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Abstract Aprotein fold can be viewed as a self-avoidingwalk in certain latticemodel,
and its contact map is a graph that represents the patterns of contacts in the fold. Gold-
man, Istrail, and Papadimitriou showed that a contact map in the 2D square lattice can
be decomposed into at most two stacks and one queue. In the terminology of com-
binatorics, stacks and queues are noncrossing and nonnesting partitions, respectively.
In this paper, we are concerned with 2-regular and 3-regular simple queues, for which
the degree of each vertex is at most one and the arc lengths are at least 2 and 3, respec-
tively. We show that 2-regular simple queues are in one-to-one correspondence with
hill-free Motzkin paths, which have been enumerated by Barcucci, Pergola, Pinzani,
and Rinaldi by using the Enumerating Combinatorial Objects method. We derive a
recurrence relation for the generating function of Motzkin paths with ki peaks at level
i , which reduces to the generating function for hill-free Motzkin paths. Moreover, we
show that 3-regular simple queues are in one-to-one correspondence with Motzkin
paths avoiding certain patterns. Then we obtain a formula for the generating function
of 3-regular simple queues. Asymptotic formulas for 2-regular and 3-regular simple
queues are derived based on the generating functions.
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1 Introduction

The enumeration of contact maps plays a fundamental role in the study of protein fold-
ing prediction (Domany 2000;Vendruscolo et al. 1997), structure alignment (Goldman
et al. 1999; Lancia et al. 2001; Agarwal et al. 2007), and protein structure data mining.
Contact maps can be viewed as a combinatorial structure representing bonds between
amino acid residues; see Goldman et al. (1999). In the 2D lattice model, two amino
acid residues in a protein fold form a contact if they are adjacent in the lattice but not
consecutive in the fold. The contact map of a protein fold can be obtained by represent-
ing the residues as vertices 1, 2, . . . , n drawn on a horizontal line in increasing order,
and connecting two adjacent vertices i and j by an arc in the upper-half plane. An arc
is denoted by (i, j) with i < j , and the length of an arc (i, j) is defined to be j − i .
Figure 1 illustrates a contact map of a protein fold in the 2D square lattice, where the
arcs (1, 16), (2, 15), (3, 6), (5, 8), (6, 15), (7, 10), (7, 14), and (10, 13) correspond to
the contacts between the residues in the protein fold.

Goldman et al. (1999) showed that the contact map for any protein fold in the
2D square lattice can be decomposed into at most two stacks and one queue. As an
example, the contact map in Fig. 1 can be decomposed into one stack (consisting of
dashed lines) and one queue (consisting of solid lines).

In the context of combinatorics, a stack is a noncrossing diagram, and a queue
is a nonnesting diagram. Moreover, a contact map with vertex degree at most one
corresponds to a partition in which each block contains at most two elements, which
is also called a poor partition or a partial matching; see Chen et al. (2005, 2012) and
Klazar (1998). A stack or a queue is said to be simple if the degree of each vertex
is at most one. A stack or a queue is called m-regular if the length of each arc is at
least m. Clearly, a simple stack is a noncrossing poor partition and a simple queue is
a nonnesting poor partition.

Stacks and queues also arise in RNA structures. Recall that an RNA structure can be
viewed as a diagram for which the degree of each vertex is at most one and the length
of each arc is at least two. In combinatorial terms, an RNA structure can be viewed
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Fig. 1 A protein fold in the 2D square lattice and its contact map
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Fig. 2 A 2-regular simple queue and a 3-regular simple queue

as a 2-regular poor partition. An RNA secondary structure can be seen as a 2-regular
simple stack. Note that a 2-regular simple queue can be seen as a nonnesting RNA
structure and a 3-regular simple queue can be viewed as a nonnesting RNA structure
in which the length of each arc is at least 3. As illustrated in Fig. 2, (1) is a 2-regular
simple queue and (2) is a 3-regular simple queue.

In a recent survey paper, Istrail and Lam (2009) raised the question of finding gen-
eralizations of the Schmitt–Waterman counting formulas to stacks (in full generality)
and to queues. In this paper, we obtain generating functions of 2-regular simple queues
and 3-regular simple queues.

