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An improved method for obtaining the Ising partition functionnof n square grids with periodic boundary
is presented. Our method applies results from Galois theory in order to split the computation into smaller parts
and at the same time avoid the use of numerics. Using this method we have computed the exact partition
function for the(320x 320 grid, the (256 256) grid, and the(160x 160) grid, as well as for a number of
smaller grids. We obtain scaling parameters and compare with what theory prescribes.
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I. INTRODUCTION Z(2) = E Z£0) = E aiz‘,
o |

The Lenz-Ising mod€]l1,2] of ferromagnetism was solved h he f . K I tham Th

in the one-dimensional case by Ernst Ising in 1925 and in thé/ eredt € ws(;[ ?_um ":’hta en ﬁ?v_er all t h statesk.) ef
(infinite) two-dimensional case without an external field bysecon sum defines the coeflicierds as the number o
Lars Onsagef3] in 1944. Somewhat later Bruria Kaufman states at energy. In graph theo.retlcal Ianguagja-,_|s the
4] gave the zero field értition function for tiienx n) grid number of edge cuts of siZ8mn-i)/2. However, it is com-
[ ']thg iodic bound P Beal5! h d q[ mon to work not withZ(z) as defined here but rath&g(z)
with periodic boundary. Beal{s] has made an easy-to-use =7""7(z""2), which gives a polynomial with positive expo-
program inMATHEMATICA which implements this solution.

Beal d thi ¢ te th tition function f nents between 0 andvih In order to be consistent with our
eale used this program to compute the partition function for.¢o-ances we will do so too.

the (32 32) grid, and with a modern desktop computer one  \yhenever we need to distinguish between quantities for

can use this program to compute the partition function foryifrerent grids we will subscript them with just anor both

the (64x 64) grid in about 30 h. We present an improved m n. Evaluating the partition functiod in the pointz=eX,

form of the algorithm where this computation now runs inwhereK is the coupling, gives the partition functiofi(K)

under 6 h, using a simple implementationMATHEMATICA . typically studied in statistical physics. Heke=J/kgT where

We use a&ORTRAN implementation of this algorithm to com- J is the interaction energgg is Boltzmann’s constant arifl

pute the partition function for a large number of grids of sideis the absolute temperature. To avoid cluttering up our for-

up to 128, as well as th¢160x 160, (256x256), and mulae we sekzg=J=1. From Z(K) we obtain, e.g., the free

(320x 320 grids. energy F(K), the internal energ¥(K) and the specific heat
The graphs we are dealing with are tmex n) grids with  C(K); we shall define them properly later.

periodic boundary, i.e., the Cartesian prodGgtx C, of a

cycle onm andn vertices, respectively. The total number of

vertices is thermn and the number of edges isnA A state

o is a function from the vertices to the setl, + 1. We let Following Kaufman[4] and Kasteleyrj6], we know that

o, denote the state, or spin, of the veriexThe energy of a the partition function for the square grid gra@h,x C, can

stateo is E(0)=2,,0,0, Where the sum is taken over all be expressed as a linear combination of four polynomials.

edges. We then have that ma<E=<2mn, but note that the These polynomials in turn are given by the Pfaffians of four

energy can not take any value in this interval. If battand  matrices and can be calculated as the square roots of the

n are even themn can take the values 0,+4,+8,...,mA  corresponding determinants. SoAf denote the mentioned

except for £2mn-4). The relative energy is defined as determinants we have that

v(o)=E(c)2mn, that is —1< v<1. We now define the parti-

tion function as the formal Laurent polynomial

II. THE FINITE SIZE SOLUTION IN TERMS OF
CHEBYSHEV POLYNOMIALS

M~ M~ M~ M~
Zo(Cm X Cn,Z) = Cl\‘sAl + Cz\J'Az + C3\J'A3 + C4\5A4.

EachA, is a polynomial given by a double product over its
roots. A comprehensive description of how to obtain these
products and the general Pfaffian method is given in Réf.

Let a,=cos(mt/n), B,=cos(wt/m), a=1+z%, and b
=7(1-7%. In terms of these variables the fody's are
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n m

Ay =111 (@2 - 2bay = 2bB,.0),

i=1 j=1

n m

As=[11I (@ - 2bayi., - 2bBy),

i=1 j=1

n m

Ay= H H (a%- 2baryig — 2b,32]+1)-
i=1 j=1

Computing these products directly and then taking formal
square roots is a quite arduous task and we want to find more
efficient ways to do this. A first step in this direction was
taken by Bealg¢5] who made use of the fact that most of the
roots of theA; can easily be seen to be double roots and that
one can avoid having to take square roots simply by restrict-
ing the index range in the products. UsinguarHEMATICA
program which evaluated the cosines numerically before per-
forming the simplified products Beale computed the partition
function of the(32x 32) square grid.

Our goal is to perform these products even more effi-
ciently, and with less risk for numerical errors, by using
some further observations about the products which both al-
low us to avoid numerics and use fewer polynomial multi-
plications. We start out by noting that the roots of theare
in fact sums of roots of Chebyshev polynomials, see Egs.
(A4) and (A5) of Appendix A. HereT, and U,, are the
Chebyshev polynomials of the first and second kind. Yet
=a’/b andX,=Y-2a;, we can now rewrite the products as

A =111 (@2 - 2bay - 2b8y)

i=1j=1

=b"[[ TT (Y - 2ay - 285)
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—b"mHHZ(&—BZJ

i=1 j=1

T

Ay= H H (a®~ 2baisy - 2bp5;41)

i=1j=1

n m
=" T (Y- 2az., - 2B5j+1)

i=1 j=1
n m

=" [T TT (X1 - 2[32j+1)

i=1 j=1

n m X ]
=b"™[[ ] 2( 22|+1 - :82j+1>

i=1 j=1

=p"[] Z[Tm( Xzz”l) + 1] . 2)
i=1

The expressions fof, and A; are similar toA, and A;,
the difference being the index &§. In A, the index is 2and
in Agitis 2i+1.

We now restrict our discussion to the case wheram

i=1j=1 =2p. The cases for equal, but odd, sides or unequal sides are
very similar to the current case and can be handled in the
=p" [T IT (X5 = 2B) same way. We now use lemma A.4 of Appendix A to sim-
i=1j=1 plify the products further. From Eql) we get

2p e 2p
A, =b%T] 2{5,,(?) - 1] =%’ (X3 - 4)u2_
i=1

i=1

2p X
=p*P H (X2 —4)H uz ( 2')

2 2p X, 2p Xy
:b4p2H <x2i+2)(x2i—2>H U2, ( 2) b“pH(Y 20+ 2)(Y = 2a5 - 2)Hu ( 2')

i=1

2p
-b4pH[(Y+2> 2a5][(Y-2) - 2a2.]HU2_<

i=1

ol o[ 52 e
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2 Y+2
=b*Y2(Y2 - 16)u§_1<—>u2_ (

2 )P 2

= b4p

2p
Y-2 Xoi
——-HU&(;Q

i=1

1+ -1-22+P)A-1+ 22+ )?
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b4

Since all the terms are raised to an even power, we can
now take a formal square root by dividing each exponent by
2; the correctness of this choice of sign in the square roots
will be discussed in connection with the final linear combi-

nation of the polynomials.

2(1+2)(-1-22+P)(-1+2+7) Y+2
b? Uil 2

2p
Y-2 Xai \ o
xup_l<7>f{ up_l<f)[s|ncext = X1
i=

=P 21+ P21 -2+ A (- 1+ 2+

Y+2 y-2\"*t X
2 )P 2 )i TP 2

=02 A1+ 2)(-1- 2+ D) (- 1+ 2+ D)

N [

V’Al = pr

X U2

Working the same way, we can rewrite ident{B) as

2p
- b4p2H 4T'2)< X2i+1) .

i=1 2

2p X,
A4 = b4p21—[ 2|:T2p< 2|+l) + 1:|
i=1 2
Once again can we take a formal square root

p-1 2
VA, = b H 2T (X2'+1> = bZF’Z[ I1 2Tp<—xz”1ﬂ .
(3b)

Likewise for A, and A; we find that

2p
T~ 2 X i .
VA, = b 1_{ 2Tp(f)[8|ncext = Xap-t]
=

(30

sl )

2p
— Y-2 Y+2 Xy
VAg= b2p22Tp(T)2Tp<—> [] up_l(ﬁ).

