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In the inner sum, write r = k + (i− j). Since i < j, we have r < k. Reindexing,

S =
∑
r<k≤n

(
n

k

)2∑
j

(
k

n+ k − r − j

)(
n− k

j − k

)
.

Applying (1) once more, this time to the inner sum, gives

S =
∑
r<k≤n

(
n

k

)2( n

n− r

)
=
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)(
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k

)2

,

as desired.

Editorial comment. As noted by several readers, the second identity is equivalent to

∑
k

(
n

k

)2(2k
n

)
=
∑
k

(
n

k

)3

,

which is equation (29) of V. Strehl, Binomial identities – combinatorial and algebraic as-
pects,Discrete Mathematics 136 (1994) 309–346. Two copies of the requested identity plus
Strehl’s identity yield
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,

which can be proved by applying the Vandermonde convolution on both sides.
Strehl explored his identity in the context of hypergeometric techniques. It can also be

proved by using the Vandermonde convolution twice along with various other identities, or
by showing that both sides count the ways to start with n black cards and n white cards,
designate an equal number of cards of each color as bad, and discard n bad cards.

Also solved by M. Apadogu, R. Chapman (U. K.), P. P. Dályay (Hungary), R. Dutta, N. Ghosh, Y. J. Ionin,
B. Karaivanov (U. S. A.) & T. S. Vassilev (Canada), O. Kouba (Syria), P. Lalonde (Canada), J. Nieto
(Venezuela), M. Prasad, J. H. Smith, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), M. Tiso, M. Wildon
(U. K.), Y. Zhao, GCHQ Problem Solving Group (U. K.), NSA Problems Group, and the proposer.

Balanced Tilings of a Rectangle with Three Rows

11929 [2016, 831]. Proposed by Donald Knuth, Stanford University, Stanford, CA. Let an
be the number of ways in which a rectangular box that contains 6n square tiles in three rows
of length 2n can be split into two connected pieces of size 3nwithout cutting any tiles. Thus
a1 = 3, a2 = 19, and one of the 85 ways for n = 3 is shown.

Taking a0 = 1, find a closed form for the generating function A(z) = ∑∞
n=0 anz

n. What is
the asymptotic nature of an as n → ∞?

Solution by the editors. The generating function is

A(z) = 1 + √
1 − 4z

(
√
1 − 4z+ z)2

1√
1 − 4z

− 1 − z2 + 2z3

(1 − z)3
.

The coefficients an are asymptotic to 4n+2/
√

πn.
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In a splitting of a 3-by-m board into two connected pieces, call the piece contain-
ing more of the three cells in the first column black and the other piece white. Let
fm(b,w) be the number of splittings having b black and w white cells and let F (X,Y,Z) =∑∞

m=0

∑
b+w=3m fm(b,w)XmYbZw. We derive an explicit expression for F (X,Y,Z) by re-

lating fm to paths in a directed multigraphG. The vertices ofG represent cases for a column
of the 3-by-m board using connectivity information from the cells to the left. We process
columns of a tiling from left to right, using 11 states:

1. Start,

2. BBB, with no white cells anywhere to the left,

3. BBB, with some white cells to the left,

4. BBW or WBB,

5. BWB, with the two black cells connected via cells to the left,

6. BWB, with the two black cells not connected via cells to the left,

7. BWW or WWB,

8. WBW, with the two white cells connected via cells to the left,

9. WBW, with the two white cells not connected via cells to the left,

10. WWW,

11. End.

Due to the black-majority convention, Start leads next only to vertices 2, 4 (in two ways),
6, or 11. The possible transitions are encoded in the matrixM below. The entry in position
(i, j) encodes a step from state i to state j as one column is added. When the transition
is possible, it augments the power of X by 1 (for length) and the sum of the powers of Y
and Z by 3 (for the three tiles). The coefficient is 2 when there are two ways to make the
transition. The requirement that both pieces are connected is encoded by the impossibility
of various transitions.⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 XY 3 0 2XY 2Z 0 XY 2Z 0 0 0 0 1
0 XY 3 0 2XY 2Z XY 2Z 0 2XYZ2 0 XYZ2 XZ3 1
0 0 XY 3 0 0 0 0 0 0 0 1
0 0 XY 3 XY 2Z 0 0 XYZ2 0 XYZ2 XZ3 1
0 0 XY 3 0 XY 2Z 0 2XYZ2 0 0 XZ3 1
0 0 XY 3 0 0 XY 2Z 0 0 0 0 0
0 0 XY 3 XY 2Z 0 XY 2Z XYZ2 0 0 XZ3 1
0 0 XY 3 2XY 2Z 0 0 0 XYZ2 0 XZ3 1
0 0 0 0 0 0 0 0 XYZ2 XZ3 0
0 0 0 0 0 0 0 0 0 XZ3 1
0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For the example given, the state path is 〈1, 2, 5, 7, 4, 9, 10, 11〉. Splittings with m
columns correspond to paths from state 1 to state 11 using m+ 1 transitions; we seek the
coefficient of X2nY 3nZ3n in position (1, 11) of M2n+1. Thus, F (X,Y,Z) = (I −M)−1