The enumeration of special classes of stacks has been extensively studied. Schmitt
and Waterman (1994) found an explicit formula for the number of RNA secondary
structures of length n. Dos̆lić et al. (2004) obtained the generating function of sec-
ondary structures of rank l, which are (l + 1)-regular simple stacks. Höner zu
Siederdissen et al. (2011) introduced the notion of extended RNA secondary struc-
tures, which are 2-regular stacks with maximum degree two. Müller and Nebel (2015)
obtained a functional equation satisfied by the generating function of extended RNA
secondary structures by using a context-free grammar approach. Applying the reduc-
tion operation on m-regular noncrossing partitions introduced by Chen et al. (2005),
Chen et al. (2014) derived a functional equation for the generating function of m-
regular linear stacks, which are m-regular stacks with maximum degree 2.

Whereas a stack has no intersections of arcs, a pseudoknot requires that each bond
between amino acid residues has length at least two and every two bonds intersect
with each other. So a pseudoknot is a queue. Pseudoknots play an important role in
a variety of biological structures; see, for example, Anderson et al. (2013), Jin and
Reidys (2008), Jin et al. (2008), and Parkin et al. (1991). More precisely, a pseudoknot
is called of type k − 2 if it does not contain any set of k mutually intersecting arcs. A
set of k mutually interesting arcs is also called a k-crossing.

AnRNAstructure that does not contain any k-crossing is called anRNApseudoknot
of type k − 2. In other words, an RNA pseudoknot of type k − 2 can be viewed as a 2-
regular k-noncrossing poor partition. Employing the bijection between k-noncrossing
partitions and oscillating tableaux due to Chen et al. (2007), Jin et al. (2008) derived
an expression of the number of RNA pseudoknots of type k − 2. In particular, when
k = 2, their result reduces to Schmitt and Waterman’s formula for RNA secondary
structures. When k = 3, Jin and Reidys (2008) obtained an asymptotic formula for
the number of 3-noncrossing RNA pseudoknots. Anderson et al. (2013) derived the
generating function of RNA pseudoknots of genus g.

This paper is organized as follows. In Sect. 2, we show that hill-free Motzkin paths
are bijective with 2-regular simple queues. We give an expression of the generating
function of Motzkin paths with ki peaks at level i in terms of a recurrence relation. It
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reduces to the generating function of hill-free Motzkin paths, which has been derived
by Barcucci et al. (2001) by using the Enumerating Combinatorial Objects (ECO)
method. The ECO method is a recursive approach to constructing a class of combina-
torial structures in order to establish a functional equation of the generating function.
In Sect. 3, we show that 3-regular simple queues are in one-to-one correspondencewith
Motzkin paths avoiding certain patterns. By using the technique of object grammars,
we obtain the generating function of theseMotzkin paths. The object grammars, intro-
duced byDutour (1996), give another recursivemethod for enumerating decomposable
combinatorial structures; see also Duchi et al. (2004). Finally, we present the asymp-
totic formulas of the numbers of 2-regular simple queues and 3-regular simple queues
of length n, denoted by q2(n) and q3(n), respectively. More precisely, we obtain that

q2(n) ∼ 0.825 · 3n · n− 3
2 , (1)

q3(n) ∼ 0.443 · 3n · n− 3
2 . (2)

2 Hill-Free Motzkin Paths and 2-Regular Simple Queues

In this section, we show that 2-regular simple queues are in one-to-one correspondence
with hill-free Motzkin paths. The hill-free Motzkin paths are enumerated by sequence
A089372 in the OEIS (Sloane 1964). The generating function of hill-free Motzkin
paths has been obtained by Barcucci et al. (2001) using the ECO method. We present
an alternative approach to computing the generating function of hill-free Motzkin
paths by considering the enumeration of Motzkin paths with ki peaks at level i .

Recall that a Motzkin path of length n is a lattice path in Z

2 from (0, 0) to (n, 0)
consisting of up-steps (1, 1), down-steps (1,−1), and horizontal steps (1, 0) which
never goes below the x-axis. The level or the height of a vertex (x, y) is defined to
be the y-coordinate. A peak of height k of a Motzkin path is defined to be the shape
consisting of an up-step of height k immediately followed by a down-step. In particular,
a peak of height one is called a hill. Moreover, a Motzkin path is called hill-free if it
contains no hills.

