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ON THE BRYLINSKI-KOSTANT FILTRATION

ANTHONY JOSEPH, GAIL LETZTER, AND SHMUEL ZELIKSON

INTRODUCTION

The base field k is assumed to be of characteristic zero. Let g be a split semi-
simple k-Lie algebra. Consider a finite-dimensional simple g module V and fix a
weight ,u of V. This paper concerns the Brylinski-Kostant (or simply, BK) filtration
defined on the ,u weight space of V. In particular, the members of the nth subspace
in the filtration are those vectors of weight ,u killed by the nth power of a fixed
regular nilpotent element. The q character corresponding to this filtration, referred
to in [Bi] as the jump polynomial, is the associated (finite) Poincare series for
the filtration in the variable q. A second q polynomial was introduced by Lusztig
([LI]); it is the coefficient of e/' in a q version of the ordinary character formula for
V defined using a q analog of Kostant's partition function (see Section 2.3 for a
precise definition). The aim of this paper is to give a new proof of [Bi, Theorem
3.4]: the jump polynomial of a dominant weight ,u is equal to Lusztig's q polynomial
at ,u. We also obtain a natural extension of this result to non-dominant weights.

We briefly review some high points in the history of the BK filtration and its
related jump polynomial. First, A. Shapiro and R. Steinberg independently found
an empirical method of reading off the exponents in the Poincare polynomial of the
adjoint group from the root system for g. B. Kostant [Ki] found the theoretical
underpinnings of this procedure by studying the decomposition of g into submodules
for the action of the principal TDS. This computes the BK filtration for the adjoint
representation. In a later paper [K2], Kostant considered generalized exponents
associated to any V as described above. As a consequence it is possible to obtain
a remarkable relation between the "harmonic degrees" of V and what we now call
the BK filtration of the zero weight space Vo of V, by combining [K2, Sect. 5,
Cor. 4] and [Bi, Lemma 2.5 and Prop. 2.6]. Central to the derivation of this
observation is a difficult result of [K2] describing the ideal of definition for the
nilpotent cone. Hesselink [H] and Peterson [P] then (independently) gave a purely
combinatorial formula for these generalized exponents. Specifically, one can read
the generalized exponents as Lusztig's q polynomial at weight zero, thus establishing
the first connection between Lusztig's q formulas and jump polynomials. This
combinatorial approach is useful, for example, in computing the so-called PRV
determinants [JI].
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946 ANTHONY JOSEPH, GAIL LETZTER, AND SHMUEL ZELIKSON

Inspired by Kostant's work, R.K. Brylinski defined the BK filtration for arbitrary
weights of V and computed the jump polynomial for dominant weights (under
mild restrictions). Her approach [B1, Theorem 3.4] in-volves a twisting process
effected through invertible sheafs on the nilpotent cone (and on the flag variety).
She reduced the equality of the jump polynomial and Lusztig's q polynomial to a
vanishing of higher cohomology. By results of H.H. Andersen and J.C. Jantzen [AJ],
and P. Griffiths [G], it followed that this vanishing condition held for most of the
dominant weights. Later, B. Broer [B] extended this result (and thus established
the equality of these two formulas) for all dominant weights.

The notion of a BK filtration was extended to the category 0-dual of a Verma
module in [Ji] and will be used here (see Section 4). It was noted in [Ji] that the
Brylinski-Broer result determined the associated jump polynomial. As might be
expected, it is a q version of the character formula of the Verma module. This result
had a simple proof in [Ji]; unfortunately, it was not found possible to use similar
techniques such as the BGG resolution of V to compute the jump polynomials
associated to various BK filtrations of V.

The form of the jump polynomial associated to the BK filtration for non-dominant
weights was conjectured in [Z, 3.2]. S. Zelikson [Z, Theorem 3.3.2] established this
conjecture for weight spaces of multiplicity one in the simply-laced case using a
positivity result of Lusztig [L2, 22.1.7]. We now prove the conjecture in general
(Theorem 7.6). In particular, let ,u be a dominant weight and let w be an element
of the Weyl group of g. We show that the jump polynomial associated to w,u is
equal to a power of q times Lusztig's q polynomial at the dominant weight Au. This
power of q depends only on w,u and is equal to a natural upper bound, the height of
u- w,u (see Section 7.2). This indicates that there are no accidental cancellations
when applying powers of the regular nilpotent element.