2 )i 2
(3d)

Note that we have not simplifiedl; quite as much a8, due
to the fact that we have to mix Chebyshev polynomials of the
first and second kind.

In fact we find that whem=m, A, and A; are equal and
we could have worked with only one of them above, but we
include both cases separately in order to simplify for readers
wishing to work on more general cases. Since the expression
for A, is somewhat simpler than that fég, we shall use the
former in our calculations. Here it is computationally very
favorable to compute the products first and then square the
resulting polynomials.

Ill. AVOIDING NUMERICS: A DETOUR DE GALOIS

In order to calculate thé; we see that we need to evalu-
ate expressions such as, WX5/2) and 2T,(Xy+,/2) for
several values af The most direct route here is of course to
evaluate the cos terms of tig;,4 to very high precision and
perform the products with floating point numbers as coeffi-
cients, and later round all coefficients to integers. Doing this
performs well in comparison to Beale’s method and using an
Alpha workstation antATHEMATICA one of us was able to
computeZ(C,,5X Cyg,2) already a few years ago.

The drawback with this numerical, by which we mean
using floating point arithmetic, approach is twofold. First we
must make sure that we use high enough precision, linear in
the number of vertices in the graph, to get a correct answer
and it is not a trivial matter to choose a suitable precision
which guarantees that both the products and the final addi-
tions behave well. Second, the computational effort increases
with increasing precision, thus making the size of the graph
work against us in two ways. With this in mind our next step
is to remove the need for numerical calculations and as far as
possible stick to integer coefficients throughout the entire
process.

A. When to use only integers

The first question we need to answer is at which point of
our calculation we actually will have integer coefficients.
The time when one would usually resort to humerics is when
one wants to compute one of the three large products

p-1
me(ﬁ) @
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X be the ring of polynomials in the indeterminateA polyno-
—) (5) mial is said to bemonic if its leading coefficient is 1. A
2 polynomial inK[x] is said to beirreducible if it can not be
written as a product of two nonconstant polynomials from
p-1 Xoisg K[x]. Thus every polynomial irK[x] can be written as a
Ps= H 2Tp(7>* (6) product of irreducible polynomials frofd[x].
=0 Given a numberta such thatp(a)=0 for somep e K[x]
whereP; is the product part of our expression fo. Letus we can find a unique irreducible monic polynomigl
focus onP, for a moment. Every zero d?, is of the form e K[x] of minimal degree such thaj(a)=0; we call this
20 +2B;, where ; is a zero of U 4(x/2) and 2 is a  polynomial theminimum polynomiabf « overK. The mini-
zero of Ty(x/2), see Appendix A, Eq(A4), and lemma mum polynomial ofa will divide any polynomial of whiche
A.4. In fact the set of zeros oP, consists of all such is a zero.
pairwise sums of zeros of JJ;(x/2) and T,(x/2). Given a polynomiap e K[x] we can form a new field by
We now make use of the following theorgithe theorem — adding the zeros gb to K. The smallest field formed in this
is not new but we include a proof for completenegecall ~ way is called thesplitting fieldof p and in this fieldp can be
that a polynomial is said to bmonicif its leading coefficient ~factored into linear factors. Given a numbersuch that

p-1
%:H2R<
i=1

is 1. p(a)=0 for somep e K[x] we denote byK(«a) the splitting
Theorem IIl.1. Let ’X) and Qx) be monic polynomials field of the minimum polynomial o. Given a polynomiap
with integer coefficients and definezf to be there is always a zero of p such that the first dép) powers
of a form a basis folK(a) as a vector space ové.
PeQw= I Il x-a-p), We let G(a) denote the set of automorphisms kta)
acZ(P) p=Z(Q) which fixes the elements &. From Galois theory we know

where Z(P) is the set of zeros of P and(Q) is the set of thatG(a) acts as a permutation of the zeros of the minimum
zeros of Q, here the zeros are not necessarily distinct. TheRolynomial of« and it acts transitively on the set of zeros.
P& Q is a polynomial with integer coefficients

Proof. From Ref.[8], p. 177, we know that there exist C. When Galois theory is not neededn=29
matricesMp andMg, with integer entries, such th&andQ
are the characteristic polynomials M, and M, respec-
tively. From Ref.[9], p. 30, we know that the eigenvalues o
the matrixMpo=Mp&® Mg, Wwhere® denote the Kronecker
sum, is the set of pairwise sums of zeros frBrandQ. Thus
we know thatP @ Q is the characteristic polynomial &flpq _
and since all entries ofpq are integers it follows thaP M= Yeu™ Neu
@ Q has integer coefficients. |

Corollary Il.2. Let P, Qq, and Q be polynomials with
integer coefficients. Then

(Q1Q) e P=(Q® P)(Qy® P),

where both Q& P and Q& P are polynomials with integer

coefficients. Yot = Yrort T Yoen+= Yot Ve =~ 2+ V-2 (8)
From corollary A.3 of Appendix A we know that both ] ) )

U,-1(x/2) and 2T,(x/2) have integer coefficients and so the Here we should keep in mind that,=0 and use this to

theorem implies thal, has integer coefficients too. Identical eliminate terms wherey, appears. In both Eq¢7) and (8)

arguments show tha; and P, have integer coefficients as We find that we now have indices gfwhich correspond to

In each of our three products we want to evaluate a poly-
¢ Nomial inXy or Xy.1. We recall thalX; =Y -2q; and for later
convenience we denote;=2¢;. Since our vy represent
2 cogtw/n) we have the following multiplication rule foy;:

which for squaring means that

V= WN=Yat Yo= Ya+ 2. (7)

Furthermore, we find that if we multiply, and v, we get

well. a term of the form

This result is very useful in our context since it means that
if we use numerics we can round our coefficients to integers CO’:'(t_ﬂ->
once theP;'s have been computed. Since the final polyno- n/2

mial is obtained after squaring tHg's we have effectively i .
halved the precision needed in our numerics. This also meaf§€aning that we have halved the denominator.
that if we can compute th®’s without numerics we can L€t us now look at the produét, and assume thatis of

avoid numerics at all stages of our computation. the form 2. Rather than computing, directly we compute
a sequence of auxiliary polynomials, using the multiplication

rules to simplify the products
B. Galois theory: Basic facts

. X
Before we proceed let us recall some of the basic facts of Up_l(—z"), l<sk=sp-1,
Galois theory(for a nice introduction to this topic see Ref. P1p-2= 2
[10)). Let K denote a field20], such ad) or R and letK[x] 1, otherwise,
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Pi-1k Pt-1n-k» O<k=p-1, and similarly for the other products can be performed in the
_ k=p splitting field of G,(x). Here we can use the multiplication
Pin-2c=) Pr-1py - rule defined earlier to compute products of ogras formal
1, otherwise. variables. We recall that the splitting field(a) of Gy, is

From our observations above it follows that eggpwill be ~ generated by some roat of G,. This means that once we
a polynomial inY and terms of the form cépr/2)/(n/2t™1),  have expanded the product By, we will have a polyno-
the cos terms. Thus our final polynomipl,;,, will have ~ 9roup G(e) acts transitively on the powers af and the
only cos terms of the form c6gr/2), that is, it will have ~ value of Py, is invariant under this action, we find that the
only integer coefficients. Nowpg,, , is our entire product coefficients of the powers ot in the coefficient ofYX must
and so is actually?;. This means that the product &Y, all be equal and our polynomial thus has terms of the form
will have no remaining cos terms and there is no need for oS bra ) | ¥¥
numerical evaluations. That this result will hold for any [a+ < : JaﬂY
order of multiplication follows from the commutativity of .
polynomial multiplication. The same argument applies forwhere theb; are either 0 or 1. We can now evaluate each sum
P, and P,. 2ibje to an integer and we will have our desired polyno-
mial, computed without need for numerics.

