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Preface

The original motivation for this monograph was to set forth the early
contributions from the Theoretical Division at Los Alamos National Labo-
ratory to the foundations of chaos theory. Overviews of work done up to
1983 have already been given in LA–2305,1959 and in LA–9705,1983, which
are available electronically on request from the Laboratory. These reports
remark on the foundations of the subject as set forth in early papers by Stein
and Ulam [1], N. Metropolis et al [2-3], Feigenbaum [4-9, 12], Feigenbaum
et al [10] Beyer and Stein [11], Beyer et al [13], Stein [14], and the book
by Bivens et al [15] . These are the primary references leading to the view-
points developed in this monograph. The evolution of ideas beginning with
the above references is an important ingredient of this monograph. It is this
aspect that is focused on in the Preface with a preview of a major shift in
viewpoint to come.

Principal properties promoted and developed by Bivins et al [16] are those
of the inverse graph, which for a general function f with real values f(x) is
a collection of single-valued complex functions called branches. For the case
at hand, the basic function is the parabola pζ , which is defined by its set of
values pζ(x) = ζ x(2 − x), x ∈ (−∞,∞). The parameter ζ is, for the most
part, taken to be real with values of ζ in the closed interval ζ ∈ [0, 2]. (It
turns out, however, that all real values ζ ∈ (−∞,∞) are important.) This
method based on properties of the inverse graph was itself motivated by
the discovery that the inverse graph had the property of being sometimes
complex and sometimes real, but with the extraordinary property that each
such inverse function becomes real at a characteristic value of ζ ∈ [0, 2], and
remains real for all greater values of ζ. Thus, a theory emerged that was
based on function composition, one that also allowed the creation of objects
such as curves and fixed points.

The major shift in viewpoint occurred when an algorithm was discovered
during the write-up of the monograph that allowed the generation of the
inverse graph for n− 1 to n. This placed the subject clearly in the arena of
a complex adaptive system, where a complex adaptive system is taken to be
a system whereby a few principal axioms lead to a system rich in structure
and predictive power. For the problem at hand, this was realized by some
simple implementable rules, ones that could also be calculated numerically
and verified visually. Thus, the idea of an algorithmic-computer-generated
inverse graph had evolved that fits well with the notion of a complex adaptive
system. But what about applications and predictability?

The complex adaptive system viewpoint is further enriched by properties
of the inverse graph that can be interpreted in terms of combinatorial con-
cepts such as a total order relation on all branches of the inverse graph that
exist at a given value of ζ, an order relation that is never violated, up to
and including all positive values of ζ. Moreover, this labeling of branches of
the inverse group can be realized by hook tableaux, which are special Young
standard tableaux, or, equivalently, by special Gelfand-Tsetlin patterns. The
latter patterns can be realized as isotropic quantum oscillators.
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The complex system applications do not end here; they continue still into
biology and beyond: See Bell et al [20] and Bell and Torney [21] with yet
further applications to Galois groups by Byers and Louck [23] and to Conway
numbers by Byers and Louck [24-25].

Most importantly for this monograph the issue of an application to Gen-
eral Relativity arises based on the mathematical operation of function com-
position; the case for a complex adaptive system has been established.
Whether or not it provides any meaningful insights into General Relativ-
ity remains to be seen. The authors have no experience working in General
Relativity other than a general introduction, which is inadequate for such
judgments. But there is still an obligation to point out the possibilities.

It must also be mentioned that it is the first author who takes the full
responsibility for the viewpoints presented in this Preface. It is, of course, the
case that these viewpoints could not have emerged without the extraordinary
interaction between computer calculations and the development of theory.

A somewhat unusual style style of presentation has been utilized in this
monograph. Many pictures of inverse graphs at various parameter-values
ζ1 < ζ2 < · · · < ζt < · · · are given that illustrate crucial properties of the
ζ−parameter evolution of the inverse graph. Thus, the notion that the sys-
tem under study is a complex adaptive system is re-enforced by computer
calculations in which the inverse graph exhibits the predicted properties.
Sufficiently many computer graphs are included, as needed to exhibit a par-
ticular property. For a vivid mental picture, it is often useful to think of ζ as
time. It is in this time-evolution of the n−th iterate of the inverse graph that
the classification by words on two letters comes into play, their fundamental
role being to enumerate the branches of the inverse graph. The patterns
exhibited by explicit computer computations of the shape of graphs and the
expression of their explicit mathematical forms is a nice example of how one
mode of presentation generates and re-enforces insights into the other. This
accounts for the dedication of this work to the memories of R. L. Bivins,
Nicholas C. Metropolis, and Myron L. Stein. World Scientific graciously al-
lowed the inclusion of Myron’s name on the cover, since his computational
contribution was completed before his death. It is quite impossible to express
the compassion and support of Editor Lai Fun Kwong.

The organization of this work, the many pictures of the inverse graph
aside, is quite standard, as detailed in the Contents. It is emphasized
that this monograph is far too technical and detailed to be a textbook. It is
intended for readers with a perchance for the unusual and unexpected. Most
will probably have a background in physics or mathematics.

This work could not have been completed without 54 years of enduring
patience and endearing love of my wife Marge and the expert computer
maintenance support of our son Tom. Thanks are given to David C. Torney,
Peter W. Milonni, and Michael M. Nieto (deceased 2013) for many useful
discussions on the foundations of mathematics and physics. Also, thanks to
Librarians Michelle Mittrach and Kathy Varjabedian who diligently provided
electronic copies of references. The viewpoints and attributions expressed
herein are mine alone.

James D. Louck
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Chapter 1

INTRODUCTION AND
POINT OF VIEW

In this opening chapter, a synthesis is given of results found in Refs. [1-
5,15-19]. The ideas, procedures, and definitions introduced in this Chapter
are drawn from these references. Slight variations in notations may occur.
The idea of this overview is to capture many of the over-riding features of
the so-called ζ−evolution of the various graphs without giving all the many
details needed for their complete description.

1.1 Function Composition and Graphs

The principal mathematical operation that generates most curves generated
and discussed in this monograph is the operation on pairs of functions known
as composition.The composition of a pair of functions f and g is denoted by
f ◦ g. It is defined by giving its value, denoted (f ◦ g)(x), in terms of the
values of the functions f and g, as expressed by

(f ◦ g)(x) = f
(
g(x)

)
. (1.1)

Thus, (f◦g)(x) is the value of f(x) at x = g(x). The operation of composition
is noncommutative, but associative:

f ◦ g �= g ◦ f ; (f ◦ g) ◦ h = f ◦ (g ◦ h), (1.2)

as verified directly from the definition (1.1).

The composition of pairs of functions generalizes directly to that of the
composition of arbitrarily many functions:

(f1 ◦ f2 ◦ f3)(x) = f1

(
f2

(
f3(x)

))
,

(f1 ◦ f2 ◦ f3 ◦ f4)(x) = f1

(
f2

(
f3

(
f4(x)

)))
, (1.3)

1
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...

(f1 ◦ · · · ◦ fn−2 ◦ fn−1 ◦ fn)(x) = f1

(
· · · fn−2

(
fn−1

(
fn(x)

))
· · ·
)
.

Because the rule of composition is associative, no additional parenthesis pairs
are needed in the left-hand side of these relations. There are n parenthesis
pairs ( ) on the right-hand side — n left parentheses ( , one following each fi,
and each matched with a right parenthesis ) , thus constituting a parenthesis
pair ( ), where all n right parentheses occur in succession at the right-most
end of each of relations (1.3).

The inverse of a function f with values f(x) is denoted by f−1 and is
defined here to be a single-valued function with values denoted by f−1(x)
such that

f
(
f−1(x)

)
= f−1

(
f((x)

)
= x. (1.4)

Thus, the inverses to f are solutions of the equation f(y(x)) = x, and in
general there can be several distinct solutions; careful attention must be
paid to the domains of definition of f and f−1. In this monograph, distinct
inverses to a given single real-valued function f are called branches.An
inverse f−1 to f can also be defined by the composition rule f−1 ◦ f =
f ◦ f−1 = I, where I is the identity function with values I(x) = x. The
interest here is not with all the subtleties that arise in considering collections
of functions and their compositions, but, rather, with the properties of the
n−fold composition of a single function — the parabola defined by

pζ(x) = ζx(2− x), ζ ∈ (0,∞); x ∈ (−∞,∞). (1.5)

Most of the interest of the present monograph is directed toward the devel-
opment of the properties of the 2n−fold compositions of the two branches of
the inverse function to pζ(x) as defined by

Φζ(1;x) = 1 +

√
1− x

ζ
; Φζ(−1;x) = 1−

√
1− x

ζ
, (1.6)

ζ ∈ (0,∞), x ∈ (−∞, ζ).

Each of these branches is, of course, a real single-valued function of
x in the domain x ∈ (−∞, ζ), and the two functions join smoothly at
x = ζ to constitute what will be called a p−curve.A p−curve is the join-
ing of two branches as illustrated in the following schematic picture for the
(x, y)−planar graph of the branches Φζ(1;x) and Φζ(−1;x) for x ∈ (0, ζ] :

�

� x

y

0 1 2ζ

0

1

2
Φζ(1;x) : upper branch

Φζ(−1;x) : lower branch

p−curve

(1.7)
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This picture depicts a right-moving p−curve with increasing ζ. The general
polynomials of interest are the real polynomials of degree 2n in x defined by
the n−fold composition of pζ :

pnζ (x) =
(
pζ ◦ pζ ◦ · · · ◦ pζ

)
(x) = pζ

(
· · ·
(
pζ

(
pζ(x)

))
· · ·
)
, (1.8)

where there are n parenthesis pairs in this expression for an n−fold com-
position of one and the same parabola function pζ . It is very important to
observe that the parameter ζ is fixed at the same value in the composition
(1.8). Thus, while it is allowed that ζ be any value ζ ∈ (0,∞), the oper-
ation of composition is to be effected only for specified ζ in its domain of
definition, as illustrated by

p2ζ(x) =
(
pζ ◦ pζ

)
(x) = ζ x(2− x)

∣∣∣
x=ζ x(2−x)

= ζ ζ x(2− x)
(
2− ζ x(2− x)

)
. (1.9)

A very useful rule satisfied by such compositions is:

pnζ (x) =
(
pn−m
ζ ◦ pmζ

)
(x) = pn−m

ζ

(
pmζ (x)

)
,

m = 1, 2, . . . , n− 1, (1.10)

p1ζ(x) = pζ(x) = ζ x(2− x).

The n−fold iterate pnζ (x) of p1ζ(x) ia a polynomial of degree 2n in the
variable x and degree 2n − 1 in the parameter ζ. Thus, the polynomial is of
the form

pnζ (x) =

2n∑
k=0

a
(n)
k (ζ)x2

n−k, (1.11)

where the coefficents are real polynomials in the parameter ζ with leading

coefficient a
(n)
0 (ζ) = 2n − 1 and successive coefficients of lower degree. A

recurrence relation for the polynomials is given by

pnζ (x) = (pn−1
ζ ◦ p1ζ)(x) = pn−1

ζ

(
p1ζ(x)

)
. (1.12)

Thus, an explicit recurrence for the coefficients a
(n)
k (ζ) themselves can

be obtained, if desired, by combining relation (1.12) and (1.11) with the
appropriate relations from (1.10). The main point is: The polynomials pnζ (x)
are uniquely defined for all positive n.

The graph Hn
ζ of interest is defined as the set of points in the Cartesian

plane R2 given by

Hn
ζ =

{(
x, pnζ (x)

)∣∣∣x ∈ [0, ∞)
}
, ζ ∈ (0,∞). (1.13)
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Many of the interesting features of this graph make their appearance for
x ∈ [0, 2], although other domains, even including negative x, are of interest.
A principal feature of all graphs presented in Chapter 5 is they are presented
at a value of the parameter ζ that is specified (fixed). The values of x then
determine the basic shape of the underlying curve in the (x, y)−plane for
the specified value of ζ; this set of real points constitute the graph Hn

ζ : It

is a continuous smooth curve (all derivatives exist at all points) in R2. This
set of points is also called the shape of the curve at ζ.

As the parameter ζ changes continuously, the shape of the curve Hn
ζ

changes smoothly. In particular, the change in shape for increasing ζ is
called the ζ−evolution of the curve (or graph). Indeed, it is often very
useful to think of ζ as a time-like parameter; hence, the curve Hn

ζ is a ”snap-
shot” of the graph at a given time, and the ζ− evolution is the nonlinear
time progression of the graph. The ζ−evolution of the graph is unexpect-
edly elegant, expressing its unfolding shape in terms of the creation of new
”subcurves” and their symmetry. It is the purpose of this monograph to give
its description.

There is a simple underlying reason for the origin of the features appearing
in the ζ−evolution of the graph Hn

ζ : This is revealed in the structure of the

inverse graph. If Hf = {(x, f(x)) |x ∈ Df} is the graph of a real single-
valued function f with values f(x) and domain of definition x ∈ Df ⊆ R,
then, by definition, the set of points Hf−1 = {(x, f−1(x)) |x ∈ Df−1}, where
Df−1 ⊆ R is the domain of definition of the branch f−1,, constitutes a
subgraph of the inverse graph. But there is such an inverse graph for each
distinct inverse function f−1 of f ; hence, it is the union ∪f−1 Hf−1 over all
distinct inverse subgraphs that consitutes the full inverse graph to Hf . This
simple description of the inverse graph holds unambiguously for the inverse
graph of the n−fold composition of the parabolic map pζ(x) = ζ x(2 − x),
although care must be taken in defining the inverse function. In terms of
these notations, the graph Hn

ζ is given by

Hn
ζ = Hpn

ζ
=
{
(x, pnζ (x))

∣∣∣ x ∈ [0, ∞)
}
, (1.14)

where the n-fold composition of the basic parabola p1ζ(x) = pζ(x) = ζ x(2−x)
is defined in (1.8). It is the inverse graph to Hpn

ζ
that is sought for each

specified ζ ∈ (0,∞). In terms of the present notations, the inverse graph
is denoted by Hf−1

ζ
, where f = pnζ . For the case at hand, this somewhat

awkward notation is replaced by

Gn
ζ = Hf−1

ζ

∣∣∣
f=pn

ζ

. (1.15)

Thus, Gn
ζ denotes the inverse graph to the graph Hn

ζ . It should always be

kept in mind that both graphs are subsets of points in the real plane R2. It is
useful to illustrate this definition of the inverse graph Gn

ζ before proceeding
to the general case.
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Examples. The inverse graph Gn
ζ , n = 1, 2 :

n = 1. The inverse graph is the union of two single-valued real branches:

G1
ζ(1) =

{(
x,Φζ(1;x)

) ∣∣∣x ∈ [0, ζ]
}
, ζ ∈ (0,∞),

G1
ζ(−1) =

{(
x,Φζ(−1;x)

) ∣∣∣ x ∈ [0, ζ]
}
, x ∈ (ζ,∞); (1.16)

G1
ζ = G1

ζ(1) ∪ G1
ζ(−1), ζ ∈ (0,∞).

These two branches join smoothly at their common point at x = ζ. These
two branches constitute a right-moving p−curve as ζ increases, as shown in
(1.7).

n = 2. The inverse graph is the union of two single-valued real branches or of
four single-valued real branches, depending on the value of ζ. The branches
are given initially by the following definitions in terms of the four (22 = 4)
ways of ways of composing the two square-root forms (1.6), even when some
square-roots are complex:

Φζ

(
(1,−1);x

)
= 1 +

√
1 − 1

ζ
Φζ(−1;x)

= 1 +

√
1 − 1

ζ

(
1 −

√
1 − x

ζ

)
,

Φζ

(
(1, 1);x

)
= 1 +

√
1 − 1

ζ
Φζ(1;x)

= 1 +

√
1 − 1

ζ

(
1 +

√
1 − x

ζ

)
;

(1.17)

Φζ

(
(−1, 1);x

)
= 1−

√
1 − 1

ζ
Φζ(1;x)

= 1 −
√

1 − 1

ζ

(
1 +

√
1 − x

ζ

)
,

Φζ

(
(−1,−1);x

)
= 1−

√
1 − 1

ζ
Φζ(−1;x)

= 1 −
√

1 − 1

ζ

(
1 −

√
1 − x

ζ

)
.

The sequences (σ1, σ2), each σi = 1 or −1, keep account of the ± signs
in front of the square roots in these relations (see (1.6)). In order that
the square-roots are a single number, even when complex, the convention√
z =
√
reiφ/2 for z = reiφ, r ≥ 0, 0 ≥ φ < 2π, is adopted, where, as always,
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the square-root
√
r of a positive number r is always a positive number. This

choice for
√
z for z complex has no effect on the inverse graph construction of

Gn
ζ , since the rule for constructing this inverse graph is always that quantities

that appear under a square-root symbol
√

are to be nonnegative real numbers.

The four composition relations (1.17) can be written:

Φζ(σ;x) =
(
Φζ(σ1) ◦Φζ(σ2)

)
(x) = Φζ

(
σ1; Φζ(σ2;x)

)
, (1.18)

σ = (σ1, σ2), each σi = 1 or − 1.

The generalization of relations (1.18) to arbitrary n is given by the following
composition rule, which is an unambiguous rule for constructing all inverse
graphs, including their unique labels:

Φζ

(
(σ1, σ2, . . . , σn);x

)
= Φζ

(
(σ1, σ2, . . . , σn−1); Φζ(σn;x)

)
; (1.19)

Φζ(σn;x) = 1 + σn

√
1− x

ζ
, each σn = 1 or − 1.

A full description of the functions that enter into the inverse graph at
each value of ζ is now completed by giving the domain of definition of each
function defined by the composition rule (1.19). This domain of definition
may be expressed by

Φ
(l)
ζ (σ;x) ≤ Φζ(σ;x) ≤ Φ

(r)
ζ (σ;x), σ = (σ1, σ2, . . . , σn), (1.20)

where Φ
(l)
ζ (σ;x) and Φ

(r)
ζ (σ;x) denote, respectively, the left and right ex-

tremal points of the composition function (1.19), which is real, thus giving
real numerical values to these extremal points.

Relations (1.19)-(1.20) give the full description at each value of ζ of the
inverse graphs that appear in the present approach to chaos theory via in-
verse graphs. While it is now proved that these inverse graphs are unique,
little is revealed on how to recognize one: An explicit method of constructing
each and every inverse graph at each value of ζ is needed. It turns out that
this is a nontrivial task, full of unexpected difficulties, until it is uncovered
that the collection of inverse graphs can be viewed as a complex adaptive
system. This fact then restores the unique inverse graphs to computable
objects, indeed, to objects generated recursively and reproducibly by com-
puter calculations. For the purposes of this monograph, a complex adaptive
system is, in general, defined to be:

A collection of objects in which the objects are the undefined elements
of the theory for which there are definite rules (axioms) for combining the
objects that leads to rich and unexpected properties of the objects themselves.

Here, in this monograph, this will be demonstrated only for the mathematical
operation of function composition. It is a principal goal of this monograph
to prove that the collection of inverse graphs constitutes a complex adaptive
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system in the sense defined above. Towards this goal, it is necessary to iden-
tify properties of the inverse graph that lead to this important conclusion.
This is set forth in the remainder of this Chapter 1, together with other
supporting properties.

It is useful to illustrate how the above methodology works for n = 2 :

Φζ

(
(σ1, σ2);x

)
= Φζ

(
σ1; Φζ(σ2;x)

)
;

Φ
(l)
ζ

(
(σ1, σ2);x)

)
≥ Φζ

(
(σ1, σ2);x)

)
≥ Φ

(r)
ζ

(
(σ1, σ2);x)

)
; (1.21)

σ1 = 1, −1; σ2 = 1, −1, in each of the above relations.

By definition, the domain of definition functions in the middle relation are
real. This, in turn, implies that

x ≤ ζ andΦζ(σ2;x) ≤ ζ, each σ2 = 1, −1. (1.22)

Since pζ

(
Φζ(σ2;x)

)
= x, the condition Φζ(σ2; 1) = ζ requires that pζ(ζ) =

ζ2(2− ζ) = 1; that is,

Φζ(1; 1) = ζ, for each root of ζ3 − 2ζ2 + 1 = 0. (1.23)

The two positive roots are:

ζ1 = 1, ζ2 = (1 +
√
5)/2. (1.24)

These two positive roots are known as MSS roots after Metropolis-Stein-
Stein, who first introduced them (see Section 1.2.4). The relationship of this
pair of MSS roots to the computer-generated inverse graphs denoted by P 2
given in Chapter 5 is: these MSS roots are the exact creation ζ−values of
the new branches of the inverse graph. Indeed, the entire ζ−evolution of
this set of inverse graphs can now described as follows for all ζ ∈ [0,∞) :

For ζ ∈ (0, 1], there appears in the inverse graph the single primordial
p−curve, which is the union of the upper positive branch Φζ((1,−1);x) and
the conjugate branch Φζ((−1,−1);x), which join smoothly together at the
extremal point x = ζ on the central line y = 1 of the graph. This central
right-moving p−curve is the only curve in the inverse graph for ζ ∈ (0, 1].
At the MSS root ζ1 = 1, this p-curve is split apart by the creation of two
new branches Φζ((1, 1);x) and Φζ((−1, 1);x) that constitute the upper pos-
itive branch Φζ((1, 1);x) and the conjugate branch Φζ((−1, 1);x) of a new
central left-moving p−curve with its extremal point x = ζ on the cen-
tral line y = 1. The ” pushed-apart” primordial branches Φζ((1,−1);x) and
Φζ((−1,−1);x) remain in the graph for all greater ζ. The picture of the final
curve for all ζ ∈ [1,∞) is that of two right-moving p−curves and a single
left-moving p−curve that together constitute a single continuous curve. The
left-moving curve evolves to x→ −∞, the right-moving curve to x→∞.

Special features of the collection of P 2 inverse graphs that should be
noted are summarized next:



8 CHAPTER 1. INTRODUCTION AND POINT OF VIEW

1. Once a branch is created, it remains in the inverse graph for all greater
values of ζ.

2. The MSS root ζ2 = (1+
√
5)/2 is not the creation value of new branches,

but rather is the creation point of two new fixed points emerging out
of an already existing fixed point, as shown in the computer-generated
graph in the P 2 collection in Chapter 5 labeled by ζ = 1.62 ≈ (1 +√
5)/2. These computer-generated graphs show the ζ−evolution of the

inverse graph Gn
ζ at various specified values of ζ that are sometimes

referred to as ”snapshots.”

3. There is no MSS root greater than 2 for ζ ∈ (0,∞). This can be shown
generally by considering the set of n points {(x, y)} ⊂ R2 obtained from
the iteration of (1.19) given by(

q0(ζ), q1(ζ)
)
,
(
q1(ζ), q2(ζ)

)
, · · · ,

(
qn−1(ζ), qn(ζ)

)
. (1.25)

For ζ ≥ 2, each q1(ζ) = ζ ≥ 2 and each qi(ζ) ≤ 0, i = 2, 3, . . . ; hence,
the condition qn(ζ) = 1 cannot be fulfilled.

4. The set of n points in the plane (x, y) ∈ R2 defined by (1.25) for
0 ≤ ζ ≤ 2 define a closed path in the plane. This path is obtained by
drawing a horizontal line from the starting point (1, ζ) on the parabola
to the point (q1(ζ), q1(ζ)) = (ζ, ζ) on the 45◦−line, a vertical line from
(q1(ζ), q1(ζ)) on the 45◦−line to (q1(ζ), q2(ζ)) on the parabola, a hor-
izontal line from (q1(ζ), q2(ζ)) on the parabola to (q2(ζ), q2(ζ) on the
45◦−line,. . . , a vertical line from (qn−1(ζ), qn−1(ζ)) on the 45◦−degree
line to (qn−1(ζ), qn(ζ)) on the parabola, where the condition that the
path be closed is (qn−1(ζ), qn(ζ)) = (1, ζ). The path defined by these
points and the corresponding x−coordinates belonging to the parabola
are presented as follows for all n ≥ 2 :

path: (1, ζ) −→ (ζ, ζ) −→ (ζ, q2(ζ)) −→ (q2(ζ), q2(ζ))

−→ (q2(ζ), q3(ζ)) −→ · · · −→ (qn−1(ζ), qn−1(ζ)) −→ (qn−1(ζ), qn(ζ));

(1.26)

x−coordinates: 1, q1(x), q2(x), . . . , qn−1(x).

The closed-path condition is (qn−1(ζ), qn(ζ)) = (1, ζ), where n is the
least value such that qn−1(ζ) = 1.

5. Words on two letters R and L are used to describe the right (R) and left
(L) distribution of the x−coordinates relative to the central coordinate
x = 1 of the n − 2 points belonging to the parabola in the path in
(1.26). There are four cases of ζ ∈ (0,∞) to consider:

(a) ζ ∈ (0, 1) : The word Ln−1 corresponds to the path in plane R2

given by (1.26), but now it is impossible to impose the closed-
path condition, since the successive x−coordinates on the parabola
satisfy the inequalities

1 > q1(ζ) > q2(ζ) > · · · > qn−1(ζ), n ≥ 2. (1.27)

Thus, it is impossible to satisfy qn−1(ζ) = 1.
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(b) ζ = 1 : The point (1,1) already belongs to the 45◦−line, that is, is
a fixed point of the parabola.

(c) ζ ∈ (1, 2) : The simplest case occurs for n = 3 and has ζ = ζ2 =
(1+
√
5)/2; the path contains the four points (1, ζ2), (ζ2, ζ2), (ζ2, 1),

(1, 1), and the x−coordinates on the parabola are 1 < ζ2; hence, R
is associated with this path. The golden ratio enters at the most
fundamental level. The standard symbol for the golden ratio is
φ = (1 +

√
5)/2; it has the exact value given by the continued

fraction expansion containing all 1′s, as expressed by

φ = 1 +
1

1 + 1
1+. ..

. (1.28)

Thus, the golden ratio satisfies the relation

φ = 1 +
1

φ
, (1.29)

which is the positive root φ = (1+
√
5)/2 of the quadratic relation

φ2 = φ+ 1.

(d) ζ ∈ [2,∞) : Each polynomial qk(ζ) ≤ 0, k ≥ 2; hence, it is impos-
sible to have a closed path.

The significance of the MSS roots of pn−1(ζ) = qn−1 − 1 = 0 is that of
giving all values of ζ for which such closed paths are possible. There is a
unique closed path corresponding to a word RLα0−1RLα1−1 . . . RLαk−1, α =
(α0, α1, . . . , αk) ∈ An, where An is defined to be the set of all sequences

An = {(α0, α1, . . . , αk) | each αi ∈ P,
∑k

i=0 αi = n, k = 0, 1, . . . , n}. (1.30)

Here P denotes the set of all positive integers. The set of all conjugate
sequences is defined from the set of all positive sequences by

An = {α = (−α0,−α1, . . . ,−αk |α ∈ An}. (1.31)

The sequence α = (1) gives the first such path R and corresponds to the
ζ−value given by the golden ratio.

