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Abstract
In this paper we prove Lehmer’s conjecture on Ramanujan’s tau function, namely

τ(n) 6= 0 for each n ≥ 1 by investigating the additive group structure attached to
τ(n) with the aid of unique factorization theorem.

1 Let Ek (k = 2, 4, . . . ) be the normalized Eisenstein series ([4 : 108− 122]) given by

Ek = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn (1)

where q := ei2πz (=(z) > 0), Bk the Bernoulli number defined by

x

ex − 1
=

∞∑
k=0

Bk
xk

k!

and σk−1(n) the divisor function:

σk−1(n) :=
∑
d|n

dk−1.

For an elliptic curve given by

y2 = 4x3 − g2(z)x− g3(z) (2)

where g2(z) = 120ζ(4)E4(z), g3(z) = 280ζ(6)E6(z) and Ek(z) given by equation (1) and

ζ(k) is Riemann zeta function:

ζ(k) :=
∞∑

n=1

1

nk
.
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A simple calculation ([1 : 14], [4 : 112]) shows the discriminant ∆(z) := 44(x1 − x2)
2(x2 −

x3)
2(x3−x1)

2, where x1, x2 and x3 are the roots the right side of equation (2), is given by

∆(z) = g2(z)3 − 27g3(z)2 =
(2π)12

1728
(E4(z)3 − E6(z)2). (3)

On the other hand Jacobi’s theorem ([4 : 122]) asserts that

(2π)−12∆(z) = q
∞∏

n=1

(1− qn)24. (4)

From equation (4), Ramanujan has defined his tau function τ(n) ([1], [2], [3], [4 : 122], [5]−

[7]) by

q

∞∏
n=1

(1− qn)24 :=
∞∑

n=1

τ(n)qn. (5)

Notice that each τ(n) (n ≥ 1) has an integer value. In a series of papers ([5] − [7]),

D.H. Lehmer investigated the properties of τ(n) for n ≤ 300, proved that τ(n) 6= 0 for

n < 3316799, later for n < 214928639999 ([1 : 22]). He also showed that if τ(n) = 0 then

n must be a prime. He then conjectured, what is nowadays known as Lehmer’s conjecture

([6]) that

τ(n) 6= 0 for each n ≥ 1. (6)

A simple calculation ([3 : 21− 22], [4 : 122− 123]) shows

τ(n) =
65

756
σ11(n) +

691

756
σ5(n)− 691

3

n−1∑
j=1

σ5(j)σ5(n− j). (7)

Since Lehmer’s conjecture is equivalent to 3τ(n) 6= 0 for each n ≥ 1, we write

A(n) :=
65

252
σ11(n) +

691

252
σ5(n); B(n) := 691

n−1∑
j=1

σ5(j)σ5(n− j). (8)
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Then 3τ(n) = A(n)−B(n). Observe that A(n) takes on integer value for each n ≥ 1 since

both τ(n) and B(n) do. Now Lehmer’s conjecture is, in view of equations (7), (8) and the

unique factorization theorem, equivalent to:

A(n) 6= B(n) for each n ≥ 1. (9)

Recent calculation by Bosman confirms Lehmer’s conjecture for n ≤ 22798241520242687999.

In this paper we prove equation (9) by showing that {
∑q−1

k=0 kai,k mod q}q−1
k=0 forms an ad-

ditive group of order q modulo q for q | A(p), q > p, p ≡ −1 mod 691, [ai,k]0≤i,k≤q−1

q × q-matrix, with the aid of the unique factorization theorem, the pigeonhole principle

and the remainder theorem. We prove equation (9) first for prime p then for pα, α ≥ 2

and finally for any composite number n. Since 11 - 690 and since (p + 1) | (p11 + 1), the

following Lemma 1 evidently holds.

