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R ob u st M odel Predictive C ontrol as a  C lass of 
Sem i-Infinite Program m ing Problem s

b y
Dean E. K assm ann

A bstract
This thesis introduces a new interpretation of the problems arising in robust model 
predictive control (M PC). In practice, MPC algorithms are typically embedded within 
a multi-level hierarchy of control functions. The M PC algorithm itself is usually 
im plemented in two pieces: a  steady-state target calculation followed by a dynamic 
optim ization. It is shown in this thesis th a t some of the most promising methods 
of im parting robustness to MPC algorithms result in semi-infinite programs. These 
programs arise from the addition of semi-infinite constraints to the nominal MPC 
algorithm s which come from theoretical arguments th a t guarantee stability of the 
closed loop system or from requiring existing constraints to hold for an infinite set 
of plants. W hile the number of constrained variables is finite, the constraint must 
hold over an infinite set. This infinite set corresponds to a continuous uncertainty 
description for the model parameters.

In this dissertation it is also shown tha t the resulting optimization problems have a 
very unique structure. For some MPC algorithms the semi-infinite program  (SIP) can 
be cast as an equivalent finite-dimensional nonlinear convex program. Prim al-dual 
interior-point methods are used to efficiently solve the resulting optim ization problem 
by exploiting its inherent convexity. Simulation examples illustrate the effects of 
uncertainty on nominal MPC algorithms and dem onstrate the advantages of interior- 
point methods.
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1

Chapter 1 

Introduction

Model Predictive Control (MPC) represents the leading edge of control technology 

and is regarded by m any as one of the most im portant developments in process 

control. M PC refers to a class of algorithms th a t compute a sequence of m anipulated 

variable adjustm ents (control moves) in order to optimize the future behavior of a 

plant. As its nam e suggests, MPC uses an explicit m athem atical model to predict how 

a process will evolve in time. The prediction is used to determine the optim al control 

moves that will bring the process to a desired state. The optim al control moves are 

the result of an online optimization. In this chapter we provide an introduction to 

M PC technology and outline the class of robust MPC problems to be studied.

1.1 T he Class o f Problem s

In this dissertation we focus on robust model predictive control. The term  ‘robust’ 

refers to the ability of an MPC algorithm  to effectively deal w ith differences between 

the controller’s internal model and the actual plant or system. Large differences can 

cause the closed loop system to go unstable or behave erratically. There are different 

ways to im part robustness or include model uncertainty in an MPC algorithm. We 

investigate one such method: to append or modify an existing constraint to the 

algorithm. This new constraint takes a  very specific form—it is semi-infinite in nature:

h(x;9)  < 0  V0 G U.
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W hile the num ber of constrained variables x  is finite, the constraint m ust hold for 

all the param eters 6 in an infinite set U.. While not generally recognized as such, 

the resulting online optim ization takes the form of a semi-infinite program . These 

constraints arise from theoretical arguments th a t guarantee stability  of the closed loop 

system by forcing the objective in the online optim ization to form a nonincreasing 

sequence ([4], [3], [46], [79]) or from requiring the existing constraints to hold for an 

infinite set of plants [47].

Traditional im plem entations of linear model predictive control (which employ lin­

ear models) take the form of linear and quadratic programs. The controller executes 

approximately every minute, requiring the online solution of approxim ately 1,400 

optim ization problems per day. Implem entation of model predictive control using 

nonlinear models is just beginning in industry; these applications take the form of 

more general nonlinear programs [78]. Their execution frequency depends upon the 

solution time of the optim ization algorithm. The efficient solution of b o th  types of 

optim ization problems is extremely im portant in an online environment. Efficient so­

lution methods for the linear nominal problem have been proposed by several authors 

[112], [80]. Less attention has been given, however, to developing efficient solution 

m ethods for robust MPC problems.

We propose to interpret robust model predictive control as a  class of semi-infinite 

programming problems. We show that one of the most promising methods of im part­

ing robustness to nominal M PC algorithms results in a semi-infinite program  (SIP). 

For some M PC algorithms, the SIP can be cast as an equivalent finite-dimensional 

nonlinear convex program. To efficiently solve the resulting optim ization problem  we 

exploit the convexity through the use of prim al-dual interior-point m ethods.

1.2 T he M PC  Hierarchy

In  modern processing plants, M PC is implemented as p a rt of a  multi-level hierarchy 

of control functions. Figure 1.1 illustrates a representative control hierarchy. At the 

top level a plant-wide optimizer determines optimal steady-state settings for each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

unit in the plant. These may be sent to local optimizers at each unit which run more 

frequently or consider a  more detailed unit model than is possible at the plant-wide 

level. The unit optim izer computes an optim al economic steady-state and passes 

th is in form ation  to the M PC algorithm  for implementation. The MPC algorithm  

m ust move the plant from one constrained steady-state to another while minimizing 

c o n str a in t violations along the way. Figure 1.1 shows that the MPC algorithm  can be

Model Predictive  
Control Structure

G lo b a l S te a d y -S ta te  
(every day/week)

L o ca l S te a d y -S ta te
a.k.a. 'Real-Tim e O ptim ization’
(every 30 min - 6 hours)

I S te a d y -S ta te  I
. T a r g e t  C a lc u la tio n  j
\ (every 1-2 minutes) |
i---------------------------1

D y n a m ic  M P C  
(every 1-2 minutes)

B a s ic  D y n a m ic  C o n tro l 
(every second)

Figure 1.1: M PC Control Hierarchy

further divided into a steady-state calculation and a dynamic calculation [20]. The 

dynam ic M PC calculation has been studied extensively. Review papers by G arcia et 

al. [36], Ricker [88], M orari and Lee [63], Muske and Rawlings [64], and Rawlings 

et. al [82] detail M PC theoretical issues. The papers by Mayne [57] and Lee [52]

M o d e l  P r e d ic t iv e  C o n tr o l

(M PC )

LCFC TCPC

D C S - PID  Controls

Local U nit O ptim izer

P lant-W ide O ptim ization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

summ arize the very latest technical developments in MPC control theory', and Froisv 

provides a vendor’s perspective on industrial MPC technology, sum m arizing likely 

future developments [32]. Qin and Badgwell give a historical review of the industrial 

M PC algorithms and applications [77] [78].

T he goal of the steady-state target algorithm is to recalculate the targets from the 

local optim izer every tim e the MPC controller executes. This must be done because 

disturbances entering the system or new input information from the operator may 

change the location of the optim al steady-state. This is a standard idea th a t dates 

back to the early days of optim al control theory (see e.g. [50]). The first reference to 

this idea in the context of MPC was by Cutler. Morshedi and Haydel [19]. Today, this 

separation is a common part of industrial MPC technology. Since the steady-state 

algorithm  must run more frequently than the local optimizer, it uses a less detailed 

model. In practice, it uses a steady-state version of the dynamic m odel used for 

the dynam ic optim ization. The recalculated optimal steady-state is then passed to 

the dynam ic MPC algorithm  which determines how to best go from one constrained 

steady-state to the next. This steady-state target optimization is an alternative way 

to incorporate feedback into the MPC algorithm without explicitly including it in the  

dynam ic MPC calculation.

Some MPC im plementations combine the two calculations into a  single optim iza­

tion, solving for bo th  the input profile and steady-state targets simultaneously. The 

advantage is that only one optim ization problem must be solved a t every controller 

execution. The disadvantage is th a t the steady-state objectives may conflict. The 

steady-state objective is often cast in terms of economics. For example, the goal may 

be to minimize the heat duty of a column or to maximize the throughput of a reac­

tor. The dynamic objective is to move toward that endpoint, minimizing deviations 

and adhering to constraints along the way. These two objectives m ay not always be 

consistent. The controller may try  to maintain one while giving up on the other. 

Additionally, when the two optimizations are combined, tuning becomes nontrivial 

as the control engineer m ust try  to find tuning constants which give b o th  satisfactory 

dynam ic and steady-state performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In this work we assume th a t the MPC calculation is separated into dynamic 

and steady-state calculations. The steady-state portion is assumed to be driven by 

economics.

1.3 R obust M PC

In practice, the process model used by an M PC controller is never perfect. Model­

ing errors may be due to poor design or execution of test signals, invalid modeling 

assumptions or changes in p lant operation. The controller, which relies on the model 

to predict the future plant behavior, can cause the closed loop system to go unstable 

for sufficiently large modeling errors.

Robust MPC algorithms are those which are modified in  some way so as to bet­

ter tolerate modeling errors. Two im portant concepts in robust MPC are: robust 

performance and robust stability. By robust performance we mean the ability to 

achieve acceptable control performance in the presence of model uncertainty. Robust 

stability is a weaker requirement which ensures stability in the presence of modeling 

errors. Robust stability is the goal of most robust algorithms presented in the lit­

erature; however, in an industrial setting control practitioners will actually  require 

robust performance.

For the dynamic algorithm there are two general ways to  im part robustness: de­

tune the nominal controller or alter the MPC algorithm itself. These alterations result 

in additional constraints or a modified objective function for the optim ization prob­

lem. Consider an objective function J  that depends upon th e  current m easured state 

Xk, the input sequence Uj, and model param eters 9 €  fh Robust MPC formulations 

can be divided into four general classes ([58], [52], [57]):

•  M in im ize  th e  w o rs t-c a se  c o n tro lle r  cost: These algorithms, commonly 

known as Min-Max algorithms, minimize the worst case controller cost for a set 

of possible plants. This corresponds to replacing the objective of th e  nominal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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problem with.

m in ( max u 7- : 6)
v>j

The objective function corresponding to th e  worst case plant m odel is minimized 

a t each sample time. An excellent overview of Min-Max m ethods can be found 

in the paper by Lee and Yu [54].

•  D e tu n in g : This method is m otivated by the  fact th a t one can always stabilize a 

stable plant by making the controller less aggressive. Detuning is accomplished 

by changing the tuning param eters of the  nominal MPC algorithm  so as to 

suppress input movement.

•  S ta te  c o n s tra in ts :  These algorithms penalize the states of the problem in 

some specific way. S ta te  c o n tra c t io n  c o n s tr a in ts  [116] force all possible 

plant states to contract on a  finite horizon. This is equivalent to appending the 

following constraint

llarfc+ivCuy,#)!! <  A Hxfcl!, V0 E Q

for 0 <  A <  1 to the nom inal problem. T e rm in a l s ta te  c o n s tra in ts  [94] 

require the largest possible term inal s ta te  to lie within an invariant set, which 

is equivalent to appending

maxllxfc-^vCuj-,#)!! E W a V0 E D 

to the nominal problem.

•  C o s t fu n c tio n  b o u n d s: These algorithm s prevent an increase in the objective 

function or controller cost for all possible plants. Constraints of the form

J(xk,Uj]9) < f  V0 E

are appended to the nominal problem. Papers by Badgwell, [4] and [3], explain 

the use of cost function bounds for bo th  linear and nonlinear stable plants.
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These four classes are rather general. We focus on the last: cost function bounds. 

Of the methods, cost function bounds have the least trade-off in robustness vs. per­

formance: i.e., they suffer the least performance penalty in the process of providing 

robust control. For continuous uncertainty descriptions, the constraint is not finite 

but ra th er infinite in nature:

J{x,  u; Xk: 6) <  / ,  V0 E l i .

To date  there has been very little s tudy  of the steady-state M PC algorithm. W hile 

there exist m ulti-stage dynamic calculations ([53], [54], [79]), there is no existing 

robust analysis of the steady-state target calculation.

1.4 O rganization o f th e  Thesis

C hapter 2 reviews the history of M PC and describes the dynamic and steady-state 

M PC algorithms in greater detail. C hapter 3 presents robust forms of the algorithm s 

and shows how they can be cast as semi-infinite programs. In chapter 4 we present 

efficient solution m ethods for both problems. We show that the robust steady-state

optim ization problem can be cast as a second-order cone program , while efficient

successive quadratic program m ing techniques can be used for the dynamic problem. 

Prim al-dual interior-point methods are used to exploit the inherent convexity of bo th  

problems. Chapter 5 contains sim ulation examples, and Chapter 6 summarizes the 

most im portant conclusions and open questions.
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Chapter 2 

N om inal M PC

W hen the model used in M PC is assumed to describe the system dynamics perfectly. 

the controller is said to be a nominal MPC algorithm. In this chapter we describe 

both nominal dynamic and steady-state MPC algorithms and present a brief history 

of model predictive control.

2.1 T he E volution  o f M PC

W hile model predictive control can trace its origins back to the work of K alm an in 

the 1960s, it was really only widely introduced as an industrial control technology in 

the early 1980s. Over the years it has been fine-tuned to meet the needs of industrial 

practitioners. MPC technology was first developed to satisfy the control requirements 

of petrochemical plants. A typical plant consists of several continuous process units, 

each with the following characteristics:

•  M ultiple process inputs and outputs (multi-variable, interactive)

•  Difficult dynamics (large dead time, inverse response, zero gain, nonlinear)

•  Non-square, time-varying structure

•  Stream  compositions unknown and variable

•  Highly constrained operating region
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•  Tight product specifications

Obstacles like these led researchers and engineers to develop M PC technology in 

the early 1970s. As of the end of 1995, there were over 2.200 reported  applications 

using MPC [77]. These included refining, petrochemicals, pulp and paper, gas, min­

ing/m etallurgy, food processing, aerospace/defense, and automotive applications. In 

this section we present a brief chronological history of model predictive control tech­

nology. This presentation parallels th a t found in the paper by Qin and  Badgwell

MPC can trace its origins back to the work of Kalman in 1960 [44]. K alm an was in­

terested in determining when a linear control system can be considered to be optimal. 

He used a linear state-space model to describe plant dynamics:

The vector u refers to the process inputs; the vector x  refers to the process states 

and the vector y  refers to the process outputs. The model is discrete, deterministic, 

and linear. One of the most powerful aspects of this approach is th a t by changing 

the coefficient matrices A, B , and C, one can describe any linear process.

The controller Kalman designed minimizes a quadratic objective function th a t 

penalizes squared input and state deviations from the origin,

It is implicit in this formulation th a t all variables are w ritten in term s of deviations 

from a desired steady-state. This problem is known as the steady-state infinite horizon 

Linear Q uadratic Regulator (LQR). K alm an was able to find the analytic solution of 

the problem under suitable conditions. I t  is a proportional controller -with a single

[77].

2.1.1 K alm an

X j + i =  A x j  -r Buj ,  

yj  =  Cxj .

(2.1a)

(2.1b)

OO

(2 .2 )
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gain m atrix, K ,  determ ined by a the solution of a R icatti m atrix  differential equation. 

The controller is given by

u k =  K x k. (2.3)

It is im portant to note th a t the perform ance objective (2.2) has an infinite time 

horizon. This im parts strong stabilizing properties to the LQ R algorithm [44]. One 

can show the LQ R algorithm  is stabilizing for any reasonable plant (stabilizable and 

detectable) as long as the objective function weight matrices, Q and R, are positive 

definite.

Even though th e  LQR provides an elegant and powerful solution to the problem 

of controlling an unconstrained linear plant, it was not received well in the chemical 

process industry. Industrialists were interested in the incorporation of process con­

strain ts and nonlinearities, neither of which are addressed by the Kalman LQR. There 

was also the question of what to do with uncertainty in the process model (robust­

ness). Educational and cultural differences between industrial control practitioners 

and the academic com m unity also prevented widespread use of the LQR controller. 

Technicians and engineers either had no exposure to LQR theory or regarded the 

concepts as im practical [77], [86], [36].

T his led to an approach in industry  of a new model-based control methodology 

in which a  dynamic optim ization problem  would be solved repeatedly at each sample 

time. This idea was certainly not new; Lee and Markus [51], for example, anticipated 

m odern MPC practice in their 1967 optim al control text:

One technique fo r  obtaining a feedback controller synthesis from  knowledge 

o f open loop controllers is to measure the current control process state  

and then compute very rapidly fo r  the open loop control function. The 

first portion o f the function is then used during a short time interval, 

after which a new measurement o f the function is computed fo r  this new  

measurement. The procedure is then repeated.
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2.1 .2  ID C O M  & D M C

At a  1976 conference [87] and later in a 1978 Automatica paper [86]. Richalet et al. 

first described what they  called Model Predictive Heuristic Control (MPHC). They 

used a  linear impulse response model to describe the plant. By making a step input 

or impulse input to a p lan t and recording the resulting change in output, it is simple, 

in principle, to extract the param eters for such a model. They used a quadratic 

performance objective function, similar to the LQR, but defined over a fin ite  horizon. 

The desired future p a th  of the plant ou tpu t was specified by a reference trajectory 

instead of a  set constant value. They included both input and ou tpu t constraints in 

the formulation.

T he solution software was named IDCOM, an acronym for Identification and 

Command. Optimal inputs were calculated using a heuristic iterative algorithm.

Independently, engineers a t Shell Oil Corp. developed their own M PC technology 

in the early 1970s. C utler and Ramaker presented their Dynamic M atrix Control 

(DMC) at the 1979 A m erican Institute of Chemical Engineers (AIChE) conference 

[20]. This was an unconstrained multi-variable control algorithm  th a t used a linear 

step response model for the plant and a quadratic objective function with a finite 

prediction horizon for the cost function. Using a linear step response model one 

can express the predicted future outputs of the plant as a linear combination of the 

future inputs. The m atrix  th a t ties the two together is w hat they called the Dynamic 

Matrix.

T he DMC controller minimizes the differences in the predicted output and its 

set-point in a  least-squares sense with penalties on m anipulated variable movement 

(move suppression). P re tt  and Gillette [76] describe an early application of DMC 

to a fluid catalytic cracking unit. They implemented the control system in a multi­

level hierarchy similar to  th a t described previously in which constrained steady-state 

optim ization and dynam ic control are separated.

IDCOM  and DMC represent the first generation of M PC algorithms. These focus 

m ainly on decoupling m ulti-variable dynamics and trea t constraints in a  sub-optimal,
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heuristic manner.

2.1.3 Q D M C

In a 1983 conference paper, Cutler et al. [19] described the Quadratic DMC algorithm 

QDMC. This formulation finds the optim al dynamic solution subject to input and 

output constraints. A more comprehensive description of the QDMC algorithm  was 

given la ter by Garcia and Morshedi [35]. QDMC retains the same key features of 

the DMC algorithm  but provides a systematic way to find the optim al constrained 

solution. The resulting optim ization takes the form of a convex Q uadratic Program  

(QP). QDMC represents a second generation of MPC technology, which provides a 

system atic way to implement input and output constraints.

2.1 .4  ID C O M -M  &: H E IC O N

As the second generation of MPC technology was implemented on larger and more 

complex problems, control engineers faced a new set of obstacles. W hile QDMC 

provided an excellent way to handle input and output constraints, it d id not address 

problems created by large disturbances and changes in the degrees of freedom available 

to the controller. These problems can lead to an infeasible optim ization problem.

