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Alternating sign matrix (ASM) counting is fascinating be-
cause it pushes the limits of counting tools. Nowadays, the 
standard method to attack such problems is the six-vertex 
model approach which involves computing a certain gener-
ating function of ASMs with—at first sight—nonorthodox 
weights originating from statistical mechanics. Still nobody 
has been able to use this technique to reprove the gener-
alization of the ASM theorem that Zeilberger has actually 
established in the first proof of the ASM theorem, where 
he showed that there is the same number of n × k Gog-
trapezoids as there is of n × k Magog-trapezoids nor has 
anybody proved Krattenthaler’s conjectural generalization of 
this result. In 2007 I have presented a proof of the ASM theo-
rem in a 12 page paper which does not involve the six-vertex 
model, but relies on another 19 page paper as well as Andrew’s 
determinant evaluation that he used to enumerated descend-
ing plane partitions. Over the years I have discovered many 
simplifications of my original proof and it is the main purpose 
of this paper to present now a 9 page self-contained proof of 
the ASM theorem. In addition, I speculate on how to possibly 
transform this computational proof into a more combinatorial 
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proof and I also provide a new constant term expression for the 
number of monotone triangles with prescribed bottom row.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

An alternating sign matrix (ASM) is a square matrix in which each entry is either 1, 
−1 or 0, and, along each row and each column, non-zero elements alternate and add up 
to 1, see Fig. 1 (left) for an example. Mills, Robbins and Rumsey [33,22,24] defined ASMs 

in the course of generalizing the determinant and conjectured that there are 
n−1∏
j=0

(3j+1)!
(n+j)!

ASMs of order n. After considerable efforts, Zeilberger [35] provided the first proof of 
the ASM theorem, and soon after that, Kuperberg [19] used six-vertex model techniques 
to provide a shorter proof. Accounts on the history of ASM counting are given in [6,7].

There are several different directions of related research that were followed after that, 
many of them concerning exact enumerations of subclasses of ASMs. For instance, al-
ready Mills, Robbins and Rumsey [24] conjectured that the number of n ×n ASMs where 
the unique 1 in the top row is situated in column i is also given by a simple product 
formula, namely by

(
n+i−2
n−1

)(2n−i−1
n−1

)
(3n−2
n−1

) n−1∏
j=0

(3j + 1)!
(n + j)! . (1.1)

The first proof of this result was again provided by Zeilberger [36], then also employing 
six-vertex model techniques. The ASM theorem then follows by summing over all i and 
using the Chu–Vandermonde summation. Several other results on doubly and triply 
refined enumerations (where the 1’s on two or three boundary rows and/or columns are 
fixed) were obtained until finally three years ago Ayyer and Romik [3] and Behrend [4]
derived formulas for the quadruply refined enumeration of ASMs fixing the 1’s in all four 
boundary rows and columns. Behrend’s result involves in addition two so-called bulk 
statistics, namely the number of −1’s in the ASM and the inversion number of ASMs.

On the other hand, Stanley suggested in the 1980s the systematic study of symmetry 
classes of ASMs, see [31,32], which led Robbins [32] to conjecture that several symmetry 
classes of ASMs are also counted by simple product formulas. All the conjectures are 
proven now by using the six-vertex model approach. More precisely, Kuperberg [20]
dealt with vertically symmetric ASMs, half-turn symmetry ASMs of even order and 
quarter-turn symmetric ASMs of even order, Razumov and Stroganov proved the odd 
order cases of half-turn symmetry ASMs [28] and quarter-turn symmetric ASMs [27], 
Okada [25] enumerated vertically and horizontally symmetric ASMs, while Behrend, 
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⎛
⎜⎜⎜⎝

0 0 0 1 0 0
0 1 0 −1 1 0
1 −1 0 1 −1 1
0 1 0 −1 1 0
0 0 0 1 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

0 0 0 1 0 0
0 1 0 0 1 0
1 0 0 1 0 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 1 1 1

⎞
⎟⎟⎟⎠ →

4
2 5

1 4 6
1 2 5 6

1 2 4 5 6
1 2 3 4 5 6

Fig. 1. ASM → partial column sums → monotone triangle.

Fischer and Konvalinka [5] recently dealt with diagonally and antidiagonally symmetric 
ASMs of odd order.

To mention briefly a third direction of related research, the Razumov–Stroganov 
(ex-)Conjecture [26], proved by Cantini and Sportiello [8], provides a fascinating con-
nection between the O(1) loop model and fully packed loop configurations (and thus 
ASMs because they are in bijective correspondence with fully packed loop configura-
tions). However, there are several ASM mysteries that have still not been resolved, two 
of which are certainly the unknown bijections between order n ASMs and 2n × 2n × 2n
totally symmetric self-complementary plane partitions (TSSCPP) [23,2], respectively de-
scending plane partitions with parts no greater than n [24,1]. By defining objects that 
generalize ASMs (GOG-trapezoids) and TSSCPPs (MAGOG-trapezoids) respectively, 
and proving that also these generalizations are equinumerous, Zeilberger [35] provided 
progress concerning the first bijection, and Krattenthaler [18] generalized these objects 
further and provided a pair of statistics on the two types of objects that seem to have the 
same distribution. However, to prove (bijectively or not) that this is indeed the case is 
an open problem up to this day and it is unclear whether the six-vertex model approach 
is the right tool.

