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Evgeni Lozitsky

Abstract.We study fractional linear recursions of the form zn=(a2·zn-2+a1·zn-1+a0)/(b2·zn-2+b0) 
and zn=(a3·zn-3+a2·zn-2+a1·zn-1+a0)/(b3·zn-3+b0), and find periodic recursions with periods of 
eight and twelve, which, apparently, were not known before.

I. Introduction
In the remarkable article [1] study fractional linear recursions of the form:
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An important feature of such recursions is that the numerator does not include the term 
ak+1·zn-(k+1). This feature is important because the presence of such terms allows for finding new 
recursions. Recursions R’(zn-k,...,zn-1) and R(zn-k,...,zn-1) are considered equivalent if it is true for 
some a, that R’(zn-k,...,zn-1)=R(a·zn-k,...,a·zn-1)/a. The result is five recursions, which are actually five 
one-parameter families:
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The article [1] is important because it explores the general case, the case of arbitrary n and k.
We will be studying two more specific cases, recursions of order two and three, but not for 

all possible n:

z a z a z a
b z b

n
n n

n

=
⋅ + ⋅ +

⋅ +
− −

−

2 2 1 1 0

2 2 0

,  z a z a z a z a
b z b

n
n n n

n

=
⋅ + ⋅ + ⋅ +

⋅ +
− − −

−

3 3 2 2 1 1 0

3 3 0

.

We will find four recursions from the ones listed above and, in addition, nine more recur-
sions. Two recursions of order two with a period of eight. Four recursions of order two with a 
period of twelve. And finally, three recursions of order three with a period of twelve. Further-
more, we consider another equivalence relation, which leads to the emergence of two-parameter 
families.

Question. Can the ideas and methods of the article [1] be used in the case of arbitrary n and 
k for recursions of the form:
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In the article [2] George Spahn and Doron Zeilbrger formulate a wish: «It would be very in-
teresting to discover such rational dierence equations with higher periods, that do not trivially 
follow from the known ones by ‘merging’.» It was precisely this wish that motivated me to engage 
in the study of periodic recursions.

(1)
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II. Recursions of order two.
Let’s consider an arbitrary second-order fractional-linear recursion zn=R(zn-2,zn-1):
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Let’s also consider the opposite recursion zn-2=R-1(zn,zn-1):
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Next we will consider a particular case where the inverse recursion is also a fractional-linear 
one. This means that b1=0. In this case the original and reverse recursions take the form:
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Question: Is it true that all second-order fractional linear periodic recursions are such?

Also note that b2≠0, otherwise the recursion becomes linear. And finally a1≠0, otherwise the 
recursion is a trivial ‘merger’ of two recursions of order one.

Let’s define a certain equivalence relation. Let’s assume that G(x)=a·x+b – linear transforma-
tion, then G-1(x)=x/a–b/a – inverse transformation. Two recursions R’(zn-2,zn-1) and R(zn-2,zn-1) 
are equivalent if there exist a and b such that R’(zn-2,zn-1)= G-1(R(G(zn-2),G(zn-1))). 

After the transformation a=a1/b2, b=–b0/b2, the original (2) and reverse (3) recursions will 
take the simplest form:
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Let’s now consider two recursions: z1, z2, z3=R(z1,z2), ... and u1, u2, u3=R-1(u1,u2), ... If the origi-
nal recursion is periodic with a period of k, and if u1=z2, u2=z1, then uj=zi, if i+j=k+3. The equal-
ities uj=zi actually serve as conditions for a0 and a2. The elements zi and uj are rational functions 
of the variables z1 and z2. The equality zi=uj must hold identically in terms of z1 and z2, leading to 
a system of polynomial equations on a2 and a0.

