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 Proof of Recursive Unsolvability of Hilbert's Tenth Problem
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 The purpose of the present paper is to give a modern complete proof of
 unsolvability of the Tenth Problem of Hilbert. Our intention is to give the shortest
 proof known today, one which takes into account all the simplifications found since
 the problem was solved by the second author in [1970].

 The Tenth Problem of Hilbert is the problem of solvability of diophantine
 equations. As originally formulated by Hilbert [1900], it was to find an algorithm to
 decide whether a polynomial equation in several variables, P(x1, x2,..., xn) = 0,
 has a solution in integers.

 The problem can also be formulated in terms of existence of solutions in natural
 numbers (nonnegative integers). These two forms of Hilbert's Tenth problem are
 equivalent. An equation P(x1, X2,..., Xn) = 0 has a solution in integers if and
 only if the product HIP(?x? , ? x2, . .., ? xn) = 0 has a solution in natural num-
 bers. Also, from Lagrange's Four Squares Theorem [1770], P(x,,x2,..., x) = O

 689

This content downloaded from 
�������������128.6.45.205 on Mon, 06 Jun 2022 20:38:29 UTC�������������� 

All use subject to https://about.jstor.org/terms



 690 JONES AND MATIJASEVIC [October

 has a solution in natural numbers iff P(x1 + y2 + U2 + V12 x2 + y2 + U2 +
 U2 X2 2 + U2 + V2) = 0 has a solution in integers. V2,..., X n+ Yn~ + u n nees

 What will be proved here is the algorithmic unsolvability of Hilbert's Tenth
 Problem, i.e., the nonexistence of an algorithm, over natural numbers. This will be
 done in the normal way, by reducing another unsolvable problem to Hilbert's
 Tenth. Actually we will reduce all unsolvable problems to Hilbert's Tenth. To
 explain we need some definitions.

 Let A be a set or relation on the natural numbers. The set A is called
 recursively enumerable (r.e.) if A is the exact range of a recursive function (or if A
 is empty). A set is called recursive if its characteristic function is a recursive
 function. A function f is said to be recursive if it is computable by a Turing
 machine or register machine (see ?4).

 The concept of recursively enumerable set is more general than that of recursive
 set. The relationship between the two concepts is also important here. A set A is
 recursive if and only if A and its complement A' are both r.e. sets. Thus every
 recursive set is recursively enumerable. However there exist r.e. sets which are
 non-recursive. Hence the negative solution to Hilbert's Tenth problem will follow
 immediately from the following theorem:

 THEOREM 1. Every r.e. relation A(a,, a2, .. ., am) can be represented in the form

 A(a,.. ., am) (3x1,.. * xn)[P(al,..., am, XI, ... I Xn) = 0] . (1)

 Here P(al,..., am, xl,... Ix,X) is a polynomial with integer coefficients which
 depend on A. The Theorem is that for each r.e. set A, a polynomial P exists such
 that (1) is satisfied for all values of al, a2,..., am (the parameters). The variables
 x1, X2, ..., xI,X correspond to the unknowns in our equation. All the variables,
 parameters and unknowns, range over the same set, nonnegative integers.

 A set or relation A(a1, .. , am) in the nonnegative integers, definable in the
 form (1), is called a diophantine set. Thus Theorem 1 asserts that every r.e. set is
 diophantine. The converse also holds trivially: every diophantine set is r.e. Thus
 Theorem 1 asserts the equality of two collections of sets.

 Theorem 1 implies the nonexistence of an algorithm for Hilbert's Tenth
 Problem because it reduces the decision problem for every r.e. set, to some
 instance of Hilbert's Tenth. If Hilbert's Tenth were solvable, then every r.e. set
 would be recursive. However, as we mentioned, there exist r.e. sets which are
 nonrecursive. Taking the set A in Theorem 1 to be such a set, one sees that there
 can exist no algorithm for Hilbert's Tenth Problem.

 This argument seems completely satisfying to us: however, for those who wish it
 we give an additional argument after the proof of Theorem 1 (section 5).

 Theorem 1 also implies the algorithmic unsolvability of Hilbert's Tenth Prob-
 lem. This is a slightly stronger conclusion than recursive unsolvability. When we
 come to this conclusion on the basis of Theorem 1, we are implicitly using the
 so-called Church-Turing Thesis. This is the statement that every computable
 function is Turing computable. It is called a thesis rather than a theorem because

 Work supported by Natural Sciences and Engineering Research Council of Canada research grant
 A4525, the NSERC Program of International Scientific Exchange Awards, the Queen's-Steklov
 Exchange Program between Canada and the USSR and the U.S. National Academy of Sciences.
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 1991] RECURSIVE UNSOLVABILITY OF HILBERT S TENTH PROBLEM 691

 it is apparently unprovable. It is somewhat in the nature of a definition, or

 proposal, that we identify the intuitive concept of computability with the precise

 mathematical formalization, Turing computability, register machines or General

 Recursiveness.

 Today the Church-Turing Thesis is widely accepted. If an algorithm exists to

 solve Hilbert's Tenth problem, then Theorem 1 implies that it would have to lie

 beyond the present concept of algorithm, beyond Turing machines, beyond register

 machines, beyond Markov algorithms and indeed beyond all known formalizations

 of algorithm (all of which have been proven equivalent).
 Theorem 1 implies for example that an algorithm solving Hilbert's Tenth

 Problem would also solve the word problem for groups, the halting problem for

 Turing machines and all other known r.e. unsolvable problems. Needless to say, no

 example of such an algorithm is known.

 If the reader wishes to know more about the theory of computability, he or she

 is directed to the books of Davis [1958], Minsky [1967], Rogers [1967], the second
 author's paper [1984] or the first author's [1974] MONTHLY paper.

 The unsolvability of Hilbert's Tenth problem was originally proved in two steps.

 Step 1 was taken by Martin Davis, H. Putnam and Julia Robinson [1961] who
 obtained an exponential form of Theorem 1. Here P was not a polynomial but

 contained an exponential function, y = ax. In this form Theorem 1 can be
 interpreted as saying that every r.e. set is exponential diophantine.

 The second step in the solution of Hilbert's Tenth Problem was to show that the

 exponential relation itself y = ax is diophantine. This difficult last step was taken
 by the second author [1970]. This proved Theorem 1 and solved Hilbert's Tenth
 Problem in the negative.

 To show that the exponential function y = ax is diophantine, divisibility proper-

 ties of the sequence of Fibonacci numbers were used in [1970]. Subsequently it was
 seen how to do this using the sequence of solutions of the Pell equation. Proofs of

 Chudnovsky [1970], Davis [1971] [1973] and Kosovskii [1971] all use the sequence of
 solutions of Pell's equation.

 Today the Pell equation gives the simplest known proof. We will also use the

 Pell equation here. Concerning this part of the proof, considerable credit goes to

 Martin Davis and Julia Robinson. Many simplifications in the present proof can be
 traced to their discoveries.

