
THE ANDREWS-STANLEY PARTITION FUNCTION AND p(n)

HOLLY SWISHER

Abstract. In a recent paper, G. E. Andrews [And04] formulated a new partition function t(n).
This function counts the number of partitions π for which the number of odd parts of π is congruent
to the number of odd parts in the conjugate partition π′ (mod 4). This condition is due to R. Stanley
[Sta]. In the first part of this paper we obtain an asymptotic formula for t(n). From this we see that
t(n) ∼ p(n)/2, where p(n) is the ordinary partition function. Moreover, we show that for sufficiently
large n, the sign of t(n)−p(n)/2 depends only on n (mod 4). In [And04], Andrews showed that the
(mod 5) Ramanujan congruence for p(n) also holds for t(n). We extend his observation by showing
that there are infinitely many arithmetic progressions An + B, such that for all n ≥ 0,

t(An + B) ≡ p(An + B) ≡ 0 (mod lj)

whenever l ≥ 5 is prime and j ≥ 1.

1. Introduction and statement of results

Let n be a nonnegative integer. Recall that p(n) counts the number of partitions π of n, and
p(0) is defined to be 1. For a partition π, let O(π) be the number of odd parts in π. Let π′ denote
the conjugate partition, which is obtained by reading the columns (instead of the rows) of the
Ferrer’s diagram for π [And98]. The Andrews-Stanley partition function t(n) counts the number
of partitions π of n for which O(π) ≡ O(π′) (mod 4). The generating function for p(n) is known
to equal the following infinite product (throughout let q := e2πiz)

(1) F (q) :=
∞∑

q=0

p(n)qn =
∞∏

n=1

1

(1 − qn)
.

Notice that F (q) converges absolutely for all z ∈ H, the upper half of the complex plane. In
[And04], Andrews proves that the generating function for t(n) can also be written as an infinite
product

(2) G(q) :=

∞∑

n=0

t(n)qn =
F (q)F (q4)5F (q32)2

F (q2)2F (q16)5
.

It is natural to ask for the size of t(n). Here are some values of p(n), t(n), and t(n)/p(n), com-
puted using Maple.
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n t(n) p(n) t(n)/p(n)

50 73852 204226 .3616189907

100 107883650 190569292 .5661124564

150 18895766111 40853235313 .4625280217

200 2078730441344 3972999029388 .5232144347

250 111883314327463 230793554364681 .4847765989

300 4722726799452756 9253082936723602 .5103949496

350 137637052365622088 279363328483702152 .4926811730

400 3399061241292811170 6727090051741041926 .5052795808

450 66731552815421191902 134508188001572923840 .4961151719

500 1156767741034860735121 2300165032574323995027 .5029064109

This data suggests that

lim
n→∞

t(n)/p(n) =
1

2
.

Theorem 1.1. If n is a positive integer, then

t(n) =
1

2
p(n) + S(n) + ε(n),

where |ε(n)| = O
(
exp

(
2π

3
√

6

√
n
))

, |S(n)| = O
(
exp

(√
13π

2
√

6

√
n
))

, and S(n) ∈ R satisfies S(n) > 0

for n ≡ 0, 1 (mod 4), and S(n) < 0 for n ≡ 2, 3 (mod 4).

Since it is known that p(n) ∼ 1
4n

√
3
exp(π

√
2n/3) [And98], we obtain the following corollary.

Corollary 1.2. We have that

lim
n→∞

t(n)

p(n)
=

1

2
.

It turns out that t(n) > 1
2p(n) for n = 1, 4, 5, 8, 9, 12, . . . These are precisely the n for which

n ≡ 0, 1 (mod 4). The following can easily be seen from the sign of S(n).

Corollary 1.3. If n is sufficiently large, then the following are true:

(i) If n ≡ 0, 1 (mod 4), then t(n) > 1
2p(n).

(ii) If n ≡ 2, 3 (mod 4), then t(n) < 1
2p(n).

Andrews proved in [And04] that for all n ≥ 0,

(3) t(5n + 4) ≡ 0 (mod 5),

showing that the classical (mod 5) Ramanujan congruence for p(n) also holds for t(n). He did
this by proving a certain partition identity using q-series. Yee, Sills, and Boulet have all proven
this identity combinatorially, see [Yee], [Sil], and [Bou]. In addition, Berkovich and Garvan [BG]
have proven (3) combinatorially by deriving statistics related to the Andrews-Garvan crank and
the 5-core crank which divide t(5n+4) into 5 equinumerous classes. This extends the famous work
of Garvan, Kim, and Stanton [GKS90].

It is natural to ask whether the (mod 5) congruence is just one of many congruences shared
by t(n) and p(n). In recent years, it has been proven by Ono and Ahlgren that there are many
other congruences for p(n) (see [Ono00], [Ahl00], and [AO01]). Here we show that the (mod 5)
congruence is not an isolated example.
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Theorem 1.4. Let l ≥ 5 be prime, and j a positive integer. There are infinitely many arithmetic
progressions An+B such that for all n ≥ 0 we have

t(An+B) ≡ p(An+B) ≡ 0 (mod lj).

Remark. In fact, Theorem 1.4 follows from a more precise statement (see Theorem 5.4).

In Section 2 we will recall techniques of the “circle method” of Hardy and Ramanujan, used to
prove the exact formula for p(n), and use them to gain information about t(n). In Section 3, we
will give the proof of Theorem 1.1. In Section 4, we will recall some basic facts about integral and
half-integral weight modular forms, the Shimura correspondence, and a theorem of Serre in order
to prepare for the proof of Theorem 1.4. In the final section, we will give proof of Theorem 1.4.

2. Preliminaries for the proof of Theorem 1.1

Recall from (2) that

G(x) :=
∞∑

n=0

t(n)xn =
F (x)F (x4)5F (x32)2

F (x2)2F (x16)5
.

Notice that G(x) converges absolutely whenever |x| < 1 and has poles at all roots of unity.
Assume that n is a positive integer. Now G(x)/xn+1 has a pole at 0 with residue t(n), so by

Cauchy’s Residue Theorem we have that

t(n) =
1

2πi

∫

γ

G(x)

xn+1
dx,

where γ is an oriented contour around 0 inside the unit circle. Let x = e−ρ+2πiφ for ρ > 0 ∈ R, and
0 ≤ φ ≤ 1. This change of variables gives that

(4) t(n) =

∫ 1

0
enρ−2πinφ ·G(e−ρ+2πiφ)dφ.

Of course, this integral is not easy to evaluate. However, using the “circle method” of Hardy and
Ramanujan we can get an adequate approximation which leads to Theorem 1.1. For brevity, we
assume that the reader is familiar with the use of this method in the case of p(n) (see [And98],
[Apo90]).

2.1. Farey fractions. We begin by using Farey fractions to divide up the integral in (4). Recall
that for a positive integer N , the set of Farey fractions of order N is the set of reduced fractions
h/k, with k ≤ N , in the interval [0, 1] listed in increasing order (see [Apo90] and [And98] for a full
description of Farey fractions).

