 0.302341 2.19221 2.25239 0.438264

68 0.929834 1.42337 0.302575 2.22235 2.28269 0.438403

72 0.929819 1.42286 0.302784 2.25076 2.31123 0.438528

76 0.929806 1.42240 0.302972 2.27762 2.33822 0.438639

80 0.929795 1.42199 0.303142 2.30310 2.36381 0.438740

96 0.929765 1.42070 0.303682 2.39362 2.45470 0.439060

112 0.929746 1.41977 0.304072 2.47010 2.53145 0.439289

128 0.929734 1.41908 0.304366 2.53633 2.59789 0.439462

160 0.929720 1.41810 0.304781 2.64695 2.70880 0.439705

256 0.929705 1.41664 0.305408 2.87979 2.94210 0.440071

320 0.929701 1.41616 0.305619 2.99027 3.05275 0.440193

FIG. 2. (Color online) Entropy SsKd (top) and specific heat
CnsKd (bottom) for n=16,32,64,96,128,160,256,320 and the in-
finite grid vsK /Kc.
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grid. Onsager’s grid has shapen3`. Also, it will depend
on whether we are looking at the critical point or at the
maximum. For ansn3nd grid we have, and we quote this
from Ref. f18g,

maxCn = A ln n + Bmax+ os1d,

CnsKcd = A ln n + Bc + os1d,

Kn
* − Kc ,

− 0.36029Kc

n
=

− 0.15878

n
,

whereBmax<0.201359 and

Bc = B` −
Sln cot

p

8
D2

u2 + u3 + u4
S 4

p
o
i=2

4

ui ln ui +
u 2

2u 3
2u 4

4

u2 + u3 + u4
D

< 0.138150.

The authors of Ref.f18g do not give exact expressions for
Bmax or the constant −0.36029above.

A curious fact which we would like to mention(see Refs.
[3] and [18]) is that for an oblong grid such as ansn3`d
grid or indeed, perhaps surprisingly, ansn33.1393nd grid
the difference betweenK* and Kc is of the order lnn/n2

rather than 1/n.
So let us compare our data with theory. The upper curve

of the top panel in Fig. 4 shows maxCn−A ln n versus 1/n.
A straight line fitted through the last two pointssn
=256,320d gives 0.201274−0.377915x, wherex=1/n. Our
constant deviates in the fourth decimal from theBmax given

in Ref. [18]. The lower curve showsCnsKcd−A ln n together
with its similarly fitted line 0.138149−0.170816x, a near-
perfect match with the constant prescribed above. The bot-
tom panel of Fig. 4 shows howKn

* differs fromKc. A straight
line fitted through the origin and the last pointsn=320d gives
−0.157888x, again a small deviation. In the plot we use the
line −0.15878x, a very good fit.

VIII. THE ENTROPY AND ITS DERIVATIVES

In this section we will do a more thorough investigation
of the entropy as defined in Eq.(23). To obtain limit curves
we will need to translate between relative energyn and cou-
pling K. This is done with the relationn=UsKd /2 where
UsKd is Onsager’s formula and this also gives us the critical
energync=1/Î2<0.7071. The plots in Figs. 5 and 6 shows
the entropy and its derivatives with respect to the relative
energyn. By definition we haveS=F−KU. If we then asso-
ciate SsKd with nsKd then we can plot a limit curve of the
entropy versus the relative energy. By definition, we also
have

K =
− 1

2
S8snd

and since

C = K2
] U
] K

= S− 1

2
S8sndD2 1

] K/] U ,

it follows that

FIG. 3. (Color online) Top: FnsKcd−Fc vs 1/n2. Bottom:
UnsKcd−Uc vs 1/n.