It is known that both nonnesting partial matchings and noncrossing partial match-
ings are in one-to-one correspondence with Motzkin paths; see Chen et al. (2005),
Dos̆lić et al. (2004) and Stanley (1999). To describe this bijection, recall that for a
vertex v in a diagram, the left degree of v, denoted by ldeg(v), is the number of ver-
tices u such that u is to the left of v and u is connected to v by an arc. The right
degree rdeg(v) is defined similarly. Obviously, in a partial matching both ldeg(v) and
rdeg(v) are either 0 or 1. For a given nonnesting partial matching M , its corresponding
Motzkin path θ(M) is obtained by converting each vertex with right degree one into
an up-step, each vertex with left degree one into a down-step, and each isolated vertex
into a horizontal step. Conversely, from a Motzkin path P of length n, we can easily
construct a nonnesting partial matching M by the inverse map of θ . Let S1, S2, . . . , Sn
be the steps of P . First, draw n vertices 1, 2, . . . , n from left to right on a horizontal
line. Starting with the first step S1, if S1 is a horizontal step, then define 1 to be an
isolated vertex. Otherwise S1 is an up-step. Let Si be the first down-step of P , and
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Fig. 3 A nonnesting partial matching and the corresponding Motzkin path

define (1, i) to be an arc of M . Repeating the above process for the remaining steps
and vertices, we are led to a nonnesting partial matching M . See Fig. 3 for an example.

Clearly, a 2-regular simple queue is a nonnesting partial matching without arcs
of length one. In fact, the above bijection reduces to a one-to-one correspondence
between 2-regular simple queues and hill-free Motzkin paths.

Theorem 2.1 There is a one-to-one correspondence between 2-regular simple queues
on [n] and hill-free Motzkin paths of length n.

Proof We claim that the above bijection θ between nonnesting partial matchings and
Motzkin paths reduces to a bijection between the setQ2(n) of 2-regular simple queues
on [n] and the set M0(n) of hill-free Motzkin paths of length n.

Let Q be an arbitrary simple queue on [n], and let P = θ(Q). We proceed to show
that Q is 2-regular if and only if P is hill-free. Let S1, S2, . . . , Sn be the steps of P .
First, assume that Q is 2-regular. Assume that Si Si+1 is an arbitrary peak of P; that
is, Si is an up-step and Si+1 is a down-step. By the correspondence θ , the vertex i has
right degree one and the vertex i + 1 has left degree one in Q. Since Q is 2-regular,
(i, i + 1) is not an arc of Q. Hence there exist two vertices k and l such that (k, i + 1)
and (i, l) are arcs of Q, where k < i < i + 1 < l. Under the correspondence θ , we
see that the peak Si Si+1 has height at least two. Thus, P is hill-free.

Conversely, assume that P is hill-free. We aim to show that Q is 2-regular. Suppose
to the contrary that Q contains an arc of length one, say (i, i+1). By the correspondence
θ , we know that Q is a nonnesting partial matching. Clearly, (i, i+1) cannot be nested
by any arc of Q; that is, there does not exist an arc (u, v) of Q such that u ∈ [1, i − 1]
and v ∈ [i + 2, n]. Consider the partial matching on [1, i − 1]. By the correspondence
θ , the steps S1, S2, . . . , Si−1 form a Motzkin path on [i − 1]. Hence P returns to the
x-axis at the (i − 1)-st step. This implies that (i, i + 1) corresponds to a hill of P ,
which is a contradiction to the assumption that P is hill-free. Hence Q is 2-regular.
This completes the proof. ��

From the above theorem, we see that the enumeration of 2-regular simple queues
can be achieved by the enumeration of hill-free Motzkin paths. In general, we obtain a
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recurrence relation for the generating functionof the number ofMotzkin paths of length
n with ki peaks at level i , which leads to an expression in terms of a continued fraction.

Let M be the set of all the Motzkin paths. For a given Motzkin path P ∈ M, let
l(P) be the length of P , let k(P) be the number of the peaks of P , and let ki = ki (P)

be the number of the peaks of P at level i . Define the type of P , denoted by t (P), to
be the vector (k1, k2, . . .).

Letmn denote the number ofMotzkin paths of length n, which is known asMotzkin
number. Let

M(x) =
∑

n≥0

mnx
n .