In 2007 I have given an alternative proof of the ASM theorem [11] which does not 
involve the six-vertex model. However, this proof relies heavily on another paper [10], 
where an operator formula for monotone triangles with prescribed bottom row was de-
rived, and also on Andrew’s evaluation of the determinant that counts descending plane 
partitions [1]. In the past few years, I have discovered many shortcuts (some of which 
appeared in [12,13]) and it is the main purpose of this paper to present the most concise 
version of this proof (see also [30]). This is accomplished on about 9 pages in Section 2. 
The proof relies at one place on the famous Lindström–Gessel–Viennot Theorem [21,16,
17] and is otherwise self-contained. Hopefully this makes this alternative approach to 
ASMs complementing six-vertex model techniques easier to digest. In the final section, 
we present some thoughts on how to possibly “combinatorialize” this computational 
proof as well as a new constant term expression that counts monotone triangles with 
prescribed bottom row.

1.1. Monotone triangles

The proof makes use of the well-known equivalence between order n ASMs and mono-
tone triangles with bottom row 1, 2, . . . , n. A Gelfand–Tsetlin pattern is a triangular array 
(ai,j)1≤j≤i≤n of integers, where the elements are usually arranged as follows
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a1,1
a2,1 a2,2

. . . . . . . . .

an−2,1 . . . . . . an−2,n−2
an−1,1 an−1,2 . . . . . . an−1,n−1

an,1 an,2 an,3 . . . . . . an,n

,

(1.2)

and increase in northeast and in southeast direction, that is ai+1,j ≤ ai,j ≤ ai+1,j+1
for all i, j with 1 ≤ j ≤ i < n. A monotone triangle is a Gelfand–Tsetlin pattern with 
strictly increasing rows. To transform an ASM into the corresponding monotone triangle, 
compute the partial column sums, that is add to each entry all the entries that are in 
the same column above the entry, and record then row by row the positions of the 1’s, 
see Fig. 1 for an example.

We say that the integer partitions λ = (λ1, . . . , λn) and μ = (μ1, . . . , μn−1) are inter-
lacing (in symbols: μ ≺ λ), if

λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ . . . ≥ μn−1 ≥ λn,

that is the skew shape λ/μ is a horizontal strip. Consecutive rows of monotone triangles 
are obviously interlacing partitions if read them from right to left. In fact, monotone 
triangle of order n with bottom row λ can be seen as a sequence of n strict partitions 
λ(1), . . . , λ(n) with λ(i) ≺ λ(i+1), i = 1, 2, . . . , n − 1, and λ(n) = λ.

2. The proof

2.1. Monotone triangles with prescribed bottom row

We fix notation that is needed in this paper: We use the shift operator Ex, defined as 
Ex p(x) = p(x + 1), and set

Strictx,y = Ex + E−1
y −Ex E−1

y .

The forward difference is defined as Δx = Ex − Id, while the backward difference is 
defined as Δx = Id−E−1

x . For a vector x = (x1, . . . , xn), we let Δx =
n∏

i=1
Δxi

and 

Δx =
n∏

i=1
Δxi

. Note that shift operators with respect to different variables commute, 

which has the important consequence that all operators used in this paper commute. 
We define two polynomials as follows:

GTn(x) =
∏ xi − xj + j − i

j − i
and Mn(x) =

∏
Strictxq,xp

GTn(x).

1≤i<j≤n 1≤p<q≤n
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Multivariate Laurent polynomials in shift operators with respect to several variables 
also act on functions in these variables in the obvious way.

Theorem 2.1 ([10,12]). Suppose λ = (λ1, . . . , λn) is a strict partition, then the number 
of MTs with bottom row λ is the evaluation of the polynomial Mn(x) at (x1, . . . , xn) =
(λ1, . . . , λn).

For n = 3, we have∏
1≤p<q≤3

(E−1
xp

+ Exq
−E−1

xp
Exq

) = −E−2
x1

+ E−1
x1

+ E−2
x1

E−1
x2

+ Ex3 +3 E−2
x1

Ex3 −3 E−1
x1

Ex3

− 2 E−2
x1

E−1
x2

Ex3 + E−1
x1

E−1
x2

Ex3 −E−2
x1

Ex2 Ex3

+ E−1
x1

Ex2 Ex3 −2 E−2
x1

E2
x3

+3 E2
x3

E−1
x1

+ E−2
x1

E−1
x2

E2
x3

− E−1
x1

E−1
x2

E2
x3

+ Ex2 E2
x3

+ E−2
x1

Ex2 E2
x3

− 2 E−1
x1

Ex2 E2
x3

and applying this operator to the polynomial 1
2 (x1 − x2 + 1)(x1 − x3 + 2)(x2 − x3 + 1)

results in

1
2(3x1 + x2

1 + 2x1x2 + x2
1x2 − 2x2

2 − x1x
2
2 − 3x3 − 4x1x3 − x2

1x3 + 2x2x3

+ x2
2x3 + x2

3 + x1x
2
3 − x2x

2
3).