Definition 2.1. Let h0

k0
, h

k ,
h1

k1
be successive Farey fractions of order N . When 0 < h < k, we let

Θ0
h,k :=

h

k
− h0 + h

k0 + k

Θ1
h,k :=

h+ h1

k + k1
− h

k
,

and let

Θ0
0,1 :=

1

N + 1
=: Θ1

0,1.

The following proposition follows easily from the definitions of Θi
h,k (see [Apo90]).
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Proposition 2.2. Let h0

k0
, h

k ,
h1

k1
be successive Farey fractions of order N . For i = 0, 1, we have

1

2kN
≤ Θi

h,k <
1

kN
.

Using standard methods of substitution and changing variables, for every positive integer N , (4)
becomes

(5) t(n) =

N∑

k=1
(h,k)=1

0≤h<k

1

2πi
· e− 2πinh

k

∫ ρ+2πiΘ0
h,k

ρ−2πiΘ1
h,k

eny ·G
(

exp

{
2πih

k
− y

})
dy.

We shall impose two conditions on ρ which will be useful in the evaluation of these integrals.
For n ≥ 1, we choose ρ and N so that

(6) ρ =
1

n
,

and

(7) 6 ≤ N2ρ ≤ 7.

2.2. Transformation formula for F (x). Since G(x) can be written in terms of F (x), we can
make use of the transformation properties of F (x) to carry out the calculation required in (5).
First we will recall the classical Dedekind sums.

Definition 2.3. Let h, k > 0 be integers such that (h, k) = 1. Then the Dedekind sum s(h, k) is
defined by

s(h, k) :=
∑

r mod k

(( r
k

))((hr
k

))
,

where ((x)) is defined to be x− bxc − 1/2 when x 6∈ Z, and 0 for x ∈ Z.

The following transformation formula for F (x) can be obtained from Dedekind’s functional equa-
tion for η(z) (see Theorem 5.1 in [Apo90] and let y = 2πz/k2).

Theorem 2.4. If Re(y) > 0, k > 0, (h, k) = 1, and hH ≡ −1 (mod k), then

F

(
exp

{
2πih

k
− y

})
= eπis(h,k)

(
ky

2π

) 1

2

exp

(
π2

6k2y
− y

24

)
F

(
exp

{
2πiH

k
− 4π2

k2y

})
.

2.3. Application of transformation formula to G(x). Now we would like to apply Theorem
2.4 to G(x). However in doing so, we must raise x to certain powers of 2. Consequently, to satisfy
the hypotheses we must know what power of 2 divides k. To deal with this, we will break up t(n)
into several sums depending on which power of 2 (up to 5) divides k. In this way we find that

t(n) =
5∑

m=0

Sm,

where for m ∈ {0, 1, 2, 3, 4}, Sm is defined as

(8) Sm :=
∑

2mk≤N
(h,2mk)=1
0≤h<2mk

k odd

1

2πi
· e− 2πinh

2mk

∫ ρ+2πiΘ0
h,2mk

ρ−2πiΘ1
h,2mk

eny ·G
(

exp

{
2πih

2mk
− y

})
dy,
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and

(9) S5 :=
∑

32k≤N
(h,32k)=1
0≤h<32k

1

2πi
· e− 2πinh

32k

∫ ρ+2πiΘ0
h,32k

ρ−2πiΘ1
h,32k

eny ·G
(

exp

{
2πih

32k
− y

})
dy.

Note that we may replace k by 2mk (and H by Hm) in Theorem 2.4 provided that (h, 2mk) = 1,
and hHm ≡ −1 (mod 2mk). Likewise, in Theorem 2.4 we may replace h by 2lh (and H by H l),
provided that (2lh, k) = 1, and 2lhH l ≡ −1 (mod k). We may also replace y by ny for any real
n > 0. In this way, we may apply Theorem 2.4 to G(x) inside each of the six summands. After a
straightforward (but tedious and lengthy) computation we obtain the following formulas.

Lemma 2.5. Let m ∈ {0, 1, 2, 3, 4, 5}, Re(y) > 0, k > 0, and (h, 2mk) = 1. Then we have

G

(
exp

{
2πih

2mk
− y

})
= am · eπiσm(h,k) ·

√
ky

π
· exp

(
bm

(
π2

k2y

)
− y

24

)
· Ψm(xm, wm),

where am, bm ∈ Q, and σm(h, k) is a linear combination of Dedekind sums. Moreover, Ψm(xm, wm)
is a power series in the variables

xm = exp

(
2πiHm

2mk
− 4π2

22mk2y

)
and wm = exp

(
2πiH ′

m

k
− 4π2

32k2y

)

for Hm,H
′
m satisfying hHm ≡ −1 (mod mk), and 32

mhH
′
m ≡ −1 (mod k) respectively. In particu-

lar, the following two tables give the specific values:

m am bm Ψm(xm, wm)

0 1√
8

1
6 F (x0)F

5(w8
0)F

2(w0)F
−2(w16

0 )F−5(w2
0)

1 1
2

1
24 F (x1)F

5(w8
1)F

2(w1)F
−2(x2

1)F
−5(w2

1)

2 1√
8

13
96 F (x2)F

5(x4
2)F

2(w2)F
−2(x2

2)F
−5(w2

2)

3
√

2 1
384 F (x3)F

5(x4
3)F

2(w3)F
−2(x2

3)F
−5(w2

3)

4
√

32 −47
1536 F (x4)F

5(x4
4)F

2(w4)F
−2(x2

4)F
−5(x16

4 )

5 4 1
6144 G(x32)

m σm(h, k)

0 s(h, k) + 5s(4h, k) + 2s(32h, k) − 2s(2h, k) − 5s(16h, k)

1 s(h, 2k) + 5s(2h, k) + 2s(16h, k) − 2s(h, k) − 5s(8h, k)

2 s(h, 4k) + 5s(h, k) + 2s(8h, k) − 2s(h, 2k) − 5s(4h, k)

3 s(h, 8k) + 5s(h, 2k) + 2s(4h, k) − 2s(h, 4k) − 5s(2h, k)

4 s(h, 16k) + 5s(h, 4k) + 2s(2h, k) − 2s(h, 8k) − 5s(h, k)

5 s(h, 32k) + 5s(h, 8k) + 2s(h, k) − 2s(h, 16k) − 5s(h, 2k)

The following proposition will be useful when we begin to bound the error.

Proposition 2.6. For m ∈ {0, 1, . . . , 5} and y on the path of the integral in equations (8) and (9),
we have that |xm| ≤ 1 and |wm| ≤ 1.
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Proof. We see from the definitions of xm and wm that

|xm| = exp

( −4π2

22mk2
· Re

(
1

y

))

and

|wm| = exp

(−4π2

32k2
· Re

(
1

y

))
.

On the path of the integral in equations (8) and (9) we have y = ρ+ 2πiΘ, where −Θ1
h,2mk ≤ Θ ≤

Θ0
h,2mk. Using Proposition 2.2 and (7), we get that

Re

(
1

y

)
>

6k2 · 22m

49 · 22m + 4π2
,

and thus the proposition follows. �

3. Proof of Theorem 1.1

In view of Lemma 2.5, we have that t(n) =
∑5

m=0 Sm, with

Sm =
∑

m

am

√
k

π
· eπiσm(h,k) · e−2πinh

2mk · 1

2πi
Im,(10)

Im =

∫

m
e(n− 1

24)y · y1/2 · exp

(
bmπ

2

k2y

)
· Ψm(xm, wm),(11)

and where
∑

m,
∫
m are over the same sets as in equations (8) and (9).