Donaghey and Shapiro (1977, Eq. 7) derived that

M(x) = 1 − x − √
1 − 2x − 3x2

2x2
. (3)

Let c(n; k1, k2, . . .) denote the number of Motzkin paths of length n and type
(k1, k2, · · · ), and let

M(x; t1, t2, . . .) =
∑

n,k1,k2,...≥0

c(n; k1, k2, . . .)xn
∏

i≥1

tkii . (4)

The following theorem gives a relation satisfied by M(x; t1, t2, . . .), which recur-
sively leads to an expression in terms of a continued fraction.

Theorem 2.2 We have

M(x; t1, t2, . . .) = 1

1 − x − (t1 − 1)x2 − x2M(x; t2, t3, . . .) . (5)

Proof Recall that aMotzkin path is prime if it starts from the x-axis, ends at the x-axis,
and never goes back to the x-axis in the middle steps. Clearly, a horizontal step at level
0 and a hill are prime Motzkin paths.

Suppose that P is a Motzkin path of length n and of type (k1, k2, . . .). It is obvious
that P can be decomposed into a sequence of prime Motzkin paths. Assume that P
can be decomposed into k1 hills, r nonhill prime Motzkin paths of height at least one,
and s horizontal steps at level 0.

We next give a recursive procedure to construct a Motzkin path of type (k1, k2, . . .)
from Motzkin paths of lower heights. For a Motzkin path P , we define the map η as
follows. First, remove all the steps of P under the line y = 1. Then join the Motzkin
paths on or above the line y = 1 to build a shorter Motzkin path of lower height.
Figure 4 gives an illustration of η.

Let Q be the path η(P). If r = 0, then all the steps of P lie below the line y = 1. It
can be easily seen that in this case Q is empty and n = 2k1 + s. Moreover, the number
of such Motzkin paths is equal to the number of the permutations of k1 hills and s
horizontal steps on the x-axis. In other words, the number of such Motzkin paths is
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Fig. 4 Map η

(
k1 + s

s

)
. (6)

If r ≥ 1, then Q consists of a sequence P1, P2, . . . , Pr of Motzkin paths which are
constructed by the steps of P on and above the line y = 1. Below the line y = 1, P
contains k1 hills, r pairs of one up-step and one down-step, and s horizontal steps at
level 0. The number of permutations of these steps equals

(
k1 + r + s

k1, r, s

)
.

For 1 ≤ i ≤ r , let l(Pi ) = ni and let ki, j denote the number of peaks of Pi at
level j . Clearly, ni ≥ 1 for any i and n1 + n2 + · · · + nr = n − s − 2(r + k1).
Moreover, k1, j + k2, j + · · · + kr, j = k j+1. Note that Pi is of type (ki,1, ki,2, . . .). The
number of such paths equals c(ni ; ki,1, ki,2, . . .). Hence the number of such sequences
(P1, P2, . . . , Pr ) is

∏
c(ni ; ki,1, ki,2, . . .),

where the product ranges over ni ≥ 1, ki, j ≥ 0 such that

r∑

i=1

ni = n − s − 2(r + k1)

and

r∑

i=1

ki, j = k j+1.

It follows that

c(n; k1, k2, . . .)=
∑

r≥0,s≥0

(
k1+r+s

k1, r, s

) ∏

ni≥1∑r
i=1 ni=n−s−2(r+k1)∑r

i=1 ki,1=k2∑r
i=1 ki,2=k3

···

c(ni ; ki,1, ki,2, . . .). (7)

Note that when r = 0, (7) reduces to (6).
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Substituting (7) into (4), and using the following binomial identity

∑

k≥0

(
m + k

k

)
xk = 1

(1 − x)m+1 ,

we are led to

M(x, t1, t2, . . .)=
∑

n,k1,k2,...≥0

c(n; k1, k2, . . .)xn
∏

i≥1

tkii

=
∑

n,k1,k2,...≥0

∑

r,s≥0

(
k1 + r + s

k1, r, s

) ∏

ni≥1∑r
i=1 ni=n−s−2(r+k1)∑r

i=1 ki, j=k j+1

c(ni ; ki,1, ki,2, . . .)xn
∏

i≥1

tkii

=
∑

r,s,k1≥0

(
k1 + r + s

k1, r, s

)
tk11 xs(x2)r+k1

r∏

i=1

∑

ni≥1,ki,1,ki,2,...≥0

c(ni ; ki,1, ki,2, . . .)xni

∏

j≥1

t
ki, j
j+1

=
∑

r,s,k1≥0

(
k1 + r + s

k1, r, s

)
tk11 xs(x2)r+k1

(
M(x, t2, t3, · · · ) − 1

)r

= 1

1 − x − (t1 − 1)x2 − x2M(x, t2, t3, . . .)
.