FIG. 4. (Color online) Top: maxCn−A ln n and CnsKcd
−A ln n vs 1/n. Bottom:Kn

* −Kc vs 1/n.
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Csnd =
1

4
fS8sndg2 1

− 1

2
S9snd ] n/] U

=
− fS8sndg2

S9snd
,

though this is of course only valid for an infinite grid. We
can use this last formula, though, to give us a limit curve for
the second derivative of the entropy, i.e., asyptotically we
have

S9snd =
− 4

U8sKd
,

which is then plotted versus the energynsKd. Continuing in
the same spirit with the third derivative we obtain the limit

Ss3dsnd =
8U 9sKd
fU8sKdg3 .

These last two formulas are used in the plots of Fig. 6.
Figure 6 shows how the second and third derivatives be-

have nearnc. Apparently the second derivative approaches 0
from below. Since the specific heat goes to infinity asK
→Kc for an infinite grid, which corresponds ton→nc
=1/Î2, while S8→−2Kc it is clear thatS9→0 at that point
also. Actually, the formula above suggests the following
rough estimate:

Sn9sncd =
− fSn8sncdg2

CnsKcd
,

− 4Kc
2

A ln n
=

− p

2 ln n

and of course the same result for the maximumSn9. Figure 8
gives that this could be a reasonable estimate for very large
grids though not forn,1000. In fact, the maximum has
only started to approach zero whenn=32.

In Fig. 7 we see how the entropy at the critical pointnc
and its derivative approaches their limitsSc and −2Kc, re-
spectively. Beginning with the entropySnsncd one might ex-
pect that its behavior would be similar to that of the free
energy. However, whereas the difference between the free
energy and its critical value is of the order 1/n2, the corre-
sponding difference for the entropy seems to be slightly
larger, possiblyn−9/5. For the derivative this difference seems
to be of the order ofn−5/4. In the top panel of Fig. 7 the
differenceSnsncd−Sc versusn−9/5 is displayed together with
the straight line −1.91x. The bottom panel showsSn8sncd
+2Kc versusn−5/4 together with 0.425x.

The top panel of Fig. 8 shows maxSn9 versus 1/ lnn with
the fitted polynomial −1.56x+0.32x2+5.4x3 and the straight
line −px/2. A similar behavior is of course found forSn9sncd
but is better fitted by the polynomial −1.56x+0.17x2+4.3x3.
The bottom panel showsnn

* −nc versusn−5/6 and the line
−0.44x, fitted through the origin and the last point. It should
also be stated that the fourth derivative atn* obviously grows
to the negative infinity; see the bottom plot of Fig. 6 and the
corresponding column in Table II. Its growth rate seems to be
on the order ofn19/15 or thereabout. Assuming this, a straight
line fitted through the last four points gives that the fourth

FIG. 5. S320snd andS3208 snd.

FIG. 6. (Color online) Sn9snd, top, and Sn
s3dsnd, bottom, for

n=16,32,64,128,160,256,320,`.
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derivative atnn
* is −65−1.03n19/15; see top plot of Fig. 9. The

bottom plot showsKnsn*d−Kc for each grid versusn−21/20

and the line −0.249x.

IX. THE LOG-CONCAVITY POINT

Here we take a quick look at a finite-size phenomena
which occurs at high energies. If we consider the plot in Fig.
10 of the couplingK16snd=−S168 snd /2 we note an irregular
behavior at aboutn<0.87. For larger grids this will move
closer to 1.

This is the energy where the sequenceai stops being log
concave. We will define this point as the largestn= i /2n2

such thatai−4ai+4øai
2 and denote it byñn. The table in Fig.

10 shows where this energy is located. In Fig. 11 we see 1
− ñn versusn−19/15 together with the line 3.96x. The coupling
Kn=−Sn8 /2 corresponding to this energy is displayed in the
bottom plot with the line (through n=256, 320) 0.030
+0.155x.

That K in this case grows asOsln nd is perhaps not very
surprising. Note that for high energies we know the sequence
of ai. Counting backwards fromi =2n2 the ai sequence be-
gins 2,0,2n2,4n2,n4+9n2, . . . . It seems also that the largest
value of 1

4lnfai / sai+4dg is obtained fori =2n2−16 giving the
coupling value1

4ln fsn2+9d /4g, 1
2ln n.