As a second alternative we can make full use of the fac-

D. When Galois theory comes into use gk .
torizations ofC, andS,_; to define products

Let us now look an of the formn=2p, wherep is not a

power of 2. In this case we find that each of our three prod- P1nk=Gn @ Gy, (18)
ucts can be rewritten as
P, = Uy 4(Y12) & Uy 4(Y/2), 9) P2nic=Fn ® G (19
P,=[2T,(Y/2)] & Uy (Y12), (10 Pank=Fn® Fio (20
with
P,=[2T,(YI2)] ® [2T,(Y/2)] (11)
. . i f Pi=1IPipw Po=IlPop Pa=IlPapk
or, in the terminology of Appendix A 3, hk hk hk
P1=S-1(Y) ® S-a(Y), (12) As before, each of these polynomials will have integer
coefficients and we can compute each polynomial either us-
P,=Cy(Y) & S 4(Y) (13) ing the multiplication rule as above or, for low degree poly-
p — il

nomials, making use of the methods described in the proof of
_ theorem lll.1. Breaking the polynomials into small pieces
Py =Cy(Y) & Cy(Y). (14) like this will save us a lot in memory usage and we will be
We now have several choices regarding how to compute ougble to return to integer coefficients at the earliest possible
Ps. stage. If we look at the products fét;, and P, we can note
A first way to compute our products is to use the obser-another possible optimization. These products can be rewrit-
vation of corollary Ill. 2 in combination with our knowledge ten as

of the irreducible factors o€, and S, to define several in- 2,05
termediate polynomials P =]1Pipi= (H Pl,h,k) 27758, 5(Y12),  (2D)
hk h<k

Pin=SaM @G =1181), (19 ,
Po=I1 Papy= (H Pl,h,k) 2XC YD) (22
hk h<k

P2n=Col(Y) @ Gr(Y) =1 C(Xa), (16)
We can thus compute only about half as many products and
B B then square the resulting polynomials instead. In geisean

Pan=Cp(Y) & Fy(Y) =11 So-2(Xai-), (17 6dd number we can take this even further by noticing that
where the products range over the set'storresponding to MW the factors of iL,(x/2) come in pairs, so that j(x) is
h: see Appendix A. We now have that a factor theng(-x) is also a factor. Thus we can compute

half of the products just by evaluating the other half ik -
Pr=[IPiy P=11Pspn, Pa=I1Pap.
h h h
. . . . IV. SUMMING IT UP, BOTH STRAIGHT
The corollary implies that eacR;;, will be a polynomial AND ROUND
with integer coefficients and so we can return to integer co-
efficients after eactP;;, has been computed. We also note  Our final step is to take the proper linear combination of
that all the computations performed when computig,  the VA’s in order to getZ,. Here we are faced with two
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choices. There is one choice of signs which gives us the V. IMPLEMENTATION: MORE OF THE
generating function for the set of Euler subgrapBg] of PRACTICAL DETAILS

sizek of C,XC,, this is the classical approach following Here we comment on how to perform some of the calcu-
Kasteleyn and Kaufman, however, there is also armthel%ltions described so far in racticré and how to verify that we
choice of signs which gives us the generating function forhave in the end the correcE[) answer
the number of states of enerdgyon C,,XC,. For a fixed '
energyk these numbers will be equal, apart from a factor 2,

for a large enough gridk<<min{m,n}, but for a finite grid A. Making the initial polynomials

they will differ for most values ok. To calculate the produaBa~3d) we first calculate the

The first thing to consjger here is the fact that we have tcbhebyshev polynomials JJ;(x/2) and 2T,(x/2), then evalu-
take a formal square roat; in order to get the polynomials ate them inY -y, wherey,= 2a; andY are considered formal
we wish to add. The square root of a polynomial is unique u%ariables. That is, we do not choose a value ffaat this
to the choice of sign, J.USt as It 1S fpr nu.mbers, and we nee tage. We end up with a polynomial with integer coefficients
some way to see which sign is right in our context. Th'sand in two variablesY and y. Since y represents

problem is solved as soon as we realize thitis in fact a 5 ¢o4t7/n) we have the following multiplication rule, as we
generating function in itself, counting weighted Euler S“b'already noted in Sec. Il C:

graphs of our grid7]. Using this fact we see that the first
k=min{m,n}-1 coefficients should be positive for all four YiYu= Yieu ¥ YVieu
VA/'s and so our earlier choice of sign is correct.

In order not to make our presentation too long we will
now make use of some facts from chapters 4 and 5 of Ref. yf: V= Yot Yo=Yt 2.

[7]. From Ref.[7] we know that if we take the linear com- ) ) _
bination Using this rule we can transform the polynomial to a poly-

nomial linear iny , %, ... -
1 reruTR e By using the symmetries of the cos function we can fur-
—(= VA + VA, + VA + Yy 9 Sy _ .
2( VAL VA A+ VA ther reduce the index of; to the interval Gst=<n/2. This

. . reduces the number gfvariables and the memory consump-
we get the generating function for the number of Euler subsjq, of oy calculation. This means that we are now working

graphs ofC, X C, and that these are typically considered i signed roots rather than the orginal roots.
egual in number to Ising states Qf a corresponding energy BY In order to make sure that all the represent nonrational
virtue of the purported self-duality of the square grid. Whatzeros, as required for our conclusions based on the Galois

is typically not mentioned is that this duality work only for
self-dual planar graphs such Bg,x P, the product of two group to apply, we also make use of the rules

paths, and in this particular case only for the infinite grid. Y%=2, Y2=0, Yysz=1.

(Note that a finite self-dual graph dd vertices has R-2 o ) )

edges, which is not the case Bf, X P,.) To see this let us These are the only |_nd|ces which correspond to rational val-

consider a cycle irC,,X C, which “goes around” the torus Ues Of the cos function, see, e.g., Ral2. _

on which the graph is naturally embedded, a noncontractible Should we wish to use one of the more optimized versions

cycle in the language of topology. In the dual graph thisOf the algorithm, and work witlG, andF,, instead, we can

cycle will correspond to a set of edges which does not fornfPtain the needed polynomials, e.g., by factoring the respec-

an edge cut and thus not to an Ising state on the dual grapfY& Chebyshev polynomials imATHEMATICA.

For cycles shorter thak=min{m,n} this can not occur and

so, by duality, the first and last—1 coefficients will be B. Multiplying the polynomials

equal. . .
However, the problem just described can be remedied in a Next we r_nultlply all _the polynom_lals and use the above

quite simple way. From basic topological graph thefity] rules_ tlo_multlpg/yt. In t,h's .\/\;]ay we wil ehnd up with a poly-

we know that an Euler subgraph of our grid will correspondnomla InYan oury's with terms of the form

to an Ising state on the dual graph if it either does not contain [a+ b(gbj %)]Yk_

a noncontractible cycle, being of kin@,0) in the terminol- i !

ogy of Ref.[7], p. 66, or contains an even number of suchW

cycles in each of the two possible directions, being of kind

(even,even Making use of this observation and the sign

and for squaring this simplifies to

e now evaluate the appearing sums of the f(ﬁ;bjytj,
either using known formulas for trigonometric sums such as

table on p. 66 of Ref[7] we deduce that 5<nx> . ((n + 1)x)
n co§ — |sinl —(——
_(\‘”Al + \r’/Az + V’AS + \‘”A4) 2 Coikx) - ’
2 k=0 . X
sin;

will give us the generating function for the set of Euler sub-
graphs of the right kind and so, by duality, the generatingor “cheating” by evaluating them numerically, rounding to
function for Ising states with a given energy. the actual integer, and substituting the values back into the
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polynomial. Using numerics at this stage is actually safe E. The final linear combination

since the sums have few terms, all of similar and small size. Finally we add our polynomials with either of the choices
The specific prder of multiplication descrlbed_ earlier for ¢ signs and we are now done.