Lemma 1 Let A(p) be given by equation (8). Then the following two conditions (10) and

(11) are equivalent:

A(p) ≡ 0 mod 691. (10)

p ≡ −1 mod 691. (11)

If 691 - A(p) or equivalently p does not satisfy equation (11) then we trivially have

A(p) 6= B(p) by equation (8). It suffices therefore to prove Lehmer’s conjecture for prime

p satisfying equation (10) or (11). In what follows, prime p satisfies either equation (10)

or (11). We first prove:

Lemma 2 Let p satisfy equation (10) or (11). There is at least one prime q | A(p) such

that q > p.

3



Proof. Write x = [x] + {x}, where [x] stands for the integral part of x, {x} non-integral

part of x. Now

A(p) = 65
252

(1 + p11) + 691
252

(1 + p5)
= 3 + 65

252
p.p10 + 691

252
p5

= 3 + [ 65
252

p]p10 + p{ 65
252

p}p9 + 691
252

p5.

Since {p{ 65
252

pi}} = { 65
252

pi+1}, continuation of the above procedure leads us to:

A(p) = 3 +
∑10

i=5 aip
i, a5 = p{65p5

252
}+ 691

252
, ai = [p{ 65

252
p10−i}]

7 < a5 < p, 4 < ai < p (6 ≤ i ≤ 10).
(12)

For the last part of equation (12), notice that p > a5 ≥ p/252 + 691/252 > 5 + 2 = 7 and

p > ai ≥ p/252 > 4, as p = 1381 is the smallest prime satisfying equation (11). Assume

A(p) has no prime factor greater than p. Write

A(p) = 2e0qe1
1 qe2

2 . . . qem
m , ei ≥ 1, qi < p (1 ≤ i ≤ m). (13)

Observe that A(p) has an even factor 2e0 which follows from substitution of equation (11)

into equation (8). Since 0.25p11 < A(p) < 0.26p11 from equation (8), we have

A(p) = A(p)
p10 p10

= [A(p)
p10 ]p10 + p{A(p)

p10 }p9

= [A(p)
p10 ]p10 + [p{A(p)

p10 }]p9 + p{A(p)
p9 }p8.

Since {p{A(p)
pi }} = {A(p)

pi−1 } (1 ≤ i ≤ 10), continuation of the above argument shows us:

A(p) =
10∑
i=0

bip
i, bi = [p{A(p)

pi+1
}], 1 ≤ bi < p (0 ≤ i ≤ 10). (14)

A(p) in equation (14) is given by equation (13). Since each qi < p (1 ≤ i ≤ m) from

equation (13) and since {A(p)
pi+1 } = {

∑i
j=0 bjpj

pi+1 } < {pi+1

pi+1} = 1 (0 ≤ i ≤ 10) from the first part

of equation (14), the last part of equation (14), namely 1 ≤ bi < p (1 ≤ i ≤ 10) follows

from the following equivalent statements:

A(p) 6≡ 0 mod pi ⇐⇒ 1

p
< {A(p)

pi+1
} < 1 ⇐⇒ 1 < [p{A(p)

pi+1
}] = bi < p (1 ≤ i ≤ 10).
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Since ai 6= bi (1 ≤ i ≤ 10) from equations (12) and (14) respectively, equation (14) contra-

dicts equation (12) by the unique representation theorem in the powers of pi (0 ≤ i ≤ 10)

regardless of the value of b0 ≥ 1 in equation (14). This establishes Lemma 2.

Let q be an odd prime prime factor of A(p). Construct matrix [ai,k]0≤i,k≤q−1 as follows:

ai,k :=

p−1∑
j = 1

i691σ5(j)σ5(p− j) ≡ k mod q

1. (15)

Since σ5(j)σ5(p− j) = σ5(p− j)σ5(p− (p− j)), we have from equation (15)

ai,k = 2

(p−1)/2∑
j = 1

i691σ5(j)σ5(p− j) ≡ k mod q

1. (16)

