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Abstract
In this paper we prove Lehmer’s conjecture on Ramanujan’s tau function, namely

τ(n) 6= 0 for each n ≥ 1 by investigating the additive group structure attached to
τ(n) with the aid of unique factorization theorem.

1 Let Ek (k = 2, 4, . . . ) be the normalized Eisenstein series ([4 : 108− 122]) given by

Ek = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn (1)

where q := ei2πz (=(z) > 0), Bk the Bernoulli number defined by

x

ex − 1
=
∞∑
k=0

Bk
xk

k!

and σk−1(n) the divisor function:

σk−1(n) :=
∑
d|n

dk−1.

For an elliptic curve given by

y2 = 4x3 − g2(z)x− g3(z) (2)

where g2(z) = 120ζ(4)E4(z), g3(z) = 280ζ(6)E6(z) and Ek(z) given by equation (1) and

ζ(k) is Riemann zeta function:

ζ(k) :=
∞∑
n=1

1

nk
.
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A simple calculation ([1 : 14], [4 : 112]) shows the discriminant ∆(z) := 44(x1 − x2)
2(x2 −

x3)
2(x3−x1)

2, where x1, x2 and x3 are the roots the right side of equation (2), is given by

∆(z) = g2(z)3 − 27g3(z)2 =
(2π)12

1728
(E4(z)3 − E6(z)2). (3)

On the other hand Jacobi’s theorem ([4 : 122]) asserts that

(2π)−12∆(z) = q
∞∏
n=1

(1− qn)24. (4)

From equation (4), Ramanujan has defined his tau function τ(n) ([1], [2], [3], [4 : 122], [5]−

[7]) by

q

∞∏
n=1

(1− qn)24 :=
∞∑
n=1

τ(n)qn. (5)

Notice that each τ(n) (n ≥ 1) has an integer value. In a series of papers ([5] − [7]),

D.H. Lehmer investigated the properties of τ(n) for n ≤ 300, proved that τ(n) 6= 0 for

n < 3316799, later for n < 214928639999 ([1 : 22]). He also showed that if τ(n) = 0 then

n must be a prime. He then conjectured, what is nowadays known as Lehmer’s conjecture

([6]) that

τ(n) 6= 0 for each n ≥ 1. (6)

A simple calculation ([3 : 21− 22], [4 : 122− 123]) shows

τ(n) =
65

756
σ11(n) +

691

756
σ5(n)− 691

3

n−1∑
j=1

σ5(j)σ5(n− j). (7)

Since Lehmer’s conjecture is equivalent to 3τ(n) 6= 0 for each n ≥ 1, we write

A(n) :=
65

252
σ11(n) +

691

252
σ5(n); B(n) := 691

n−1∑
j=1

σ5(j)σ5(n− j). (8)
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Then 3τ(n) = A(n)−B(n). Observe that A(n) takes on integer value for each n ≥ 1 since

both τ(n) and B(n) do. Now Lehmer’s conjecture is, in view of equations (7), (8) and the

unique factorization theorem, equivalent to:

A(n) 6= B(n) for each n ≥ 1. (9)

Recent calculation by Bosman confirms Lehmer’s conjecture for n ≤ 22798241520242687999.

In this paper we prove equation (9) by showing that {
∑q−1

k=0 kai,k mod q}q−1
k=0 forms an ad-

ditive group of order q modulo q for q | A(p), q > p, p ≡ −1 mod 691, [ai,k]0≤i,k≤q−1

q × q-matrix, with the aid of the unique factorization theorem, the pigeonhole principle

and the remainder theorem. We prove equation (9) first for prime p then for pα, α ≥ 2

and finally for any composite number n. Since 11 - 690 and since (p + 1) | (p11 + 1), the

following Lemma 1 evidently holds.

Lemma 1 Let A(p) be given by equation (8). Then the following two conditions (10) and

(11) are equivalent:

A(p) ≡ 0 mod 691. (10)

p ≡ −1 mod 691. (11)

If 691 - A(p) or equivalently p does not satisfy equation (11) then we trivially have

A(p) 6= B(p) by equation (8). It suffices therefore to prove Lehmer’s conjecture for prime

p satisfying equation (10) or (11). In what follows, prime p satisfies either equation (10)

or (11). We first prove:

Lemma 2 Let p satisfy equation (10) or (11). Then A(p) has at least one prime factor

q greater than p.
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Proof. Write A(p) from equation (8) as

A(p) = 65
252

(1 + p11) + 691
252

(1 + p5)
= 3 +K5p

5 (12)

where K5 := 691
252

+ 65
252
p6 is an integer with p5 < K5 < p6 since A(p) is an integer with

p10 < A(p) < p11. Suppose A(p) has no prime factor greater than p. A(p) then is written

via the unique factorization theorem as

A(p) = 2e0qe11 . . . qemm , qi < p, ei ≥ 1 (1 ≤ i ≤ m). (13)

Notice that A(p) has an even factor 2e0 by substituting equation (11) into equation (8).