X. THE LARGEST COEFFICIENT

In this section we will take a look at the largest coefficient
of the partition function. For all grids we have looked at, this
position is held by coefficienta0. However, proof that this is

TABLE II. Entropy data.

n Snsncd −Sn8sncd −Sn9sncd −maxSn9 −Sn
s4dsnn

*d nn
*

12 0.289122 0.855602 0.328177 0.242751 87.6930 0.652778

16 0.295499 0.864776 0.340533 0.275587 95.2653 0.664062

20 0.298843 0.869474 0.341183 0.288223 104.431 0.675000

24 0.300829 0.872249 0.338620 0.293102 119.379 0.677083

28 0.302111 0.874054 0.334909 0.294729 132.302 0.681122

32 0.302991 0.875309 0.330880 0.294656 146.386 0.683594

36 0.303622 0.876225 0.326890 0.293712 161.361 0.685185

40 0.304091 0.876920 0.323030 0.292304 175.026 0.687500

44 0.304450 0.877463 0.319365 0.290661 189.577 0.689050

48 0.304732 0.877897 0.315910 0.288886 204.967 0.690104

52 0.304957 0.878252 0.312658 0.287076 221.071 0.690828

56 0.305139 0.878546 0.309620 0.285273 236.062 0.691964

60 0.305290 0.878793 0.306759 0.283497 251.792 0.692778

64 0.305416 0.879004 0.304070 0.281763 268.220 0.693359

68 0.305522 0.879186 0.301537 0.280082 283.638 0.694204

72 0.305612 0.879344 0.299146 0.278455 299.752 0.694830

76 0.305690 0.879482 0.296885 0.276878 316.558 0.695291

80 0.305757 0.879604 0.294745 0.275359 333.999 0.695625

96 0.305954 0.879974 0.287189 0.269811 402.297 0.697266

112 0.306077 0.880224 0.280900 0.265004 473.012 0.698501

128 0.306161 0.880403 0.275552 0.260798 547.528 0.699341

160 0.306263 0.880639 0.266858 0.253768 703.101 0.700625

256 0.306381 0.880962 0.249667 0.239297 1219.53 0.702759

320 0.306411 0.881060 0.242063 0.232702 1603.41 0.703496

FIG. 7. (Color online) Top: Snsncd−Sc vs n−9/5. Bottom: Sn8sncd
+2Kc vs n−5/4.

FIG. 8. (Color online) Top: maxSn9 vs 1/ ln n. Bottom: nn
* −nc

vs n−5/6.
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generally true is still lacking. It seems fairly safe though to
assume, as we will here, that maxi ai =a0. We begin by set-
ting up two easy bounds. First, obviously we have

a0 ø o
i

ai = 2n2
.

Second, the energy levels can take the values
0, ±4, . . . , ±s2n2−8d , ±2n2, i.e., there aren2−1 energies. If

we distribute the mass 2n2
on these levels then some coeffi-

cient must be at least average, i.e.,

2n2

n2 ø
2n2

n2 − 1
ø a0.

It would seem appropriate to guess thata0 is of the interme-
diate order 2n

2
/n. As we will see, mutatis mutandis, this is

just about perfect. The correct quantity to study is

Qn =
a0

S n2

n2/2
D ,

where, by Stirling’s formula

S n2

n2/2
D ,Î 2

p

2n2

n
,

that is, the guess from above.
The table and the plot in Fig. 12 give rather strong evi-

dence thatQn→Î2. They are well fitted by the line78Î2x. To
conclude, we conjecture that

a0 =
2

Îp

2n2

n
F1 +

7

8n2 + OS 1

n3DG .

XI. ASYMPTOTICS

Here we collect all statements on asymptotic behavior
which are spread out through the text. Exact formulas for the
first four are given elsewhere in the article.