One solution involves relaxing the output constraints. If an output constraint is 

strictly enforced, it is referred to as a hard constraint. If ou tput constraint violations 

are allowed, the constraint is referred to as a soft constraint. It is common to minimize 

the am ount of violation by adding a penalty term to the objective function. The 

flexibility provided by soft output constraints allows the QP to always be feasible. 

The disadvantage, however, is th a t output constraints may always be violated during 

normal operation.

An alternative solution is to allow constraints to be ranked in order of priority or 

im portance. If the QP is infeasible constraints are dropped one by one until feasibility 

is attained . The order in which this shedding occurs is determined from a specified 

ranking priority.
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These and other issues were addressed in a third generation of M PC technology. 

Setpoint, Inc. and Adersa developed a new version of the IDCOM algorithm, known 

as IDCOM-M, first described in a paper by Grosdidier et al. [40]. A second paper 

appeared in 1990 describing an  application of the IDCOM-M algorithm  to the Shell 

Fundam ental Control Problem  [33]. This paper provided additional details on con­

stra in t handling. The IDCOM -M  algorithm employs a two-stage optim ization, one 

for the outputs and then, if there are extra degrees of freedom, one for the inputs.

O ther th ird  generation M PC algorithms include the PC T algorithm  sold by Profi- 

m atics, the RM PCT controller by Honeywell, and the PFC algorithm  developed by 

Adersa. This generation distinguishes between several levels of constraints (hard, 

soft, ranked), provides some mechanism to recover from an infeasible solution, ad­

dresses the issues resulting from a control structure that changes in real time, and 

allows for a -wider range of process dynamics and controller specifications.

2.1 .5  M uske /  R aw lings

Today, companies such as Aspen Technology and Honeywell provide M PC technology 

building on the foundations described above. Academic researchers have summarized 

lim itations of this technology and have proposed several promising solutions. Key 

lim itations include restrictive model forms and lack of strong stability  guarantees. 

Muske and Rawlings [64] addressed these issues by building directly on the firm 

foundation provided by K alm an’s LQR. By adding constraints to K alm an’s LQR, 

they were able to develop an M PC algorithm tha t addresses industrial needs while 

retaining strong stability  properties.

The key idea of Muske and Rawlings is to only consider a  finite number of inputs, 

w ith the rem aining inputs set to the origin. This allows the infinite sum in the cost 

function to be represented as a  finite sum with a different weight on the final state. 

They showed the controller was stabilizing for all choices of linear plants, provided 

the model is perfect and the initial QP has a feasible solution. Two years later, in 

1995, Meadows et al. extended this approach to include a large class of nonlinear
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plants and cost functions [58].

2.2 M odel Forms

T he models used in MPC algorithms can take many forms. We focus here on state- 

space and step/im pulse response models. The former is favored by the academic 

com m unity while the latter type is used extensively in M PC applications. State-space 

models are generally fundamental models arising from basic conservation laws (e.g. 

conservation of mass, momentum, and energy). Step or impulse response models 

are, as their name suggests, the result of step or impulse response tests in which 

the  input to a unit is changed and the response is w ritten  down. This results in a 

straightforward, practical model for the behavior of a unit. Step and impulse response 

models are linear. By their very nature, they only capture stable processes. State- 

space models, because they are derived from differential equations, can be nonlinear 

and  can capture both stable and unstable behavior.

2 .2 .1  State-Space M odels

Discrete time state-space models generally take the form of a recurrence relation

Xj — /  (r  j —[, iij—i),

Vi  =  9  f a ) .

T he recurrence relation usually results from some type of discretization of a set of 

differential equations describing the process. The models can be linearized about a 

steady-state or left nonlinear. Linear models are most often used in practice because 

they  are more tractable in a real-time setting. In this case a  general linear state-space 

model has the following form:

Xj =  Axj_i  B u j - 1,
yj =  Cxj ,
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where the matrices A, B.  and C  are obtained by linearizing about a steady-steady 

(xs. us).

d f  B  =  —  C = ? l
Xs,u, r s ,us d x  Xs

The issue of how to best construct a discrete-time approximation to a continuous­

time optimal-control problem  is closely related to the numerical m ethods used in the 

solution of differential equations, i.e. numerical integration. This is a straightforward 

observation since most problems of interest require some numerical technique to solve. 

Initial approximations used simple finite difference or Euler m ethods to discretize the 

problem [12], [16]. Later Runga-K utta techniques and collocation a t Gauss points 

were used [17], [68], [83], [108]. Recent work done by Polak and others lays a frame­

work for a general theory of consistent approximations for optim al control problems 

[71], [93],

Another im portant issue is the resulting structure of the discretized equations. 

The goal is to obtain discretizations with “local support” as these lead to block- 

banded linear systems. One way to achieve local support is to use higher order 

integration within a single time interval and enforce matching at interval boundaries. 

Santos et al. discuss this approach and show that it leads to a  more numerically 

stable solution technique [89]. A higher order technique tha t offers local support and 

is well accepted by the chemical engineering community is collocation a t Gauss points 

or collocation on finite elements [17]. The method is based on numerical integration 

using Gaussian quadrature; more information can be found in [9], [18], [107].

2.2.2 Convolution. M odels

Convolution models are used extensively in MPC applications. They are popular 

because:

• They can represent any stable linear plant w ithout assuming a model order

• They can represent multivariable plants easily by superposition
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• Model predictions are linear in the param eters

• In principle, the model coefficients can be determined graphically from a single 

step test

Convolution models most commonly appear in one of two forms: impulse response 

models and step response models.

Im pulse Response M odel

The impulse response model derives its name from considering the ou tpu t behavior 

y(t) for a pure impulse input. For a single-input, single-output, continuous time 

system, the Laplace convolution theorem  yields
f'CC

y ( t ) =  9 (r )u (t  -  r)dr.
J o

where the function g(t) is called the impulse response and u(t) is the input profile. 

The discrete time approximation to the above equation is:
OO

Uk =  'y '  hiUk-i,
i= 1

where the index k  is the sample index. The coefficients hi in the model are a function 

of g(t) and the sample time T :

riThi =  /  g{r)dr.

The infinite sum above is truncated for practical applications to yield the following 

finite impulse response model:

Dk = y  ' hiUk—i hpj 0.
1 = 1

For a multiple input, multiple ou tpu t (MIMO) system, the model is given by a double 

summation. Let n  be the number of inputs, m  be the number of outputs, and let N  

be the number of model coefficients; then the model can be written as:

slw = E  { E  ̂ 4 - i )  v ( = 1, . . . ,  m.
j=r V i=i J
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Here y lk is the Zth output a t tim e k. In impulse response models the current output 

depends upon a weighted sum  of the past inputs.

Step R esponse M odel

The DMC [20] and QDMC algorithms [35] make use of step response models, for 

which the output prediction is a function of the input changes 5uk, referred to as 

input moves:

5uk =  u k -  u fc_ L.

The step response model is the integral of the impulse response model. Let iV be the 

prediction horizon; then a  MIMO discrete tim e step response model can be w ritten 

as:

Vk =  f e  ai :5ui - i  + alN ul-N-
j = l  \ i = l

Equation (2.4) relates the Zth output at time k  to the past N  inputs. It can be cast 

in m atrix  form as follows:

y  =  A d5u -F B d5up + Cdup. (2.5)

The m atrix  A d is called the Dynamic M atrix  because it relates the future predicted 

outputs to  the future com puted moves. The m atrix B d relates the future outputs 

to the past known moves 5up. The m atrix Cd relates the future outputs to the past 

known inputs up. The m atrices A d, Bd, and Cd are defined in Appendix A. Because 

the model tracks all future ou tputs and their relation to past inputs, the m atrices can 

become very big. This results in a dynamic calculation which becomes quite large 

with increasing problem size.

2.3 N om inal M P C  algorithm s

MPC is an  optimal-control based method in th a t it determ ines the optim al control 

adjustm ents by minimizing am objective function. The objective function typically

VZ =  1, m. (2.4)
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penalizes deviations of the system states and inputs from desired targets. The states 

and the inputs are related through a  process model. The theoretical framework which 

has developed around M PC does not depend on the particu lar model form and allows 

for many variations.

2.3.1 T h e D yn am ic A lgorithm

The classical MPC controller is as defined as follows: Given the current s ta te  of 

the process, x find the future control moves, Uj. th a t will minimize the objective 

function:

Ar—1
J  = ^ 2  L j(x j, Uj) 4- L 1y (x ly ). (2.6a)

j =o

where the predicted states and inputs are related through the process model

Xj =  A x j^ i  4- B u j - 1,

x Q =  x fc.

At the same time we m ust respect input and output constraints

(2.6b)

x  6  A, 

u GU.
(2.6c)

This description is sim ilar to that of Meadows et al. [58] w ithout a  terminal s ta te  

constraint. The input and  state constraints come from  process specifications. If 

another m odel form is used, equation (2.6b) is replaced by the corresponding model 

equations.

The idea behind M PC is shown graphically in Figure 2.1. The solid line in the 

past represents old control moves. The filled circles in the  past are old states of the 

process. T he goal is to calculate the predicted control moves (the do tted  line) th a t 

will drive th e  predicted states (the open circles) to some predeterm ined set-point (the 

horizontal dashed line a t the top). In the above equations, k  is the current sample 

time, N  is the prediction horizon.
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Past Future

o Predicted States or Outputs. 
X j + i  =  A X j  -f- B u j

Predicted Control, u j

k - 1 k k-h 1

P re d ic tio n  H orizon

Figure 2.1: The Idea Behind MPC

The objective function (2.6a) is composed of a sum of costs. Lj, a t each future 

sampling time th a t depend upon uj, the future inputs, and Xj, the future states. In 

MPC terminology, J  is referred to as the cost function, and L j is referred to as the 

stage cost function. This formulation is useful in analyzing the theoretical properties 

of MPC algorithms; in [58], Meadows et al. outline the properties Lj m ust possess 

to guarantee existence of a solution for the MPC algorithm:

1. L  is continuous.

2. L(Q,u) — oo as ||u|| —> oo.

3. The input constraint set U, and the sta te  constraint set X  are closed.

4. A feasible u* exists, which yields a bounded J  for bounded x.

The state  cost Lj can take any form th a t satisfies the above requirements, however
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in practice, it is common to use a  quadratic functional,

L j =  (x j —  x s ) t Q  (Xj — x s) +  (uj -  u s ) t R  (Uj — u s), (2.7)

with Q  and R  positive-definite. Here, x s and us refer to th e  desired set-point values 

for the system (generally calculated by the steady-state target calculation, see section 

2.3.2). They are the values passed down from the unit optim izer or steady-state MPC 

optim izer in the control hierarchy mentioned previously. T he  quadratic form of (2.7) 

was used by K alm an [44] and is the most commonly used objective. The matrices Q 

and R  are usually diagonal, positive-definite, weight factors th a t define the relative 

im portance to each of the terms. On occasion a £]_ norm form ulation is used instead 

of the £o norm above.

T he form of (2.7) is usually simplified to make notation  easier. The quantity 

x j — x s is the deviation from the desired set-point. We could rewrite the difference 

as £j, w ith Xj now defined to  be the deviation variable; however, it is more common 

to sim ply drop the circumflex with the understood assum ption that the problem is 

always expressed in terms of deviation variables. So in the following,

Lj = x jQ  X j  + u j R  Uj ,  ( 2 .8 )

it is implicit th a t all variables are written in terms of deviations from the desired 

steady state.

In addition to this notation it is not uncommon to represent the quadratic terms 

of (2 .8 ) as weighted 2-norms of the variables:

\\x i\\2Q d-  x j Q x i- (2-9)

W hen the system has reached the desired steady-state, th e  deviation variables and 

thus, the objective function, are identically zero. It is im portan t to note th a t because 

Q and R  are positive-definite, J  is a strictly convex, non-negative quadratic objective 

function with a unique global minimizer a t the  origin.
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T he optimization, problem th a t needs to be solved a t each controller execution is:

min WxjWl 4- \\uj\W +  H-||X jfQ
j =o i= v c

subject to

xj  =  Axj -1 +  Buj^i (2 -10)

Xj £  X

ZLj G U.

T he above m inim ization problem returns N c optim al control inputs. Of the iVc 

optim al control moves th a t are calculated, only the first is implemented. At the next 

sample tim e the optim ization is repeated with a new current sta te  of the process. Xk■

T he above optim ization is a  quadratic program (QP) when the sets X  and U. are 

simple bounds. If the  model was derived from step response tests, (2.10) would be a 

variation of Dynamic M atrix Control (DMC) [20] or QDMC [35].

T he N c optim al control inputs Uj, j  =  0 , . . . ,  N c th a t are calculated correspond to 

the length of the control horizon. The upper limit in the sum on the outputs is the 

prediction horizon N .  The control horizon is the num ber of time steps into the future 

for which one wishes to control the process. The prediction horizon is the num ber of 

time steps into the future the model predicts (see Figure 2.2). The first formulation

o states or outputsO

I
I — 1 o

A
i

l- b  i ____________ _i_

l‘- - 1 “ N c  N

inputs

Figure 2.2: Prediction and Control Horizons
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of MPC by K alm an [44] did not distinguish between control and prediction horizons 

and set

N c = N  = oo.

K alm an’s infinite horizon problem was tractable because there were no input or out­

put constraints and the model was linear. Later, constraints were added to the 

formulation [20], [40]. To make the new problem tractable, the horizons were made 

finite, though allowed to be different. More recently, Rawlings and Muske showed 

how to form ulate the problem with an infinite  prediction horizon but finite control 

horizon for linear plants [64]. The showed th a t the infinite sum
OO

DM& + IMI*
j = l

can be truncated by limiting the number of inputs the optim izer calculates. At the 

end of the control horizon Arc and for all time thereafter, the inputs and unstable 

system modes are set to the origin. The sum can then be split as

Nc—L oo

5 3  q +  ■+■ 5 3  i N H
j —i i=jVc

into a finite portion and infinite portion. For state-space models, the infinite portion 

can then be summed exactly. It is equivalent to  a different weighting on the final 

state,

j'= 0

The problem of extending Nc to infinity for linear plants has been addressed by 

Rawlings and Scokaert [95] and Chmielewski and M anousiouthakis [14]. The key 

idea is th a t after some time in the future j rntTl, the constraints will no longer be 

active and the M PC algorithm will be equivalent to Kalm an’s unconstrained LQR. 

In this case, instead of setting the inputs to zero after some point in the future, the 

inputs are set to the solution of the LQR—a proportional controller with the Kalman 

gain. Rawlings and Scokaert show how to find a lower bound on j Tnm.
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The infinite horizon Rawlings-Muske regulator possesses nice theoretical prop­

erties. Muske and Rawlings [64] showed how to guarantee closed loop stability of 

the controller for any choice of Unear plants in the presence of input and output 

constraints, provided the model is perfect and the initial program  is feasible.

The nominal algorithm (2.10) can be w ritten as:

m in \ \ x \ \ 2q  4- | |u | | |
XL.X

subject to ^  1;Lj

h (x , u : x kl 9) =  0.

D x  4- F u  <  / .

The vectors x  and u are composed of Xj and u3, respectively

x  =  \x [  X z " '  Xiv]T , 

u =  [u f Uo ■■■ UATc]r .

The function h(x, u: x^, 6) represents the linear model w ith  initial condition and 

param eters 6. The inequafity constraint represents the sim ple bounds on the inputs 

and states. For state-space models, the param eters 9 are the  matrices (A .B ). For 

finite impulse response models, the states x  can be d irectly  replaced w ith notation 

for the outputs y. In this case, the param eter vector 9 contains the impulse response 

coefficients.

We have chosen the form of (2.11) for simplicity. By varying the problem data  

and the functional form of h, we can represent a wide variety  of nominal algorithms.

2.3.2 T he S tead y-S tate A lgorithm

The steady-state target calculation for linear MPC com m only takes the form of a 

linear program (LP). Because most models in MPC applications are linear, with 

linear economics driving the controller, the result is a linear program.

Any linear model, whether it be state-space, step response, impulse response, or 

other, can be cast at steady-state in the following form:

A y  =  G A u.
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Here A y  E K.m represents the change between the current s teady-state ou tpu t and 

the last measured value, and A u E Rn represents the change between the current 

steady-state input and the last measured value:

A u = u s — uk- i ,

Ay = y s -  y * - L -

Here ys and us are vectors containing the future steady-state outputs and inputs, 

respectively, and y ^ - i  and Ufc-L are the values of y  and u a t the previous tim e step. 

G E R mxn is the steady-state gain matrix for the system. T he LP finds optim al 

steady-state targets by minimizing an economic objective:

Js = cTus 4- dTys, (2 .12a)

while m aintaining the  relationship between the steady-state inpu ts and outputs:

A y = G A u, (2 .12b)

respecting input and ou tpu t constraints arising from process specifications

(2.12c) 

(2.12d)

and ensuring the resulting solution does not force the dynam ic M PC calculation to 

become infeasible:

N cA u  < A u < N cA u . (2.12e)

In (2.12e) N c refers to the control horizon of the dynamic M PC calculation, and  A u 

and A u  are the m inim um  and maximum bounds for the ra te  of change constraints 

in the dynamic M PC calculation. In (2.12c) and (2.12d) u  and  u  are minimum and

m aximum bounds for u s, respectively, with similar notation employed for the o u tp u t

bounds y  and y. Equation (2.12e) ensures the steady-state ta rg e t is compatible w ith 

the ra te  of change or velocity constraints in the dynamic M PC calculation.

u < u s < u .