1.1.1 Words on Two Letters

Words in the two letters R and L are introduced naturally into chaos theory
via the mappings 1 �→ R and −1 �→ L. This leads naturally to the following
notations for the set of all words:

w(α) = RLα0−1RLα1−1 · · ·RLαk−1;

w(α) = Lα0RLα1−1 · · ·RLαk−1; (1.32)

α ∈ An.
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Notice, then, that the conjugate word w(α) to w(α) is given by

w(α0, α1, . . . , αk) = Lα0w(α1, α2, . . . , αk), k ≥ 1. (1.33)

For example, the conjugate to RLα0−1 is Lα0 . It not the interchange of R
and L.

1.1.2 A New Notation for Branches

The natural occurrence of words on the two letters R and L and their con-
jugates in (1.32)-(1.33) leads naturally to a new notation for the branches
of every inverse graph, as given by

Ψζ(τ ;x), τ ∈ An ∪An. (1.34)

This definition is now augmented by defining a total-order relation on the
set of all sequences τ ∈ An ∪ An, which, in turn, will provide information
about the branch functions Ψζ(τ ;x) themselves.

1.1.3 A Total-Order Relation on τ Sequences

For each

τ = (τ0, τ1, . . . , τk) ∈ An ∪ An, (1.35)

define the alternating sequence A(τ) with 0′s adjoined by

A(τ) = (τ0,−τ1, τ2, . . . , (−1)kτk, 0, 0, . . . ). (1.36)

The zeros are adjoined to the right end of the sequence so as to give the
same number of parts (counting zeros) to every such sequence. Next, for
each pair of such sequences τ and τ ′, form the difference sequence:

A(τ)−A(τ ′) = (τ0 − τ ′0,−τ1 + τ ′1, τ2 − τ ′2, . . . ). (1.37)

Then, the parts in this difference sequence are integers, positive, zero, and
negative. The following terminology defines what is meant by reverse-
lexicographic order: τ > τ ′, if the first nonzero term in (1.37) is positive;
τ < τ ′, if the first nonzero term in (1.37) is negative; τ = τ ′, if all terms are
equal in (1.37).

It follows from the above definition of reverse-lexicographic sequences
that such sequences can also be expressed in terms of positive sequences
alone and the definition of conjugate sequences. It is convenient to give this
form so as to minimize the use of the somewhat cumbersome τ sequence
notation. Because of the importance of this order relation, it is stated fully
so as to be clear in its implementation:
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α = (α0, α1, . . . , αk), each αi ∈ P, i = 0, 1, . . . , k; (1.38)

A(α) = (α0,−α1, α2, . . . , (−1)kαk, 0, 0, . . . .);

α > α′, if and only if the first nonzero part

of A(α)−A(α′) is positive;
α < α′, if and only if the first nonzero part (1.39)

of A(α) = A(α′) is negative;
α = α′, if and only if all parts

of A(α)−A(α′) are equal.

The order relation for negative (conjugate) sequences can, of course, be
obtained directly from the results (1.39) for positive sequences and the re-
flection symmetry of all inverse graphs through the y = 1 central line.

1.1.4 Reality of the Inverse Graph

One of the merits of using the inverse graph approach to the study of the
graph Hn(ζ), ζ ∈ (0,∞) defined by (1.14) is the property:

When a branch Gn
ζ (α), α ∈ An becomes real at an MSS root,

it remains real for all values greater than that MSS root. (1.40)

There is, however, one exception to this rule: The MSS root ζ = 1 gives
pn1 (1) = 1 and Ψ1(α; 1) = 1, each α ∈ An, for all n ≥ 1. Thus, the point
(1, 1) is a fixed point of each graph Hn

ζ=1, of each of the 2n−1 positive

branch Gn
ζ=1(α), and of each of the 2n−1 conjugate branches, as well. But

this is an artifact of inverses for the present problem; it is the branches that
become real at ζ = 1 and stay real for all greater ζ that require further
consideration.

The reality feature (1.30) offers a simple, important explanation of the
change in shape of the graphs Hn

ζ in its ζ−evolution: The ζ−value, denoted
ζ(α), for the MSS root at which the branch Gn

ζ (α) becomes real and stays
real for all greater ζ is the smallest ζ−value such that the branch function
Ψζ(α;x) is real for all ζ ∈ [ζ(α),∞) and all x ∈ Dζ(α), where Dζ(α) is, as
yet, an unknown domain of definition. This, of course, simply shifts the
burden of the reality proof to that of determining the domain of definition
Dζ(α) for which the branch function Ψζ(α;x) is real and remains real for all
greater ζ. It must still be shown that

Ψζ(α;x) real at ζ = ζ(α) implies that Ψζ(α;x)

is real for all ζ ∈ [ζ(α),∞), and all x ∈ Dζ(α). (1.41)

This statement does, however, make it clear that Dζ(α) is the unique ex-
tremal value of the branch function Ψζ(α;x).
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The point of view taken in this monograph is to describe the ζ−evolution
of the inverse graph Gn

ζ exactly in the sense of (1.41) by giving the exact
details for the domain of definition. This requires giving a great deal of
supplemental information that is next developed.

1.2 Inverse Graphs Created at ζ = 1

The motion of the primordial p−curve initiates the entire process of creating
the inverse graph for general n : it is universal. The creation of new branches
at ζ = 1 can also be given in a quite nice general form for n ≥ 2. For this
reason, the description of these new branches and their dynamical fixed
points is developed next.

The first creation event beyond the appearance of the primordial curve
and its fixed point within the interval ζ ∈ (0, 1] takes place for ζ slightly
larger than 1 : Here a family of p−curves is created simultaneously with a
new central p−curve that can be described for arbitrary n as follows:

1. The primordial p−curve Cnζ
(
(n) |

∣∣∣ (n)) is split at ζ = 1 by the collec-

tion of n new p−curves with positive and negative branches labeled
from top-to-bottom in the inverse graph Gn

ζ by the following Ψζ(α;x)
functions and their conjugates:

2.

Ψζ((n − r + 1 1r−1);x) and Ψζ((n− r + 1 1r−1);x),

r = 1, . . . , n; x ∈ (1, ζ2], (1.42)

(a) where the interval is closed at ζ2, which is an MSS root depending
on n yet to be identified.

(b) The primordial central p−curve Cnζ
(
(n)
∣∣∣ (n)) has now been re-

placed by a new central p−curve Cnζ
(
(1n)

∣∣∣ (1n)). This p−curve is

central in the inverse graph for all x ∈ (1, ζ2].

(c) The motion of the original fixed point x = 2 − 1
ζ during this

synchronous creation of new p−curves is to move onto the upper
branch Ψζ((1

n);x) of the new central p−curve, where it remains
for all ζ > 1.

(d) The branches constituting the original primordial p−curve have
now all the new branches fall between the original branches Ψζ((n);x)

and Ψζ((n);x), of the primordial p−curve branch parts; all of these
branches join smoothly together at their left and right extremal
points to constitute the compound p−curve that is the space Gn

ζ

for each ζ ∈ (1, ζ2). The labels of the branches are ordered by

(n) > (n− 1 1) > · · · > (2 1n−1) > (1n) >

(1n) > (2 1n−1) > · · · > (n). (1.43)
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The ordering in (1.43) coincides with that of the corresponding branches from
top-to-bottom in the inverse graph. The 2n ordered branches constituted
from these n p−curves remain in the graph for all ζ ∈ (ζ2,∞), but are
themselves further split apart by the creation of new p−curves for ζ > ζ2.

In particular, the central p− curve Cnζ
(
(1n)

∣∣∣ (1n)) for the interval ζ ∈ (1, ζ2]

splits apart at ζ = ζ3.

The creation of universal inverse graphs described above is shown in the
following graphs in Chapter 5 for n = 2, 3 :

n = 2. All graphs labeled P 2 : The central p−curve C2ζ
(
(1 1)

∣∣∣ (1 1)
)

is

created at ζ = 1, between Figures xx and xx.

n = 3. All graphs labeled P 3 between ζ = 1 and ζ = 1.3 : The central

p−curve C3ζ
(
(1 1 1)

∣∣∣ (1 1 1)
)
is created at ζ = 1, and simultaneously created

are the branches (see ζ = 1.3) given by

Ψζ((3);x) � Ψζ((2 1);x) � Ψζ((1 1 1);x) �
Ψζ((1 1 1);x) � Ψζ((2 1);x) � Ψζ((3);x). (1.44)

The symbol � between two branches designates that the left branch occurs
above the right branch in the inverse graph, except possibly for a common
extremal point, where they are equal.

1.2.1 The Order Rule for General Branches

The order rule for n = 3 introduced in (1.44) extends to the branches of
the general inverse graph Gn

ζ . The full graph Gn
ζ must have the following

structural form at each value of the parameter ζ : It is the union over α of
all real branches Gn

ζ (α) and Gn
ζ (α) present in the inverse graph at the given

value of ζ :

Gn
ζ =

⋃
α∈Ân(ζ)

(
Gn

ζ (α) ∪Gn
ζ (α)

)
. (1.45)

The set Ân(ζ) ⊆ An is defined to be the subset of An (see (1.30)) such that

each branch function Ψζ(α;x), α ∈ Ân(ζ) is real, hence, the correspond-

ing conjugate branch function is also real. The set Ân(ζ) is, at this point,
unknown, for general n, but the general form (1.45) must prevail.
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The main result for the branch functions Ψζ(α;x) consistent with reverse-
lexicographic order on α sequences is the following:

Consider any two real inverse functions Ψζ(α;x) and Ψζ(α
′;x) for α,α′ ∈ An,

each of which has its well-defined domain of definition Dζ(α) and Dζ′(α′).
Then, the following relations hold:

Ψζ(α;x) � Ψζ(α
′;x), if and only if α > α′ ;

Ψζ(α;x) � Ψζ(α;x), with = if and only if α is central; (1.46)

Ψζ(α;x) � Ψζ(α
′) if and only if α > α′.

The last relation for conjugate branches is, of course, implied by the other
two.

It is useful again to emphasize how the combinatorial theory of words on
two letters R and L makes it appearance into chaos theory as presented in
this monograph as introduced in (1.32) and given by the one-to-one corre-
spondence:

α �→ w(α) = RLα0−1RLα1−1 · · ·RLαk−1, each α ∈ An,

(1.47)

α �→ w(α) = Lα0RLα1−1RLα2−1 · · ·RLαk−1, each α ∈ An.

The reverse-lexicographic order rule can be applied to the set of all words
on two letters:

w(α) > w(α′); w(α) < w(α′), if and only if α > α′. (1.48)

The number of words in (1.47) beginning with R and L, respectively, is
given by the number of solutions in positive integers of the relation: α0+α1+· · ·+ αk = n. This solution set may be denoted by Ak(n); it has cardinality

|Ak(n)| =
(
n−1
k

)
. Thus, the cardinality of the set An is given by |An| = 2n−1.

Thus, all 2n words in R and L are enumerated in (1.47) for α ∈ An, half
beginning with R and half with L; those beginning with R correspond to
positive sequences; those beginning with L to negative sequences. Because of
the relationship of the positive sequence α = (α0, α1, . . . , αk) to words given
by (1.47), the degree D(α) of this sequence is defined as the total degree of
the word polynomial:

D(α) = D((α0, α1, . . . , αk)) = α0 + α1 + · · · + αk. (1.49)

The combinatorics of words makes its appearance in a fundamental way. It
is hard to imagine a more eloquent foundation on which to build the theory
of the 2n complex branch Ψζ(τ ;x).

The general form of the branch functions Ψζ(α;x) is implicit in the results
given above. But, for completeness, their explicit form for arbitrary n needs
also to be given

First of all, the inverse graph Gn
ζ to Hn

ζ is just the set of points obtained

from the points (x, y) ∈ Hn
ζ ⊂ R2 by reflection through the 45◦−degree line:

(y, x) ∈ Gn
ζ , if and only if (x, y) ∈ Hn

ζ . (1.50)
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Thus, the points (x, y) ∈ G1
ζ ⊂ R2 have x− and y−coordinates related by

x = ζ y(2 − y); that is, y is given in terms of x by the square-root relations

y = 1 +
√

1− x
ζ and y = 1 −

√
1− x

ζ , subject to the conditions that all

square-roots be real. Similarly, the points (x, y) ∈ G2
ζ ⊂ R2 have x− and

y−coordinates related by x = ζ2 y(2− y)
(
2− ζ y(2− y)

)
; that is, y is given

in terms of x by relations (1.17), subject to the conditions that all square-
roots be real. As illustrated by(1.17), it is function composition of inverse
branches that defines all inverse graphs.

The construction of the 2n branches of the inverse functions to Hn
ζ at

level n can be given in terms of the 2n−1 inverse branches of the inverse
functions to Hn−1

ζ at level n− 1 as follows:

Φζ((σ1, σ2, . . . , σn);x) = Φζ

(
σ1; Φζ((σ2, σ3, . . . , σn);x)

)
(1.51)

= 1 + σ1

√
1− 1

ζ
Φζ((σ2, σ3, . . . , σn);x) , σi = 1or − 1, i = 1, 2, . . . , n.

The iteration of this relation then gives the following explicit formula for the
general inverse function in which there appears n square roots:

Φζ(σ;x) = 1+ (1.52)

σ1

√√√√√√√1− 1

ζ

⎛⎝
√√√√√√1 + σ2

√√√√√1− 1

ζ

(
1 + σ3

√√√√1− · · ·
√

1− 1

ζ

(
1 + σn

√
1− x

ζ

) )
· · ·
⎞⎠ ⎞⎠ ⎞⎠ .

The function Φζ(σ;x) is, in general, a complex function of ζ, x, even for x ≤ ζ.
It is the problem of enumerating the points (ζ, x) ∈ R2 that is one of the principal
problems addressed in this monograph. It is the solution of this problem that
gives all the points that constitute the branches of the inverse graph Gn

ζ for each

specified ζ ∈ (0,∞). It is precisely these reality conditions that determine, by
reflection through the 45◦−line, all points of the original real graph Hn

ζ itself. The
determination of the reality conditions in question is nontrivial, requiring as it does
a unique labeling of all real branches and the specification of their domains.

The inverse functions Ψζ(α;x) and conjugate functions for α = (α0, α1, . . . , αk),
and α = (−α0,−α1, . . . ,−αk), where each αi ∈ P, i = 0, 1, . . . , k, are now defined
in terms of Φζ(σ;x) by

Ψζ(α;x) = Φζ

(
σ(α);x

)
, each α ∈ An;

σ(α) =
(
1,−1α0−1, 1,−1α1−1, . . . , 1,−1αk−1

)
;

Ψζ(α;x) = Φζ

(
σ(α);x

)
, each α ∈ An; (1.53)

σ(α) =
(
− 1α0 , 1,−1α1−1, . . . , 1,−1αk−1

)
, k ≥ 1;

σ(α) = (−1α0), k = 0.
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The α, α notation is preferred in the most part throughout the remainder of this
monograph because it gives a clear separation into all positive α−sequences in the
upper-half y ≥ 1 of the inverse graph with the corresponding conjugate (negative)
sequences always in the lower-half y ≤ 1 of the inverse graph. Indeed, in the family
of inverse graphs, the labels in the lower-half of the graph are usually assigned using
the reflection property.

1.2.2 Fixed Points

The description of the inverse graphs Ψζ(α;x), α ∈ An now continues with the very
important concept of a fixed point. A fixed point of a graph in the (x, y)−plane is
a point that belongs not only to the graph, but also to the 45◦−line. A simple fixed
point for the problem at hand is the origin (0, 0) of the coordinate frame. Thus,
the origin (0, 0) is a fixed point of the graph Hn

ζ as well as of the inverse graph Gn
ζ .

This fixed point is truly fixed in that it does not change its position with changing
ζ. It is verified by direct substitution into the two branches (1.6) that the point
x(ζ) = 2− 1

ζ is a fixed point throughout the entire ζ−evolution of the inverse graph

G1
ζ ; that is, the following properties hold:

Ψζ

(
1; 2− 1

ζ

)
= 2− 1

ζ
, all ζ ∈ (0, 1];

(1.54)

Ψζ

(
1; 2− 1

ζ

)
= 2− 1

ζ
, all ζ ∈ [1,∞).

In verifying these relations, the standard rule that the square-root of a positive
number is a positive number must be carefully observed:√

1− 2

ζ
+

1

ζ2
=

{
1− 1

ζ , ζ ∈ [1,∞);
1
ζ − 1, ζ ∈ (0, 1].

(1.55)

The result for the Ψ−function expressed by the second of relations (1.54) for
n = 1 extends to all n > 1 :

Ψζ

(
n; 2− 1

ζ

)
= 2− 1

ζ
, all ζ ∈ [1,∞), n ≥ 2. (1.56)

This result is proved from the following composition relation and the initial condi-
tion (1.54):

Ψζ

(
n; 2− 1

ζ

)
= Ψζ

(
1;Ψζ(n− 1; 2− 1

ζ
)
)
, all ζ ∈ [1,∞), n ≥ 2. (1.57)

Similar considerations yield:

Ψζ

(
1n; 2− 1

ζ

)
= 2− 1

ζ
, all ζ ∈ [1,∞), n ≥ 2. (1.58)
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1.2.3 The Primordial p-Curve and Its Evolution

The description of the inverse graph Gn
ζ for ζ in the interval ζ ∈ (0, 1] can already

be given. It us convenient now to denote the primordial p−curve by the set of points
in the plane R

2 defined as follows:

Cnζ (n |n) = Gn
ζ (n) ∪Gn

ζ (n) (1.59)

=
{(

x,Ψζ(n;x)
) ∣∣∣x ∈ [0, ζ]

}⋃{(
x,Ψζ(n;x)

) ∣∣∣ x ∈ [0, ζ]
}
.

In terms of this notation, a single p−curve Cnζ (n) |n) is present in the graph Gn
ζ for

ζ in the interval ζ ∈ (0, 1]. The ζ−evolution of this primordial curve p−curve goes
as follows: The curve emerges at x = 0 out of the line-segment y ∈ [0, 2] at x = 0;
for large n, it is almost a square curve of the shape pictured by

x

y

0 1 2ζ
0

1

2
Φζ(n;x) : upper branch

Φζ(n;x) : lower branch

primordial p−curve

(1.60)

The upper and lower horizontal lines and square-corners defining the square shape
are always somewhat curved, more so for small n. As ζ increases past 0, the primor-
dial p− curve remains centered above and below the central line y = 1 and moves
toward the right in the graph, becoming more and more square as the common cen-
tral point of the p−curve approaches the point (1, 1) of the graph. As mentioned
above, this dynamical p−curve is the only curve in the graph for ζ ∈ (0, 1]. But
throughout this period of ζ−evolution, there is also present the dynamical fixed
point x(ζ) = 2− 1

ζ ; it seems to emerge out of the fixed point (0, 0) at the origin, but

a glance at any computer-generated graph for negative x shows that is is already
present to the left of the origin. For all positive ζ, it moves smoothly along the
45◦−line, belonging at the same time to the conjugate function Ψζ(n;x), until the
point (1, 1) of the graph is reached. This primordial fixed point x(ζ) = 2− 1

ζ is the

only object in the graph for ζ ∈ (0, 1].

The static fixed point at the origin is an artifact that serves to define the coordi-
nate system for describing all curves and is not considered an object. All dynamical
fixed points of the inverse graph are referred to as the set of objects in the ab-
stract space defined by the shape of the curve present in Gn

ζ for each ζ ∈ (0,∞).
The 45◦−line is also an artifact that helps visualize the occurrence of dynamical
fixed points, but it is not part of the abstract space of curves that constitute Gn

ζ

for each value of ζ : The entire abstract space is just the set of p-curves constituting
the inverse graph at each value of ζ.

The 45◦−line has another important visualization role: the formation of fixed
points is preceded by a branch of the inverse graph becoming tangent to the
45◦−line. Thus, as a left-moving or right-moving p−curve approaches the 45◦−line,
its extremal point meets that line, crosses it, and becomes exactly tangent to it. For
the primordial p−curve, the tangency occurs at exactly one ζ−value in the interval
ζ ∈ (0, 1]; namely, ζ = 1/2 on the conjugate inverse graph as expressed by the
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following derivative relations:

d

dx
Ψζ(1;x)

∣∣∣
x=2− 1

ζ

=
1

2(1− ζ)
= 1, at ζ = 1/2;

(1.61)

d

dx
Ψζ(n;x)

∣∣∣
x=2− 1

ζ

=
1

2ζ

√
1− 1

ζΨζ

(
n− 1; 2− 1

ζ

) d

dx
Ψζ(n− 1;x)

∣∣∣
x=2− 1

ζ

=
1

2(1− ζ)

d

dx
Ψζ(n− 1;x)

∣∣∣
x=2− 1

ζ

= 1, at ζ = 1/2.

The last step follows from the induction hypothesis at level n − 1, and the full
induction proof from the validity of the first relation at level n = 1.

It is useful here to anticipate how the continuing ζ−evolution carries the fixed
point x(ζ) = 2− 1

ζ ; in the inverse graph Gn
ζ for ζ ∈ (1,∞), which is the full interval

beyond ζ ∈ (0, 1]. It is always the case for arbitrary n ≥ 2 that new branches
are created at ζ = 1. In particular, the function Ψζ(1

n);x) becomes real ζ = 1
and remains real for all ζ ∈ (1,∞); also, it has a nonempty domain of definition.
Indeed, the p−curve Gn

ζ (1
n)∪Gn

ζ (−1n) is central for ζ ∈ (1, ζ′], where ζ′ > 1 is the

next greatest MSS root at which new branches are created. At the point (1, 1) of
the graph, the fixed point x(ζ) = 2− 1

ζ , previously on the conjugate branch Gn
ζ (n)

for ζ ∈ (0, 1], moves smoothly onto the central positive branch Gn
ζ (1

n), where it

remains for all ζ ∈ (1,∞), even after this branch is no longer itself central, that is,
is pushed upward by the creation of still other central graphs created at still greater
values of ζ. The original primordial fixed point stays on the branch Gn

ζ (1
n) for all

ζ > 1.

The above is a quite complete description of the ζ−evolution of every inverse
graphGn

ζ , n ≥ 1, for the special interval ζ ∈ (0, 1]. The description of the ζ−pathway
of the creation of new p−curves and fixed points for ζ > 1 is an intricate task, requir-
ing many new concepts and their development. This introductory chapter continues
with several of the these.

1.2.4 MSS Polynomials and Roots

The real positive roots of some general polynomials known as MSS polynomials,
named after the authors Metropolis, et al. [3], who first introduced them, have a
definitive role in the description of the ζ−values where new p−curves are created, as
described for n = 2 in the above. The MSS polynomials originally were introduced
from the repeated iteration of the parabolic map p1ζ(x) = ζ x(2 − x), starting at

x = 1 with the (maximal) value p1ζ(1) = ζ and requiring, after n such iterations, a

return to the original starting point x = 1; that is, pnζ (1) = ζ. This iteration leads to

the MSS polynomials, denoted qn(ζ), that satisfy the following nonlinear recurrence
relation of the same form as the iteration of the basic parabola itself:

qn+1(ζ) = ζ qn(ζ)(2 − qn(ζ)), n = 0, 1, 2, . . . ; q0(ζ) = 1. (1.62)
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This definition then leads immediately to the general form:

qn(ζ) = pnζ (1), n = 1, 2, . . . . (1.63)

It is sometimes useful to use in place of qn(ζ) the polynomials pn(ζ) defined by

pn(ζ) = 1− qn(ζ), n = 0, 1, 2, . . . . (1.64)

These polynomials are also called MSS polynomials; they are fully defined by the
nonlinear recurrence obtained from (1.62):

pn(ζ) = ζ(pn−1(ζ))
2 − ζ + 1, n = 1, 2, . . . , ; p0(ζ) = 0. (1.65)

The MSS polynomial pn(ζ) is of degree 2
n−1 with leading coefficient 1 for for n > 1.

The first six are:

p1(ζ) = −ζ + 1,

p2(ζ) = ζ3 − 2ζ2 + 1,

p3(ζ) = ζ7 − 4ζ6 + 4ζ5 + 2ζ4 − 4ζ3 + 1,

p4(ζ) = ζ15 − 8ζ14 + 24ζ13 − 28ζ12 − 8ζ11 + 48ζ10

−28ζ9 − 14ζ8 + 8ζ7 + 8ζ6 + 4ζ5 − 8ζ4 + 1,

p5(ζ) = ζ31 − 16ζ30 + 112ζ29 − 440ζ28 + 1008ζ27 − 1120ζ26

− 424ζ25 + 3172ζ24 − 3728ζ23 + 16ζ22 + 3800ζ21

− 2608ζ20 − 816ζ19 + 816ζ18 + 900ζ17 − 158ζ16

− 1168ζ15 + 512ζ14 + 296ζ13 − 80ζ12 − 16ζ11 − 120ζ10

+ 36ζ9 + 16ζ8 + 16ζ7 + 8ζ6 − 16ζ5 + 1.

p6(ζ) = ζ63 − 32ζ62 + 480ζ61 − 4464ζ60 + 26640ζ59 (1.66)

− 133056ζ58 + 454384ζ57 − 1118008ζ56 + 1797728ζ55

− 1054944ζ54− 3219728ζ53 + 10501920ζ52 − 13522208ζ51

+ 1792672ζ50 + 22935832ζ49 − 36561980ζ48 + 14460192ζ47

+ 28883392ζ46− 44337552ζ45 + 12496544ζ44 + 22471648ζ43

− 16717040ζ42− 6575528ζ41 + 2982496ζ40 + 15210400ζ39

− 9370768ζ38− 11209568ζ37 + 12256192ζ36 + 1348048ζ35

− 4074704ζ34− 1663740ζ33 + 1088194ζ32 + 2475808ζ31

− 1490432ζ30− 530608ζ29 + 290528ζ28 − 19776ζ27

+ 329664ζ26 − 140792ζ25 − 93216ζ24 − 11520x23 + 17904ζ22

+ 60512ζ21 − 24992ζ20 − 12176ζ19 + 141618 − 316ζ17

+ 2592ζ16 + 384ζ15 + 336ζ14 − 608ζ13 − 288ζ12 + 16ζ11

+ 72ζ10 + 32ζ9 + 32ζ8 + 16ζ7 − 32ζ6 + 1.

Several important properties of MSS roots, which, by definition, are the real positive
roots of an MSS polynomial, follow:

1. Each MSS polynomial has ζ = 1 as a root; that is, the sum of the coefficients
is 0.
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2. Each MSS root of pn(ζ) = −qn(ζ) + 1 = 0 belongs to the interval [1, 2) for all
n = 1, 2, 3, . . . .