Then the matrix [ai,k]0≤i, k≤q−1 has the following properties:

ai,k ≡ 0 mod 2 (0 ≤ i, k ≤ q − 1). (17)

a0,0 = p− 1, a0,k = 0 (1 ≤ k ≤ q − 1). (18)

ai,0 = aj,0 (1 ≤ i 6= j ≤ q − 1). (19)

ai,k = aq−i,q−k (1 ≤ i, k ≤ q − 1). (20)

i691

p−1∑
j=1

σ5(j)σ5(p− j) ≡
q−1∑
k=1

kai,k mod q (1 ≤ i ≤ q − 1). (21)

q−1∑
k=1

kai,k ≡ i

q−1∑
k=1

ka1,k mod q (1 ≤ i ≤ q − 1). (22)

Notice that given a1,k (1 ≤ k ≤ q− 1), ai,k (2 ≤ i ≤ q− 1, 1 ≤ k ≤ q− 1) are reshuffles of

a1,k(1 ≤ k ≤ q − 1) and vice versa determined by
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ai,k = a1,i−1k mod q ⇐⇒ a1,k = ai,ik mod q (2 ≤ i ≤ q − 1, 1 ≤ k ≤ q − 1). (23)

Let q | A(p) with q > p. Such a prime q exists by Lemma 2. Write fj := 691σ5(j)σ5(p−

j) mod q (1 ≤ j ≤ (p− 1)/2). Then fj = fp−j (1 ≤ j ≤ (p− 1)/2). Define:

S1,l := {k : a1,k = 2l (0 ≤ l ≤ q0)}
= {(j1, j2, . . . , jl) : 1 ≤ 1 < j2 < · · · < jl ≤ p−1

2
, fj1 = fj2 = · · · = fjl

(1 ≤ l ≤ q0)}
S1,l = ∅ for l > q0.

(24)

The second identity of equation (24) follows from equation (15). Since q > p and since

ai,k (0 ≤ i, k ≤ q − 1) cannot be too large even number from equations (15) and (16), a

positive integer q0 < q−1 exists, depending on p and q, satisfying the last line of equation

(24). We then have when q | A(p) with q > p:

∑q0

l=0 | S1,l | = q. (25)∑q−1
k=1 ai,k =

q0∑
l=1

2l | S1,l | = p− 1. (26)

Equation (26) reads when q | A(p) with q < p that:

q−1∑
k=0

ai,k = p− 1 (1 ≤ i ≤ q − 1). (27)

Equations (17) − (23) readily follow from equations (15) and (16). Equation (21) is a

restatement of the remainder theorem in view of equations (15), (26) and (27). Equations

(25)− (27) follow from the pigeonhole principle. Lehmer’s conjecture therefore is equiva-

lent via equation (21) for i = 1 to:

q−1∑
k=0

ka1,k 6≡ 0 mod q. (28)

Since both A(p) and B(p) are even and divisible by 691, we have (A(p), B(p)) ≥ 1382.

Suppose q divides both A(p) and B(p). Then by equation (21), we have:
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q−1∑
k=0

kai,k ≡ 0 mod q (0 ≤ i ≤ q − 1). (29)

Clearly equation (29) is equivalent by equation (22) to:

q−1∑
k=0

ka1,k ≡ 0 mod q. (30)

Since
∑q−1

k=0 ka0,k = 0 ≡ 0 mod q by equation (18), it follows that {
∑q−1

k=0 kai,k mod q}q−1
i=0 =

{0}, the trivial additive group modulo q. Conversely, equation (29) or (30) implies

both q | A(p) and q | B(p) by equation (21). On the other hand, since nonzero

ai,k (0 ≤ i ≤ q − 1) is even and ≥ 2 from equation (17), with the aid of the unique

factorization theorem, equation (29) or (30) is equivalent to:

min
1≤i<j≤q−1

(

q−1∑
k=0

kai,k,

q−1∑
k=0

kaj,k) = 2q. (31)

Consequently equation (29), (30) or (31) completely characterizes common prime factors

of both A(p) and B(p). We thus have:

Lemma 3 The following conditions are equivalent:

(i) q divides both A(p) and B(p).

(ii)
∑q−1

k=0 kai,k ≡ 0 mod q (0 ≤ i ≤ q − 1).