V <  Vs <  V,
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To avoid real-tim e infeasibilities in the LP, it is common to recast the hard ou tpu t 

constraints y < ys < y in (2.12d) as soft constraints by adding slack variables e > 

0 E R m, and e > 0 E R m, th a t allow for some amount of violation in the constraint:

-§. +  H < Vs < y  +  e. (2.13)

The size of the violation is minimized by appending it to the objective function:

Js = cTus -F dTys -f- e 4- e. (2.14)

Additionally, a bias is introduced into the model to incorporate feedback. I t  is 

assum ed th a t the  difference between the model prediction and the measured ou tpu t

a t the current tim e is due to a constant step disturbance at the output. W hile

o ther types of disturbance models can be incorporated into the MPC framework (see 

e.g. [64]), the constant ou tput step disturbance assum ption is standard in industrial 

applications. T he model bias b E is based on a comparison between the current 

predicted ou tpu t y and the current measured output y  E lR.m:

b =  y - y .  (2-15)

T he bias is added to the model:

A y  =  G A u + b. (2.16)

T he n o m in al steady-state target calculation is then:

min cFus 4- dTys +  e +  e 
u,2/,e

subject to

A ys =  G A us + b,

u < %LS < u,

N cA u < A  u < N cA u ,

+ v_ < ys < V
0 < e,
0 < e.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

It is common to calculate the moves A u and A y , instead of the inputs and outputs 

directly. The nom inal steady-state target calculation can be expressed in velocity 

form as:

min ct A u  -f- dT A y  -f- eTe
A u,Ay,e

subject to

A y  = G A u - tb  
y (2.18)

A uA u  < bu 

Ay A y  <  by -f- e 

e >  0

where e G R 27Tl is a vector which penalizes output deviations. For our discussion, we 

assume without loss of generality th a t

1T
e = [ l l  •

however, e may arbitrarily  large in practice. The vector e is comprised of stacking 

the upper and lower slack vectors:

i T
e =  [eT <f] 

and A u G R4nxn and bu G R 4n are given by

(2.19a)

A,, —

I ' ^ U -  Ufc-L ^

- I - u  4- ufc_ 1
bu =

I N cA u

- I ^ —N cA u  j

(2.19b)

while A y G R2mxm and bv G R 2rra are given by

* v  =
I

- I
y -  yk-1 (2.19c)

- y  +  V k - i '

Additionally, since A y  depends linearly upon Au,  the entire problem can be expressed 

in term s of Au and e, reducing the number of decision variables. The resulting LP 

can be cast in standard  form and passed to  an optim ization algorithm such as the 

simplex method.
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2.4 Sum m ary o f the N om inal C losed  Loop Calcu­

lation

In this section we summarize the sequence of steps th a t make up a  typical MPC 

calculation.

E stim ator. The first step in the calculation is to estim ate the model bias

bk =  Vk- l  — Vk-L-

Steady-state calculation. The steady-state target calculation takes bk and com­

putes th e  optim al steady-state targets y sk and usk through the solution of:

(Au5, A ys, e')k =  argmin cT A u  + dT A y  +  eT e
A u , A j , e

subject to

A y =  G A u  -I- b 

A uA u  < bu 

A yA y  < by 4- e 

e >  0,

with

Vk = A Vk +  Vk-1

uk = A u k +  uk -1-

D y n a m ic  ca lc u la tio n . Finally, the dynamic MPC controller takes y sk and usk and 

produces the control input u k that will be injected into the plant from the solution 

of

uk =  argmin ||y -  y sk f Q 4- ||u  -  u%\̂ R 
u>y

subject to ^  ^0)

h(y,  u ; 6 )  =  0 

D y  +  F u  < f .
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The first op tim al input (uk) 1 is then applied to the plant.

This set of calculations takes place a t  every controller execution. There may be 

aux iliary calculations th a t are done because of different model forms bu t the sequence 

of calculations remain the same. In the next chapter we form ulate robust versions of 

the dynam ic and steady-state algorithms.
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C hapter 3 

R obust M P C

In this chapter we investigate the formulation of the robust dynamic and steady-state 

problems. We will be concerned w ith casting those problems in a framework and ter­

minology common to the field of optimization. As mentioned in the introduction, we 

use cost function bounds as the way to incorporate robustness in the dynamic opti­

m ization. For the steady-state target calculation, we consider the effect of uncertainty 

in the steady-state gain m atrix and its effect on the LP.

3.1 Basics o f  R obust M PC

As opposed to nominal model predictive control where the model is assumed perfect, 

robust model predictive control allows for model uncertainty. To clarify our discussion 

we will need the following definitions which describe the closed loop behavior of a 

system.

D e f in itio n  3.1 (C o n v e rg en ce ) . A point is Xk is said to converge to the equilibrium 

point x e if Ifyfc — x e\\ —> 0 as k —> oo. □

D e f in itio n  3.2 (S ta b il i ty ) .  An equilibrium point x e said to be stable if, for every 

p > 0, there exists an r(p , x e) >  0 such that if ||x0 — rce|| <  r, then \\xk — rre|| <  p for 

all k > 0. □

D e f in itio n  3.3 (A sy m p to tic  S ta b il i ty ) .  An equilibrium point is said to be asymp­

totically stable if it is stable and if, in addition, there exists some r  > 0 such th a t
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||x0 — x e\\ < r implies Har* — x e\\ —v 0 as k  —> oo. □

The equilibrium point in the above definitions refers to the targets calculated 

by the steady-state target optimization. Since it is almost universally assumed the 

targets do not change from one time-step to the next, the above definitions imply the 

equilibrium point does not change.

D efin ition . 3.4 (R o b u s t  S ta b ili ty ) . An MPC algorithm is said to be robustly sta ­

bilizing if it guarantees asymptotic stability in the presence of model uncertainty. 

□

Robust stability is the goal of most robust MPC algorithms. Most control practi­

tioners, however, require robust performance. Robust performance is the ability to 

achieve acceptable control performance in the presence of model uncertainty. Both 

concepts require a m athem atical description of the possible plants known as an un­

certainty description.

3.2 U ncertainty D escriptions

Uncertainty in robust MPC is parameterized through an uncertainty description for 

the model parameters. No model can hope to perfectly describe a process. Modeling 

error may due to poor signal design or execution of test signals, invalid modeling 

assumptions or changes in plant operation. Additionally, a single model is often 

used to control a system over a wide operation region where the model may not be 

as accurate. Figure 3.1 shows both the nominal operating point p  of a system and 

its common operation region. While the model may be accurate around p, it may 

degrade as the system moves away to other points in the operating region.

3.2.1 E llipsoidal U ncertainty

The uncertainty description defines the set of the most likely model parameters as well 

as the uncertainty in those parameters. It can be given param etrically or statistically.
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Figure 3.1: Conceptualization of the O perating Region for a System in the Model 

Param eter Space.

In model identification, if the process noise and model param eters are assumed to be 

normally d istribu ted  or Gaussian variables, the natural uncertainty description is an 

ellipsoidal bound on the param eters [5]. Illustrated in Figure 3.2, the param eter 

vector

0 =  [0L - U r e R n#

is assumed to  lie in the set:

9 e Q  =  {d  : ( 9 -  9c)TW ~ l {6 -  9C) <  l} ,  (3.1)

describing the  jo in t confidence region. The center of the ellipse is located a t 9C and the 

symmetric positive-definite m atrix  W  gives the size and orientation of the  ellipsoid. In 

particular, the  square roots of the reciprocals of the eigenvalues of W  are the lengths 

of the semi-axes of the ellipsoid, and the eigenvectors of W  define the directions of 

the semi-axes.

The tru e  plant, defined by the set of parameters 0, is by assum ption contained 

within the ellipse. The confidence region defined by the ellipsoid in (3.1) can equiva­

lently be w ritten  as:

0 6 0  =7 [ e c  +  p V l ' 2 s  : | | s | | < l } ,  (3.2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

Figure 3.2: Ellipsoid Param eter Uucertaintv

where we have replaced the m atrix W  with its statistical interpretation:

W  = V ~ y/(32.

The m atrix  V  is the covariance or estim ate of the covariance of tlie estim ated param ­

eters. The term p  is related to the radius of the ellipse and is given by

=  - a )

where $ ( r )  is the univariate normal distribution function with zero mean and unit 

variance:

*(*) =  [  e~'lS2(is 
V  Z7T J  _oo

and 1 — a. is the confidence or probability level. We can always guarantee a value of 3 

to exist for any probability level 1 —a , even for the case of when V is only an estim ate 

of the true covariance [5]. For (3.2) to remain convex, a  <  0.5, or equivalently, P > 0.

T he uncertainty description given by (3.2) is more general than (3.1) as it allows 

V  to be rank deficient. When the covariance m atrix  V  does not have full rank, 

the ellipsoid becomes degenerate, collapsing in specific directions corresponding to 

param eters which are known exactly. The directions in which the ellipse collapses 

correspond to the eigenvectors (or semi-axes) w ith associated eigenvectors th a t are 

zero (i.e. those directions for which a  nonzero z  produces V ŷ z  which is zero).
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Figure 3.3: Box or Polytope Uncertainty

A similar discussion of ellipsoid uncertainty is also given by Ben-Tai and Ne- 

mirovski [7], who give a more formal treatm ent of the ellipsoid bounds in the general 

context of convex programming, and by Boyd et al. [10] who m otivate the use of 

ellipsoid uncertainty descriptions for use in optim al control.

3.2.2 B ox U n certa in ty

If the ellipsoidal constraint can be interpreted in terms of a joint confidence region, 

then a box constraint can be interpreted in terms of joint confidence intervals (or 

as approximations to  the ellipse). Figure 3.3 illustrates simple box constraints. One 

interpretation of box constraints is as minimum and maximum bounds of the ellipse. 

More complicated polytopes may also be used in an attem pt to approximate the 

ellipse. A general polytope, including box constraints, can be expressed as bounds on 

some linear combination of the parameters 6. The uncertainty description B is then 

given by:

6 e B  {e  : A g 8 < b g } .  (3.3)

Both ellipsoidal and polytope uncertainty descriptions are common. Ellipsoidal 

uncertainty tends to  result in a  smaller final optim ization problem a t the cost of 

introducing a nonlinear inequality constraint into the formulation. Polytope uncer­

tain ty  generally results in larger optimization problems but the added constraints are
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linear. For the robust dynamic algorithm , we will be concerned with only ellipsoidal 

uncertainty descriptions. For the robust LP, we will consider both  types.

3.3 The R obust D ynam ic A lgorithm

Recall the four prim ary ways of im parting robustness to the dynamic MPC algorithm:

•  Lee [52] describes the most well-known approach, the M in -M a x  algorithm. 

This algorithm  minimizes the maximum cost function in the uncertainty region. 

This m ethod tends to be overly conservative since it optimizes the worst-case 

performance at each time step.

•  Another well-known way to incorporate robustness for stabilizable plants is 

to limit input movement by d e tu n in g . It is always possible to stabilize a 

stabilizable plant by suppressing the input movement, and in  the limit of infinite 

move suppression, the system reverts to its open loop behavior. Vuthandam , 

Genceli, and Nikolaou give an example of this for a modified QDMC controller 

[109]. Large move suppression, while it stabilizes stabilizable plants, degrades 

performance and does not address the issue of unstable plants.

•  The use of constraints is a much more promising way of introducing robustness 

to a nominally stabilizing MPC algorithm. Zheng [116] and Scokaert and Mavne 

[94] describe ways of including te rm in a l  s t a t e  c o n s tra in ts  th a t im part ro­

bustness. Zheng requires the largest possible term inal s ta te  to be smaller than  

the initial sta te  a t the end of a  user specified horizon. This m ethod does not 

directly generalize to unstable, nonlinear systems. Scokaert and Mayne were 

able to robustly stabilize nonlinear processes by using a s ta te  c o n tra c t io n  

c o n s tra in t  th a t ensured the process would eventually enter a region in input 

space that was equivalent to the unconstrained problem.

•  Finally, Badgwell and coworkers show that it is possible to ensure robust stabil­

ity  by including a  nonlinear constraint th a t forces the cost function for all plants
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in the uncertainty description to form a non-increasing sequence. This formu­

lation has been given for linear state-space models with finite uncertainty [4], 

[46], stable and  integrating plants for finite impulse response models [79] with 

continuous uncertainty as well, and nonlinear plants [3] w ith  finite uncertainty. 

This type of constraint is referred to as a c o s t fu n c tio n  c o n s tr a in t .

The approach by Badgwell is the most general and powerful form ulation presented 

as yet. For a finite uncertainty description, it results in a quadratic  constraint for 

each plant in the uncertainty description. For a continuous uncertain ty  description it 

results in a semi-infinite constraint over all the plant param eters in the uncertainty 

description.

Cost function bounds take the following form:

J ( u;xk,6) < J ( u k;xk,9), V 9 e £ ,  (3.4)

where J  is the cost function for the problem; x k is the current s ta te  vector of the 

system; u is the input vector to  be computed; 6 is the vector of model param eters; 

and u k is a shifted version of the previous optim al input uk_ L. If  the  previous optim al 

input is given by

r « t *r .  t -\t
u k - 1  —  [ ' u l  2  U NC J f c _ L

then u k is given by

uk = { u f  - « V . T Or | L

and is known as the the restriction of the input. The above transform ation shifts 

the elements of the previous optim al input to the left and appends a zero to the  end 

of the vector. We give here a sketch of the argum ent for the robust stability of the 

closed loop system; the full proof is stated  in [3].

S k e tc h  o f  P r o o f .  The proofs vary fo r  different model forms, but fo r  the m ost pari, 

have the same general structure. First it is shown that the input and the output of 

the true plant converge to the origin. Then it is shown that the origin is a stable
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equilibrium point fo r  the closed loop system. The combination o f convergence and 

stability yields asymptotic stability.

By assumption, the true plant 9 is in the uncertainty description £

O e £ .

From the cost function constraint and the definition o f optimality, it can be shown 

tha t the restriction o f the input iik+i is a feasible solution (although not optimal) o f 

the the problem at tim e k  1. I t  can then be shown that:

3 ' f c + l j  —  J { h k + l - 2'ArH-l? -

Subtracting objectives at subsequent time-steps yields the equality:

J (u k+l:x k+l,9) -  J(u*k:x k,9) =  - a ( u k, yk).

where a ( u k, y k) is a positive functional which smoothly approaches zero as uk and yk 

approach zero. For a quadratic objective, a  is a positive-definite quadratic functional. 

Combining the two equations, we get

J (u l+T,xk+i,9) -  J { u l : xk,9) <  - a ( u k, yk).

This shows the sequence of optimal costs { j (u j . ;xk, 9)}  fo r  the actual plant is non­

increasing. We also know the plant cost is bounded below by zero. Thus as the left 

side o f the above inequality approaches zero, the input and output converge to the 

origin (due to the properties o f J ) . This establishes convergence.

Stability of the origin is established by showing the state at tim e k is bounded fo r  

all k  > 0

il̂ fcll <  P V k  > 0

which can be shown to hold fo r  objectives of the type commonly used in control. The 

combination o f convergence and stability yields asymptotic stability. □

In short, cost function, bounds guarantee the sequence of objective costs {J(u*k, x k , 9)} 

be non-increasing for the true plant. Although the objectives for o ther plants m ay
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increase, the true plant cost is guaranteed to not increase. This leads to robust 

stability.

Consider cost function bounds for a quadratic objective. The robust MPC calcu­

lation requires the solution of a nonlinear program of the form:

uk =  argmin Jk(u: x k, 6) =  | |x | | |  4- | |u | | |
U j

subject to

h (x, u; x k, 6) =  0 

D x  4- F u  < f

J ( u ; x k. 9 ) <  J(uk; x k, 9), V0 6  S.

The objective depends implicitly upon the model parameters 6 through the model 

equations h. For the models presented in [4] and [79] the param eters appear linearly 

allowing us to rewrite the model h explicitly as:

x  = P(u) 9. (3-6)

The m atrix  P  is nontrivial function of u. The cost function constraint now becomes:

9TS  9 < 0  V9 G £,  (3.7)

where

S(u)  = P T (u)QP(u) -  P t (u)QP( u). (3.8)

The optim ization problem now takes on the following form:

uk =  argmin \\x fQ + | |u | | |
U

subject to

h ( x , u ; x k,9) — 0 (3-9)

D x  +  Fu < f  

9t S ( u) 9 <  0 V 9 e S .
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The method of solving (3.9) used in [4], [79] was to recognize th a t

9TS { u ) 9  <  0 V0 G £

is equivalent to

m ax dTS(u) 9 < 0
o

subject to

9 e  £

and solve the following nonlinear optimization, trea tin g  the semi-infinite inequality 

constraint as a nonlinear equality constraint:

uk =  argm in ||:r||J -I- jjw |||
U

subject to

h{x,  u\ x k, 6m) =  0

D x  +  Fu <  f

9*t S (u) Q* <  0 ;

9* =  argmax 9TS{u) 9 
o

9 €  S.

T he solution of the inner m axim ization was treated  as a function evaluation. This 

turns out to be very expensive and very slow. A bette r approach is to treat (3.9) 

as a  semi-infinite program, as we show in chapter 4. We next consider the effect of 

uncertainty in the  steady-state LP.

3 .4  The R ob u st S tead y-S tate A lgorith m

In the steady-state target calculation, the uncertain param eters 9 are the elements of 

the steady-state gain m atrix  G. Let gi be the column vector describing the ith row of 

G:

G = [gi <72 • • • g m f  • (3.10)
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Assume for the m om ent th a t the outputs are independent random variables: no ou tpu t 

is correlated to another. In this case we can construct a block diagonal covariance 

m atrix  for the process gains made up of the individual covariance matrices for each 

row of the gain m atrix . In particular, if V] is the covariance m atrix  corresponding to 

the zth row, then the covariance for the entire m atrix  is given by

If the outputs are actually  cross-correlated, then the off diagonal elements of V  will 

be nonzero. The gains have been stacked into a single vector g:

In any case, we can assume w ithout loss of generality that g is nominally g and  has 

covariance V, yielding the following ellipsoidal uncertainty description:

where £  defines the ellipsoid for the entire m atrix. This is the most natural way 

to pose the problem as it results in constraint-wise uncertainty. In the nom inal LP, 

the gain m atrix  G  is prem ultiplied by the (possibly dense) m atrix  A y in the ou tpu t 

constraint. This results in a linear combination of outputs. The z'th component of 

the ou tpu t constrain t is given by

In the general case, we will require ellipsoids of the type above to  capture the uncer­

ta in ty  in the constraint. If, however, most of the elements of A y are zero, as is the case 

for simple bounds on the outputs, it is possible to simplify the elliptic uncertainty 

description.

V' = (3.11)

s  =  [ s l s l  ■■■ s l ] r

(3.12)

3
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For simple bounds, all the dy are zero except one. There is a constant scalar 

factor 7  premultiplying the zth constraint.

Each component o f the constraint depends only upon a single row of the gain m atrix. 

Thus we can define an ellipsoid for each row. Let the «th row of the gain m atrix  

nominally be g [  w ith the covariance is V}. The ellipsoid is given by:

Unlike the dynamic algorithm  there is no prior analysis of the steady-state algo­

rithm . As a result, we will introduce the idea of the robust LP through an example.

instance when the solution lies a t the intersection of two output constraints. Figure 

3.4 shows two ou tput constraints represented by the solid lines. Due to uncertainty in 

the gain m atrix, the bounds describing the constraints are blurred. While the nom­

inal LP finds a solution a t the vertex of the two constraints, it may in fact violate 

both.

