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Abstract

When the nodes of a tree are visited in depth-,rst order there are occasional jumps from a deeper level of
the tree to a higher level. On the set of all full binary trees with a given number of nodes there is about 1
jump for every 2 internal nodes, and the average jump distance is about 2 levels. These averages are close
to averages for trees that arise in polynomial real root isolation.
c© 2003 Elsevier B.V. All rights reserved.
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1. Motivation

When the nodes of a tree are visited in depth-,rst order there are occasional jumps from a deeper
level of the tree to a higher level. No such jumps occur when the nodes are visited in breadth-,rst
order. In certain applications, jumps are associated with an extra cost that depends on the jump
distance. This is the case in an algorithm proposed by Rouillier and Zimmermann [2].

These authors propose a space-saving variation of the well-known Descartes method for polynomial
real root isolation. Their method traverses a full binary tree in depth-,rst order. The nodes of the
tree are associated with certain integral polynomials. Since the method uses exact computation,
the polynomials at deeper levels of the tree tend to have longer coe=cients than the polynomials
at higher levels. Constructing a high polynomial from a deep polynomial thus will involve more
expensive computations than constructing the same polynomial from its parent. The extra cost will
be particularly high when the di>erence of the levels is large.
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n bn j n dn

0 1 0 0
1 1 0 0
2 2 1 1
3 5 5 6
4 14 21 28
5 42 84 120
6 132 330 495
7 429 1287 2002
8 1430 5005 8008
9 4862 19448 31824

Fig. 1. (Left:) The full binary trees with 3 internal nodes. The nodes of each tree are labeled in depth-,rst order. Arrows
indicate jumps and are labeled with the jump distance. (Right:) If there are n internal nodes then there are bn full binary
trees with a total of jn jumps and a total jump-distance dn.

However, we show that, on the average, there is only about 1 jump for every 2 internal nodes,
and the average jump distance is only about 2 levels when the average is taken over the set of all
full binary trees with a given number of nodes. By experiment we show that these averages are
close to averages observed in actual real root isolation.

2. Jumps in depth-�rst traversal of full binary trees

De�nition 1. A binary tree is full if every internal node has exactly two children [1]. The depth-1rst
ordering of a full binary tree is a total ordering of the nodes such that the ,rst element is the root
of the tree and the successor of any internal node is its left child and the successor of any leaf is
the right sibling of the closest ancestor that is itself a left child. Any transition from a node at a
deeper level to a node on a strictly higher level is called a jump; the jump distance is the (positive)
di>erence of the levels.

The diagrams in Fig. 1 illustrate the de,nition. We compute the average number of jumps and the
average jump distance on the set of full binary trees with n internal nodes, n¿ 2. The main result
is Theorem 11.

De�nition 2. Let bn be the number of full binary trees with exactly n internal nodes, let jn be the
accumulated number of jumps in all those trees, and let dn be the accumulated jump distance in
all those jumps. In each tree there is a unique path that starts at the root and branches to the right
at each node until it ends in a leaf; let rn be the accumulated length of all those paths in the full
binary trees with n internal nodes.

We will use rn to derive formulas for jn and dn (Theorems 9 and 7).

Theorem 3. For all n¿ 0,

bn =
1

n+ 1

(
2n

n

)
:
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Proof. The assertion clearly holds for n = 0; now let n¿ 1. The set of full binary trees with n
internal nodes can be mapped to the set of binary trees with n nodes by stripping each full binary
tree of its leaves. This mapping is a bijection, and so, bn is equal to the number of binary trees
with n nodes. That number is known to be the nth Catalan number, that is, the right-hand side of
the asserted equation [1].

Remark 4. Theorem 3 can be proven directly by observing that, for n¿ 1,

bn =
n−1∑
k=0

bkbn−1−k : (1)

Indeed, since n¿ 1, the root is an internal node, so there is a left subtree with k internal nodes,
06 k6 n − 1, and a right subtree with n − 1 − k internal nodes. For the left subtree there are bk
choices, for the right subtree bn−1−k .