Evaluating at (x1, x2, x3) = (3, 2, 1) gives 7, and this is, by the correspondence between 
monotone triangles and ASMs, the number of 3 × 3 ASMs.

For strict partitions λ, we let

MTλ = # of monotone triangles with bottom row λ.

To compute MTλ, we can use the recursion

MTλ =
∑
μ≺λ

μ strict

MTμ (2.1)

and the initial condition MTλ = 1 if �(λ) = 1. This is the approach we use to prove 
Theorem 2.1. Two lemmas are necessary. In the first lemma, we apply the recursion 
in (2.1) to a particular class of polynomials. As the polynomial in Theorem 2.1 belongs 
to this class, this will be enough to prove the formula by induction on n.

Lemma 2.2. Let n ≥ 2. Suppose P (x), Q(x) are polynomials in x = (x1, . . . , xn−1) with 
P (x) = ΔxQ(x) and, for each i = 1, 2, . . . , n − 2, Strictxi,xi+1 Q(x) vanishes if we 
specialize xi+1 = xi + 1. If λ is a partition with n parts, then
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∑
μ≺λ

μ strict

P (μ) =
n∑

r=1
(−1)r+nQ(λ1 + 1, . . . , λr−1 + 1, λr+1, . . . , λn). (2.2)

Proof. The crucial observation is the following identity which is an immediate conse-
quence of the definition of ≺ and Strict

λ
(1)
i ,λ

(2)
i

.

∑
(μi−1,μi)≺(λi−1,λi,λi+1)

μi−1>μi

f(μi−1, μi)

=

⎡
⎢⎣Strict

λ
(1)
i ,λ

(2)
i

λi−1∑
μi−1=λ

(1)
i

λ
(2)
i∑

μi=λi+1

f(μi−1, μi)

⎤
⎥⎦
∣∣∣∣∣∣∣
λ

(1)
i =λ

(2)
i =λi

Consequently, the left-hand side in (2.2) is equal to

⎡
⎣Strict

λ
(1)
2 ,λ

(2)
2

Strict
λ

(1)
3 ,λ

(2)
3

· · ·

Strict
λ

(1)
n−1,λ

(2)
n−1

λ1∑
μ1=λ

(1)
2

λ
(2)
2∑

μ2=λ
(1)
3

· · ·
λ

(2)
n−2∑

μn−2=λ
(1)
n−1

λ
(2)
n−1∑

μn−1=λn

P (μ)

⎤
⎥⎦
∣∣∣∣∣∣∣
λ

(1)
i =λ

(2)
i =λi

. (2.3)

We use P (μ) = ΔμQ(μ) and see that, by telescoping, the multiple sum

λ1∑
μ1=λ

(1)
2

λ
(2)
2∑

μ2=λ
(1)
3

· · ·
λ

(2)
n−1∑

μn−2=λ
(1)
n−1

λ
(2)
n−1∑

μn−1=λn

ΔμQ(μ)

can be written as a sum of 2n−1 terms, where each term corresponds to the choice of 
either the upper or the lower bound in each of the n − 1 sums. However, those terms 
where we choose the lower bound in the i-th sum and the upper bound in the (i + 1)-st 
sum, for some i = 1, 2, . . . , n −2, vanish after the application of Strict

λ
(1)
i+1,λ

(2)
i+1

and setting 

λ
(1)
i+1 = λ

(2)
i+1, by the assumption on Q(x).

Thus, there is an r = 1, . . . , n such that we choose the upper bound in the first r− 1
sums and the lower bound in the remaining sums; each of the n − r choices of the lower 
bound contributes a −1. Using the fact that Strictx,y acts like the identity on functions 
that depend only on either x or y, we obtain the right-hand side of (2.2). �
Lemma 2.3. Let d1, d2, . . . , dn−1 ≥ 0 be integers and set dn = −1. If λ is a partition with 
n parts, then
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∑
μ≺λ

μ strict

∏
1≤p<q≤n−1

Strictμq,μp
det

1≤i,j≤n−1

(
μi − i + n− 1

dj

)

=
∏

1≤p<q≤n

Strictλq,λp
det

1≤i,j≤n

(
λi − i + n

dj + 1

)
.

Proof. We apply Lemma 2.2 to

P (x) =
∏

1≤p<q≤n−1
Strictxq,xp

det
1≤i,j≤n−1

(
xi − i + n− 1

dj

)
,

Q(x) =
∏

1≤p<q≤n−1
Strictxq,xp

det
1≤i,j≤n−1

(
xi − i + n− 1

dj + 1

)
.

The polynomials fulfill the requirements: First, Δx

(
x

d+1
)

=
(
x
d

)
implies ΔxQ(x) = P (x). 