FnsKcd − Fc , 0.639912n−2,

UnsKcd − Uc , 0.622439n−1,

SnsKcd − Sc = − 0.274301n−1 + 0.639912n−2 + Osn−3d,

CnsKcd = 0.494539 lnn + 0.138150 +os1d,

maxCn = 0.494539 lnn + 0.201359 +os1d,

Kn
* − Kc , − 0.15878n−1.

The following asymptote approximations should be consid-
ered conjectural, i.e., guessed up to the given precision. A

FIG. 9. (Color online) Top: Ss4dsnn
*d vs n19/15. Bottom: Knsnn

*d
−Kc vs n−21/20.

FIG. 10. (Color online) Top: Data onñn. Bottom: Knsnd for
n=16 andn=`.
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similar caveat applies to the exponents onn; they are simply
chosen among the rationals with small denominator:

Snsncd − Sc , − 1.91n−9/5,

Sn8sncd + 2Kc , 0.425n−5/4,

Sn9sncd <
− 1.56

ln n
+

0.17

ln2 n
+

4.3

ln3 n
,

max Sn9snd <
− 1.56

ln n
+

0.32

ln2 n
+

5.4

ln3 n
,

max Sn9snd , Sn9sncd ,
− p

2 ln n
,

Sn
s4dsnn

*d , − 1.03n19/15,

Knsnn
*d − Kc , − 0.249n−21/20,

nn
* − nc , − 0.442n−5/6,

1 − ñn , 3.96n−19/15,

Knsñnd , 0.155 lnn,

a0 =
2

Îp

2n2

n
F1 +

7

8n2 + OS 1

n3DG .
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APPENDIX A: CHEBYSHEV POLYNOMIALS
We will now develop some facts about Chebyshev poly-

nomials that we make use of in the main body of the paper.
For further information we recommend Ref.[19]. We begin
with some basics.

Definition A.1. The Chebyshev polynomials of the first
kind are defined as

Tnsxd = cossn arccosxd = cosnu, x = cosu. sA1d

Definition A.2. The Chebyshev polynomials of the second
kind are defined as

FIG. 11. (Color online) Top: 1−ñn vs n−19/15. Bottom:Knsñnd vs
ln n.

FIG. 12. (Color online) Top: Data onQn. Bottom: Qn−Î2 vs
1/n2.
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Un−1sxd =
sinsn arccosxd

Î1 − x2
=

1

n
Tn8sxd =

sin nu

sin u
,

x = cosu.

A useful fact which follows directly from the definition is
that

Tnfcossxdg = cossnxd.

Since Tnsxd=cosnu and cosnu j =0 for

u j = u j
snd =

s2j − 1dp
2n

, j = 1, . . . ,n,

we see that the points

j j = j j
snd = cosu j

snd = cos
s2j − 1dp

2n
, j = 1, . . . ,n

satisfy

Tnsj jd = 0, j = 1, . . . ,n.

From this we can factorTnsxd as

Tnsxd = 2n−1p
j=1

n Sx − cos
s2j − 1dp

2n
D sA2d

andUnsxd as

Unsxd = 2np
j=1

n Sx − cos
jp

n + 1
D . sA3d

1. Extremal points

It is also clear from Eq.(A1) that uTnsxduø1 if uxuø1. The
points in this interval, whenuTnsxdu=1, are called theextrema
of Tnsxd. We know that coskp=s−1dk for any integerk so if

fk = fk
snd =

kp

n
, k = 0,1, . . . ,n,

the points

hk = hk
snd = cosfk

snd = cos
kp

n
, k = 0,1, . . . ,n

satisfy

Tnshkd = s− 1dk, k = 0,1, . . . ,n.

This gives us the following products on closed form:

p
k=1

n

2Sx − cos
2pk

n
D = 2fTnsxd − 1g sA4d

and

p
k=1

n

2Sx − cos
ps2k − 1d

n
D = 2fTnsxd + 1g. sA5d

2. The coefficients

If utu,1 then

o
nù0

t neinu = o
nù0

steiudn =
1

1 − teiu

=
1

1 − tscosnud + i sin nu

=
1 − t cosnu + ti sin nu

s1 − t cosnud2 + t2 sin nu

=
1 − t cosnu + ti sin nu

1 − 2t cosnu + t2
.