(iii)
∑q−1

k=0 ka1,k ≡ 0 mod q.

(iv) {
∑q−1

k=0 kai,k mod q}q−1
i=0 = {∅}, the trivial additive group modulo q.
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(v) min
1≤i<j≤q−1

(
∑q−1

k=0 kai,k,
∑q−1

k=0 kaj,k) = 2q.

Lemma 4 (Main Lemma) Let p satisfy equation (10) or (11) and let q | A(p) with q > p.

Then {
∑q−1

k=0 kai,k mod q}q−1
i=0 forms an additive group of order q modulo q.

Proof. Let ai,k (0 ≤ i, k ≤ q − 1) be defined by equation (15). We have for each

i = 1, 2, . . . , q − 1 :

∑q−1
k=0 kai,k +

∑q−1
k=0 kaq−i,k

=
∑q−1

k=1 kai,k +
∑q−1

k=1 kai,q−k by (20)

=
∑q−1

k=1 kai,k +
∑q−1

k=1(q − k)ai,k

= q
∑q−1

k=1 ai,k

= q
∑q0

l=1 2l | S1,l | by (24)
= q(p− 1) by (26)

(32)

Notice that equation (32) holds regardless of {
∑q−1

k=0 kai,k mod q}q−1
i=0 being trivial or not.

We claim that {
∑q−1

k=0 kai,k}q−1
i=0 are all distinct. To show the claim observe that {S1,l}q0

l=0

are disjoint from equation (24). Since fj = fp−j (1 ≤ j ≤ (p − 1)/2), it follows that

each k for which a1,k 6= 0 (1 ≤ k ≤ q − 1), the corresponding values of j such that

k = fj (1 ≤ j ≤ (p− 1)/2) appear pairwise, namely j and p− j. We first prove:

| S1,1 | > 2! | S1,2 | > 3! | S1,3 | > · · · > q0! | S1,q0 | (33)

Write νl := | S1,l | (1 ≤ l ≤ q0). Since the same proof works for each l = 2, 3, . . . , q0, we

prove inequality (33) for l (2 ≤ l ≤ q0) only. Let (j1i, j2i, . . . , jli) (1 ≤ i ≤ νl) ∈ S1,l with

1 ≤ j1i < j2i < · · · < jli ≤ (p − 1)/2 such that fj1i
= fj2i

= · · · = fjli
(1 ≤ i ≤ νl) from

the second line of equation (24). Consider the map β : S1,l−1 7→ S1,l−1 given by:

β(j1i, j2i, . . . , jli) := ((β1(j1i), β2(j1i), . . . , βl−1(j1i)), (β1(j2i), β2(j2i), . . . , βl−1(j2i)), . . . ,
(β1(j1i), β2(j1i), . . . , βl−1(j1i))) (1 ≤ i ≤ νl).

(34)

a1,β1(jmi) = l − 1, | jmi − β1(jmi) | = minimum, β1(jui) 6= β1(jvi)
(1 ≤ m ≤ l, 1 ≤ u < v ≤ l, 1 ≤ i ≤ νl).

(35)
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fβ1(jmi) = fβ2(jmi) = · · · = fβl−1(jmi) (1 ≤ m ≤ l, 1 ≤ i ≤ νl). (36)

Notice that each (β1(jmi), β2(jmi), . . . , βl−1(jmi)) (1 ≤ m ≤ l, 1 ≤ i ≤ νl) from equa-

tion (34) belongs to S1,l−1 in view of equations (35) and (36). In equation (35), once

β1(j1i) (1 ≤ i ≤ νl) is selected, β1(jmi) (2 ≤ m ≤ l, 1 ≤ i ≤ νl) is successively chosen to

satisfy the last two conditions of equation (35). Given β1(jmi) (1 ≤ m ≤ l, 1 ≤ i ≤ νl)

determined by equation (35), βk(jmi) (2 ≤ k ≤ l− 1, 1 ≤ m ≤ l, 1 ≤ i ≤ νl) are uniquely

determined by equation (36). Let kl be the smallest integer for which a1,kl
= l. From the

first line of equation (24), there is at least one integer k < kl such that a1,k = l− 1 which

is not represented by equation (34). It follows that the map β : S1,l 7→ S1,l−1 given by

equations (34) − (36) maps S1,l into a proper subset of S1,l−1 in a fashion of 1 to l (see

equation (34)). Consequently we have:

| S1,l−1 | > l | S1,l | (2 ≤ l ≤ q0).

