$$
|Y| \geq \sum_{k=0}^{[n / 2]}\binom{n}{n-m+k}=\sum_{k=0}^{m}\binom{n}{k}
$$

with equality only if $\alpha_{j}=\delta_{j(n-m)}$.
D. Kleitman,

Department of Physics Brandeis University
Waltham, Massachusetts 02154

A Short Proof of Sperner's Lemma

Let S denote a set of N objects. By a Sperner collection on S we mean a collection of subsets of S such that no one contain another. In [1], Sperner showed that no such collection could have more than ${ }_{N} C_{[N / 2]}$ members. This follows immediately from the somewhat stronger

Theorem. Let Γ be a Sperner collection on S. Then

$$
\Sigma_{A \in \Gamma N} C_{|A|}^{-1} \leq 1,
$$

where $|A|$ denotes the cardinality of A.
Proof. For each $A \subset S$, exactly $|A|!(N-|A|)!$ maximal chains of S (as a lattice under set inclusion) contain A. Since none of the N ! maximal chains of S meet Γ more than once, we have

$$
\Sigma_{A \in \Gamma}|A|!(N-|A|)!\leq N!,
$$

proving the theorem.

Reference

1. E. Sperner, Ein Satz über Untermenger einer endlichen Menge, Math. Z. 27 (1928), 544-548.
D. Lubell