Second, we use that

Strictxi,xi+1

∏
1≤p<q≤n−1

Strictxq,xp

is symmetric in xi, xi+1 and

Exi+1 det
1≤i,j≤n−1

(
xi − i + n− 1

dj + 1

)

is antisymmetric in xi, xi+1 to deduce that also Exi+1 Strictxi,xi+1 Q(x) is antisymmetric 
in xi, xi+1, and this shows that also the second requirement is fulfilled as antisymmetric 
polynomials in xi, xi+1 need to have the factor xi+1 − xi. Lemma 2.2 now implies that 
the left-hand side of (2.3) is equal to

n∑
r=1

(−1)r+nQ(λ1 + 1, . . . , λr−1 + 1, λr+1, . . . , λn)

=
n∑

r=1
(−1)r+n

∏
1≤p<q≤n

p,q �=r

Strictλq,λp

[
det

1≤i,j≤n−1

(
μi − i + n− 1

dj + 1

)]∣∣∣∣
(μ1,...,μn−1)=(λ1+1,...,λr−1+1,λr+1,...,λn)

.

Since Strictλr,λp
and Strictλq,λr

have no effect on a function that is independent of λr, 
we can extend 

∏
1≤p<q≤n

p,q �=r

Strictλq,λp
to 

∏
1≤p<q≤n

Strictλq,λp
and now, since the latter does 

not depend on r, we can pull it out of the sum. Now the assertion follows as
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det
1≤i,j≤n

(
λi − i + n

dj + 1

)

=
n∑

r=1
(−1)r+n

[
det

1≤i,j≤n−1

(
μi − i + n− 1

dj + 1

)]∣∣∣∣
(μ1,...,μn−1)=(λ1+1,...,λr−1+1,λr+1,...,λn)

,

by expanding the determinant on the left-hand side along the last column and using 
dn = −1. �

Theorem 2.1 now follows by induction on n from Lemma 2.3 and (2.1) as

∏
1≤i<j≤n

xi − xj + j − i

j − i
= det

1≤i,j≤n

(
xi − i + n

n− j

)
.

Indeed, this identity is a consequence of the Vandermonde determinant evaluation 
det

1≤i,j≤n

(
xj−1
i

)
=

∏
1≤i<j≤n

(xj−xi) as, by elementary column operations, det
1≤i,j≤n

(pj(xi)) =

det
1≤i,j≤n

(
xj−1
i

)
for any sequence of polynomials (pj(x))1≤j≤n, where pj(x) is of degree 

j − 1 and the leading coefficient of pj(x) is 1.

2.2. Rotating

So far, MTλ is only defined for strict partitions λ, however, Theorem 2.1 al-
lows us to extend the definition of MTλ to all integer vectors λ by setting MTλ =
Mn(λ1, λ2, . . . , λn). For an integer vector λ = (λ1, . . . , λn), we define

rot(λ) = (λn − n, λ1, . . . , λn−1).

Theorem 2.4 ([11]). Suppose λ is an integer vector of length n, then

MTλ = (−1)n−1 MTrot(λ) . (2.4)

Recall that the r-th elementary symmetric polynomial is defined as

er(x1, . . . , xn) =
∑

T⊆{1,2,...,n}
|T |=r

∏
t∈T

xt.

The proof of the theorem is based on the following lemma.

Lemma 2.5. Let n ≥ 1 and 1 ≤ r ≤ n. Then

er(Δx1 , . . . ,Δxn
)

∏
1≤i<j≤n

xi − xj + j − i

j − i

= er(Δx1
, . . . ,Δxn

)
∏ xi − xj + j − i

j − i
= 0 (2.5)
1≤i<j≤n
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Proof. As

Ex1 E2
x2

. . .En
xn

er(Δx1 , . . . ,Δxn
)

∏
1≤i<j≤n

xi − xj + j − i

j − i

= er(Δx1 , . . . ,Δxn
)

∏
1≤i<j≤n

xi − xj

j − i
,

it suffices to show that the right-hand side vanishes in order to see that the first term 
in (2.5) vanishes. Now, 

∏
1≤i<j≤n

xi−xj

j−i is—up to a constant—the non-zero antisymmet-

ric polynomial with the smallest total degree. Since er(Δx1 , . . . , Δxn
) is symmetric in 

x1, . . . , xn, er(Δx1 , . . . , Δxn
) 

∏
1≤i<j≤n

xi−xj

j−i is antisymmetric as well, however, the total 

degree has been decreased as er(Δx1 , . . . , Δxn
) is homogeneous of degree greater than 

zero, and thus it must be zero.
The proof that the second term of (2.5) vanishes too is analogous. �

Proof of Theorem 2.4. It suffices to show that

Mn(x1, . . . , xn) + (−1)nMn(xn − n, x1, . . . , xn−1). (2.6)

Observe that the operator in Mn(x1, . . . , xn) can also be expressed as

E−1
xp

+ Exq
− E−1

xp
Exq

= Id+Δxp
Δxq

.

It follows that (2.6) is equal to

∏
1≤p<q≤n

(Id +Δxp
Δxq

)
∏

1≤i<j≤n

xi − xj + j − i

j − i

+ (−1)n E−n
xn

∏
1≤p<q≤n−1

(Id +Δxp
Δxq

)
n−1∏
q=1

(Id +Δxn
Δxq

)

∏
1≤i<j≤n−1

xi − xj + j − i

j − i

n−1∏
j=1

xn − xj + j

j

=
∏

1≤p<q≤n−1
(Id +Δxp

Δxq
)
(

n−1∏
p=1

(Id +Δxp
Δxn

) −
n−1∏
q=1

(Id +Δxn
Δxq

)
)

∏
1≤i<j≤n

xi − xj + j − i

j − i
.