Consider the following example. The steady-state model is given by

We will assume an ellipsoidal uncertainty description with the following covariance:

For the moment, we will ignore the bias and slack variables. We will require th a t the 

m atrix  elements be known w ith a probability level 1 — a  of 99%, which corresponds

7 g f& u  <  b

(3.13)

The solution of the LP always lies a t the intersection of constraints. Consider the

A y  = G Au,

with A u  €  R 2 and A y  6  R. Let the nominal value of g be

1.00
9 —

0.75

0.03 -0 .05
(3.14)V  =

-0 .05 0.40
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Feasible Region

* * • .*«'.* • ♦ . . s 
.. • '  - x : -

'r'J.r.'V-A

Figure 3.4: Fuzzy Output Constraints

to (3 =  2.33. The ellipsoid uncertainty can be approximated conservatively as a box 

constraint with the following data:

1 0 ( 1.26 \

0 1
ba =

1.71

- 1 0 -0 .7 4

0 - 1 V 0.21 )

The ellipsoid uncertainty description and its box approximation are illustrated in 

Figure 3.5. A problem arises when we consider ou tpu t constraints in nominal problem  

(2.18). The constraints can correspond to critical variables— the tem perature lim it 

on a reactor vessel or the maximum allowable feed rate into a  unit. U ncertainty or 

fuzziness in the constraint means th a t even though the nominal value may be binding 

a t the upper or lower limit, the actual value may be outside the constraint region.
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Figure 3.5: Ellipsoid and the Corresponding Box U ncertainty in the Example

To see this, we add the following constraints to the example:

- 4  <  A ui <  4 

- 3  <  A u 2 < 1 

- 2  <  A y v <  4.

The feasible region defined by the constraints corresponds to the interior of the poly­

gon in Figure 3.6. This region assumes nominal values for the gains.

Figure 3.6: Feasible Region for the Nominal LP in the Example
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The lower diagonal line describes the lower bound on the ou tpu t A yi > —2. The 

line is given by:

(71.1 Ait l +  gi2&.U2 + 2 = 0 .

U ncertainty in g causes uncertainty in the constraint. Figure 3.7 shows the nominal 

constraint and its confidence bounds. Consider the case in which the constraint is 

binding. U ncertainty could force the true process to lie anywhere within the con­

fidence lim its, m eaning it could easily lie outside of the feasible set. The equation 

describing the bounds is given by:

gTA u ± P \ \ V l/2A u \ \ + 2  =  Q, 

where ||-|| is the standard  Euclidean norm. Every output constraint will contain some

Figure 3.7: Confidence Limits on the Lower Bound A yi > —2

degree of uncertainty. If we include the uncertainty from the upper constraint A y i  < 4 

and  plot the boundary of the new feasible set we obtain Figure (3.8). Uncertainty 

in the  ou tpu t constraints has transform ed the original feasible region (dotted line) 

into the smaller feasible region shown by the solid line. Note th a t the feasible region 

remains convex.
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As the controller is required to consider more and more possible plants, corre­

sponding to an increase in the size of the uncertainty description, and consequently 

robustness, the size of the feasible region will decrease, corresponding to a more 

conservative controller. This is the familiar robustness/perform ance tradeoff.

Figure 3.8: Feasible Regions for the Robust LP; Nominal Problem— Dotted Line; 

Elliptic Uncertainty—Solid Line

The feasible region can be defined as the set of inputs which produce feasible 

outputs for any possible value of the gains:

r A yA y  =  A yG A u  < by, VG G U  'i
A  u E \ A u : L

 ̂ A uA u  < bu J

where U is one of the uncertainty descriptions given earlier.

In addition to gain uncertainty affecting the constraints, it also has an effect on 

the objective function:

Js =  ct A u  +  dTA y  

=  ct A u  +  dTGAu.

Let the gradient of the objective with respect to  the inputs be / :

V J S = f  = c +  GTd.
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For our example, assume c and d are given by:

c =  [7.00 5.00]r  and rf =  [—6.00] -

U ncertainty causes the value of /  to change. /  is nominally / :

/  =  [1.00 0.50]T,

and can take on values anywhere between /  and / :

/ =  [ - .5 6  2.56]T 7 =  [-5 .26  6.26]r .

Figure 3.9 shows the the effect of this uncertainty in the objective function. As the 

objective changes, the  solution of the LP changes. One possibility is to include the 

gains in the objective, minimizing them  in some sense. From a control viewpoint, 

however, this may not make sense. A sm arter control policy would be to minimize the 

best guess or nominal value of the gain. The goal is to drive the process toward the

Figure 3.9: Uncertainty in the Objective Function

economic optimum using the best guess for the gain of the process but restrain  the 

inputs to only those th a t ensure the process will rem ain feasible for any reasonable 

gains (those captured by the uncertainty description). If we use the nom inal value of 

the gain G, the objective function for the robust LP becomes:

Js — ct A u  -t- dTG A u  eT e.
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Although this example is simple, it illustrates the nature of the problem. Model 

uncertainty forces the problem structure to change. The linear constraints so com­

m only used in control theory become nonlinear. In our example we were able to 

graphically determ ine the optim al solution. In practice, we need to solve the follow­

ing optim ization problem:

min c t A u  4 -  dTG A u  4- eTe
A u ,e

subject to

A yG A u  < b y +  e -  A yb, V G e  U  (3-15)

A uA u  < bu 

e >  0 .

Problem (3.15) is a convex, semi-infinite program th a t can be solved efficiently 

using the m ethods described in C hapter 4.

3.5 Sum m ary o f R obust M P C

Both the dynamic and steady-state robust algorithms take the form of semi-infinite 

programs. The semi-infinite constraint has the  following specific form:

h ( x ; 6) — 0

g(x)  < 0  V6 €  S

where the num ber of variables x  in the constraint is finite, bu t the constraint must 

hold (implicitly) for all the param eters 9 in an infinite set £.  In the dynam ic cal­

culation, the constraint arises from theoretical arguments th a t guarantee stability of 

the closed loop system  by forcing the objective in the online optim ization to form a 

non-increasing sequence. In the  steady-state calculation, the  constraint arises from 

requiring the ou tp u t constraints hold for an infinite set of plants. In the next chapter 

we consider the detailed structure  of the resulting semi-infinite programs. We show 

th a t efficient solution algorithm s can be constructed by exploiting convexity through 

the use of interior-point algorithm s.
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C hapter 4 

Sem i-Infinite Program m ing

Consider the following semi-infinite program (SIP):

min f (x )
X

h ( x : 9) =  0 (4-1)

g(x) < 0 for all 6 Z.U.

where /  : R n —y R, h : Rn x R p —> R ^ ,  and g : Rn -4- R Ai. 0 is a set of param eters 

and, for most engineering problems U is closed and convex. The inequality constraint 

g(x)  depends implicitly upon the parameters in the model h ( x ; 0). Problem  (4.1) 

occurs in many different fields ranging from robotics to structural design. Many 

robust optim ization problems can be cast as semi-infinite optimization problems. 

W hile semi-infinite programming has been commonly used in the field of optimal 

control (see e.g. [85]), it is not a widely accepted tool for model predictive control.

4.1 O ptim ality C onditions

In this section we apply the first-order necessary conditions and the second-order 

necessary conditions to a general nonlinear program. Kuhn and Tucker presented 

these conditions in 1951 [49], and until the late 1980s they were referred to as the KT 

conditions. Earlier, however, Karush derived the same conditions in his 1939 m aster’s 

thesis [45]. It is common practice now to credit Karush for his work and refer to these 

as the K KT (Karush-Kuhn-Tucker) conditions for nonlinear programming. Tapia and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

Trosset give an excellent historical review of these events in the introduction of [101]. 

We are interested in the KKT conditions for the general nonlinear program because, 

as we show in the next section, we can use them  to reduce a nonlinear programming 

problem w ith  an infinite number of constraints to an equivalent (or approximate) 

problem w ith  a finite number of constraints.

The K K T conditions can be seen as an extension of the Lagrange m ultiplier theory 

for problems with equality constraints to problems with both equality and inequality 

constraints. By the general nonlinear program  with both equality and inequality 

constraints we mean:

min f ( x )
X

subject to
(4.2)

ki(x) = 0  i =  1, . . . ,  n

9 i { x ) >  0  i  =  1 , . . . .  771.

D e fin itio n  4 .1 . The set of indices given by:

A(x)  = | j  : gj(x)  = o J  (4.3)

are known as the active indices at x  and the corresponding inequality constraints 

g.j (x) are known as the active or binding constraints for problem (4.2). □

D e fin itio n  4 .2 . A point x ,  is regular for problem (4.2) if the set of vectors

|  ) , . . . ,  V h ^ { x , ) ,  S7gi{xr) , i  e  A(ar)} (4.4)

is linearly independent. □

The following propositions summarize the well-known first and second order nec­

essary conditions for optimality; see [31], [37] for a detailed discussion.

P ro p o s i t io n  4 .1 .1 . (Karush-Kuhn-Tucker) I f  the regular point x ,  is a local mini-
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mizer  of problem (4.2) . then there exists A* G R" and p., G R m such that:

hi(x») =  0 i — 1 , . . . .  n 

9j(x *) > 0 j  =
n m

V /(x») -f- J ^ (A  m)iVhi(xm) +  =  0 (4.5)
t=L j = L

5/(a:.)(/x«)i = 0  j  =  l , . . . , m

p* >  0.

These conditions are referred to as the Karush-Kuhn-Tucker or K K T  conditions fo r  

optimality. □

P r o p o s i t io n  4 .1 .2 . (Karush-Kuhn-Tucker) I f  the regular point x „ is a minimizer  

f o r  problem (4.2), then

N iV-
V 2/(x .)  ^ ( A O iV 2/^(a;,) 4- (4.6)

t=i j —i

is positive semi-definite on the null space o f  vectors in (4.4). □

The KKT conditions for the nonlinear program  will be an integral part of our 

discussion of prim al-dual interior-point m ethods in the next section. We will use 

these ideas when we discuss efficient solutions m ethods for the problems in robust 

M PC.

4.2 B asics of Prim al-D ual Interior-Point M ethods

In  1987, Kojima, Mizuno, and Yoshise [48] proposed the now celebrated prim al-dual 

interior-point algorithm  for linear program m ing. Since then, there has been consid­

erable effort to extend interior-point m ethods to other optim ization paradigms. The 

m onotone linear complementarity problem (mLCP) is one such extension th a t di­

rectly  generalizes the linear program  to include quadratic objective functions. Wright
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showed the optim ization resulting from nominal M PC falls into this category and th a t 

prim al-dual interior-point m ethods can be used in their solution [112]. The tex t by 

Cottle. Pang, and Stone [15] provides an excellent discussion of many other linear 

com plem entarity problems.

This section introduces the ideas behind m any of the interior-pont algorithms. 

We discuss the role of the central p a th  and the perturbed K K T conditions. W right’s 

text [113] and  the papers by Megiddo [59], and  Kojima, Mizuno, Yoshise [48] are 

good references on the role of the central path  in interior-point m ethods. Tapia [100] 

and E lbakry et al. [25] [24] provide an excellent discussion of the perturbed KKT 

conditions; we will rely heavily on their papers in the following discussion.

4.2 .1  P ertu rb ed  K K T C onditions

Linear program m ing saw the first use of prim al-dual interior-point methods. It is 

natural to introduce the idea in th is context. Consider the standard  form LP:

min cT x
X

subject to , _ .
(4 ./a)

A x  =  b 

x  >  0

and its dual:

m ax bTy
!/v

subject to ., _. ,
(4.7b)

ATy z  =  c 

z >  0,

where x  6  R n, b €  Rm and m  < n.  The other vectors and d a ta  are of appropriate 

dimension. The difference between the value of the objective function of the prim al 

problem cFx and the value of the objective function of the dual problem bTy  is known 

as the duality gap fi,

li — cTx  — bTy.  (4-8)
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For an LP, it can be shown that at optim ality, the duality  gap is zero. For any 

arb itrary  x  and any arbitrary  y, the duality  gap is some finite number. The goal of 

prim al-dual interior-point methods is to drive the duality gap to zero.

As is common, we use X  to denote the diagonal m atrix  with the elements of x  on 

the diagonal and employ an analogous notation for other quantities. Also, the vector 

e is defined as a vector of all ones whose dimension will vary in context.

The KKT conditions for problem (4.7) are

A x  — b
=  0, (x. z ) >  0 (4.9)F(x,  y, z ) = A  y + z — c 

X Z e

corresponding to primal feasibility, dual feasibility, and complementarity. F(x,  y. z ) =  

0 is a square nonlinear system of equations. The nonlinearity comes from the comple­

m entarity condition. In any Newton m ethod solution of (4.9), we deal w ith linearized 

complementarity:

X { A z i  - f -  Z { A x i  =  — X i Z i

where X{ and z; are elements of x  and z  respectively, and Ax* and Az*- are the 

corresponding Newton steps. Complementarity plays a  crucial role in prim al-dual 

interior-point algorithms. If (xi)t is the i th component of x  at iteration I in some 

Newton method, and at iteration k, the component reaches zero (xi)k =  0, then 

for all time thereafter I > k, the only resulting choice is a zero step (Axi)t  =  0 . 

This obviously prevents any chance of convergence to an optimal solution. This 

phenomenon is known-not so eloquently—as sticking to the boundary. The papers 

w ritten by Tapia and colleagues and described at the beginning of this section give 

an excellent discussion of this problem.

The most natural alternative is to perturb  the complementarity condition by some 

amount:

(4.10)
A x  — b ’ o"

F ( x , y , z )  = A Ty  4- z — c 0

X Z e fie
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The perturbation keeps the iterates away from the boundary of the feasible set. If 

we were to solve (4.10) with some finite nonzero perturbation /z. we would converge 

to a triplet (x. y, z). If we then changed \z and solved the equations again, we would 

converge to a different triplet. As fz continuously changes, we trace out a  piecewise 

continuous curve known as the central path.

4.2.2  T he C entral P a th

Adherence to a central path  is w hat makes primal-dual interior-point m ethods poly­

nomial algorithms. T ha t is, the effort required to solve them can be bounded by a 

polynomial in the data.

The central path  keeps iterates away from the boundary. If we were to  graph 

the set of triplets described above, the result would be Figure 4.1. The axes are in 

what is called image-space. All the components of the complementarity condition are

The Central Path x i Z i  —  c o n s t

(a centering step)

(a Newton step)

Figure 4.1: The Central P ath

perturbed by the same amount. This is represented by the diagonal line in  Figure 

4.1, which is the central path. For a given /z, a  solution of (4.10) converges to a
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point somewhere on the diagonal line. If however, instead of taking m any Newton 

steps, which is (under certain conditions) equivalent to solving (4.10), we just took 

one Newton step a t constant p ^  0, we would be moving toward the central path  

and  away from the boundary. We would not however, likely lie on the central path. 

If, on the o ther hand, we set p  =  0 and took a  Newton step, we would be taking a 

Newton step on our original problem. A Newton step a t constant p  ^  0 is referred 

to  as a centering step since it moves the iterates toward the central path .

One choice is to alternate centering steps and Newton steps as the iterations 

progress. This is exactly the famous predictor-corrector algorithm of Mizuno, Todd, 

and  Ye [61]. At one iteration of the algorithm , the perturbation is set to zero. At the 

next itera tion  the perturbation is set to p, the duality  gap. In general, it is possible to 

take some com bination of both. This is done through the introduction of a centering 

parameter  cr:

p  =  a(cTx  — bTy).

W hen a  is zero, p  is zero and the algorithm  takes a step on the original K K T con­

ditions. W hen cr is one, p  is the duality gap and the algorithms take a step  on the 

P ertu rbed  K K T (PKKT) conditions. Interm ediate values of a  can also be used.

D uring the course of a prim al-dual interior-point algorithm the perturbation  p  

(the duality  gap) is gradually reduced to zero. Thus at the solution, there is no 

pertu rba tion  (i.e. no duality gap) and the original unperturbed problem is solved.

The choice of p  (i.e. how to choose the resulting perturbed step), the choice of 

how to update  the steps, and other factors lead to the different prim al-dual interior- 

point algorithm s in the literature. There are of course also differences th a t arise from 

applying these ideas to various optim ization paradigms.

We end this section by mentioning th a t some authors have proposed using interior- 

point m ethods specifically for model predictive control. Wright [112] showed th a t the 

quadratic  program  associated w ith the dynam ic portion of MPC can be interpreted 

as a  m onotone linear complementary problem  (mLCP) and solved using interior- 

point m ethods. Rao, Wright, and Rawlings [80] showed that the problem  structure
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of the mLCP can be exploited yielding a m atrix  factorization w ith a cost th a t grows 

linearly instead of cubicly w ith horizon length. Albuquerque et al. [1] have shown 

th a t these m ethods can outperform  active-set methods for both control and sim ulation 

applications.

4.3 SIP Solution  M ethods

Different m ethods exist to solve problem (4.1), bu t they can be divided into the 

following five categories:

1. discretization methods (by grids and cu tting  planes):

2. local reduction methods;

3. exchange methods;

4. simplex-like methods;

5. descent methods.

The review papers by Hettich [42], Gustafson and Kortanek [41], Polak [70], Fiacco 

and Ishizuka [30], and Hettich and Kortanek [43] discuss these five areas in greater 

detail. We will focus on the first two.

Discretization and local reduction methods a ttem pt to approximate problem (4.1) 

by imposing a finite number of constraints. The simplest way is by ordinary discretiza­

tion.

4 .3 .1  D iscretiza tion  M eth od s

D iscretization m ethods a ttem pt to discretize U. and replace the problem (4.1) w ith 

an approxim ate problem. Let W c W ,  \U  \< oo. The original problem is replaced by

m in f ( x )
X

h(x  ; 8) =  0 (4-11)

g(x) < 0 for all 8 ElA.
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The set U. is typically called a grid. Unfortunately, for general problems, there does 

not exist a subset U of U. which yields identical solutions for (4.1) and (4.11). Also, 

if a finite sequence of finer and finer grids are used, it is not necessarily true 

th a t the accumulation points of (4.11) converge to the solution of (4.1). For these 

statem ents to be true, the grids m ust be chosen w ith care [43], [72].

Discretizing the set U has a parallel in optim al control. Set uncertainty is often 

used to parameterize a  list of possible plants. The set can be thought of as a dis­

cretization of some continuous uncertainty description. For some linear problems, if 

the control algorithm has a given property for the members of the set, it also has the 

property for any plant within the set’s convex hull. While this is true for some linear 

problems, cost-function bounds use quadratic constraints that destroy this property.

The papers by Grigorieff and Reemtsen [39] and Reemtsen [84] as well as the tex t 

by Polak [72] give conditions under which a solution of problem (4.11) is equivalent to 

(4.1) as sucessive grids are refined. The conditions are closely related to the theory of 

consistent approximations. While it can be shown th a t the convex hull ideas do not 

apply to cost-function bounds except for very special cases, the theory of consistent 

approximations provides a possible link between discretization theory and robust 

model predictive control.