Write x = [x] + {x} where [x] represents the integral part of x and {x} the nonintegral

part of x. Since p10 < A(p) < p11, the representation for A(p) in the base p is uniquely

given from equation (13) by

A(p) =
10∑
i=0

bip
i, bi := [p{A(p)

pi+1
}] (0 ≤ i ≤ 10). (14)

We show that each bi 6= 0 (0 ≤ i ≤ 10). Indeed we prove

bi ≥ 5 (1 ≤ i ≤ 10), b0 6= 0. (15)

The fact that b0 6= 0 follows from p - A(p). Likewise b10 ≥ 5 follows from p - A(p) and

b10 ≥ [ 65
252
p] ≥ [ p

252
] ≥ 5 in view of equations (14) and (17), where p ≥ 1381. ¿From

equation (8) or (12), we readily have

65

252
p11 < A(p) < (

65

252
+ 3p−6)p11. (16)

Equation (16) is equivalent to

65

252
p10−i <

A(p)

pi+1
< (

65

252
+ 3p−6)p10−i (1 ≤ i ≤ 9). (17)
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Write

65p10−i = 252Qi +Ri, Qi ≥ 1, 1 ≤ Ri ≤ 251 (1 ≤ i ≤ 9). (18)

Substitution of equation (18) into equation (17) reveals

Qi +
Ri

252
<
A(p)

pi+1
< (Qi +

Ri

252
+ 3p4−i) (1 ≤ i ≤ 9). (19)

Inequality (19) implies {A(p)
pi+1 } ≥ Ri

252
≥ 1

252
(1 ≤ i ≤ 9) and hence we have since p ≥ 1381

bi = [p{A(p)

pi+1
}] ≥ [

p

252
] ≥ 5 (1 ≤ i ≤ 9). (20)

This establishes inequality (15). Rewrite equation (14) as

A(p) = L5p
5 +

4∑
i=0

bip
i (21)

where L5 :=
∑5

i=0 b5+ip
i. Subtraction of equation (21) from equation (12) with rearrange-

ment of terms leads us to

p5 ≤ (K5 − L5)p
5

= (b0 − 3) +
∑4

i=1 bip
i

< (p− 1)
∑4

i=0 p
i

= p5 − 1.

(22)

Since each bi ≥ 1 (0 ≤ i ≤ 10) from equation (15), K5 − L5 ≥ 1 follows from the the

second line equality of equation (22) regardless of the value of b0 6= 0. Since 1 ≤ bi ≤

p− 1 (0 ≤ i ≤ 10) from equation (15) and since b0 − 3 < p− 1, the third line inequality

follows. Inequality (22) is absurd. Consequently the assumption that A(p) has no prime

factor > p is false. This establishes Lemma 2.

It is easy to check our proof for Lemma 2 works for all primes p > 252 with inequality

(15) replaced by 1 ≤ bi (0 ≤ i ≤ 10). A simple computation reveals Lemma 2 also holds

for primes p ≤ 252. Consequently Lemma 2 holds for all primes p. Thus the assumption
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that the prime p generated by equation (11) in Lemma 2 is redundant.

Let q be an odd prime prime factor of A(p) greater than p. Existence of such a prime q

is guaranteed by Lemma 2. Construct matrix [ai,k]0≤i,k≤q−1 as follows:

ai,k :=

p−1∑
j = 1

i691σ5(j)σ5(p− j) ≡ k mod q

1. (23)

Since σ5(j)σ5(p− j) = σ5(p− j)σ5(p− (p− j)), we have from equation (23)

ai,k = 2

(p−1)/2∑
j = 1

i691σ5(j)σ5(p− j) ≡ k mod q

1. (24)