These complete the proof. ��
Taking special values of t1, t2, . . ., Eq. (5) reduces to some known results. Let

c(n, k) denote the number of Motzkin paths of length n with k peaks and let

M(x; t) =
∑

n,k≥0

c(n, k)xntk .

Setting t1 = t2 = t3 = · · · = t in (5), we obtain that

M(x; t) = 1

1 − x − (t − 1)x2 − x2M(x; t) . (8)

Furthermore, taking t = 1 in (8) and solving the resulting equation, we are led to the
generating function (3) of Motzkin paths.

Setting t = 0 in (8), we get the generating function ofMotzkin paths without peaks

F(x) = 1 − x + x2 − √
(1 + x + x2)(1 − 3x + x2)

2x2
,

which can also be derived from Eq. (3) in Dos̆lić et al. (2004).
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Fixing t1 = 0 and t2 = t3 = · · · = 1 in (5), we obtain an equation for the
generating function of hill-free Motzkin paths, which implies the following equation
of the generating function of 2-regular simple queues

Q2(x) = 1

1 − x + x2 − x2M(x)
.

Substituting (3) into the above equation, we obtain

Q2(x) = 1 − x + 2x2 − √
1 − 2x − 3x2

2x2(2 − x + x2)
. (9)

This generating function has been obtained by Barcucci et al. (2001) by using the ECO
method.

Next, we give the generating functions of several classes of Motzkin paths based
on (5). As the first example, let fm(n) denote the number of Motzkin paths of length
n without peaks of height less than m + 1 and denote the generating function by

Fm(x) =
∑

n≥0

fm(n)xn .

Setting t1 = t2 = · · · = tm = 0 and tm+1 = tm+2 = · · · = 1 in (5), we obtain that

Fm(x) = 1

1 − x + x2 − x2Fm−1(x)
,

and F0(x) = M(x).
Let gm(n) denote the number of Motzkin paths of length n without peaks at level

m and denote

Gm(x) =
∑

n≥0

gm(n)xn .

Substituting tm = 0 and t1 = t2 = · · · = tm−1 = tm+1 = tm+2 = · · · = 1 in (5), we
see that Gm(x) satisfies the following relation

Gm(x) = 1

1 − x − x2Gm−1(x)
,

and G0(x) = M(x).
Let hm(n) be the number of Motzkin paths of length n with peaks only at level m

and denote

Hm(x) =
∑

n≥0

hm(n)xn .
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Fig. 5 Four patterns in Motzkin paths

Setting tm = 1 and t1 = t2 = · · · = tm−1 = tm+1 = tm+2 = · · · = 0 in (5), we obtain
that

Hm(x) = 1

1 − x + x2 − x2Hm−1(x)
,

and H0(x) = F(x).
Finally, we consider Motzkin paths of length n of type t = (k1, k2, . . . , k�) which

have height at most �. Denote the generating function of such Motzkin paths by
M�(x; t1, t2, . . . , t�). From (5), we obtain that

M�(x; t1, t2, . . . , t�) = 1

1 − x − (t1 − 1)x2 − x2M�−1(x; t2, t3, . . . , t�) ,

where M0(x) is the generating function of Motzkin paths of height zero, namely

M0(x) = 1

1 − x
.

3 Motzkin Paths Avoiding Patterns and 3-Regular Simple Queues

In this section, we show that the 3-regular simple queues are in one-to-one correspon-
dence with Motzkin paths avoiding patterns M1, M2, M3, M4 illustrated in Fig. 5.
By applying the technique of object grammars, we obtain the generating function of
Motzkin paths avoiding patterns M1, M2, M3, M4, fromwhich we obtain a recurrence
relation for the number of 3-regular simple queues related to Motzkin numbers.

Theorem 3.1 There is a one-to-one correspondence between 3-regular simple queues
and Motzkin paths avoiding patterns M1, M2, M3, M4 in Fig. 5.