i+j=k+3

z1 z2 z3 .......... zi .......... zk zk+1 zk+2

= = = = = = =

uk+2 uk+1 uk .......... uj .......... u3 u2 u1

II_I. Period five.
The main equality is: z4=u4. Here is the Wolfram Mathematica code:
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z3=(a2*z1+z2+a0)/z1
z4=Factor[(a2*z2+z3+a0)/z2]
u1=z2
u2=z1
u3=(u2+a0)/(u1-a2)
u4=Factor[(u3+a0)/(u2-a2)]
CoefficientList[Numerator[Factor[u4-z4]],{z1,z2}]

After factoring these coefficients, we obtain a system of equations:

a2=0
a0·a2

2=0
(a0–a2)·a2=0
a2·(a0+a2)=0

–1+a0+a2
2=0

1–a0–a2+a2
2=0

a2·(–1–a2+a2
2)=0

a2·(–a0+a0·a2+a2
2)=0

This system has the unique solution: {a0=1, a2=0}. This is known as the Lynnes cycle, one of 
the recursions in the list (1).

II_II. Period six.
The main equality is: z5=u4. The Wolfram Mathematica code is analogous.
After factoring the coefficients, we obtain a system of equations:

a2=0
a0·a2

2=0
a2·(a0+a2)=0
a0+a2+a2

2=0
a0–a0·a2–a2

2–a2
3=0

a2·(a0+2·a2+a2
2)=0

a2·(–a0+a0·a2+a2
2)=0

–a0–a0
2–a2+a0·a2–a0·a2

2+a2
3=0

–a0
2–a0·a2+a0

2·a2+a2
2+a0·a2

3=0
a2·(–1–2·a0–a2+a0·a2+a2

2+a2
3)=0

This system has, obviously, the unique solution: {a0=0, a2=0}. And once again, we obtain the 
recursion from the list (1).

II_III. Period eight.
The main equality is: z6=u5. The Wolfram Mathematica code is similar. After factoring the 

coefficients, we obtain a system of equations.

a0–a0·a2–a2
3=0

(a0+a2)·(1+a2
2)=0

a2·(2·a0+a2+a2
2)=0

–a0–a2–a0·a2–a2
2–a2

3=0
a0

2·(a0–a0·a2+2·a0·a2
2+a2

4)=0
a0+a0·a2+a2

2–2·a0·a2
2–a2

3–a2
4=0

–a0–a2+a0·a2+2·a0·a2
2+a2

3+a2
4=0

–1–2·a0
2–a0·a2+a2

2–a0·a2
2–2·a0·a2

3+a2
4–a2

5=0
a0+2·a0
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2·a2+2·a0·a2

2–2·a0·a2
3+a2

4=0
a2·(–1–2·a0–2·a0

2–a2+a0·a2–a2
2+a0·a2

2+2·a2
3+a2

4)=0
a0·(–2·a0–a0

2+2·a0·a2+a0
2·a2–4·a0·a2

2+a0·a2
3–2·a2

4)=0
a2·(3+2·a0

2–a2–2·a0
2·a2+a2

2+a0·a2
2–a2

3+a0·a2
3+a2

5)=0

1+3·a0
2+a0·a2+a0

2·a2–2·a0
2·a2

2–a2
3+a0·a2

3–a2
4–a0·a2

4+a2
5=0

a2·(–3·a0–a0
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3–a0·a2+4·a0
2·a2–2·a0·a2

2–a0
2·a2

2–a2
3–a0·a2

4–a2
5)=0

–a0–a0
2+a0·a2–a0

2·a2+2·a2
2–3·a0·a2

2–2·a0
2·a2

2–a2
3–a0·a2

3+a2
4–a0·a2

4–a2
5=0

a0·(a0+a0
2+3·a0·a2–3·a0

2·a2–a0·a2
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2·a2
2+a2
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4+2·a2
5)=0
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2+2·a0

3+3·a0·a2–2·a0
2·a2–a0·a2

2+a0
2·a2

2+a2
3+2·a0·a2

3+2·a0
2·a2

3+2·a2
5+a0·a2

5=0
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The system is quite cumbersome, but it can be solved in several steps, starting with the 
simplest equation: (a0+a2)·(1+a2