Consider problem (3.9) with a  linear state-space model and a set uncertainty 

description. The model parameters 6 are the elements of the matrices (.4, B)  in the 

state-space model:

xfc+1 =  A x k +  B u k.

The uncertainty description U contains an infinite number of possible plants (A, B ). 

If, however, U was discretized as some grid U, then we could consider the discretized 

problem with only a finite number of (A , B ). This is exactly the set uncertainty 

discussed by Badgwell and coworkers [4], [46]. They have shown th a t for robust linear 

M PC using cost function bounds and a set uncertainty description, the resulting 

optim ization problem is a semi-definite program (SDP). The SDP can be solved 

directly or reformulated as a second-order cone program  (SOCP). T ha t means for any
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discretization, the resulting optim ization problem is a SOCP. Cost-function bounds 

for a  finite num ber of plants result in a quadratically constrained quadratic program:

min \ x t Qq x  4- qTxx 2

subject to
(4.12)

A x  =  b

j x r Qi x  +  qTx  < fi ,  i =  1, . . . ,  -p.

An extra quadratic constraint is appended to the nominal algorithm  for each plant 

in the uncertainty description.

The current theory of cost-function bounds require that one of the members of 

the set be the true plant. However, Ralhan and Badgwell [79] have extended the the­

ory to continuous uncertainty descriptions for certain model forms. The relationship 

between approxim ation theory for semi-infinite programming and set uncertainty de­

scriptions m ay ultim ately provide a way to choose a set uncertainty description which 

results in a solution equivalent to th a t for the problem with a  continuous uncertainty

description.

4 .3 .2  L ocal R ed u ction  M eth od s

Local reduction m ethods rely on the fact th a t the semi-infinite program (4.1) can be 

reduced locally to a finite dimensional optim ization problem. The term  local reduction 

comes from noticing tha t

g ( x : 6 ) < 0  V d E U  (4.13)

is equivalent to

m a x ( g (x ;  9), 9 E l i  ) < 0 .

For problem (4.1) we let

G(x)  d=  max g(x)

h(x  ; 6) =  0 (4-14)

9 E l i .
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The semi-infinite program then becomes

min f { x )
(4.15)

G{x)  <  0.

The function G(x)  may or may not be differentiable. The review by Polak [70] treats 

this general case. However, more progress can be made by treating G(x) locally. The 

goal is to represent G(x) locally near almost every x ,  E R n by

G(x)  =  max {G £(:r) : I E T}

w ith sm ooth functions G£, \L\ < oo, defined on some neighborhood x ,  [38]. This 

holds under mild regularity assumptions.

Denote all the local solutions of (4.14) by 0£, I  E L.  Problem  (4.1) is equivalent

to

min f (x )
X

h ( x : e l ) = o  (4-16)

Ge(x ) <  0 for all I E L

if the local solutions are nondegenerate regular points and the set L  is finite. These 

assertions lead directly to the following algorithm:
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A lg o r ith m  1: Conceptual Reduction M ethod
(1) Determine all the local solutions , I  =  1 , . . . ,  of

=  argmax g(x) 
o

h ( x ; 9) =  0 

9 GU.

(2) S tarting with x 1'0 = x l, carry out k{ steps of a nonlinear pro­

gramming algorithm on the reduced problem

min f ( x )
X

Ge(x) =  g(x, 6e(x)) < 0 .  £ =  1, . . . .  rti

with the iterates denoted x z,l: . . . .  x l,ki.

(3) Set rrz+l = x I,fci.

The papers by Gramlich et al. [38] and Hettich and Kortanek [43] explain each of 

the steps and give guidelines on implementation. The most commonly used nonlinear 

programming algorithm  used for the second step is successive quadratic programming.

4.4  Local R eduction  and th e  S teady-State Target 

C alculation

In this section we consider the result of local reduction on the robust steady-state 

target calculation (3.15). The semi-infinite constraint

h { x ; 9)  =  0

g{x) < 0  V9 <EU

has the following specific form in the robust LP:

A  y  =  G A u
(4.17)

A y A y  ’A  by V G £  U.
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Our discussion does not depend on the slack or bias terms in the constraint so we 

have ignored them for the sake of clarity. Because the constraint and model are linear 

we can directly substitu te the model into the constraint to yield:

A yG A u  < by V G €  U. (4.18)

There are two cases: ellipsoidal uncertainty and box uncertainty. We first consider 

ellipsoidal uncertainty U = 8.

4 .4 .1  E llipsoidal U n certa in ty

Recall the ellipsoidal uncertainty description (3.12):

g € S = f  { g  +  0 V l/2 s : ||s|| < l } .

W hen an uncertain linear constraint has d a ta  th a t is bound by an ellipsoid, the 

result is a  second-order cone program  (SOCP). W hen the semi-infinite problem (4.1) 

is convex with the constraints appearing as cones, Ben-Tal and Nemirovski [6, 7] have 

shown th a t the problem can be recast as a finite dimensional convex optim ization. 

This is based in part on the work by Nesterov and Nemirovski [65] who introduced 

the idea of a  second-order cone representable function (in other words, a function th a t 

can be cast as a second-order cone). They showed th a t a semi-infinite optim ization 

with a  second-order cone representable constraint can be better interpreted as an 

optim ization over a second-order cone. Ben-Tal and Nemirovski [6] considered the 

following general linear program:

min cT x
X

subject to

a j x  <  bi V a,i E &u i — 1 , . . . ,  m,

with uncertainty in the data at- described by the  ellipsoid:

Oi€£ i  =  { o i + P V ^ S  : H < l } .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

Local reduction lets us recast the semi-infinite constraint

o f x  < bi V a,i E Si, i  =  1, - . . , m

as a m axim ization over the ellipsoid:

m ax {af x  : at- E S i } .  (4-19)

M axim ization over a linear function over a convex and closed ellipsoid, however, has 

an unique analytic solution

m ax{af x  : a* E Si}  =  a f  x  -F (3 ||Vj1//2:r[|. (4.20)

Because there is only one local maximizer, which is in fact the global maximizer, of 

the reduced problem, we can rewrite the uncertain LP as follows:

min cT xX
subject to (4-21)

aJx + PWV^-xW < bi 

for i =  1, . . . ,  rn. This is a second-order cone program because the constraint

a[ x  -h p  \\V^/2x\\ < bi

is a second-order cone constraint. This allows us to interpret the semi-infinite con­

straint in the robust steady-state target calculation as a second-order cone constraint.

In the robust LP, there is a m atrix  prem ultiplying the uncertain parameters.

min cTx
X

subject to

A G x  <b,  V G  E U.

To see how this can be still cast as a second-order cone program, we rewrite the 

semi-infinite constraint component-wise:

d i jg jx  <b i  G E l i ,  i =  1 , . . . ,  m,  (4.22)
j
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which can be rewritten as

9T (Dix) < b { V g e £

where A  is defined by:

A  =  [diag(aii e) diag(ai2 e) • - • diag(a*m e)]T ,

and g is the vector of the rows of G stacked lengthwise with e =  [l 1 • - - l ] T. From 

(4.19), the constraint becomes:

f  ( A  x ) + /3  I|V l/2 Di m|| <  bi (4.23)

which is a second-order cone.

The result is the following problem:

min cTx
X

subject to

gT ( D i x ) + P \ \ V l' 2 D i x \ \< b i  

for i =  1 , . . . ,  m.  This allows us to rewrite the semi-infinite program for the steady- 

sta te  target calculation in model predictive control (3.15) as a SOCP:

min cTA u  -I- dFGAu  +  eTe
A  U yC

subject to

gT (D i  A u ) +  P  || V'l /2 D i  Au|| + a[b  <  byi 4- et- (4.24)

A uA u  < bu 

e >  0.

for i  =  1. . .  , , m .  This optim ization problem must be solved at every controller 

execution. Because the subproblem is convex, we have an analytic expression for the 

unique global maximizer. The conceptual reduction algorithm of the previous section 

reduces to simply finding, by some nonlinear programming technique, the  solution 

of the second-order cone program. However, we can by our choice of approaches 

take advantage of the structure of the SOCP. There are two principal advantages to 

casting the problem in this form:
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• F irst and foremost, the original semi-infinite optim ization is recast in the form 

of a standard  optimization problem w ith a finite dimensional constraint.

•  Second, there has been tremendous activity  in extending prim al-dual interior- 

point m ethods to SO CP’s—resulting in new efficient solution methods.

In the following section we describe second-order cone programming and how primal- 

dual interior-point methods can be used to exploit its inherent convexity.

4.4 .2  Second-O rder Cone Program m ing

A general second-order cone program (SOCP) has the following form:

cTmm /  x
X

[| A{X -F bi\\ < c j x  -f- d{, i = I , . . . .  N  0-25)

G x  = g,

where x  E R n. h  E Rm, and g E Rp. The operation ||-|| is the standard Euclidean 

norm; and A{, / ,  q ,  di and G are of appropriate dimension. A wide variety of 

nonlinear convex optimization problems can be cast as SOCPs (see e.g. [56]), in­

cluding linear and quadratic programs as special cases. An excellent reference for 

interior-point methods for second-order cone programming is the text by Nesterov 

and Nemirovski [65].

This is by no means an exhaustive summ ary or discussion; our goal is to provide 

a more complete picture of the robust LP and facilitate the use of interior-point 

m ethods as a  tool in model predictive control. For a broader perspective, see the 

review by M. W right [111].

The most promising algorithms for solving second-order cone programs are prim al- 

dual interior-point methods. The goal in any interior-point m ethod is to reduce 

the objective function while keeping the iterates strictly  feasible with respect to the 

inequality constraints and, in the limit of a solution, satisfy the equality constraints 

as well. The application of these methods has been extended from their original
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use In solving LPs to numerous other optim ization paradigms such as quadratic and 

semi-definite programming.

One of the reasons why researchers are focusing more a tten tion  on second-order 

cone program m ing is th a t any quadratically constrained quadratic program can be 

recast as a SOCP. In fact, linear programming, quadratic programming, second-order 

cone program m ing, and semi-definite program m ing are all special cases of optim iza­

tions over sym m etric or self-scaled cones [65, 66, 67]. Many engineering and control 

applications can be cast as semi-definite program s [104, 114] or second-order cone 

program s. Boyd, Crusius and Hansson [10] show how SOCPs can be used in optim al 

control. They describe a robust optim al control problem in which the norm  of 

the cost function (i.e. the peak tracking error) is minimized for uncertain impulse 

response coefficients In a finite impulse response model. They show that the problem 

can be solved efficiently as a SOCP. They also illustrate how SOCPs can be used in 

the optim al design of feedback controllers. This attention has led to the development 

of new optim ization algorithms. There is some evidence [105] to suggest th a t while 

some SOCPs can be solved using tailored m ethods, a more general nonliner optim iza­

tion code m ay be more efficient. This has yet to be proven in practice. The duality 

theory for these problems gives rise to a general complementarity condition. T hat 

condition combined with primal and dual feasibility form a square nonlinear system 

of equations which in principle determine the optim al solution.

In order to explain how the primal-dual interior-point methodology is used, con­

sider the following SOCP:

min f Tx
X

subject to
(4.26)

[|Ai X  +  &i|| <  c f x  Jr d i ,  2 =  1 , . . . .  71

Gx  =  g.
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T he first step is to recast (4.26) in standard form:

min cTx

subject to

A x  =  b 

x  >K 0

(4.27)

where the optim ization has been cast in terms of the new decision variable x  G 

defined as

t \T

w ith

X-; =

%iQ
Xu

and  Xio G E. and x a  G Rn. The data  of the problem are given in terms of the original 

d a ta . Let

R  =

-4-l

A 2

An
T

V c “ /

and r =

bi

d2
b2

dn

\ b nj

T hen

Rc =  f  

A R  = G 

Rb =  Rg — r.

This, of course, assumes R ~ l exists. W hen R ~ l does not have full row rank, the 

problem  can be reduced to an equivalent problem tha t does. The notation x  >K 0
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means x  E 1C where JC is the Cartesian product of second-order cones:

fC =  ICL x  • - - x JCn.

The ith  second-order symmetric cone is given by:

IQ =  {xi = (xi0. xu)  | x~0 -  x '^xa  > 0: x iQ > 0}.

The dual of (4.27) is

min bTy 
y,z

subject to (4 2§)

A Ty + z =  c 

2 >*■ 0

where 2 <E IR.  ̂ and y  6  are the dual variables or Lagrange multipliers for the 

problem. The vector 2 possesses a structure similar to that of x.

t \T
* =  (* f  - 4 )

with

and 2j0 E E. and zu  E R n. It lies in the second-order cone defined by:

1C =  1C\ x - • - x 1C*

with

fci =  {zi  =  (Zio, Zil) I zf0 -  z£zi  1 >  0, 2;o > 0}-

W hile this notation may a t first seem burdensome, it casts the SOCP (and in fact any 

optim ization over a self-scaled cone) in a framework analogous to linear programming 

as in section 4.2. This is more than ju s t a convenient change of variables. I t helps
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to extend the theory associated with linear programming to a much larger class of 

problems of engineering significance.

Recall th a t the duality gap fj, is the  difference between the prim al and dual ob­

jective functions:

y  = c^x  — bTy  =  cr x — (Ax)T y  =  x T z. (4.29)

I t can. in a  sense, be regarded as a measure of the distance from optim ality. The 

prim al problem is said to be strictly feasible if there exists a point x  for which the 

inequality constraints of the primal problem hold w ith strict inequality: x  >K 0. 

Likewise, the dual problem is said to be strictly feasible if there exists a point 2 

for which the inequality constraints of the dual problem hold with stric t inequality: 

z >*. 0.

In 1994, Nesterov and Nemirovski showed that the duality  gap is zero a t optim ality 

if the prim al and dual problems for the second-order cone program are stric tly  feasible. 

T he proof for this is given in their text [65]. I t  is well known th a t this also holds true 

for any optim ization over self-scaled cones. The prim ary goal of any interior-point 

m ethod is to reach optim ality by driving the duality gap to zero while satisfying primal 

and dual feasibility as well as complementarity (sometimes called the com plem entarity 

slackness condition).

The com plem entarity condition for the SOCP is given by:

IO Z  =  0

where the binary operation “o” is defined as follows:

d e f  (  x T  zx  o z  =
V ■£ i 0 ~ i l  +  XiQZii

for x  E R ^  and 2 E R K. The binary operation forms w hat is known as a Euclidean 

Jo rdan  algebra [28, 29, 27], [26] or more generally an associative algebra [62]. It 

has very close connections to interior-point algorithms. The algebra can be viewed 

as the result of partitioning the vector Xi into a scalar component X{0 and a  vector
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com ponent Xn.  Associated with an element x  6 R ^  is the m atrix  m at(x ) defined to 

be d iag[X i , . . . .  W ] w ith

X-ii x iQ I

We can now see that

x  o z = m a t (x ) z  =  mat(z)x .

This lets us write Karush-Kuhn-Tucker (KKT) conditions for the primal and dual 

problems as follows:

where we have denoted X  =  mat(x).  Applying any Newton type m ethod on (4.30) 

yields the following linear system:

where Z  =  mat(z) .

T he nonlinear complementarity condition of (4.31), X z  =  0, is generally relaxed in 

some specific way to keep the iterates away from the boundary and inside the second- 

order cone. The specific way in which complementarity is relaxed produces different 

search directions and thus different algorithm s. A large class of these algorithms have 

been shown, to be polynomial [90] [62], th a t is, the effort required to solve the problem 

to a given tolerance can be represented as a  polynomial in the problem data.

Given some relaxed form of (4.31), there are two general classes of primal-dual 

interior-point methods: path-following algorithms and potential-reduction algorithms. 

We will consider the potential-reduction algorithm of Nesterov and Nemirovski [65]. 

This is the m ethod used to solve the examples of the next chapter.

(  A x  — b ^

F{x, y, z) =  A t  y -F z  -  c = 0, (x, z) >K 0

V )

(4.30)

f  A  0 0 \  f  px\  /  b — A x  \

0 A T I  py =  c — A 1 y — z

Vz 0 X J \ p J  V )
(4.31)
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A full explanation of Nesterov and Nemirovski’s potential-reduction algorithm  can 

be found in the paper by Lobo et al. [56]. If arlL is zero, the SOCP reduces to an 

LP and this algorithm  reduces to Ye’s potential-reduction algorithm  [115] for linear 

program m ing. The potential function for the algorithm is given by

n

ip(x. z) =  (2 N  -r uV2N )  ln/z — (in 7 (27) 4- In 7 (2*)) — 2JVlnN,  (4.32)
i—l

where u is an adjustable param eter and ln 7 is the barrier function:

. . .  . [ ( 4 ) “  ll^till) for x  >K 0
7(xi) = 7 w , % )  =  <

00 otherwise.

T he potential function keeps the iterates away from the boundary by acting  as a 

barrier for pair (2;, z), balancing duality and feasibility. As ib approaches —00, fi 

approaches 0, and (x, z ) approaches optimality.

The actual steps of the algorithm  are as follows:

A lg o r ith m  2: Nesterov and  Nemirovski’s Potential-Reduction Algorithm
(1) Generate a search direction by solving a linear system similar to

(4.31) (see [65] or [56] for details).

(2) a Perform a plane search on the potential function to determine 

the fraction of step to take.

(3) U pdate the iterates.

One characteristic of potential-reduction algorithms is that under mild conditions, 

they guarantee a fixed amount of decrease in the potential function at each iteration. 

They also tend to perform well in practice.

W here potential-reduction algorithms use a potential function to keep the iter­

ates stric tly  feasible, path-following algorithms employ the concept of a central path. 

There is a  larger body of theory associated with path-following algorithms th an  there 

is w ith potential-reduction algorithms. However, potential-reduction algorithm s can 

generally outperform path-following algorithms in practice. The search directions
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generated by path-following algorithms are generally the same as potential-reduction 

algorithms. However, the methods they use to stay away from the boundary differ.

The idea of the central path for second-order cone programming is similar to that 

for linear programming. It comes from relaxing or perturbing the complementarity 

condition of (4.30). The perturbed form of complementarity is given by:

X z  = ue.

This results in a set of perturbed KKT (PKKT) conditions:

f  A x  — b \

(4.33)

Fu( x ,y , z )  = =  0, ( x , z ) > K 0.A T y z  — c 

\  ue — X z  J

The central path is defined as the set of solutions (x , y . z ) £  K  x K. x R m for which 

Fu(x, y, z) =  0 for all v  >  0. Just as in linear programming, the central path  depends 

continuously and analytically on u. Any accumulation point of Fu =  0 as u tends to 

zero is a solution of (4.30).

Let us set u =  a y  where a  is a centering param eter and y  is the duality gap. We 

can then consider a Newton step on the PK K T conditions.