3. Special values of the MSS polynomial pn(ζ) are pn(0) = pn(2) = 1, n ≥ 2.

4. The number of MSS roots of pn(ζ) is given by
∑

m|n |Lm|, where Lm denotes

the set of lexical sequences of degree m− 1 defined in Sect. 1.2.3, m|n denotes
that m divides n, which includes both 1 and n, and |L1| = 1.

That ζ = 1 is a root follows by induction from the recurrence relation (1.65), as also
does pn(0) = pn(2) = 1, for n ≥ 2. Similarly, the recurrence relation (1.65) shows
that the only common root between MSS polynomials is at ζ = 1.

1.2.5 Lexical Sequences

The concept of a lexical sequence is very important for the enumeration of ζ−intervals
defined by certain MSS roots at which new p−curves are created. The definition
of a lexical sequence is based on the reverse-lexicographic order relation introduced
above. Let λ = (λ0, λ1, . . . , λk) denote a sequence of length k+1. Then, the sequence

λ = (λ0, λ1, . . . , λk) is lexical, if and only if

λ > (λi, λi+1, . . . , λk), each i = 1, 2, . . . , k. (1.67)

The sequence (λi, λi+1, . . . , λk) is called a right subsequence of λ :

A positive sequence λ of length ≥ 2 is lexical if and only if it is greater than each
of its right subsequences.

This definition holds for all positive sequences of length greater than 1. It is
convenient, however, to define all sequences (λ0), λ0 = 1, 2, 3, . . . , of length 1
to be lexical. These lexical sequences correspond to the words (1) �→ R, (2) �→
RL, . . . , (α0) �→ RLα0−1, . . . . Indeed, the sequence (0) is also included among the
lexical sequences; it is of length 0 and corresponds to the empty word (no word) in
R and L. A sequence that is not lexical is called nonlexical. Thus, the set of positive
sequences of arbitrary length is partitioned into lexical and nonlexical sequences;
the lexical sequence (0) is adjoined to represent the empty word.

The following three sets of lexical sequences have an important role in explaining
various features of the inverse graph:

Ln = {λ = (λ0, λ1, . . . , λk) | λ is lexical, 1 +D(λ) = n};
Mn = L1 ∪ L2 ∪ · · · ∪ Ln; (1.68)

Kn = ∪d|n Ld,

where d|n denotes that the positive integer d divides the positive integer n. This
result is presented here without proof, which can be found Brucks [39]):

|Ln| =
1

n
(2n−1 − en);

en =

⎧⎪⎪⎨⎪⎪⎩
1, for n prime, n ≥ 3,

0, for n = 2k, k = 0, 1, 2, . . . ,∑
d|n, d>1and odd

n

d
|Ld|, otherwise. (1.69)



1.3. PREVIEW OF THE FULL ζ−EVOLUTION 21

For all n ≥ 3 and nonprime and not a power of 2, this formula for |Ln| is recursive
in structure. For n a prime number, it is one of Fermat’s theorems. See relations
(2.2)-(2.3) below for a short list of lexical sequences.

Lexical sequences enter into the properties of inverse graphs is several important
ways: (i). Enumeration of the positive real roots of the MSS polynomials that give
exactly the creation points of all branches of the general inverse graph; (ii) definition
of central sequences that have a major role in partitioning the branches of the inverse
graph into cycle classes, and (iii) in the description of the ζ−evolution of the entire
inverse graph in terms of the central branches.

1.3 Preview of the Full ζ−Evolution
The results given above already give the broad picture of the ζ−evolution of the
inverse graph Gn

ζ as set forth in relation (1.45) (see the summation term and the

discussion that follows), which gives exactly the collection of branches Gn
ζ (α), α ∈

Ân(ζ) ⊂ An that are present for each value of ζ. As noted earlier, it is a quite
striking result that in the ζ−evolution the branches associated with the inverse
function have the property that once a branch becomes real, it remains real — it
does not move in and out of the real domain. But the different branches labeled
by the various α come into the real domain at different critical values of ζ that
depend on the particular α; these creation values of ζ for the various new branches
are always an MSS root of some MSS polynomial pm(ζ), 1 ≤ m < n, still to be
determined. For the more detailed picture, the ζ−intervals for which the same

constituent branches α ∈ Ân(ζ) ⊂ An persist must be determined, as well as the

ζ−values at which all the remaining branches α ∈ An(ζ), α /∈ Ân(ζ) are created.
The determination of the creation ζ−value of each branch of Gn

ζ is a quite difficult
task.

The order relations (1.38)-(1.39) holds for all α, α′ ∈ Ân(ζ) ⊂ An, and for all
ζ > 0. This feature is illustrated many times in the graphs presented in Chapter
5. It implies that new branches of the inverse graph not present for a particular
value of ζ must be created at greater ζ−values and at y−levels above the central
y = 1 level. This already foretells the intricate manner in which the ζ−evolution
of the graph must unfold in the creation of all of its 2n branches. The relation
of the reflection symmetry between positive α sequences and their conjugates in
simplifying the description cannot be over emphasized.

The implementation of the above features into the labeling of the branches of
the inverse graph Gn

ζ at each value of ζ requires a covering of the interval ζ ∈ (0, 2]
by the subintervals that give the ζ−values for central branches. In this respect,
it is important to emphasize again that, once a branch Gn

ζ (α) has been created at a
particular ζ−value, it remains in the inverse graph Gn

ζ for all greater ζ; similarly for
the conjugate branch. Branches and their labels are invariant objects in the inverse
graph in the sense that they remain in the inverse graph with the same labels after
they have been created, even though their dynamical motions changes their shapes.
Not all p−curves can split apart — those for which the branch labels are adjacent
labels in the full ordered set {(n) | (1 n− 1)} = {(n) > (n− 1 1) > · · · > (1 n− 11)}
cannot split; but all p− curves with branches labeled by non-adjacent labels must
split to accommodate the creation of all 2n branches in the full ζ−evolution of the
inverse graph. It is this dynamical picture of evolving labeled branches and p−curves
that must be pieced together smoothly at each value of ζ to obtain the composite,
continuous, deterministic features of the ζ−evolution of the inverse graph.
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1.4 The Baseline

The concept of a baseline of central labels Bn is introduced to help capture the
complexity of the ζ−evolution described above. A baseline of central labels Bn is a
collection of bn disjoint subintervals ζ ∈ (ζt, ζt+1], t = 0, 1, . . . , bn−1, that cover the
interval ζ ∈ (0,∞) = (0, 2 ] ∪ (2,∞) :

(0,∞) = ∪bn−1
t=0 (ζt, ζt+1] ∪ (2,∞). (1.70)

This baseline of central labels can be presented by the picture1:

Baseline Bn of Central Labels

ζ0 = 0 ζ1 = 1 ζ2 ζbn−2 ζbn−1 ζbn = 2

(n) (1n) · · ·
· · ·

· · ·(1 n− 2 1) (1 n− 1)
(1.71)

The number bn of labels in this baseline is given by the ordered labels

Cn = {cn(t) | t = 0, 1, . . . , bn − 1}
= {(n) > (1n) > · · · > (1 n− 2 1) > (1 n− 1)}. (1.72)

These labels are those of the positive branches Ψζ(cn(t);x), t = 0, 1, . . . , bn− 1 that
are central in the respective intervals:

(0, ζ1], (ζ1, ζ2], . . . , (ζbn−2, ζbn−1], (ζbn−1,∞). (1.73)

A collection of branches created at the same MSS root will be called synchronous
branches (or p−curves). It is very important here to recognize again that the only
ζ−values where any branch Ψζ(α;x) can be created is at an MSS root defining the
baseline Bn; all are created synchronously with the central branch; and they are
dispersed by some rules into smaller collections that fall between already-created
branches. This phenomenon is well-represented above: The creation process begins
with the primordial branch (n) for the interval ζ ∈ (0, 1]; continues with the creation
at ζ = ζ1 = 1 of the n − 1 new synchronous branches (n − 1 1) > (n − 2 1 1) >
· · · > (1 1 · · · 1) = (1n); continues with the creation of a collection of synchronous
branches at ζ = ζ2; · · · ; continues with the final creation of the last collection of
synchronous branches at ζ = ζbn−1. All 2

n−1 branches with labels in the ordered
set {(n) | (1 n− 1)} = {(n) > (n− 1 1) > · · · > (1 n− 1)} now appear in the graph.
Each of these successive creations includes the central sequence cn(t) as the least
synchronous label in its collection; each p−curve

Cnζ
(
cn(t)

∣∣∣ cn(t)), ζ ∈ (ζt, ζt+1] t = 0, 1, . . . , bn−1. (1.74)

is central for all ζ ∈ (ζt, ζt+1]. At issue is the y−level at which the new synchronous
branches created at a given MSS root are to be placed. This issue already occurs
for the interval ζ ∈ (ζ2, ζ3), n ≥ 4. It concerns the placement of the synchronous
branches created at the MSS root ζ2 between branches already present and placed

1The notation for α−sequences given by α = (α0, α1, . . . , αk), is ambiguous for a sequence with
one nonzero part, namely, (α0), in which case, it is almost always (α0) = α0 that is intended. This
is ignored for the most part, since the meaning is usually clear from the context. It needs also
be mentioned that the picture of the baseline is highly symbolic, since the lengths of the central
intervals are shown, more or less, to be the same. In fact, the lengths of these interval past ζ = 1
and toward the right become extraordinarily small. This is shown dramatically in the graphs in
Chapter 5 of the roots of the MSS polynomials as they pile-up as ζ approaches 2.
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in the inverse graph in accordance with the notations:

Ψζ((n);x) � Ψζ((n − 1 1);x) � Ψζ((n− 2 1 1);x)

� · · · ≥ Ψζ((1
n);x) � Ψζ(c3(2);x). (1.75)

There is one over-riding rule that is never violated, which is the Order
Rule: The y−levels occupied by branches at every value of ζ are labeled by
α−sequences in An from a greatest sequence to a least sequence as read from
top-to-bottom.

This rule is, however, far from sufficient for the column placement of a
sequence for general n. The examples given by (5.39)-(5.44)in Chapter 5 give
the correct column placement of all sequences for n = 1 − 6. The baseline
Bn pictured in (1.71) serves as the platform for an information table erected
above it and called the Table of Creation Sequences Tn. It is the column
placement of sequences in Tn that must be understood.

The general format of table Tn can be set forth, leaving aside for the
moment how this format is to be filled-in with explicit sequences from An

This formatted table is as follows: Each table has 2n−1 rows and a number
of columns equal to the number |Cn| = bn of central sequences. Each of the
bn columns contains exactly one sequence in each row.

The prominence of the collection of bn central p−curves given by (1.71) is
recognized by placing the central label cn(t) of its upper positive branch as
the least label in column t defined by the interval (ζt, ζt+1]. Accordingly, it
occurs in the row appropriate to its order in the ordered set {(n) | (1 n− 1)}
of 2n−1 of positive labels α ∈ An. Finally, the collection of labels that appear
in column t are assigned the notation as follows:

Col
(n)
t = {collection of labels created synchronously

with the central sequence cn(t)}. (1.76)

One of the principal goals of this monograph is to give the rules of con-
struction for the Creation Table Tn for all n. For this, it is useful first to
have a detailed construction of the baseline Bn, especially, of its central se-
quences cn(t). This is a good starting point, although many features of the
general inverse graph Gn

ζ are still left out. These include topics such as the
characterizations of p− curves as left-moving or right-moving for increasing
ζ, of the the dynamical domains of definition of branches, and of the creation
of the dynamical fixed points, their bifurcations, and the curves on which
they permanently reside. Each of these topics is developed in detail in the
chapters that follow.

There is also a special Chapter 5 in which a large number of computer-
generated inverse graphs are presented. It is emphasized again that without
the close coordination of theory development with actual visualization of
events in these graphs this monograph would not have been possible, as
already acknowledged in the Preface.

This Chapter is concluded with a section detailing the vocabulary, con-
cepts, and their symbolization for the pupose of having this information
accessible in one place.
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1.5 Vocabulary, Symbol Definitions and Explana-
tions

Generic symbols:

General symbols

R real numbers
C complex numbers
P positive numbers
Z integers
N nonnegative integers
Rn Cartesian n−space
Cn complex n−space
En Euclidean n−space
× ordinary multiplication in split product, direct product
δi,j the Kronecker delta for integers i, j
δA,B, δ(A,B) the Kroneker delta for sets A and B
�x� least integer ≥ x
�x� greatest integer ≤ x

{τ | τ ′} = set of all adjacent sequences from τ ≥ τ ′

α, β, γ. . . . ,
Xm

α, β, γ, . . .
σi
( ); ( ]; [ ); [ ]real number intervals; open,open; open,closed; closed, open; closed,closed√
a, a positive number for a ∈ P

Ψζ(α;x),Ψζ (α;x)
Φζ(σ;x)
An,Ln,Mn,Kn

Col
(n)
t

baseline mathbfBn

Terminology and symbols applied to a positive sequence α =
(α0, α1, . . . , αk) as defined within the text at the needed place:

length
degree
right subsequence
left subsequence
central
lexical
order relation
harmonic
fundamental
primitive
maximal lexical
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zero
boundary
adjacent
conjugate

Terminology and symbols applied to curves in the inverse graph
Gn

ζ as defined wthin the text at the needed place:

branch
p-curves
golden ratio
sychronous branches
upper branch
lower branch
right-moving
left-moving

Operations on sequences

concatentation

Miscellaneous

words on two letters
compositions

Graphs

fixed points
tangency
upper half
lower half
curves
shape of a curve
domain of definition of a branch
fixed points
bifurcations (period-doubling, tangent)
intervals (ζt.ζt+1]
composition
cycle classes

MSS polynomials

MSS roots (always real)
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Special Subsets

{τ | τ ′} =
set of all ordered adjacent sequences from τ to τ ′;
single sequence τ for τ = τ ′;

�τ | τ ′� =
set of all ordered adjacent sequences
less than τ and greater than τ ′;
empty set for τ adjacent to τ ; undefined for τ = τ ′;

(1.77)

{τ | τ ′� =
set of all ordered adjacent sequences from τ to less than τ ′;
empty set for τ = τ ′; undefined for τ = τ ′.



Chapter 2

Recursive Construction of
Table Tn from Tn−1

The purpose of this Chapter 2 is to fill in the details of the full recursive
construction of creation table Tn from creation table Tn−1, thereby giving
the information needed to show that the collection of all such creation tables
Tn for all n = 1, 2, . . . is a complex adaptive system. This begins with the
derivation of the general central sequence cn(t) that gives the least label in

the column Col
(n)
t of baseline Bn of Tn, where the central sequences and

their columns are enumerated by t = 0, 1, . . . , bn − 1. The Table Tn then

contains in Col
(n)
t the ordered set of labels of the new branches of the inverse

graph Gn
ζ created at the MSS root ζt that designates the left endpoint of

the interval (ζt, ζt+1] that defines Col
(n)
t . The problem is to find the labels

of these central sequences (see (1.71)).

2.1 Construction of the Baseline Bn

The definition of the baseline Bn presented in Sect. 1.2.4 (see (1.71)) must
now be augmented with the full rule for determining each central sequence
cn(t). Once the baseline Bn is fully prescribed, the ordered labels that go

into each Col
(n)
t can be considered.

Let λ = (λ0, λ1, . . . , λk) ∈ Ld denote a lexical sequence in the set Ld, d =
1, 2, . . . (see Sect. 1.2.5 for the definition of lexical sequences). In particular,
a lexical sequences λ ∈ Ld of length k + 1 aways satisfies D(λ) = λ0 + λ1 +· · ·+ λk = d− 1 for each positive integer d ≥ 2; hence,

λ = (λ0, λ1, . . . , λk) ∈ Ld implies 1 +D(λ) = k. (2.1)

In addition to this degree requirement, each sequences in γ ∈ Ld, n ≥ 2, must
satisfy the order conditions that each of its right subsequences is less than the
sequence γ itself; furthermore, by definition, all sequences (0), (1), (2), . . . ,
are taken to be lexical.

27



28CHAPTER 2. RECURSIVE CONSTRUCTION OF TABLE TN FROM TN−1

This leads to the following sets of lexical sequences:

Examples. Lexical sequences Ld, d = 1, 2, . . . , 7 :

L1 = {(0)},L2 = {(1)},L3 = {(2)},
L4 = {(3), (2 1)},L5 = {(4), (3 1), (2 1 1)},
L6 = {(5), (4 1), (3 1 1), (3 2), (2 1 1 1)}, (2.2)

L7 = {(6), (5 1), (4 1 1), (4 2), (3 1 2), (3 1 1 1),

(3 2 1), (2 1 2 1), (2 1 1 1 1)}.
These are the complete sets of lexical sequences of the indicated degree; they
have the following cardinalities:

|L1| = 1, |L2| = 1, |L3| = 1, |L4| = 2, |L5| = 3, |L6| = 5, |L7| = 9. (2.3)

The baseline Bn introduced in the picture (1.71) has an MSS root denoted
ζtat the left endpoint of the interval (ζt, ζt+1], t = 1, 2, . . . , bn − 1; it is the
creation ζ−value of the branches in the inverse graph Gn

ζ that are labeled by

the sequences in the set Col
(n)
t . The numerical value of each MSS root must

be known to high precision to calculate the inverse graphs of Gn
ζ , which are

presented in Chapter 5 under the notation P n.

2.1.1 Properties of MSS roots

A notation for the set of all MSS roots is next introduced so as to be able
to refer unambiguously to their various properties:

MSSn = set of all MSS roots of the MSS polynomial pn(ζ);

MSSn = {ζ(n)m |m divides n}; (2.4)

|MSSn| = number of divisors of n.

The first few of these cardinalities are given by

|MSS1| = 1, |MSS1| = 2, |MSS3| = 2,

|MSS4| = 3, |MSS5| = 2, |MSS6| = 4, . . . . (2.5)

The last two relations in (2.4) already supplement the basic definition (first
relation) in (2.4) by allowing the counting of all MSS roots, where it is
recalled that, by definition, MSS roots are positive real numbers.

But the finite set MSSn to which the MSS roots, ζt and ζt+1corresponding
to the left end of the interval (ζt, ζt+1) belongs is yet to be determined. These
MSS roots can be also be characterized by the lexical sequence corresponding
to a word that gives a closed cycle. Thus, there exists a lexical sequence λ(t)

such that
ζ(λ(t)) = ζt ∈MSSn, for some n ≥ 1. (2.6)

A rule for obtaining the general lexical sequence λ(t) in this result would
give a structural result for characterizing the MSS roots, hence, the intervals
(ζt, ζt+1] without appeal to the computer-generated graphs. Such a result for
the central sequence is next stated, followed by its proof, followed by some
confirming examples:
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The central sequence cn(t) for baseline Bn is given in terms of a supplemental
sequence Λn−1(λ

(t)) by the following relation:

cn(t) =
(
1, Λn−1(λ

(t))
)
, (2.7)

where the sequence Λn−1(λ
(t)) is of degree n− 1.

Observe that every central sequence must be less than the central sequence
cn(1) = (1n); hence, must have first part = 1, as shown in (2.7). Moreover,
it must be the case that

Λn−1(λ
(t)) > (1n−1), n ≥ 3. (2.8)

The rules for obtaining the sequence Λn−1(λ
(t)) begin with the simple

division algorithm for the integer n− 1 :

n− 1 = dm+ r,

m =
⌊n− 1

d

⌋
= greatest integer ≤ n− 1

d
; d = 1, 2, . . . , n− 1,

r ∈ {0, 1, . . . , �n−2
2 �} (remainder), n ≥ 2. (2.9)

First, a sequence γ is selected from the set of lexical sequences Ld, where
this set is any subset of the set Mn−1 defined in (1.68):

Ld ⊂Mn−1 = {L1,L2, . . . ,Ln−1}, n ≥ 2. (2.10)

It is to be noted here that the set Mn of lexical sequences defined by (1.68)
has been replaced by Mn−1 :

The greatest value of d is n−1, and the degree of a lexical sequences λ ∈ Ln−1
is D(λ) = n− 2.

Second, for each λ ∈ Ld and each ρ ∈ Ar a sequences, denoted Λn−1(λ; ρ)
is defined from the elementary division algorithm n − 1 = md + r by the
relations:

Λn−1(λ; ρ) =

{
(λ, 1)m ρ, (λ) even
(λ,−1)m ρ, (λ) odd;

(2.11)

λ ∈ Ld, ρ ∈ Ar.

The sequences λ and ρ entering this definition are called divisor and re-
mainder sequences. The notations (γ, 1) and (λ, −1) in (2.11) denote:

(λ, 1) = (λ0, λ1, . . . , λk, 1),

(λ,−1) = (λ0, λ1, . . . , λk−1, λk + 1), (2.12)

(λ) = k + 1.

These are special examples of a more general rule for the concatenation of two
sequences defined in Sec. XX. The length (λ) of a sequence is the number of
nonzero parts; the sequence (0) is of length 0, and, if included in a sequence, it
does not contribute to its length. If ρ = (0) in definition (2.11), it is omitted
from the sequence. The degree of the sequence Λn−1(λ; ρ) defined in (2.11)
is easily checked to be n− 1, since D(λ) = d− 1;D(λ,±1) = d,D(ρ) = r.

Each MSS root ζt ∈Mn−1 must, according to the discussion on MSS roots
in Sect. 1.2.4 and on the structure of baseline Bn in Sect. 1.4 and Sect. 2.1,
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determine the left endpoint ζt of the interval (ζt, ζt+1] for which the sequence
denoted cn(t) is central, and this central sequence is unique. Thus, the sets
of lexical sequences

{Ld | d = 1, 2, . . . , n− 1} (2.13)
have a principal role. But the lexical sequences that enter into the definition
of central sequences cn(t) in (2.9) for baseline Bn are yet to be determined.
Some preliminary progress can still be made. First, the sequences defined
by (2.16) for the unique remainder sequence ρ ∈ Ar, even though as yet
unknown, can be fully ordered, so that

Cn = {(1Λn−1(λ; ρ)) |λ ∈Mn−1}ord. (2.14)

The ordering here is to be from greatest-to-least as read left-to-right. It
follows then that λ(t); ρ(t) is the t− th sequence in this ordered set

Cn = {cn(1), cn(2), . . . , cn(bn − 1)}
= {(1Λn−1(λ; ρ) | γ ∈Mn−1}ord
= {(1Λn−1(λ

(t); ρ(t)) | t = 1, 2, . . . , bn − 1}. (2.15)

The missing ingrediant in the above is the identification of the lexical se-
quences that determine the central sequences. To address this, it is useful
to partition the set of sequences {Λn−1(λ; ρ)} defined by (2.13) containing
|Mn−1| |Ar| sequences into the subsets of divisor sequences Dn−1(λ) and re-
mainder sequences Rn−1(ρ) defined as follows:

each λ ∈ Ld, d = 1, 2, . . . , n− 1 :

Dn−1(λ) =
{
Λn−1(Λn−1; ρ) | ρ ∈ An−1−md

}
; (2.16)

each, ρ ∈ Ar; r = 0, 1, . . . , �n−2
2 � :

Rn−1(ρ) =
{
Λn−1(λ; ρ)

∣∣∣λ ∈ Ld; d ∈ In(r)
}
; (2.17)

In(r) =
{
d ∈ 1, 2, . . . , n− 1

∣∣∣ �n−1
d � d = n− r − 1

}
. (2.18)

Thus, the divisor subsets all have the same divisor sequence λ and the re-
mainder sets the same remainder sequence ρ. As these sequences, in turn,
assume all possible values as given, respectively, by λ ∈ Ld, d = 1, 2, . . . , n−1
and ρ ∈ Ar, r = 0, 1, . . . , �n−2

2 �, the full set of all sequences in (2.13) is exactly
enumerated. It is the divisor sets that are of particular interest in resolving
the possible multiplicity of ρ−sequences for a selected λ ∈ Ld. Membership
in the indexing set In(r) severly limits the lexical sets Ld admitted into the
remainder set Dn−1(ρ).

It is necessary that each divison set Dn(λ) contain exactly one remainder
sequence ρ of given degree D(ρ) = r; otherwise, there can be no unique
sequence ρ(λ) associated with a selected γ ∈ Ld, d ∈ {1, 2, . . . , n − 1}. It
is, of course, as always, a basic assumption that the division algorithm
n − 1 = md + r generates all central sequences for baseline Bn. Certain
divisor sets contain but one sequence ρ in their remainder set in consequence
of restrictions on r coming from the division algorithm itself. These include
(see footnote, p.22):

Rn−1(r) = {Λn−1(γ; r) | γ ∈ Ld; d ∈ In(r)}, r = 0, 1. (2.19)
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All Λn−1−sequences for n = 2, 3, 4, 5 giving central sequences are included in
these two subsets for remainder r = 0, 1. It is only for remainders r ≥ 2 that
there are two or more sequences in the divisor set Dn−1((ρ)); this occurs for
all Dn−1(ρ) for all n ≥ 6. Thus, for n = 2, 3, 4, 5, it is always the case that
all sequences Λn−1(γ; ρ) are uniquely determined by the division algorithm
itself. This can be verified explicitly by giving all five cases:

Examples. Give the relevant cases above to be sure. (See below—may
already be worked out.) FINISH THIS

It is a very tedious path that has been set forth for establishing the
complex adaptive system structure of chaos theory. Regrettably, a more
direct root has not been found.

To deal with remainders r ≥ 2 still new concepts are needed.

2.2 Reducible and Irreducible Sequences

A sequence Λn−1(λ; ρ) is reducible if it is equal to another sequence of the
same form having lesser remainder; that is,

Λn−1(λ; ρ) = Λn−1(λ
′; ρ′),

D(ρ) = r > r′ = D(ρ′); λ and λ′ each lexical. (2.20)

A sequence that is not reducible is said to be irreducible. Thus, the crite-
rion for central sequences can be phrased in this nomenclature as follows:

Each sequence Λn−1(λ; ρ), λ ∈ Ld, d = 1, 2, . . . , n − 1, ρ ∈ Ar, for which
the division algorithm n − 1 = md + r holds, is either irreducible or re-
ducible; if irreducible, it corresponds to a unique central sequence cn(λ) =
(1 Λn−1(λ; ρ)), Dn(ρ) = r, with a unique remainder r; otherwise, the se-
quence is reducible.

The criteria for reducible and irreducible sequences is next developed.
First, it is observed that each positive sequence in Ar can be expressed in
one of the following two forms:

for each β ∈ Ar−1 = (β0, β2, . . . , βk), D(β) = r − 1;

ρ = (1 β); ρ = β+1 = (β0 + 1, β1, . . . , βk). (2.21)

The proof of this relation is by elementary induction on index r: Each se-
quence is unique, the number is 2× 2r−2 = 2r−1, and it holds for r = 2.