3.1. Finding and Bounding Error. We now begin to analyze equations (10) and (9).

Lemma 3.1. Let Ψ(x,w) =
∑

0≤i+j cijx
iwj converge absolutely whenever |x|, |w| < 1, and let A(y)

be a function on the complex plane for which |A(y)| > 0 for all y. Suppose xm(y) and wm(y) have
the property that |xm(y)| ≤ |wm(y)| < 1, and there exist nonnegative integers k and l such that for
all y, |A(y)| · |wm(y)|k < C and |A(y)| · |xm(y)|l < C for some real constant C. Moreover, suppose
that k and l are chosen minimally. Define

Ψ̃(x,w) :=
∑

k≤i+j
or l≤i

cijx
iwj .

Then for all y,
|A(y) · Ψ̃(xm(y), wm(y))| = O(1).

Proof. One directly finds that

|A(y)| ·
∣∣∣Ψ̃(xm(y), wm(y))

∣∣∣ ≤ |A(y)| ·
∑

k≤i+j
or l≤i

|cij ||xm(y)|i|wm(y)|j

= |A(y)| ·
∑

l≤i
i+j<k

|cij ||xm(y)|i|wm(y)|j + |A(y)| ·
∑

k≤i+j

|cij ||xm(y)|i|wm(y)|j

≤ |A(y)| · |xm(y)|l
∑

l≤i
i+j<k

|cij ||xm(y)|i−l|wm(y)|j + |A(y)| · |wm(y)|k
∑

k≤i+j

|cij ||wm(y)|i+j−k

≤ C
∑

l≤i
i+j<k

|cij ||xm(y)|i−l|wm(y)|j + C
∑

k≤i+j

|cij ||wm(y)|i+j−k

6



The first sum is finite, and the second converges by the hypotheses. Thus the lemma holds. �

Write

(12) Ψm(xm, wm) =





1 + 2wm + Ψ̃m(xm, wm) if m = 0, 2

1 + Ψ̃m(xm, wm) if m = 1, 3, 5

Ψ̃m(xm, wm) if m = 4.

From Lemma 2.5, we see that Ψ̃m(xm, wm) satisfies the hypotheses of Lemma 3.1 with A(y) =
exp(bm(π2/k2y)). So for each 0 ≤ m ≤ 5,

(13)

∣∣∣∣exp

(
bm

(
π2

k2y

))
Ψ̃m(xm, wm)

∣∣∣∣ ≤ cm

for some cm ∈ R. We define the “error” integrals IE
m as follows

IE
m :=

∫

m
e(n−

1

24)yy1/2 exp

(
bmπ

2

k2y

)
Ψ̃m(xm, wm)dy.

We will show that the size of these integrals is negligible.

Proposition 3.2. For y on the path of the integral IE
m, we have

|e(n− 1

24)y · y1/2| ≤ e1/4

(
49 · 22m + 4π2

22mk2N2

) 1

4

.

Proof. On the path of the integral IE
m we have y = ρ+ 2πiΘ, where −Θ1

h,2mk ≤ Θ ≤ Θ0
h,smk. Thus

using (6), (7), and Proposition 2.2 we have that

∣∣∣e(n−
1

24
y) · y1/2

∣∣∣ ≤ enρ(ρ2 + 4π2Θ2)
1

4 ≤ e1/4

(
22m(N2ρ)2 + 4π2

22mk2N2

) 1

4

≤ e1/4

(
49 · 22m + 4π2

22mk2N2

) 1

4

.

�

By Proposition 2.2, it is easy to see that the length of the integral IE
m is bounded by 4π

2mkN . Thus
by equation (13), and Proposition 3.2 we obtain the following lemma.

Lemma 3.3. For m ∈ {0, 1, . . . , 5}, we have

|IE
m| ≤ 4πcm · e1/4(49 · 22m + 4π2)1/4

23m/2k3/2N3/2
=: Kmk

−3/2N−3/2 = O(k−3/2N−3/2).

So now we have that Im = I∗m + IE
m, where for m = 4

Im = IE
m,

for m = 1, 3, 5

(14) I∗m =

∫

m
e(n−

1

24)y · y 1

2 · exp

(
bmπ

2

k2y

)
dy,

and for m = 0, 2

(15) I∗m =

∫

m
e(n−

1

24)y · y 1

2 · exp

(
bmπ

2

k2y

)
(1 + 2wm)dy

=

∫

m
e(n−

1

24)y · y 1

2 · exp

(
bmπ

2

k2y

)
dy + 2e

2πiH′
m

k

∫

m
e(n− 1

24)y · y 1

2 · exp

(
(bm − 1/8)π2

k2y

)
dy.
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3.2. Evaluation of integral. We consider in general integrals of the type

I(cm) :=

∫

m
g(y)dy :=

∫

m
e(n− 1

24)y · y 1

2 · exp

(
cmπ

2

k2y

)
dy,

where cm is a positive real number. Let 0 < ε < ρ, and split I(cm) into pieces by using the following
contour:

I(cm) =

(∫

L
−
∫ −ε

−∞
−
∫ −ε−2πiΘ1

−ε
−
∫ ρ−2πiΘ1

−ε−2πiΘ1

−
∫ −ε+2πiΘ0

ρ+2πiΘ0

−
∫ −ε

−ε+2πiΘ0

−
∫ −∞

−ε

)
g(y)dy

= L− J1 − J2 − J3 − J4 − J5 − J6,

where the integrals L, J1, . . . , J6 correspond in the obvious way to the integrals above.

Lemma 3.4. Both J2 and J5 are O(k−3/2N−3/2).

Proof. By Proposition 2.2, the length of both integrals is less than 2π
2mkN , and in both integrals

y = −ε+ 2πiΘ, where
−1

2mkN
< Θ <

1

2mkN
.

Thus Re(y) = −ε, and Re(1/y) = −ε/(ε2 + 4π2Θ2) < 0. So we have that
∣∣∣e(n− 1

24)y
∣∣∣ ≤ 1 and

∣∣∣exp
(

cmπ2

k2y

)∣∣∣ ≤ 1. Also, it’s easy to see that

∣∣∣y
1

2

∣∣∣ <
(
ε2 +

4π2

22mk2N2

) 1

4

.

Consequently, using (7) and the fact that 0 < ε < ρ, we get that

|J2|, |J5| <
2π

2mkN

(
49 · 2wm+ 4π2

22mk2N2

) 1

4

and the lemma follows. �

Lemma 3.5. Both J3 and J4 are O(k−1/2N−5/2).

Proof. The length of both of these integrals is less than 2ρ. Also, for both integrals y = u+ 2πiΘ,
where −ε ≤ u ≤ ρ, and Θ is fixed satisfying Θ2 < 1

2mkN . Thus
∣∣∣e(n− 1

24)y
∣∣∣ < e,

and
∣∣∣y

1

2

∣∣∣ ≤
(
ρ2 +

4π2

22mk2N2

) 1

4

<

(
49 · 22m +

4π2

22mk2N2

) 1

4

.