the case whem is a power of 2 has some practical advan-

tages as well. Since at each stage we halve the denominator

we also reduce the number of cos terms in our polynomials. F. Checksums

This means that memory usage is reduced and since there are|, order to be reasonably certain that our calculated poly-

fewer terms we also save some time in the multiplication of,omial is correct we will also make some checksums. Here

coefficients. we focus onZ as the generating function for the number of

Whenn is not a power of 2 it is noteworthy that since the |ging states of a given energy, with exponents running be-
number of irreducible factors of the Chebyshev polynomialsyeen —2nnand ann

depend on the divisors of the side length of our grid we can  The first test to make is of course that the coefficients sum
end up with large differences in the amount of work neededy omn 5nd more generally we make use of the moments
to compute the partition function for grids of nearly equal uf the density of states to verify our calculations. The gener-

sides. For example, we expect the 510 grid to be significantlyiing function for the number of states with a given energy is
easier to handle than the 512 grid. Thus some care should tZ‘fG 2 and thus the moment generating function is

taken in the choice of grid side, when one is free to do so. 2(G, expK)) = Z(G,K).
Since the firskk=min{m,n}—1 Taylor coefficients of the

C. Substituting back to z free energyF(K) for four finite mX n grid coincide with the
To get back to a polynomial iz we have to substitute first k Taylor coefficientg ofF..(K) for thg infinite gri'd(see,
back e.g., Ref[15]) and F(K) is the exponential generating func-
tion for the moments, see Rgfl6], we have that the firsk
_a_(1+2) derivatives of expmnF..(K)] are equal to the first moments
b z1-2)° of our F(x).

. . L . . In fact we have
This is a rational function irz and we would like to avoid

working with rational functions and work only with polyno- amn di Z(K)

mials. This is accomplished by using the Horner form of the Mj= > ail= aK

polynomial [13]. Since we know that the answer is a i==2mn K=0

ponnoTiaI and we multiply by a large enough powertof  for j <k We can now calculate these moments both for the

=z(1-7°), we have the following scenario: Onsager solution for the infinite grid and for our polynomial
2p2 and if the firstk moments agree we have a very strong indi-

b™Y(Co + Yiey + -+ Yoz + Cop(Y)1) cator that no computational error has occurred.
e a_2 . 12 . . a2 In practice it seems easi(_er to calcu!@tﬁZ(K)/dKl]|K:0
=b" Co b G b Cop2-1 + Cop? by using the Taylor expansion of the internal enetg¥)
and evaluate

= co(a2b” 1 + ¢ {a?h? 2+ - [ + Cppa(8d)]}),

di
and by using the Horner rule for multiplication of polynomi- @exp<mnj L[(K)dK)

als we end up only using polynomial arithmetic. ) _ )
in the ring of formal power series.

A final test can be obtained by observing that the first
Taylor coefficients of(1/mn)n A, ... ,(1/mn)InA, are all
We now square our polynomials. After that we multiply equal to those ofF..(x). This is the case since each of the
A; andA, with appropriate factors according to E¢3a and  three polynomials count the small Euler subgraphs with the
(30). same weight.
Whenn is large, say 200 or more, some care should be
taken here. First, this stage is very suitable for paralleliza-
tion; second, since the coefficients of the polynomials now
become very large one should use an FFT-based multiplica- We have implemented our method for batk 2 as well
tion algorithm when multiplying the coefficients, such as theas general even using formal variables for; but not uti-
one implemented in Refl14]. lizing full factorization of the Chebyshev polynomials. We
Whenn is very large, say 500 or more with present daybegan by evaluating Chebyshev polynomials in the formal
machines, it becomes hard to handle the full polynomial. Thevariables inMATHEMATICA . Next the P; are computed, sub-
Ising polynomial fom=512 would need around 8 Gb of disk stitution is made, squaring is done and finally multiplication
space. However, since one is usually interested in some spesth the appropriate prefactors, all using four separate F90
cific range of coefficients rather than the whole polynomialprograms. In this way we have computed the Ising partition
one can settle for computing only the needed range in théunction for the followingn: all multiples of 4 up to 80, all
squaring process. multiples of 16 from 80 to 128, all multiples of 32 from 128

D. Squaring

G. What we have done
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up to 160, and finally fon=256 andn=320. -1

The smaller cases were handled on ordinary workstations. K= 75'(7/)- (24)
For n from 160 and upwards we used a linux cluster for the
squaring stage. Computation of tRe for the 256 grid was This is in line with the maximum term methdgee Ref[17],
done on an SGI Origin 3800, using the large integer libraried/ol. 1, Chap. 2.6 which could give us an alternative defini-
or Ref. [14]. The squaring stage for the 256 grid took thetion. Consider the terms in the sufivZ;a,Z. Given a num-
equivalent of 30 CPU days on an Athlon MP2000 berzwe assume that there is a maximum tex such that
+(1.667 GHaz.

For n=160 andn=320 we used the full Galois method.
The factor polynomials were computed usmgrHEMATICA  wherek is the difference in energy between two consecutive
on a Macintosh, the larger products giving tRg, and the levels of energy. From this inequality we obtain
substitutions were done on a Linux workstation, and the final
multiplications and squarings were done on a Linux cluster. Ak < X< =
For n=320 the final multiplications and squarings took a 3 Ay
total of 165 CPU days. The polynomial itself takes up . 5 .
1.86 Gb of disk space. The polynomials can be downloadel} @S0 follows, as an aside, thala.<a;, i.e., the se-
via the papers homepage at URL http://abel.math.umu.sé_]/ufz“nce is log concave at ener_gyAss_ummg now thatz
Combinatorics/ising.html =e" we have thaK is a number in the interval

Here we can also mention that in the course of computing 1 ay a
these polynomials our checksums as described above have Eln_- <sKs=7In—,
identified one faulty compiler, a malfunctioning hard disk as & Bk
well as a bug in a well used standardrRTRAN package—a where we let the lower bound be denotedkbgnd the upper

testimony to how sensitive to software and hardware errorgoundK. Consider now the derivative which we define to

an exact computation like this is, as well as to the accuracyg
of our checksums.
S(i + k) ~ S( i )
S’<i+k/2>— 2mn 2mn
k/2mn

a2 M =az = au2™

VI. DEFINITION OF QUANTITIES

2mn

Having computed the partition function for a number of 2mn -2 a _
grids, our aim is now to do an analysis of the data. The =m(|n g+~ 1In ai)=T|nf=—2K-
quantities divide into two groups: those expressed in terms of Bk
the couplingK and those expressed in terms of the energy Note that we will associate the derivative with the middle of
To the first category belongs the free enetgk) and its  i/2mnand(i+k)/2mnsince we are dealing with data at dis-
derivatives, the second category contains the enti®@y  crete points, though this will make little difference for large
and its derivatives. Since the free energy depends on thgrids.
entire sequence of coefficients whereas the entropy de- As the grid grows we expect thit— K makingK a well-
pends on only one;, we will see some different behavior. defined number in the limit. Alternatively we may, as we
Note that asymptot|cally we may t.rans_late betwéeand a have done, associakewith the upper bound. This has the
correspondingy thrpugh the relationy=1/(K)/2. qu €X" penefit of making the coupling well defined for all finite
ample, we may writeS(ve) =F(Ko) ~K UK,) to obtain the o tems rather than a number in an interval that exjsis-
asymptotic value of the entropy at the critical point, but th'ssibly) only in the limit.
does not throw any light on how this value scales with the
size of the grid. Quantities depending on couplikgare
written in script, e.g.,F(K), while those depending on en- ) N N
ergy, e.g.S(v) are written in a normal style. Whenever loga-  For the IE)hysmal quantities we evaluate the partition func-
rithms are used they are natural logarithms in base tion Z in " and write Z(K) for simplicity. We assume the

Boltzmann distribution on the states, that is,

B. Physical quantities

eK E(o)

A. Entropy and coupling Pr(o) = and Z= 2 eKE(0)

o

We define the entropy at relative energyi/2mn as
so that the sum of probabilities becomes 1. The derivative
In a; then becomes