It now follows from the observation above that every sequence Λn−1(λ; ρ)
can be written in one of the following four forms:

(λ) even : Λn−1(λ; (1 β)) = (λ 1)m 1 β; (2.22)

(λ) even : Λn−1(λ;β
+1) = (λ 1)m β+1; (2.23)

(λ) odd : Λn−1(λ; (1 β)) = (λ − 1)m 1 β; (2.24)

(λ)odd : Λn−1(λ;β
+1) = (λ − 1)m β+1. (2.25)

These relations apply to all sequences β of length (β) ≥ 2; they also apply
to either parity, even or odd, of (β). They are also complete ; that is,
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they include every possible sequence of the form Λn−1(λ; ρ), λ ∈ Ld, d =
1, 2, . . . , n; ρ ∈ Ar for which the division algorithm n− 1 = md+ r holds.

The problem now is to determine which of the forms (2.22)-(2.25) are
reducible. The reducibilty conditions are next enforced directly from the
division algorithm for the Λn−1(λ; ρ) sequences and from the forms (2.22)-
(2.25) without enforcing the lexical condition on λ′. This gives the following
necessary relations that must hold:

Case (λ) even; (λ′) even: (2.26)

sequence requirement : (λ 1)m 1 β = (λ′ 1)m
′
ρ′, D(ρ) > D(ρ′),

degree requirement: md+ r = m′d′ + r′ and r > r′

imply m′d′ > md and therefore

λ′ = (λ 1)mα and m′ = 1; hence,

α 1 ρ′ = (1 β), α = (0) or positive.

Case (λ) even; (λ′) odd: (2.27)

sequence requirement:(λ 1)mβ(+1) = (λ′, −1)m′
ρ′, D(ρ) > D(ρ′),

degree requirement: md+ r = m′d′ + r′ and r > r′

imply m′d′ > md and therefore

λ′ = (λ 1)mα′ and m′ = 1; hence,

(α′, −1) ρ′ = β(+1).

The conditions for reducibility for the two cases (λ) odd; (λ′) even and (λ)
odd; (λ′) odd are obtained from (2.26) and (2.27), respectively, simply by
making the replacement of (λ 1)m by (λ, −1)m, all other relations remaining
unchanged, especially, the conditions in the last relation of each of (2.26)-
(2.27).

It is still necessary to enforce the rule that the sequence λ′ be lexical in
(2.26)-(2.27) and in their modification to (λ) odd. Sequence lexicality and
the associated reverse-lexicographic order rule require:

(λ) even :

Conditions that λ′ be lexical. For each k = 0, 1, . . . m− 1 : (2.28)

(λ 1)m−kα > α, all k even; (λ 1)m−kα < α, all k odd.

(λ) odd :

Conditions that λ′ be lexical. For each k = 0, 1, . . . m− 1 : (2.29)

(λ, −1)m−kα > α, all k even; (λ, −1)m−kα < α, all k odd.

These conditions for lexicality must hold for all k even and all k odd that are
in the domain k ∈ {0, 1, . . . ,m−1}. It is also allowed to take α = (0) in each
relation (2.28)-(2.29). The lexical conditions then require (λ, 1)m−k > (0)
for k even and (λ, 1)m−k < (0) for k odd. This is a contradiction unless
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m = 1, in which case the second condition is inapplicable since only k = 0
is allowed. The conclusions are:

If λ is lexical and (λ) is even, necessary and sufficient

that conditions that the sequence (λ 1)m α be lexical are

m = 1 and that λ 1α be lexical; (2.30)

if λ is lexical and (λ) is odd, necessary and sufficient

conditions that the sequence (λ, −1)mα be lexical are

that m = 1 and that (λ − 1) α be lexical. (2.31)

The result (2.30) holds even for α = (0), in which case it is always true that
(λ 1), (λ) even is always lexical, even for λ = (0). But the condition λ lexical
for (λ) odd in (2.33) is not sufficient for (λ, −1) α to be lexical, even for
α = (0); hence, it must be specified in addition to m = 1, as shown.

The condition of lexicality of λ′ in the reduction formula (2.31) severely
restricts its applicability to meet the reduction criterion. This leaves as
irreducible all sequences Λn−1(λ; ρ) for which the division algorithm n−1 =
md+ r admits sequences with m ≥ 2 and r ≥ 2. This first occurs for n = 9,
in which case m = 2, d = 3, r = 2. These parameters give the following two
cases, each of which is irreducible:

Λ8((2); (2)) = (3 3 2); Λ8((2); (1 1)) = (3 3 1 1). (2.32)

Thus, neither of these sequences can be written in the form Λ8(λ
′; ρ′) with λ′

lexical and ρ′ = (0) or (1). Thus, the uniqueness of every sequence Λn−1(λ; ρ)
required by the condition that the sequence λ ∈ Ld is the lexical sequence
such that the MSS root ζ(λ) has the property that �ζ(λ)� < ζ(λ) is not
resolved by the reducible criterion alone for every allowed Λn−1(λ; ρ). But
now the fact that each sequence in the set {(1 Λn−1(λ; ρ) | ρ ∈ Ar} is created
synchronously with the central sequence comes into play: The least of these
sequences must be the central sequence; it is the sequence ρ = (r) for m
even, and the sequence ρ = (1 r − 1) for m odd ( See Sect. 1.3). Thus, the
following result holds:

m even : cn(λ) = (1 Λn−1(λ; (r))

< (1 Λn−1(λ; ρ),D(ρ) = r, ρ < (r); (2.33)

m odd : cn(λ) = (1 Λn−1(λ; (1 r − 1))

< (1 Λn−1(λ; ρ),D(ρ) = r, ρ > (1 r − 1).

Thus, not only are the sequences cn(λ; (r)), all m even and the sequences
cn(λ; (1 r−1)), all m odd the central sequences created at the MSS root ζ(λ)
for (λ) even, but also the remaining sequences in the sets (2.28) and (2.29),
respectively, are created syncronously with the central sequence; moreover,
they are adjacent sequences just above the central sequence in the baseline
Bn. They are adjacent in An because it is easily shown that no sequence in
An can fall between any pair.
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Examples: Two examples are giving that validate the above classification
of sequences of the form Λn−1(λ; ρ) :

1. n = 10, d= 3, m = 2, r= 3:

Λ9((2); (3)) = (3 3 3);

Λ9((2); (2 1)) = (3 3 2 1);

Λ9((2); (1
3)) = (3 3 1 1 1); (2.34)

Λ9((2); (1 2)) = (3 3 1 2).

2. n = 12, d = 4, m = 2, r = 3 :

Λ11((2 1); (3)) = (2 1 1 2 1 1 3);

Λ11((2 1); (2 1)) = (2 1 1 2 1 1 2 1);

Λ11((2 1); (13)) = (2 1 1 2 1 1 1 1 1); (2.35)

Λ11((2 1); (1 2)) = (2 1 1 2 1 1 1 2).

In each of these examples, each sequence has m = 2 and is irreducible, as
directly verified: There exists no lexical sequence λ′ and remainder r′ < 3 for
which any of these sequences is reducible. Since m = 2, the central sequence
is the one with greatest remainder; namely, ρ = (3), and the remaining
three occur immediately above the central sequence, which is c10((2); (3)) =
(1 Λ9((2); (3))) in Example 1 and c12((2 1); (3)) = (1 Λ11((2 1); (3))) in
Example 2, all in proper order and adjacent, and in the same column of
baseline B10 and baseline B12, respectively, since they are all created at the
respective MSS roots ζ((2) and ζ((2 1)). The computer-generated graph P 10
at ζ((2)) = 1.98014 (see the pair of graphs for ζ = 1.98000 and ζ = 1.98100
)show exactly four new branches all created at the MSS root ζ((2)); they
are labeled, of course, by the central branch c10((2); (3)), and the remaining
adjacent sequences in (2.36), properly ordered. The computer-generated
graph P 12 at ζ((2 1)) = 1.86953 (see the pair of graphs for ζ = 1.9198 and
ζ = 1.9218) shows four new branches all created at the MSS root ζ((2 1)),
since there are no new branches created between ζ((2 2)) and the ζ−values
for these graphs, which are labeled by the central branch a c12((2 1); (3)) and
the remaining adjacent sequences in (2.37), properly ordered. The numerical
computer verification of Examples (2.36)-(2.37) is vivid confirmation of the
correctness of the analysis on central sequences given in this section.

The sets of central sequences for n = 2− 8 follow from the above results:

C2 = {ζ((0)), ζ((1))},
C3 = {ζ((0)), ζ((1)), ζ((2))},
C4 = {ζ((0)), ζ((1)), ζ((2))},

C5 = {ζ((0)), ζ((1)), ζ((2)), ζ((2 1)), ζ((2)), ζ((3))},
C6 = {ζ((0)), ζ((1)), ζ((2 1)), ζ((2 1 1)), ζ((2)),

ζ((3 1)), ζ((3)), ζ((4))}, (2.36)

C7 = {ζ((0)), ζ((1)), ζ((2 1)), ζ((2 13)),

ζ((2 12)), ζ((2)), ζ((3 2)), ζ((3 1)), ζ((3 1 1)), ζ((3)),
ζ((4 1)), ζ((4)), ζ((5))},
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C8 = {ζ((0)), ζ((1)), ζ((2 1)), ζ((2 13)),

ζ((2 15)), ζ((2 14)), ζ((2 12)), ζ((2 1 2 1)), ζ((2)),

ζ((3 2)), ((3 2 1)), ζ((3 1)), ζ((3 12)), ζ((3 13)), ζ((3 1 2)),

ζ((3)), ζ((4 1)), ζ((4 12)), ζ((4)), ζ((5 1)), ζ((5)), ζ((6))}.
The number of sequences in these respective set is:

|C2| = 2, |C3| = 3, |C4| = 4, |C5| = 6, |C6| = 9, |C7| = 14, |C8| = 23. (2.37)

It is also useful to list the sets of MSS roots at which the successive central
sequences in (2.36) are created:

C2 = {ζ((0)), ζ((1))},
C3 = {ζ((0)), ζ((1)), ζ((2))},
C4 = {ζ((0)), ζ((1)), ζ((2))},

C5 = {ζ((0)), ζ((1)), ζ((2)), ζ((2 1)), ζ((2)), ζ((3))},
C6 = {ζ((0)), ζ((1)), ζ((2 1)), ζ((2 1 1)), ζ((2)),

ζ((3 1)), ζ((3)), ζ((4))},
C7 = {ζ((0)), ζ((1)), ζ((2 1)), ζ((2 13)),

ζ((2 12)), ζ((2)), ζ((3 2)), ζ((3 1)), ζ((3 1 1)), ζ((3)), (2.38)
ζ((4 1)), ζ((4)), ζ((5))},

C8 = {ζ((0)), ζ((1)), ζ((2 1)), ζ((2 13)),

ζ((2 15)), ζ((2 14)), ζ((2 12)), ζ((2 1 2 1)), ζ((2)),

ζ((3 2)), ((3 2 1)), ζ((3 1)), ζ((3 12)), ζ((3 13)), ζ((3 1 2)),

ζ((3)), ζ((4 1)), ζ((4 12)), ζ((4)), ζ((5 1)), ζ((5)), ζ((6))}.
These creation-value MSS roots do not include the primordial sequence (n),
which is never an MSS root. It is created at the left endpoint of baseline Bn;
hence, the left-to-right correspondence in (2.36) and the creation sequences
listed in (2.38) begins with the second part of these central sequences.

It will be observed that for general n exactly one central sequence is
created at the MSS root given by each lexical sequence in the set Mn−1.
This implies that the number of columns in baseline Bn is given by

bn = 1 +

n−1∑
d=1

|Ld|; (2.39)

bn = bn−1 + |Ln−1|, b1 = 1, n ≥ 2. (2.40)
Thus, from relation (1.69) for the number of lexical sequences, the number
of columns bn in baseline Bn is known in closed form in many cases and
recursively for the remaining.

It is to be emphasized again that the first instance of the of m ≥ 2 with
r ≥ 2 is the n = 8 example given by (2.36, in which each sequence is irre-
ducible. While the second sequence can be written the form Λ((3 3); (1)), this
is not a Λ sequence because (3 3) is not a lexical sequence. This illustrates
clearly that the first seven computer-generated graphs for n = 2− 7 do not
yet reveal essential features of the general baseline. But these detailed fea-
tures are not required to assert that the important goal of labeling uniquely
all sequence that appear in the creation table Tn have been determined.
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This result is placed in a box for prominence:

There exists a unique creation table Tn with the property that

the sequences that appear in the same column as the central

sequence are unique.

(2.41)

What is incomplete in the assertion (2.41) about the creation table Tn is
the rules that determine the unique sequences that constitute the sequences
that appear in the same column as the central sequence: their uniqueness is
already assured. The validity of this result can be checked explicitly from
the computer-generated graphs given in Chapter 5. But, for proving that the
system is a complex adaptive system, it is desirable to know exactly which
sequences from An go into each column with the same central sequence.
Since this result is one of the more important ones given in this monograph,
it is useful to have another perspective of its structure.

The method in question is based directly on the properties of branch
functions. Let α = (α0, α1, . . . , αk) and β = (β0, β1, . . . , βj) denote arbi-
trary positive sequences. Then, the branch functions satisfy the following
function composition rules for the concatenation of sequences based on the
correspondence with two letters (see relations (1.47)-(1.53)):

Ψζ(αβ;x) = Ψζ

(
α; Ψζ(β;x)

)
; (2.42)

Ψζ(αβ;x) = Ψζ

(
α; Ψζβ;x)

)
. (2.43)

αβ = (α0, α1, . . . , αk, β0, β1, . . . , βj); (2.44)

αβ = (α0, α1, . . . , αk + β0, β1, . . . , βj). (2.45)

The application of relations (2.42)-(2.45) made here is to the two distinct
classes of functions for which α = 1, and for which

α > α′ implies α+1 > α
′+1; and(1 α) < (1 α′). (2.46)

Application of the concatenation formulas (2.42)-(2.45) now gives the the
following important relations between branch functions:

Ψζ(α
+1;x) = Ψζ

(
(1);Ψζ(α;x)

)
, α ∈ Tn−1; (2.47)

Ψζ((1 α);x) = Ψζ

(
(1);Ψζ(α;x)

)
, α ∈ Tn−1. (2.48)

The sequences that appear in the Ψ−functions on the left are all in Tn, while
on the right only the simplest of the inverse function occurs, namely,

Ψζ((1);x) = 1 +

√
1− x

ζ
, (2.49)

which is evaluated at the x−value given, respectively, by Ψζ(α;x) and Ψζ(α;x).
Relations (2.47)-(2.49) now imply relations (2.50)-(2.53) below:
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1. The branch function Ψζ(α
+1;x), α+1 ∈ Tn is real, if and only if the

conjugate branch function Ψζ(α;x), α ∈ Tn−1 is real, and the following
relation is satisfied (The conditions ζ, x ∈ R are always implicit, unless
otherwise specified):

Ψζ(α;x) = 2−Ψζ(α;x) ≤ ζ. (2.50)

For all (ζ, x) ∈ R2 that satisfy this real relation, the real branch function
Ψζ(α

+1;x) satisfies:

1 ≤ Ψζ(α
+1;x) ≤ 2. (2.51)

2. The branch function Ψζ((1, α);x), (1, α) ∈ Tn is real, if and only if the
branch function Ψζ(α;x), α ∈ Tn−1 is real, and the following two relations
are satisfied:

Ψζ(α;x) ≤ ζ and x ≤ ζ. (2.52)

For all (ζ, x) ∈ R2 that satisfy this relation, then the real branch function
Ψζ((1, α);x) satisfies:

1 ≤ Ψα((1, α);x) ≤ 2. (2.53)

Conditions (2.47)-(2.53) are precise in specifying exactly the properties that
the branch functions Ψζ(α;x), α ∈ An−1, must possess in order to yield the
domains for which the branch functions in the inverse graph Gn

ζ are real.
Of course, the placement of α in Table Tn−1 already gives the domain for
which Ψζ(α;x) is real, but conditions (2.47) - (2.53) go beyond this. Indeed,
these conditions must yield the characteristic columns of baseline Bn from
those in baseline Bn−1; that is, relations (2.47)-(2.53) contain implicitly the
placement of each sequence in Tn−1 into its characteristic column in Bn.

Summary: The +1−rule and the (1 α)−rule given in relations (2.47)-(2.49)
are basic to the construction of Table Tn from Table Tn−1; the application
of each of these rules to the 2n−2 positive branch functions in Tn−1 gives all
the 2n−1 positive branch functions in Tn. But it is the composition relations
(2.47)-(2.49) and the resulting conditions (2.52)-(2.53) on Ψ−functions for
sequences in An−1 that provide the needed information to obtain the col-
umn mapping between the characteristic columns of baseline Bn−1 to the
characteristic columns of baseline Bn :

Each label in a given characteristic column of baseline Bn−1 of Table Tn−1
is assigned to a unique characteristic column of baseline Bn of Table Tn in
consequence of the enforcement of the reality conditions stated in relations
(2.52)-(2.53) on the branch function relations (2.47) -(2.48).

The required mapping rule has the following form:

α ∈ Col
(n−1)
t′ �→

{
α+1 ∈ Col

(n)
t1 ,

(1 α) ∈ Col
(n)
t2 ;

(2.54)

t′ = 0, 1, . . . , bn−1; t1, t2 ∈ {0, 1, . . . , bn}.
The condition Ψ(α;x) ≤ ζ that appears in (2.51) and the implied condition
1 ≤ Ψζ(α;x) ≤ 2 is always satisfied for Ψ(α;x) real, since the latter always
falls between 0 and 1, when real. The situation is more complicated for
relation (2.52): It is possible to have Ψζ(α;x) real and Ψζ(α;x) ≥ ζ, in
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which case Ψζ((1 α);x) is still complex; hence, it is necessary to enforce the
condition Ψζ(α;x) ≤ ζ in the composition rule in (2.48)-(2.49), which gives

Ψ((1 α);x) ≥ 1. (2.55)

This condition must hold everywhere in the real domain of definition of
Ψζ((1 α);x), each α ∈ An−1. This condition is described as follows (see
(xxx) applied to (1 α) ):

Ψζ(β; 1) ≤ Ψζ((1 α);x) ≤ Ψζ(λ; 1), β < (1 α) < λ. (2.56)

The sequences β, λ ∈ Ld, d = 0, 1, 2, . . . , n− 1 are, respectively, the greatest
sequence less than (1 α) and the least sequence greater than (1 α), except
that β = (0) should (1 α) be a central sequence in baseline Bn :

1 ≤ Ψζ((1 α);x) < Ψζ(λ; 1); (1 α) central, (1 α) < λ. (2.57)

The lower limit is achieved exactly at x = 1, which is the MSS root creation
value ζ(λ(t)) of the central sequence cn(t) = (1 α). This proves the result:

Each α ∈ Col
(n−1)
t′ such that (1 α) is the central sequence cn(t) for the

interval (ζt, ζt+1) is mapped under the (1 α)−rule to Col
(n)
t .

If (1 α) is noncentral in relation (2.57), then the following relation must hold

Ψζ(cn(t);x) ≤ Ψζ((1 α);x) ≤ Ψζ(λ; 1), cn(t) < (1 α) < λ, (2.58)

where cn(t) is the central sequence for Col
(n)
t for which (1 α) ∈ Col

(n)
t , and

x is in the common domain of definition of the pair of Ψ− functions in which
it appears. But the central sequence Ψ−function Ψζ(cn(t);x) is created at

the MSS root ζ(λ(t)) for which the interval is (ζt, ζt+1] and for which cn(t)
is central. This proves the result:

For each α ∈ Col
(n−1)
t′ such that (1 α) is noncentral, the sequence α is

mapped under the (1 α)−rule to (1 α) ∈ Col
(n)
t , where Col

(n)
t is the column

determined by the central sequence adjacent from below to (1 α); that is,
cn(t) < (1 α), with no central sequence between.

The results given above are now given the same box prominence as the
existence result (2.41):

The positive sequences that appear in the same column in the

baseline Bn constitute exactly the set of irreducible sequences. (2.59)

The sequences that go into the same column with a central sequence in
baseline Bn are now fully known: The collection of sequences α ∈ An and
their conjugates is a complex adaptive system.



Chapter 3

Description of Events in the
Inverse Graph

It has now been established that the collection of deterministic chaos events
as described in this monograph is a complex adaptive system. Nonetheless,
the richness of structure of the system remains to be more fully detailed.
Many of these detailed features of the collection of inverse graphs can be
observed qualitatively from the computer-generated inverse graphs them-
selves. It is quite useful to note some of these before getting involved with
their detailed proofs. These include the two kinds of bifurcation events, the
so-called tangent bifurcations and period-doubling bifurcations that precede
the value of the parameter ζ where new branches are created; the dynamical
shape, whose p−curves constitute the full graph at each value of the param-
eter ζ; and the left and right motions of the curves, and the direction and
speed with which they grow. The shape evolution of the inverse graph in
the two parameters ζ and x of the underlying parabola is quite vivid in the
computer-generated inverse graphs in Chapter 5, but these changes in shape
still require quantitative description.

3.0.1 Domains of Definition of Branches and Curves

The underlying problem can be quite easily visualized and stated :

The left and right extremal coordinates x
(1)
ζ (α;x) ≤ x

(2)
ζ (α;x) of each branch

Ψζ(α;x) that appears in the inverse graph at a given value of ζ are the left-
most and right-most points of the branch. The problem is to determine these
extremal coordinates.

The process of determining the extremal coordinates is initiated by in-
troducing the following set of sequences:

An−1 =
( n−1⋃

m=1

Am

)ord
, n ≥ 2. (3.1)

where, by definition, A1 = {(n − 1), (n − 2), . . . (1)}, and Am,m ≥ 2, is the
set of all positive α sequences that add to m. The sequences in the union

39
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(3.1) are ordered from the greatest sequence (n−1) to the least sequence (1),
and the set An−1 is complete in the sense that there is no sequence in An−1

between the sequences in An−1. Thus, An−1 contains, in all, 2n−1−1, n ≥ 2,
distinct positive sequences. The sequence (0) is always taken as the label of
the central y = 1 line.

The relation of the collection of sequences calAn−1 to the set of positive
labels An of all branches of the inverse graph Gnζ at ζ = 2 reveals their
significance:

The set of sequences calAn−1 includes all possible boundary sequences
in the inverse graph at each positive value of ζ. This is true because every
possible sequence between n − 1 and (1 n − 2), n ≥ 2, is included in An−1.
It follows that:

For each pair α,α′ ∈ An with α > α′, there exists a unique

sequence β ∈ An−1 such that α > β > α′; the sequence β is

the unique boundary sequence at ζ.

(3.2)

It is very important to keep in mind that by their very definition extremal
coordinates are unique. This means: If a set of extremal coordinates can be
found that assigns labels to a set of extremal points for each branch of all
inverse graphs present at a given value of ζ, then the extremal points are
uniquely labeled. This seemingly trivial rule can be used to demonstrate
that there must exist a unique partitioning of the set An−1 into subsets such
that each sequence in the subset corresponds to the same unique branch of
a sequence present in the inverse graph at the same value of ζ.

To this end, consider the following situation. Let α and α′ with α > α′
denote two adjacent sequences in the inverse graph Gn

ζ for selected ζ ∈
(0,∞). Then, there exists a sequence β ∈ An−1 that satisfies α > β > α′;
hence, β is the unique sequence of the boundary branch in the inverse graph
at the selected value of ζ.

Example: It is useful to show how this works for a specific value of n, say,
n = 4 : At ζ = 2, the following order relation between sequences holds:

(4) > (3) > (3 1) > (2) > (2 1 1) > (2 1) > (2 2)

> (1) > (1 1 2) > (13) > (14) > (1 1)

> (1 1 2) > (1 2) > (1 3) > (0). (3.3)

For ζ ∈ (0, 1], the following relation between sequences holds:

(4) > (0). (3.4)

For ζ ∈ (1, ζ(1)], the following order relation between sequences holds:

(4) > (3) > (3 1) > (2) > (2 1 1) > (1) > (14) > (0). (3.5)

For ζ ∈ (ζ(1), ζ(2)], the following order relation between sequences holds:

(4) > (3) > (3 1) > (2) > (2 2 1) > (2 1) > (2 2) > (1)

> (1 1 2) > (13) > (14) > (1 1) > (1 2 1) > (0). (3.6)



3.1. FIXED POINTS AS DYNAMICAL OBJECTS 41

The sequences α ∈ A4 are known for each ζ in the four baseline intervals
given in relations (3.6)-(3.9):

(0, 1] : the sequence is (4);

(1, ζ(1)] : the sequences are (4) > (3 1) > (2 1 1) > (14);

(ζ(1), ζ(2)] : the sequences are (4) > (3 1) > (2 1 1) > (2 2)

> (1 1 2) > (14) > (1 2 1); (3.7)

(ζ(2),∞) : the sequences are (4) > (3 1) > (2 1 1) > (2 2)

> (1 1 2) > (14) > (1 2 1) > (1 3).

Since the α sequences given by (3.10) are exactly the sequences that appear
in the inverse graph for the indicated baseline interval in B4, the remaining
sequences in each of (3.6)-(3.9) must be the unique boundary sequences.
Thus, rather elementary rules determine uniquely all boundary sequences
from the fully determined α−sequences present in the inverse graph at each
value of ζ. It may also be noted that the case for n = 4 given above generalizes
to arbitrary n in an obvious way without the need for invoking the stated
uniqueness property preceding the example. In any case, it has now been
shown that the full system consisting of the creation values of all branches
in the inverse graph, and their boundary sequences, is known explicitly: The
system is a complex adaptive system.

3.0.2 Concatenation, Harmonics, and Antiharmonics

The product or concatenation αβ and αβ̄ of two arbitrary positive se-
quences of length k + 1 and m + 1 given by α = (α0, α1, . . . , αk) and
β = (β0, β1, . . . , βm) is defined by

αβ = (α0, α1, . . . , αk, β0, β1, . . . , βm),

(3.8)

αβ̄ = (α0, α1, . . . , αk−1, αk + β0, β1, . . . , βm).

The corresponding inverse functions satisfy the relations:

Ψζ(αβ;x) = Ψζ(α; Ψζ(β;x)), Ψζ(αβ̄;x) = Ψζ(α; Ψζ(β̄;x)). (3.9)

The harmonic sequence h(α) and antiharmonic sequence a(α) associated
with a given positive sequence α = (α0, α1, . . . , αk) of length k+1 are defined,
respectively, by

h(α) =

{
(α, 1)α, k odd,
(α,−1), k even

, a(α) =

{
(α,−1)α, k odd,
(α, 1)α, k even

, (3.10)

where (α,−1) = (α0, α1, . . . , αk−1, αk + 1).