By Lemma 2.5 and as
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n−1∏
p=1

(Id +Δxp
Δxn

) −
n−1∏
q=1

(Id +Δxn
Δxq

)

=
n−1∑
r=0

(
Δr

xn
er(Δx1

, . . . ,Δxn−1
) − Δr

xn
er(Δx1 , . . . ,Δxn−1)

)
,

it suffices to show that

Δr

xn
er(Δx1

, . . . ,Δxn−1
) − Δr

xn
er(Δx1 , . . . ,Δxn−1)

=
r∑

s=1
(−1)r+sΔr

nΔr−s
n es(Δ1, . . . ,Δn) +

r∑
s=1

(−1)r+s+1Δr
nΔr−s

n es(Δ1, . . . ,Δn), (2.7)

since the right-hand side is in the ideal of C[Δ1, . . . , Δn, Δ1, . . . , Δn] generated by 
ei(Δ1, . . . , Δn) and ei(Δ1, . . . , Δn), i = 1, 2, . . . , n. Equation (2.7) is obvious for r = 0
and it follows for r > 0 by induction with respect to r, after observing that

Δr

n er(Δ1, . . . ,Δn−1) − Δr
n er(Δ1, . . . ,Δn−1)

= Δr

n(er(Δ1, . . . ,Δn) − Δn er−1(Δ1, . . . ,Δn−1))

− Δr
n(er(Δ1, . . . ,Δn) − Δn er−1(Δ1, . . . ,Δn−1))

=
(
Δr

n er(Δ1, . . . ,Δn) − Δr
n er(Δ1, . . . ,Δn)

)
− ΔnΔn

(
Δr−1

n er−1(Δ1, . . . ,Δn−1) − Δr−1
n er−1(Δ1, . . . ,Δn−1)

)
and applying then the induction hypothesis to

Δr−1
n er−1(Δ1, . . . ,Δn−1) − Δr−1

n er−1(Δ1, . . . ,Δn−1). �
2.3. Refined ASMs numbers and partial MTs

The following proposition contains certain expressions for the refined ASM numbers, 
i.e. the number An,i of n × n ASMs with a 1 in the first row and i-th column.

Proposition 2.6 ([13]). Let n, i be positive integers and Mn(x) denote the polynomial 
in (2.1).

(1) The number of MTs with bottom row 1, 2, . . . , n and i occurrences of 1 is equal to the 
evaluation of the polynomial (−Δxn

)i−1Mn(x1, . . . , xn) at (x1, . . . , xn) = (n, n − 1,
. . . , 3, 2, 2).

(2) The number of MTs with bottom row 1, 2, . . . , n and i occurrences of n is equal to 
the evaluation of the polynomial Δi−1

x1
Mn(x1, . . . , xn) at (x1, . . . , xn) = (n −1, n −1,

n − 2, . . . , 2, 1).
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Order n ASMs that have the 1 in the top row in column i correspond to either of 
the two objects in the proposition. To see this, rotate the ASM counterclockwise by 90◦
(resp. rotate clockwise by 90◦ and reflect then along the horizontal symmetry axis) and 
use the well-known bijection between ASMs and MTs.

The proposition is a consequence of the following simple observations. A left-partial 
monotone triangle of order n and depth i is an array of the form as a monotone triangle 
(ai,j)1≤j≤i≤n of order n with the bottom i − 1 elements of the first NE-diagonal deleted, 
that is an,1, an−1,1, . . . , an−i+2,1, see also (1.2). As usual we require weak increase along 
NE-diagonals and SE-diagonals, and strict increase along rows, except for an−i+1,1 <

an−i+1,2 does not have to be fulfilled. The number of such arrays with (an,n, . . . , an,2) =
(λ1, . . . , λn−1) and λn = an−i+1,1 is equal to the evaluation of (−Δxn

)i−1Mn(x1, . . . , xn)
at (x1, . . . , xn) = (λ1, . . . , λn). This follows by induction with respect to i and applying

∑
(μ1,...,μn−2)≺(λ1,...,λn−1)

(μ1,...,μn−2) strict

P (μ1, . . . , μn−2, λn)

= −Δλn

⎛
⎜⎜⎝ ∑

(μ1,...,μn−1)≺(λ1,...,λn)
(μ1,...,μn−1) strict

P (μ1, . . . , μn−1)

⎞
⎟⎟⎠ .

So to speak, −Δλn
“eats” the leftmost NE-diagonal. Analogously, we define right-

partial monotone triangles of order n and depth i as arrays (ai,j)1≤j≤i≤n with an,n,
an−1,n−1, . . . , an−i+2,n−i+2 deleted, and the usual monotonicity requirements except for 
an−i+1,n−i < an−i+1,n−i+1. The number of such arrays with λ1 = an−i+1,n−i+1 and 
(an,n−1, . . . , an,1) = (λ2, . . . , λn) is equal to the evaluation of (Δx1

)i−1Mn(x1, . . . , xn) at 
(x1, . . . , xn) = (λ1, . . . , λn) as

∑
(μ2,...,μn−1)≺(λ2,...,λn)

(μ2,...,μn−1) strict

P (λ1, μ2, . . . , μn−1)

= Δλ1

⎛
⎜⎜⎝ ∑

(μ1,...,μn−1)≺(λ1,...,λn)
(μ1,...,μn−1) strict

P (μ1, . . . , μn−1)

⎞
⎟⎟⎠ .