 By way of small new improvements in the Pell equation part of the present

 proof, we mention (for experts), that in the main lemma on diophantine represen-
 tation of the sequence of solutions of Pell's equation (Lemma 2.27), use of the
 Chinese remainder theorem has been eliminated. (Davis [1973] p. 246.) Those who
 know the subject will also find that in this Pell equation part of the proof we

 eliminated also the use of the axiom of existence of infinitely many solutions to the
 general Pell equation,

 (d )(3x, y) [ d 0 - x2 - dy2 = l A 0 < y]. (2)
 This assumption (or axiom) was used in Matijasevic-Robinson [1975] (pp. 532-533).
 Of course the axiom is true. From a certain point of view its use doesn't matter.
 However, if one is concerned with formalizability of the proof in axiomatic
 theories, then use of this axiom is a deficiency. So we are pleased to have
 eliminated it.
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 692 JONES AND MATIJASEVIC [October

 When d is an arbitrary non-square, as is the case in (2) (d 0 El), then it is
 difficult to prove statement (2) from a restricted set of first order axioms. For
 example statement (2) cannot be proved in the theory known as Bounded Arith-
 metic; Peano's axioms with the induction axiom

 A(0) A (Vx)[A(x) --A(x + 1)] -> (Vx)[A(x)], (3)

 restricted to instances where all quantified variables in the A(x) are bounded by
 polynomials in x.

 Indeed, whether the whole of the proof of unsolvability of Hilbert's Tenth
 problem can be formalized in Bounded Arithmetic is an open problem. J. Paris
 and C. Dimitracopoulos [1982] showed that this would be the case if we add one
 more axiom (stronger than (2)). But without this axiom the answer is not known.

 This formalization problem is important because if the proof of Hilbert's Tenth
 Problem can be formalized in Bounded Arithmetic, then, from an idea of A. J.
 Wilkie, NP = co - NP follows. This is why we mention that in this paper axiom
 (2) is used only for d of the special form, d = a2 - 1. For these d axiom (2) is
 provable in Bounded Arithmetic. This increases the likelihood that the present
 proof can be formalized there.

 Besides its use in formalization, the proof here can also be used as the main link
 in a proof that every Turing computable function is recursive. We give a method
 for encoding computations of arbitrary register machines which greatly simplifies
 the tedious arithmetization usually involved with this procedure. This method of
 coding we call bit masking. It uses a famous theorem of Lucas [1878] on congru-
 ences in binomial coefficients this method was worked out in our [1984]. Originally
 we made use of a classical theorem of Kummer [1852], on the power of a prime
 dividing a binomial coefficient. Later we discovered the simpler proof using Lucas'
 Theorem (see Lemma 3.10).

 Nearly the whole of the present proof of Hilbert's Tenth Problem is now
 number theory. In fact it is classical number theory. Section 2, on the sequence of
 solutions of Pell's equation, belongs to the Lucas-Lehmer theory of recurrent
 sequences. In the terminology of Lehmer [1930], this is the study of the Lucas
 sequences Un and Vn where P = 2a, Q = 1, D = 4(a2 - 1) and R = 4a2. With
 these values of the parameters, Un and Vn correspond to the sequence of
 solutions of Pell's equation, x2 - dy2 = 1 with d = a2 _ 1. Here Un = Ya(n)
 and Vn = 2 Xa(n) where Xa(n) and Ya(n) are the sequence of solutions of x2
 (a2 _ 1)y2 = 1, (see ?2).

 This theory is very old. Though the multiplication by 2 makes a small difference,
 it is not difficult to interpret Ya(n) and Xa(n) in terms of Un and Vn and so to see
 that many of the theorems go back to Lucas [1878] and Lehmer [1930]. Some
 modern theorems are due to Julia Robinson [1952] [1969]. In this connection it is
 interesting that while Lucas preferred the functions Un and Vn, Julia Robinson
 preferred the sequences Ya(n) and Xa(n).

 ?1 Diophantine Sets. A diophantine equation is a polynomial equation,
 P(aj,... am, X1,..., Xn) = 0, in several variables, with integer coefficients. The
 variables are divided into parameters al, a2, .., am, and unknowns, x1, x2,.. .,xn.
 All the variables, parameters and unknowns, range over the set of nonnegative
 integers, 0, 1, 2,....
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 1991] RECURSIVE UNSOLVABILITY OF HILBERT S TENTH PROBLEM 693

 In the classical theory of diophantine equations one begins with an equation
 and asks for values of the parameters for which there exists a solution. In this
 proof we turn the usual procedure around. We start with the solution and search
 for the equation. We begin with a relation A(a1, a2 ..., am) and we look for a

 polynomial P(a1,. .., am, x1,..., xd) defining it in the sense of (1).

 DEFINITION 1.1. A relation A(a1, a2, .. ., am) is diophantine if there exists a

 polynomial P(al, ... a am X1,. .., X) such that for all values of a1, ..., am, (the
 parameters)

 A(al, . .., am) < (3X1,,X2, ... * Xn) [ P(al,. * , am,X1, .. * Xn) = 01 (1.-1)

 This definition which is for relations, will also do for functions. A function will
 be said to be diophantine if its graph is diophantine. Below are examples of
 diophantine functions and relations. Most will be used in the proof. These

 examples include the elementary relations of order < , divisibility a I b, and congru-
 ence, a b (mod c).

 a < b <*(3x)[ a + x = b], (1.2)
 alb (3x)[ax = b], (1.3)

 a b (mod c) (3x)[a = b + cx or a = b - cx]. (1.4)
 Disjunctions and conjunctions as occur in connection with (1.4) can be dealt with
 using

 A = OorB = 0 < A B = 0, A = 0&B = 0 <* A2 +B2 = 0. (1.5)

 In the case of conjunctions, it is necessary to rename variables which occur in
 both A and B, for example 3xA(x) = 0 A 3xB(x) = 0 is equivalent to
 3x3y[A(x) = 0 A B(y) = 0].

 From (1.5) it follows that conjunctions and disjunctions of Diophantine relations
 (but not negations) are diophantine. Proceeding in this way, we can prove that a
 great many relations are diophantine. A good is the relation of coprimality (a is
 relatively prime to b, (a, b) = 1) written in this paper as a I b. This relation can be
 seen to be diophantine using (1.5) together with

 a I b *(3x, y) [ax - by = 1 or ax - by= -1]. (1.6)

 Other examples of diophantine functions are the remainder function, r = rem(a, b)
 (r is the remainder after a is divided by b), and the quotient function, q = quo(a, b),
 meaning q is the quotient when a is divided by b. (This is the same as the integer
 part function, q = [a/b].) These functions can be seen to be diophantine from

 r = rem(a, b) *-> ra (mod b) and r < b, (1.7)

 q = quo(a, b) -> < a-qb < b. (1.8)

 Proceeding in this way, defining new relations from old, using, often (1.5) we will
 show that a great many relations are diophantine. The most important tool in this
 process will be the sequence of solutions of the Pell equation.