Notice that the above inequality is a strict one. Repetitive application of the above in-

equality for each l = 2, 3, . . . , q0 shows inequality (33). See Table 1 for examples of primes

p with q | A(p), q > p, satisfying inequality (33), where q0 ≤ 4. Since ai,k = a1,i−1k mod q

from equation (23), we have for each l = 1, 2, . . . , q0 :

∑
k∈S1,l

kai,k =
∑

k∈S1,l

ka1,i−1k mod q =∑
k∈S1,l

ik (mod q) a1,k = 2l
∑

k∈S1,l

ik (mod q).
(37)

It is evident for each 1 ≤ i 6= j ≤ q − 1 and each l (1 ≤ l ≤ q0) that:

∑
k∈S1,l

ik (mod q) 6=
∑

k∈S1,l

jk (mod q). (38)

For each 1 ≤ i 6= j ≤ q − 1, conjunction of equations (33), (37) and (38) leads us to
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∑q−1
k=0 kai,k

=
∑q0

l=1 2l
∑

k∈S1,l

ik (mod q) by (26) & (37)

6=
∑q0

l=1 2l
∑

k∈S1,l

jk (mod q) by (33) & (38)

=
∑q−1

k=0 kaj,k by (26) & (37).

(39)

Equation (39) establishes the claim. Since
∑q−1

k=0 ka1,k mod q is a generator for the additive

group {
∑q−1

k=0 kai,k mod q}q−1
i=0 from equation (22) if it is nontrivial, it suffices therefore to

show that

q−1∑
k=0

ka1,k 6≡ 0 mod q. (40)

Write

Ci :=

q−1∑
k=0

kai,k (1 ≤ i ≤ q − 1). (41)

Notice that {Ci}q−1
i=1 are distinct from equation (39). Rename Ci (1 ≤ i ≤ q − 1) again as

Ci (1 ≤ i ≤ q − 1) in ascending order as follows:

C1 < C2 < · · · < Cq−1. (42)

We claim that there is at least one pair {Cj, Cj+1} (1 ≤ j ≤ q − 2) from equation (42)

such that

Cj+1 − Cj < q − 1 for some j (1 ≤ j ≤ q − 2). (43)

Assume equation (43) is false. We then have:

Cq−1

:= max
1≤i≤q−1

∑q−1
k=1 kai,k by (42)

:=
∑q−1

k=1 kai0,k for some i0 (1 ≤ i0 ≤ q − 1)

= C1 +
∑q−2

k=1(Ck+1 − Ck)

≥ C1 +
∑q−2

k=1(q − 1) by assumption
> (q − 2)(q − 1).

(44)
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On the other hand, we estimate Cq−1 from equations (15) and (26). Since each nonzero

ai0,k (0 ≤ i0 ≤ q−1) is even ≥ 2 from equation (17), there are at most (p−1)/2 -numbers

of nonzero ai0,k ≥ 2 (0 ≤ k ≤ q−1). Notice that each nonzero ai0,k is a small even number

due to equations (24) and (26) with 2 ≤ ai0,k ≤ 2q0 (0 ≤ k ≤ q − 1). It follows that there

are at least (q − 1− (p− 1)/2) -numbers of ai0,k = 0 (0 ≤ k ≤ q − 1). We then have:

Cq−1

=
∑q−1

k=0 kai0,k

=
∑q−1

k=0 i0k (mod q) a1,k by (23)
=

∑q0

l=1 2l
∑

k∈S1,l

i0k (mod q) by (26)

= 2(
∑q0

l=1 l(
∑

k∈S1,l

i0k (mod q)))

< 2(
∑(p−1)/2

k=1 (q − k))
= (q − (p + 1)/4)(p− 1)
< (q − 2)(q − 1).