Proof LetQ3(n)be the set of 3-regular simple queues andMa(n)be the set ofMotzkin
paths avoiding patterns M1, M2, M3, M4 in Fig. 5. We claim that the correspondence
θ given in Sect. 2 also reduces to a bijection between Q3(n) and Ma(n).

It is obvious that any 3-regular simple queue inQ3(n) contains no arc of length one
or two. If a simple queue contains an arc of length one, then it corresponds to pattern
Q1 in Fig. 6. If a simple queue contains an arc of length two, say (i, i + 2), then the
vertex i + 1 is either an isolated vertex, or a vertex having left degree one or right
degree one. These three cases correspond to the patterns Q2, Q3, and Q4 in Fig. 6,
respectively. In summary, a simple queue is 3-regular if and only if it avoids patterns
Q1, Q2, Q3, and Q4.
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Fig. 6 Four patterns in simple queues

Let Q ∈ Q3(n) and P = θ(Q). Let S1, S2, . . . , Sn be the steps of P . Thus, to prove
the theorem, it is sufficient to show that for each 1 ≤ i ≤ 4, Q avoids the pattern Qi

if and only if P avoids pattern Mi .
First, from the proof of Theorem 2.1, we see that Q contains no arc of length one

if and only if P is hill-free, or equivalently, Q avoids the pattern Q1 if and only if P
avoids the pattern M1.

Next, to prove the equivalence of the pattern avoidance with respect to Q2 and
M2, we first suppose that P contains a subsequence Si Si+1Si+2 that is of pattern M2.
Then Si Si+1Si+2 starts from and ends at the x-axis. Applying the map θ , we see that
(i, i +2) is an arc of Q and i +1 is an isolated vertex of Q. Hence the subqueue on the
vertices i, i +1 and i +2 is of the pattern Q2. Conversely, suppose that Q contains the
pattern Q2. Obviously, the arc (i, i +2) cannot be nested by any arc of Q; that is, there
does not exist an arc (u, v) of Q such that u ∈ [1, i − 1] and v ∈ [i + 3, n]. Consider
the partial matching on [1, i −1]. By the correspondence θ , the steps S1, S2, . . . , Si−1
form aMotzkin path on [i−1]. Hence P returns to the x-axis at the (i−1)-st step. This
implies that Si Si+1Si+2 is of pattern M2. This proves the equivalence of the pattern
avoidance with respect to Q2 and M2.

Now we claim that Q avoids pattern Q3 if and only if P avoids pattern M3. First,
suppose that P contains a subsequence Si Si+1Si+2 that is of pattern M3. Noting that
P returns to the x-axis at the step Si+2, then under θ we see that Si+2 should be paired
with Si ; thus, (i, i + 2) is an arc of Q. Furthermore, since Si+1 is a down-step, it must
be paired with an up-step lying on the left of Si . Thus, the vertex i + 1 has left degree
one in Q. Therefore, the subqueue on the vertices i, i + 1, i + 2 in Q is of pattern
Q3.

On the other hand, suppose that Q contains a subqueue on the vertices i, i + 1
and i + 2 of pattern Q3. Then under θ , the steps Si , Si+1, and Si+2 form an up-step
followed by two down-steps. To show that Si Si+1Si+2 is of pattern M3, it is necessary
to verify that P returns to the x-axis at the step Si+2. Otherwise, if the down-step
Si+2 is of height h with h ≥ 2, then among the steps S1, S2, . . . , Si+2, there are more
up-steps than down-steps. It implies that there must exist an up-step S j on the left of
Si+2 paired with a down-step Sk on the right of Si+2, where j ≤ i < i + 2 < k.
Under θ , the steps S j and Sk are mapped to an arc ( j, k) of Q. If j = i , then (i, k)
and (i, i + 2) are arcs of Q, which is impossible since Q is simple. If j < i , then
the arc (i, i + 2) is nested by the arc ( j, k), contradicting the assumption that Q is
nonnesting. Hence the height of Si+2 must be h = 1. This shows that Si Si+1Si+2 is
of pattern M3, which completes the proof of the equivalence of the pattern avoidance
with respect to Q3 and M3.

Similarly, one can prove the equivalence of the pattern avoidance involved with Q4
and M4. This completes the proof of the theorem. ��
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Fig. 7 Classification of Motzkin paths avoiding patterns M1, M2, M3, and M4

By applying the technique of object grammars to theMotzkin path avoiding patterns
M1, M2, M3, andM4,weobtain the generating function of the 3-regular simple queues.