 ?2. The Pell equation. A general Pell equation is an equation of the form

 x2 -dy2 =1 (d # ). (2.1)

 where d is a constant and x and y are unknowns. (A hyperbola in the x, y plane.)
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 694 JONES AND MATIJASEVIC [October

 When d = C (d is a square), then the Pell equation (2.1) has only the trivial
 solution, (1, 0). So one always assumes that d 0 cU (d is not a square).

 Because x2 - dy2 factors over the reals, x2 - dy2 = (x + y)(x - /y), it is

 natural to work in the integral domain Z[Zd] consisting of real numbers of the
 form a = x + yvdY, x, y E Z. Since /d is irrational, the integers x and y are
 unique. They are called the components of a.

 When a = x + yJd, the number a- = x - yld is known as the conjugate of a.
 The number N(a) = aic = x- dy2 is called the norm of a. Since N(a) =
 dy2, the integer solutions to the Pell equation are just the components x, y of reals
 a such that N(a) = 1.

 N(a) = 1 and N(a) = a * ar imply a1 = a, the conjugate of a is equal to the
 inverse. Also a = x + xd y and 1 < a implies 1 < x and 0 < y. To see this
 observe that from 0 < a1 < 1, a + cE = 2x and a - ci = 2y /d we have 2 < x
 and 0 < y. Then from x2 = 1 + dy2 we have 1 < x. Hence the inequality 1 < a
 implies that the components x and y of a are nonnegative.

 From a13= a* we have N(a/3) = a3 * a3= a *,l * 3= a ,13* =
 N(a) * N(,3). Thus if N(a) = 1 and N(,3) = 1, then N(a ,/3) = 1. So the product
 of two reals representing solutions of the Pell equation represents again a solution.

 We also have N(M') = N(a).
 Now let a = x1 + y ,Vd and ,3 = x2 + y2Vd be two solutions of the Pell equa-

 tion, with xl, YI, x2, Y2 integers, N(a) = 1 and N(,B) = 1. Suppose 1 < a and
 1 < /3 hold. As we have seen, xl, YI, x2, Y2 must then be nonnegative. So from the
 equations X2 = dy2 + 1 and x2 = dy 2 + 1, it follows that xl <x2 iff y1 <y2.

 Thus 1 <a </3 holds iff both 1 <x1 <x2 and 0 <yI <y2 hold. So the set of
 reals a for which N(a) = 1 and 1 < a hold, is a well ordered set. If this set is
 nonempty, if there exists a nontrivial solution to the Pell equation, then there must
 exist a least real a such that 1 < a and N(a) = 1. This real is called the generator.
 Its components are called the fundamental solution.

 The powers of the generator a generate all solutions to (2.1). To see this,
 observe first that N(a) = 1 implies N(at) = N(a)n = 1, so that powers of a
 represent solutions. To see that these powers of a give all solutions of (2.1),
 observe that if N(,3) = 1 and 1 < /, then 3n such that an < /3 < an+ 1. From
 1 <3 a-n <a and N(/3a -n) = N(/3)N(a - l)n = N(O3)N(')n = N(/3)N(a)n = 1,
 it then follows that /3 - a-n = 1. Hence /3 = a n. Therefore / can be obtained as a
 power of a.

 It is not entirely trivial to show that for arbitrary d + El there always exists a
 nontrivial solution to the Pell equation (2.1). But when d is a nonsquare of the
 special form d = a2 - 1, then it is easy to prove this and hence the existence of
 infinitely many solutions. The special Pell equation with d = a 2 - 1,

 x2- (a2 l)y2= 1, (2.2)

 has the fundamental solution (x, y) = (a, 1). So the generator is a + Va2 - 1 . By
 the preceding, the powers of this real then give all solutions,

 Xa(n) + Ya(n) * Va2-1 = (a+ a2-1 ) . (2.3)
 Let x = Xa(n) and y = Ya(n) denote this sequence of solutions to (2.2), defined by
 (2.3). Then Xa(n) and Ya(n) are strictly increasing functions of n. This is evident
 from (2.9) below.
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 Taking the conjugate of both sides of (2.3) one finds that the sequences Xa(n)

 and Ya(n) are also definable from the conjugate of the generator, a - a2- 1,

 Xa(n) - Ya(n)Va2- 1 = (a - _a2 1 (2.4)
 As we have mentioned, a = a-1, the conjugate of the generator is equal to the
 inverse,

 a- 21 = (a + a2-1 . (2.5)
 This implies that most of the identities which hold for the sequence of solutions

 of the Pell equation also hold for negative values of parameters. For example

 from the identities (a + Fd)n+m = (a + Fd)n(a + Vdi)m, (a + -)n-,n
 (a + vdY)n(a + 4d) -m, using (2.3), (2.4) and (2.5) one obtains the identity

 Xa(n + m) + Ya(n + m)Vd = (Xa(n) + Y,(n)FdY)(Xa(m) ? Ya(m)Vd)
 (2.6)

 Taking the rational and irrational parts of (2.6), one obtains the Addition Equa-
 tions (Lucas). Here the + signs correspond.

 Xa(n ? m) = Xa(n)Xa(m) ? dYa(n)Ya(m), (2.7)

 Y (n ? m) = Y (n) Xa(m) ? Xa(n)Ya(m) . (2.8)

 These hold only for a > 2 but if we define X1(n) = 1 and Y1(n) = n, then (2.8) will
 hold for a = 1. Putting m = 1 in (2.7) and (2.8), we see that also, as a special case
 of (2.7), (2.8)

 Xa(fn + 1) = aXa(n) + dYa(n), Ya(n + 1) = aYa(n) + Xa(fn), (2.9)
 Xa(fn - 1) = aXa(n) - dYa(n) , Ya(n - 1) = aYa(n) - Xa(fn). (2.10)

 Adding pairs of equations (2.9) and (2.10), one obtains representations of X and Y
 as Lucas Sequences, that is, sequences satisfying a second order linear recurrence.

 Xa(0) = 1, Xa(l) = a, Xa(n + 1) = 2aXa(n) - Xa(n - 1). (2.11)

 YK(0) = 0, Ya(1) = 1, Ya(n + 1) = 2aYa(n) - Ya(n - 1). (2.12)
 From the addition equations, (2.7) and (2.8), together with defining equation (2.2),
 one can derive the Double Angle Formulas (Lucas)

 Xa(2n) = 2Xa(n)2 - 1, (2.13)

 Ya(2n) = 2Xa(n)Ya(n). (2.14)

 Generally we are interested in the Xa and Ya sequences only for a > 2. However
 as we mentioned, when a = 1 they can be defined in a natural way satisfying (2.8),
 (2.11) and (2.12). We can define X1(n) = 1 and Y1(n) = n.