(45)

In the last part of inequality (45), we use the assumption q > p and p ≥ 1381, the

smallest prime satisfying 691 | A(p). Observe that the total number of k′s in the summa-

tion 2(
∑q0

l=1 l(
∑

k∈Sl,l

i0k (mod q))) in the middle of inequality (45) is ≤ (p − 1)/2 from

equation (26), with i0k (mod q) counted twice for k ∈ S1,2, i0k (mod q) counted

thrice for k ∈ S1,3, etc. The last part of inequality (45) contradicts inequality (44).

This establishes inequality (43). For j chosen from equation (43), since each nonzero

ai,k ≥ 2 (1 ≤ i ≤ q − 1, 0 ≤ k ≤ q − 1), we then have:

2 ≤ (Cj, Cj+1) = (Cj, Cj+1 − Cj) < q − 1. (46)

Equation (46) implies Cj :=
∑q−1

k=0 kau,k and Cj+1 :=
∑q−1

k=0 kav,k for some u, v (1 ≤ u, v ≤

q − 1) have no common factor q, which leads to q -
∑q−1

k=0 ka1,k in view of equation (22),

thereby proving equation (40). Consequently, each
∑q−1

k=0 kai,k (1 ≤ i ≤ q − 1) has no

factor q from equations (22) and (40). We thus have:
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q−1∑
k=0

kai,k 6≡ 0 mod q, 1 ≤ i ≤ q − 1. (47)

Equation (47) is equivalent that the map:

{
q−1∑
k=0

kai,k mod q}q−1
i=0 7−→ Z/qZ

is an isomorphism. Furthermore equations (32) and (47) reveal the structure of the addi-

tive group {
∑q−1

k=0 kai,k mod q}q−1
i=0 which is nontrivial, namely

q−1∑
k=0

kai,k +

q−1∑
k=0

kaq−i,k ≡ 0 mod q, 1 ≤ i ≤ q − 1. (48)

Equations (47) and (48) show
∑q−1

k=0 kai,k mod q and
∑q−1

k=0 kaq−i,k mod q are additive

inverse to each other modulo q for each i = 1, 2, . . . q − 1. Needless to say from equation

(18),
∑q−1

k=0 ka0,k = 0 ≡ 0 (mod q) is the additive identity modulo q. This completes the

proof of Lemma 4.

Since p - A(p) from equation (12), conjunction of Lemma 3 and Lemma 4 leads us to:

Corollary 5 Let 691 | A(p). An odd prime q divides both A(p) and B(p) only if q < p.

From Lemma 4, we have in particular for i = 1 :

B(p) = 691

p−1∑
j=1

σ5(j)σ5(p− j) ≡
q−1∑
k=0

ka1,k 6≡ 0 mod q by (21) & (47). (49)

Equation (49) implies q - B(p) and hence A(p) 6= B(p) and τ(p) = (A(p) − B(p))/3 6= 0

via the unique factorization theorem if 691 | A(p). If 691 - A(p), then since 691 | B(p)

from equation (8), we trivially have A(p) 6= B(p) and τ(p) = (A(p)−B(p))/3 6= 0 via the

unique factorization theorem in this case too. We thus have:
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Theorem 6 τ(p) 6= 0 for each prime p.

For 691 | A(p) and q | A(p) with q > p, since {
∑q−1

k=0 kai,k}q−1
i=0 are distinct from equation

(39) and since q -
∑q−1

k=0 kai,k (1 ≤ i ≤ q − 1) from Lemma 4, we have
∑q−1

k=0 kai,k =

2st (s ≥ 1, t = odd, 1 ≤ i ≤ q − 1), where q - t from Lemma 4. Since q > p, and since

each nonzero ai,k ≥ 2 from equation (17), there is at least one i (1 ≤ i ≤ q− 1) such that∑q−1
k=0 kai,k = 2t, q - t. We thus have with the aid of unique factorization theorem:

Corollary 7 Suppose p satisfies equation (10) or (11). Let q | A(p) with q > p. Then

min
1≤i<j≤q−1

(

q−1∑
k=0

kai,k,

q−1∑
k=0

kaj,k) = 2.