1,11.
The resulting expression for F is the fraction with numerator

1 − X5Y 6Z4(Y + Z)
(
Y 4 + 3Y 3Z + 2Y 2Z2 − 2Z4

)
+ X4Y 4Z2

(
Y 6 + 4Y 5Z + 7Y 4Z2 + 7Y 3Z3 + 6Y 2Z4 − Z6

)
− X3Y 2Z

(
Y 6 + 3Y 5Z + 8Y 4Z2 + 9Y 3Z3 + 5Y 2Z4 + YZ5 + Z6

)
+ X2YZ

(
4Y 4 + 3Y 3Z + 3Y 2Z2 + 3YZ3 + 2Z4

)
− X

(
Y 3 + 2YZ2 + Z3

)
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and denominator(
XY 3 − 1

)2 (
XZ3 − 1

) (
XY 2Z − 1

) (
XYZ2 − 1

) (
XY 2Z + XYZ2 − 1

)
.

The coefficients of X2nY 3nZ3n for the first few values of n are 1, 3, 19, 85, 355, and
1435. The problem was first investigated in 2009, with these counts appearing in R. H.
Hardin, number of ways to partition a 2n× 3 grid into 2 connected equal-area regions,
oeis.org/A167242.

To extract the generating functionA(z), considerH = F (X,Y, 1/Y ). To have equal count
in black and white, we seek the coefficient of Y 0 in H. Viewing H as a Laurent series in Y ,
we seek the constant term h0 (an expression inX). The Cauchy coefficient formula applies to
H (see P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press,
New York, 2009). We obtain h0 = 1

2π i

∮
C

1
Y HdY , where C is a small counterclockwise

circle around the origin. Now h0 is the sum of the residues with respect to theY -poles. Since
the denominator of H is (XY 3 − 1)2(XY−3 − 1)(XY − 1)(XY−1 − 1)(XY + XY−1 − 1),
the poles are at 0, X , the three cube roots of X , and (1 − √

1 − 4 X2)/(2X ). There are eight
additional poles, but they lie outside C when X is small. With the help of Mathematica,
we find an exact expression for h0, and then changing variables from X to

√
z gives A(z)

as stated earlier.
The asymptotic behavior of an is governed by the singularity of A(z) at z = 1/4. Write

A(z) = B(z) + 16/θ − Q with θ = √
1 − 4z. We have 16/θ = ∑∞

n=1 16
(2n
n

)
zn, with coeffi-

cients asymptotic to 4n+2/
√

πn by Stirling’s formula. Setting Q equal to 3086/27 means
that B (z)/θ is bounded in a disk of radius larger than 1/4. Hence, a “transfer theorem”
applies: Use Theorem VI.4 of the book of Flajolet and Sedgewick cited above to deduce
that an = 4n+2/

√
πn+ O(4n/n3/2). In that theorem, use ζ = 1/4, a = −1/2, σ (z) = 0, and

τ (z) = 1 − t.
With more work, one can obtain a formula for an, with Fm denoting the mth Fibonacci

number:

an = −3 + n− n2 − 1

5

(
(n− 5)F3 n+1 + (2 n− 1)F3 n

)
+ 1

5

n∑
m=0

(
2(n− m)

n− m

)(
(3m+ 5)F3m+1 − (4m+ 3)F3m

)
.

Also solved by J. Semonsen, R. Tauraso (Italy), GCHQ Problem Solving Group, and the proposer.

A Telescoping Series with Inverse Hyperbolic Sine

11930 [2016, 831]. Proposed by Cornel Ioan Vălean, Timiş, Romania. Find
∞∑
n=1

sinh−1

(
1√

2n+2 + 2 + √
2n+1 + 2

)
.

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.Writing

1√
2n+2 + 2 + √

2n+1 + 2
=

√
2n+2 + 2 − √

2n+1 + 2

2n+1

=
√

1

2n
·
√
1 + 1

2n+1
−
√

1

2n+1
·
√
1 + 1

2n
,

we see that

sinh−1

(
1√

2n+2 + 2 + √
2n+1 + 2

)
= sinh−1

(√
1

2n

)
− sinh−1

(√
1

2n+1

)
.
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