 For fixed n, the function Ya(n) is a polynomial in a. This can be seen from
 (2.12). The degree is n - 1. From this, that Ya(n) is a polynomial in a, one obtains

 Congruence Rule, Ya(n) Yb(n) (mod a - b). (2.15)

 The Congruence Rule holds for a, b > 1. Putting b = 1 in (2.15) and using
 Y1(n) = n we obtain the special congruence rule of Julia Robinson [1952]:

 Ya(n) n (mod a - 1). (2.16)
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 696 JONES AND MATIJASEVIC [October

 The Lucas equations (2.11),(2.12) also enable one to derive bounds on the size
 of the Xa and Ya sequences. For example, it is easy to derive the following bound
 on Ya(n):

 (2a _ 1) < Ya(n + 1) < (2a) . (2.17)

 This inequality, which holds for 1 < a, 1 < n, shows that the Ya(n) sequence grows
 exponentially in n. These sequences can also be more directly related to exponen-
 tiation. The following congruence was obtained by Julia Robinson [1952]:

 Xa(n) - (a - k)Ya(n) = k (mod 2ak - k 1). (2.18)
 Proof. We will show that the congruence holds for all n > 0 and all k > 0. It is

 easy to check for n = 0 and n = 1. So proceeding by induction on n, using
 recurrence equations (2.11) and (2.12), we obtain

 Xa(n + 1) - (a - k)Ya(n + 1) = 2a Xa(n) - Xa(n - 1)

 -(a - k) [2a Ya(n) - Ya(n - 1)]
 = 2a[Xa(n) - (a - k)Ya(n)]

 -[Xa(n - 1) - (a - k)Ya(n - 1)]

 -2ak k- = k '(2ak - 1)

 = k -(2ak - k 1 + k2) -k (O + k2)

 = kn- k2 = k n+ (mod 2ak -k2 _ 1).

 Next we prove a divisibility property which we will need in the proof of (2.20).

 nlm < Ya(n)IYa(m). (2.19)
 Proof. From the Addition Equation (2.8) we have (dropping the subscript a),

 Y(k + n) = Y(k)X(n) ? X(k)Y(n) Y(k)X(n) (mod Y(n)). But Y(n) I X(n)
 (Y(n) and X(n) are relatively prime), by (2.2). So Y(n)IY(k + n) iff Y(n)IY(k).
 Now let m = ni + r where 0 < r < n. Then 0 < Y(r) < Y(n). Also Y(n)IY(m) iff
 Y(n)IY(ni + r) iff Y(n)IY(r). Hence Y(n)IY(m) iff r = 0, i.e. Y(n)IY(m) iff nIm.

 FIRST STEP DOWN LEMMA 2.20. Ya2(n)IYa(m) n* Ya(n)Im. (1 < a).
 Proof. By using identity (2.3), twice, it is easy to prove that for any j

 Xa(nj) + Ya(nj)Vd- = (Xa(n) + Ya(n)Vd)* (2.21)

 Now expand the right side of (2.21) and take the irrational part to get

 Ya( ni) = E (. ) Xa (n) j_Ya (n) (Fd (2.22)
 i oddI

 Hence

 Ya(ni) -=jXa(fn)j Ya(fn) (mod Ya(n)3) (2.23)
 For the proof of 2.20 in the * direction, suppose Y(n)21Y(m). Then by (2.19)
 m = nj for some j. Let this be the j in (2.23). Since X(n) I Y(n), (2.23) implies
 Y(n)2IjY(n). Hence Y(n)Ij, so that n - Y(n)Im. For the converse suppose
 n * Y(n)Im. Let j = Y(n). Then (2.23) > Y(n)21Y(n * Y(n)). So by (2.19),
 Y(0)2 I Y(m).
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 LEMMA 2.24. For 2 < a and 1 < n, Ya(n - 1) + Ya(n) <Xa(n).

 Proof. Replace n by n - 1 in (2.9) to obtain a - Y(n - 1) + X(n - 1) = Y(n).
 From 2 < a, we get 2 - Y(n - 1) < a * Y(n-1) < a * Y(n - 1) + X(n-1) =
 Y(n). Hence Y(n - 1) < Y(n) - Y(n - 1). Add Y(n) to both sides to obtain
 Y(n - 1) + Y(n) < 2 - Y(n) - Y(n -1) < a * Y(n) - Y(n - 1) = X(n), by (2.10).

 LEMMA 2.25. Ya(4ni ? m) Ya(m), Ya(4ni + 2n ? m) T Ya(m) (mod Xa(n)).

 Proof. From (2.14) Y(2n)- 0 (mod X(n)). From (2.13) X(2n) -1
 (mod X(n)). So from (2.8) Y(2n ? m) Y(2n) X(m) ? X(2n) * Y(m) T Y(m)
 (mod X(n)), we have Y(2n ? m) T Y(m) (mod X(n)). Using this Y(4n ? m) =
 Y(2n + 2n ? m) -Y(2n ? m) ?Y(m) (mod X(n)). So also Y(4n + m)
 + Y(m) (mod X(n)). Here the signs ? correspond. In the next lemma they do not.

 SECOND STEP DOWN LEMMA 2.26. Ya(k) Ya(m) (mod Xa(n)) -*k _m
 (mod 2n).

 Proof. We assume as usual 2 < a, 1 < n. For the proof in the direction,
 suppose that k = 2nj + m. When j = 2i, we have Y(k) = Y(4ni ? m) ?Y(m)
 (mod X(n)). In the case that j = 2i + 1, we have Y(k) = Y(4ni + 2n ? m)
 +Y(m) (mod X(n)). So Y(k) ? Y(m) (mod X(n)).

 For the proof in the > direction, assume that Y(k) ? Y(m) (mod X(n)).
 Choose k' such that 0 < k' < n and k ? k' (mod 2n). Choose m' such that
 0 < m' < n and m ? m' (mod 2n). Then from the assumption and Lemma 2.26
 in the direction already proven, 4=, we have Y(k') ? Y(m') (mod X(n)). Hence
 it follows that X(n)IY(k') ? Y(m'). Therefore k' =m', because if we suppose
 k+ Im', then we would have 0 < IY(k') ? Y(m')I < IY(k') + Y(m')I < Y(n - 1)
 + Y(n) < X(n), by Lemma 2.24. From k' = m' we deduce k ?m (mod 2n).

 LEMMA 2.27. For A > 1. In order that C = YA(B), it is necessary and sufficient
 that there exist natural numbers D, E, F, G, H, I and i such that

 (1) D2 - (A2 - 1)C2 = 1, (4) E = (i + 1)2C2, (7) H C (modF),

 (2) F2- (A2- 1)E2= 1, (5) G A (mod F), (8) H B (mod 2C),

 (3) I2_(G2 1)H2 =1, (6) G 1 (mod2C), (9) B < C.

 Proof -of Sufficiency: Suppose there exist D, E, F, G, H, I, i satisfying (1)-(9).
 Then equations (1)-(3), Pell equations, imply the existence of numbers p, q, and r
 such that

 D =XA(p), C = YA(P), F=XA(q),

 E = YA(q), I = XG(r), H =YG(r).