( A  0 0 \  / v J \  (  b — A x  \

0 A T I  

\ Z  0 X )
Py

w
c — AFy — z 

\ a y e  — X z  J

(4.34)

Different search directions are generated by scaling the last equation, solving the sys­

tem of equations, then unsealing. In fact the numerous search directions generated for 

semidefinite programming all have direct parallels in second-order cone programming 

[62].

Let us rewrite (4.34) in so-called normal form:

(.A Z ~ lX A T)py =  A Z ~ LX ( c  -  a y X ~ le -  A Ty ) + b - A x  

pz = c -  A Ty - z -  A Tpy 

px =  - Z ~ 1X ( p z — a y X ~ le — z)

(4.35a)

(4.35b)

(4.35c)
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where we solve the smaller linear system  (4.35a) for py and find pz and px by substi­

tu tion . This is the main com putational effort of the algorithm  and  depending upon 

the  nature of  A Z ~ lX A T , various structures can be exploited. Once a search direction 

is com puted, the fraction of the Newton step to take is computed using either a line 

search, or commonly, a  fraction of the step to the boundary. The iterates are then 

updated.

We now give the predictor-corrector path following algorithm  of Monteiro and 

Tsuchiya [62] for second-order cone programming. It can be considered a direct 

extension of Mizuno, Todd, and Ye’s predictor-corrector algorithm  [61] for linear- 

program m ing.

The predictor-corrector algorithm is composed of two steps. In the predictor step 

the centering param eter a  is set to zero, while in the corrector step, the centering 

param eter is set to one. The algorithm uses a value of

T  /  p  =  x  z /n

and  requires an initial point (x0,yQ, z 0) in a neighborhood j\f2 of the central path. 

T he algorithm  is given as follows:
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A lg o r i th m  3: Monteiro and Tsuchiya’s Path-Following Algorithm
d e fChoose a constant 0 <  r  <  1/30 and set p 0 =  p ( x 0, z0)

Given a starting  point (x Q, y ° , z °) G a tolerance e G (0.1) for
k  — 1 to  oo

if  Pk <  e/̂ o th e n  stop
Find (pk ,pk,pk) from. (4.35) w ith a  =  0
Calculate the fraction of the step to take, a;*, that if implemented 
would keep the iterates inside the enlarged neighborhood J\fo(2r)
U pdate the iterates:

(xfc+L, yk+\  zk+l) :=  (xfc, y k, zk) -f- a h (pk ,pk,pk)

Find (pk ,pk,pk) from (4.35) w ith a  = 1 .
U pdate the iterates:

(xk+l, y k+K z k+L) := (xk+\ y k+\ z k+l) +  (pk,pk,pk)

U pdate p:

p h+l : = p ( x k+\ z k+l)

r e tu r n

The definition of Af-2 can be found in [62]. As a  final note, there are also ex­

tensions of other LP algorithms to second-order cone programming. For instance, 

the algorithm  by Alizadeh and Schmieta [2] is a direct extension of M ehrota's LP 

predictor-corrector algorithm  [60].

We conclude this section by mentioning tha t there are several direct extensions of 

path-following algorithm s for linear program m ing to second-order cone programming. 

The algorithm  of Monteiro and Tsuchiya [62] for second-order cone programming is 

a direct extension of Mizuno, Todd, and Ye’s [61] predictor-corrector algorithm for 

linear-programming. Also, the algorithm  by Alizadeh and Schmieta [2] is a direct 

extension of M ehrota’s [60] LP predictor-corrector algorithm. We now' explain how- 

certain second-order cone programs can be interpreted stochastically with the semi­

infinite constraint cast probabilistically.
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4.4 .3  SO C P  and Stochastic  Program m ing

For some classes of problems the semi-infinite constraint in (4.1) is interpreted in a 

stochastic framework. The goal is to satisfy the constraint in a probabilistic sense:

prob( g ( x ; 9) <  0 ) > 1 — a,  (4.36)

with 0 G R m a random ly distributed variable with a given mean and  variance and 

1 — a  some generally high probability level. This classical way of dealing w ith un­

certainty as a probabilistic constraint is known as stochastic programming. In fact, 

many robust optim ization problems first arise as stochastic optim ization problems. 

Stochastic programming is commonly used in the fields of operations research and 

m anagerial science, whereas semi-infinite programming is applied more often to en­

gineering problems.

These ideas have recently been applied to model predictive control. Schwarm and 

Nikolaou have used stochastic programming as a way to address uncertainty in o u tp u t 

constraint satisfaction for dynamic MPC. They consider an impulse response model 

with coefficients having a given mean and variance. In [92] they pose the standard  

ou tpu t constraint as a probabilistic constraint which in turn  is cast as an  equivalent 

determ inistic constraint. The optim ization is then solved using nonlinear program ­

ming methods. The deterministic constraint they pose is actually a second-order 

cone. The techniques we discuss later for the robust LP can be used just as effec­

tively on the dynamic portion of MPC with probabilistic output constraints. Instead 

of using nonlinear programming methods, it is possible to use recently developed 

interior-point m ethods to solve the optimization problem. Schwarm and Nikolaou 

extended their approach in [91]. Instead of simply asking that the constraints hold 

to a given probability, they minimize the expectation th a t the constraints will be 

violated. This is known as a stochastic program with recourse. These approaches for 

addressing ou tput constraint satisfaction show great promise.

It has been known for some time in stochastic programming th a t  a probabilistic 

random  linear constraint (i.e. equation (4.36) for linear g(x, 6) and a  normal d istribu­

tion) can be cast as an equivalent nonlinear constraint (see e.g. §10.4 of [110] , §10.3
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of [74]). However, the nonlinear equivalent was not recognized as a second-order cone 

until recently. Lobo et al. [56] make this connection explicit in their sum m ary of 

SOCP applications.

Consider the linear probabilistic constraint:

The constraint can be written as an equivalent constraint w ith zero mean and unit 

variance:

W hile this is a special case of the general probabilistic constraint, it is still very 

im portant. A general probabilistic constraint (4.36) is very com putationally expen­

sive since it involves a semi-infinite, m ultivariate probability integral to evaluate the 

associated probability distribution function. A second-order cone, however, can be 

evaluated quite efficiently.

This allows us to interpret the semi-infinite constraint in the  robust steady-state 

target calculation probabilistically. I t can be thought of as requiring the ou tpu t

prob( a- x  < > 1 — a. (4.37)

If a.i has mean a,- and covariance V}, then a j x  has mean a j  and variance x T ViX.

Thus the probability can be given by:

or, equivalently,

d Jx  + P \ \ V ^ 2x\\ <  bi,

which is a second-order cone constraint. Here

£ =  $ ' L(1 -  a)

w ith

(4.38)
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Robust LP

Figure 4.2: Probabilistic In terpretation of the  Semi-Infinite Constraint in the Robust

constraints to  hold a given probability level. Figure 4.2 illustrates this idea. The 

location of the  constraint a f x <  6* given th e  nominal value of a* is represented by 

the vertical fines. Possible realizable locations of the constraint are represented by

realizable location of the constraint be less th an  or equal to 1 — or. This shifts the 

distribution. The new constraint is more restrictive and its location is a t the mean 

of the shifted distribution.

In the next section we consider problem (4.17) when the uncertainty description 

is given by a  polytope U =  B.

4 .4 .4  B o x  U n certa in ty

Let us consider the case when the uncertainty description is given by a polytope or 

box (3.3):

If the subproblem  in a semi-infinite  optim ization maximizes a  linear function subject 

to a  set of linear constraints when there is uncertainty in the problem  data , then 

the semi-infinite LP can be cast as a standard  LP with m ore constraints [21] [102]. 

Assume th e  uncertain param eter 6 corresponds to the elements of the m atrix  A g. The

LP

the overlaid normal distribution. Equation (4.37) requires the probability th a t any
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goal is to solve the following problem:

min cT x
X

subject to

A G x  < b V g e B ,

where b €  R m and x  G IR.71. A straight-forward way to solve the problem is to simply 

enum erate all the possible values of A.  The reason this is a valid approach relies on 

the fact th a t the solution of an LP will always lie on the boundary of the feasible set. 

So by enum erating all the possible values, the semi-infinite problem can be replaced 

by a finite problem with an increased number of inequality constraints. For every 

row i =  1 , . . . ,  m  of A, there are 2n possible perm utations of the entries, created by 

replacing the n  elements w ith their upper and lower bounds respectively. Doing so 

replaces the previous problem with the following problem with m  2n constraints:

min cT x
X

subject to

A mx  < b,

where A* is the m atrix  created by enumerating all the possible combinations of A.  For 

a 10-by-10 system with simple bounds on the outputs, this corresponds to over 20,000 

constraints th a t would need to be added to the nominal LP. The problem size grows 

exponentially. For real-time applications such as control, this m ay be unacceptable 

since constraints need to be dropped or added as sensors fail or transm itters go off­

line.

If the simplex m ethod is used to solve the problem, it can be expected to slow 

down as it is forced to consider a larger and larger number of vertices. Other m ethods, 

such as interior-point m ethods will likely produce bette r solution tim es as the number 

of inequalities increases. There is a limit, however, to the usefulness of this approach 

because for large semi-infinite problems, this will produce enormous equivalent finite 

problems. In this case, ellipsoid uncertainty may result in shorter solution times.
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4.5 Local R eduction  and th e  R obust D ynam ic Cal­

culation

In this section we use the m ethod of local reduction to solve the semi-infinite program 

associated w ith the robust dynamic MPC calculation. The semi-infinite constraint

h(x:  0) =  0
(4.39)

g(x) < 0  i d  £  U 

has the following specific form in the robust dynamic algorithm:

y =  P{u)d (4.40)

y (u)TQ y ( u ) + u t R u  < y ( u ) TQ y ( u ) + u t R u  V 0 e £ .  (4-41)

The output depends implicitly upon the model parameters 6. The vector u is a 

known constant. Because the  constraint is quadratic and not linear, it is not obvious 

whether substitu ting the equality constraint into the inequality constraint will be 

beneficial. W hen (4.40) is substitu ted  into (4.41) the approach is known as the black- 

box approach. If y  and u are solved for simultaneously, the approach is referred to as 

the all-at-once approach.

4.5 .1  A ll-A t-O nce vs. B lack-B ox

There are two general way to formulate optim ization problems which arise in optimal- 

control applications: all-at-once and black-box. In this section we comment on the 

structure of each. This first part of this discussion dealing w ith the implicit function 

theorem follows the discussion given by Vicente [106], section 4.2.

While we cast the general optim ization problem as (4.1) and consider x  as the 

decision variable, in fact, we know that (4.1) has a very specific structure and x  

is partitioned into two types of variables: m anipulated variables or inputs u, and 

controlled variables or outputs y. It is understood that in our discussion reference 

to outputs can just as well be interpreted as reference to states with any loss of
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The point we want to convey in this section does not depend on the fact th a t x  is 

also composed of other variables, nor does it depend on the presence of inequalities. 

Therefore, we will consider only the simplified equality constrained problem

min f ( u ,  y)

subject to (4.42)

h(u, y : 9) =  0.

This problem can also be cast in what is known as reduced form through use of the 

im plicit function theorem. Suppose there exists open sets V and 0  such th a t for all 

u €  V and 0 6  0  there exists a solution y of h(u, y: 9) = 0  such that the matrices 

hy {x) and hQ{x) are invertible for all x  w ith u  6  V, 9 6  0 ,  and h ( u , y : 9) =  0. Then 

the im plicit function theorem guarantees the existence of a differentiable function

■y{u; 9) : V x 0  —>• Rm

defined by

h(u ,y (u  ; 9) ; 9) =  0,

and problem (4.42) is equivalent to

m in / (u ;  9) =  f { u , y { u \ 9)). (4.43)

This is the so-called black-box approach in which the nonlinear constraints are not 

visible to the optimizer. Its solution is p art of the evaluation of the objective func­

tion f ( u ; 9). The reduced problem can be solved by a Newton-like m ethod. For 

optim al control problems, m any algorithms follow this approach [11], [69]. This is

the technique by which Badgwell [4] and R alhan [79] solved the robust dynam ic MPC

calculation.
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In the black-box m ethod a set of in itial inputs are chosen. The model equations 

are then solved outside of the optimizer and the s ta te  values passed back to the 

m inim ization problem. The optimizer finds a local minimizer u  of the objective 

function and the process is repeated w ith  the new solution in an a ttem p t to move 

toward optimality. In this method the optimizer never sees the equality constraints; 

they are transparent. Strict feasibility is maintained w ith respect to  the constraints 

since a t each iteration the model equations are solved for the states. This is somewhat 

a ttrac tive  for M PC applications, because if the optimizer should fail a t some iteration, 

the inputs, while not optimal, are feasible and can be sent into the plant.

If there are inequality constraints, they  are cast in term s of only u  and are handled 

by the optim izer in the same fashion as the objective function evaluation. This is 

straightforw ard for the input constraints; however, more work must be done to handle 

the s ta te  constraints. In some cases the states that are returned from the nonlinear 

equation solver may not be feasible since the solver has no information about s ta te  

constraints.

In the so-called all-at-once approach the inputs and states are solved for sim ulta­

neously inside of the optimizer. In this m ethod the goal is to move tow ard optim ality 

and feasibility a t the same time. The nonlinear equation h ( u , y ; 9) =  0 is appended 

to the optim ization problem as a nonlinear equality constraint.

In [8], Bequette outlines the two approaches, as well as others, in the  framework of 

nonlinear control. Both approaches have been known to the optim al control commu­

nity  for some time with the black-box approach being the classical formulation. W ith  

new and powerful optim ization algorithms and the ability to handle large problems 

efficiently, the all-at-once approach is becoming more and more attractive.

W hile the black-box approach offers a  smaller problem to solve, it forces the 

(possibly) costly task of independently handling the equality constraints. However, 

any itera te  in the black-box approach is always strictly  feasible w ith respect to the 

equality constraints. The black-box approach requires the evaluation of the function, 

its gradient, and Hessian upon request. This is costly since the Hessian is dense [112]. 

The sensitivity of the model to all the variables needs to be known. Because of the
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dense Hessian, this is especially expensive for stiff models and models derived from 

flow-sheet simulations [9]. Also, unless the gradient and Hessian are user-supplied, 

they will need to be approximated by numeric integration and this may yield poor 

results [37].

Experience has shown the all-at-once approach, while increasing the size of the 

problem significantly, offers better performance and is less likely to fail at finding 

a solution, especially for problems with more than a few states [81]. Also, s ta te  

constraint handling is easy in this formulation. One of the m ajor advantages of 

taking the all-at-once approach is freedom of the optimizer to move toward bo th  

optim ality and feasibility a t the same time.

When addressing semi-infinite constraints such as (4.39), it is very appealing to 

take the black-box approach because the subproblem requires m aximization over 9. 

In this case, the subproblem is

G(x;  6 ) =  max g(u .y(u;9)) .
6

This has the same drawbacks mentioned above. The all-at-once approach for the 

subproblem keeps the model equations appended as an equality constraint:

G ( x : 9 )  =  max g{u,y)

subject to

h(u ,y  ; 9) =  0.

This can be advantageous when g has a special structure as in the robust dynamic 

MPC calculation.

4.5.2  SQ P L ocal R eduction  M eth od

In this section we investigate the conceptual reduction algorithm of section 4.3.2 in 

greater detail. We show th a t the robust dynamic M PC algorithm of section 3.3 has 

a single unique maximizer. We then show how an SQP method w ith augmented 

Lagrangian can be used for step 2 of the conceptual reduction algorithm .
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Step 1: Find all th e  local m axim a

The first step of the conceptual reduction algorithm  of section 4.3.2 is to calculate 

all the local m axim a of the subproblem. For the robust dynamic M PC algorithm we 

need to solve the following optimization:

m ax y(u)TQ y ( u ) +  vF R u  — y{u)T Q y{u) — uTR u

subject to

y(u;  9) =  P(u)6  

9 = §  + p V l/2s

Ml < i

Since the optimization is with respect to 9 we can simplify the objective, dropping 

constant terms.

max y(u)TQ y(u) -  y{u)T Q y(u) 

subject to

y(u  ; 9) = H(u)6  (4-44)

9 = 9  + p V l/2s

M i l  <  1
Problem  (4.44) is the maximization of a quadratic functional subject to a ball con­

strain t (see c.f. [79]):

m ax (s — b)TA ( s  — b)
S

subject to (4.45)

sTs < 1

w ith s G Rn,

b = - ( 3 V l/29

and

A  = P2V 1/2T( H ( u)t QH(u) -  H { u) t Q H ( u) ) V 1/2.
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A unique global solution of (4.45) is guaranteed to exist [34] if the set F  =  {s : ||.?|| =  

l}  is not em pty and rank  [A1/2 / ] T — tl. These conditions are both satisfied for any 

A  and b for this problem. Thus, there exists only one unique local m axim a of the 

subproblem, and it can be found by solving problem (4.44).

Step 2: R eduction  w ith  an SQP augm ented Lagrangian solver

In this section we describe the algorithm  given in [38] for use in step 2 of the  conceptual 

m ethod described in section 4.3.2. The particular SQP m ethod uses a augm ented 

Lagrangian and a BFGS update for the Hessian.

SQP algorithms have been used very successfully for the solution of nonlinear 

program m ing problems. They are generally quasi-Newton type algorithm s. The 

augm ented Lagrangian of the reduced-problem (4.16) is defined to be:

n c(x . )  x . )

L(x,  A, p) S  / ( x) + J 2  X‘ G 'M  +  f  2  (4'46>
£=i e = i

Then step  2 of the conceptual reduction algorithm  is given by algorithm  4.
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A lg o rith m . 4: Augmented Lagrangian SQP with BFGS solver 
Given x 1,0 =  x l. o =  B{ G R nxri negative definite.

Then for j  =  1 to  Ar;

Compute a solution sy and multipliers AiJ of the quadratic program:

max ]-sTB i j - i S  + Fx(xl’J~l)Ts
s 2 T

subject to

Glx(xiJ- l )Ts +  Ge(x{'j - L) <  0

for t  =  1 , . . . .  rii 

Compute a step length ay.

Update

x' =  Xt,J 1 +  ttyS7

and

where

V7 = Lx (xi,J. A1’7, c) -  Lxxl (xl'j ~ \  A1J, c)

r e tu r n

Set

The algorithm uses the Broyden-Fletcher-Goldfarb-Shanno (BFGS) secant up­

date. In unconstrained optimization, BFGS updates the Hessian by a rank two m od­

ification. More information on secant updates can be found in the classical references 

[22], [23],

There are several common strategies for determining the step length ay- (see c.f.
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[37], [13]). I t is im portant to choose a step length which ensures the algorithm 

does not converge to an accum ulation point which is not a  minimizer (the M aratos 

effect). Also, near a  solution ay m ust converge to one ay —*■ 1 to ensure convergence 

properties. The algorithm  is superlinearly convergent [38]. O ther variants of the SQP 

algorithm  can be found in [73], [99], and [103].