Then the matrix [ai,k]0≤i, k≤q−1 has the following properties:

ai,k ≡ 0 mod 2 (0 ≤ i, k ≤ q − 1). (25)

a0,0 = p− 1, a0,k = 0 (1 ≤ k ≤ q − 1). (26)

ai,0 = aj,0 (1 ≤ i 6= j ≤ q − 1). (27)

ai,k = aq−i,q−k (1 ≤ i, k ≤ q − 1). (28)

i691

p−1∑
j=1

σ5(j)σ5(p− j) ≡
q−1∑
k=1

kai,k mod q (1 ≤ i ≤ q − 1). (29)

q−1∑
k=1

kai,k ≡ i

q−1∑
k=1

ka1,k mod q (1 ≤ i ≤ q − 1). (30)

Notice that given a1,k (1 ≤ k ≤ q− 1), ai,k (2 ≤ i ≤ q− 1, 1 ≤ k ≤ q− 1) are reshuffles of

a1,k(1 ≤ k ≤ q − 1) and vice versa determined by

ai,k = a1,i−1k mod q ⇐⇒ a1,k = ai,ik mod q (1 ≤ i, k ≤ q − 1). (31)
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For each i = 1, 2, . . . , q − 1, write fji := i691σ5(j)σ5(p− j) mod q. Then fji = fp−ji (1 ≤

i ≤ q − 1) from equation (23). Define for each i = 1, 2, . . . , q − 1:

Si,l := {k : ai,k = 2l} (1 ≤ k ≤ q, 1 ≤ l ≤ q0)

⇐⇒ = {(ji1 , ji2 , . . . , jil) : fji1 = fji2 = · · · = fjil = k} (1 ≤ ji1 < ji2 < · · · < jil ≤
(p−1)

2
)

Si,l = ∅ (1 ≤ l ≤ q0) for l > q0.
(32)

Since q > p and since ai,k (0 ≤ i, k ≤ q − 1) cannot be too large even number from equa-

tions (23) and (24), a positive integer q0 < q − 1 exists, depending on p and q, satisfying

the last line of equation (32). It is clear from equation (32) with the aid of equation (31)

that for each l = 1, 2, . . . , q0 :

Si,l = Sj,l (1 ≤ i < j ≤ q − 1). (33)

For each q | A(p) with q > p, we then have from equations (31)− (33) that

∑q0
l=0 | Si,l | = q (1 ≤ i ≤ q − 1). (34)∑q−1
k=1 ai,k =

q0∑
l=1

2l | Si,l | = p− 1 (1 ≤ i ≤ q − 1). (35)

Equation (35) reads when q | A(p) with q < p that:

q−1∑
k=0

ai,k = p− 1 (1 ≤ i ≤ q − 1). (36)

Equations (25) − (31) readily follow from equations (23) and (24). Equation (29) is a

restatement of the remainder theorem in view of equations (23), (32) and (35). Equa-

tions (34), (35) and (36) follow from the pigeonhole principle. Since we exclusively use

S1,l (1 ≤ l ≤ q0) in what follows, we show the following inequality:

| S1,l−1 | > l | S1,l | (2 ≤ l ≤ q0). (37)
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To prove inequality (37) we use the second line of equation (32) for the definition of S1,l.

Consider the map β : S1,l 7→ S1,l−1 × S1,l−1 × · · · × S1,l−1 given by

β(j1, j2, . . . , jl) := ((β1(j1), β2(j1), . . . , βl−1(j1)), (β1(j2), β2(j2), . . . , βl−1(j2)), . . . ,
(β1(jl), β2(jl), . . . , βl−1(jl)))

(38)

such that for each i = 1, 2, . . . , l:

β1(ji) := min
jik

{| ji − jik |: a1,jik
= 2(l − 1)

fβ1(ji) = fβ2(ji)
= · · · = fβl−1(ji).

(39)

In the second line of equation (39), βk(ji) (2 ≤ k ≤ l − 1, 1 ≤ i ≤ l) are uniquely deter-

mined once β1(ji) (1 ≤ i ≤ l) is determined by the first line of equation (39). Observe

that (β1(ji), β2(ji), . . . , βl−1(ji)) ∈ S1,l−1 (1 ≤ i ≤ l) are distinct from equations (32) and

(39). To show that the map β given by equation (38) maps S1,l into a proper subset of

S1,l−1, write

β1(j
′
1) := min

j1k

{| j1 − j1k |: a1,j1k
= 2(l − 1), β1(j1) 6= β1(j

′
1)

fβ1(j′1) = fβ2(j′1) = · · · = fβl−1(j′1).
(40)