Also using (7), we see that

Re

(
1

y

)
≤ 22mk2N2ρ

π2
<

7 · 22mk2

π2
,

so we have ∣∣∣∣exp

(
cmπ

2

k2y

)∣∣∣∣ ≤ exp (7cm · 22m).

Thus we get that

|J3|, |J5| <
14

N2
· e
(

49 · 22m +
4π2

22mk2N2

) 1

4

exp
(
7cm · 22m

)
,

and the lemma follows. �
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We have shown the following.

Proposition 3.6. We have that

I(cm) = L− (J1 + J6) − J,

where |J | = O(k−3/2N−3/2).

Let us investigate J1 + J6.

J1 + J6 =

(∫ −ε

−∞
+

∫ −∞

−ε

)
e(n−

1

24)y · y 1

2 · exp

(
cmπ

2

k2y

)
dy.

We choose opposite branches of the square root so that

J1 + J6 =

(∫ −ε

−∞
+

∫ −∞

−ε

)
e(n−

1

24)y ·
√

|y| · e−πi
2 · exp

(
cmπ

2

k2y

)
dy

+

(∫ −ε

−∞
+

∫ −∞

−ε

)
e(n−

1

24)y ·
√

|y| · eπi
2 · exp

(
cmπ

2

k2y

)
dy.

Substituting u = −y, and combining the two integrals, we get that

J1 + J6 = −2i

∫ ∞

ε
e−(n− 1

24)u
√
u exp

(−cmπ2

k2u

)
du =: −2iH.

We can use the fact that (see (5.2.31) in [And98])
∫ ∞

0
t

1

2 exp(−c2t− a2t−1)dt =
−√

π

2c
· d
du

(
exp(−2au)

u

)

u=c

to evaluate H by letting c =
√
n− 1

24 and a = (
√
cmπ)/k. Thus

H =
−√

π

2
√
n− 1

24

· d
du




exp
(
−2

√
cmπu
k

)

u




u=
q

n− 1

24

.

Letting x = u2 + 1/24 yields that

H = −
√
π · d

dx




exp

(
−2

√
cmπ

√
x−1/24

k

)

√
x− 1/24




x=n

.

In particular, we have now shown the following.

Proposition 3.7. We have that

1

2πi
I(cm) =

1

2πi
L− 1√

π
· d
dx




exp

(
−2

√
cm π

√
x−1/24

k

)

√
x− 1/24




x=n

− J,

where |J | = O(k−3/2N−3/2).

Now all that remains is to evaluate L/2πi. It is easy to see that

1

2πi
L =

1

2πi

∫

L
e(n− 1

24)y · y 1

2 · exp

(
cmπ

2

k2y

)
dy =

∞∑

s=0

1

s!

(
cmπ

2

k2

)s

· 1

2πi

∫

L
e(n− 1

24)yy(
1

2
−s)dy.

9



Thus, if z = (n− 1/24)y, then the integral becomes

1

2πi
L =

∞∑

s=0

(
n− 1

24

)(s− 3

2) 1

s!

(
cmπ

2

k2

)s

· 1

2πi

∫

L
ezz(

1

2
−s)dz.

By Hankel’s loop integral formula (see Ch.3, section 24 of [Rad73]),

1

2πi

∫

L
ezz(

1

2
−s)dz =

1

Γ(s− 1
2)
.

Thus we have that

(16)
L

2πi
=

(
n− 1

24

)− 3

2
∞∑

s=0

(
cmπ2

k2

(
n− 1

24

))s

s! · Γ(s− 1
2)

.

The following fact is easy to show, and can be found in [And98] (page 80).

(17)

∞∑

s=0

(Y 2/4)s

s! · Γ(s− 1
2)

=
Y 2

2
√
π
· d

dY

(
cosh(Y )

Y

)
.

For future reference we let

(18) M(a) :=
d

dx




sinh
(
aπ
√
x− 1

24

)

√
x− 1

24




x=n

.

By (16), (17), and Proposition 3.7, we obtain the following.

Theorem 3.8. For M defined in (18), we have

1

2πi
I(cm) =

1√
π
·M

(
2
√
cm
k

)
+ J(m)

where |J(m)| = O(k−3/2N−3/2).

3.3. Asymptotic formula for t(n). Here we combine the previous results to find an asymptotic
formula for t(n). Define

(19) Am(n) :=

2mk−1∑

h=0
(h,2mk)=1

eπiσm(h,k)e
−2πinh

2mk .

Then by equation (10) we now have that t(n) =
∑5

m=0 Sm, where for m ∈ {0, . . . , 4},

(20) Sm =
∑

2mk≤N
k odd

am

√
k

π
Am(n) · 1

2πi

(
I∗m + IE

m

)

and

(21) S5 =
∑

25k≤N

a5

√
k

π
A5(n) · 1

2πi

(
I∗5 + IE

5

)
.

We write

Em :=
∑

m′

am

√
k

π
Am(n) · 1

2πi
IE
m

for the error arising from IE
m, where the summation

∑
m′ is the same as in equations (20) or (21).

10



Proposition 3.9. If am and Km are the constants defined in Propositions 2.5 and 3.3, then

|Em| ≤ amKm

2π3/2
·N−1/2.

In particular, the size of Em approaches 0 as n→ ∞.

Proof. Note that since Am is a sum of terms with size 1, we have

(22) |Am(n)| ≤ 2mk.

Using this fact, Lemma 3.3, and that the am are all positive, the proposition follows. �

By Proposition 3.9, equations (20) and (21) become

(23) Sm =
∑

m′

am

√
k

π
Am(n) · 1

2πi
I∗m + O(N−1/2).

From equations (14) and (15), we have

I∗m =





I(bm) + 2e
2πiH′

m
k I(bm − 1/8) if m = 0, 2

I(bm) if m = 1, 3, 5

IE
4 if m = 4.

Thus by Theorem 3.8,

(24)
1

2πi
I∗m =





1√
π
·M

(
2
√

bm

k

)
+ 2e

2πiH′
m

k
1√
π
·M

(
2
√

bm−1/8

k

)
+ J(m) if m = 0, 2,

1√
π
·M

(
2
√

bm

k

)
+ J(m) if m = 1, 3, 5

J(4) if m = 4,

where |J(m)| = O(k−3/2N−3/2).

The following lemma gauges the size of M(b) for positive real numbers b.

Lemma 3.10. Let b ∈ R be positive. Then

|M(b)| ≤ (2π
√
b+ 1/2)e

2π
√

b
k

√
n.

Proof. Calculating the derivative from the definition of M(b) yields

M(b) =

(
π
√
b

k(n− 1/24)

)
cosh

(
2π

√
b

k

√
x− 1/24

)
−
(

1

2(n− 1/24)3/2

)
sinh

(
2π

√
b

k

√
x− 1/24

)
.

Using the fact that

a cosh (x) − b sinh (x) =
1

2
(a− b)ex +

1

2
(a+ b)e−x

for all real numbers a and b, we get that

M(b) =
1

2

(
2π

√
b
√
n− 1/24 − k

2k(n − 1/24)3/2

)
e

2π
√

b
k

√
n−1/24 +

1

2

(
2π

√
b
√
n− 1/24 + k

2k(n− 1/24)3/2

)
e

−2π
√

b
k

√
n−1/24.