 We also have 0 < p < C and 0 < B < C. Hence the idea is to show B = p, by
 proving B r +p (mod 2C). We can suppose 0 < C. Using the First Step
 Down Lemma, together with (4), we have

 C2IE > YA2(p) YA(q) YA(p)lq =* Clq.
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 To show that B r (mod 2C) we use (6), (8) and the Congruence Rule (2.16) to
 get

 B H = YG(r) Y1(r) = r (mod 2C) -> B r (mod2C). (2.28)

 By the Second Step Down Lemma, the Congruence Rule (2.15), by (5) and by (7),

 YA(r) - YG(r) = H- C = YA(p) (mod XA(q)) * r = +p (mod 2q).
 But CIq. Hence r +p (mod 2C). This plus (2.28) implies B _+p (mod 2C).

 Proof of Necessity: Suppose C = YA(B). Let D = XA(B). Then (1) and (9) hold.

 Put q = B * YA(B), F = XA(2q) and E = YA(2q). Then (2) holds. Let
 m = B YA(B) in the First Step Down Lemma (2.20). Then the First Step Down
 Lemma says

 YA(B)2 YA(B - YA(B)). (2.29)

 Hence C21 YA(q). The Double Angle Formula (2.14) says 2XA(q) . YA(q) I YA(2q).
 Hence 2C2 1E. Therefore (4) can be satisfied. Put G = A + F2(F2 - A). Then (5)
 holds. Also (2) and (4) together imply that F2 1 (mod 2C). Then G = A +
 F2(F2 - A) implies (6). Put I = XG(B) and H = YG(B). Then (3) holds. From
 (2.16) H = YG(B) B (mod G - 1). So by (6) H B (mod 2C). Therefore (8)

 holds. From (2.15) we have H = YG(B) YAW(B) = C (mod G - A). This together
 with (5) implies H C (mod F). Hence (7) holds.

 ?3. Exponential and Binomial Coefficient. By Lemma 2.27, the 3-place relation

 y = YJ(n) is diophantine. Hence we may use it in showing that other relations are
 diophantine. We can also use the 3-place relation x = Xa(n) for this purpose. It is
 also diophantine. (That x = Xa(n) is diophantine follows from Lemma 2.27 and
 equation (2.2).) We will use both y = YJn) and x = Xa(n) in defining the
 exponential relation.

 LEMMA 3.1. Suppose 1 < n, 2 < k. For a sufficiently large, a > Yk(n + 1)

 kn = rem(Xa(n) - (a - k)Ya(n), 2ak - k2 _ 1).
 Proof. From (2.17) we have k < kn < (2k - 1)n < Yk(n + 1) < a. From this it

 follows that k + 1 <a, and hence a <a -k <a k + k - 1 = ak + (k + 1)k -
 k2 _ 1 < ak + ak-k2 _ 1 = 2ak-k2 _ 1. Therefore kn < 2ak-k2 _ 1,
 kn is smaller than the modulus. But by congruence (2.18), k- Xa(n) -

 (a - k)Ya(n) (mod 2ak - k2 _ 1). Since kn is less than the modulus, it is the
 remainder.

 Lemmas 2.27, 3.1 and (1.7) imply that the exponential relation, m = kn is
 diophantine. By Lemma 3.1, m = kn if and only if there exists an a such that

 m -Xa(n) - (a - k) * Ya(n) (mod 2ak - k2 -1),
 m<a a>Yk(n+l). (3.1)

 We show next that the binomial coefficient is diophantine. This relation was
 first proved exponential diophantine by Julia Robinson [1952]. The basic idea of
 the proof is that* the binomial coefficients are just the digits in the base u
 expansion of (1 + u)n, when u is large enough.
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 LEMMA 3.2. For 0 < k, n and u > 2 ,

 nk = e((U + 1)n u

 Proof Expand (u + 1)n by the Binomial Theorem and divide by uk to get,

 k = I ()ui-k+ + E )uk (3.2)
 U i=k+l 0==

 From (3.2) together with the inequality ui-k < 1/u, which holds for i < k - 1, we
 get

 E nui - < < i(3.i3)
 Hence

 Le t )1-(k)(mod u).
 So Lemma 3.2 follows from (n) < 2n < U.

 Lemmas 2.27, 3.1, 3.2, 1.7 and 1.8 imply that the binomial coefficient is

 diophantine. We have m = (k) iff there exist u, x, and y, such that

 (U + 1)n =yu-k+1 + M.Uk +x, 2n < U, x < Uk and m < u.

 (3.4)

 We now use this to prove that the following relation X (bit masking) is diophan-

 tine.

 DEFINITION 3.5. Let r and s be natural numbers written in binary, (base 2). Then
 r i s means each binary digit of r is less than or equal to the corresponding binary
 digit of s.

 The masking relation - is closely related to the operation of taking the logical
 and of two numbers. One can define s from logical and by

 a b *a Ab=a. (3.6)

 Logical and is definable from - by

 a A b = c c i a and a i a + b - c. (3.7)

 Another property of the masking relation is that r - s implies r < s. The masking
 relation also satisfies the axioms for a partial ordering, reflexivity, anti-symmetry

 and transitivity.
 The masking relation - is also diophantine. For the proof we will use the

 Theorem of E. Lucas [1878] on binomial coefficients modulo a prime.

 THEOREM 3.8 (Lucas [1878]). If p is prime, r1, s, the base p digits of r and s, then 054 SnA 1(;) = ... (mod p). (3.8)
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 Proof. It is easy to see, by induction on n, that this general form of Lucas
 Theorem, Theorem 3.8, is implied by the following special case (H. Anton [1869],
 approximately n = 1), of Lucas' Theorem:

 LEMMA 3.9. Let p be a prime. Suppose 0 < b < p and 0 < d < p. Then

 a cp + d) - kcj kd) (mod p). (3.9)

 Proof. Working in the polynomial ring Z;p[x], consider the coefficient of the
 term xc,p+d in the polynomial (1 + X)ap+b. From the equality (x + y)P = xP + yP
 we get

 ap + +b

 a, ( )X n( + X)aPb = (1 + X)pa(l + X)b =(l Xp)a .(+X)b
 n=O I

 (y=0 O ( )(z= O i )) j =O i=0 O )( i)

 The coefficient of XCP+d must be the same in both polynomials. However because
 of the inequalities 0 < i < b < p and 0 < d < p, the equation jp + i = cp + d can
 hold only when i = d and j = c. Therefore, the coefficient of the term XcP+d in

 (1 +X)aP+b must therefore be ac)(d)Hence a b ) holds in Z
 Now we can prove that the masking relation - is diophantine. This will follow

 from

 LEMMA 3.10.

 r -<s <> 1 -(mod 2).