S(V) = m (23) 07|n Z(K) ) i’_ EiaiieiK

= i Pr(i) =(E),
Kz z 2 P =(B)
Should we desire the entropy at some energy whgig not
defined, then we will happily circumvent this problem with where(:--) denotes the expected value. Analogously for the

linear interpolation. The coupling is defined as second derivative we get
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#InZK) zZ (Z’ )2 (E? (B2 = var®)
—_— == — = - =-va s
IK? zZ \Z 1.6}
that is, the variance dE. We define the following physical 1
quantities: -
1 1.2t
free energy F(K)=—1In Z(K),
mn
05 15 2
_ dF
internal energy U(K) = —, 0.8}
IK
. LU 2f
specific heat C(K) =K —,
aK
1.5}
entropy S(K) =F-KuU.
We try the reader’s patience here somewhat by using a non- |
standard, yet clean, simple, and dimensionless definition of
the free energy and entropy. That they are internally consis-
tent follows, again, from the maximum-term method. For a o.s}
large system we simply expect a given couplkdo corre-
spond to a certain enerdy and a term that dominates the
partition function, thus having log(K)=~In aze“E. This e = T 5
gives
FIG. 1. (Color onling Free energyF(K) (top) and internal en-
FK) ~ iln agefE= In ag + KE =S+ KUY ergy U(K) (bottom) vs K/K for the infinite grid.
mn m mn
= = —_ 2
a
C. The Onsager solutions and the specific heat for the infinite grid, depicted in Fig. 2,

For completeness we shall state the Onsager solutioris
which we will view as the limit functions am,n—o. Let
K1 be the complete elliptic integral of the first kind defined C(K) = ZKz coth(2K)
a

by

2
Kq(x) = fo (1 -x sin §)"Y2de. X {2/61(z2) - 2K5(7%) - 2[1 - tanH(2K)]

Let IC, be the complete elliptic integral of the second kind ><<7—T +K4(P)[2 tank(2K) - 1]”
defined by 2 1

/2 . . L.
_ i 172 We shall need the following constants, whéGgis the criti-
Kalx) = JO (1-xsin 6)"=do. cal coupling and5~0.915966 isCatalan’s constant:

The free energy for the infinite grid, depicted in Fig. 1, is 1 -
% g P J Kc.=2In(1 +v2) = 0.440687,

1 (7 (7 2
FK)=In2 +—2J f In[cosH(2K) - sinh(2K)
2mJo Jo
In2 2G
X (cosu+ cosv)]dudy. F.=F(Ky) = - + — =~ 0.929695,
o
Definez as
_ 2 sinh(2K) U= UK =2 =~ 1.414214,
~ cosR(2K)
Then the internal energy for the infinite grid, depicted in S.=S(Ky) = |”_2+§_ V2K~ 0.306470
Fig. 1, is v 2 x ©c '
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TABLE |. Values atK; and extremal data of.

N FuK) UKD SaKo  Cu(Ko) maxC, K,

4 0.970120 1.56562 0.280170 0.78327 0.81646 0.410012
8  0.939715 1.49159 0.282392 1.14556 1.19184 0.423374
12 0.934143 1.46596 0.288114 1.35295 1.40391 0.428687
16 0.932196 1.45306 0.291850 1.49870 1.55220 0.431498
20 0.931296 1.44531 0.294367 1.61116 1.66628 0.433239
24 0.930807 1.44013 0.296159 1.70273 1.75898 0.434424
28 0.930512 1.43643 0.297494 1.77997 1.83706 0.435282
32 0.930320 1.43366 0.298526 1.84677 1.90451 0.435933
36 0.930189 1.43150 0.299346 1.90561 1.96386 0.436444
40 0.930095 1.42977 0.300014 1.95818 2.01686 0.436855
44 0.930026 1.42836 0.300568 2.00570 2.06473 0.437194
48 0.929973 1.42718 0.301034 2.04906 2.10839 0.437477
52 0.929932 1.42618 0.301432 2.08891 2.14850 0.437718
56 0.929899 1.42533 0.301777 2.12579 2.18561 0.437925
60 0.929873 1.42459 0.302077 2.16012 2.22013 0.438106
64 0.929852 1.42394 0.302341 2.19221 2.25239 0.438264
68 0.929834 1.42337 0.302575 2.22235 2.28269 0.438403
72 0.929819 1.42286 0.302784 2.25076 2.31123 0.438528
76 0.929806 1.42240 0.302972 2.27762 2.33822 0.438639
80 0.929795 1.42199 0.303142 2.30310 2.36381 0.438740
96 0.929765 1.42070 0.303682 2.39362 2.45470 0.439060

FIG. 2. (Color online Entropy S(K) (top) and specific heat 112 0.929746 1.41977 0.304072 2.47010 2.53145 0.439289
Cn(K) (bottom) for n=16,32,64,96,128,160,256,320 and the in- 128 0.929734 1.41908 0.304366 2.53633 2.59789 0.439462
finite grid vsK/K.. 160 0.929720 1.41810 0.304781 2.64695 2.70880 0.439705
256 0.929705 1.41664 0.305408 2.87979 2.94210 0.440071
320 0.929701 1.41616 0.305619 2.99027 3.05275 0.440193

VII. THE FREE ENERGY AND ITS DERIVATIVES

Henceforth we will only consider the casg=n. The val-
ues atk;, of the free energy etc. are show_n in Table | a'Q”QeIIiptic theta functions 6,=6,(0,e"™)~0.913579, 6,
with the maximum value of and the location of the maxi- =05(0,e"™) ~1.08643, and¥,=0,(0,e™™) ~0.913579.
mum. We denote b, the location of the maximum df, If we fit a straight line through the origin and the last
_ InFig. 3 we show howr andi/ differ from their respec-  oint (n=320 for the free energy it will have formula
tive critical values as increases. It was shown by Ferdinand  63991% wherex=1/n2. which matches well indeed with

and Fishe18] how these differences should behave: the value in Ref[18]. Analogously, for the internal energy
we get 0.62243%, wherex=1/n, again only a slight devia-

tion in the sixth decimal.
0.639912

1 _
FalKe) = Fe~ ;In(21’4+ 271 ~ o A. Specific heat

The specific heat should go to infinity with logarithnic
speed if we stay close tH.. It was shown by Onsag€B]
that

2 6,66,  0.622439

Un(Ke) =Ug~ nO,+ s+ O e maxCp..=AInn+B,+0(1),

2 w\2
A=—{In cotg ~ 0.494539,
0.274301 0.639912 7
+ >,
n n

Sn(Ko) - & =- o512

B.. :A<In— +ye - 7—7) ~ 0.187903,
T 4

where the last formula follows from our definition of entropy where ye=0.5772 isEuler's gamma. However, it should
S=F-KU. For the constants,, 65,6, we have used the be noted that the B-constant depends on the shape of the
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0.00016 |

0.00014 e

0.00012 019

0.0001 Ule

0.00008 0.17

0.00006 0.16

0.00004 0.15

0.00002 0 14

0.00005 0.0001 0.00015 0.0002 0.00025 0.13

0.01- 0.0020.0040.0060.008 0.01 0.0120.014

o oosl 0.0020.0040.0060.008 0.01 0.0120.014
-0.0005

0.006f
-0.001

0.004¢
-0.0015

0.002}
-0.002

0.0020.0040.0060.008 0.01 0.0120.014 ~0.0025 e
FIG. 3. (Color onling Top: Fn(Ko)-F. vs 1/n°. Bottom: FIG. 4. (Color online Top: maxC,~A Inn and Cy(K.)
Un(Ke)=Ug vs 1/n. -Aln nvs 1/n. Bottom:K},-K. vs 1/n.

grid. Onsager’s grid has shape< . Also, it will depend i, Ref. [18]. The lower curve show&,(K.)—A In n together
on whether we are looking at the critical point or at the it jts similarly fitted line 0.138149-0.1708¢6a near-
maximum. For ar(nxn) grid we have, and we quote this perfect match with the constant prescribed above. The bot-
from Ref.[18], tom panel of Fig. 4 shows hoW, differs fromK_. A straight
maxC,=A In n+ B+ 0(1), line fitted throug_h the origin ant_j the last point=320 gives
—-0.157888&, again a small deviation. In the plot we use the

C(K)=AlInn+B,+o(1), line —0.15878&, a very good fit.