Using the simple facts that (n− 1/24) ≥ 23/24 and 2(23/24)3/2 > 1, it follows that

|M(b)| ≤ π
√
b · e 2π

√
b

k

√
n +

1

2
(2π

√
b+ 1) ≤ (2π

√
b+ 1/2)e

2π
√

b
k

√
n.

�
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In order to evaluate the sums in equation (23), we make the following definitions. Let S(a, b)
denote the following general sum for real numbers a and b

(25) S(a, b) :=
∑

m′

ak
1

2

π
Am(n)M(b).

Let J(m)E denote the error term in (23)

(26) J(m)E :=
∑

m′

am

√
k

π
Am(n)J(m) + O(N−1/2).

By (22), and the fact that |J(m)| = O(k−3/2N−3/2), we get the following proposition.

Proposition 3.11. Let J(m)E be defined as above. Then
∣∣J(m)E

∣∣ = O(N−1/2).

Using (23), (24), and Proposition 3.11, we have now established the following theorem, giving the
asymptotic formula for t(n).

Theorem 3.12. For S defined as before, we have that

t(n) = S

(
a0,

2
√
b0
k

)
+ S

(
2e

2πiH′
0

k a0,
2
√
b0 − 1/8

k

)
+ S

(
a1,

2
√
b1
k

)
+ S

(
a2,

2
√
b2
k

)

+ S

(
2e

2πiH′
2

k a2,
2
√
b2 − 1/8

k

)
+ S

(
a3,

2
√
b3
k

)
+ S

(
a5,

2
√
b5
k

)
+ O(N−1/2).

3.4. Proof of Theorem 1.1. We proceed by analyzing the size of the terms comprising the sums
in Sm and comparing them with p(n).

Proposition 3.13. Let Sk(a, b) denote the term of the sum S(a, b) corresponding to k. Then

|Sk(a, b)| ≤
(

2mak3/2(2π
√
b+ 1/2)

π

)
exp

(
2π

√
b

k

√
n

)
= O

(
exp

{
2π

√
b

k

√
n

})
.

Proof. Fix a positive integer k. The proposition follows easily from equations (25), (22), and by
Lemma 3.10. �

Proposition 3.13 shows that we can approximate S(a, b) by it’s first few terms.
Using the exact formula for p(n) (see [And98]), we find that

(27) p(n) =
1

2π

[
M

(
2√
6

)
+

√
2e−πinM

(
1√
6

)]
+ O

(
exp

2π

3
√

6

√
n

)
.

To compare t(n) with p(n), we check the first few terms of each sum S(a, b) to determine when

the order of magnitude is greater than O
(
exp 2π

3
√

6

√
n
)
. Using the definitions of bm and Proposition

3.13, we get that

t(n) = S1

(
a0,

2
√
b0
k

)
+ S1

(
2e

2πiH′
0

k a0,
2
√
b0 − 1/8

k

)

+ S1

(
a1,

2
√
b1
k

)
+ S2

(
a2,

2
√
b2
k

)
+ O

(
exp

2π

3
√

6

√
n

)
.

By the definition of S(a, b), this gives
12



(28) t(n) =
A0(n)

2
√

2π
M

(
2√
6

)
+
A0(n)√

2π
M

(
1√
6

)

+
A1(n)

2π
M

(
1√
6

)
+
A2(n)

2
√

2π
M

(√
13

2
√

6

)
+ O

(
exp

2π

3
√

6

√
n

)
.

A calculation of Dedekind sums yields

A0(n) = 1

A1(n) = e−πin

A2(n) = eπi(1/8−n/2) + eπi(−1/8−3n/2).

Plugging these values in to equation (28) gives that

(29) t(n) =
1

2
√

2π

[
M

(
2√
6

)
+ 2M

(
1√
6

)]
+

1

2π

[
e−πinM

(
1√
6

)]

+
1

2
√

2π

[(
eπi(1/8−n/2) + e−πi(1/8+3n/2)

)
M

(√
13

2
√

6

)]
+ O

(
exp

2π

3
√

6

√
n

)
.

Combining this with equation (27), we see that

t(n) =
1

2
p(n) + S(n) + O

(
exp

2π

3
√

6

√
n

)
,

where

S(n) =
1√
2π
M

(
1√
6

)
+

1

2
√

2π

(
eπi(1/8−n/2) + e−πi(1/8+3n/2)

)
M

(√
13

2
√

6

)
.

In order to finish the proof of Theorem 1.1, we need to analyze S(n). First we will show that
S(n) is real. By the definition of M(a) it is clear that when a ∈ R, we have M(a) ∈ R. Thus to
show that S(n) is real, it suffices to note the following.

Proposition 3.14. For all positive integers n, eπi(1/8−n/2) + e−πi(1/8+3n/2) ∈ R. In particular,

eπi(1/8−n/2) + e−πi(1/8+3n/2) =





2 cos(π/8) if n ≡ 0 (mod 4)

2 cos(3π/8) if n ≡ 1 (mod 4)

−2 cos(π/8) if n ≡ 2 (mod 4)

−2 cos(3π/8) if n ≡ 3 (mod 4).

In light of Proposition 3.14, we have shown that

(30) S(n) =





1
π
√

2

[
M
(

1√
6

)
+ cos(π/8)M

(√
13

2
√

6

)]
if n ≡ 0 (mod 4)

1
π
√

2

[
M
(

1√
6

)
+ cos(3π/8)M

(√
13

2
√

6

)]
if n ≡ 1 (mod 4)

1
π
√

2

[
M
(

1√
6

)
− cos(π/8)M

(√
13

2
√

6

)]
if n ≡ 2 (mod 4)

1
π
√

2

[
M
(

1√
6

)
− cos(3π/8)M

(√
13

2
√

6

)]
if n ≡ 3 (mod 4).
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We now examine S(n) in terms of n (mod 4) to determine when it is greater than or less than 0.
A simple calculation shows that

(31) M(a) =

(
aπ
√
n− 1/24 − 1

4(n− 1/24)3/2

)
exp(aπ

√
n− 1/24)

+

(
aπ
√
n− 1/24 + 1

4(n− 1/24)3/2

)
exp(−aπ

√
n− 1/24).

We see that M(a) is clearly positive whenever a > 1/(π
√
n− 1/24), thus it is positive for all

a >
√

24/(π
√

23). So for a = 1/
√

6 and a =
√

13/2
√

6, we have M(a) > 0. With (30), this shows
that S(n) > 0 for n ≡ 0, 1 (mod 4). Noting that cos(π/8) > cos(3π/8), we show that the opposite
is true for n ≡ 2, 3 (mod 4) by proving the following proposition.

Proposition 3.15. For all positive integers n, we have

cos(3π/8)M

(√
13

2
√

6

)
> M

(
1√
6

)
.