3.1 Fixed Points as Dynamical Objects

Fixed points were illustrated in Sec. 1.2.2 as dynamical objects, mostly for
the moving point 2− 1

ζ . But, of course, there are many fixed points present
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in the inverse graph Gn
ζ and the graph Hn

ζ as ζ runs over all values in the

baseline interval [0, 2]. A suitable definition is introduced in this section.

Let the parameter ζ ∈ (0, 2) be specified, but arbitrary. A set of points
{x1, x2, . . . , xr} obtained by the sequential iteration xi+1 = pζ(xi) = ζ xi(2−
xi), i = 1, 2, . . . , r, of an initially chosen point x1 such that the condition
xr+1 = x1 holds is called an r−cycle of the parabola pζ(x). The point x1
thus satisfies prζ(x1) = x1; it is called a fixed point of the r−th composition

of the parabola pζ(x). But then it is also the case that prζ(xi) = xi, for each
i = 1, 2, . . . , r; hence, each point xi in the original set with x1 is a fixed point
of the parabola pζ(x). Each such point is also a real root of the polynomial
equation:

prζ(x)− x = 0. (3.11)

This is a polynomial relation of degree 2r with coefficients that are themselves
polynomials in the parameter ζ. The same r−cycle is effected by each of
the iterations xj+1 = pζ(xj), where j is any member of the cyclic set of
values j = k, k + 1, . . . , r, 1, 2, . . . , k − 1, each k = 2, 3, . . . , r. Thus, if the
correspondence with a single word to any member of an r−cycle is known,
then the word for each member of the r−cycle is obtained by the cyclic
permutations of the letters constituting the word. There is no reference
whatsoever in the definition of an r−cycle given here to the inverse graph:
It is purely a combinatorial property of words on two letters.

The points of the inverse graph Gn
ζ , however, are in one-to-one correspon-

dence with the points of the graph Hn
ζ for each value of ζ; hence, each fixed

point in an r−cycle must belong to a unique point, hence, a unique branch,
or possible extremal point, which is the common point of two contiguous
branches of the inverse graph at each value of ζ : The cyclic permutations of
the starting point must be reflected in the cyclic permutations of the words
corresponding to the branches.

The direct determination of r−cycles is a quite difficult procedure because
fixed points are dynamical objects; that is, each fixed point is a smooth func-
tion xi = xi(ζ), i = 1, 2, . . . , r of the parameter ζ, a function that carries the
fixed point smoothly along the 45◦−line and always belows to a branch of
the inverse graph Gn

ζ . There is no hint in this viewpoint of fixed points as
to the dynamics of the inverse graph that is bringing them into existence.
A closer look reveals that all fixed points originate from the branches of
the curve present in Gn

ζ at a particular value of ζ becoming tangent to the

45◦−line. In principle, the fixed-point coordinate functions xi(ζ) carry this
information, but it is very difficult to capture these events in the numerical
evaluation of the fixed-point functions xi(ζ) as the roots of an MSS poly-
nomial, since analytical methods are, in general, unavailable for expressing
roots as analytical functions of the coefficients. But the successive graphs of
the ζ−evolution of Gn

ζ show exactly this smooth motion of all fixed points,

with the following important exception : pζ(x) = x, with fixed-point coor-
dinate given explicitly by (1.32) below. But, of course, the parabolic map is
defined for all real ζ, and, in particular for all positive ζ (For ζ = 0, it is the
horizontal line y = 0 for all x). The origin (0, 0) may also to be counted as
a fixed point — a point that is always truly fixed, independently of ζ.
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3.2 The Fabric of Bifurcation Events

A bifurcation event is said to have occurred in the inverse graph whenever
there is a change in the number of fixed points. Since fixed points are
invariants between the inverse graph and the original graph Hn

ζ itself, it
is important to understand the ζ−evolution of bifurcation events, that is,
how a bifurcation event manifests itself in the recursive computer-generated
graphs presented in Chapter 5.

It is a well-known result that for the parabolic map there are two types of
bifurcation events, saddle-node and period-doubling. Each creates two new
fixed points.

A saddle-node bifurcation is one that creates two new fixed points by the
motion of a p−curve approaching the 45◦−line from the left or the right,
becoming exactly tangent, and then simply moving across the 45◦−line.
These are the bifurcations that can occcur in the inverse graph for odd n.

A period-doubling bifurcation is one that creates two new fixed points by
a rather intricate motion of an existing p−curve about an existing fixed point
already on the p−curve. The motion may be described as a propeller-type
motion around the existing fixed point. Both period-doubling and saddle-
node bifurcations occur for even n in a highly organized way, yet to be
described.

Pictures of a saddle-node bifurcation are presented for n = 3 in Chapter
5 on the three inverse graphs P 3 for ζ = 1.91200, 1.91400, 2.00000. The left-
moving central p-curve C2ζ ((1 2) | (1 2)) simply moves across the 45◦−line
creating a single fixed point at exactly the point of tangency, this point
belonging to the upper branch labeled ((1 2)) of the central curve; this fixed
point immediately spits into two fixed points at the tangency point, and
these two fixed points move smoothly apart, with the upper point moving
onto the upper branch (1 2) of the p−curve, the lower point onto the lower

conjugate branch (1 2). These two fixed points remain on these respective

residency branches (1 2) and (1 2) for all greater ζ (see (1.33)). Obvious
modifications are to be made for a right-moving saddle-node bifurcation.
This is the standard picture for a saddle-node bifurcation event, even when
it does not occur on a central p−curve, where now the labels of the upper
and lower branches of the p−curve are some label τ and its complement
τ̃ , which are also adjacent sequences in Gn

ζ , as discussed above. There is
one exception, which is the primordial event, as described above, where
the saddle-node bifurcation was accompanied by an unavoidable primordial
fixed point on the conjugate graph.

Saddle-node bifurcations are easily recognized; for odd n; they must occur
in succession, one in each successive baseline interval, until all labels are fully
assigned in the creation table Tn. The anatomy of this situation for even n
is much more intricate: It remains to show how saddle-node bifurcations and
period-doubling bifurcations fall in place for even n.
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3.3 The Anatomy of Period-Doubling Bifurcations

A period-doubling bifurcation event aways takes place by the motion of a
p-curve around an existing fixed point, accompanied by the creation of two
new fixed points emerging out of the original.

It is useful to describe the full ζ−evolution of bifurcations in the inverse
graph G4

ζ as ζ increases from 0 to ∞. This serves as a prototype for all even
n. But, first, it is useful to describe the period-doubling bifurcation event
for the primordial interval (0, 1], since the details of its evolution can be
described, once and for all, for all even n. This general result for n for the
interval (0, 1] is next given, followed by the special results for the full interval
(ζ, 2] for n = 4 :

Interval (0, 1]. Arbitrary n : The dynamical moving fixed point x(ζ) =
2 − 1

ζ emerges from the origin (0, 1) and proceeds along the 45◦−line on

the central graph Cnζ
(
(n)
∣∣∣ (n)) until it meets the central point (1, 1) of

the graph and moves smoothly through this central point onto the central

graph Cnζ
(
(1n)

∣∣∣ (1n)), which is its permanent graph of residency, even after

this central graph splits apart when ζ meets the creation point for the next
central graph.

It is also useful to give the full description of fixed-point creation for, say,
the special case n = 4.

3.3.1 The Complete Description for n = 4

Interval (0, 2]. n = 4 : For the interval(0, 1], the motion of the dynamical
fixed point x(ζ) = 2 − 1

ζ is that described by setting n = 4 in the result

stated above for general n, as follows:

Interval (0, 1) : For ζ ∈ (0, 1), the primordial p−curve denoted by

C4ζ
(
(4)
∣∣∣ (4)) (3.12)

is the only curve present in the inverse graph. Its motion through the interval
generates the following fixed- point events: For ζ ∈ (0, 1/2], the stationary

fixed point (0, 0) is the only one present. At ζ̂ = 1/2, the primordial p−curve
(3.12) becomes exactly tangent to the 45◦−degree line and, as ζ increases,
it moves smoothly through the central point (1, 1) onto the upper branch

of the central p− curve C4ζ
(
(14)

∣∣∣ (14)), which is its permanent branch of

residency, even after this central graph splits apart at the creation point

ζ2 = (1 +
√
5)/2 of the next central interval C4ζ

(
(1 2 1)

∣∣∣ 1 2 1)
)
.

Interval [1, ζ2) : A period-doubling bifurcation is initiated at the tangency

point ζ̂ = 3/2. It is described as follows: The motion is around the tangent

point that resulted as the motion of the moving fixed point (4) crossed
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through the central point (1, 1) of the graph onto the central branch (14),
where it inherits the label (14), its branch of final residency. Then, by a
clockwise propeller-like motion around the fixed point (14), two more fixed
points are created, one that moves upward and one that moves downward,
away from the fixed point out of which they emerged. All three of these

fixed points remain on the left-moving central branch C4
(
(14)

∣∣∣ (14)) for the

full baseline interval for which this sequence is central. This configuration of
fixed points changes when the ζ−creation point of the next baseline interval
of B4 is reached, where these creation points are given by ζ0 = 0, ζ1 = 1, ζ2 =
(1+
√
5)/2, ζ3 = ζ(1 2 1), ζ4 = 2 (see (5.19) for confirmation of the directions

of motion of the above events).

Interval [ζ2, ζ3) : A second period-doubling bifurcation is initiated in this

very next baseline interval of B4 at the exact point of tangency ζ̂ of the
inverse graph P 4 labeled by the approximate value ζ ≈ 1.72. This event is
initiated by a counterclockwise propeller-like motion around the fixed point
(1 2 1), as this right-moving p−curve meets the 45◦−line. This dynamical
fixed point is, of course, the one created in the previous central interval that
moved downward onto it branch (1 2 1) of permanent residency. Exactly at

the point of tangency ζ̂ , two new fixed points emerge out of (1 2 1), one that
moves upward and one that moves downward, away from the fixed point out
of which they emerged. As ζ increases toward the value of ζ3 of the next MSS
root, all three of these dynamical fixed points remain on the branch (1 2 1),

with new ones moving away from (1 2 1) onto their respective branches of

final residency, the positive branch (1 3) and the conjugate branch (1 3) of
the newly created p−curve at ζ3.

Interval (ζ3,∞) : A saddle-node bifurcation at theexact tangency point ζ̂
of the inverse graph P 4 labeled by 1.98000 initiates the creation of the last

two fixed points. Here the (last) left-moving central p−curve C4ζ
(
(1 3)

∣∣∣ (1 3),

which is created at the the MSS root ζ3, simply meets the 45◦−line, becoming

tangent exactly at ζ̂ near the P 4 inverse graph labeled by 1, 98000, where
the creation of the two fixed points (1 3) and (1 3) occurs, and these labels
are those of their respective final residency branches. No previously created
fixed points participate in this event. But, for the first time, a new event
takes place: Synchronous with the creation of the fixed points (1 3) and (1 3)
is the creation of the following set of non-central fixed points:

{(4), (3 1), (1 3), (1 3), (1 1 2), (2 2), (2 1 1), (3 1) } (3.13)

The last event, a saddle-node bifurcation, in which the non-central branches
with labels (3.13) are also created may come as a surprise, but they cannot
be avoided because the set of all fixed points created in the inverse graph
must account for all 2n branches of the inverse graph. This phenomenon is
confirmed by the collection P 4 of computer-generated inverse graphs.

It is important to realize that all adjacency properties of the branches of
newly created curves are preserved in a bifurcation event. The synchrony of
non-central bifurcation events with a central event is clearly very significant.
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The detailed analysis of the origin and motions of fixed points for general
even n can be effected along the lines presented above for n = 4 by reading off
the results directly from the algorithmic computer-generated inverse graphs
given in Chapter 5. This is not only limited in scope by the computational
power to produce readable inverse graphs, but also by the power of the
observer to detect very small changes in the inverse graphs. Since it is already
known that the inverse graphs are uniquely described by an algorithm, this
direct method might even be efficient, but it necessarily will include a number
of steps equal to the number of intervals in baseline Bn, perhaps synthesized
in some unifying scheme.

An alternative method is to recognize that such details as described above
are more than is needed. It is better, perhaps, to recognize the existence
of a unique solution, but to give the details only for some of its signature
properties. This is the path followed, more or less, in the remainder of this
monograph.

3.4 Signature Properties of Fixed Points

3.4.1 More Vocabulary and Associated Events

1. A period-doubling bifurcation event is called a simple event if a given
central p−curve splits in the simplest possible manner — the newly
created central p−curve has one curve adjacent to it from above with
positive labels and one curve adjacent to it from below with conjugate
labels, where the uppermost and lowermost branch carrying the labels
of the previous central p−curve. It is called a compound event if
a given central p−curve splits into into m > 1 p−curves such that
uppermost and lowermost branch carrying the labels of the previous
central p−curve with m positive labels and m conjugate labels that
are created simultaneously with a new central p−curve. An example
of this event is exhibited for in the inverse graphs P 8 for ζ = ζ((1)) =

(1 +
√
5)/2 (slightly less than ζ = 1.62).

2. A convenient way to describe fixed points is by giving the branches of
the inverse graph Gn

ζ on which they are created and the final branches
to which they evolve — the branch of final residency. This description
is further enhanced by the definition of a p−curve.

3. A p−curve is denoted by Cnζ (τ | τ̃) ⊂ Gn
ζ , τ, τ̃ ∈ An ∪ An, where τ and

τ̃ denote the upper branch and the lower branch, respectively, of two
contiguous branches Gn

τ and Gn
τ̃ that join smoothly at a single extremal

point. The label τ̃ is called the complement of τ at ζ. . It is not

the case that ˜̃τ = (̃τ̃ ) = τ because of the rule that the first curve
label τ is that of the upper branch. Indeed, the complement label
propagates in a string of contiguous p−curves in the fashion indicated

by Cnζ (τ | τ̃ ) Cnζ (τ̃ | ˜̃τ) · · · .
4. The description of the motion of the fixed point defined by pζ(x) = x is

conveniently described in terms of p−curves as follows: This fixed point
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belongs to the lower branch (n) of the primordial p−curve C(n)ζ

(
(n)
∣∣∣ (n))

for all 1/2 ≤ ζ < 1, which corresponds to 0 ≤ x < 1. Indeed, it is the
case that x(ζ) = 2 − 1

ζ is a fixed point of the conjugate branch of the

primordial p−curve; that is,
Ψζ((n);x(ζ)) = x(ζ), for all ζ < 1. (3.14)

This fixed point originates on the parabola and 45◦−line at ζ → 0
and as ζ increases from 0 the primoridal curve becomes tangent to the
45◦−line at ζ = 1/2; indeed, the dynamical fixed point x(ζ) = 2 − 1

ζ

moves through the permanent fixed point (0, 0) at ζ = 1/2 on its way
toward the central point (1, 1) of the graph. Indeed, as demonstrated
for P 4 above, it then moves smoothly onto the upper branch (1n) of

the newly created central p−curve C(n)ζ

(
(1n)

∣∣∣ (1n)), where it remains

for all ζ > 1, even after this central curve (n ≥ 2) has been split apart
by the creation of yet another new central p−curve. Thus, the only
fixed point that remains on the branch (n) is the origin (0,0). A fixed
point on the branch (n) of the inverse graph always occurs, but at the
greatest MSS root ζ((1 n − 1)) = (ζ((1)) for n = 1), where it remains
in motion on this branch for all ζ > ζ((1 n − 1)). This accounting of
fixed points leads to 2n fixed points, one on each branch of the final set
of p−curves.

5. The description of the motion of the fixed point defined by pζ(x) = x is
conveniently described in terms of p−curves as follows: This fixed point

belongs to the lower branch (n) of the primordial p−curve C(n)ζ

(
(n)
∣∣∣ (n))

for all 1/2 ≤ ζ < 1, which corresponds to 0 ≤ x < 1. Indeed, it is the
case that x(ζ) = 2 − 1

ζ is a fixed point of the conjugate branch of the

primordial p−curve; that is,
Ψζ((n);x(ζ)) = x(ζ), for all ζ < 1. (3.15)

This fixed point originates on the parabola and 45◦−line at ζ → 0
and as ζ increases from 0 the primordial curve becomes tangent to
the 45◦−line at ζ = 1/2; indeed, the dynamical fixed point x(ζ) =
2 − 1

ζ moves through the permanent fixed point (0, 0) at ζ = 1/2

on its way toward the central point (1, 1) of the graph. Indeed, it
then moves smoothly onto the upper branch (1n) of the newly created

central p−curve C(n)ζ

(
(1n)

∣∣∣ (1n)), where it remains for all ζ > 1, even

after this central curve (n ≥ 2) has been split apart by the creation
of yet another new central p−curve. Thus, the only fixed point that
remains on the branch (n) is the origin (0,0). A fixed point on the
branch (n) of the inverse graph always occurs, but at the greatest MSS
root ζ((1 n−1)) = (ζ((1)) for n > 1, where it remains in motion on this
branch for all ζ > ζ((1 n− 1)). This accounting of fixed points leads to
2n fixed points, one on each branch of the final set of p−curves.

6. All r−cycles of the parabolic map pζ(x) = ζ x(2 − x), ζ > 0, occur
for x ∈ (0, 2) and are obtained as the the set of all positive solutions
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xi = xi(ζ) of the polynomial equation prζ(x) − x = 0, where r ∈ D(n),

the set of all divisors of n, denoted notation n| r. But full numerical
knowledge of the set of all fixed points of the parabolic map is quite
different than knowing the values of ζ at which the various fixed points
make their appearance in the inverse graph. All real solutions x of
prζ(x) = x, r ∈ D(n), belong to interval (0, 2), and all are distinct. But
not all fixed points in a given set of such of r such points are present in
the graph Gn

ζ at the same value of ζ : Each fixed point of an r−cycle
has its own special ζ−value of creation — it is only for ζ > ζ(1 n−1)),
the creation point of the last branch of the inverse graph that all fixed
points are present in all r−cycles. Some r−cycles are created at smaller
values of ζ. Indeed, the creation ζ−value of each fixed point is quite an
intricate process.

7. The guiding overview for the creation of fixed points is the following
summary of proved results: In the context of the parabolic map, fixed
points are the values of x that are uniquely defined by the underlying
parabolic function pζ(x) = ζ x(2 − x), its iterations, and the resulting
classification of fixed points into r−cycles by the divisors r ∈ D(n).
But they are dynamical in the sense that each fixed point is a smooth
function of ζ with a definite point of creation beyond which it remains
in the graph for all greater ζ, with a motion that carries it just past its
point of creation onto a definite branch of the inverse graph, where it
remains for all greater values of ζ. As the ζ−evolution continues, each
individual r−cycle is filled-in with its full complement of r points, until
finally for ζ slightly past ζ = ζ((1 n − 1)), the full set of fixed point,
2n in number, with one on each branch of the full inverse graph is in
place.

8. The precise ζ−values at which the sequences of an r−cycle appear in
the inverse graph is nontrivial. This creation process may be described
as follows: The branch Gn

ζ (τ) of the graph Gn
ζ is said to meet the line

y = x at the point (x̂, x̂) if there exists a real number ζ̂ ∈ (0,∞)
and an x̂ = x

ζ̂
(τ) such that the following two conditions, derived from

elementary calculus, hold: The point ζ̂ is a fixed point of the graph
Gn

ζ̂
(τ) such that the graph is also tangent to the line y = x, as expressed

by (
x̂,Ψ

ζ̂
(τ ; x̂)

)
= (x̂, x̂),

(
x̂,Ψ′

ζ̂
(τ ; x̂)

)
= (x̂, 1), x̂ = x

ζ̂
(τ), (3.16)

where the prime denotes the derivative with respect to x.

9. Fixed points reside at points on a branch that intersect the 45◦−line.
The detailed numerical values of the creation of a fixed point are given
by (3.16), which is nontrivial to effect from these relations. It en-
tails the description of the numerical-valued smooth ζ−evolution of
the x−coordinates. This process itself requires a deeper look as to
how fixed points are created and evolve in ζ through saddle-node and
period-doubling bifurcation events when a branch of the inverse graph
Gn

ζ meets the 45◦−line.
10. It is the dynamical coordinates (x̂, x̂) in (3.16) of the fixed points that is

of interest, as well as the number of such. Their explicit analytic form
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is generally unknown, but can be tracked in the computer-generated
inverse graphs in Chapter 5. The selection of those values of the pa-
rameter ζ that exhibits the full set of fixed points is quite restrictive.
This is because of the geometry inherent in how a continuous inverse
branch curve, which is changing continuously with the parameter ζ,
meets the 45◦−line. It is always the case that two new fixed points are
created in coincidence, and then move apart with increasing ζ with a
smooth motion onto their own intrinsic branch of the inverse graph Gn

ζ ,
where they remain for all greater values of ζ. Thus, except for values
of ζ near the creation point of new fixed points, there is a one-to-one
relationship between the sequences that label the branches of Gn

ζ and
the set of x−coordinates that label the fixed points: Each fixed point is
uniquely labeled by the label of the branch on which it finally resides.
This is the label assigned.

11. Caution must be exercised in recognizing the creation of ζ−synchronous
p-curves under the transformation of each central p−curve to the cen-
tral p−curve for the next central interval. The process is fully deter-
ministic in character and possesses a unique mathematical description.
It is apparent that the classification of all labels of p−curves of the
branches of the inverse graph at each value of ζ, together with their
points of creation, is intertwined in a basic way with the concept of
the cyclic permutation classification of words into equivalence classes,
and, in particular, with the identification of all central self-conjugate
p−curves and the basic ζ−intervals for which they are central.

3.4.2 r−Cycles, Permutation Cycle Classes, and Words

An r−cycle has been defined already in the context of the present problem
in terms of the parabolic map pζ(x) = ζ x(2 − x) by xi+1 = pζ(xi), i =
1, 2, . . . , r, subject to the condition xr+1 = x1. It is useful to further clarify
the significance of an r−cycle within the context of the inverse graph Gn

ζ by

the example pζ(x) = x, which has the unique solution

x(ζ) = 2− 1

ζ
, ζ ∈ (0,∞). (3.17)

The two branches of the primordial curve C(1)ζ ((1) | (1)) are given by:

Ψζ((1);x) = 1 +

√
1− x

ζ
, Ψζ((1);x) = 1−

√
1− x

ζ
. (3.18)

Evaluation of each of these functions at x = 2− 1
ζ shows that

Ψζ((1);x) = x,provided x ≥ 1; Ψζ((1);x) = x,provided x ≤ 1. (3.19)

The square root is given by√
1− 2

ζ
+

1

ζ2
=

{
1− 1

ζ , ζ ≥ 1;
1
ζ − 1, ζ ≤ 1,

(3.20)

where the standard rule that the square root of a positive number is a positive
number must be carefully observed.
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Quite generally, it is also the case that:

The coordinate x(ζ) = 2 − 1
ζ is the dynamical fixed point belonging to the

lower branch of the primordial p−curve Cnζ
(
(n)
∣∣∣ (n)) for all ζ ≤ 1. For

0 < ζ < 1/2, it is at negative values of x(ζ) moving toward the origin
(0, 0) with increasing ζ; for ζ in the domain 1/2 ≤ ζ ≤ 1, it becomes exactly
tangent to the 45◦−line at ζ = 1/2 at the origin (0, 0). It then moves through
(0, 0), and continues toward the central point (1, 1) of the graph. It moves
over at ζ = 1 onto the upper branch (1n) of the newly created central

p−curve Cnζ
(
(1n)

∣∣∣ (1n)), where it remains for all ζ > 1.

The above-described motion of the primordial p−curve initiates the entire
process of creating the inverse graph for general n. This general fixed-point
property is shown directly from the recurrence relation for the conjugate
branch function and the reflection relation between branch functions and
their conjugates:

Ψζ

(
(n);x

)
= 1−

√
1− 1

ζ
Ψζ

(
(n− 1);x

)
;

(3.21)

Ψζ((n);x) = 2−Ψζ((n);x).

The derivative of the first relation can also be used to prove the general
tangency of the primordial p−curve to the 45∗−line at ζ = 1/2.

Proof. The proof is by induction on n from the first relation (3.19) (using
the fact that the result is true for n = 1, as shown above. Thus, setting
x = 2 − 1

ζ an using the induction hypothesis at level n − 1 (and extracting

the square root correctly for ζ < 1) implies that x = 2− 1
ζ is a fixed point at

level n, hence, for all n. Substitution of this result into the second relation
(3.19) then gives Ψζ((n);x) > 1, for x = 2− 1

ζ .

The tangency condition at ζ = 1/2 also follows directly by induction from

the first of relations (3.19) and its validity for (1) :

d

dx
Ψζ((1);x)

∣∣∣
x=2− 1

ζ

=
1

2(1− ζ)
= 1 at ζ = 1/2;

d

dx
Ψζ((n);x)

∣∣∣
x=2− 1

ζ

=
1

2ζ

√
1− 1

ζΨζ

(
(n− 1); 2− 1

ζ

) d

dx
Ψζ((n − 1);x)

∣∣∣
x=2− 1

ζ

(3.22)

=
1

2(1− ζ)

d

dx
Ψζ((n − 1);x)

∣∣∣
x=2− 1

ζ

= 1, at ζ = 1/2.

The last step follows from the induction hypothesis at level n−1, and the full
induction proof from the validity of the first relation at level n = 1. �

The above process can be carried forward in ζ to unveil the unfolding
features of the events to follow. The first creation event takes place for ζ
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slightly larger than 1 : Here a full family of elementary curves is created
simultaneously with a new central p−curve as described by:

The primordial p−curve Cnζ
(
(n) |

∣∣∣ (n)) is replaced at ζ slightly greater than

1 by the set of n p−curves with positive and negative branches labeled from
top-to-bottom in the inverse graph Gn

ζ by the relations:

Ψζ((n− r + 1 1r−1);x), r = 1, . . . , n; x ∈ (1, ζ2];

(3.23)

Ψζ((n− r + 1 1r−1);x), r = 1, . . . , n; x ∈ (1, ζ2],

where ζ2 is the right-most ζ−value of an interval yet to be identified. In par-

ticular, the primordial central p−curve Cnζ
(
(n)
∣∣∣ (n)) has now been replaced

by a new central p−curve Cnζ
(
(1n)

∣∣∣ (1n)) that is central in the inverse graph

for all x ∈ (1, ζ2]. The motion of the original fixed point x = 2 − 1
ζ during

this synchronous creation of new p−curves is to move onto the upper branch
Ψζ((1

n);x) of the new central p−curve, where it remains for all ζ > 1. It

is also the case that the two branches, Ψζ((n);x) and Ψζ((n);x), constitut-
ing the original primordial p−curve have now split apart, and all the new
branches fall between these branch parts; that is, the set of labels ordering
the branches of the new p−curves is:

(n) > · · · > (2 1n−1) > (1n) > (1n) > (2 1n−1) > · · · > (n). (3.24)

This creation event is shown in Chapter 5 at the following places for n = 2, 3 :

P 2. Figures 4(a)-4(c): The creation of the central p−curve C2ζ
(
(1 1)

∣∣∣ (1 1)
)

is at ζ = 1, between Figures 4(a) and (4(b).