Theorem 5. For all n¿ 0,

rn = bn+1 − bn:

Proof. Induction on n. Start the induction step by observing that rn =
∑n−1

k=0(rk + bk) · bn−1−k , and
use Eq. (1).

Theorem 6. For any full binary tree let n be the number of internal nodes, d the total distance
jumped, and r the distance from the root of the rightmost node. Then

d+ r = n:

Proof. The assertion is true when n=0. Let n¿ 1 in a full binary tree B. Let BL and BR be the left
and right subtrees of B. Let nL be the number of internal nodes in BL, dL the total distance jumped
in BL, and let rL be the distance from the root of the rightmost node in BL. De,ne nR, dR, and rR
analogously for BR. Let d be the total distance jumped in B. Then d= dL + rL + dR = nL + dR, so
d+ r = nL + dR + r = nL + dR + rR + 1= nL + nR + 1= n. This completes a proof by induction.

Theorem 7. For all n¿ 0,

dn = nbn − rn:

Proof. Apply Theorem 6 to all the full binary trees with n internal nodes; sum all jump distances,
all internal nodes, and all distances from the root of the rightmost nodes.

Theorem 8. For all n¿ 2,

dn =

(
2n

n− 2

)
:
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Proof. Let n¿ 2. By Theorem 7, dn=nbn− rn, which, by Theorem 5, equals (n+1)bn−bn+1. Now
apply Theorem 3 and manipulate factorial expressions.

Theorem 9. For all n¿ 1,

jn = 2dn−1 + rn−1:

Proof. The assertion clearly holds for n = 1. Now let n¿ 1 and assume jk+1 = 2dk + rk for all
k ∈{0; : : : ; n − 1}. Then dn =

∑n−1
k=0(dk + rk) · bn−1−k + bk · dn−1−k =

∑n−1
k=0(2dk + rk) · bn−1−k =∑n−1

k=0 jk+1bn−1−k=
∑n

k=1 jkbn−k=
∑n

k=0 jkbn−k . Use this equality together with Eq. (1) and Theorem
5 to perform the induction step jn+1=

∑n
k=0 bkjn−k+

∑n
k=0 jkbn−k+

∑n
k=1 bkbn−k=2·(∑n

k=0 jkbn−k)+
bn+1 − bn = 2dn + rn.

Theorem 10. For all n¿ 2,

jn =

(
2n− 1

n− 2

)
:

Proof. Let n¿ 2. By Theorem 9, jn = 2dn−1 + rn−1, which, by Theorems 7 and 5, equals
(2n− 1)bn−1 − bn. Now apply Theorem 3 and manipulate factorial expressions.

Theorem 11. On the set of the full binary trees with n¿ 2 internal nodes the average number of
jumps (=number of jumps per internal node) is

jn
nbn

=
1
2
− 1

2n
;

and the average jump distance is
dn
jn

= 2− 4
n+ 2

:

Proof. Theorems 3, 10, and 8.

3. Jumps in real root isolation

We now consider trees that the Descartes method for real root isolation associates with polynomials
[2]. We consider three sets of polynomials. The ,rst set consists of 100 random polynomials for each
of the degrees 10; 20; 30; : : : ; 300; the coe=cients are 20-bit integers that are generated uniformly at
random. The second set consists of the Chebyshev polynomials of the ,rst kind, degrees 2–100.
The third set consists of the Mignotte-polynomials xm − 2(5x − 1)2 for 36m6 50. For each set
of polynomials we consider the corresponding multi-set of trees with a given number n of internal
nodes. The diagrams in Fig. 2 show, for each n, the average number of jumps and the average jump
distance. For each set of polynomials the averages are very close to the averages in Theorem 11.

Our analytical and empirical results suggest that, in the algorithm of Rouillier and Zimmermann
[2], the number of jumps, and also the jump distance, will usually be very small.
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Fig. 2. In all three diagrams the continuous line shows the average jump distance for the set of all full binary trees, and
the dashed line shows the corresponding average number of jumps. The triangles and squares denote empirical averages
that are speci,c to the multi-sets of search trees for the respective sets of polynomials; triangles stand for the average
jump distance, squares for the average number of jumps.
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