. ~0.3602%, - 0.15878 VIIl. THE ENTROPY AND ITS DERIVATIVES

Kn=Ke~ n n ' In this section we will do a more thorough investigation
of the entropy as defined in E¢R3). To obtain limit curves
whereB,,,5~0.201359 and

we will need to translate between relative energgnd cou-

\2 pling K. This is done with the relation=1/(K)/2 where
(In COtg) 22 02020% U(K) is Onsager’s formula and this also gives us the critical
B,=B, - —(—E 6.1n 6 + #) energyv.=1/y2~0.7071. The plots in Figs. 5 and 6 shows
o+ O3% 04\ iz b2+ O3+ 04 the entropy and its derivatives with respect to the relative

~ 0.138150 energyv. By definition we haveS=F-Ku. If we then asso-
' ' ciate S(K) with »(K) then we can plot a limit curve of the

The authors of Ref[18] do not give exact expressions for entropy versus the relative energy. By definition, we also
Bihax OF the constant 8.36029above. have
A curious fact which we would like to mentigisee Refs.
[3] and [18]) is that for an oblong grid such as &nXx ) -1,
grid or indeed, perhaps surprisingly, &mx 3.1393n) grid K= ?S (v)
the difference betweeK* and K, is of the order Inmn/n?
rather than 1. and since
So let us compare our data with theory. The upper curve
of the top panel in Fig. 4 shows m&x—A In n versus 1h. c= Kzﬂ _ (—_1
A straight line fitted through the last two pointén T 9K\ 2
=256,320 gives 0.201274-0.3779%5wherex=1/n. Our
constant deviates in the fourth decimal from #g,, given it follows that

1
aKloU’

2
S’(V))
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-0.5} =3
=75

-1t
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FIG. 6. (Color onling S(»), top, and Qf)(v), bottom, for

FIG. 5. Sy(») and Shygv). n=16,32,64,128,160,256,320,

L 1 ~[S )P (= TLS0E  ZaKe o
C(v)=-[S (W] - s Sh(ve) Cn(Ko) Alnn 2Inn
4 1, S'(v)
73(1/)(91//87/[

and of course the same result for the maximgnFigure 8
though this is of course only valid for an infinite grid. We 9ives that this could be a reasonable estimate for very large

can use this last formula, though, to give us a limit curve fordrds though not fom<1000. Infact, the maximum has

the second derivative of the entropy, i.e., asyptotically wePnly started to approach zero wher 32. . _
have In Fig. 7 we see how the entropy at the critical poigt

and its derivative approaches their limis and -X., re-
spectively. Beginning with the entro,(v.) one might ex-
(v) = -4 pect that its behavior would be similar to that of the free
UK’ energy. However, whereas the difference between the free
energy and its critical value is of the orderri/ the corre-
sponding difference for the entropy seems to be slightly

which is then plotted versus the energK). Continuing in  larger, possiblyn™/5, For the derivative this difference seems

the same spirit with the third derivative we obtain the limit 1 be of the order oh™. In the top panel of Fig. 7 the
differenceS,(v) - S versusn™¥® is displayed together with

the straight line —-1.9% The bottom panel showS§/(v.)
(1) = 81" (K) +2K, versusn~54 together with 0.42%
(U (K7 The top panel of Fig. 8 shows m& versus 1/Im with
the fitted polynomial —1.56+0.32%?+5.4x® and the straight
line —mx/2. A similar behavior is of course found f&(v.)

These last two formulas are used in the plots of Fig. 6. but is better fitted by the polynomial ~1%60.17%+4.3¢.
Figure 6 shows how the second and third derivatives beThe bottom panel shows, -, versusn™>® and the line
have neaw.. Apparently the second derivative approaches 0-0.44x, fitted through the origin and the last point. It should

from below. Since the specific heat goes to infinity Kis also be stated that the fourth derivativesabbviously grows

— K, _for an infinite grid, which corresponds te— v, to the negative infinity; see the bottom plot of Fig. 6 and the
=1/\2, while S —-2K_ it is clear thatS’—0 at that point corresponding column in Table Il. Its growth rate seems to be
also. Actually, the formula above suggests the followingon the order oh!®*®or thereabout. Assuming this, a straight

rough estimate: line fitted through the last four points gives that the fourth
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TABLE Il. Entropy data.

n Sh( Vc)

_S;(Vc)

-Si(v) -maxs; -§(v;)

12 0.289122
16 0.295499
20 0.298843
24 0.300829
28 0.302111
32 0.302991
36 0.303622
> 40 0.304091
44 0.304450
48 0.304732
52 0.304957
56 0.305139
60 0.305290
64 0.305416
68 0.305522
72 0.305612
76 0.305690

0.001

0.002

0.003

0.004

0.005

80 0.305757

FIG. 7. (Color onling Top: S,(v)—S vs n™¥°. Bottom: S/(1) 96 0.305954

+2K, vs n7>4,

derivative aty, is -65-1.08*%5 see top plot of Fig. 9. The
bottom plot showsK,(v)-K, for each grid versus 22
and the line -0.24Q

112 0.306077
128 0.306161
160 0.306263
56 0.306381
320 0.306411

N

0.855602
0.864776
0.869474
0.872249
0.874054
0.875309
0.876225
0.876920
0.877463
0.877897
0.878252
0.878546
0.878793
0.879004
0.879186
0.879344
0.879482
0.879604
0.879974
0.880224
0.880403
0.880639
0.880962
0.881060

0.328177
0.340533
0.341183
0.338620
0.334909
0.330880
0.326890
0.323030
0.319365
0.315910
0.312658
0.309620
0.306759
0.304070
0.301537
0.299146
0.296885
0.294745
0.287189
0.280900
0.275552
0.266858
0.249667
0.242063

0.242751
0.275587
0.288223
0.293102
0.294729
0.294656
0.293712
0.292304
0.290661
0.288886
0.287076
0.285273
0.283497
0.281763
0.280082
0.278455
0.276878
0.275359
0.269811
0.265004
0.260798
0.253768
0.239297
0.232702

87.6930
95.2653
104.431
119.379
132.302
146.386
161.361
175.026
189.577
204.967
221.071
236.062
251.792
268.220
283.638
299.752
316.558
333.999
402.297
473.012
547.528
703.101
1219.53
1603.41

0.652778
0.664062
0.675000
0.677083
0.681122
0.683594
0.685185
0.687500
0.689050
0.690104
0.690828
0.691964
0.692778
0.693359
0.694204
0.694830
0.695291
0.695625
0.697266
0.698501
0.699341
0.700625
0.702759
0.703496

IX. THE LOG-CONCAVITY POINT

Here we take a quick look at a finite-size phenomena
which occurs at high energies. If we consider the plot in Fig.
10 of the couplingK;¢(»)=-S;4(»)/2 we note an irregular
behavior at about~0.87. For larger grids this will move

closer to 1.

This is the energy where the sequergetops being log

concave. We will define this point as the largesti/2n?

such thata;_4a;,,=<a? and denote it by,. The table in Fig.
10 shows where this energy is located. In Fig. 11 we see 1
-7, versusn 115 together with the line 3.96 The coupling
Kn=-S,/2 corresponding to this energy is displayed in the

-0.002

-0.004

-0.006

-0.008

-0.01

-0.012

-0.014

FIG. 8. (Color onling Top: maxS, vs 1/Inn. Bottom: v;—vc

vs N5/,

0.005

0

.01

0.015

0.

02

0.025

0.

+0.15%.

03 bottom plot with the line (through n=256, 320 0.030

ThatK in this case grows a®(In n) is perhaps not very
surprising. Note that for high energies we know the sequence
of a. Counting backwards from=2n? the a; sequence be-
gins2,0,2n%,4n?> n*+9n?,... . It seems also that the largest
value of%ln[ai/(am)] is obtained fori=2n?-16 giving the
coupling valuezIn [(n?+9)/4]~ 3In n.