On equating the real parts, we obtain

o
nù0

t n cosnu =
1 − t cosu

1 + t2 − 2t cosu

or

1 − tx

1 − 2tx + t2
= o

nù0
t nTnsxd,

the generating function for Tnsxd. Using the definition we
find the generating function for Unsxd:

1

1 − 2tx + t2
= o

nù0
t nUnsxd.

From this we obtain the following lemma.
Lemma A.3. The polynomials 2Tnsx/2d and Unsx/2d have

integer coefficients.
Proof. Using the generating function for Unsx/2d we have

1

1 − 2t
x

2
+ t2

=
1

1 − tx + t2
=

1

1 − tsx − td

= o
kù0

ftsx − tdgk = o
kù0

t ksx − tdk

and for fixedn the coefficients fort n are polynomials inx
with integer coefficients. Multiplying by 1−tsx/2d gives the
result for 2Tnsx/2d. j

We can use the formula in the proof above to explicitly
give the coefficients for the Chebyshev polynomials as

Tnsxd =
1

2o
k=0

bn/2c
s− 1dk n

n − k
Sn − k

k
Ds2xdn−2k,

Unsxd = o
k=0

bn/2c
s− 1dkSn − k

k
Ds2xdn−2k.

3. The irreducible factors

We will now describe the irreducible factors of the
Chebyshev polynomials. We will state the results without
proofs, which the interested reader can find in Ref.[19].
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Rather than factoring the Chebyshev polynomials them-
selves we will give the irreducible factors ofCksxd
=2Tksx/2d and Sksxd=Uksx/2d, for k.0. From lemma A.3
we know that these polynomials are monic and have integer
coefficients.

Given an odd divisorh of k, let

Fh,ksxd = p
GCDs2j−1,2kd=h,1ø jøk

Fx − 2 cosS s2j − 1dp
2k

DG .

Now Fh,ksxd will be an irreducible monic polynomial with
integer coefficients and

Cksxd = p
huk,h odd

Fh,ksxd.

Given a divisorh of 2sk+1d, let

Gh,ksxd = p
GCDf j ,2sk+1dg=h,1ø jøk

Fx − 2 cosS jp

k + 1
DG .

Here Gh,ksxd will be an irreducible monic polynomial with
integer coefficients and

Sksxd = p
huf2sk+1dg,1øhøk

Gh,ksxd.

4. Two useful identities

We will also need the following facts about the Cheby-
shev polynomials.

Lemma A.4. Let Tnsxd and Unsxd be the Chebyshev poly-
nomials of the first and second kind. Then for nù1 we have
the following. For even indices of Tnsxd

2fT2sn+1dsxd − 1g = 4sx2 − 1dUn
2sxd2fT2nsxd + 1g

= 4Tn
2sxd

and for odd indices of Tnsxd

1 + T2n+1sxd = s1 + xdfUnsxd − Un−1sxdg2,

1 − T2n+1sxd = s1 − xdfUnsxd + Un−1sxdg2.

Proof. Even indices:

2fT2sn+1dsxd − 1g = 22sn+1d p
k=1

2sn+1d Sx − cos
2pk

2sn + 1dD
= 2np

k=1

n Sx − cos
pk

n + 1
D2n p

k=n+2

2n+1 Sx − cos
pk

n + 1
D22Sx − cos

psn + 1d
sn + 1d DSx − cos

2psn + 1d
sn + 1d D

=4sx2 − 1dUn
2sxd2fT2nsxd + 1g = 22np

k=1

2n Sx − cos
ps2k − 1d

2n
D

= 4s2n−1dp
k=1

n Sx − cos
ps2k − 1d

2n
D2n−1 p

k=n+1

2n Sx − cos
ps2k − 1d

2n
D = 4Tn

2sxd.