P 3. All graphs between ζ = 1 and ζ = 1.3 : The creation of the central

p−curve C3ζ
(
(1 1 1)

∣∣∣ (1 1 1)
)
is at ζ = 1, and created simultaneously are the

branches (see ζ = 1.3) shown by:

Ψζ((3);x) > Ψζ((2 1);x) > Ψζ((1 1 1);x) > Ψζ((1 1 1);x) >

Ψζ((2 1);x) > Ψζ((3);x). (3.25)

The results for P 2 and P 3 can be generalized to arbitrary n by using the
following recurrence relation and its derivative with respect to x, evaluated

at the fixed point x = 2− 1
ζ of Ψζ

(
(1n−1);x) for ζ = 3/2 :

Ψζ

(
(1n);x

)
= 1 +

√
1− 1

ζ
Ψζ

(
(1n−1);x

)
;

d

dx
Ψζ

(
(1n);x

)∣∣∣∣
x=2− 1

ζ

= − 1

2ζ

√
1− 1

ζΨζ

(
(1n−1); 2 − 1ζ

)
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× d

dx
Ψζ

(
(1n−1);x

)∣∣∣∣
x=2− 1

ζ

; (3.26)

=
1

−2(ζ − 1)

d

dx
Ψζ

(
(1n−1);x

)∣∣∣∣
x=2− 1

ζ

;

d

dx
Ψζ

(
(1n);x

)∣∣∣∣
x= 4

3

= − d

dx
Ψζ

(
(1n−1);x

)∣∣∣∣
x= 4

3

. (3.27)

This gives the desired result by induction and its validity for n = 3 :

d

dx
Ψζ

(
(1n−1);x

)∣∣∣∣
x= 4

3

= 1, for n− 1 even implies

d

dx
Ψζ

(
(1n);x

)∣∣∣∣
x= 4

3

= −1 for n odd, and conversely. (3.28)

Notice that the central p−curve C(n)ζ

(
(1n)

∣∣∣ (1n)), ζ ∈ (1, ζ2], is a left-moving

curve; for ζ = 3/2 and odd n, the branch (1n) is perpendicular to the
45◦−line; for ζ = 3/2 and even n, it is tangent to the 45◦−line. This is true
for all n ≥ 3, but fails to be the case for P 2 and P 3. This illustrates nicely
that caution must always be exercised in anticipating events that may or
may not occur in the inverse graph.

The results obtained above in the inverse graphs P 2, P 3, but now in-
cluding the properties (3.26)-(3.28), give the universal behavior for all n of
the the set of inverse graphs P n. In particular, this is the case for the first
two intervals ζ ∈ (0, 1] and ζ ∈ (1, ζ2], for which the central p−curves are

Cnζ
(
(n)
∣∣∣ (n)) and Cnζ

(
(1n)

∣∣∣ (1n)), and the fixed points are (0, 0) at the ori-

gin, and the dynamical fixed point x(ζ) = 2 − 1
ζ , which emerges out of the

origin (0, 0) at ζ = 1/2 and moves onto its permanent branch (1n) of resi-
dency at ζ > 3/2. The parameter value ζ = 3/2 is itself the exact creation
point of two new fixed points that initiate the following events:

For odd n, only saddle-node bifurcation events occur, always in successive
baseline intervals, which are exhausted after all (a unique number) baseline
intervals have been exhausted; for even n, a series of period-doubling bi-
furcation events occur in successive baseline intervals, followed in the next
baseline interval by a series of successive saddle-node bifurcation events,
where the number of each type of bifurcations is unique.

It is useful next to show how the combinatorial properties of words enter
into this analysis and intertwine with r−cycles.

The labels of the branches of the inverse graph can be partitioned into
cyclic permutation equivalence classes in a purely combinatorial fashion that
is fully divorced from the graph problem itself. This is because there is a
one-to-one map between branch labels and the set of 2n words on the two
letters R and L. Thus, a first word is selected and all cyclic permutations
effected and placed in an equivalence class. A second word, not in the first
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class, is then selected, and the cyclic permutations effected to obtain a second
equivalence class. This process is repeated until all 2n words are taken into
account. f This procedure not only gives a partition of the set of 2n words
into equivalence classes, it also gives the number of such equivalence classes.
For the problem at hand, these equivalence classes are next mapped back into
corresponding sets of positive integers and their conjugates, thus obtaining
the labels of all branches of the inverse graph, now classified into equivalence
classes by the cyclic permutations of their corresponding words.

The sequence of steps just described can be described as follows. Define

Wn(τ) = {w(τ ′) ∈Wn |w(τ ′) ≡ w(τ)}, (3.29)

where τ runs over all distinct sequences as required to enumerate all such
equivalence classes. Once this partitioning has been effected, it is always
possible to enumerate each equivalence class by choosing as class represen-
tative the greatest positive sequence αmax contained in each set, except for
the single case of (n) �→ Ln :

Wn(αmax) = {w(τ) ∈Wn |w(τ) ≡ w(αmax)}, (3.30)

Correspondingly, the sets of equivalent sequences are defined:

Cn(αmax) = {τ ∈Wn |w(τ) ≡ w(αmax)}. (3.31)

This result illustrates a structural aspect of cycles that cannot be emphasized
too strongly in the present work:

The partitioning of the labels of the branches of the inverse graph into equiv-
alence classes is a purely combinatorial problem fully divorced from the graph
problem itself because there is a one-to-one map between these labels and the
set of 2n words on the two letters R and L. Nonetheless, it is the case that
further details on the motion of fixed points can be obtained from the inverse
graph itself, as illustrated above in relations (3.xx) for the inverse graphs P 4.

3.5 Young Hook Tableaux and Gelfand-Tsetlin Pat-
terns

XX The enumeration of the labels of the inverse graph Gn
ζ by standard

hook tableaux was noted by Stein et al [XX] and again by Bivins et al [15].
Gelfand-Tsetlin patterns give a one-to-one presentation of such standard
hook tableaux, as will be explained below. It is, perhaps, unexpected that
these combinatorial objects should occur. This occurrence clearly places the
present subject within the purview of combinatorics. It is shown in this
section how this takes place. It is an important nontrivial result.
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A hook tableau has the shape (n− k k), each k = 0, 1, 2, . . . , n− 1 :

n-k blocks

k+1 blocks
...

· · ·

...
k = 0, 1, 2, . . . , n− 1

(3.32)

The length of each hook tableau (number of blocks) is n, there being n− k
blocks in row 1 (the top row), and k + 1 such blocks in the single column),
with one shared block in row 1 and column 1, as shown.

The standard hook tableau in (3.58) is to be filled-in with the integers
1, 2, . . . , n one integer in each block, such that the collection of integers ap-
pearing in row 1 and in column 1 are each strictly increasing. The content
or weight of the hook tableau is (1n), while its shape is the partition
(n− k 1k).

Examples. n = 1, 2, 3 :

1

1 2 1

2

1 2 3 1 2

3

1 3

2

1

3

2

(3.33)

The examples above for hook tableaux are hardly sufficient for showing
the rich relationships between Young tableaux and Gelfand-Tsetlin patterns.
Much of this can be found in Ref.[53], where the same notations and nomen-
clature are used as here. A more abstract and general description, in partic-
ular, of hook tableaux can be found in Stanley [54]. It is the case that the
number of hook tableaux for general n is 2n, as demonstrated in (3.33) for
n = 1, 2, 3, 4.
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The integers in the filled-in standard tableaux enumerated by (3.33) do
not give directly the set of labels of the branches that occur in the Creation
Tables Tn, n = 1, 2, 3, 4, nor do the integers in the filled-in general hook
tableaux in (3.32) give directly the set of labels of the branches that occur
in the Creation Table Tn. There is no reason that this should be the case.
But the number 2n of each agrees. To make the connection between the two
sets of labels, it is convenient to use GT patterns, which is next defined for
general n, with the special application to hook patterns to follow.

Let λ = (λ1 ≥ λ2 ≥ λn ≥ 0) denote a partition consisting of n non-
negative integers, with 0 counted as a part. The general GT pattern for
arbitrary n consists of a partition λ together with n(n-1)/2 nonnegative in-

tegers arranged in a triangular array denoted by
(λ
m

)
and of the following

form: (
λ

m

)
λ1 λ2 · · · λn−1 λn

m1 n−1 m2 n−1 · · · mn−1 n−1

=
...

...

m1 2 m2 2

m1 1 (3.34)

The entries mi j are to satisfy conditions known as the ”betweenness rela-
tions,” which may be stated as follows:(

mi j mi+1 j

mi j−1

)
(3.35)

λi = mi n; j = 2, 3, . . . , n; i = 1, 2, . . . , n.

The placement of symbols in (3.34)-(3.35) denotes that the numerical value
that the lower symbol, which is placed between the upper two symbols can
assume any value between and including the upper two symbols. Thus, start-
ing with a given partition λ, the full set of patterns is uniquely prescribed.
The number of such GT patterns is given by the well-known Weyl dimension
formula (see Ref.[53]), which is not needed here, and is not stated. There
is still another important property of general GT patterns that needs to be
defined. It is called the weight of the GT pattern

(
λ
m

)
and is defined by:

W
(

λ
m

)
= (W1,W2, . . . ,Wn); Wi = sum of integers in row i of

(
λ
m

)
−sum of integers in row i− 1 of

(λ
m

)
,

i = 2, 3, . . . , n; W1 = m1 1. (3.36)
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The general pattern corresponding to the special hook partition λ =
(n− k 1k 0n−k−1) is given by

(n− k 1k 0n−k−1

...
...

m1 2 m2 2
1

)
(3.37)

weight = (1n),

where, for each n and each k = 0, 1, . . . , n − 1, the pattern is to be filled-in
in all possible ways that give the weight (1n), where the weight is defined by
(3.36).

It is appropriate to note here that while nothing close to the richness
of structure of the general GT patterns is needed for this special case, it is
still important to know about the general theory from which hook patterns
emerge.

The number of hook patterns and the number of positive labels in the
general Creation Table Tn, and their conjugates, is 2n, as noted above, but
the weight of each of the hook patterns is (1n); that is, all hook patterns have
the same weight. Thus, the weight is not the parameter needed to obtain
a one-to-one correspondence with the hook patterns. The desired order
relation on the set of 2n−1 GT patterns corresponding to the hook tableaux
(3.32) (check against (3.31)) is obtained by associating the following sequence
of length

(n
2

)
to the GT pattern (3.37):

(row n row (n − 1) · · · row 2 1). (3.38)

In this relation, the n rows of the GT pattern (3.37) are placed in a single
row, where the rows of the GT pattern are read from top-to-bottom and
left-to-right in (3.38), as displayed.

It is instructive to look at the example of the GT patterns for a simple
case, say, n = 3, where k can be k = 0, 1, 2. Thus, the partition can be
(3 0 0), (2 1 0), (1 1 1), and the corresponding GT patterns are obtained
by filling in the 3-rowed triangular pattern in all ways that give the weight
(1 1 1). The patterns so obtained are the following four with the sequence
(3.38) placed after the GT pattern:

( 3 0 0
2 0
1

)
, (3 0 0 2 0 1);

( 2 1 0
2 0
1

)
, (2 1 0 2 0 1);

(3.39)( 2 1 0
1 1
1

)
, (2 1 0 1 1 1);

( 1 1 1
1 1
1

)
, (1 1 1 1 1 1).
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Standard page ordering on the sequences (3.38) now gives the following order
relations on the GT patterns in (3.39):

( 3 0 0
2 0
1

)
>
( 2 1 0

2 0
1

)
>
( 2 1 0

1 1
1

)
>
( 1 1 1

1 1
1

)
. (3.40)

This page-order relation is to be compared with the reverse-lexicographic
order used throughout this monograph:

( 3 0 0
2 0
1

)
←→ (3);

( 2 1 0
2 0
1

)
←→ (2 1);

(3.41)( 2 1 0
1 1
1

)
←→ (1 1 1);

( 1 1 1
1 1
1

)
←→ (1 2).

The relations (3.40)- (3.41) generalize in the obvious way to arbitrary n.
Indeed, these results mean that an entirely different analysis of the Creation
Table Tn than presented in this monograph can be given based on GT pat-
terns alone. This must be the case because of the existence of the one-to-one
correspondence of the form (3.41) — it must be possible to express every
property of the Creation Table Tn directly as a property of the correspond-
ing GT pattern (3.37). This has not been carried out here — there may be
unanticipated hurdles.
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Chapter 4

The (1+1)-Dimensional
Nonlinear Universe

4.1 The Parabolic Map

This short chapter from which this monograph derives its title is interpretive
and conjectural in content. It is based on the material developed in Chapters
1-4 and on the many algorithmic computer-generated inverse graphs given
in Chapter 5. The chapter title quite aptly describes the resulting ”Theory
of Everything” within the context of a Complex Adaptive System. The
interpretive and speculative part refers to such systems, focusing somehat
on General Relativity.

What makes the present approach distinctive in its application to general
relativity is that the mathematics underlying the approach is function com-
position and the nonlinear properties that ensue. In the usual approach to
general relativity, it was the generalization of differential equations to dif-
ferential geometry and the continuity of space-time that yielded the great
insight and many ways for the real Universe to evolve.

The properties that are unveiled in the present approach are also rich
in structure and broad in their applications. It is a remarkable fact that
the branches of the inverse graph become real at a certain critical point
in a single parameter and stay real for all greater values of the parameter.
Moreover, the theory is enriched by connections with abstract combinatorial
concepts, such as Young tableaux, Gelfand-Tsetlin patterns, and the theory
of words on two letters. What is the most unexpected is the possibility of
connecting these mathematical structures to that of the real Universe itself.

The idea that suggests itself originates with Einstein, who is reputed
(Pais [41]) to have said:

One of the most remarkable things about the Universe is that it is com-
prehensible.
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One cannot help but wonder if Einstein considered the idea:

One of the most remarkable things about the Universe is that it is incom-
prehensible.

Remarks. Is seems to be quite difficult to find a primary source for state-
ments attributed to famous scientists. The attribution to Einstein above
appears to be consistent with various statements made in Pais [41]. In any
case, placing the two statements in direct apposition serves quite well our
purpose here, which is to show the relation of the two statements to the
algorithmic approach to the properties of complex systems, as realized here
for the inverse graph.

Definitional terms and speculative interpretations that are consistent with
the viewpoint of a complex system are next given:

1. Objects: In this algorithmic approach to the behavior of complex
objects, it is the ”objects” that are undefined. Their definition depends on
the application.

2. Equations of motion: There are no equations of motion as such —
the ”motion of objects” is fully governed by the shape of the curves during
the ζ−evolution, which creates its own nonlinear space.

3. Shape of the inverse space: The shape of the inverse space at
each value of ζ is defined to be the set of points belonging to the inverse
graph at the selected value of ζ. It is always a set of continuous points joined
smoothly at all extremal points. Many examples are shown in the collection
of computer-generated inverse graphs given in Chapter 5.

3. One-dimensional space: The space in which objects move is one-
dimensional. The forty-five degree line is not part of the space, nor are the
vertical lines at x = 0 and x = 2, except that the line segment x = 0, y ∈ [0, 1]
at ζ = 0 constitutes the entire shape of the graph. The redundancy of lines
is included simply to help visualize the structure of the one-dimensional
space along which objects move. To move between two points belonging to
the one-dimensional space it is essential that the motion of any object be
confined to the points defining the shape of the curve.

4. Creation of objects: The entities called objects are created in pairs
which are called objects and anti-objects. Objects and anti-objects have the
following properties:

i. Each pair is created at an MSS root, which is characteristic of the
object. In all, at ζ = 2, there are 2n−1 such pairs in the inverse graphs with
a lesser number for 0 ≤ ζ ≤ (1 n − 1), n ≤ 2. There are no pairs created
for ζ > 2, although the graph continues to undergo changes as it evolves
continuously.

ii. Objects are always created, never annihilated, and once created are
dynamical objects that move apart, always along the shape of the curve.

iii.The environment of an object at a given ζ−value is the collection of
objects present in the inverse graph at that value of ζ. The environment is
a dynamical property.
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iv. There is a special class of objects called central objects that are
created on a central curve. Central curves are those whose extremal point
belongs to the central line y = 1. Central curves oscillate about the central
point (1, 1) of the graph with a variable amplitude that depends on the pair
of MSS roots of the baseline interval of the central curve, this feature holding
for all 0 ≤ ζ ≤ 2. But, for ζ > 2, the last central curve created, which has
positive label (1 n− 1), n ≥ 2 and conjugate label (1n− 1) moves leftward
for all ζ > 2 and moves completely (is ejected) out of the graph at ζ = 0,
and continues its leftward motion for all greater ζ.

5. Black holes as objects: Black holes can be taken as objects. There
are two types of black holes created by the two types of bifurcations.

6. Matter and antimatter as objects: Matter (positive sequences)
and antimatter (conjugate sequences) can be taken as objects. Note then
from 4 (iv) above that matter and antimatter share but a single point through-
out their existence, that is, for all ζ > 0. This point belongs to the central
line y = 1 : It is the point described in (iv) that undergoes the oscillatory
motion described there. The asymmetry of matter versus antimatter is a
consequence of the forty-five degree line determining the points of creation
of all objects, even though that line is not part of the shape of the inverse
graph. The ”skewness”, however, remains in the creation of objects.

7. Central curves control all: The analogues of the primordial curve
curve C((n); (n)) are the central curves C(cn(t); cn(t)), t = 1, 2, . . . , |Ln|+1 :
At t = 1, new curves are created, then again at t = 2, . . . , then again at
t = |Ln|+ 1, and lastly at t = |Ln|+ 1. Thus, the same process is repeated
over and over, with new curves being interjected into the graph at each
creation point.

8. It is the microscopic world that is incomprehensible: The
quantum world of electrons, protons, etc. can never be rationally explained.

9. Combinatorial structure: Based abstractly on special classes of
words on two letters, called R and L with which there is a one-to-one relation,
which then also maps to a class of binary numbers. All information is therein
contained. The Universe ”knows” how to count.

10. Collapse and regeneration:

(i). For ζ > 2, the branches in the inverse graph appear to undergo
an intricate evolution that entails a merger of families of adjacent branches
to the neighborhood of a characteristic horizontal line. This phenomenon is
discussed in some detail in relation to diagrams (5.46)-(5.47); they are repre-
sented here in a quite comprehensible form for this discussion. The families
of sequences in question are the ordered sets defined for k = 1, 2 . . . , n − 1
by Fn

k = {(k + 1 1n−k−1), . . . (k 1n−k)}ord �, and for k = 0 by Fn
0 =

{(1n, . . . , (1 n − 1)}ord, where it is recalled that the operation � acts from
the left on a set of sequences and removes the right-most sequence. These
sequences are shown for n = 8 in the list (5.47), as interpreted from the three
computer-generated graphs for n = 8 (see P 8 for ζ = 2.00000, 2.1000, 1.20000).
They show that the characteristic lines coalesce to the neighborhood of eight
band-like structures, although the fact that the computer generated branches
are not resolved leaves uncertainty. It is, however, a fact that all 2n−1 posi-
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tive sequences must be present and their order preserved. But the dynamical
process by by which this take place as ζ increases requires further theoretical
developments and computer calculations. Of course, the conjugate sequences
must follow a symmetrical process.

(ii). The most surprising of all, perhaps, is the behavior of the branches
of the inverse graph for negative values of the parameter ζ (see the set
of computer-calculated inverse graphs for P 3 and P 8. For large negative
values of ζ, the branches of the inverse graph appear to be distributed in a
different way for n odd and n even. But this is highly speculative because
the theoretical and computational background has not yet been done to show
how the motions of the branches in the domain of x outside the domain [0, 2].
It is left as an open problem to carry out such calculations, since present
resources are not available here for such.

(iii). It is worth noting here that the so-called set of universal sequences
given by {(n), (n−1 1), (n−2 1 1), . . . , (1n)}ord most certainly have a major
structural role. Also, all changes in shape of the inverse graph as ζ increases
from lesser to greater negative values motions must be such as to allow a
smooth ζ−evolution into the inverse graph for the interval (x, ζ) ∈ [0, 2]
of the inverse graph, as presented in this monograph. It is important to
understand that the shape of the inverse graph outside the interval [0, 2] is
fully determined: It is simply that sufficiently many calculations have not
yet been done to to determine it. There is still much to be learned.

11. Universality: This refers to the concave downward property of the
parabola and the fact that all curves possessing this property exhibit similar
shapes under function composition. There are many presentations of this
property and its meaning. It is not discussed in this monograph, although
it could be important.

12. Quantum harmonic oscillator states: The 2n − 1 positive se-
quence labels can be presented by filled-in Young standard tableaux known
as hook tableaux. These tableaux can also be realized by what are known
as Gelfand-Tsetlin patterns of integers. The one-to-one relation between
these sets is well-known and is presented in great detail in Ref. [53] with
many references to the published literature. This is presented in Sect.3.2
in the context of the present problem. What is important here is that the
Gelfand-Tsetlin patterns can be realized explicitly in terms of a collection
of a class of isotropic quantum harmonic oscillators. Thus, such oscillators
occur naturally: They are created at the MSS roots, and their number in
one-to-one with the creation of new sequences in the present algorithmic
approach to complex systems. The geometry of the ζ−evolution of the in-
verse graph admits naturally a quantum-mechanical classification of different
types of fundamental particles.

13. Supernatural elements: A realistic model of the Universe should
admit the question: Do supernatural influences exist in this model? A con-
tradictory answer is taken to mean that the existence of such influences can
neither be proved or disproved within the framework of the model. The
computer-generated inverse graph developed in this monograph is a model
of a complex system that admits the interpretations given above. As applied
to the existence of God, where the term ”God” is used in the generic sense of
any reasonable influence, the biblical notion that God is both within us and
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with us can be interpreted as a contradiction, that is, the existence of God
can neither be proved nor disproved within the framework of the subject of
this monograph.

4.2 Complex Adaptive Systems

The algorithmic-computer-generated approach to complex systems can also
be applied to first statement attributed above to Einstein that one of the
most remarkable things about the Universe is that it is comprehensible. This
application will lead to a different model than the one presented above in
this chapter, as well as the one of Einstein’s General Relativity. This is true
because it is based on the fundamental role of the mathematical operation of
function composition, not on the model of differential equations (Maxwell)
carried out by Einstein in formulating his General Relativity in terms of
differential geometry and topological spaces. The Incomprehensibility of
the Universe model given above and its tantalizing possibilities has been
preferred here. The ”incomprehensibility of the quantum world” statement
is, perhaps, too severe; it must be remembered that possible interpretations
of a model are only suggestive of properties of the real Universe and need not
be realized. It is also the case that the results above can be recast in terms
of the first statement above that the universe is comprehensible. Since it
is still function composition that is involved this model of general relativity
will still be distinct from Einstein’s.
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Chapter 5

The Creation Table

The Creation Table Tn is a collection of columns in which the elements that
stand in the column that contains the central sequence cn(t) are precisely
those created in the interval (ζt, ζt+1] for which cn(t) is the central sequence.
The presentation of each column even for relative small n is not feasible
brcause the Table contains 2n distinct labels in all. Nonetheless, the recursive
process of construction , as already given earlier, is known. This is repeated
here in this chapter for convenience of reference to the computer-generated
inverse graphs.

1. The starting place is for n = 1, where the baseline B1 consists of two
intervals as depicted in the following diagram:

(ζ0, ζ1] (ζ1, ζ2]

ζ0 = 0 ζ1 = 1 ζ2 = 2

(5.1)

Here ζ0 = 0 and ζ2 mark the endpoints of the baseline and are not MSS
roots. The information on the creation sequences can be presented in
the following way:
The new creation sequences present at each central interval
for n = 1 :

C
∗
1(ζ0) = {(1)}, for ζ ∈ (ζ0, ζ1];

C
∗
1(ζ1) = {(1)}, for ζ ∈ (ζ1, ζ2]. (5.2)

The notations C∗
1(ζ0) and C∗

1(ζ1) designate that the respective sequences

(1) and (1) are created at ζ0 = 0 and ζ1 = 1 (the asterisk denotes cre-
ated).
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2. Baseline B2 is the second place for giving the creation sequences; it
consists of three intervals that can be presented in the following way:

(ζ0, ζ1] (ζ1, ζ2] (ζ2, ζ3]

ζ0 = 0 ζ1 = 1 ζ3 = 3ζ2 = (1 +
√
5)/2

(5.3)

The new positive creation sequences present at each central
interval for n = 2 :

C
∗
2(ζ0) = {(2)}, for ζ ∈ (ζ0, ζ1];

C
∗
2(ζ1) = {(1 1)}, for ζ ∈ (ζ1, ζ2]; (5.4)

C
∗
2(ζ2) = φ, for ζ ∈ (ζ2, ζ3].

The notations C∗
2(ζ0), C

∗
2(ζ1), designate that the positive sequences

(2), (1 1), and the empty sequence φ = no sequence are created at
ζ0 = 0, ζ1 = 1, and ζ2 = (1 +

√
5)/2.
...

3. Baseline Bn for general n is the n−th place for giving the sequences;
it consists of qn intervals that can be presented in the following way:

(ζ0, ζ1] (ζ1, ζ2] · · ·
ζ0 = 0 ζ1 = 1 ζ2 = (1 +

√
5)/2 ζqn−1

ζqn = qn

(5.5)

The new positive creation sequences present at the first two
intervals in baseline Bn in (5.5):

4. These are the sequences given by

C
∗
n(ζ0) = {(n)}, for ζ ∈ (ζ0, ζ1];

C
∗
n(ζ1) = Un(ζ0, ζ1)− {(n)}, for ζ1 ∈ Un(ζ0, ζ1). (5.6)

The set of sequences Un(ζ0, ζ1) is universal in the sense that it can
be given for general n. In order to obtain a compact expression for
the universal sequence Un(ζ0, ζ1), as well as other relevant sequences
that arise, a pair of operators, denoted � and � are introduced. The
operator � acts from the left on the totally ordered set of 2n−1 positive
sequences{(n), (n−1 1), . . . , (1 n−1)}ord, while operator � acts from
the right. The notations �(r) and �(s) designate repeated applications of
the respective operators a number of times given by r = 0, 1, . . . , 2n−1

and s = 0, 1, . . . , 2n−1. In particular, it is noted that the action of these
operators on the empty sequence φ is given by

�(r) φ = φ �(s) = φ. (5.7)
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It is also to be noted that the ordering of sequences in the transformed
subset by either of the operators �(r) or �(s) is the same as that in the
original set. The above features of the operators � and � are already
present in the simplest example for n = 2, as illustrated by:

�(0) {(2), (1 1)}ord �(0) = {(2), (1 1)}ord;
�(1) {(2), (1 1)}ord �(0) = {(1 1)};
�(2) {(2), (1 1)}ord �(0) = φ;

�(0) {(2), (1 1)}ord �(1) = {(2)};
�(1) {(2), (1 1)}ord �(1) = φ; (5.8)

�(2) {(2), (1 1)}ord �(1) = φ;

�(0) {(2), (1 1)}ord �(2) = φ;

�(1) {(2), (1 1)}ord �(2) = φ;

�(2) {(2), (1 1)}ord �(2) = φ.