 Proof. Put p = 2 in Theorem 3.8. Then 3.10 follows from the trivial relations

 (1) = 1, (1)= 1, ( = 1 , = 0
 Lemma 3.10 is proved. From this Lemma together with Lemma 3.10, 3.2, (1.7) and
 (1.8), it follows that - is a diophantine relation.

 ?4. Arithmetization of register machines. We now have enough diophantine
 relations to prove that every recursively enumerable set is diophantine. Recall the
 definition of r.e. set: A set A is r.e. if and only if A is empty or the range of a
 recursive function. For the definition of recursive function, we will use the register
 machine, a model of computation equivalent to the Turing machine. A register
 machine is a "machine" with a finite program and a finite number of separately
 addressable registers, Rl, R2,.. ., Rr. The registers are assumed unbounded, each
 register can contain an arbitrarily large nonnegative integer. A subset of the
 registers, say R1, R2, ..., Rk, (k < r), is designated as input registers and a subset,
 say R1, R2,..., Rm, (m < r), as output registers. This is to handle functions of k
 variables whose values may be m-tuples. For a function of one variable of course
 k = 1. Normally also m = 1. Usually R1 is thought of as the input-output register.

 A register machine is actually a program, a list of commands written on lines
 labelled Li, L2, .. ., Ll. The register machine's commands are normally executed
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 1991] RECURSIVE UNSOLVABILITY OF HILBERT S TENTH PROBLEM 701

 in sequence; however, the register machine may execute commands which tell it to

 transfer to a different location and begin execution there.
 For the computation of all recursive functions, it is sufficient to assume that the

 register machine is capable of adding or subtracting 1 from a register and of
 transferring on zero.

 The subtraction command can cause a problem if one attempts to subtract 1
 from an already zero register. For this reason Minsky [1967] permitted the
 subtraction command to occur only after a test for zero. His subtraction command
 therefore required two lines

 Li IF Rj = 0, GOTO Lk, (4.1)

 Li + 1 ELSE Rj<-R1-1. (4.2)

 It is sufficient to assume that the program is written in such a way that subtraction
 from a zero register never occurs. We will assume that our machine has the
 following one line commands:

 COMMAND INTERPRETATION

 Li GOTO Lk Transfer to line Lk. (4.3)
 Li IF 0 < Rj GOTO Lk Conditional transfer to line Lk. (4.4)
 Li Rj Rj + 1, Increment register Rj. (4.5)
 Li Rj Rj - 1, Decrement register Rj. (4.6)

 In fact because it shortens our example and does not complicate the proof, we
 will allow several commands of type (4.5) and (4.6) to be written on one line, in
 parallel, when they refer to different registers. Below is an example of a register
 machine.

 EXAMPLE 1. A register machine which computes the Xth Fibonacci number, Fx.

 Ll IF R1 = 0, GOTO L20
 L2 R2 -R2 + 1, R3 < R3 + 1
 L3 R1 -R 1-1

 L4 IFR1 = 0, GOTO L16

 L5 Rl1- Rl1-1

 L6 R4<-R4+ 1,R5 < R5+ 1
 L7 R3 *-R3-1

 L8 IF 0 < R3, GOTO L6
 L9 R4 *-R4 + 1, R2 *-R2-1

 L10 IF 0 < R2, GOTO L9
 Lll R3 * R3 + 1,R4*-R4-1
 L12 IF0 < R4, GOTO L11
 L13 R2*- R2+1,R5*-R5-1
 L14 IF 0 < R5, GOTO L13
 L15 IF 0 < R1, GOTO L5
 L16 R3 * R3-1

 L17 IF 0 < R3, GOTO L16
 L18 R2*- R2-1, R1 <-R1 + 1,
 L19 IF 0 < R2, GOTO L18,

 A function is recursive (computable) if and only if it can be computed by a
 register machine (Minsky [1961] [1967], Melzak [1961], Lambek [1961], Shepherdson
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 and Sturgis [1963].) The machine M of Example 1 computes the function f(x) = Fx,

 where F, is the xth Fibonacci number, (Fibonacci number with index x in the
 enumeration Fo = 0, F1 = 1, FX+2 = F, + F?+1). If M is started on line L1 with x
 in register Ri and zeros in the other registers, then M eventually halts with

 f(x) = F, in register Ri and zeros in the other registers. We can understand this
 as a general definition of computability.

 To arithmetize the work of an arbitrary register machine, we will use digits of
 numbers written to a base Q, where Q is power of 2. Consider the register
 machine M of Example 1 or more generally any register machine with r registers
 and 1 lines in its program. Assume that M computes the total function y = f(x).
 During the computation the contents of a register at time t can never exceed
 x + t. We will use the fact that after s steps in the computation, the contents of

 each register Ri is < x + s.

 Suppose that after s steps the value y = f(x) is obtained by M. Let rj t denote
 the contents of register Rj at time t during the course of the computation. If Q is

 large enough, we will have rj t < Q. So the numbers rj t may be considered to be
 the digits of a number written to the base Q. But we will need more room. We will

 require 2r, t < Q, (for the reason see the explanation following (4.19)). Hence we
 will require that Q satisfy:

 x + s < Q/2, (4.7)

 1+ 1 <Q, (4.8)

 Q pow 2. (4.9)

 For example the number Q = 2x+s+?+? will be large enough. To describe the

 location of the machine in the code at each time, let lj t be 1 or 0 according as we
 execute, or do not execute the instruction(s) at location Lj at time t. When the

 machine M computes, it will then generate numbers RJ and Li where

 Rj = E r,tQt (0 < rj t < 2 (4.10)

 s

 Li = E li,tQt (0 < li,t < 1). (4.11)
 t=0

 Here the index j runs from 1 to r, where r is the number of registers. The index i
 runs from 1 to 1, where 1 is the number of lines in the program.

 It will be useful also to have a number I which when written to the base Q has
 all digits equal to 1. The geometric series will allow us to obtain such a number I.

 S+1 t~~~~~
 If 1 + (Q-1)I= Qs?, then = E Qt. (4.12)

 t=0

 To visualize the arithmetization, consider the machine of Example 1 which has
 r = 5 registers and 1 = 19 lines in its program. When it is started on x = 2
 as input (i.e. with x = 2 in register Ri), the machine will be seen to halt after
 s = 23 steps, with 1 in register Ri and zeros in the other registers. (This is be-
 cause F2 = 1 is the second Fibonacci number in the standard enumeration
 0, 1, 1, 2, 3, 5, 8, 13, ....) During the computation of F2, the machine will generate
 the following numbers R1, R2, R3, R4, R5, representing successive contents of the
 registers, in the sense of (4.10). These numbers, when written in base Q, would
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 look as follows:

 R1 = 110000000000000000011222,

 R2 = 001111111000000111111100,

 R3 = 000011222221100001111100,

 R4 = 000000000001122111000000,

 Rs = 000000000111111111000000.