Observe that (β1(j
′
1), β2(j

′
1), . . . , βl−1(j

′
1)) ∈ S1,l−1 and distinct from (β1(ji), β2(ji), . . . , βl−1(ji))

(1 ≤ i ≤ l) from equations (32), (39) and (40). Equations (39) and (40) imply that the

map β : S1,l 7→ S1,l−1×S1,l−1× · · ·×S1,l−1 given by equation (38) maps S1,l into a proper

subset of S1,l−1 in a fashion of 1 to l. This establishes inequality (37). See Table 1 for

examples of primes p with q | A(p), q > p, satisfying inequality (37), where q0 ≤ 4.

Lehmer’s conjecture therefore is equivalent via equation (29) for i = 1 to:

q−1∑
k=0

ka1,k 6≡ 0 mod q. (41)

Since both A(p) and B(p) are even and divisible by 691, we have (A(p), B(p)) ≥ 1382.

Suppose q divides both A(p) and B(p). Then by equation (29), we have:

8



q−1∑
k=0

kai,k ≡ 0 mod q (0 ≤ i ≤ q − 1). (42)

Clearly equation (42) is equivalent by equation (30) to:

q−1∑
k=0

ka1,k ≡ 0 mod q. (43)

Since
∑q−1

k=0 ka0,k = 0 ≡ 0 mod q by equation (26), it follows that {
∑q−1

k=0 kai,k mod q}q−1
i=0 =

{0}, the trivial additive group modulo q. Conversely, equation (42) or (43) implies

both q | A(p) and q | B(p) by equation (29). On the other hand, since nonzero

ai,k (0 ≤ i ≤ q − 1) is even and ≥ 2 from equation (25), with the aid of the unique

factorization theorem, equation (42) or (43) is equivalent to:

min
1≤i<j≤q−1

(

q−1∑
k=0

kai,k,

q−1∑
k=0

kaj,k) = 2q. (44)

Consequently equation (42), (43) or (44) completely characterizes common odd prime fac-

tors of both A(p) and B(p). We thus have:

Lemma 3 The following conditions are equivalent:

(i) q divides both A(p) and B(p).

(ii)
∑q−1

k=0 kai,k ≡ 0 mod q (0 ≤ i ≤ q − 1).

(iii)
∑q−1

k=0 ka1,k ≡ 0 mod q.

(iv) {
∑q−1

k=0 kai,k mod q}q−1
i=0 = {0}, the trivial additive group modulo q.
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(v) min
1≤i<j≤q−1

(
∑q−1

k=0 kai,k,
∑q−1

k=0 kaj,k) = 2q.

Lemma 4 (Main Lemma) Let p satisfy equation (10) or (11) and let q | A(p) with q > p.

Then {
∑q−1

k=0 kai,k mod q}q−1
i=0 forms an additive group of order q modulo q.

Proof. Let ai,k (0 ≤ i, k ≤ q − 1) be defined by equation (23). We have for each

i = 1, 2, . . . , q − 1 :

∑q−1
k=0 kai,k +

∑q−1
k=0 kaq−i,k

=
∑q−1

k=1 kai,k +
∑q−1

k=1 kai,q−k by (28)

=
∑q−1

k=1 kai,k +
∑q−1

k=1(q − k)ai,k
= q

∑q−1
k=1 ai,k

= q
∑q0

l=1 2l | S1,l | by (35)
= q(p− 1) by (35)

(45)

Notice that equation (45) holds regardless of {
∑q−1

k=0 kai,k mod q}q−1
i=0 being trivial or not.

We claim that {
∑q−1

k=0 kai,k}
q−1
i=0 are all distinct. To show the claim observe that {S1,l}q0l=0

are disjoint from equation (32). Since ai,k = a1,i−1k mod q from equation (31), we have for

each l = 1, 2, . . . , q0 :

∑
k∈S1,l

kai,k =
∑

k∈S1,l

ka1,i−1k mod q =∑
k∈S1,l

ik (mod q) a1,k = 2l
∑

k∈S1,l

ik (mod q).
(46)

It is evident for each 1 ≤ i 6= j ≤ q − 1 and each l (1 ≤ l ≤ q0) that:

∑
k∈S1,l

ik (mod q) 6=
∑
k∈S1,l

jk (mod q). (47)

For each 1 ≤ i 6= j ≤ q − 1, conjunction of equations (46) and (47) leads us to

∑q−1
k=0 kai,k

=
∑q0

l=1 2l
∑

k∈S1,l

ik (mod q) by (46)

6=
∑q0

l=1 2l
∑

k inS1,l

jk (mod q) by (37) & (47)

=
∑q−1

k=0 kaj,k by (46).