The purpose of the � and � operators is very simple: It serves to isolate
each single nonempty sequence exactly once for general n in the set of
2n−1 sequences in the totally ordered set of positive sequences given
by {(n), (n − 1 1), . . . , (n − 1 1)}ord; that is, a unique value of the
pair (r, s), r = 0, 1, . . . , qn and s = 0, 1, . . . , qn is assigned to every
nonempty sequence. But this is not yet sufficient to identify for general
n the interval in baseline Bn to which a newly created sequence is
assigned. It is also the case that the explosive growth of relations
(5.8) in accordance with (qn + 1)qn(qn = 2 in (5.8)) prohibits explicit
enumeration. Further developments are still required to reach the goal
of assigning each positive sequence to its baseline interval of creation
for general n.

5.1 The Creation Intervals

As noted above, the ability to isolate each of the 2n−1 sequenced that must
be placed in the general baseline is not sufficient to determine which col-
umn the sequence is to be placed for general n. The correct distribution of
sequences into their creation intervals has already been determined earlier
in the recursive construction of all baselines and the sequences that fall in
each column. But it is useful to see this again from the perspective of the
Creation Table Tn, as stated at the beginning of this chapter.

Proof by recursion.The recursive construction begins with the construc-
tion by (5.2) for n = 1 and follows the usual method of assuming the result
for Tn−1 and ”lifting” the result to Tn. The result for n = 2 given by (5.4)
already follows from the result for n = 1 by adding 1 to the first position
in the sequence (1) to obtain (2), and then adjoining 1 to the left end of
the sequence (1) to obtain the sequence (1 1). There is one subtlety in the
general transformation transformation Tn−1 −→ Tn that doesn’t show up
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in the simple transformation T1 −→ T2; it is given by relation (2.61), which
can be restated in the following form, which assumes all central sequences
in baseline Bn for arbitrary are known, as already proved (see Sec. XX).

The procedure for obtaining Creation Table Tn from Creation Table Tn−1
then goes as follows:

Let α ∈ Tn−1. Then, the sequence (1 α) ∈ Tn is either a central sequence or
a noncentral sequence; if central, then (1 α) goes to the same column in both
baseline Bn−1 and baseline Bn, with the single exception that (n− 1) always
goes to the right-most column (1 n − 1); if noncentral, then (1 α) goes to
the column with central sequence that is adjacent from above to the column
it would otherwise go to had it been central. It is convenient now to label the
columns of each baseline Bn from left-to-right as col0, col1, col2, . . . , where
the sequence terminates at a value characteristic of the baseline. The appli-
cation of these rules gives uniquely the transformations between successive
Creation Tables. It is also convenient in these tables to designate by • the
point at the left boundary of each column, except for the points 0 and 2 at
the boundary of the diagram itself. Then, the bullet points mark the places
where a unique MSS root enters into the Creation Table in question: These
• points give through their associated MSS roots the numerical ζ−values of
the creation of all sequences in that column:

col0

(1) −→

col0 col1

(2)

(1 1)•
−→

col0 col1 col2

(3)

(2 1)

(13) (1 2)
••

col0 col1 col2 col3

(4)

(3 1)

(2 1 1)

(2 2)

(1 1 2)

(14)

(1 2 1)

(1 3)
• • •

−→

(5.9)



5.2. INFORMATION IN THE CREATION TABLE 69

The parametrization of the columns of the Creation Tables by coli, i =
0, 1, 2, . . . , has the property that the transformations between such tables can
be given separately for general n for each column by the very simple trans-
formation:

coli �→ coli, i = 0, 1, 2, . . . , for (1 α) central; (5.10)

coli �→ coli+1, i = 1, 2, . . . , for (1 α) noncentral.

Here the central sequences are taken as known for general n, as shown earlier,
so that each column in every table is covered exactly once in (5.10). It is
also the case that the creation point • of all sequences in coli is at the MSS
root that corresponds to the left end of coli. What could be simpler?

Summary.The parametrization of columns by coli, i = 0, 1, 2, · · · , in each
Creation Table admits of a very simple enumeration of the sequences present
in each such column of the Creation Table Tn. Once these newly created se-
quences are known, a great deal more information is implied by the Creation
Table regarding the properties of the α sequences studied in this monograph.
Such properties are next considered.

5.2 Information in the Creation Table

The construction of the Creation Tables is one of the major accomplishments
of this monograph. Since Tn contains the creation MSS roots of all sequences
in the ordered set of 2n−1 positive sequences {(n), (n − 1 1), . . . , (1 n −
1)}ord, hence, the conjugate sequences as well, it contains, in some sense, all
information concerning the properties of α−sequences and their conjugates.
Several of the more important properties that can be read-off are illustrated
below:

1. The set of all 2n sequences in Tn ∪Tn, including their order and creation
points.

2. The set of all sequences created up to a specified value of ζ. This is the
set of sequences contained in the merger (moving into one column) of
all columns coli, i = 0, 1, . . . colj , where j is the column is the containing
ζ. The merger of the remaining columns gives the set of all sequences
yet to be created.

3. The set of all r−cycles, as described in Sect.3.1.3. It is the classification
of all sequences in Tn ∪ Tn by cyclic permutations of the parts of each
sequence that is to be determined from the Creation Table Tn, which
itself has its sequences classified by its columns coli, i = 0, 1, 2, . . . : if
the sequence (1 α) is central for coli, then coli is the same (invariant)
under the transformation Tn−1 �→ Tn; otherwise, there is a shift coli �→
coli+1 upward to the adjacent column. The problem then for r−cycles is
to transcribe their structure to the coli description. This transcription
goes as follows: An r−cycle either contains all cyclic permutations
of the parts of the greatest sequence contained therein or the cyclic
permutation of the least sequence contained therein, where this rule
applies to both positive and conjugate sequences. Thus, if Cn(αmax) =
α = (α0, α1, . . . , αn) ∈ Tn denotes the greatest sequence in a given
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set of r−cycles, then all cyclic permutations of the parts of Cn(αmax)
are in the same set of r−cycles, and this includes all sequences in the
r−cycle. This gives

Cn(αmax) = (α0, α1, . . . , αn) ∪ (αn, α0, α1, . . . , αn−1)∪ (5.11)

(αn−1, αn, α0, α1, . . . , αn−2) ∪ · · · (α1, α2, . . . , αn−1, α0).

Thus, the notation Cn(αmax) denotes the class of sequences equiva-
lent to αmax = (α0, α1, . . . , αn) under cyclic permutations of its parts.
Similarly, the notation Cn(αmin) = (α′

0, α
′
1, . . . , α

′
n) denotes the set of

sequences

Cn(αmin) = (α′
n, α

′
n−1, . . . , α

′
1, α

′
0) ∪ (α′

0, α
′
n, . . . , α

′
2, α

′
1) ∪ · · ·

(α′
n, α

′
0, α

′
1, . . . , α

′
n−1) ∪ (α′

0, α
′
1, . . . , α

′
n). (5.12)

Toward the goal of establishing the connection between notations, cyclic
permutations are applied to every sequence in the Creation Table Tn, which
then gives back the same table with a redistribution of its 2n sequences.
Then, if a given permuted sequence remains in the same coli in both tables,
it must be assigned the same coli in the redistribution; if it is transformed
to a new colj , j �= i, it must be assigned the new colj . This then gives all
columns into which fall all the redistributed columns.

C4((4)) = {(4), (1 3), (2 2), (3 1)} �→ {RL3, LRL2, L2RL, L3R};
C4((1

4)) = {(14)} �→ {R4};
C4((1 2 1)) = {(2 1 1), (1 1 2), (1 2 1), (14)}

�→ {RLRR, RRRL, RRLR, LRRR}; (5.13)

C4((1 3)) = {(3 1), (1 3), (1 1 2), (2 1 1)}
�→ {RLLR, RRLL, LRRL, LLRR};

C4(1 2 1)) = {(2 2), (1 2 1)} �→ {RLRL, LRLR};
C4((4)) = {(4)} �→ {L4}.

For explicitness and clarity of structure of the above results on cyclic per-
mutations, and for the purpose of having all the results for n = 1, 2, . . . , 6 in
one place near the computer-generated inverse graphs, these results are all
presented here:

C5((5)) = {(5), (1 4), (2 3), (3 2), (4 1)}
�→ {RL4, LRL3, L2RL2, L3RL, L4R};

C5((1
5)) = {(15)} �→ {R5};

C5((1 2 2)) = {(2 1 2), (2 2 1), (1 2 2), (2 1 2), (1 2 1 1), (1 1 2 1)}
�→ {RLRRL, RLRLR, RRLRL, LRLRR,LRRLLR};

C5((1 2 1 1)) = {(2 1 1 1), (1 1 2 1), (1 1 1 2), (1 2 1 1), (15)}
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�→ {RLR3, R3LR, R4L, R2LRR,LR4};
C5((1 2 1 1)) = {(2 1 1 1), (1 1 2 1), (1 1 1 2), (1 2 1 1), (15)}

�→ {RLR3, R3LR, R4L, R2LRR,LR4};
C5((1 3 1)) = {(3 1 1), (1 1 3), (1 3 1), (1 1 1 2), (2 1 1 1)} (5.14)

�→ {RL2R2, R3L2, R2L2R, LR3L,L2R3};
C5((1 4)) = {(4 1), (1 4), (1 1 3), (2 1 2), (3 1 1)}

�→ {RL3R, R2L3, LR2L2, L2R2L,L3R2};
C5((5)) = {(5)} �→ {L5};

C5((1 3 1)) = {(3 2), (2 3), (1 2 2), (1 3 1), (2 2 1)}
�→ {RL2RL, RLRL2, LRLRL, LRL2R, L2RLR}.

C1((1)) = {(1)} �→ R; C1((1)) �→ L. (5.15)

C2((2)) = {(2)} �→ RL; C2((1 1)) = {(1 1)} �→ RR;

C2((2)) = {(2)} �→ LL; C2((1 1)) �→ LR. (5.16)

C3((3)) = {(3), (1 2) �→ {RLL, LRL, LLR};
C3((1 1 1)) = {(1 1 1)} �→ {RRR};
C3((1 2)) = {(2 1), (1 2), (1 1 1)} �→ {RLR, RRL,LRR}; (5.17)
C3((3)) = {(3)} �→ {LLL}.

C
∗
6(ζ0) = {(6)};

C
∗
6(ζ1) = {(5 1), (4 12), (3 13), (2 14), (16)};

C
∗
6(ζ2) = {(4 2), (3 1 2), (3 2 1), (2 1 2 1), (2 1 1 2), (2 2 2),

(1 1 2 2), (1 1 1 1 2), (1 1 1 2 1), (1 2 2 1)};
C
∗
6(ζ3) = {(2 2 1 1), (1 1 2 1 1), (1 2 1 1 1)};

C
∗
6(ζ4) = {(1 2 1 2)}; (5.18)

C
∗
6(ζ5) = {(3 3), (2 1 3), (2 3 1), (1 1 3 1), (1 1 1 3), (1 2 3), (1 3 2)};

C
∗
6(ζ6) = {(1 3 1 1);

C
∗
6(ζ7) = {2 4), (1 1 4), (1 4 1)};

C
∗
6(ζ8) = (1 5).

In these last results for n = 6, the transformation to letters R and L is omit-
ted to conserve space — also, it is obvious from the other examples. It is also
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the case that these results can be described in terms of the coli parametriza-
tion of the Creation Table Tn, as given above following relation (5.12). All
of these results, and others mentioned above, support the thesis that the
creation tables may be taken as the basic elements in the development of
the properties of α−sequences, with a simple, straightforward exposition of
properties being contained in the coli parametrization.

Example n = 4. Distribution of creation sequences:

(4)

(3 1)

(2 1 1)

(2 2)

(1 1 2)

(14)
(1 2 1)

(1 3)

0 ζ((0)) ζ((1)) ζ((2)) 2

� � � �

(5.19)

All labels of positive branches present in each central interval:

C6(ζ0, ζ1] = {(6)};
C6(ζ1, ζ2)] = {(6) | (16)} −G6(ζ1, ζ2) = U6(ζ1, ζ2);

C6(ζt, ζt+1] = {(6) | cn(t)} −G6(ζt, ζt+1), t = 0, 1, . . . , 8; (5.20)

C6(ζ8,∞] = {(6) | (1 5)} (full set), ζ9 =∞.

The gap sequences in this relation are defined as follows:

G6(ζ1, ζ2) =

3∑
s=1

⌊
(5− s 1s+1)

∣∣∣ (4− s 1s+2)
⌋
=
⌊
(4 12)

∣∣∣ (3 13)
⌋

+
⌊
(3 13)

∣∣∣ (2 14)
⌋
+
⌊
(2 14)

∣∣∣ (16) ⌋+ ⌊ (16) ∣∣∣ (1 5)
}
;

G6(ζ2, ζ3) =
⌊2
(3 13) | (2 14)

⌋2
++

⌊3
(2 14) | (16)

⌋3
+

⌊
(1 2 2 1)

∣∣∣ (1 5)
}
; (5.21)
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G6(ζ3, ζ4) =
⌊2
(3 13) | (2 14)

⌋2
+
⌊4
(2 14)

∣∣∣ (16)⌋4 + ⌊ (1 2 1 1 1)
∣∣∣ (1 5)

}
;

G6(ζ4, ζ5) =
⌊2
(3 13) | (2 14)

⌋2
+
⌊4
(2 14)

∣∣∣ (16)⌋4 + ⌊ (1 2 1 2)
∣∣∣ (1 4)

}
;

G6(ζ5, ζ6) =
⌊5
(2 14)

∣∣∣ (16)⌋5 + ⌊ (1 3 2)
∣∣∣ (1 5)

}
;

G6(ζ6, ζ7) =
⌊5
(2 14)

∣∣∣ (16)⌋5 + ⌊ (1 3 1 1)
∣∣∣ (1 5)

}
;

G6(ζ7, ζ8) =
⌊
(1 4 1)

∣∣∣ (1 5)
}
= {(1 5)};

G6(ζ8,∞) =
⌊
(1 5)

∣∣∣ (1 5)
}
= empty sequence.

The gap sequences in these results are read-off the Table of Creation
Sequences for n = 6 below by counting in from the end sequences:⌊

(4 12) | (3 13)
⌋

= {(4 2), (3 1 2)};⌊
(3 13) | (2 14)

⌋
= {(3 2 1), (3 3), (2 1 3), (2 1 2 1)};⌊

(2 14) | (16)
⌋

= {(2 1 1 2), (2 2 2), (2 2 1 1), (2 3 1), (2 4), (1 1 4);

(1 1 3 1), (1 1 2 1 1), (1 1 2 2), (1 1 1 1 2)}
}
;⌊2

(3 13) | (2 14)
⌋2

= {(3 3), (2 1 3)}; (5.22)⌊3
(2 14) | (16)

⌋3
= {(2 2 1 1), (2 3 1), (2 4), (1 1 4), (1 1 3 1), (1 1 2 1 1)};⌊4

(2 14) | (16)
⌋4

= {(2 3 1), (2 4), (1 1 4), (1 1 3 1)};⌊5
(2 14) | (16)

⌋5
= {(2 4), (1 1 4)}.

The subsequences of {(16) | (1 5)} that enter into relations (A.28) are those
given in terms of central sequences as follows:⌊

(1 4 1)
∣∣∣ (1 5)

}
= {(1 5)};⌊

(1 3 1 1)
∣∣∣ (1 5)

}
=

{
(1 4 1)

∣∣∣ (1 5)
}
;⌊

(1 3 2)
∣∣∣ (1 5)

}
=

{
(1 3 1 1)

∣∣∣ (1 5)
}
;⌊

(1 2 1 2)
∣∣∣ (1 5)

}
=

{
(1 3 2)

∣∣∣ (1 5)
}
; (5.23)⌊

(1 2 1 1 1)
∣∣∣ (1 5)

}
=

{
(1 2 1 2)

∣∣∣ (1 5)
}
;⌊

(1 2 2 1)
∣∣∣ (1 5)

}
=

{
(1 2 1 1 1)

∣∣∣ (1 5)
}
;
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(15)

∣∣∣ (1 5)
}

=
{
(1 1 1 2 1), (1 1 1 3), (1 2 3)

}
+
{
(1 2 2 1)

∣∣∣ (1 5)
}
;

Cycle class creation:

There are fourteen cycle classes: nine 6−cycles, two 3−cycles, one 2−cycle,
and two 1−cycles. Because of space considerations, these are listed here by
giving just the central sequence representative of each cycle class; the full set
is then completed by effecting the cyclic permutations of the representative
and reading back the corresponding sequence:

6−cycle: C6((6)) = {(6), . . .} �→ {RL5, . . .};
1−cycle: C6((1

6)) = {(16)} �→ {R6};
6−cycle: C6((1 2 2 1)) = {(1 2 2 1), . . .} �→ {RRLRLR, . . .};
6−cycle: C6((1 2 1 1 1)) = {(1 2 1 1 1), . . .} �→ {RRLRRR, . . .};
3−cycle: C6((1 2 1 2)) = {(1 2 1 2), . . .} �→ {RRLRRL, . . .};
6−cycle: C6((1 3 2)) = {(1 3 2), . . .} �→ {RRLLRL, . . .};
6−cycle: C6((1 3 1 1)) = {(1 3 1 1), . . .} �→ {RRLLRR, . . .};
6−cycle: C6((1 4 1)) = {(1 4 1), . . .} �→ {RRLLLR, . . .};
6−cycle: C6((1 5)) = {(1 5), . . .} �→ {RRLLLL, . . .};
1−cycle: C6((6)) = {((6))} �→ {L6};
2−cycle: C6((1 2 2 1)) = {(1 2 2 1)} �→ {LRLRLR, . . .};
3−cycle: C6((1 3 2)) = {(1 3 2), . . .} �→ {LRLLRL, . . .},
6−cycle: C6((1 3 1 1)) = {(1 3 1 1)} �→ {LRLLRR, . . .};
6−cycle: C6((1 4 1)) = {(1 4 1), . . .} �→ {LRLLLR, . . .}.

The creation points of the members of these cycle classes are the MSS roots
that stand at the left-end of the column of the central sequence in which
a label in a given cycle class occurs in the Table of Creation Sequences for
n = 6 below. This long listing is omitted for n = 6, since it is fully illustrated
in the previous examples for n = 2, . . . , 5.

Cycle class creation:

There are eight cycle classes: six 5−cycles and two 1−cycles:
C5((5)) = {(5), (1 4), (2 3), (3 2), (4 1)}

�→ {RL4, LRL3, L2RL2, L3RL, L4R};
C5((1

5)) = {(15)} �→ {R5};
C5((1 2 2)) = {(2 1 2), (2 2 1), (1 2 2), (2 1 2), (1 2 1 1), (1 1 2 1)}

�→ {RLRRL, RLRLR, RRLRL, LRLRR,LRRLLR};
C5((1 2 1 1)) = {(2 1 1 1), (1 1 2 1), (1 1 1 2), (1 2 1 1), (15)}

�→ {RLR3, R3LR, R4L, R2LRR,LR4};
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C5((1 2 1 1)) = {(2 1 1 1), (1 1 2 1), (1 1 1 2), (1 2 1 1), (15)}
�→ {RLR3, R3LR, R4L, R2LRR,LR4};

C5((1 3 1)) = {(3 1 1), (1 1 3), (1 3 1), (1 1 1 2), (2 1 1 1)} (5.24)

�→ {RL2R2, R3L2, R2L2R, LR3L,L2R3};
C5((1 4)) = {(4 1), (1 4), (1 1 3), (2 1 2), (3 1 1)}

�→ {RL3R, R2L3, LR2L2, L2R2L,L3R2};
C5((5)) = {(5)} �→ {L5};

C5((1 3 1)) = {(3 2), (2 3), (1 2 2), (1 3 1), (2 2 1)}
�→ {RL2RL, RLRL2, LRLRL, LRL2R, L2RLR}.

The central branch sequences are used to label the equivalence classes:
the unique positive sequence; otherwise, the unique conjugate sequence. The
creation points of the members of these cycle classes are the MSS roots that
stand at the left-end of the column of the central sequence in which a label
in a given cycle class occurs in the Table of Creation Sequences for n = 5
below:

at ζ0 = 0, the labels (5) �→ RL4;

at ζ((0)) = 1, (4 1) �→ RL3R, (3 12) �→ RL2R2,

(2 13) �→ RLR3, (15) �→ R5, (5) �→ L5, (4 1) �→ L4R,

(3 12) �→ L3R2, (2 13) �→ L2R3, (15) �→ LR4;

at ζ((2 1 1)), the labels (3 2) �→ RL2RL, (2 1 2) �→ RLR2L, (2 2 1) �→ RLRLR,

(1 1 1 2) �→ R4L, (1 2 2) �→ RRLRL, (1 2 1 1) �→ RRLRR,

(3 2) �→ L3RL, (2 1 2) �→ L2R2L, (2 2 1) �→ L2RLR, (5.25)

(1 1 1 2) �→ LR3L, (1 2 2) �→ LRLRL, (1 2 1 1) �→ LRLRR;

at ζ((3 1)), the labels (2 3) �→ RLRL2, (1 1 3) �→ R3L2, (1 3 1) �→ R2L2R,

(2 3) �→ L2RL2, (1 1 3) �→ LR2L2, (1 3 1) �→ LRL2R;

at ζ((4)), the labels (1 4) �→ R2L3, (1 4) �→ LRL3.

Consider first the relations for the domain of definition applied to the
central sequence cn(t) = (1 Λn(γt)) (see Sect. (1.5)) where ζ(γt), γt lexical,
is an MSS root of the MSS polynomial pn(ζ) :

Ψζ

(
(1 Λn(γt));x

)
= Ψζ

(
(1);Ψζ(Λn(γt);x)

)
;

Ψζ(βt; 1) ≤ Ψζ(Λn(γt);x) ≤ Ψζ(γt; 1), βt < Λn(γt) < γt;

where βt, γt ∈ {A0,A1, . . . ,An−2}, with βt the greatest sequence (5.26)

less than Λn(γt), and γt the least sequence greater than Λn(γt),

except that βt = (0), if Λn(γt) itself is a central sequence in baseline Bn−1.
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The problem is to show how relations (2.63) determine the central sequences
in baseline Bn from the set of all sequences in Tn−1 quite independently
of the definition in (2.87). Such a theoretical proof of this result has not
been forthcoming. No doubt, a computer algorithm could be developed that
determines the MSS root ζ(γt) and the lexical sequence γt at which all of
(2.63) holds (see also Item 2 below). This has not been done. Instead,
an argument is next given that incorporates the general result (1.87) for
constructing all central sequences for arbitrary n.

A sequence α ∈ Tn−1 maps to a central sequence in Tn if and only if the
relation

Λn(γ) = α ∈ Tn−1, (5.27)
has, for given α, a unique solution (lexical) sequence γ ∈ {L1, L2, . . . , Ln−1},
where all the conditions in (1.87) are to hold for Λn(γ). This relation
can always be solved by scanning through all α ∈ Tn−1 and finding the subset
of such sequences that have the form given by (1.87) and which satisfies
all the stated conditions. In essence, relations (1.87) might just as well
have been used directly for the calculation of this central sequence subset.
Nonetheless, the present procedure does place the role of central sequences
in a different perspective. It is instructive to show how the procedure of
solving relation (2.64) works for small n.

Examples: It is universal that (n), (1n), (1 n − 1) are always central se-
quences in Tn, obtained, respectively by application of the (+1)−rule to
(n− 1), and the application of the (1 α)−rule to (1n−1, (n− 1). This will be
assumed in the following examples.

(1). Central sequences for n = 4 as found from α ∈ T3. The only sequence in
T3 that needs to be considered is the sequence (2 1), which maps to the two
sequences (3 1), (1 2 1) ∈ T4, and only (1 2 1) qualifies as a possible central
sequence. The solution of Λ4(γ) = (2 1) is γ = (1), which gives the MSS
root ζ((1)) as the creation value of the corresponding central branch function
Ψζ((1 2 1);x). Thus, the placement of all central sequences in baseline B4 is
uniquely obtained in this manner from the given baseline B3.

(2). Central sequences for n = 5 as found from αT4. The only sequence in
T4 that needs to be considered is the set of sequences

{(3 1), (2 1 1), (2 2), (1 1 2), (1 2 1)}. (5.28)

It is only the (1 α)−rule applied to these sequences that gives a set of
potential central sequences in T5 :

{(1 3 1), (1 2 1 1), (1 2 2), (1 1 1 2), (1 1 2 1)}. (5.29)

Of these candidates for central sequences only the first three have a lexical
solution γ ∈ L1, L2, L4, L5 such that

Λ5(γ) = α, α ∈ {(3 1), (2 1 1), (2 2)}. (5.30)

The three respective lexical sequences are: γ = (2), (2 1), (1), which give the
MSS roots ζ((2)), ζ((2 1)), ζ((1)) as the creation values of the corresponding
central branch functions Ψζ((1 3 1);x),Ψζ ((1 2 1 1);x),Ψζ((1 2 2);x). Thus,
the placement of all central sequences in baseline B5 is uniquely obtained in
this manner from the given baseline B4.

The above indirect use of the definition of central sequences defined by
(1.87) evades the issue of their unique determination by the transformation
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rule (2.63). It must be the case, however, that Λn(γ) us uniquely determined
by this property, but a method of obtaining it from this property has not
been found. The list of central sequences given in Appendix B is based on
relation (1.87).

It is interesting to note that the sequences Col
(n−1)
0 = {(n − 1)} and

Col
(n−1)
1 = {(n− k− 1 1k | k = 1, 2, . . . , n− 2} are mapped by the (+1)-rule

and the (1 α)−rule to the subset of n− 1 central sequences given by

{(n), (1n), (1 2 1n−3), (1 3 1n−4), . . . , (1 n− 2 1), (1 n− 1)} ⊂ Cn. (5.31)

It is left as an exercise to prove that each sequence in this set is a central
sequence; that is, has the form given by (1.87).