We offer an alternative to the geometric approach in [B1] to prove the Brylinski-
Broer result and Zelikson's conjecture. In the spirit of Gelfand-Kirillov, we twist
the differential operators using maps of pairs of Verma modules. The resulting
object is the Weyl algebra realized as a g bimodule dependent on two parameters
corresponding to the highest weights of the Verma modules. Our techniques are
algebraic and representation theoretic. For the reader who would like to understand
our interpretation from the geometric point of view, we note that these bimodules
can be realized as twisted differential operators on the wo translate of the big open
cell in the flag variety.

The operator filtration on the g bimodules described above is defined by taking
the degree of an element considered as a differential operator in the corresponding
Weyl algebra. In Section 3, we relate (basically by Frobenius reciprocity) three
filtrations: the BK filtration of V, the BK filtration on a dual Verma module and
the operator filtration on differential operators. This correspondence is not precise
for all values of the parameters. However our present method has the additional
flexibility of a two-parameter theory.

An important tool in our argument is the graded injectivity of the g bimodules
of twisted differential operators, for certain values of the parameters, viewed as
modules (in an extension of the (9 category) for the Lie algebra. Graded injectivity
was first established in [J5, 3.6] when the parameters coincide; it was used in
[JL] to obtain a parabolic generalization of Hesselink's exponent result that the
exponents can be read off a parabolic version of Lusztig's q character formula. This
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ON THE BRYLINSKI-KOSTANT FILTRATION 947

in turn is used in [JLT] to compute the KPRV determinants (which are parabolic
generalizations of the PRV determinants).

Graded injectivity in this paper replaces cohomological vanishing. Using trans-
lation principles, it is extended (Section 2.1) to the case when the parameter dif-
ference is dominant and both parameters are antidominant and regular. This gives
the Brylinski-Broer result (Theorem 5.6). As might be expected, graded injectivity
fails in the non-dominant case. However in Section- 7, we use composition of dif-
ferential operators (and the fact that their symbols form a domain), to reduce the
computation of degrees to the case of what we call the unique minimal t-type, the
lowest degree simple module for the filtration. In particular, we show by induction
(hypothesis HW in Section 6.6) that this module generates the filtration (in the
sense of 6.5). By virtue of the above relations between filtrations, it is then enough
to compute the BK filtration for extreme weights. As noted above, this obtains
from Lusztig's deep positivity result for g simply-laced. Except for E8, there is also
a much simpler positivity argument which we also present.

The theory we have described generalizes with no apparent difficulties to the
case when a regular nilpotent element is replaced by a Richardson element, that
is, when the Borel is replaced by a parabolic. However to avoid more complicated
notation we shall stick to the Borel case. We remark that it miglht be interesting
to compute the BK filtration for an arbitrary nilpotent element.

1. PRELIMINARIES

1.1. For each Lie algebra a let U(a) denote its enveloping algebra. Let g be a
split semisimple k-Lie algebra, and fix a Cartan subalgebra ( and a subset A+ of
positive roots in the set A of non-zero roots. Let 7r C A+ be the corresponding
set of simple roots and P(7r) (resp. P+(7r)) the set of weights (resp. dominant
weights). Let p be the half sum of the positive roots and for each a C A, let sc, be
the corresponding reflection with W the subgroup of Aut r* that they generate. Set
w.A = w(A + p) - p, for all A E r*. Let b D ( be the Borel subgroup with nilradical
n+ having roots in A+. Fix a Chevalley basis ec f_ oa E i+ , hc: a E 7r, and
let tc be the corresponding Chevalley antiautomorphism. Let a be the principal
antiautomorphism and set t = aK, which is an in-volution. Set n- = (n+). Given
v c P(7r), let V(v) denote the simple finite-dimensional U(g) module with extreme
weight v. For any vector space R, we denote by S(R) the symmetric algebra of R,
or, more simply, the polynomial ring generated by the elements of R.

1.2. For all A c V* let kA denote the one-dimensional b module of weight A on which
n+ acts trivially. Then M(A) := U(g) ?u(b) kA is the Verma module with highest
weight A and vA := 101 is its canonical highest weight vector. Set n = IA+I and let
An (or simply, A) be the algebra on generators q-c,p, p,:= 0/q-, (or equivalently,

q-c, = -0&/0pc) for all a E A+, where the q-c, (and hence the p,) generate a
polynomial subalgebra Q (resp. P). The symmetrization map s: S(n-) U(n-)
identifies Q with any M(A). The natural action of A on Q then gives for any
pair A,,u E (*, a lin-ear embedding A -- Homk(M(A),M(,u)). If we note by rA
the action of U(g) on M(A) (identified with Q), then rA(U(g)) c A (see [C]).
Hence, identifying A with its image in Homk (M(A), A/M(u)), left composition with
r11, and right composition with rA, give A the structure of a U(g) bimodule AA,/.
We get then a U(g) module structure through diagonal action (for g in g, g o 0 =
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948 ANTHONY JOSEPH, GAIL LETZTER, AND SHMUEL ZELIKSON

r-, (g) o - so 0rA(g)). We recall below a number of properties of A A,I summarizing
the contents [J5, Sects. 1, 2].