Proof. Consider the function f(n) = cos(3π/8)M
(√

13
2
√

6

)
−M

(
1√
6

)
. By (31), it is clear that f(n)

grows as n → ∞. Thus it has a minimum on the interval [1,∞). A calculation shows that the
derivative of f is never zero, so the minimum value is attained at n = 1. As f(1) > 0, the lemma
holds. �

By Proposition 3.15 we have shown that S(n) < 0 for n ≡ 2, 3 (mod 4). Also, from equation (31)

it is easy to see that |S(n)| = O
(
exp(

√
13π

2
√

6

√
n)
)
. This finishes the proof of Theorem 1.1 . �

4. Preliminaries for proof of Theorem 1.4

First we fix some notation. Suppose w ∈ 1
2Z, N is a positive integer (which is divisible by 4 if

w 6∈ Z), and χ is a Dirichlet character (mod N). Let Mw(Γ0(N), χ) (resp. Sw(Γ0(N), χ)) be the
usual space of holomorphic modular forms (resp. cusp forms) on the congruence subgroup Γ0(N),
with Nebentypus character χ. There are several operators which act on spaces of modular forms.
The first we will discuss are Hecke operators. The results in this section, and more information on
modular forms can be found in [Ono04].

4.1. Hecke operators. We will define Hecke operators for both integer and half-integer weight
modular forms. We begin with the integer weight case.

Definition 4.1. With the notation above, we let f(z) :=
∑∞

n=0 a(n)qn ∈Mk(Γ0(N), χ) where k is
an integer, and p 6 |N is prime. The action of the Hecke operator Tp is defined by

f(z)|Tp :=
∞∑

n=0

(
a(pn) + χ(p)pk−1a(n/p)

)
qn,

where a(n/p) = 0 when p 6 | n.

We see that the half-integer weight case is somewhat different.

Definition 4.2. Let f(z) :=
∑∞

n=0 a(n)qn ∈ Mλ+ 1

2

(Γ0(4N), χ) where λ is an integer and p 6 |4N is

prime. The action of the half-integral Hecke operator T (p2) is defined by

f(z)|T (p2) :=

∞∑

n=0

(
a(p2n) + χ(p)

(
(−1)λ

p

)(
n

p

)
pλ−1a(n) + χ(p2)

(
(−1)λ

p2

)
p2λ−1a(n/p2)

)
qn,
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where a(n/p2) = 0 when p2 6 | n.

These operators are useful due to the following.

Proposition 4.3. If f(z) ∈Mk(Γ0(N), χ), where k ∈ Z, then

f(z)|Tp ∈Mk(Γ0(N), χ).

Similarly, if f(z) ∈Mλ+ 1

2

(Γ0(4N), χ), where λ ∈ Z, then

f(z)|T (p2) ∈Mλ+ 1

2

(Γ0(4N), χ).

Furthermore, both Tp and T (p2) take cusp forms to cusp forms.

4.2. Other operators. We define two other operators U and V which act on formal power series.
If d is a positive integer, then we define the U -operator U(d) by

(32)

( ∞∑

n=0

c(n)qn

)
|U(d) :=

∞∑

n=0

c(dn)qn,

and the V -operator V (d) by

(33)

( ∞∑

n=0

c(n)qn

)
|V (d) :=

∞∑

n=0

c(n)qdn.

These two operators also act on spaces of modular forms. First we consider the integer weight
case.

Proposition 4.4. Suppose f(z) ∈Mk(Γ0(N), χ) where k ∈ Z.

(1) If d is a positive integer and d|N , then

f(z)|U(d) ∈Mk(Γ0(N), χ)

(2) If d is any positive integer, then

f(z)|V (d) ∈Mk(Γ0(Nd), χ).

Moreover, both U(d) and V (d) take cusp forms to cusp forms.

The half-integer weight case is slightly more complicated.

Proposition 4.5. Suppose f(z) ∈Mλ+ 1

2

(Γ0(4N), χ) where λ ∈ Z.

(1) If d is a positive integer and d|N , then

f(z)|U(d) ∈Mλ+ 1

2

(
(Γ0(4N),

(
4d

•

)
χ

)
.

(2) If d is any positive integer, then

f(z)|V (d) ∈Mλ+ 1

2

(
(Γ0(4Nd),

(
4d

•

)
χ

)
.

Furthermore, again for the half-integral case both U(d) and V (d) take cusp forms to cusp forms.

15



4.3. Shimura correspondence. Here we recall the famous “Shimura correspondences” [Shi73]
which give a means of mapping half-integer weight cusp forms to even integer weight modular
forms.

Definition 4.6. Let f(z) =
∑∞

n=1 c(n)qn ∈ Sλ+ 1

2

(Γ0(4N), χ), with λ ≥ 1, and let t be a square-free

integer. Define the Dirichlet character ψt by ψt(n) = χ(n)
(−1

n

)λ ( t
n

)
. If we define complex numbers

At(n) by
∞∑

n=1

At(n)

ns
:= L(s− λ+ 1, ψt) ·

∞∑

n=1

c(tn2)

ns
,

then

St(f(z)) :=
∞∑

n=1

At(n)qn

is a modular form in M2λ(Γ0(2N), χ2). Furthermore, if λ ≥ 2 then St(f(z)) is a cusp form. When
λ = 1 there are conditions (here omitted) which guarantee St(f(z)) is a cusp form.

From the definition above, it is not hard to show that the Shimura correspondences commute with
the Hecke operators in the following way.

Proposition 4.7. Let f(z) ∈ Sλ+ 1

2

(Γ0(4N), χ) with λ ≥ 1. If t is a square-free integer and p 6 |4Nt
is prime, then

St(f(z)|T (p2)) = St(f(z))|Tp.

4.4. A Theorem of Serre. The following theorem due to Serre (see [Ono00] and [Ser76]) is a
crucial component to the proof of Theorem 1.4. The theorem arises from the existence of certain
Galois representations with special properties. More details can be found in [Ono04], and [Ser76].

Theorem 4.8. Let l ≥ 5 be prime, and k ∈ Z. A positive proportion of the primes p ≡ −1
(mod N) have the property that

f(z)|Tp ≡ 0 (mod l)

for every f(z) that is the reduction modulo l of a cusp form in Sk(Γ0(N), χ) ∩ Z[[q]].

5. Proof of Theorem 1.4

We will see that using the works of Serre and Shimura, the proof of Theorem 1.4 boils down to
the existence of a half-integral weight cusp form satisfying certain key properties. This is given in
the following theorem. We make the following notation for ease of exposition

Gl(z) :=
∞∑

n≥0
ln≡−1 (mod 24)

t

(
ln+ 1

24

)
qn.

Theorem 5.1. Let j be a positive integer and l ≥ 5 prime. There is a cusp form

gl,j(z) ∈ S lj+1−lj−1

2

(
Γ0(2304l),

(
12

•

))

having integer coefficients, such that

Gl(z) ≡ gl,j(z) (mod lj).
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5.1. Deduction of Theorem 1.4 from Theorem 5.1. Before we prove Theorem 5.1, we will
show how Theorem 1.4 is proved from it. We use techniques of Ono and Ahlgren previously used
on p(n) (see [Ono00] and [Ahl00]) and extend them to work on t(n) and p(n) simultaneously.

Consider the Shimura lift of gl,j(z) to an integer weight cusp form with integer coefficients. We
have that

(34) St(gl,j) ∈ S5lj+1−5lj−3(Γ0(2304l)) ∩ Z[[q]].