(48)
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Equation (48) establishes the claim. Since
∑q−1

k=0 ka1,k mod q is a generator for the additive

group {
∑q−1

k=0 kai,k mod q}q−1
i=0 from equation (30) if it is nontrivial, it suffices therefore to

show that

q−1∑
k=0

ka1,k 6≡ 0 mod q. (49)

Write

Ci :=

q−1∑
k=0

kai,k (1 ≤ i ≤ q − 1). (50)

Notice that {Ci}q−1
i=1 are distinct from equation (48). Rename Ci (1 ≤ i ≤ q − 1) again as

Ci (1 ≤ i ≤ q − 1) in ascending order as follows:

C1 < C2 < · · · < Cq−1. (51)

We claim that there is at least one pair {Cj, Cj+1} (1 ≤ j ≤ q − 2) from equation (51)

such that

Cj+1 − Cj < q − 1 for some j (1 ≤ j ≤ q − 2). (52)

Assume equation (52) is false. We then have:

Cq−1

:= max
1≤i≤q−1

∑q−1
k=1 kai,k by (51)

:=
∑q−1

k=1 kai0,k for some i0 (1 ≤ i0 ≤ q − 1)

= C1 +
∑q−2

k=1(Ck+1 − Ck)
≥ C1 +

∑q−2
k=1(q − 1) by assumption

= C1 + (q − 2)(q − 1)
> (q − 2)(q − 1).

(53)

On the other hand, we estimate Cq−1 from equations (23) and (46). Since each nonzero

ai0,k (0 ≤ i0 ≤ q−1) is even ≥ 2 from equation (25), there are at most (p−1)/2 -numbers

of nonzero ai0,k ≥ 2 (0 ≤ k ≤ q−1). Notice that each nonzero ai0,k is a small even number

due to equations (32) and (35) with 2 ≤ ai0,k ≤ 2q0 (0 ≤ k ≤ q − 1). It follows that there
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are at least (q − (p− 1)/2) -numbers of ai0,k = 0 (0 ≤ k ≤ q − 1). We then have:

Cq−1

=
∑q−1

k=0 kai0,k
=

∑q−1
k=0 i0k (mod q) a1,k by (31)

=
∑q0

l=1 2l(
∑

k∈S1,l

i0k (mod q)) by (46)

< (
∑q0

l=1 2l | S1,l |)(q − 1)
= (p− 1)(q − 1) by (35)
< (q − 2)(q − 1).

(54)

In the last line of inequality (54), we use the assumption p+1 < q and hence p−1 < q−2.

The last line of inequality (54) contradicts inequality (53). This establishes inequality (52).

For j chosen from inequality (52), since each nonzero ai,k ≥ 2 (1 ≤ i ≤ q − 1, 0 ≤ k ≤

q − 1), we then have:

2 ≤ (Cj, Cj+1) = (Cj, Cj+1 − Cj) < q − 1. (55)

Equation (55) implies Cj :=
∑q−1

k=0 kau,k and Cj+1 :=
∑q−1

k=0 kav,k for some u, v (1 ≤ u, v ≤

q − 1), have no common factor q, which leads to q -
∑q−1

k=0 ka1,k in view of equation (30),

thereby proving equation (49). Consequently, each
∑q−1

k=0 kai,k (1 ≤ i ≤ q − 1) has no

factor q from equations (30) and (49). We thus have:

q−1∑
k=0

kai,k 6≡ 0 mod q, 1 ≤ i ≤ q − 1. (56)

Equation (56) is equivalent that the map:

{
q−1∑
k=0

kai,k mod q}q−1
i=0 7−→ Z/qZ

is an isomorphism. Furthermore equations (45) and (56) reveal the structure of the addi-

tive group {
∑q−1

k=0 kai,k mod q}q−1
i=0 which is nontrivial, namely

q−1∑
k=0

kai,k +

q−1∑
k=0

kaq−i,k ≡ 0 mod q, 1 ≤ i ≤ q − 1. (57)
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Equations (56) and (57) show
∑q−1

k=0 kai,k mod q and
∑q−1

k=0 kaq−i,k mod q are additive

inverse to each other modulo q for each i = 1, 2, . . . q − 1. Clearly
∑q−1

k=0 ka0,k = 0 ≡

0 (mod q) is the additive identity modulo q from equation (26). This completes the proof

of Lemma 4.