1.3. Let F denote the filtration on A obtained by taking the degree filtration on
Q and the trivial filtration on P. In what follows, we refer to F as the operator
filtration on A. [C, Section 5] gives us for any g E g

rA (g>) S g Pa q_ + EAiPFg
ayCA? i=l

where the P, Pi are polynomials in P and Ai = (A, oz4). We see that g acts through
elements of the first order in q_a. Now, as [q__,,p] =-0, it follows that F is
an invariant filtration for the diagonal action of U(g).

In particular, the 0 degree of this filtration, P, is a submodule of AA,/' of lowest
weight ,u - A. Its lowest weight vector is the b- module isomorphism of M(A) onto
M(Cu) sending vA to v11. Consider the 0-dual 6M(A - u) of the Verma module
M(A - u); then by [J6], P identifies with (6M(A - ))t.

1.4. Let M be a U(g) module and set FO(M) := {m E M I dim U(O)m < oo}.
Then Fo (M) is the direct sum of the generalized weight subspaces of M and is a
U(g) submodule of M. In many cases, for example if M is the dual of a Verma
module, Fo (M) is a sum of ( weight spaces of M.

Set b = '(b) and

Fb-(M) = {m E F (M) I dim U(n-)m < oo}.

Now consider Hom(M(A), M(u)) under the diagonal action of g. By [J6, 3.5] one
has

A> A, = Fb- (Hom(M(A), M(,u))).

The main point of the proof is an argument along the lines of [J7, 2.6] to obtain

Fb- (Hom(M(A), M(pM))) = Hom(M(A), M(p))' P.

Now Hom(M(A), M(Cu))' Endu(,,-) (U(n-)) which is a subalgebra of A by [C].

1.5. We generalize slightly the construction of [J5, 2.1]. Take A, [u, v E *. Com-
position of homomorphisms

Homk(M (C), M(v)) x Homk(M(A), M(pt)) - Homk(M(A), M(v))

restricts to a map A/,' x A A,p - AA,, which corresponds to multiplication in A.
Fix A,,u E r* and set I = {a E A A,, I avA= O} which is an A//' - U(b) submodule
of AA,/-. Clearly AA,'v/A= M (M) which gives an isomorphism a+I | > avA of A A,/I
onto M(1) I u(b) 0 k_ with respect to the diagonal action of U(b) on the target.
Now assume ,t is antidominant, that is, (,u + p, ozv) < 0, for oz E /+ for which the
left hand side is an integer. One may recall [D, 7.6.23] that ,u is antidominant if
and only if M(C) is simple and so isomorphic to its 0-dual 6M(,u). Furthermore,
[J5, 1.6] one has 6M(C) I u(b) 0 k,A 6M( - A) I u(b) Hence one may identify
6M(tt - A) I u(b) with M(u) I u(b) ( kA when ,u is antidominant. Using this
identification and the above map, the operator filtration on A induces a filtration
on 6M(,u - A). Let Fm(6M(u - A)) denote the image of Fm(AA,/). It is finite
dimensional and U(b) invariant.
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ON THE BRYLINSKI-KOSTANT FILTRATION 949

With respect to the diagonal action of U(g) on AA,I, universality ([D, 5.5.3])
gives a U(g) module map fb of A A,/ into Homu(b) (U(g), 6M(u - A)) which restricts

to a map f/m of ?Fn(AA,p) into Homu(b) (U(g),?Fm(6M(,u-A))). As in [J5, 2.2 and
2.4] we obtain

Proposition. Assume ,u is antidominant. Then f/m (resp. fb) is an isomor-
phism of Fm(AA,/L) (resp. (AA,/)) onto Fb (Homu(b) (U(g), Fm (M(,u- A)))) (resp.
Fb-(Homu(b)(U(g),6M(p - A)))).