By Theorem 4.8, there are infinitely many primes p ≡ −1 (mod 2304l) such that every reduction
(mod lj) of every form in the space S5lj+1−5lj−3(Γ0(2304l))∩Z[[q]] gets annihilated (mod lj) by the
(integer weight) Hecke operator Tp. In particular, by equation (34) and Proposition 4.7, it follows
that there are infinitely many primes p ≡ −1 (mod 2304l) such that for any square-free integer t

St(gl,j(z)|T (p2)) = St(gl,j(z))|Tp ≡ 0 (mod lj).

Thus in particular,

(35) gl,j(z)|T (p2) ≡ 0 (mod lj).

If we write gl,j(z) =
∑∞

n=1 c(n)qn, and let λl,j = (5lj+1 − 5lj − 2)/2, then Definition 4.2 and (35)
say that

∞∑

n=1

(
c(p2n) +

(
(−1)λl,j

p

)(
n

p

)
pλl,j−1c(n) +

(
(−1)λl,j

p2

)
p2λl,j−1c

(
n

p2

))
qn ≡ 0 (mod lj).

Thus for each of the infinitely many primes p for which equation (35) holds, we have

c(p2n) +

(
(−1)λl,j

p

)(
n

p

)
pλl,j−1c(n) +

(
(−1)λl,j

p2

)
p2λl,j−1c

(
n

p2

)
≡ 0 (mod lj)

for all positive integers n. Replacing n by np, the middle term vanishes to give us that

(36) c(p3n) +

(
(−1)λl,j

p2

)
p2λl,j−1c

(
n

p

)
≡ 0 (mod lj).

We restrict our attention further by only considering n which are not divisible by p. For these n,
c(n/p) is defined to be 0, so equation (36) becomes

c(p3n) ≡ 0 (mod lj).

Combining this with Theorem 5.1 we obtain the following proposition.

Proposition 5.2. A positive proportion of the primes p ≡ −1 (mod 2304l) have the property that

t

(
p3ln+ 1

24

)
≡ 0 (mod lj)

for all n, where ln ≡ −1 (mod 24) and (n, p) = 1.

The work of Ono and Ahlgren intersects nicely with this analysis of t(n). Define Fl(z) by

Fl(z) :=
∞∑

n≥0
ln≡−1 (mod 24)

p

(
ln+ 1

24

)
qn.

In [Ahl00] (see Theorem 1), Ahlgren proves the following theorem.
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Theorem 5.3. Let l ≥ 5 be prime, and j a positive integer. There exists a cusp form

fl,j(z) ∈ S lj+1−lj−1

2

(
Γ0(576l),

(
12

•

))

such that

fl,j(z) ≡ Fl(z) (mod lj+1).

Note that we can realize fl,j(z) as a cusp form on the group Γ0(2304l). Serre’s Theorem gives a
statement about every reduction (mod lj) of a cusp form in S5lj+1−5lj−3(Γ0(2304l)) ∩ Z[[q]]. Since

the character
(

12
•
)

becomes trivial when we lift to an integral weight form, we can apply Theorem
4.8 to St(fl,j(z)) and St(gl,j(z)) simultaneously. Thus we conclude the following

Theorem 5.4. A positive proportion of the primes p ≡ −1 (mod 2304l) have the property that

t

(
p3ln+ 1

24

)
≡ p

(
p3ln+ 1

24

)
≡ 0 (mod lj)

for all positive integers n, where (p, n) = 1.

Theorem 1.4 follows easily from Theorem 5.4.

5.2. Preliminaries for the proof of Theorem 5.1. Now it only remains to prove Theorem 5.1.
Recall Dedekind’s eta-function

(37) η(z) := q
1

24 Π∞
n=1(1 − qn).

From equations (1) and (2) we deduce that

g(z) =
∞∑

n=0

t(n)qn− 1

24 =
η(2z)2η(16z)5

η(z)η(4z)5η(32z)2
.

For ease of notation, we make the following abbreviations. Let δl be the positive integer

δl :=
l2 − 1

24
,

and define 1 ≤ βl ≤ l − 1 such that

24βl ≡ 1 (mod l).

Thus we have that

η(lz)l · g(z) = Π∞
n=1(1 − qln)l

∞∑

n=0

t(n)qn+δl .

Using the definitions of the U and V -operators, we obtain the following

(38)

[
η(lz)l · g(z)|U(l)

η(z)l

]∣∣∣∣V (24) =

∞∑

n=0

t(ln+ βl)q
24n+

24βl−1

l .

Letting k = 24n + (24βl − 1)/l, we see that

ln+ βl =
lk + 1

24
.

Thus we can show that in fact

(39)

[
η(lz)l · g(z)|U(l)

η(z)l

]∣∣∣∣V (24) = Gl(z).

18



Notice that η(z)l/η(lz) ≡ 1 (mod l). By induction we can argue that for any j ≥ 0,

(40)
η(z)l

j+1

η(lz)lj
≡ 1 (mod lj+1).

In light of this fact consider for any integer j ≥ 0,

hj(z) := η(lz)l · g(z) ·
(
η(z)l

j+1

η(lz)lj

)5

=
η(2z)2η(16z)5η(z)5lj+1−1

η(4z)5η(32z)2η(lz)5lj−l
.

It is clear from the definitions of the U and V -operators that they preserve congruences. Thus from
the definition of hj(z), and equations (39) and (40) we have the following proposition.

Proposition 5.5. If l ≥ 5 is prime, and j ≥ 0, then

Gl(z) ≡
[
hj(z)|U(l)

η(z)l

]∣∣∣∣V (24) =: Hl,j(z)|V (24) (mod lj+1).

We can see from the definition of η(z) that Hl,j(z)|V (24) has integer coefficients. Thus to finish
the proof of Theorem 5.1, we only need to prove that Hl,j(z)|V (24) is a cusp form.

Theorem 5.6. Let l ≥ 5 be prime, and j ≥ 0 an integer. Using the notation from above,
Hl,j(z)|V (24) is a half-integral weight cusp form on the group Γ0(2304l). In particular,

Hl,j(z)|V (24) ∈ S 5lj+1−5lj−1

2

(
Γ0(2304l),

(
12

•

))
.

Proving Theorem 5.6 is the final step to prove Theorem 5.1. First we note that using the well-
known formulas for determining if an eta-quotient is a modular form (see [Ono04], Theorems 1.64
and 1.65), we can compute that for every integer j ≥ 0, hj(z) ∈ S 5lj+1−5lj+l−1

2

(Γ0(32l), 1). Notice

that hj(z) is an integer weight cusp form. By Propositions 4.4 and 4.5 we see that

(hj(z)|U(l))|V (24) ∈ S 5lj+1−5lj+l−1

2

(Γ0(768l), 1).

Also, it is well known that η(24z)l ∈ S l
2

(Γ0(576),
(

12
•
)
). So we can view both on the group Γ0(2304l),

and thus the quotient Hl,j(z) as modular over the group Γ0(2304l) with character
(

12
•
)
. We need

to show that Hl,j(z) vanishes at every cusp of Γ0(2304l). However, V (24) cannot introduce poles.
So to prove Theorem 5.6 it suffices to show that

(41) Hl,j(z) =

[
hj(z)|U(l)

η(z)l

]

vanishes at every cusp of Γ0(32l). Recall [Ono04] that a cusp of a congruence subgroup Γ is an
equivalence class in Q ∪ {∞} under the action of Γ.