2.4. Linear equation system for the refined ASM numbers

Proposition 2.7. Let n ≥ 1. Then

An,i =
n∑

j=1

(
2n− i− 1

n− i− j + 1

)
(−1)j+1An,j , i = 1, 2, . . . , n. (2.8)
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Proof. By Proposition 2.6 (1) and Theorem 2.4,

An,i = (−Δxn
)i−1Mn(n, n− 1, . . . , 2, xn)

∣∣
xn=2

= (−1)n+iΔi−1
xn

Mn(xn − n, n, n− 1, . . . , 2)
∣∣∣
xn=2

As Δxn
= Exn

Δxn
, this is equal to

(−1)n+i E−2n+i+1
xn

Δi−1
xn

Mn(xn + 1, n, n− 1, . . . , 2)
∣∣∣
xn=n−1

= (−1)n+i(Id−Δxn
)2n−i−1Δi−1

xn
Mn(xn, n− 1, n− 2, . . . , 1)

∣∣∣
xn=n−1

,

where we use E−1
xn

= (Id−Δxn
) and Mn(x + 1) = Mn(x). Now we expand 

(Id−Δxn
)2n−i−1 using the Binomial Theorem, and then employ Proposition 2.6 (2), 

to obtain

∑
j≥0

(
2n− i− 1

j

)
(−1)n+i+jAn,i+j =

n∑
j=1

(
2n− i− 1

j − i

)
(−1)n+jAn,j ,

where we use that An,j = 0 if j > n and the binomial coefficient vanishes if j < i. This 
is now equal to the right-hand side in the statement as An,j = An,n+1−j . �
2.5. The linear equation system determines An,i

To show that the linear equation system in (2.8) determines the numbers An,i for 
fixed n up to a multiplicative constant independent of i, it suffices to show that 
the rank of the n × n matrix (

( 2n−i−1
n−i−j+1

)
(−1)j + δi,j)1≤i,j≤n is n − 1. For n = 1, 

this is easy to see, and otherwise this is accomplished by showing that the ma-
trix Bn obtained by deleting the first row and the first column is non-singular. Let 
Sn =

((
n

j−i

)
(−1)i+j

)
1≤i,j≤n−1

and use the Chu–Vandermonde summation to see 

that S−1
n =

((
n+j−i−1

j−i

))
1≤i,j≤n−1

. Chu–Vandermonde summation also shows that 

SnBnS
−1
n =

((
i+j
j−1

)
(1 − δi,n−1) + δi,j

)
1≤i,j≤n−1

. Now

detBn = det
1≤i,j≤n−1

((
i + j

j − 1

)
(1 − δi,n−1) + δi,j

)
= det

1≤i,j≤n−2

((
i + j

j − 1

)
+ δi,j

)
,

where the second equality follows from expanding with respect to the last row. The latter 
determinant is equal to

n−2∑ ∑
det

1≤i,j≤k

((
ti + tj
tj − 1

))
,

k=0 1≤t1<t2<...<tk≤n−2
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and thus positive as det1≤i,j≤k

((
ti+tj
tj−1

))
is by the Lindström–Gessel–Viennot theorem 

[21,16,17] just the number of families of k non-intersection lattice paths with unit north 
steps and east steps, and starting points (0, −t1 − 1), (0, −t2 − 1), . . . , (0, −tk − 1) and 
ending points (t1 − 1, 0), (t2 − 1, 0), . . . , (tk − 1, 0).

Showing that the proposed numbers in (1.1) fulfill (2.8) (using again the Chu–
Vandermonde summation) implies that we have the right numbers up to a constant 
independent of i but still possibly dependence on n. That this constant is in fact 1 fol-
lows then by induction with respect to n basically by showing (using Chu–Vandermonde 

summation) that the proposed numbers fulfill also the identity 
n−1∑
i=1

An−1,i = An,1.

3. Miscellaneous

3.1. Combinatorializing

A drawback of all existing proofs of the ASM theorem is that they are computa-
tional proofs. Combinatorial proofs are more desirable. For instance, it would be very 
interesting to have a bijective explanation for (2.8). We present some thoughts on “com-
binatorializing” the proof presented in this paper, see also [14].

3.1.1. Combinatorial proof of Theorem 2.1?
Theorem 2.1 is an important ingredient in our proof and so it would be interesting 

to provide a combinatorial proof. To this end, we point out that the evaluation of the 
polynomial Mn(x) at (x1, . . . , xn) = (λ1, . . . , λn) has a quite obvious combinatorial in-
terpretation (besides the one proved in Theorem 2.1) in terms of a signed enumeration. 
A combinatorial proof of Theorem 2.1 could then consist in bijectively explaining the 
equivalence of the two combinatorial interpretations.