2)=0. As a result, we obtain two solutions: {a0=(1–i)/2, a2=i}, 
{a0=(1+i)/2, a2=–i}.
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II_IV. Period twelve.
Main equation: z8=u7. The Wolfram Mathematica code is similar. The system of equations 

turns out to be quite cumbersome. However, it is still possible to solve this system using the 
Solve[,{}] command from the Wolfram Mathematica Language. As a result, four solutions are 
obtained:
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Note that in each of the four cases, a0=1+{the sixth root of –1}, a2={the square root of –1}.
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Recursions with periods of four, seven, nine, ten, and eleven were not found.

III. Recursions of order three.
Let’s consider an arbitrary third-order fractional-linear recursion zn=R(zn-3,zn-2,zn-1):
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Let’s also consider the opposite recursion zn-3=R-1(zn,zn-1,zn-2):

z b z z b z z a z a z b z a
b z

n
n n n n n n n

n

−
− − − −

=
⋅ ⋅ + ⋅ ⋅ − ⋅ − ⋅ + ⋅ −

− ⋅ +
3

2 2 1 1 2 2 1 1 1 1

3 aa3
.

Next we will consider a particular case where the inverse recursion is also a fractional-linear one. 
This means that b1=0, and b2=0. In this case the original and reverse recursions take the form:
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(5)
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Question: Is it true that all third-order fractional-linear periodic recursions are such?

Also note that b3≠0, otherwise the recursion becomes linear. And finally a1≠0 or a2≠0, other-
wise the recursion is a trivial ‘merger’ of two recursions of order one.

Two recursions R’(zn-3,zn-2,zn-1) and R(zn-3,zn-2,zn-1) are equivalent if there exist a and b such 
that R’(zn-3,zn-2,zn-1)= G-1(R(G(zn-3),G(zn-2),G(zn-1))).

Let’s consider two types of recursions. Type 1: a2≠0. Type 2: a2=0, a1≠0. After transformations, 
for the first type, a=a2/b3, b=–b0/b3, and for the second type, a=a1/b3, b=–b0/b3, the original (4) 
and inverse (5) recursions take a simpler form:

Type 1: zn=R(zn-3,zn-2,zn-1), zn-3=R-1(zn,zn-1,zn-2), where:
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Type 2: zn=R(zn-3,zn-2,zn-1), zn-3=R-1(zn,zn-1,zn-2), where:
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Let’s now consider two recursions: z1, z2, z3, z4=R(z1,z2,z3), ... and u1, u2, u3, u4=R-1(u1,u2,u3), 
... If the original recursion is periodic with a period of k, and if u1=z3, u2=z2, u3=z1 then uj=zi, if 
i+j=k+4. The equalities uj=zi actually serve as conditions for a0, a1, a3 for recursions of the first 
type, and for a0, a3 for recursions of the second type. The elements zi and uj are rational functions 
of the variables z1, z2, z3. The equality zi=uj must hold identically in terms of z1, z2, z3, leading to 
a system of polynomial equations on a0, a1, a3 and a0, a3 respectively.

i+j=k+4

z1 z2 z3 z4 .......... zi .......... zk zk+1 zk+2 zk+3

= = = = = = = = =

uk+3 uk-2 uk+1 uk .......... uj .......... u4 u3 u2 u1

III_I. Period eight.
The main equality is: u6=z6. Here is the Wolfram Mathematica code for Type 1:

z4=Factor[(a3*z1+z2+a1*z3+a0)/z1]
z5=Factor[(a3*z2+z3+a1*z4+a0)/z2]
z6=Factor[(a3*z3+z4+a1*z5+a0)/z3]
u1=z3
u2=z2
u3=z1
u4=Factor[(u3+a1*u2+a0)/(u1-a3)]
u5=Factor[(u4+a1*u3+a0)/(u2-a3)]
u6=Factor[(u5+a1*u4+a0)/(u3-a3)]
CoefficientList[Numerator[Factor[u6-z6]], {z1, z2, z3}]