Since p - A(p) from equation (12), conjunction of Lemma 3 and Lemma 4 leads us to:

Corollary 5 Let 691 | A(p). An odd prime q divides both A(p) and B(p) only if q < p.

¿From Lemma 4, we have in particular for i = 1 :

B(p) = 691

p−1∑
j=1

σ5(j)σ5(p− j) ≡
q−1∑
k=0

ka1,k 6≡ 0 mod q by (29) & (56). (58)

Equation (58) implies q - B(p) and hence A(p) 6= B(p) and τ(p) = (A(p) − B(p))/3 6= 0

via the unique factorization theorem if 691 | A(p). If 691 - A(p), then since 691 | B(p)

from equation (8), we trivially have A(p) 6= B(p) and τ(p) = (A(p)−B(p))/3 6= 0 via the

unique factorization theorem in this case too. We thus have:

Theorem 6 τ(p) 6= 0 for each prime p.

For 691 | A(p) and q | A(p) with q > p, since {
∑q−1

k=0 kai,k}
q−1
i=0 are distinct from equation

(48) and since q -
∑q−1

k=0 kai,k (1 ≤ i ≤ q − 1) from Lemma 4, we have
∑q−1

k=0 kai,k =

2st (s ≥ 1, t = odd, 1 ≤ i ≤ q − 1), where q - t from Lemma 4. Since q > p, and since

each nonzero ai,k ≥ 2 from equation (25), there is at least one i (1 ≤ i ≤ q − 1) such

that
∑q−1

k=0 kai,k = 2t, q - t. We thus have from Lemma 1 (statement (v))with the aid of

unique factorization theorem:
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Corollary 7 Suppose p satisfies equation (10) or (11). Let q | A(p) with q > p. Then

min
1≤i<j≤q−1

(

q−1∑
k=0

kai,k,

q−1∑
k=0

kaj,k) = 2.

Now let α ≥ 2. Then equations (10) and (11) are no longer equivalent. As in the case of

α = 1, since A(pα) ≡ 3 mod p5 and p11α−1 < A(pα) < p11α from equation (8), an almost

identical proof of Lemma 2 works for α ≥ 2, where in equation (14), the upper limit for

the sum is replaced by 11α− 1. We thus have:

Lemma 8 Let 691 | A(pα) for α ≥ 2. There is at least one prime q | A(pα) with q > pα.

For q | A(pα), construct matrix [ai,k]0≤i, k≤q−1 exactly the same way as in equation (23).

Then properties (25) − (31), (33) − (37) hold with p replaced by pα. Likewise almost

identical proof of Lemma 4 works for α ≥ 2. We thus have:

Lemma 9 Let 691 | A(pα) for α ≥ 2. Let q | A(pα) with q > pα. Then {
∑q−1

k=0 kai,k mod q}q−1
i=0

forms an additive group of order q modulo q.

In particular for i = 1 from Lemma 9 and equation (29), we have for α ≥ 2

B(pα) = 691

pα−1∑
j=1

σ5(j)σ5(p
α − j) ≡

q−1∑
k=0

ka1,k 6≡ 0 mod q. (59)

Equation (59) implies q - B(pα) and hence A(pα) 6= B(pα) and τ(pα) = (A(pα) −

B(pα))/3 6= 0 by the unique factorization theorem. If 691 - A(pα), since 691 | B(pα) from

equation (8), we then trivially have A(pα) 6= B(pα) and τ(pα) = (A(pα) − B(pα))/3 6= 0

via the unique factorization theorem in this case too. We thus have:

Theorem 10 τ(pα) 6= 0 for each α ≥ 2.
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Finally we show that τ(n) 6= 0 for any positive integer n.

Theorem 11 (Lehmer’s Conjecture) τ(n) 6= 0 for each n ≥ 1.

Proof. Since τ(1) = 1, it suffices to prove the theorem when n is composite from Theo-

rem 6 and Theorem 10. Write

n = ps00 p
s1
1 . . . psuu , p0 := 2, s0 ≥ 0, sj ≥ 1, 1 ≤ j ≤ u.