First, let us note that GTn(x) is the number of semistandard tableaux of shape 
x = (x1, . . . , xn), or, equivalently, the number of Gelfand–Tsetlin patterns with bot-
tom row (xn, xn−1, . . . , x1) if x1 ≥ x2 ≥ . . . ≥ xn ≥ 0. If we expand the operator ∏
1≤p<q≤n

(
E−1
xp

+ Exq
−E−1

xp
Exq

)
into monomials in E±1

x1
, E±1

x2
, . . . , E±1

xn
and apply the 

shift operators to GTn(x), we obtain a signed sum of expressions each of which count 
Gelfand–Tsetlin patterns with a prescribed bottom row that is a “deformation” of 
(xn, xn−1, . . . , x1). (In fact, these deformations count what we call “generalized” Gelfand–
Tsetlin patterns because after the deformation the bottom row does not have to be 
increasing, see below.)

The signed sum and the deformations have an easy description as follows: Let us 
define a direction pattern d of order n to be a function d assigning each element in 
{(i, j)|1 ≤ j ≤ i ≤ n − 1} an element in {←, →, ↔}, and define the sign of d to be 
sgn(d) = (−1)# of ↔. So the domain of an order n direction pattern is just the “index 
set” of the elements of an order n Gelfand–Tsetlin pattern, where the bottom row is 
excluded, see also (1.2). The background is that we identify (i, j) in the domain of the 
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direction pattern with the factor corresponding to the pair (i − j + 1, n − j + 1) =: (p, q)
in 

∏
1≤p<q≤n

(
E−1
xp

+ Exq
−E−1

xp
Exq

)
, where the assignment “d(i, j) =→” corresponds 

to choosing E−1
xp

from the factor 
(
E−1
xp

+ Exq
−E−1

xp
Exq

)
when expanding the product, 

“d(i, j) =←” corresponds to choosing Exq
and “d(i, j) =↔” corresponds to choosing 

E−1
xp

Exq
.

Now given a direction pattern p of order n, the corresponding deformation
(x1, . . . , xn)d =: (y1, . . . , yn) is computed as follows: We arrange the direction pattern in 
the form of a Gelfand–Tsetlin pattern (1.2) and add xn, xn−1, . . . , x1 as bottom row. Then

yi = xi − (# of →,↔ in the NW diagonal of xi)

+ (# of ←,↔ in the NE diagonal of xi).

In conclusion, we can write Mn(x) as

∑
d direction pattern of order n

sgn(d) GT(xd).

One important final observation in this respect is that GT(xd) is not necessarily the 
number of Gelfand–Tsetlin patterns with bottom row xd, since, because of the defor-
mation, the sequence xd does not have to be non-increasing (even if x was decreasing). 
However, there exists a combinatorial interpretation of GT(x) for all x ∈ Z

n which ex-
tends Gelfand–Tsetlin patterns, see [9, Section 5.1]: a generalized Gelfand–Tsetlin pattern
is a triangular array of integers (ai,j)1≤j≤i≤n such that the following is fulfilled for each 
entry ai,j with i < n:

• If ai+1,j ≤ ai+1,j+1, then ai+1,j ≤ ai,j ≤ ai+1,j+1.
• If ai+1,j > ai+1,j+1, then ai+1,j > ai,j > ai+1,j+1.

(This implies that there is no generalized Gelfand–Tsetlin pattern with ai+1,j =
ai+1,j+1 + 1.) Whenever we are in the second case, we say that ai,j is an inversion. The 
sign of a generalized Gelfand–Tsetlin pattern is (−1)# of inversions and the signed enumer-
ation of a generalized Gelfand–Tsetlin pattern with bottom row x is equal to GT(x).

3.1.2. Combinatorial proof of Lemma 2.4?
On the other hand, Theorem 2.1 is only needed to prove Lemma 2.4, so one could 

immediately go for a combinatorial proof of Lemma 2.4. Since rot(λ) is not a strict 
partition if λ is, one prerequisite is a combinatorial interpretation of MTλ for all finite 
integer sequences λ. (Recall that MTλ is for arbitrary finite integer sequences defined 
as the evaluation of the polynomial Mn(x) at λ.) I have provided several such interpre-
tations in [14] (see also [29]) in terms of a signed enumeration and repeat my favorite 
interpretation here. (The sign seems unavoidable, because (2.4) involves a sign.)
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We start by providing an alternative combinatorial interpretation for MTλ if λ is a 
strict partition. Here a direction pattern d of order n is a function d assigning each element 
in {(i, j)|1 ≤ j ≤ i ≤ n} an element in {←, →, ↔} and its sign is sgn(d) = (−1)# of ↔. 
So the domain of an order n direction pattern is now the entire index set of the elements of 
Gelfand–Tsetlin patterns of order n. We say that a Gelfand–Tsetlin pattern (ai,j)1≤j≤i≤n

respects the direction pattern if the following is fulfilled: For all entries ai,j with i < n, 
we need to have the following.

• If d(i + 1, j) ∈ {→, ↔}, then ai+1,j < ai,j .
• If d(i + 1, j + 1) ∈ {←, ↔}, then ai,j < ai+1,j+1.

Then MTλ is equal to

∑
d direction pattern of order n

sgn(d) (# of Gelfand–Tsetlin patterns with bottom row

λ respecting d).