One of the advantages of the SQP solver is that the QP subproblem can be solved 

using prim al-dual interior-point m ethods. The standard form QP

(4.47)

min —x Q x  + c x
x  2

subject to

A x  = b 

x  >  0

where Q is symmetric positive semidefinite n  x  n  m atrix can be recast to form a 

monotone linear complementary problem (mLCP). The dual of (4.47) is

max
y,z

— ]^x t Q x  4- b1 y

subject to

— Q x  + A Ty + z = c 

z > 0.

The K K T conditions for the prim al and dual problems are:

A x  — b 

- Q x - \ - A Ty - \ - z  — c = 0 ,

X Z e

which is a mLCP. This system  can be solved using the ideas of Section 4.2.

(4.48)

F{x,  y, z) = (x, z) > 0 (4.49)

4.6 Sum m ary o f R obust M PC  and Sem i-Infinite  

P r ogr am m ing

Both the dynamic and the steady-state target calculations take the form of a semi­

infinite program. By using the m ethod of local reduction, we are able to recast the
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semi-infinite problems into equivalent problems with, a finite number of constraints.

The steady-state target calculation can be reduced to a second-order cone program 

(SOCP). We make use of recent advances in prim al-dual interior-point methods to 

solve the resulting optim ization problem.

W hile the dynamic calculation cannot be reduced to a single nonlinear convex 

optim ization, we showed the subproblem in the conceptual reduction algorithm  has a 

unique global maximizer. An SQP local reduction m ethod which uses the augmented 

Lagrangian SQP technique w ith a BFGS Hessian update  can be used as the NLP 

for the conceptual reduction algorithm. The QP subproblem  is then solved using 

prim al-dual interior-point methods.
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C hapter 5 

Sim ulation  Exam ples

In this chapter we consider several examples that illustrate the closed loop behavior of 

the robust MPC algorithm s. We sim ulate the robust steady-state target calculation 

coupled to  a nominal dynamic controller. The dynamic controller is a  variant of the 

QDMC algorithm  w ith  a  sum of moves constraint and is described in Appendix A.

The examples show instances when, because of model mismatch or ill-conditioning, 

the targets  calculated by the nom inal LP result in poor control, while the targets 

calculated by the robust LP provide much improved control. The simulations were 

run on a desktop PC w ith an Intel Pentium  II processor using MATLAB with a MEX 

interface to the C routine SOCP by Lobo et al. [55]. The SOCP routine makes use 

of Nesterov and Nemirovski’s [65] potential reduction algorithm  described in Section 

4.4.2.

5.1 SISO E xam ple

Consider the simple single-input, single-output (SISO) steady-state model given by:

{Vk ~  Vk- i) =  g ( u k ~  «a:-i) +  b,

where Uk and yk are the  input and  ou tpu t a t time k, g is the model gain, and b is the 

model bias. Assume th a t  the gain is nominally

_ 1
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but the true plant gain is given by

9 act —  2 ,

which is assumed to  he in some ellipsoid. Also, assume unit constraints on the input 

and output:

- 1  < y <  1,

- l < u <  1.

Let the objective be given by:

Js =  u — 3 y.

The coefficients of u  and y  are such th a t the objective wants to drive the process 

toward large inputs and outputs.

For the sake of simplicity, we focus initially on steady-state control only. This 

means th a t the M PC control consists of only a steady-state target calculation, with 

the sample time chosen long enough such that the process reaches steady-state be­

tween each calculation.

( - i . i )

- -9 s

(i. k

( 1 . - 1 )

Figure 5.1: Model and Constraints in the Example: Solid Line— True P lant; Dashed 

Lines— Nominal Models
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The sim ulation for the steady-state controller with the above d a ta  is shown by 

Figure 5.1. This is a phase portrait of the iterates as they evolve in tim e. The box in 

the figure represents the feasible region defined by the input constraints. The solid 

line represents true plant and has a slope m  — 2. The dotted lines represent the 

nominal m odel at different time steps (including bias), each with a slope m  =

We now trace the evolution of the closed loop system. In Figure 5.1. the open 

circles correspond to the predicted input and output. The filled circles correspond 

to the actual input and output. The numbers next to each circle indicate the value 

of the input output pair {u,y).  If at time zero, the plant is at the origin w ith zero 

bias, then the model, indicted by line i, predicts the optim al steady-state should lie 

a t (1, ;f). B ut because of mismatch, once the input u — 1 is injected, the true plant is 

a t (1,2). Next bias is included in the model. This raises the nominal m odel line i  to 

the new position ii. The new model has an intercept of b =  | .  This forces the model 

to agree w ith measured output. The optim al steady-state solution using the nominal 

model ii for this time-step is at (—1,1). Because of model error, however, the true 

plant is actually a t (—1, —2). We again update the bias, yielding line Hi. The newr

Inputs

J

1 i U - _1 -L .L I .J -L . J_L _L L

Figure 5.2: Steady-State Only Controller: Nominal LP

solution is a t (1, —1). Injecting u =  1 into the plant we see that the process is moved 

in the opposite direction and the closed loop system begins to cycle. This cycling
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is illustrated in Figure 5.2 where the inputs and outputs are p lo tted  as functions of 

time. For this case the nom inal LP drives the input from one side of the feasible space 

to the other a t each time step. The output shows similar behavior except th a t it is 

never feasible at the sample times. Now consider what would happen if the nom inal 

LP were replaced with the proposed robust LP.

Assume we know more than  ju st the mean model gain. If we know to a 95 percent 

probability th a t the gain is between 2 and —1 (or equivalently th a t  A g =  ). then

we can control the process more efficiently with the robust LP. T he solution of the

(i .o

Figure 5.3: Model and C onstraints in the Example: Solid Line— True Plant: Dashed 

Line— Nominal Model

robust LP can be found graphically (see Figure 5.3). The hashed region in the figure 

represents the gain uncertainty. The optimal steady-state solution is the inpu t for 

which any realizable ou tpu t remains feasible: (u, y) =  (I. I). A t the next itera tion  

when bias is included in the calculation, the steady-state remains th e  same (see Figure 

5.4). We can see the robust LP prevents oscillations in the inpu t and ou tpu t and 

prevents violation of the ou tpu t constraint.

We now include dynamics in the problem. For simplicity, let the  system be first
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/

IS 20

Figure 5.4: Steady-State Only Controller: Robust LP

Figure 5.5: Conventional M PC Controller using the nominal LP (left) and robust LP 

(right)

order with a tim e-constant of 3 for both  the nominal model and plant:

® =  3 s T T 0 ’5 ’ f e  =  3 7 T T 2 -0

VVe use a step-response model with 30 coefficients to describe both the nom inal model 

and the plant. The dynam ic calculation uses the modified version of the QDMC 

algorithm  discussed in Section 4.3 with, a control horizon of c =  5, a prediction 

horizon of p =  35, and simple tuning weights of wu =  0 and wy =  1.

As illustrated in Figure 5.5, the nom inal LP cycles because of model mismatch, 

while the robust LP does not. While the cycling is not as strong as in the steady-
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state  controller, the mechanism producing the cycling is the same. The steady-state 

algorithm  is trying to find a target th a t agrees with the feedback it has received while 

satisfying the constraints. Because the model is it using is not correct, the steady- 

s ta te  target iterates end up ‘bouncing’ around their correct values. The input, in fact, 

is sometimes forced to cross from one side of its operating region to the other, and 

the upper output constraint is violated. The robust LP, on the other-hand, moves 

the system to the best operating point given the uncertainty of the problem.

W hile this example is somewhat pathological, it dem onstrates the importance of 

addressing uncertainty in the steady-state target calculation. Next we consider a 

more complicated, m ultiple-input, m ultiple-output example.

5.2 Shell Fundam ental C ontrol P rob lem

Let us consider the performance of the robust LP on a modified subset of the Shell 

fundam ental control problem [75] illustrated in Figure 5.6. The process is a heavy oil 

fractionator in which a gaseous feed stream  is separated by removing heat. We will 

only consider the two-by-two subsystem:

y
4.05e~303 l.77e~303

50s-t-l 
5.39e~203 

50s+L

60s+ l
5.72e~153

60s+ l

U. (5.1)

The outputs y =  [yL y2]T are the top end point y x and side end point y2. The inputs 

u  =  [-uL u2]T are the top draw u x and side draw u2. The time constants and dead- 

times are are assumed to be in units of minutes and the variables are all normalized. 

The problem has a known steady-state gain uncertainty

G  =  G ±  AG (5.2)

where

G =
5.04 1.77

A G =
2.11 0.39

and
5.39 5.72 3.29 0.57

(5.3)
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U pper Reflux

Top Draw

Interm ediate Reflux

Side

Stripper

B ottom s Reflux
F C ) UO

Side Draw

_(lc) Q  y

II
A  Bottom sFeed

Figure 5.6: Heavy Oil Fractionator

The model is linear, first-order w ith dead-time. We assume the dead-times are known 

exactly and investigate the effect of gain uncertainty on the closed loop system. The 

system  (5.1) will be represented using a 60 coefficient step-response m odel w ith a 5 

m inute sampling time. The constraints of the system are

1 o CM

VI U i

VI 0.5

-0 .5

VI e to

VI 0.5

00o
1 VI yi

VI 0.2

1 o bo

VI V2

VI 0.2
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Because the system  is linear, we have arbitrarily  set the initial operating point to be 

the origin (u. y) =  (0 ,0). The LP costs are such th a t the end points are maximized:

c = d = -  . (5-5)

u2

Outputs Outputs
a s

0.4

03
02
a t

0 so 250 3000 too 200

Figure 5.7: Closed loop response of the system w ith targets calculated via the nominal 

LP (left) and robust LP (right) for a  perfect model and nonzero uncertainty, det Gm = 

det Gact — 13.57, iV =  60, c =  3, p =  70, wu =  50, wy =  1.

In the sim ulations we consider the behavior of the closed loop system  when the 

steady-state targets are calculated by the nominal LP, the robust LP, and the enu­

m erated  LP. Equation (5.3) is a box uncertainty description. The uncertainty for 

the robust LP is formed by inscribing an ellipse in the box defined by (5-3). The 

enum erated LP uses the box uncertainty directly and refers to the case in which the 

the ou tpu t constraint is enum erated for all values of the gain. The targets are sent 

to the dynamic algorithm  described in Appendix A. The dynam ic algorithm  imple­

m ents input b u t no ou tpu t constraints and is tuned  to yield good performance for 

the nominal model. We only show plots for the nominal and robust LP, since the 

enum erated LP solution is sim ilar to  th a t for the robust LP.
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Figure 5.8: Closed loop response of the system with targets calculated via the nominal 

LP (left) and robust LP (right) in the presence of model uncertainty, det Gm =  13.57, 

det Gact =  —5.21, N  =  60, c =  3, p  =  70, wu =  50, wy =  1.

Figure 5.7 shows the closed loop response when we assume the model given by 

(5.1) exactly describes the plant. The system starts a t the origin, and the LP costs 

drive the system toward the upper ou tput constraints. Both outputs in the nom inal 

controller converge to their upper constraints. The outputs however, violate the 

constraint for a large am ount of the time. Constraints are violated to a lesser degree 

when the robust controller is used. The robust controller pushes the side end point to 

its upper limit but finds a  different optim al steady-state operating point for the top 

end point. The robust LP, unlike the nominal LP, does not always push the system  

to the intersection of constraints. In  this case, the robust LP has pushed the system  

to the best operating point given the uncertainty in the problem.

Now consider the case when th e  plant and model differ. Assume the steady-state 

gain of the system is actually:

G act —

2.05 2.12 

8.39 6.12
(5.6)

which lies within the uncertainty description (5.2). Figure 5.8 shows the closed loop
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response. The nominal controller goes unstable, bu t the robust controller is s till 

stabilizing. This is in part due to the fact that the determ inant of the model gain 

has the wrong sign.

det Gact =  —5.21, detCrm -  13.57.

The plant moves in the opposite direction of the model prediction forcing the con­

troller to go unstable. The robust algorithm  successfully moves the top end point to  

its upper limit and again moves the side end point to a non-constrained steady-state. 

While the robust algorithm  cannot guarantee closed loop stability when the determ i­

nant of the gain changes sign, this shows th a t it can be less sensitive to errors of th is 

type.

Now assume th a t we were able to get a better estim ate of the plant gain. In  

particular, assume th a t

3.12 2.29 1.50 0.30
with A G -

7.10 5.80 1.90 0.40

The actual gain (5.6) is still in our new uncertainty description. Using the sam e 

tuning for the dynamic controller, we obtain the simulation shown in Figure 5.9. 

The nominal controller is now stable but the side end point is minimized instead of 

maximized. If the sim ulation is carried out to long enough times, the side draw is 

forced to its lower bound with a net negative steady-state move in the side end point. 

The nominal controller, while predicting the end points should bo th  be maximized, 

actually has moved the system in the wrong direction. This is because the model 

determ inant still has wrong sign:

det Gm =  1-80.

The discrepancy is not large enough to cause the controller to go unstable, but it is 

enough to move the system  in the wrong direction. The robust controller is stable 

and maximizes both end points as the LP costs dictate.
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Figure 5.9: Closed loop response of the system w ith targets calculated via the nom inal 

LP (left) and robust LP (right) in the presence of model uncertainty. d e tG m =  1.80. 

det Gact =  —5.21, N  =  60, c =  3, p =  70, wu =  50, wy =  1.

Finally, assume th a t we can identify the actually plant perfectly, but A G  fy 0. 

Assume

Gm — G,act w ith A G =
0.80 0.25 

1.10 0.30
(5.8)

Figure 5.10 shows the resulting simulation. The nominal algorithm  nowr correctly 

pushes the closed loop system in the correct direction. W hile the system does not 

reach the constraints in the time-frame of the plot, it eventually reaches both upper 

constraints. The robust controller continues to move the system to the best operating 

point given the uncertainty of the problem. If we were to decrease the uncertainty, the 

trajectories in the robust sim ulation would become closer and closer to those in the 

n o m i n al simulation. In the lim it of zero uncertainty A G  —)■ 0, the robust sim ulation 

is identical to the nominal simulation.

All these sim ulations were run  using the enum erated LP as well. As mentioned 

previously, for th is example, the control profile for the enum erated LP is very sim ilar 

to the control profile for the robust LP. This is generally not the case and the two
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Figure 5.10: Closed loop response of the system w ith targets calculated via the nom­

inal LP (left) and robust LP (right) for a perfect model and nonzero uncertainty. 

Gm = Gact, det Gm =  -5 .21 , N  =  60, c =  3, p =  70, w u =  50, w y =  1.

controllers can produce different closed loop responses. Because the enumerated 

LP contains an increased number of constraints caused by enum erating all possible 

combinations of the gain, it is slower to solve. Table 1 shows the average solution tim e 

of all three algorithms for this example. The error shown in the num ber represents 

one standard  deviation.

Nominal LP Robust LP Enum erated LP

#  of variables 6 6 66
#  of constraints 12 12 132

Tim e (sec) (2.0 ± 0.7) x 10"2 (4.4 ±  0.7) x 10~2 (9.6 ± 1.0) x n r 1

Table 5.1: Comparison of Average Solution Times and Problem Size for the Nominal, 

Robust, and Enum erated LP for the Shell Fundam ental Control Problem

The solution tim e for the robust LP is roughly twice the solution time of the 

nominal algorithm. This time can likely be improved by further exploiting the unique
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structure inherent in the robust LP. The particular SOCP routine used for this ex­

ample takes no advantage of structure and requires strictly feasible initial primal and 

dual points. By exploiting structure and using a single stage m ethod, it is likely 

tha t solution times can be reduced. The enumerated LP uses a  simplex m ethod. 

Because there are an increased number of constraints, it is slower by over an order of 

magnitude (even for this two-by-two example).

For these simulations the controller using targets calculated by the robust LP 

provided bette r control th an  the corresponding controller using targets calculated by 

the nominal LP. The robust algorithm was able to effectively handle model mismatch, 

even for the case when the determ inant of the gain changed sign.

5.3 N onlinear D istilla tion  Colum n

Let us consider the performance of the robust LP on the high-puritv, nonlinear, 

binary-component distillation column presented by Skogestad in [98] and [96]. The 

column, illustrated in Figure 5.11, is a 2-by-2 system in the L V  configuration. The 

reflux L and boil-up V  are used to control the mole fraction of light component in 

the distillate Xd and bottom s x^. The distillate flow D  and the bottom s flow B  are 

used to control the liquid holdup in the condenser and reboiler through PID loops. 

They are part of the process model, and not included explicitly in the controller. The 

feed rate F  is taken to be unity and assumed constant. All flows are expressed in 

molar units. The distillation column is described by a system of ordinary differential 

equations with 82 states, corresponding to the liquid holdup and composition (of the 

light component) on each of the columns’ 41 stages. The model assumes: binary 

separation, constant pressure and negligible vapor holdup, total condenser, constant 

molar flows, equilibrium on all stages w ith constant relative volatility, and linearized 

liquid flow dynamics [96].

We have chosen to pose the problem in the L V  configuration for illustrative pur­

poses. O ther configurations are possible and change the problem dynamics. Some 

of the difficulty and problems we will encounter in the control of the column can be
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 (Q)

Figure 5.11: Typical D istillation Column Controlled in the Tl^-configuration

eliminated by choosing a  different control configuration. The configuration used in a 

real-world process would depend upon the particular application and operating con­

ditions. The paper by Skogestad et al. [97] discusses various control configurations, 

giving guidelines and rules of thum b for when to choose one over another.

For this example the outputs y  and the inputs u  are given by:

V = u =

At steady-state we have:

A y  = G A u  +  b

G =

where G is the system gain given by:

G\i Gi2 
G oi G22

We can expect the gain to behave nonlinearly because of the underlying nonlin­

ear model. In this example we would like to drive the separation to high purities,
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Figure 5.12: Nonlinear dependence of the steady-state gain on move size and  operat­

ing point. Solid-line: high-purity. Dashed-line: mid-purity. Dotted-line: low-purity.

i.e. to the point where xa is almost unity and x b is alm ost zero. The column is 

strongly nonlinear for these conditions. It exhibits directional and operating point 

nonlinearities, illustrated in Figure 5.12. The figure shows each gain elem ent’s de­

pendence upon move size for three different operating conditions: ysl =  (0.90,0.10), 

ys2 =  (0.95,0.05), and ys3 =  (0.99,0.01), w ith corresponding steady-state inputs: 

usl =  (1.5329,2.0329), u s2 =  (1.8733,2.3733), and us3 =  (2.7063,3.2063). These 

three operating  conditions will be referred to as the low-, mid-, and high-purity  

steady-states, respectively. If the column were linear, the curves in Figure 5.12 would 

be horizontal lines with zero slope and an intercept equal to  the steady-state gain. 