Odd indices:

s1 ± xdfUnsxd 7 Un−1sxdg2 = s1 ± xdfUn
2sxd + Un−1

2 sxd 7 2UnsxdUn−1sxdg

=
1 ± x

1 − x2hf1 − Tn+1
2 sxdg + f1 − Tn

2sxdg 7 21
2fT1sxd − T2n+1sxdgj

=
1 ± x

1 − x2h2 − 1
2fT2n+2sxd + 1g − 1

2fT2nsxd + 1g 7 x ± T2n+1sxdj

=
1 ± x

1 − x2hs1 7 xd − 1
2fT2n+2sxd + T2nsxdg ± T2n+1sxdj

=
1 ± x

1 − x2hs1 7 xd − 1
2fT2n+1sxd − T2nsxd + T2nsxdg ± T2n+1sxdj

=
1 ± x

1 − x2fs1 7 xd − xT2n+1sxd ± T2n+1sxdg
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=
1 ± x

1 − x2fs1 7 xd + s1 7 xdT2n+1sxdg

=
s1 + xds1 − xd

1 − x2 f1 ± T2n+1sxdg = 1 ± T2n+1sxd . j

APPENDIX B: AN IMPLEMENTATION
IN MATHEMATICA

In this appendix we demonstrate aMATHEMATICA program
which implements some of the calculations discussed in the
main text. This implementation works for grids with even
siden and uses numerical evaluation at the stage wheregt is
eliminated. The only optimization from the paper used here
is our formulation of the products in terms of Chebyshev
polynomials. For sides less than aboutn=80 it is actually
faster to use a direct numerical evaluation of the cosine-
terms before the multiplication is performed. However, once
we get to aroundn=80 the need for high precision numerics
makes that numerical version slower than the version shown
here.

A notebook demonstrating the Galois method is also
available at the paper’s homepage at http://abel.math.umu.se/
Combinatorics/ising.html

Let us start with the definition of the functions we will use
later to compute our three productsP1, P2, andP4.

Multiply [p_c,c_]: 5
(* Applying the product rule for gamma_t *)
Module [{i, j, m, b},
FixedPoint[
Expand[#]
/.{
Power[c[i_,m_],b_]:.
(c[i,m])∧Mod[b,2]* (21c[zi, m])∧Floor[b/2]/;b.52,
c[i_,m_]*c[j_,m_]:.c[i1j,m]1c[i2j,m]}&,
p]
]
SymReduce[p_,c_]:5 (*Reducing by symmetries*)
Module [{i,m},
p
/.c[i_,m_]:.c[2i,m]/;i,0
//.c[i_,m_]:.c[i22m,m]/;i.m2m
/.c[i_,m_]:.c[2m2i,m]/;i.m
/.{
c[i_,m_]:.0/;2i55m,c[i_,m_]:.1/;3i55m,
c[i_,m_]:.21/;3i552m,c[m_,m_]2.22,c[0,_}2.2
}
]
RemoveCos[p_,c2,acc_]:5
Module[{i,j,x},
p/.c[i_,j_]:.N[2*Cos[i*Pi/j },acc]/.x_Real:.Round[x]
]
TakeProduct[polys_,e_,Y_,c_,z_,acc_]:5
Module[{a,b,prod},
prod5Fold[SymReduce[Multiply [#1*#2,c],c]&,1,polys];

Cancel[b∧e*RemoveCos[prod,c,acc]/.Y2.a∧2/b]
/.{a2.(11z∧2),b2.z(12z∧2)}
]

The function “Multiply” implements the multiplication
and squaring rules forlt. “SymReduce” uses the symmetries
of cos to reduce the number oflt variables needed. “Re-
moveCos” uses high precision floating point arithmetic(of
accuracy “acc”) to evaluate the cos functions and
then rounds the answer to the nearest integer. Finally,
“TakeProduct” takes a list of polynomials in the variables Y
and c(where c[i,j] represents 2 cossip / jd, multiplies them
together, evaluates the cos functions using “RemoveCos,”
and finally does the substitutionY→ s1+z2d2/zs1−z2d while
multiplying with a high enough power ofzs1−z2d:

To be able to check the result later we also need the func-
tion UsKd defined as follows:

U[K_]5Fullsimplify[
Coth[2K](112/Pi*EllipticK [z∧2](2*Tanh[2K]∧221))
/.z2.2*Sinh[2K]/Cosh[2K]∧2,Element[K,Reals]
]
Let us do a worked example of how to use these functions

to compute a partition function and check the result. We
begin by defining the size of our square grid:

(************Input************* )
n550.
This is the only parameter we need to set ourself, every-

thing else can now be calculated from this. We next calculate
some constants and the two polynomials Up−1sXt /2d and
2TpsXt /2d for a generalt:

(*************** I ************** )
p5n/2;
acc5Floor[N[p∧2*Log[10,2]]];
U[Y_,t_]5
SymReduce[Multiply [ChebyshevU[p21,(y2a[t,n])/

2],a],a];
T[Y_,t]5
SymReduce[Multiply [2*ChebyshevT[p,(Y2a[t,n])/

2],a],a]
We can now calculateA1, making use of our functions

“TakeProduct” and “SymReduce”. This is done in two steps
since we need to multiply with the appropriate “prefactors.”
In this casep2−1 is a large enough power ofzs1−z2d.

(************** A1 ) ************* )
Module[{A1prod,A1},
A1prod5TakeProduct[
Table[SymReduce[U[Y,2i],a],{i,0,p}]
,p∧221,Y,a,z,acc
];
A15Expand[
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(11z∧2)2(2122z1z∧2)(2112z1z∧2)*A1prod∧2
];
Z5A1;
]
We now calculateA2 in much the same way asA1. The

differences are the prefactors and that now the power of
zs1−z2d is p2−p for the bulk of the polynomials andn=2p
for the factors. We also add 2A2 to Z since A2=A3 for a
square grid and we do not want to waste precious time cal-
culatingA3 separately:

(**********A2 )********* )
Module[{A2prod,A2pre,A2},
A2prod5TakeProduct[
Table[SymReduce[T[Y,2i],a],{i,1,p21}],
p∧22p,Y,a,z,acc
];
A2pre,TakeProduct[
{SymReduce[T[Y,n],a],SymReduce[T[Y,0],a]},
n,Y,a,z,acc
];
A25Expand[A2pre*A2prod∧2];
Z5Z12*A2;
]
A4 is the simplest term to calculate since it does not need

any prefactors and such. The power ofzs1−z2d is p2:
(**********A4 )********* )
Module[{A4prod,A4},
A4prod5TakeProduct[
Table[SymReduce[T[Y,2i11],a],{i,0,p21}],
p∧2,Y,a,z,acc
];
A45Expand[A4prod∧2];
Z5Expand[(Z1A4/2];

]
Finally we verify the correctness of our resulting polyno-

mial by calculating the moment generating function for the
distributions of energies and compare it with the infinite grid:

(************** Check ************* )
s15Simplify/@Integrate[Series[U[K],{K,0,n21}],K];
s25Simplify/@Series[Exp[n∧2*s1],{K,0,n21}];
s35Simplify/@Series[Z/(2z)∧(n∧2)/.z2

.Exp[K]∧2,{K,0,n21}];
s255s3
True.
As you can see, the two expressions are equal and it is

unlikely that any computational errors have occurred. In
Table III we give timings for various grid sizes run on a
Linux machine with an Athlon 2000+ and 2 Gb RAM. We
have also included timings of Beale’s implementation, run on
the same machine.
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TABLE III. Timing data.

n Our’s Beale’s Ratio

8 0.1 0.5 5

16 2.0 11.0 5.5

24 22.0 95.0 4.3

32 143.1 622.7 4.4

40 835.5 3010.5 3.6

48 2675.2 11223.9 4.2

56 8111.4 38118.9 4.7

64 20006.5 108331.3 5.4
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