This follows basically from (2.1) and the fact that (2.3) is equal to the left-hand side 
in (2.2). See [14, Subsection 6.1.2] for a more detailed explanation.2

This can be extended to all finite integer sequences λ. Given a direction pattern d
of order n, then a triangular array (ai,j)1≤j≤i≤n respects d if, for each entry ai,j with 
i < n, the following is fulfilled.

(1) If d(i + 1, j) =← and d(i + 1, j + 1) ∈ {←, ↔}, then ai+1,j ≤ ai,j < ai+1,j+1 or 
ai+1,j > ai,j ≥ ai+1,j+1.

(2) If d(i + 1, j) =← and d(i + 1, j + 1) =→, then ai+1,j ≤ ai,j ≤ ai+1,j+1 or ai+1,j >

ai,j > ai+1,j+1.
(3) If d(i + 1, j) ∈ {↔, →} and d(i + 1, j + 1) ∈ {←, ↔}, then ai+1,j < ai,j < ai+1,j+1

or ai+1,j ≥ ai,j ≥ ai+1,j+1.
(4) If d(i + 1, j) ∈ {↔, →} and d(i + 1, j + 1) =→, then ai+1,j < ai,j ≤ ai+1,j+1 or 

ai+1,j ≥ ai,j > ai+1,j+1.

In each case, we say that ai,j is an inversion if the second possibility applies. (If the 
bottom row of such a triangular array is an increasing sequence, then there can be no 
inversion and (ai,j)1≤j≤i≤n is just a Gelfand–Tsetlin pattern that respects the direc-
tion pattern d in the above defined sense.) Now MTλ has the following combinatorial 
interpretation.

2 Note that this combinatorial interpretation of MTλ could also be useful in providing the combinatorial 
proof asked for in the previous subsection. In fact, there it would also have been possible to work with 
direction patterns of order n the domain of which include also the entire index set of the elements of 
Gelfand–Tsetlin patterns of order n.
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∑
d direction pattern of order n

(ai,j)1≤j≤i≤n array with bottom row λ respecting d

sgn(d) (−1)# of inversions of (ai,j)1≤j≤i≤n .

3.2. Constant term formulation of Theorem 2.1

Corollary 3.1. Suppose λ = (λ1, . . . , λn) is a strict partition, then the number of MTs 
with bottom row λ is the constant term of the following Laurent polynomial.

n∏
i=1

(1 + xi)λix−n+1
i

∏
1≤i<j≤n

(xj − xi)(1 + xi + xixj)

Proof. Applying the operator 
∏n

i=1 E
λi
xi

to Mn(x) and computing the constant term of 
the resulting polynomial gives the number of MTs with bottom row λ. As

∏
1≤p<q≤n

E−1
xp

∏
1≤i<j≤n

xi − xj + j − i

j − i
=

∏
1≤i<j≤n

xi − xj

j − i
= det

1≤i,j≤n

(
xi

n− j

)
,

and by expressing the shift operators by difference operators, i.e. using Ex = Id+Δx, 
this number is also the constant term of the following polynomial,

∑
σ∈Sn

sgn σ

n∏
i=1

(1 + Δxi
)λi

∏
1≤p<q≤n

(Id +Δxp
+ Δxp

Δxq
)

n∏
i=1

(
xi

n− σ(i)

)
,

where we have used the Leibniz formula for the determinant. Now, since

Δs

x

(
x

t

)∣∣∣∣
x=0

=
(

x

t− s

)∣∣∣∣
x=0

= δs,t,

where δs,t is the Kronecker delta, this number is also

∑
σ∈Sn

sgn σ 〈xn−σ(1)
1 · · ·xn−σ(n)

n 〉
n∏

i=1
(1 + xi)λi

∏
1≤i<j≤n

(1 + xi + xixj),

where 〈xm1
1 · · ·xmn

n 〉P (x1, . . . , xn) denotes the coefficient of xm1
1 · · ·xmn

n in the polynomial 
P (x1, . . . , xn). But this is also the constant term of

∑
σ∈Sn

sgn σ x
σ(1)−n
1 · · ·xσ(n)−n

n

n∏
i=1

(1 + xi)λi

∏
1≤i<j≤n

(1 + xi + xixj),

and since ∑
σ∈Sn

sgn σ x
σ(1)−1
1 · · ·xσ(n)−1

n =
∏

1≤i<j≤n

(xj − xi)

this is the expression in the statement. �



I. Fischer / Journal of Combinatorial Theory, Series A 144 (2016) 139–156 155
In particular, this shows that the constant term of

n∏
i=1

(1 + xi)n−ix−n+1
i

∏
1≤i<j≤n

(xj − xi)(1 + xi + xixj)

is the number of n × n ASMs. Similar identities have appeared before in the work of 
Di Francesco, Fonseca and Zinn–Justin, for instance, the constant term of

n∏
i=1

(1 + xi)2x2i−2n−1
i

∏
1≤i<j≤n

(xi − xj)(1 + xi + xixj)

is also the number of n ×n ASMs, see [15, (4.9)]. Compare also with [34, Theorem 1.13].
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