The directional dependence of the gain is shown in a lack of sym m etry abou t A L  =  0 

and A V  =  0. The operating point nonlinearity is shown in the  fact th a t the curves 

do not all lie on top of one another. In fact, the  curves do no t all possess the same
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Figure 5.13: Scaled initial open loop nonlinear response about the  high-purity steady- 

s ta te  for reflux move sizes of (from top to bottom ) 0.1%. 1%, 10%, and 50% for 

s tandard  (left plot) and logarithmic (right plot) distillate compositions.

intercept. The value of the gain for zero move size corresponds to the gain of the 

linearized system. This is a function of the operating point. T he exact values of the 

gain a t the three purities can be obtained by numerically differentiating the model. 

The mid- and high-purity gains are:

Finally, Figure 5.12 shows that the individual plots of the gain elements are al­

most m irror images of one another. This sym m etry m anifests itself as a highly 

ill-conditioned gain matrix. A quantitative measure of the ill-conditioning is the 

condition num ber r  of the matrix. The condition numbers of th e  above two matrices 

are

This shows the system moves closer to singularity with increasing purity.

Let us consider the dynamic behavior of the column. If we p lo t the initial dynamic 

response of the distillate for various moves in the  reflux we ob ta in  the left-hand plot 

in Figure 5.13.

(5.9)

1*mid — 15.9T, Thigh. 14o.4b.
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The initial dynamic response is a  strong function of move size. We can observe 

th a t the tim e-constant of the system increases dram atically as we decrease the move 

size.

These nonlinearities cause problems for control systems. One way to reduce these 

problems is by introducing logarithmic compositions [96]. Let us define two logarith­

mic compositions:

A new ou tpu t can then be defined as Yd = (X d. X b). The open loop response of 

the distillate logarithmic composition is shown in the right-hand plot in Figure 5.13. 

The initial response is independent of move size and is in fact also independent of

which a linear model is used. If we plot the gain of the system using logarithmic 

compositions as we did in Figure 5.12, we obtain Figure 5.14. T he gain is now much 

less dependent upon move size, though it is still a function of operating point for very 

small moves. Also, observe that the gain is more symmetric about origin, indicating 

th a t the directional nonlinearity in the problem has been reduced. The value of 

the gain a t the mid- and high-purity operating points determined by numerically 

differentiating the model is:

The condition numbers are the same as those for non-logarithmic compositions. 

We can expect the process to behave more linearly through the use of logarithmic 

compositions. Since we will be using a linear model to to approximate the column, 

we can expect better control.

We will employ logarithmic compositions in our simulations because they reduce 

the nonlinearity of the problem. It is the authors’ experience th a t using standard  

compositions in the simulation demonstrates more the inability of the dynamic algo­

rithm  to handle the nonlinear system than the effect of steady-state uncertainty on 

the problem.

X d d=  In (x d/(1  -  x d)) and X b d=  In (xb/ ( l  — x b) ) . (5.10)

operating point [96]. This is im portant for model predictive control applications in

(5.11)
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Figure 5.14: Dependence of the steady-state gain on move size and operating point for 

logarithmic compositions. Solid-line: high-purity. Dashed-line: mid-purity. Dotted- 

line: low-purity.

The simulations use a step-response model with, a  sample-time of 10 minutes. 

To obtain steady-state uncertainty information for use in the robust LP, we inject 

multiple steps into the nonlinear process allowing the system to reach steady-state 

after each step. The distribution of step sizes forms a random  Gaussian signal. This 

provides a wealth of steady-state data  which we identify using least-squares techniques 

to determ ine a the system gain and covariance. We ob ta in  the dynam ic step-response 

d a ta  by scaling a linearized model to the gain ju s t determined. Ideally, we would 

determ ine the steady-state and dynamic information, including covariances as p a rt 

of a single identification from step-response data.
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The control problem has the following input and output constraints:

< u < (5.12)

< y <

where y  is the original composition vector. The transformed compositions produce 

the following constraints: 2.3 <  Xd < oo and —oo <  Xb < —2.3. This, however, 

can pose problems in the linear program. The high-purity constraints become de­

generate. Given the above constraints, we would want the LP to drive the top and 

bottom  logarithm ic compositions to -Foo and —oo, respectively. Because the inputs 

are bounded, these constraints are not ‘seen’ by the LP. To handle this, we replace 

the high-purity  constraints as follows:

where e is some estim ate of the ultim ate purity th a t the  column can  be expected to 

reach. In our case, 10~4 <  e <  10-3 . For the examples we take e =  5.0 x 10-4 . This 

ensures the constraints do not become degenerate in the LP.

The LP objective d a ta  is given by:

drives the colum n toward high purities.

Initially we identify the process about the m id-purity steady-state. This yields 

an estim ate for the steady-state gain and covariance. For purposes of explanation, 

we will give an approxim ate value of A G  instead of the actual covariance. The value 

of AG is determ ined from a confidence level of 95 percent. The actual algorithm ,

(5.13)

(5.14)

which drives the inputs to large values (i.e. large reflux and boil-up). This in tu rn
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Figure 5.1o: Closed loop response of the system with targets calculated via the 

nominal LP (left) and robust LP (right) in the presence of model uncertainty 

||G -  Gest\\f\\G\\ =  0.24. N  =  30, c =  8, p =  40, wu =  20, wy =  1.

however, uses the covariance:

(  IA - 1 7  \  (  2.95 2.95 . , _
Gest — I , A C ?  ~  I . (5.15)

^  14 -2 0  )  I 2.95 2.95

A measure of the actual uncertainty in the problem is | |C ? — C ?e 5 i | | / | | C ? | |  which quantifies 

the difference between the estim ated and actual gain. It allows us to determ ine how 

accurately we identified the column. At mid-purity:

| |C ?  -  C ?e s i | | / | | C ? | |  =  0.24.

This tells us the gain is accurate to roughly 25 percent.

The targets will be sent to the dynamic controller described in Appendix A. It 

has the following conventional tuning: N  =  30, c =  8, p =  40, wu =  20, wy =  1. Here 

N  is the number of coefficients in the step-response model; c is the control horizon; 

p  is the prediction horizon; wu is the input move suppression weight; and wy is the 

output move suppression weight. This tuning ensures the dynamic controller is stable 

for the different conditions.

The dynamic controller uses the same input and output constraint set as the LP. 

The ou tpu t constraints are cast as soft constraints and are not robust. W hile the
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targets sent to the dynamic controller are guaranteed not to violate the ou tpu t con­

straints for the given uncertainty description at steady-state, the dynamic controller 

may move the inputs in such a way tha t the output constraints may not be met in 

the interim . A completely consistent approach would be to include a robust output 

constraint in the dynamic calculation as well. Another way to im part robustness to 

the dynamic controller is by increasing the move suppression wu, which is the method 

we use.

We assume the system is brought to the low-purity operating point: at which time 

the controller is turned on. The controller should then drive the system to  as high 

a purity as possible. The initial input and move history are assumed constant and 

initialized w ith the low-purity steady-state information. Figure 5.15 shows the result 

of the sim ulation. We have plotted the compositions on a logarithmic scale and have 

used yd = 1 — x d to designate the overhead distillate composition.

The nom inal controller (which uses the nominal LP) successfully drives the dis­

tillate composition to a high purity, bu t the bottom  composition is driven to an 

incorrect operating point. The robust controller (which uses the robust LP) pushes 

the system to both high-purity limits without a problem. The plant at high purity is 

very singular and has a steady-state gain an order of m agnitude greater th an  th a t of 

the identified model. The wrong constraint is approached by the nominal controller 

as a result of the targets sent by the steady-state controller. The feedback received 

from the dynam ic controller combined with a poor value of the gain causes the nom­

inal LP to produce targets th a t push the column in a direction where it believes it 

is approaching the high-purity constraint, when in fact it is approaching the lower 

constraint.

The robust controller, because it has information on the various values the gain 

may take, is more cautious and sends less aggressive targets to the dynamic algorithm . 

As a result the controller takes a little longer to reach its final operating point, but it 

can successfully move the system toward high purity. This is even though the actual 

system gain is outside its uncertainty description.

Let us identify the column again, this time obtaining a better estim ate for the
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Figure 5.16: Closed loop response of the system  w ith taxgets calculated via the 

nominal LP (left) and robust LP (right) iu th e  presence of model uncertainty 

||G -  GMt||/||G || =  0.0. N  =  30, c =  8, p =  40, wu =  20, wy =  1.

gain. In fact, assume we can identify the model in  such a way that we obtain the 

exact value of the  gain a t the mid-purity operating point but the covariance is the 

same as in the previous simulation.

||G — Gest||/ ||G || =  0.

The new sim ulation, shown in Figure 5.16, shows th a t  both  the nominal and robust 

controller can correctly push the system toward th e  high-purity limits. However, 

because of model m ism atch and nonlinearity, neither controller can push the system  

to even higher purities. T he robust controller takes slightly longer to reach the sam e 

steady-state lim it as the nominal controller.

The linear program  is pushing the system to a  region of operating space where 

the model no longer represents the system. This is often the case in practice. Since 

the tim e and effort required to identify a model su itab le for control of an industrial 

plant can be very costly, it is not done very often. In  the interim between plant tests, 

the plant may be pushed in directions th a t increase model error. This can, as we 

have seen, result in poor control. Intelligent design of a control system can help to 

minimize this, bu t it cannot remove the problem.

Let us identify the system one more time. This tim e we will identify the system
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Figure 5.17: Closed loop response of the system  with targets calculated via the 

nom inal LP (left) and  robust LP (right) in the presence of model uncertainty 

||G -  G est||/ ||G || =  0 .0 , ( d e t I 0 l/2 =  8.84. N  =  30, c =  8 , p =  40, wu =  2 0 ,

wy =  1.

a t the high-purity steady-state. The simulations will use a sample time of 30 m inutes 

and s ta r t the system  off a t the high-purity steady-state. At very high purities the 

t i m e  constants become much longer [96] thus requiring larger sample times. Again 

for simplicity, we will assume we can identify the model exactly a t the high-purity 

steady-state, bu t w ith  some nonzero covariance.

f  2 5 .4 7  2 5 .4 7  \
||G  — G e s t||/ ||G || =  0 with AG ~  . (5 .1 6 )

\ 2 5 .4 7  2 5 .4 7  I

This estim ate for th e  gain, however, will still be inaccurate because the column is 

nonlinear and does not operate exactly a t the high-purity lim it. We expect th a t with 

the be tte r estim ate we will be able to move the column to a higher purity. Figure 5 .1 7  

shows the resulting simulation. The nominal algorithm  displays the same behavior as 

before. While the d istillate  purity is pushed to a higher value, the bottom  composition 

is poor. The robust algorithm  successfully pushes both  compositions to high purities.
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Chapter 6 

C onclusions and O pen Q uestions

6.1 C onclusions

In this dissertation we have shown how some robust model predictive control problems 

can be interpreted more clearly as a class of semi-infinite programming problems. 

These problems arise from the addition of semi-infinite constraints to a nominal MPC 

algorithm. The constraints come from theoretical arguments which guarantee the 

robust stability  of the closed loop system or from requiring existing constraints to 

hold for an infinite set of plants. In particular, we considered both the effect of 

using cost function bounds as the means to im part robustness to the dynamic MPC 

algorithm and  the consequence of requiring the ou tpu t constraints in the steady-state 

target calculation to hold for an infinite set of gains.

When investigating the theoretical properties of model predictive control, it is 

nearly universally assumed that the steady-state targets received by the dynamic 

controller do not change. In practice, however, the targets result from a steady-state 

optim ization whose purpose is to reject disturbances and drive the system to some 

economic optim um . Mismatch between the model used in the target calculation and 

the true system  can cause very poor control.

For the case of a steady-state target calculation based on a linear program, we have 

shown one way th a t model uncertainty can be incorporated. For a linear model with 

elliptic uncertainty on the model parameters, the result is a robust target calculation
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which, takes the form, of a second-order cone program (SOCP). This SOCP can  greatly 

improve control by rigorously accounting for modeling error. The resulting SOCP 

structure can be exploited to develop efficient numerical solutions based on prim al- 

dual interior-point methods.

For the case when m odel uncertainty is given instead by a polytope or box. the 

result is a robust steady-state target calculation which takes the  form of an  enumer­

ated linear program  (LP). The enumerated LP is generally more conservative than  the 

corresponding SOCP and can be slower to solve. Prim al-dual interior point m ethods 

can be used to  reduce the solution time and provide an alternative, efficient solution 

strategy.

For the case of a dynam ic MPC calculation based on a linear model w ith cost 

function bounds, we have shown th a t the nonlinear program  is better in terpreted 

as a semi-infinite program (SIP). The SIP can be solved using the m ethod of local 

reduction with an  SQP solver. The QP subproblem can be efficiently solved using 

prim al-dual interior-point methods.

Finally, we showed several simulation examples where the robust LP, by incorpo­

rating  the uncertainty in the steady-state gain, produces improved closed loop con­

trol. While the nominal LP is sensitive to gain uncertainty, the robust LP successfully 

moves the system  to the best operating point for a given am ount of uncertainty.

6.2 O pen Q uestions

Many of the ideas presented in this dissertation can be extended directly to other 

problems in model predictive control. We showed how the robust LP associated w ith 

the steady-state target calculation can be interpreted as either a  stochastic program  

or semi-infinite program. Both of these in tu rn  are equivalent to the second-order 

cone program. The stochastic and semi-infinite programs approach the problem  from 

different directions. The obvious question arises: which is the better approach when 

applied to M PC with nonlinear models? For linear systems they are identical, but 

when the underlying optim ization problem is nonlinear, w hat is the difference in
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approaching the  problem from these two viewpoints?

Consider the  robust L P  when the upper and lower bounds on an output collapse 

to a single value or a  setpoint. This is equivalent to an equality constraint in the 

problem. W hat is the utility  of the uncertainty description for a setpoint or equality 

c o n s tr a in t in the robust L P ?  Instead of setting the probability the constraint will 

hold, a better approach would be to maximize the  likelihood th a t for a given input, 

the desired o u tp u t (setpoint) will result. This is a different kind of problem th an  the 

one posed here, and it m erits further study.

The theoretical properties of the closed loop system  where robust steady-state 

targets are sent to a robust dynamic regulator have not been considered here. W hile 

the sim ulations indicate the system is stable under nominal tuning, it is not known 

under what conditions the robust controller is robustly  stabilizing. Future work can 

consider the effect of combining robust target and robust dynamic calculations.

Finally, we conclude our comments on the solution methods presented in this dis­

sertation. We proposed the use of prim al-dual interior-point m ethods for the solution 

of the optim ization problems. The simulations used a  widely available code. If these 

ideas are to be used in an online environment, the  specific type and  structure of the 

interior-point m ethod m ust be investigated and fine-tuned. Since speed is vitally  

im portant, the solution tim e m ust only grow m odestly with increasing problem size.
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A ppendix A  

N om inal D ynam ic M PC  A lgorithm  for th e  

Exam ples

In this appendix we describe the nominal MPC algorithm  used in the examples. 

The algorithm  is a variation of the quadratic dynamic m atrix  control (QDMC) [35] 

algorithm with an extra ‘sum of moves’ constraint and. soft output constraints. Let 

n  be the number of inputs, m  be the num ber of outputs, c be the control horizon, 

p be the prediction horizon, and N  be the length of the step response model. The 

quadratic program associated, with QDMC is:

min SvFH 5 u  — qT5u5u,e

subject to , ,  „,
(A .l)

u — Uk-i <  L 5u < u  — Uk-\

y - y p <  A S u  < y - y p, 

where 8u  €  IR.nc is the future input moves. The Hessian H  and gradient g are given 

by:

H  =  A jT TrAd + Ar A and g =  A ^ A T A  e.

A 4 is the dynamic m atrix ; A =  wy I  is the m atrix of ou tpu t error weights; and 

T = wu I  is the m atrix  of input movement weights or move suppression weights, u 

and u  are the upper and lower input bounds, respectively. Likewise, y  and y  are the 

upper and lower bounds on the outputs. The vector yp is the future ou tput prediction 

and Uk~i is the input at the previous sample time.
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The dynamic m atrix  is given by

Ad =

A  u  Ax 2 

A 2 1  A 2 2

AmL Am 2

A Ln

A r.

(A.2)

with

A *  =

a x 0 0 0

a x 0 0

a 3 0 3 a x 0

U c O c — 1 O c - 2  ’ a x

(Ly O i V - 1 a iV -2  ' a i V — c + I

a-iv aty O A T Q-p—c-rl

(A-3)

j  ij

and (afc)ij is the kth. step response coefficient relating the zth output to the j t h  input.

The vector e is the error vector and  is given by

e =  r  — B dA u p — CdU0

Here r  is a vector representing the reference tra jectory  or setpoint of the system  

and B d and Cd are m atrices th a t relate the future ou tpu t to the past known moves

A up E R ^ 71 and past known inputs uq E R 71:

B d =

B u  B\2 

B 2 1  B 2 2

B-ml Bm2

B I n

B - r r rn

(A-4)
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w ith

Also

w ith

B ij =

a2 «3 CL4. • • OiV

0-3 &4 •• 0

G4 <26 •• 0

Uc+I (Lc ac—\ •• 0

O -iV-l 0 0 •> 0

0 0 0 •• 0

Cd =

Cij =
<2jV

aLy

ffljv

&/V

Cn C\2 • • • C i  71

C 21 C 22 :

c mL c m2 ••• Cmn

0 a,v

0
j  i j

(A.5)

(A-6)

(A-7)

In  our formulation, we use soft output constraints and append a constraint th a t 

forces the sum  of moves calculated by the algorithm to be equal to the to ta l move 

target calculated by the steady-state algorithm  Aus:

WSu =  A  us
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where W  is a m atrix  that sums the individual moves.

W  =

E

w ith £ ’ =  [11 • • • lj. This, however, can cause problems. The addition of this end­

point constraint causes the QP to become very ill-conditioned. It is analogous to the 

problems caused by end-point constraints in state-space M PC algorithms. Instead, 

we satisfy the constraint in a least squares sense and append it to the objective. The 

modified QP we solve is then:

min Sut H  5u -1- er E e — gT5u
Su.e

subject to

U — U k - 1 <  L S u  < U  — U k - 1

y  — y p ~ e <  A aSu  < y  — yp +  e

(A.8)

where e =  (e. e) and the new Hessian H  and gradient g are given by:

H  =  AEr Tr A  +  Ar A +  W t Q W  and  g = Aj, At A e -  W TQAu .
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