Now let α ≥ 2. Then equations (10) and (11) are no longer equivalent. As in the case

of α = 1, since A(pα) ≡ 3 mod p5 and p11α−1 < A(pα) < p11α from equation (8), an

almost identical proof of Lemma 2 works for α ≥ 2. However, the upper limit 10 in the

summation of the representation of A(p) in the powers of pi (0 ≤ i ≤ 11α−1) of equation

(12) is replaced by 11α− 1 for α ≥ 2. We thus have:

Lemma 8 Let 691 | A(pα) for α ≥ 2. There is at least one prime q | A(pα) with q > pα.

For q | A(pα), construct matrix [ai,k]0≤i, k≤q−1 exactly the same way as in equation (15).

Then properties (17)− (23), (25)− (27) hold with p replaced by pα. Likewise almost the

same proof for Lemma 4 works for α ≥ 2. We thus have:

Lemma 9 Let 691 | A(pα) for α ≥ 2. Let q | A(pα) with q > pα. Then {
∑q−1

k=0 kai,k mod q}q−1
i=0

forms an additive group of order q modulo q.
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In particular for i = 1 from Lemma 9 and equation (21), we have for α ≥ 2

B(pα) = 691

pα−1∑
j=1

σ5(j)σ5(p
α − j) ≡

q−1∑
k=0

ka1,k 6≡ 0 mod q. (50)

Equation (50) implies q - B(pα) and hence A(pα) 6= B(pα) and τ(pα) = (A(pα) −

B(pα))/3 6= 0 by the unique factorization theorem. If 691 - A(pα), since 691 | B(pα) from

equation (8), we then trivially have A(pα) 6= B(pα) and τ(pα) = (A(pα) − B(pα))/3 6= 0

via the unique factorization theorem in this case too. We thus have:

Theorem 10 τ(pα) 6= 0 for each α ≥ 2.

Finally we show that τ(n) 6= 0 for any positive integer n.

Theorem 11 (Lehmer’s Conjecture) τ(n) 6= 0 for each n ≥ 1.

Proof. Since τ(1) = 1, it suffices to prove the theorem when n is composite from Theo-

rem 6 and Theorem 10. Write

n = ps0
0 ps1

1 . . . psu
u , p0 := 2, s0 ≥ 0, sj ≥ 1, 1 ≤ j ≤ u.

Since τ(n) is multiplicative, A(n) − B(n) is also multiplicative ([1 : 92 − 93], [2 :

52− 53], [4 : 122], [5], [6]). Thus

τ(n) =
∏u

j=0 τ(p
sj

j )

=
∏u

j=0
1
3
(A(p

sj

j )−B(p
sj

j ))

= 1
3(1)+u

∏u
j=0(A(p

sj

j )−B(p
sj

j ))

6= 0.

(51)

In equation (51), the denominator 3(1)+u equals either 31+u or 3u depending on s0 ≥ 1

or s0 = 0, respectively. Now for each j = 0, 1, . . . , u, A(p
sj

j ) either has factor 691 or

not. If 691 - A(p
sj

j ), then since B(p
sj

j ) has factor 691 from equation (8), we trivially

14



have A(p
sj

j ) − B(p
sj

j ) 6= 0 via the unique factorization theorem. If 691 | A(p
sj

j ), then by

Theorem 6 or Theorem 10, we also have:

A(p
sj

j )−B(p
sj

j ) 6= 0, j = 0, 1, . . . , u.

In summary we have for each factor p
sj

j (0 ≤ j ≤ u) of n:

A(p
sj

j )−B(p
sj

j ) 6= 0 for each j = 0,1,. . . ,u. (52)

Substitution of equation (52) into equation (51) completes the proof.