5.3. Proof of Theorem 5.6. A complete set of representatives for the cusps of Γ0(N), where N
is a positive integer, is given by [Mar96]

(42)

{
ac

c
∈ Q : c |N , 1 ≤ ac ≤ N , gcd(ac, N) = 1 , ac distinct modulo gcd

(
c,
N

c

)}
.

We recall the definition of the slash operator [Kob93]. If f(z) is a function on the upper half-plane,

λ ∈ 1
2Z, and

(
a b
c d

)
∈ GL+

2 (R), then

(43) f(z) |λ
(
a b
c d

)
:= (ad− bc)

λ
2 · (cz + d)−λ · f

(
az + b

cz + d

)
.
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Moreover, let γa
c

be the matrix in SL2(Z) that takes ∞ to a
c . We know from [Mar96] that the

expansion of a modular form f(z) of weight λ ∈ R at the cusp a
c is of the form

f(z)|λ γa
c

= k · qα + · · ·

for some nonzero constant k and α ∈ Q. Thus α is the order of vanishing of f(z) at the cusp a
c .

We are interested in the expansion of Hl,j(z) at the cusps of Γ0(32l). From equation(43) it is easy
to show that

Hl,j | 5lj+1−5lj−1

2

γ =
(hj(z)|U(l)) | 5lj+1−5lj+l−1

2

γ

η(z)l| l
2

γ
.

Recall the fact [Mar96] that for all γ ∈ SL2(Z),

η(z)l| l
2

γ = k · q l
24 + · · ·

It is now clear that to prove Theorem 5.6 it suffices to show that if γa
c
∈ SL2(Z) with γa

c
∞ = a

c ,

where a
c is a cusp of Γ0(32l), then

(44) (hj(z)|U(l))| 5lj+1−5lj+l−1

2

γa
c

= k · qα + · · · ,

where α > l
24 . We prove this now.

Proof of Theorem 5.6. By equation (42), we see that there are the following 16 cusps of Γ0(32l):

1

c
for each c|32l, and

3

4
,
3

8
,

3

4l
,

3

8l
.

We consider what happens when the slash operator acts on hj(z), making note of the fact that
[hj(z)|U(l)]|λγ and [hj(z)|λγ]|U(l) will have the same orders of vanishing at the cusps of Γ0(32l).

For convenience, let k := 5lj+1−5lj+l−1
2 ∈ R denote the weight of hj(z). From [Mar96] (page

4827), we can immediately deduce the following fact (since hj(z) has trivial character). Let γ =(
a b
c d

)
∈ SL2(Z). Then,

(45) hj(z)|kγ =
∞∑

n=0

bγ(n)q
n
hc ,

where

(46) hc =
32l

gcd(c2, 32l)
.

Calculating the hc for each cusp we get that

(47) hc =





32l if c = 1

8l if c = 2

2l if c = 4

l if c = 8, 16, 32

32 if c = l

8 if c = 2l

2 if c = 4l

1 if c = 8l, 16l, 32l.
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Since hj(z) is an eta-quotient, we can use the formula from Theorem 1.65 in [Ono04] to calculate
the order of vanishing of hj(z) at each cusp. We find that

(48) orda
c
(hj(z)) =





160δll
j if c = 1

40δll
j if c = 2

10δll
j − l if c = 4

5δll
j if c = 8, 32

5δll
j + 2l if c = 16

32δl if c = l

8δl if c = 2l

2δl − 1 if c = 4l

δl if c = 8l, 32l

δl + 2 if c = 16l.

Let H(l, γ, z) := hj(z)|kγ. Putting together equations (47) and (48), we see that

(49) H(l, γ, z) =





?q160δll
j
+ · · · =

∑
n≥1 ac(l, γ, n)q

n
32l if c = 1

?q40δll
j

+ · · · =
∑

n≥1 ac(l, γ, n)q
n
8l if c = 2

?q10δll
j−l + · · · =

∑
n≥1 ac(l, γ, n)q

n
2l if c = 4

?q5δll
j

+ · · · =
∑

n≥1 ac(l, γ, n)q
n
l if c = 8, 32

?q5δll
j+2l + · · · =

∑
n≥1 ac(l, γ, n)q

n
l if c = 16

?q32δl + · · · =
∑

n≥1 ac(l, γ, n)q
n
32 if c = l

?q8δl + · · · =
∑

n≥1 ac(l, γ, n)q
n
8 if c = 2l

?q2δl−1 + · · · =
∑

n≥1 ac(l, γ, n)q
n
2 if c = 4l

?qδl + · · · =
∑

n≥1 ac(l, γ, n)qn if c = 8l, 32l

?qδl+2 + · · · =
∑

n≥1 ac(l, γ, n)qn if c = 16l,

where ? denotes an arbitrary constant. The following proposition can be obtained easily from the
definition of the U -operator.

Proposition 5.7. If P (z) =
∑

n≥1 c(n)qn is a formal power series, and l is prime, then

P (z)|U(l) =
1

l

l−1∑

j=0

P

(
z + j

l

)
.

Applying Proposition 5.7 to H(l, γ, z) =
∑

n≥1 ac(l, γ, n)q
n
hc , and letting ζm := e

2πi
m , we easily see

that

(50) H(l, γ, z)|U(l) =
1

l

∑

n≥1

ac(l, γ, n)q
n

lhc




l−1∑

j=0

ζnj
lhc


 .

We must work through each case to show that if H(l, γ, z)|U(l) = ?qα + · · · , then α > l
24 . Since

the calculations for the cases are very similar, we will only show the details of the first case here,

when c = 1. When c = 1, then γ =
(

1 0
1 1

)
. Equations 50 and (47) give that

H(l, γ, z)|U(l) =
1

l

∑

n≥1

ac(l, γ, n)q
n

32l2




l−1∑

j=0

ζnj
32l2


 .
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From equation (49), we see that ac(l, γ, n) = 0 whenever N
32l < 160δll

j. Also, by equations (45) and
(46) we know that if H(l, γ, z)|U(l) = ?qα + · · · , then α = n

32l for some integer n. Thus

α ≥ m

32l2
,

where m is the smallest multiple of l such that

m

32l
≥ 160δll

j =
160lj(l2 − 1)

24
.

In other words, m is the least integer multiple of l such that

m ≥ 5120lj+1(l2 − 1)

24
.

Noting that 5120lj+1(l2−1)
24 ∈ Z, let xl be the least nonnegative integer such that

m =
5120lj+1(l2 − 1)

24
+ xl ≡ 0 (mod l).

Thus

α ≥ m

32l2
=

5120lj+1(l2 − 1) + 24xl

768l2
=

l

24
+

[
5120jj+3 − 5120lj+1 − 32l3 + 24xl

768l2

]
,

and so we are done if [
5120jj+3 − 5120lj+1 − 32l3 + 24xl

768l2

]
> 0.

This is equivalent to showing that

160lj(l2 − 1) − l2 > 0,

which follows from a simple induction on l. �
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