 Similarly, numbers representing the sequence of program locations L1, L2I ... I L202
 will be generated during the computation of F2. In base Q they will look as
 follows:

 L, = 000000000000000000000001,

 L2 = 000000000000000000000010,

 L3 = 000000000000000000000100,

 L4= 000000000000000000001000,

 Ls = 000000000000000000010000,

 L6= 000000000000000000100000,

 L7 = 000000000000000001000000,

 L8 = 000000000000000010000000,

 Lg = 000000000000000100000000,

 Llo= 000000000000001000000000,

 L = 000000000001010000000000,

 L12= 000000000010100000000000,

 L13 = 000000000100000000000000,

 L14 = 000000001000000000000000,

 L15 = 000000010000000000000000,

 L16 = 000010100000000000000000,

 L17 = 000101000000000000000000,

 L18 = 001000000000000000000000,

 Ll9 = 010000000000000000000000,

 L20= 100000000000000000000000,

 Notice that the generated numbers L1L2, ... . L20I R2, R3, R4, R5 contain the
 entire history of the computation of f(2) = F2 = 1.

 Now we show how to write down diophantine conditions on arbitrary variables

 L L2, .. I *,L20, R1, R2, R3, R4,R5, s, Q, x, y sufficient to force them to be these
 particular values. That is, we give Diophantine conditions on these unknowns
 which are satisfiable if and only if, on input x, the machine M produces the output
 value y = f(x). The unknowns in these diophantine relations will be s, Q,
 I, R1, .. ., Rr L1,. ..., L1 + 1. The quantities r and I will be constants, (e.g. r = 5
 and 1 = 19 in the example). After the conditions have been written down, the
 methods of ?1, ?2 and ?3 may be used to translate them into diophantine
 equations in these same unknowns, and more unknowns. The variables x and y
 will be parameters in the resulting equations.

 The first four conditions will be (4.7), (4.8), (4.9) and (4.12). Then to force an
 arbitrary natural number Rj to have the form (4.10), we will use the masking
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 relation

 Rj Q - 1) -II (j = 1, ...r (4.13)
 Condition (4.13) is implied by condition (4.10), because Q is a power of 2. We also

 need to force exactly one digit to be 1 in every column of the L matrix. Since

 1 < Q by (4.8), we can use for this purpose the following two conditions:

 1+1

 I = ELi, (4.14)

 Li i, I (i = 1, .. * *, + 1). (4.15)

 To start the machine on line Li, we stipulate as a starting condition that

 1 - LI. (4.16)
 By means of GOTO instructions we can suppose there is only one stop command,

 and that it is located at the end of the program, on line L1+l . Then the condition
 for stopping the machine after s steps can simply be

 L+,= QS. (4.17)
 To simulate each GOTO command (unconditional transfer), Li GOTO Lk, we
 include a condition

 QLi - Lk. (4.18)

 This forces the t + 1st digit of Lk to be 1 whenever the tth digit of Li is 1. Here
 1 < k < 1 + 1. (Line Ll + 1 is permitted to be the target of a GOTO.) This same
 idea, (4.18) can be used also for the conditional transfer command (4.4), Li IF

 0 < Rj, GOTO Lk. (Assume k + i + 1 so the command is not trivial.) Here we use
 two masking conditions:

 QLi i Lk + Li+I and QLi i Lk + QI-2RP. (4.19)
 The first masking condition forces transfer toline Li or line Li + 1. The second
 decides which one it will be. A diagram explains how this works:

 Q6 Q5 Q4 Q3 Q2 Q1 Qo
 I=0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1.

 QI=O 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
 2-R,=0 0 0 0 00 * * * * * 0 * * * * * 0 * * * * * 0 * * * * * 0 * * * * * 0 * * * * * 0.

 Here Q = 26 and s = 5 and the idea is that subtraction of 2RJ from QI pulls a bit

 from the Qt`? position of Q I when 0 < rj t. Thus (4.19) implies that 0 < rj, t if
 and only if 'k, I+ I = 1. The reason why we needed 2rj1t < Q and why we divided Q
 by 2 in (4.13) can now be understood. The purpose was to create the zeros between

 adjacent blocks of digits in 2RP. The reason we use QI - 2R1 and not I - 2Ri is
 that we could not be sure that I - 2R1 would be nonnegative.

 The command Li IF Rj = 0, GOTO Lk may be treated analogously. This
 command is just the opposite of (4.4), so it can be simulated with a masking

 condition like (4.19) but with the second occurrence of Lk replaced by Li+1. This
 has the effect of causing the machine to go to Li + 1 instead of Lk, when Rj > 0.

 (Again we are supposing that k + i + 1 so that Li IF Rj = 0, GOTO Lk is
 nontrivial.)
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 While commands of type Li Rj <- Rj ? 1 are not usually thought of as transfer
 commands, there is an implied GOTO associated with them; GOTO the next line.
 So, for each occurrence of such a command (more precisely for each line Li
 containing occurrences of such commands), we need one corresponding masking
 condition:

 QLi < Lj+ (4.20)
 Finally it is necessary to include for each register an equation which ensures

 that the contents of the register is equal to the tth Q-ary digit of the correspond-

 ing number Rj at each time t. We call these register equations. For the example
 program they would be:

 R1 + yQS+l = QR1 + x + EQLk - QLi, (4.21)
 k

 R= QRj + EQLk- EQLi, (forj = 2,3,...,r). (4.22)
 k i

 The k-sums are over all k for which there is an instruction of type Lk Rj <- Rj + 1,
 on line Lk. The i-sums are over all i for which the program has a command of

 type Li Rj <- Rj - 1 on line Li.
 The register equation for register Rl is different from the register equations for

 the other registers because Rl is the input-output register (assuming functions of
 1 variable). At time t = 0, register R1 contains x. At time s it contains y. The
 other registers contain zeros at these times.

 If more registers are designated as input-output registers, for example if
 m > 1, then it is necessary to add a term x to the right side of (4.22) and a term

 yQS`l to the left side of (4.22), for the corresponding register equation.
 From these equations and conditions, it is not difficult to show, by induction on

 t1, that if machine M computes function f, then for all x, y, conditions (4.7), (4.8),

 (4.9), (4.12)-(4.22) have a solution in the unknowns s, Q, I, R , ..., Rr' L1,..., LI+
 if and only if f(x) = y. Methods of ?1, ?2, and ?3 then permit us to write
 conditions (4.7), (4.8), (4.9), (4.12)-(4.22) as polynomial equations in the unknowns

 s, Q, I, R1, ..., Rr, L1,..., L1, and more unknowns. After we rename the un-
 knowns x1, x2,.. ., x,, transpose all the terms in the equations to one side and
 sum squares as in (1.5), we obtain a single polynomial equation

 P(x, y, x1, x2, ... , xn) = 0 with the property that (3x1, x2, .. , xn)
 [P(x, y, x1, x2, ..., xd) = 0] if and only if f(x) = y.