Since τ(n) is multiplicative ([ 1 : 92 − 93 ], [ 2 : 52 − 53 ], [ 4 : 122 ], [ 5 ], [ 6 ]), Theorem

11 readily follows from Theorem 6 or Theorem 10 , namely

τ(n) =
∏u

j=0 τ(p
sj
j )

6= 0.
(60)

This completes the proof.

Suppose for each α ≥ 1,

A(pα) ≡ 0 mod 691. (61)

Equation (61) is equivalent to:

p(α+1) ≡ 1 mod 691 and (p− 1, 691) = 1. (62)

Equation (62) implies the following periodicity theorem modulo 691:

Theorem 12 (periodicity modulo 691) Suppose 691 | A(pα) for α ≥ 1. Then we have:

A(pα+k(α+1)) ≡ 0 mod 691, k = 0, 1, 2, . . .

15



The values of α satisfying the periodicity of A(pα) ≡ 0 mod 691 for each α ≥ 1 have gaps

in view of equation (62) and Fermat’s little theorem, namely A(pα) 6≡ 0 mod 691 if and

only if the factors of α + 1 do not divide 690 = 2.3.5.23. Thus A(pα) 6≡ 0 mod 691 for α

in the following set S of numbers:

S := {6, 10, 12, 16, 18, 28, 30, 36, 40, 42, 46, 48, 52, 58, . . . }

Needless to say A(pα) 6= B(pα) and hence τ(pα) 6= 0 for each α ∈ S by equation (8) with

the aid of the unique factorization theorem.

Remark 13 If an odd prime q | A(pα), α ≥ 1 with q < pα, as long as {
∑q−1

k=0 kai,k mod q}q−1
i=0

forms an additive group of order q modulo q, then q - B(pα) by Lemma 4 or Lemma 9.

It follows that A(pα) 6= B(pα) and hence τ(pα) = (A(pα) − B(pα))/3 6= 0 in this case

too. For 691 | A(p), computer simulation reveals A(p) has at least one odd prime factor

q 6= 691, q | A(p) with q < p for which q - B(p) for each prime p ≤ 1100000 except

p = 186569, 290219, 464351, 671651. Let 691 | A(p) and let A1(p) be the product of prime

divisors q | A(p) for which q < p with their respective powers and A2(p) the product of

prime divisors q | A(p) for which q > p with their respective powers. Computer simu-

lation shows C1p
2 < A1(p) < C2p

5 and C3p
6 < A2(p) < C4p

10 with absolute constants

C1, C2, C3, C4 < 1 for primes p ≤ 1100000.

In Table 1, we list primes p such that both 691 and q divide A(p) with q > p and the

cardinality | S1,l | (1 ≤ l ≤ 5), thereby confirming inequality (37) with q0 ≤ 4. Notice

that in Table 1, each prime p with the associated prime q | A(p) with q > p, satisfies

equations (34) and (35). Computer simulation reveals that the majority of respective

relatively large odd prime factors less than p of both A(p) and B(p) are distinct. Likewise
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an overwhelming majority of common odd prime factors of both A(p) and B(p) for which

691 | A(p) are relatively small apart from 691, thereby confirming Corollary 5. In Table 2,

we list primes p ≤ 3000000 such that 691 | A(p) and the odd prime factors of (A(p), B(p))

are ≥ 11.
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Table 1

p q | S1,0 | | S1,1 | | S1,2 | | S1,3 | | S1,4 | | S1,5 |
8291 216113 212008 4065 40 0 0 0
29021 1357091 1342657 14358 76 0 0 0
30403 1283839 1268731 15015 93 0 0 0
34549 789673 772578 16918 175 2 0 0
51133 112919 89995 20474 2267 174 9 0
53897 371549 345582 25014 925 28 0 0
96739 392957 347376 42917 2543 118 3 0

Table 2

p (A(p), B(p))
547271 2.3.11.691
610843 2.3.17.691
988129 2.3.5.13.691
1112509 2.3.5.23.691
1336393 2.3.101.691
1405493 2.3.113.691
1716463 2.32.23.691
1875373 2.23.691
1940327 22.32.13.691
2126897 2.33.19.691
2128279 22.5.11.691
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p (A(p), B(p))
2161447 22.23.691
2198761 2.43.691
2447521 2.23.691

2479307 2.23.691
2538733 2.11.691

2542879 24.3.5.23.691
2956097 2.23.691
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