Let us recall the main ideas of the proof of the similar statement in [J5]. In-
jectivity of fL [J5, Lemma 2.1] is rather easy. One shows by induction on n that
ker fb C AnnAUn(n-)v/,-A. (Here Un(n-) is the nth subspace corresponding to the
canonical filtration of U(n-).) Hence one gets ker fb C AnnA M(A - A) = 0. Sur-
jectivity is more delicate. One has to compare weight multiplicities on both sides,
so as to get [J5, Lemma 2.2] that 4'm is an isomorphism of Fm(AA,p) onto

Fo (Homu(b) (U((g), Fm(6Mu - A)))).

The statement about +b is obtained by showing [J5, Lemma 2.3] that any finitely
generated submodule N of Fb- (Homu(b) (U(g), 6M(,u - A))) actually lies inside
F (Homu(b)(U(g), V)) for some finite U(b) module V of 6M(u - A).

2. GRADED INJECTIVITY AND MULTIPLICITIES

2.1. One of the main results of [J5] is that for ,u dominant, grjzA"',I is injective as
a module in a certain category of U(g) modules. A generalization of this result is
needed here. First, we define the relevant categories of U(g) modules.

Let (9 denote the Bernstein-Gelfand-Gelfand category [BGG] of U(g) modules.
By definition M is in (9 if and only if

(i) M= DAC MA, with MA= {m E M I hm= A(h)m, for all h Eo,
(ii) dim MA< oo,
(iii) the set {A E 0* I M,A : 0} is contained in some cone ,u - N7r ,u E *.

Let (9 denote the g module category consisting of all U(g) modules which are
sums of objects in (9. Note that ObO consists of all weight modules with a locally
finite action of U(b) and (9 is the full subcategory of objects in (9 of finlite length.

Recall the involution t defined in Section 1.1 and let (9- (resp. (9-) denote the
U(g) module category obtained from (9 (resp. (9) by transport under t. For the
diagonal action of U(g) one has by 1.4 that AA,1 E (9-.

The next proposition uses translation functors which we briefly review here.
Consider A,,u E r* with A -, C P(7r) and set XA equal to the maximal ideal
Annz(g)M(A) of the center Z(g) of U(g). Let MA denote the category of U(g)
modules annihilated by a power of XA. Given a U(g) module M which admits a
locally finite action of Z(g), define XA(M) to be the Z(g) primary component of M
with respect to the maximal ideal XA. There is an exact functor LX from MA, to
M,, defined by L,,: M -* X/,(V(tu - A) 0 M) (see for example [J, Section 2.10]).
Let RX be the analogous functor on right modules defined using V(,u - A)*.

A weight A E rg is called regular if StabwA is reduced to the neutral elemen-t.

Proposition. Suppose A,[t E are regular antidominant and A - E P+(7r).
Then grjA I1 is injective in (-.
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950 ANTHONY JOSEPH, GAIL LETZTER, AND SHMUEL ZELIKSON

Proof. The assertion for A-,u = 0 is just [J5, 3.5, 3.6] and the main ideas are the
following: The projectivity of U(g) ?u(o) ko in the category of 4-finite modules [GJ,
1.4.5] implies the injectivity of its dual P*U. By the restriction proposition for Ext
groups [GJ, 1.5.7] this implies inijectivity of Fb- (P*U) in the category of b--finite
modules. Now one shows that for any N E ObO-, one has a natural isomorphism

Homu(g) (N, AA,A) Homu (g) (N, F- (P*U))

Thus [J5, 2.7] AA,A is injective.
By [J5, 2.5], any indecomposable direct summand of

Fb- (Homu(b-) (U(g), 6M(0)))

occurs as a submodule of A71,r,, for some q E P+(7r). As the filtrations of these A7,7
are invariant under left and right translation [J5, 3.4], one then gets injectivity of
grFA0'0 by splitting off injectives. Now for any A E P, grjA0'0 is isomorphic to
grjAAA.

For the general case we use translation functors. By hypothesis A, A are in the
same facette (in the sense of Jantzen [J, 2.6]) and so XA(V(A-Ia)M(Ia)) M(A).
This only needs that A - I E P(7r). Now

Homk(M(IA), M (a)) 0 Homk(V(A - I), k) - Homk(M(Ia) 0 V(A - I), M(Ia))

admits a direct summand isomorphic to Homk(M(A), M(Ia)). It follows as in [J5,
3.3] that the right translation functor R sends A/"' to AA, . When A-Ia E
this is just right multiplication by the socle of P which is isomorphic to V(A -I)*.
Now the elements of P are of filtration degree zero and so we conclude that
R (.Fm(A/1t?)) = Fm(AA:). Moreover R is an equivalence of U(g) bimodule
categories with iniverse functor RI. Viewed as a functor of U(g) modules (under di-
agonal action) it still consists of tensoring by finite-dimensional modules (which pre-
serve injectives via FRobenius reciprocity) and taking direct summands (though not
those corresponding to a fixed central character). Thus the injectivity of Fm (A""')
(under diagonal action) implies the injectivity of Fm(AA,-). Then gry7(AA A ) is