X. THE LARGEST COEFFICIENT

In this section we will take a look at the largest coefficient

of the partition function. For all grids we have looked at, this

position is held by coefficierd,. However, proof that this is
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n| by Kn(on)
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-400¢ 40{0.962500 0.616059
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80(0.984375 0.714141
-1000¢
9610.987847 0.743054
-1200¢

112(0.989796 0.763426

1280.991455 0.784164

0.002 0.004 0.006 0.008 0.01 0.012
-0.0005 160{0.993594 0.818101
_0 001 25610.996460 0.888827
32010.997344 0.923393
-0.0015
-0.002
0.8}
-0.0025
-0.003 0.6} .
FIG. 9. (Color onling Top: S¥(»,) vs n'¥15 Bottom: K,(v;)
—K, vs n721/20 0.4
generally true is still lacking. It seems fairly safe though to 0.2} .
assume, as we will here, that max=a,. We begin by set-
ting up two easy bounds. First, obviously we have

. 0.2 0.4 0.6 0.8 1
= =2,

% 2 & FIG. 10. (Color onling Top: Data on7,. Bottom: K,(v) for

n=16 andn=co,

Second, the energy levels can take the values

0,+4,...,42n°-8),+2n? i.e., there ar@’-1 energies. If 5 o . 1
we distribute the mass™on these levels then some coeffi- ay= ?—{1 +—+ O(—sﬂ .
cient must be at least average, i.e., v n 8n n

o' o’

Z < <ap. XI. ASYMPTOTICS

n> n’-1

Here we collect all statements on asymptotic behavior
It would seem appropriate to guess thgtis of the interme-  which are spread out through the text. Exact formulas for the
diate order 2°/n. As we will see, mutatis mutandis, this is first four are given elsewhere in the article.

just about perfect. The correct quantity to study is F(KJ) - Fo ~ 0.639912°2,
Qu= 7 1
n= ( n2 ) ' U(Ko) —U.~0.622439n",

n?/2

Sp(Ko) — S =-0.27430071+ 0.63991272+ O(n~3),

where, by Stirling’s formula
Cn(Ky) =0.494539 Im + 0.138150 +0(1),

( n? ) \/52“2
n22)  Van’ maxC, = 0.494539 Im + 0.201359 (1),

that is, the guess from above.

The table and_the plot in Fig. 12 give rather strong evi-
dence thaf,,— y2. They are well fitted by the Iiné\@x. To  The following asymptote approximations should be consid-
conclude, we conjecture that ered conjectural, i.e., guessed up to the given precision. A

K. - K.~ —0.15878&.
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FIG. 11. (Color onling Top: 1-7, vs n"1915 Bottom: K(7y,) Vs
Inn.

similar caveat applies to the exponentsmithey are simply
chosen among the rationals with small denominator:

S(v) - S ~-1.91n7%5,
Si(ve) + 2K, ~ 0.425175/4,

-156 0.17 43

"(v,) =~ + +
S(vo Inn Inn In®n’
-156 032 54
max §,(v) = + + :
S0 Inn In’n In®n
max §/(») ~ §i(vd) = 5~
v Y o nn’

514)(1};) — 1.03119/15,
Kn(vp) = Kg ~ — 0.24G172Y/20
vy = vo ~ — 0.4427%/6,

1-7, ~ 3.9 1915,

K.(¥,) ~ 0.155 Inn,
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APPENDIX A: CHEBYSHEV POLYNOMIALS
We will now develop some facts about Chebyshev poly-
nomials that we make use of in the main body of the paper.
For further information we recommend R¢19]. We begin
with some basics.
Definition A.1 The Chebyshev polynomials of the first
kind are defined as

T,(x) =cogn arccosx) =cosnh, x=cosfh. (Al)

Definition A.2 The Chebyshev polynomials of the second
kind are defined as

046104-15
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Ui = sin(n arccosx) }T’(x) _sinng
n-t V1-x2 n" sing’
X=C0s0.

A useful fact which follows directly from the definition is
that

T [cogx)] =cognx).
Since T,(x)=cosn# and cosnd;=0 for

b= g = 2j-Dm
(A '

ji=1,...n,
! 2n :

we see that the points

2j-Dm
os————,

— e _ (n —
=&/ =cosh;’'=c
gl gJ J 2n

satisfy
To(§)=0, j=1,...n.

From this we can factof,(x) as

(A2)

(2 - 1)77)
g 7
2n

T, =2" ] (x -co

j=1
andU,(x) as

U, =211 (x - cosan”> . (A3)

=1 1

1. Extremal points

It is also clear from EqtAL) that|T,(x)| <1 if [x|<1. The
points in this interval, whefT,(x)| =1, are called thextrema
of T,(x). We know that coksr=(—1)% for any integerk so if

kr
b= =,

n

k=0,1,...n,
the points
k
M= n(k“)zcos¢(k”)=cosf, k=0,1,...n

satisfy
Tn( 7]k) =(- 1)k!

This gives us the following products on closed form:

k=0,1,...n.

}I 2(x - cosz%k) =2[T,(x) - 1] (A4)
=1
and
I1 2(x - cos@) =T, +1].  (A5)
k=1

PHYSICAL REVIEW E 69, 046104(2004

2. The coefficients

If [t|<1 then
2 tneinoz E (teiﬁ)n: i
n=0 n=0 1-te’
1

" 1-t(cosnf) +i sinn@

_1-tcosnf#+ti sinng
(1 -t cosnd)?+t?sinng

1-tcosné+ti sinné
1-2t cosng+t?

On equating the real parts, we obtain

1-tcosé
Zt”cosnb’zz—
n=0 1+t°-2tcosé
or
1-1tx
—— =2, t"T(%,
1-2tx+1? EO X

the generating function for ;{x). Using the definition we
find the generating function for \0x):

1

PRk > t"UL(%).

n=0

From this we obtain the following lemma.

Lemma A.3. The polynomials g%/2) and U,(x/2) have
integer coefficients

Proof. Using the generating function for.(X/2) we have

1 11
T 1-tx+t2 1-t(x-t)

X
1-2+t?
2

= 2 [tx-9]= 2 tix- ¥
k=0 k=0
and for fixedn the coefficients fort " are polynomials inx
with integer coefficients. Multiplying by 1t{x/2) gives the
result for 2T,(x/2). [ |

We can use the formula in the proof above to explicitly

give the coefficients for the Chebyshev polynomials as

s n (n-kK
I 1k n-2k
Ta) =52 ( 1)n_k( ‘ )(2x) :
In/2] _
U= (- 1)k(n k)(zx)“-ZK.
=t K

3. The irreducible factors

We will now describe the irreducible factors of the
Chebyshev polynomials. We will state the results without

proofs, which the interested reader can find in R&€)].
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Rather than factoring the Chebyshev polynomials them- S(x) = 11 Gri(X).
selves we will give the irreducible factors o€, (x) hl20¢+D]i<h<k
=2T(x/2) and S(x)=U,(x/2), for k>0. From lemma A.3
we know that these polynomials are monic and have integer
coefficients.

Given an odd divisoh of k, let

4. Two useful identities

We will also need the following facts about the Cheby-

3 2j-Dm shev polynomials.
Fnk() = e 2__11;<[_h . x=2cos| —— : Lemma A.4Let T,(x) and U,(x) be the Chebyshev poly-
DL 207 15]= nomials of the first and second kind. Then fee b we have

Now Fp,(x) will be an irreducible monic polynomial with the following. For even indices of,%)

integer coefficients and
2 Tomen(¥) = 1] = 40 = DUAX)2[ Ton(X) + 1]
C(x) = H Frx(X).