 To complete the proof of Theorem 1, let A be any r.e. set. Suppose A + 0. Let
 f be a recursive function whose range is A, so that y E A iff (Ox) [f(x) = y]. Let
 M be a register machine computing f. When A is a 1-ary relation, A(a1), we have
 a1 e A iff (x) [f(x) = a1]. Thus a1 E A if and only if (3x, x1, x2,..., xn)
 [P(x, a1, x1, x2,. . ., xn) = 01. When A is an m-ary relation, A(a1, a2, ... , am),
 then we have (a1, a2, . . ., am) E A iff (3x) [f(x) = (a1, a2, . . ., am)]. So P must
 include m copies of register equation (4.21), with yQS+l replaced by ajQs+l
 (i = 1, ... , m). Then A(a1, a2, . . . , am) holds iff (3x, x1, . . ., xn)
 [P(x, a1,... , am, x1, ..., xn) = 0]. Theorem 1 is proved.

 ?5. Hilbert's 10th problem is unsolvable. We give here a proof that Theorem 1
 implies the recursive unsolvability of Hilbert's Tenth Problem. To shorten the
 proof T. Rado's game [1962] will be used.

This content downloaded from 
�������������128.6.45.205 on Mon, 06 Jun 2022 20:38:29 UTC�������������� 

All use subject to https://about.jstor.org/terms



 706 JONES AND MATIJASEVIC [October

 THEOREM 2. There exists no algorithm to solve Hilbert's Tenth Problem.

 Proof. Consider the problem of programming a register machine to return the
 largest possible number in register Ri and stop. Suppose the registers are initially
 set to 0. Let R(l) be the largest possible number generable in this way, by an 1 line
 register machine with registers set initially to 0.

 Restricting subtraction commands to the (safe) type (4.1)-(4.2), and disallowing

 parallelization of commands, R(l) is evidently a well defined function of 1. A finite
 set has a greatest element. There are only a finite number of 1 line register
 machines.

 Evidently we have R(1) = 1 and R(2) = 2. Also R is an increasing function of 1,
 R(l) < R(l + 1). This can be seen by adding a new line, Ri <- Ri + 1, to the end
 of an 1 line program.

 Define a binary relation S by putting S = {(k, 1): k < R(l)}. Then

 (k, 1) E S < (3s)[some 1 line machine halts in s steps with contents of R1 > k].
 (5.1)

 From (5.1) it follows that the set S is r.e. This set S is related to the function R by

 R(l) = min k[ S(k + 1,1)]. (5.2)

 Apply Theorem 1 to S. The result is a polynomial P(k, 1, xl, ... , xn) with the
 property that

 S(k, 1) < (3x x21 ... xn)[P(k, 1, X11 X21 *... * Xn) = ]. (5.3)

 From (5.2) and (5.3) it follows that

 R(l) = min k[ -(3x1,X2,***,Xn)[P(k + 1,,xl1X2, ... , xn) = 0]]. (5.4)

 Hence if Hilbert's Tenth Problem were solvable, then R would be computable.
 But the function R grows very rapidly. In fact it is noncomputable.

 LEMMA 5.5. Let f be any computable function. Then for 1 sufficiently large,
 f(l) < R(l).

 Proof. Without loss of generality we can suppose that f is an increasing
 function. Let N be a register machine which computes the function f. Suppose N
 has c lines in its program. Let F be the machine obtained by adding the
 instruction Ri <- Ri + 1 to the end of N. Then F has c + 1 lines and it computes
 the function f(x) + 1.

 Let D be a 5 line register machine with the property that when started with x
 in R2 places 2x in Ri and stops. D could be the machine,

 Li IF R2 = 0, GOTO L6,

 R2<-R2-1,

 R1 <R1 + 1,

 R1 <R1 + 1,

 GOTO Li, (5.6)

 For each x, let Mx be a register machine with x lines and the property that
 when started with 0 in R2 produces x in R2. For example Mx could be taken to
 be a straight line program consisting of x copies of R2 <- R2 + 1.
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 Now consider the register machine F(D(M,)). By the notation F(D(M,)) is
 meant M. followed by D followed by F, in that order. F(D(M,)) is a register
 machine with x + 6 + c lines in its program. It has the property that for each x,

 when started with registers initially set to zero, it will produce the number

 f(2x) + 1 in Rl, then halt. The existence of this machine proves that

 f(2x) < R(x + 6 + c) (5.7)

 for each x. When x > 6 + c, we have x + 6 + c < 2x. Hence

 f(x + 6 + c) < f(2x), (5.8)
 because f is increasing. Now put 1 = x + 6 + c. Then for 1 > 12 + 2c, (5.7) and
 (5.8) imply f(l) < R(l). Lemma 5.5 is proved. Hilbert's Tenth Problem is unsolv-
 able.

 ?6. Every computable function is a polynomial. Unsolvability is a negative
 result, but the solution of Hilbert's Tenth Problem has many positive conse-

 quences. One is the existence of polynomials whose set of positive values coincides
 with any given r.e. set. This result is well known, so we shall prove a stronger form
 of it which at first glance appears even more surprising.

 THEOREM 3. Let f be any computable function. Then there exists a polynomial Q,
 with integer coefficients, such that for all nonnegative integers x and y

 f (x) = y "(3xo, xj,.. , Xn) [Q(X, XO, Xl, - Xn) =y ] (6.1)
 Proof. We apply Theorem 1 to the graph of f (which is an r.e. set), and then

 use a trick due to H. Putnam [1960]. Starting from the polynomial P which
 Diophantine defines the graph of f, and using also the fact that f is nonnegative,
 (Vx) [f(x) > 0], we get

 f (x) =y < ' (3x,,. .. Xn)( P(X Y, Xl, Xn) ?),

 f y (3xo,. .., xn)(1-P(x , X , x, x )2 >0 and x0 ),

 (3xo * *, xn)((XO + 1)[1 -P(X XO, Xl, ... x)] = y + 1).

 In the direction we are using the fact that 1 - P(x, x0, x1,..., xn)2 > 0
 implies P(x, x0, x1,.. ., xn) = 0 which implies f(x) = xo. So we can put
 Q(x, XO .. . Xn) = (Xo + 1)[1 -P(x, x0, x1, ..., xn)2] - 1.

 To illustrate Theorem 3, we could apply it to the function f(x) = Fx, whose
 range is the set of Fibonacci numbers. In this case the theorem would give us a

 polynomial Q(x, xO,..., xn) such that for all x, y

 Fx = y <* (3xo,. . ., xn)[Q(x,x0, X xn) = Y] (6.3)
 This would be a Fibonacci number representing polynomial which gives the

 sequence in order, as a function of x.
 The proof of Theorem 1 shows how to construct such a polynomial. If we use

 this proof, the number n of unknowns will be rather excessive. By another
 construction, however, it can be shown that we need only nine unknowns. n = 9
 here and generally in Theorems 1 and 3. This result, the nine unknowns theorem,

 is a theorem of the second author. A proof can be found in a paper of the first

 author [1982].
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