Theorem 3.2 The generating function of 3-regular simple queues equals

Q3(x) = x5 − 3x4 + 4x2 − x + 1 − (x − 1)2(x + 1)2
√
1 − 2x − 3x2

2x2(x8 − x7 − x6 − x4 + 5x3 − 2x2 − 4x + 4)
. (10)

Proof By Theorem 3.1, we see that Q3(x) can be determined by the generating func-
tion of Motzkin paths avoiding patterns M1, M2, M3, and M4. Let gn be the number of
Motzkin paths inMa(n) and let G(x) be the generating function of gn . Denote by G
the set of all the Motzkin paths avoiding patterns M1, M2, M3, and M4. In view of the
first steps of Motzkin paths, G consists of three disjoint subsets: the set of a singleton
and the following two subsets

G1 : = {w ∈ G : the first step is horizontal},
G2 : = {w ∈ G : the first step is an up-step}.

This decomposition is demonstrated in Fig. 7, whereG stands for an arbitraryMotzkin
path avoiding patterns M1, M2, M3, M4 and T stands for the Motzkin paths on and
above the line y = 1 in the first prime component of G ∈ G2.

It is easy to see that T cannot be any of the following structures:

(1) a singleton;
(2) a horizontal step;
(3) a hill;
(4) a Motzkin path preceded or followed by a hill.

Denote the generating functions of the Motzkin paths in G1 and G2 by G1(x) and
G2(x), respectively. Let T (x) denote the generating function of Motzkin paths in T .
Clearly,

G(x) = 1 + G1(x) + G2(x), (11)

where

G1(x) = xG(x)

and

G2(x) = x2T (x)G(x).
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Fig. 8 Structure of a Motzkin path of type T

Employing the principle of inclusion and exclusion, T can be enumerated as shown
in Fig. 8, where M stands for an arbitrary Motzkin path.

Thus, we have

T (x) = M(x) − 1 − x − 2x2M(x) + x2 + x4M(x)

= (1 − 2x2 + x4)M(x) − 1 − x + x2. (12)

Substituting (3) and (12) into (11), we are led to

G(x) = x5 − 3x4 + 4x2 − x + 1 − (x − 1)2(x + 1)2
√
1 − 2x − 3x2

2x2(x8 − x7 − x6 − x4 + 5x3 − 2x2 − 4x + 4)
,

which completes the proof since Q3(x) = G(x). ��

The first few values of q3(n) are given as follows.

n 0 1 2 3 4 5 6 7 8
q3(n) 1 1 1 1 2 5 14 37 96
n 9 10 11 12 13 14 15 16 17
q3(n) 249 653 1732 4640 12,532 34,080 93,231 256,395 708,445

Note that the sequence q3(n) does not appear in OEIS (Sloane 1964).
Furthermore, employing (3) to eliminate the square root in (10), we obtain a relation

between Q3(x) and M(x), which leads to a recurrence relation of q3(n)

4q3(n) − 4q3(n − 1) − 2q3(n − 2) + 5q3(n − 3) − q3(n − 4)

− q3(n − 6) − q3(n − 7) + q3(n − 8) = mn − 2mn−2 + mn−4,

where mn is the Montzkin number.
We conclude this paper with asymptotic formulas of q2(n) and q3(n), which can

be derived by using the method of singularity analysis (Flajolet and Odlyzko 1990) to
the generating functions Q2(x) and Q3(x).
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Note that x = 1
3 is the singularity closest to the origin for both Q2(x) and Q3(x).

Using the Taylor theorem to approximate Q2(x) and Q3(x) at x = 1
3 , we have

Q2(x) ∼

9

4
− 27

√
3

16

√
1 − 3x + o(1 − 3x)1/2,

Q3(x) ∼

243

131
− 3064

√
3

3381

√
1 − 3x + o(1 − 3x)1/2.

By using the asymptotic expansion given by Flajolet and Odlyzko (1990, Eq. 2.3)

[xn](1 − x)−α
∼

nα−1

�(α)
,

where α cannot be zero or negative integers, we obtain that

q2(n) ∼

27

32
√

π/3
· 3n · n− 3

2 ,

q3(n) ∼

1532

3381
√

π/3
· 3n · n− 3

2 .

So, approximately we get (1) and (2).
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