, _ a2
hlk,h odd =4T.(X)

d for odd indi f
Given a divisorh of 2(k+1), let and for odd indices of fx)

Ghi(X) = I1

GCD[j,2(k+1)]=h,1<j<k

|: < im ):| 1+ Tonaa(X) = (1 +X)[Un(x) - Un—l(X)]Z,
X—2co 1

_ —(1— 2
Here Gy, (x) will be an irreducible monic polynomial with 1= Toma(¥) = (1 =x)[Un(X) + Up-1 (9]
integer coefficients and Proof. Even indices:

2(n+1) 27Tk
2 Tomep(¥) — 1] =220 T <x cosn—>

k=1 2(n+1)
n 2n+1
—on Tk ok __an+D)\(  2m(n+1)
-2 g <X N+ 1)2 k:Hn+z <X O+ 1)22(X cos (n+1) )(X €08 (n+1) )
2n
=4 = UL 2 To(x) + 1] = 2" (x - cos%>
k=1
_ 42 Y] (X_Co m(2k— 1))2n . H ( S 1)) 4T,
k=1 2n k=n+1 2n

Odd indices:
(L£X)[Un(®) F Upg (012 = (L £X)[UA(X) + Uz 4(¥) F 2Un(0Up-1(0)]

2,101+ [1 = TA0] F 23[To(X) = Tanea (01}

1+
= 2 = M a0+ 1~ HTan0 + 11 X o)

1+
= 1 j;(z{(l FX) - %[szz(x) + T (X)) T2n+1(X)}

=1z = 3[Tanea(30 = Ton(X) + Tan(0)] £ Tonea(9)}
1z
- 1 2[(1 T X) = XTn42(X) £ Tonsa(X)]
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1+
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= T AT+ (L7 X Toa0)

1_

_ (1+x)(1-x)

1-x2

APPENDIX B: AN IMPLEMENTATION
IN MATHEMATICA

In this appendix we demonstrate/aTHEMATICA program

[1 * T2n+1(x)] =1z T2n+1(X) . |

Cance]bCe*RemoveCoorod,c,acyl.Y —>al2/b]
[ {a—>(1+z[2),b—>7z(1-2z[R)}
]

The function “Multiply” implements the multiplication

which implements some of the calculations discussed in thg,q squaring rules for,. “SymReduce” uses the symmetries
main text. This implementation works for grids with even of o5 to reduce the number af variables needed. “Re-

siden and uses numerical evaluation at the stage wheie

moveCos” uses high precision floating point arithmeté

eliminated. The only optimization from the paper used hel’%ccuracy “accl to evaluate the cos functions and
is our formulation of the products in terms of Chebyshevthen rounds the answer to the nearest integer. Finally,

polynomials. For sides less than abaut 80 it is actually

“TakeProduct” takes a list of polynomials in the variables Y

faster to use a direct numerical evaluation of the cosineand c(where c[i,j] represents 2 céisr/j), multiplies them
terms before the multiplication is performed. However, oncetogether, evaluates the cos functions using “RemoveCos,”
we get to arounah=80 the need for high precision numerics and finally does the substitutioi— (1+2%)?/z(1-2%) while
makes that numerical version slower than the version showmultiplying with a high enough power a1 -27°):

here.

To be able to check the result later we also need the func-

A notebook demonstrating the Galois method is alsdion U(K) defined as follows:
available at the paper's homepage at http://abel.math.umu.se/ U[K_]=Fullsimplify[

Combinatorics/ising.html

Let us start with the definition of the functions we will use

later to compute our three produd®s, P,, andP,.
Multiply [p_c,c]: =
(* Applying the product rule for gamma_t*
Module [{i, j, m, b},
FixedPoint[
Expand[#]
1.4
Power|[c[i_,m ],b_]:>
(c[i,m])OMod[b,2]* (2+c[zi, m])CFloofb/2]/;b>=2,
c[i_,m_J*c[j_,m_]:>c[i+]j,m]+c[i—j,m]} &,
53]
SymReducp_,c ]:= (*Reducing by symmetrieg*
Module [{i,m},
p
[.c[i_,m_]:>c[—i,m]/;i<0
/l.cfi_,m_]:>c[i—2m,m]/;i>m2m
l.ci_,m_]:>c[2m—i,m]/;i>m
1.4
c[i_,m_]:>0/;2i==m,di_,m_]:>1/;3i==m,
c[i_m_]:>-1/;3i==2m,dm_,m_]—>-2,d0,_} —>2
}
]
RemoveCop_,c—,acc ]:=
Modul€{i,j,x},
p/.di_,j_]:>N[2*Coqi*Pi/j },acd/.x_Real>>Roundx]
]
TakeProdudpolys ,e Y _,c ,z ,act=
Modulg{a,b,prod,
prod=Fold[SymReducpMultiply [#1*#2,d,c]&,1,polys];

Coth2K](1+2/Pi*EllipticK [z[2](2*Tanh 2K][2—1))

/.z—>2*Sinh[2K]/Cosh 2K][2,ElemeniK,Reald

]

Let us do a worked example of how to use these functions
to compute a partition function and check the result. We
begin by defining the size of our square grid:

Goiaiaiaiaiaisiuieil 1] o1V | seieieieieiaiaiaiaiois )

n=50.

This is the only parameter we need to set ourself, every-
thing else can now be calculated from this. We next calculate
some constants and the two polynomialg_{0X;/2) and
2Ty(X/2) for a general:

(*************** I *kkkkkkkkkkkkk )

p=n/2;

acc=FlooffN[p[2*Log[10,2]];

UlY_t ]=

SymReducpMultiply [Chebyshevp—1,(y—a[t,n])/
2],al,al;

TIY =

SymReducMultiply [2*ChebyshevTp,(Y —alt,n])/

2],a],a]

We can now calculatd;, making use of our functions
“TakeProduct” and “SymReduce”. This is done in two steps
since we need to multiply with the appropriate “prefactors.”
In this casep?~-1 is a large enough power afl-2z?).

(************** Al ) *kkkkkkkkkkkk )

Module[{Alprod,AL},

Alprod=TakeProdugt

Tabld SymReducpJ[Y,2i],a,{i,0,p}]

,p2—1,Y,a,z,acc
I;
Al=Expand
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(1+2z[R)2(—1—2z+2z[R)(—1+2z+z[R)*Alprod[2 TABLE IlI. Timing data.

I;

Z=Al, n QOur’s Beale'’s Ratio

]

We now calculate, in much the same way a&,. The 8 0.1 0.5 S
differences are the prefactors and that now the power of16 2.0 11.0 5.5
2(1-7%) is p?-p for the bulk of the polynomials and=2p 24 22.0 95.0 4.3
for the factors. We also addA2 to Z since A,=A; for a 32 143.1 622.7 4.4
square grid and we d.o not want to waste precious time cal-40 8355 3010.5 36
culating Az separately:

(FRRERRKERRAD | JRRRERRRRS ) 48 2675.2 11223.9 4.2

A2prod=TakeProdugt 64 20006.5 108331.3 5.4

TablgSymReducgr[Y,2i],al,{i,1,p—1}],

p2—p,Y,a,z,acc

I;

A2pre, TakeProdugt ]

{SymReducfr[Y,n],a,SymReducgl[Y,0],a]}, Finally we verify the correctness of our resulting polyno-

n,Y,a,z,acc mial by calculating the moment generating function for the

1; distributions of energies and compare it with the infinite grid:

A2:Expan¢A2pre*A2pr0d]2], (************** Check *kkkkkkkkkkkk )

Z=7+2*A2, s1=Simplify/@IntegratgSerie$U[K],{K,0,n—1}],K];

] s2=Simplify/@SeriefExpn[2*s1],{K,0,n—1}];

A, is the simplest term to calculate since it does not need s3=Simplify/@ SeriefZ/(2z2)(((n(2)/.z—
any prefactors and such. The powerzof -7?) is p?: >Exp[K]12,{K,0,n—1}];

(**********A4 )********* ) 52: — 53

Module {Adprod,A4}, True.

Adprod=TakeProdugt As you can see, the two expressions are equal and it is

Tabld SymReducfr[Y,2i+1],a],{i,0,p—1}], unlikely that any computational errors have occurred. In

p2,Y,a,z,acc Table Ill we give timings for various grid sizes run on a

1; Linux machine with an Athlon 2000+ and 2 Gb RAM. We

Ad=ExpandAdprod2]; have also included timings of Beale’s implementation, run on

Z=Expand(Z+A4/2]; the same machine.
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