Suppose for each α ≥ 1,

A(pα) ≡ 0 mod 691. (53)

Equation (53) is equivalent to:

p(α+1) ≡ 1 mod 691 and (p− 1, 691) = 1. (54)

Equation (54) implies the following periodicity theorem modulo 691:

Theorem 12 (periodicity modulo 691) Suppose 691 | A(pα) for α ≥ 1. Then we have:

A(pα+k(α+1)) ≡ 0 mod 691, k = 0, 1, 2, . . .

The values of α satisfying the periodicity of A(pα) ≡ 0 mod 691 for each α ≥ 1 has gaps

in view of equation (54) and Fermat’s little theorem, namely A(pα) 6≡ 0 mod 691 if and
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only if the factors of α + 1 do not divide 690 = 2.3.5.23. Thus A(pα) 6≡ 0 mod 691 for α

in the following set S of numbers:

S := {6, 10, 12, 16, 18, 28, 30, 36, 40, 42, 46, 48, 52, 58, . . . }

Needless to say A(pα) 6= B(pα) and hence τ(pα) 6= 0 for each α ∈ S by equation (8) with

the aid of the unique factorization theorem.

Remark 13 If q | A(pα), α ≥ 1 with q < pα, as long as {
∑q−1

k=0 kai,k mod q}q−1
i=0 forms

an additive group of order q modulo q, then q - B(pα) by Lemma 4 or Lemma 9. It

follows that A(pα) 6= B(pα) and hence τ(pα) = (A(pα) − B(pα))/3 6= 0 in this case

too. For 691 | A(p), computer simulation reveals A(p) has at least one odd prime factor

q 6= 691, q | A(p) with q < p for which q - B(p) for each prime p ≤ 1100000 except

p = 186569, 290219, 464351, 671651. Let 691 | A(p) and let A1(p) be the product of prime

divisors q | A(p) for which q < p with their respective powers and A2(p) the product of

prime divisors q | A(p) for which q > p with their respective powers. Computer simu-

lation shows C1p
2 < A1(p) < C2p

5 and C3p
6 < A2(p) < C4p

10 with absolute constants

C1, C2, C3, C4 < 1 for primes p ≤ 1100000.

In Table 1, we list primes p such that both 691 and q divide A(p) with q > p and the

cardinality | S1,i | (1 ≤ i ≤ 5), thereby confirming inequality (33) with q0 ≤ 4. Notice

that in Table 1, each prime p with the associated prime q | A(p) with q > p, satisfies

equations (25) and (26). Computer simulation reveals that the majority of respective

relatively large odd prime factors less than p of both A(p) and B(p) are distinct. Likewise

an overwhelming majority of common odd prime factors of both A(p) and B(p) for which

691 | A(p) are relatively small apart from 691 thereby confirming Corollary 5. In Table 2,
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we list primes p ≤ 3000000 such that 691 | A(p) and the odd prime factors of (A(p), B(p))

are ≥ 11.
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Table 1

p q | S1,0 | | S1,1 | | S1,2 | | S1,3 | | S1,4 | | S1,5 |
8291 216113 212008 4065 40 0 0 0
29021 1357091 1342657 14358 76 0 0 0
30403 1283839 1268731 15015 93 0 0 0
34549 789673 772578 16918 175 2 0 0
51133 112919 89995 20474 2267 174 9 0
53897 371549 345582 25014 925 28 0 0
96739 392957 347376 42917 2543 118 3 0

Table 2

p (A(p), B(p))
547271 2.3.11.691
610843 2.3.17.691
988129 2.3.5.13.691
1112509 2.3.5.23.691
1336393 2.3.101.691
1405493 2.3.113.691
1716463 2.32.23.691
1875373 2.23.691
1940327 22.32.13.691
2126897 2.33.19.691
2128279 22.5.11.691
2161447 22.23.691
2198761 2.43.691
2447521 2.23.691
2479307 2.23.691
2538733 2.11.691
2542879 24.3.5.23.691
2956097 2.23.691
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