5.2.1 The Table of Creation Sequences for Prime n

The general solution giving the distribution of newly created sequences into
columns characterized by the central curve can be given for arbitrary prime
number n. The solution depends on one of Fermat’s theorems, which gives
the number of lexical sequences in the set Ln if lexical sequences of degree
n− 1 defined by (see Sect. 1.3.3):

Ln = {α = (α0, α1, . . . , αk) |α0 + α1 + · · · + αk = n− 1;α lexical}. (5.32)

The number of elements in this set of lexical sequences is:

|Ln| = 2n−1 − 1

n
, (5.33)

where Fermat’s theorem assures that the n divides 2n−1 − 1 for n prime (
n > 2).

The application here is to the qualifying sequences Λn(γ) defined by
(1.87):

The central curves for n prime are given by:

Cnζ
(
(n)| (n)

)
, ζ ∈;

Cnζ
(
(1n) | (1n)

)
, ζ ∈ (ζ((0)), ζ2];

Cnζ
(
(1 α(t)) | (1 α(t))

)
, α(t) ∈ Ln; (5.34)

Λn(γ
(t)) = α(t), ζ ∈ (ζt, ζt+1];

γ(t) ∈ {L2, L3, . . . , Ln−1}, t = 2, 3, . . . , |Ln|+ 1.

The MSS root ζt = ζ(γ(t)) at which the central curve Cnζ
(
1 α(t) | (1 α(t))

)
for

the interval (ζt, ζt+1] is created is determined by considering all qualifying
Λn(γ), γ ∈ {L2, L3, . . . , Ln−1} in accordance with (1.87), and then selecting

the subset that gives the lexical sequences α(t) ∈ Ln. The application of (2.3)
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to n = 5, 7 is illustrated in relations (1.98)-(1.101) and in the discussion of
those relations; this structure also applies, of course, to n = 3.

number of sequences above 1n = 2
2n−1 − 1

3
;

(5.35)

number of sequences below 1n =
2n−1 − 1

3
.

It is also known for n prime that all cycles classes are n−cycles, except
for the two 1−cycles corresponding to (1n) �→ Rn and (−n) �→ Ln. Hence,
it must be the case that 2n − 2 = nXn, where Xn denotes the number of
n−cycles of length n for prime n; hence, the number Xn is given by

Xn = 2|Ln|. (5.36)

The cyclic permutations that belong to the set P̂n(t) includes all cyclic
permutation labels of cn(t) that can possibly belong to Colt bf and fall
below (2 1n−2). But, in general, not all these sequences can belong to Colt

— it is the partitioning of the set P̂n(t) into the subset that belongs to Col
(n)
t

and the subset that does not, denoted by ’ and ”, respectively:

P̂n(t) = P̂
′
n(t) ∪ P̂

′′
n(t). (5.37)

The ζ−values for the creation of new labels of the positive branches of
the inverse graph Gn

ζ can be pictured in stacked arrays of labels (sequences)
in the displays as follows: given in the examples above. Despite the space it
requires to set forth these diagrams clearly, it is worth it because it unveils
the general structure underlying the relationship between central sequences
and the creation of new sequences. The examples are given for n = 4, 5, 6,
the others being too trivial to reveal general stuucture. The diagrams all
have the following structure: Each display has 2n−1 rows and a number of
columns equal to the number |Cn| of central sequences. Each row contains
one label with the greatest label (n) in the top row and the least label
(1 n − 1) in the bottom row; hence, each label in the set {(n) | (1 n − 1)}
appears exactly once in some column. It is the columns that contain the
more relevant structural information. Each column contains the set of all
new labels of the branches of Gn

ζ created synchronously at ζt with the central

curve for the interval (ζt, ζt+1], t = 0, 1, . . . , |Cn| = qn + 1 (see (1.82)). The
order of the stacked elements in each column is always from greatest-to-
least as read from top-to-bottom, and the least element is always that of the
positive branch of the central sequence for that interval.

The information displayed in each of these stacked displays of creation
labels is exactly that given in the solution (1.112) giving the distribution of
the new labels into sets associated with each interval Cn(ζt, ζt+1]. Hence, the
alternative description (1.114) in terms of gap sets can also be given. The
gap sequences can also be read off directly from the given stacked displays,
as next described.
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It is useful to summarize briefly, the information on the inverse graph Gn
ζ

that can be read-off the creation displays given in here:

1. The full ordered membership of the set {(n) | (1 n− 1)}.
2. The set of labels of the positive central branches created at the MSS

root ζt of each interval (ζt, ζt+1], t = 0, 1, . . . , qn, including the central
branch. These are the labels in the column 0, 1, . . . , t, . . . , qn.

3. The set of ordered are labels from top-to-bottom of all branches in
the inverse graph Gn

ζ for all ζ ∈ (ζt, ζt+1]. This is the set of labels
obtained by merging together into one column all of the entries in
column 0, 1, . . . , t. Example of these are the stacked curves with positive
branches are given in (1.47)-(1.49),(1.74)-(1.77), and (1.103)-(1.105) for
appropriate choice of ζt.

4. The gap labels yet to be created in the further ζ−evolution. This
is the set of labels in the full set {(n) | (1 n − 1)}, but still missing
from the merger described in Item 3: In particular, the gap sequences
Gn(ζt, ζt+1), t = 0, 1, . . . , qn − 1, that occur in (1.114)-(1.115) can be
verified to be:

Gn(ζt, ζt+1) = sum of all sequences in columns

t+ 1 to qn, t = 1, 2, . . . , qn − 1. (5.38)

5. The sets of final residency of fixed points (the class of permutational
equivalent combinatorial sets based on words). These combinatorial

sets of equivalency classes are obtained as follows: Let cn(t) and cn(t)
denote the central sequence and its conjugate for the interval (ζt, ζt+1];

then the central sequence for the interval (ζt, ζt+1] is Cnζ (cn(t) | cn(t)).
Let α ∈ Ct denote any of the positive sequence α that occurs in column
t of the stacked creation sequence array. Then, xα(ζ) is the dynamical
fixed point having the sequence α ∈ Ct as its final residency branch
in the inverse graph Gn

ζ , all ζ > ζt. The single exception to this rule

is for the primordial interval (ζ0 = 0, ζ1 = 1), where the fixed point is
x(n)(ζ) = 2− 1

ζ , as described in detail in Sect. 1.4.3. The determination

of the true creation branch of each fixed point itself is more indirect
and subtle, depending as it does on the details of a saddle-node or a
period-doubling bifurcation event; for neven, both period-doubling bi-
furcations (two new fixed points always created out of an existing fixed
point) and saddle-node bifurcations (two new fixed points created, but
not from an existing fixed point). The connection with combinatorial
cycle classes comes about by the motion, under increasing ζ, of the
newly created fixed points onto their final branches of residence, where
they remain for all greater ζ.
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Examples :

n = 1. Distribution of creation sequences:

(1)

�

0 2

(5.39)

n = 2. Distribution of creation sequences:

(2)

(1 1)

0 ζ((0)) 2

� �

(5.40)

n = 3. Distribution of creation sequences:

(3)

(2 1)

(1 1 1)
(1 2)

0 ζ((0)) ζ((1)) 2

� � �
(5.41)
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n = 4. Distribution of creation sequences:

(4)

(3 1)

(2 1 1)

(2 2)

(1 1 2)

(14)
(1 2 1)

(1 3)

0 ζ((0)) ζ((1)) ζ((2)) 2

� � � �

(5.42)

n = 5. Distribution of creation sequences:

(5)

(4 1)

(3 12)
(3 2)

(2 1 2)

(2 13)

(2 2 1)

(1 1 2 1)

(2 3)

(1 1 3)

(1 1 2 1)

(15)

(1 1 1 2)
(1 2 2)

(1 2 1 1)

(1 3 1)

(1 4)

0 ζ((0)) ζ((1)) ζ((2 1)) ζ((2)) ζ((3)) 2

� � � � � �

(5.43)

Example n = 6. Distribution of creation sequences:
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(6)
(5 1)

(4 12)
(4 2)
(3 1 2)

(3 13)
(3 2 1)

(2 1 2 1)

(3 3)

(2 1 3)

(2 14)
(2 1 1 2)
(2 2 2)

(2 2 1 1)
(2 3 1)

(2 4)
(1 1 4)

(1 1 3 1)
(1 1 2 1 1)

(1 1 2 2)
(1 1 1 1 2)

(16)
(1 1 1 2 1)

(1 1 1 3)
(1 2 3)

(1 2 2 1)
(1 2 1 1 1)

(1 2 1 2)
(1 3 2)

(1 3 1 1)
(1 4 1)

(1 5)

0 ζ((0)) ζ((1)) ζ((2 1)) ζ((2 1 1)) ζ((2)) ζ((3 1)) ζ((3)) ζ((4)) 2

� � � � � � � � �

(5.44)
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The creation tables shown in (5.39)-(5.45) above show in vivid detail
how these tables are generated recursively, one table at a time, each from
the preceding table. It is useful to repeat this result in terms of the coli
nomenclature so that it can be verified directly in the above tabular displays:

Select a given Creation Table Tn. Then, this table is constructed from Tn−1 by
effecting all cyclic permutations of the sequences in each coli. If the permuted
sequence occurs in the same coli as the original sequence, then it remains
in the same coli in Creation Table Tn; if the permuted sequence occurs in a
colj , j �= i, then it is transferred into colj in Creation Table Tn.

Select a given Creation Table Tn. Then, the sequences that fall into the same
fixed set as an arbitrarily selected sequence from Tn are obtained by cyclic
permutations of that sequence. The sequences in each such set are uniquely
labeled either by the greatest sequence or the least sequence contained therein.
Thus, the fixed points belong to one or the other of the equivalency classes of
sequences denoted by Cn(αmax), or Cn(αmin), or both should αmax = αmin
(a 1-cycle).

Another very important feature of the inverse graph is shown by the
vectors placed in each interval of the baseline. These vectors indicate the
direction of motion of the central curve for that interval.Thus, start-
ing from the left-most boundary at ζ = 0, this motion with increasing ζ is
described as follows:

The motion is along the horizontal central line y = 1 of the inverse graph,
back and forth through the fixed central point (1, 1) of the graph, with a
variable amplitude that depends on the extremal points of the right-moving or
left-moving central curve as specified by the arrow for that MSS interval. This
oscillatory behavior holds for all ζ ∈ (0, 2], but the last left-moving central
curve with its left-moving motion starting at ζ = 2 continues leftward for all
ζ ∈ [2, infty); that is, the central curve C(1 n−1)(1 n− 1)), for each n ≥ 2,
is ejected to the left of the finite interval [0, 2], where it continues leftward
forever, that is, for all ζ ≥ 2. The details of this motion are given in the
computer graphs of the MSS polynomials qn(zeta) defined in (1.55)=(1.56),
as presented in the graphs labeled P2(ZETA)-P10(ZETA), with Pn(ZETA)=
qn(ζ), where ZETA= ζ denote the same parameter. While no new fixed
points are created for ζ ≥ 2, the features of the inverse graph continue to
evolve in perhaps unexpected ways, as next discussed.

The phenomenon in question is shown quite vividly in the inverse graphs
labeled by P 8, ζ = 2.00000, ζ = 2.00001, ζ = 2.00002. It may be described
for general n. The notation {(k+1 1n−k−1) | (k 1n−k)} � is well-suited for
this description, where it is recalled that this notation with � to the right of
the ordered set of labels {(k + 1 1n−k−1) | (k 1n−k)} designates that the
right-most element (k 1n−k) is removed. The notation {α | α′}, α ≥ α′,
itself denotes the ordered set of all elements in the set An of 2n−1 positive
elements that fall between α and α,′ including these two end sequences.

The phenomenon referred to above in the inverse graphs P 8 are de-
scribed for general n in terms of the notations just introduced, where now
the following abbreviated notation is also introduced:

Fn
k = {(k + 1 1n−k−1) | (k 1n−k)} �, k = 1, 2, . . . , n− 1 (5.45)
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Thus, for general n, there are n−1 such families of sequences given schemat-
ically by the following picture:

Fn
1

Fn
0

Fn
n−1

Fn
n−2

...
...

(5.46)

The sequences Fn
0 = {(1n), . . . , (1 n − 1)}ord must be adjoined to capture

the maximal sequence (1n).

The individual branch sequences Fn
k are not resolved in the computer-generated

graphs referred to above and certainly do not coincide exactly for the indi-
cated finite values of ζ. Moreover, the gap between families does appear to
be present. These spacings all evolve in ζ. Notice also that the greatest
sequence in the family Fn

k is (k + 1 1n−k+1). The collection of greatest se-
quences is {(n), (n− 1 1), (n− 2 12), . . . , (2 1n−1), (1n)} is just the universal
set discussed in Sec.XX. This regularity of structure for general n reinforces
the interpretation of the unresolved computer-generated graphs.

It is useful to give the sequences in the picture (5.46) in the case n = 8 :

F8
7 = {(8)},
F8
6 = {(7 1)},
F8
5 = {(6 12), (6 2), (5 1 2)}ord,
F8
4 = {(5 13), (5 2 1), (5 3), (4 1 3), (4 1 2 1)}ord, (5.47)

F8
3 = {(4 14), . . . , (3 1 1 1 2)}ord,
F8
2 = {(3 15), . . . , (2 1 1 1 2 1}ord,
F8
1 = {(2 16), . . . , (16 2)}ord,
F8
0 = {(18), . . . , (1 7)}ord.

The above structure for ζ outside the interval [0, 2] is only the begin-
ning of, perhaps, unexpected behavior of the motions of the branches of the
inverse graph. The following quite surprising events seems to occur. The
computer-generated graphs P 3 for negative ζ given by ζ = −1.10000,
− 1.00000,−0.90000,−0.80000,−0.70000,−0.60000,−0.50000,−0.40000,
−0.30000,−0.20000,−0.10000, 0.00000 suggest that for ζ very large and neg-
ative the positive branches of the inverse graph are at a finite value of ζ on
the positive side of the inverse graph and at a symmetrically placed hor-
izontal line on the negative (conjugate) side. Then, as ζ increases to the
right,these lines move into the band-like sets of sequences Fn

k , and these sets
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of sequences continue to evolve continuously to greater y−values on the pos-
itive side with the number of branches decreasing to exactly two at ζ = 0,
where it contracts to the starting position of the entire inverse graph for all
ζ > 0. This ”reversal process” for negative values of ζ is quite speculative
and requires further computation on the shape of the graph for ζ outside
the domain [0, 2]. The computer-generate graphs for P 8, where n is even,
seem to follow a quite different path in the negative ζ−domain in reaching
the starting point at ζ = 0, where the replication of the entire inverse graph
begins. In this case, at large negative values of x, the branches of the inverse
graph appear to be distributed from verh large positive y−values downward
to very large negative y−values, symmetrically placed about the y = 1 cen-
terline. As x increases to the right, the curves constituting the inverse graph
move continuously and symmetrically toward the center line y = 1, matching
up exactly with the x = 0 starting line of the entire inverse graph for x > 0.
These motions of the inverse graph for negative ζ−values are highly specula-
tive, since there are not enough computer-generated graphs to be convincing.
It is to be noted that at the time the enclosed computer-generated graphs
were done the extension to ζ−values outside the interval [0, 2] was a curios-
ity of little value — it was not carried out. Clearly, it should have been.
It also is quite likely that the set of universal inverse graphs plays a major
structural role.

There are many inverse graphs displayed in this very long Chapter 5.
The values of ζ given on each diagram of an inverse graph were selected for
the purpose of showing various features of the inverse graph, which should
be visualized as constituting discrete snapshots of a continuously evolving
graph. It is quite impossible to direct attention to specific details in each
graph. Guidelines are to look for changes in the rightward and leftward
motions as ζ increases, as well as the number of graphs that appear, which is
always increasing with order preservation and with no crossings. Many less-
than-visible features have also been identified at various places throughout
the monograph. Careful examination and extrapolation from the presented
inverse graphs often allows their verification. Also, the selection given at
the various ζ−values is intended to exhibit computationally the richness of
structure that qualifies the subject of this monograph as a complex system.

Applications of the viewpoint of chaos theory presented in this monograph
were made in the Refs. [40–44] prior to the discovery that it has a recursion-
based structure whereby the structure of the inverse graph can be generated
recursively from n = 1 to n = 2 to n = 3 · · · . It may well be that this
result implies further properties of the subjects of Refs. [40–44], but this
has been put aside in favor of giving quicker dissemination of the subject
of Chapter 4. Other viewpoints of chaos theory are references solely for
the purpose of illustrating the diversity of viewpoints of what is called chaos
theory, thereby showing its importance as a new branch of physics that gives
often unexpected insights into the behavior of physical systems.

It may be useful to work out whether or not the objects introduced in
Chapter 4, Item 4 can be taken as neurons in the sense of Van Wedeen and
Jeff Lichtman [56] that each neuron is a distinct cell, separate from every
other one. This has not been done here.
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Lastly, the important issues of computability and reproducibility of the
inverse graph raised by Lorenz [27] are not issues in this monograph. The
methods of double precision implemented by Bivens and Stein in Ref.[20]
are such that all inverse graphs herein presented are reproducible; this is
because the starting point for computing the inverse graph incrementally
can be taken as the exact point x = 1 or x = 3/2. One, of course, would
never choose one of increments as a starting point, as advised already by
Lorenz [27]. The fact that also all inverse graphs meet x = 0 and x = 2 at
exactly ζ = 2 further confirms the reproducibility. Still another feature is the
invariance of fixed points between the inverse graphs Gn

ζ and the ordinary
graphs Hn

ζ . This latter property can be expressed by the composition of
functions given by

Gn
ζ ◦ Hn

ζ = Hn
ζ ◦ Gn

ζ = Iζ , (5.48)

where Iζ is the identity function for function composition, and relation (5.48)
holds independently of x.



Bibliography

[1] P. R. Stein and S. M. Ulam, Non-linear transformation studies on elec-
tronic computers, Rozprawy Matematyczne XXXIX, Warszawa, Panst-
wowe Wydawnictwo Naukkowe (1964) 1-65. i

[2] N. Metropolis, M. L. Stein, and P. R. Stein, Stable states of non-linear
transformations, Numerische Mathematik, 10 (1967) 1-19. i

[3] N. Metropolis, M. L. Stein, and P. R. Stein, On finite limit sets for
transformations on the unit interval, J. Combinatorial Theory 15 (1973)
25–44 i

[4] M. J. Feigenbaum, Quantitative universality for a class of nonlinear
transformations, J. Stat. Phys. 21 (1978) 25–52 i

[5] M. J. Feigenbaum, The universal metric properties of nonlinear trans-
formations, J. Stat. Phys. 21 (1979) 669-706. i

[6] M. J. Feigenbaum, The onset spectrum of turbulence, Phys. Lett. 74A
(1979) 375–378. i

[7] M. J. Feigenbaum, Metric universality in nonlinear recurrence, Lecture
Notes in Physics 93 (1979) 163–166. i

[8] M. J. Feigenbaum, Universal behavior in nonlinear systems, Los Alamos
Science (1980) 4–27. i

[9] M. J. Feigenbaum, The transition to aperiodic behavior in turbulent
systems, Commun. Math. Phys. 77 (1980) 65–86. i

[10] M. J. Feigenbaum, L. P. Kadanoff, and S. J. Shenker. Quasiperiodicity
in dissipative systems: A renormalization group analysis, Physica 5D
(1982 370-386. i 1

1The reference are presented in a style that relates the reference to its usage in this monograph.
Some are referenced, some are not. Additional references are included for the convenience of
readers of varying backgrounds. Refs. [1]-[28] have their origin with authors having an official
relation with the Laboratory. In particular, Refs. [15-19] relate directly to the determination of
the properties of the inverse graphs as the primary objects of chaos theory. The applicability
of this method to a several problems is addressed in Refs.[20] (DNA), [21](DNA), [22](DNA),
[23](Galois groups),[24](Conway numbers), [25](Conway numbers). The remaining references point
out some of the directions in which Chaos Theory has moved in establishing it as a New Branch
of Physics. In particular, in their tribute to Lorenz in Ref.[39], Motter and Campbell assess these
contributions. It is also appropriate to point out that The Center for Nonlinear Studies was founded
at the Laboratory in 1980 with Director Alwyn Scott (1981-1985) and second Director David K.
Campbell (1985-1993). The Center continues to this day.

It is hoped that this monograph contributes further to the New Branch of Science aspect of Chaos
Theory by showing that Chaos Theory is a Complex Adaptive System in the sense advocated by
the Santa Fe Institute [59].

87



88 BIBLIOGRAPHY

[11] W. A. Beyer and P.R. Stein, Period doubling for trapezoid function
iteration: metric theory, Adv. Appl. Math. 3 (1982) 1–17. i

[12] M. J. Feigenbaum, Universal behavior in nonlinear systems, Physica 7D
(1983) 16–39. i

[13] W. A. Beyer, M. L. Mauldin, and P.R. Stein, Shift-maximal sequences
in function iteration: Existence, uniqueness, and multiplicity, J. Math.
Analysis 115 (1986) 305–362. i

[14] P. R. Stein, Strange Attractors, and Number Theory, Los Alamos Sci-
ence (1987) 91–106. i

[15] R. L. Bivins, J. D. Louck, N. Metropolis and M. L. Stein, Classification
of all cycles of the parabolic map, Physica D19 (1991) 3–27.

[16] J.D. Louck, Problems in combinatorics on words originating from dis-
crete dynamical systems, Annals of Combinatorics 1 (1997) 99–104.

[17] J. D. Louck, Properties of Metropolis, Stein, and Stein polynomials,
LAUR 98-1758 (unpublished) (1998) 1-16.

[18] W. Y. C. Chen, J. D. Louck, J. Wang, Adjacency and parity of words
in discrete dynamical systems, J. Comb. Theory, Series A91 (2000)
476–508.

[19] J. D. Louck and M. L. Stein, Relations between words and maps of the
interval, Annals of Combinatorics 5 (2001) 425–449.

[20] G. I. Bell, R. L. Bivins, J. D. Louck, N. Metropolis, and M. L. Stein,
Properties of words on four letters from those on two letters with an
application to DNA sequences, Adv. Appl. Math. 14 (1993) 348–367.

[21] G.I. Bell and D. C. Torney, Repetitive DNA sequences: Some consider-
ations for simple sequence repeats. Comput. Chem. 17 (1993) 185-190.

[22] W. Y. C. Chen, J. D. Louck, Neckaces, MSS sequences, and DNA se-
quences, Adv. Appl. Math. 18 (1997) 18–32.

[23] W. A. Byers and J. D. Louck, Galois groups for polynomials related to
quadratic map iterates, Ulam Quarterly 2 (1994) 1–39.

[24] J. D. Louck, Conway numbers and iteration theory, Adv. Appl. Math.
18 (1997) 181–215.

[25] W. A. Byer and J. D. Louck, Transfinite function induction iteration
and surreal numbers, Adv. Appl. Math. 18 (1997) 333–350.

[26] M. T. Menzel, P. R. Stein, and S. M. Ulam, Quadratic Transformations,
Part I. Los Alamos National Laboratory Report LA–2305, 1959.

[27] W. A. Beyer and P. R. Stein, Brief History of Functional Iteration at
Los Alamos National Laboratory Report LA-9705-H, 1983.

[28] J. D. Louck and N. Metropolis, Symbolic Dynamics of Trapezoidal
Maps, Dordrecht, Holland, D. Dreidel Pub. Co. 1986. i

[29] S. Smale, Differentible dynamical systems, American Math. Soc. 73
(1967) 747–817.

[30] E. N. Lorenz, The problem of deducing the climate from the governing
equations, Tellus 16 (1976) 1–11.

[31] R. M. May, Simple mathematical models with very complicated dynam-
ics, Nature 261 (1976) 459-467.



BIBLIOGRAPHY 89

[32] P. Collet and J.-P. Eckmann, Iterated Transformations of the Interval
as Dynamical Systems, Birkhäuser, Boston 1980.
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Epilogue

This monograph is not an historical account of chaos theory; what has been
added to earlier chaos theory is that

Chaos Theory is a Complex Adaptive System under the operation of func-
tion composition as evidenced by its unique algorithmic-computer-generated
construction.

This raises the possibility that the following collection of objects is each a
Complex Adaptive System. This is because each of these sets of objects has
long been known (see the List of References) to have some properties that
fall under the purview of chaos theory. Here this purview is extended to all
properties of each of these sets of objects:

1. DNA

2. WEATHER

3. CONWAY NUMBERS

4. GALOIS GROUPS

5. CELLS

All items, except the last mentioned, are on chaos theory originating from
Los Alamos National Laboratory. The last item seemed important enough
for special notice. But, of course, this list can be extended to a very long
list of topics by consulting the recent review article by Motter and Campbell
[40] and the journal Chaos Theory that establishes chaos theory as a new
science—a new way of viewing physical systems. This, of course, is also the
view developed in this monograph and carrying it a step further, perhaps,
by suggesting that many such systems showing behavior described by chaos
theory might also be considered as complex adaptive systems.

Abraham Pais [41] puts forth a powerful portrait of Einstein whose pri-
mary goal was to show that general relativity would eventually be shown to
imply quantum theory. In pursuit of that goal he considered all other reason-
able approaches and criticisms through personal audiences and many corre-
spondences. His enormous commitment to good science was unmatched; it
cannot be captured here in a few lines. In addition, he was very much aware
of events outside of science that were changed by his new view of the Uni-
verse, including religion, and gave his considered advise on what it meant.
The presentation of General Relativity as a Complex Adaptive System given
in this monograph is made in the same good-science spirit.

1. The book1 by Weatherall [46] is a delightful journey through much of
modern physics, including quantum theory and general relativity. But the
book presents a radical concept of how the world operates through a new
agency called the Theory of Modeling, which has foundations in Economics.
It is a sort of A Theory of Everything, but appears to have the shortcoming
of giving no details on implementation. It seems, however, to be consistent
with the viewpoint that such systems are complex adaptive systems.

2. Many physicists take the viewpoint that physics is based on laws of
nature that are universal, laws that do not fall under the same rules as
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economics and Wall Street protocols and that the extension by Weatherall
to physical systems is flawed. Wigner [47] gives an in-depth discussion of
the concept ”law of nature” from which it is clear that it works, until it
does not. This concept cannot be used as basic rule for the foundations
of physical phenomenon, unless shown otherwise. (See Smolen [50-51] for
discussion of this). It is surely consistent for Weatherall to include physics
in his Theory of Modeling.

3. Closely related to the discussions in Items (1) and (2) is the notion that
one of the purposes of mathematics is to explain the behavior of physical
systems. This is, no doubt, the case. But physical systems do what they
do with no input from mathematics, which has a primary use of bring some
organization to our experiences. Mathematics has many purposes, not all of
which relate to physics. In particular, see Wigner [48-49] for an interpretion
of the meaning of measurement in quantum mechanics that bears as well on
the present topic.

1My good friend Don Hansen introduced me to the book by Weatherall.
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