Fractional linear periodic recursions of orders two and three.
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After factoring these coefficients, we obtain a system of equations:

a3=0
–a0+a1–a3

2=0
a0·a1

2·a3
3=0

(–1+a1)·(1+a1)=0
a1·(a1

2–a3)·a3=0
a3·(a0+a3+a1·a3)=0
(a0+a1

2–a3)·a3
2=0

a1·a3
2·(a0+a1·a3)=0

a1·a3·(a0–a3+a1·a3)=0

a0–a1+a3+a1·a3–a3
2=0

a1
2·a3

2·(a0–a1·a3)=0
a3·(a0+a1

2–a3–a1·a3)=0
–a0+a13+a0·a3–2·a1·a3+a33=0
a3

2·(a0·a1
2–a0·a3–a1

2·a3)=0
a1·a3

2·(a0·a1–a0·a3–a1·a3
2)=0

a3·(–a0–a1
2+a3+a0·a3+a3

2+a1·a3
2)=0

a3·(a0·a1–a0·a3+a1
2·a3–a3

2–a1·a3
2)=0

a1·a3·(a0·a1–a0·a3–a1
2·a3+a3

2–a1·a3
2)=0

a3·(a0·a1
2–a0·a3–a1

2·a3–a1
3·a3+a1·a3

2)=0
–1+a0·a1–a0·a3+a1·a3+a1

2·a3–a3
2–a1·a3

2+a3
3=0

a0–a1–a0·a1+a1
2–a3–a1·a3+a1

2·a3–a3
2–a1·a3

2+a3
3=0

–a0+a0·a1
2–a1

2·a3–a1
3·a3+2·a1·a3

2–a1
2·a3

2+a3
3+a1·a3

3–a3
4=0

a3·(a0·a1
2–a0·a3–a0·a1·a3–a1

2·a3+a0·a3
2–a1

2·a3
2+a3

3+a1·a3
3)=0

This system has, the two solutions: {a0=–1, a1=–1, a3=0}, {a0=1, a1=1, a3=0}. And once again, 
we obtain the recursions from the list (1).

Wolfram Mathematica code for Type 2:

z4=Factor[(a3*z1+z3+a0)/z1]
z5=Factor[(a3*z2+z4+a0)/z2]
z6=Factor[(a3*z3+z5+a0)/z3]
u1=z3
u2=z2
u3=z1
u4=Factor[(u2+a0)/(u1-a3)]
u5=Factor[(u3+a0)/(u2-a3)]
u6=Factor[(u4+a0)/(u3-a3)]
CoefficientList[Numerator[Factor[u6-z6]], {z1, z2, z3}]

The system of equations has no solutions because one of the coefficients is equal to 1.

III_II. Period twelve.
The main equality is: u8=z8. The Wolfram Mathematica code is similar. For recursions of 

type 1 the system of equations turns out to be very cumbersome, and it has three solutions:

a a a0 1 3
1
2

1 1= − = − = −







, , ,

a a a0 1 3
1
2

1 3 1
2
1 3 1

2
1 3= − − ⋅( ) = − ⋅( ) = + ⋅( )








i i i, , , (6)
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(7)a a a0 1 3
1
2

1 3 1
2
1 3 1

2
1 3= − + ⋅( ) = + ⋅( ) = − ⋅( )
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i i i, , .

The corresponding recursions are:
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z
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2
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The first of these three recursions is apparently the most interesting result of this article, as its 
coefficients are integers.

Note that all the coefficients in (6) and (7) are roots of unity of the sixth degree.
For recursions of type two the system of equations has no solutions, because one of the coef-

ficients is equal to 1.
Recursions with periods of five, six, seven, nine, ten, and eleven were not found.
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