injective by splitting off injectives. D
Remarks. Of course the conclusion still holds if just A, I are in the same facette;
but fails if A - I , P+(7r), because there is no guarantee that degree is preserved.
Indeed as we shall see in Section 6 the unique minimal t-type V(A - a)* of AA,/
has strictly positive degree unless A - Ia E P+(7r). Of course R A(A", ") = A A,
so A Aq, is injective; but this already follows from 3.1 and [J5, 2.6] and is not so
useful. Indeed from the analysis below it just implies what is already known from
FRobenius reciprocity. Again from, say, [J5, 2.2] it is easy to see that f"n(A A,) has
a dual Verma flag with quotients isomorphic to the 6M((A - I) +- ,)-, where ,3 is
a sum of < m positive roots. When A - I goes away from the walls, this becomes
a direct sum of modules which are injective in 0- if and only if A - I E P+(7r).

2.2. Define Dq to be an element of the group ring Z[q, q-1]P(7r) defined by

Dq = J1 (1-qe)
cvEA+

and let D denote its value at q = 1. Extend ez e- linearly to an involution
a | - a of Z[q, q-1]P(7r). For any weight module M with an j invariant filtration g
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ON THE BRYLINSKI-KOSTANT FILTRATION 951

define

ch5M - E qmeI1dimk(gf(M)g/5m-l(M)/)
pE * mEN

where the subscript ,u denotes the weight subspace ,u E r* (assumed finite dimen-
sional). When the invariant filtration on M is inherited from the operator filtration
.F on AAq, then we simply write chq (M) for the corresponding q character formula.

It is clear that for diagonal action

chqAA\I1 - DeIIADq.

For any U(g) module M, let F(M) := {m E M I dim U(g)m < oo} denote
its locally finite submodule. Consider now an injective indecomposable module
I := I(A), A E P(7r), of the category (9. It has a filtration with factors isomorphic
to dual Verma modules 6M(w.A) (whose multiplicities are known by the Kazhdan-
Lusztig conjecture). Define

Xi= , [I: 6M(wA)]ewA, J = D (Z (-w)w.).

Lemma ([J5, 4.2]). Take A E P+(7r). We then have

J(x ) ch V(A), w = e,0, otherwtse.

Proof. For w = e this is simply the Weyl character formula, I(A) being 6M(A).
Otherwise there is an a c ir for which s,w < w, and therefore V(w.A) is not a-
locally finite. This implies, through B.G.G. duality, that for any couple s,y > y of
elements of W,

[I(w.A) 6M(y.A)] = [I(w.A):6M(s,w.A)].

Thus the respective contributions to J(XI) cancel each other out. El

A remarkable property of injective modules in (9 (or 0-) which follows from
the above is that one can compute multiplicities of the finite part F(I) simply by
knowing the formal character of I. Thus by Proposition 2.1, we obtain

(*) chqF(AA\bt) = J(e-AIDq).
2.3. Let Pq be the Kostant q-partition function defined by

E Pq(/3)eO = Dq.

Define Lusztig's q polynomial at weight ,a as follows (see [LI, Section 9.4] or [Bi,
Section 3.3]):

m,(q) = (1)(W)Pq (w. v - u)
wEW

for all v c P+(7r), ,a c P(ir). One may remark that

m8(1) = dim V(v)1,.

However unless ,j c P+(ir), the coefficients of m/-(q) can be negative already in
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952 ANTHONY JOSEPH, GAIL LETZTER, AND SHMUEL ZELIKSON

Set Em(F(AA,A)) - ?m(F(AAII))/?m-l(F(AA4L)) It is a direct sum of finite-
dimensional highest weight modules. Let a | - [a]o be the evaluation map on
Z[q, q-1]P(7r) sending ea to 1 if a 0 Oand to 0 otherwise. Let (, ) denote the Mac-
donald scalar product (a, b) := [ab/DD]o. It is well known that (ch V([), ch V(v)) =
6AAWW (see [JL, 7.2] for example).

Proposition. Assume A, b are anttidomirnant and regular with A-At c P+(ir). Then
for all v c P+(7r) the multiplicity of V(v)* in .Fm(F(AAII)) is just the coefficient
of q2 in m> l(q).

Proof. The calculation follows [JL, 7.4]. One has

J3[Fm(F(A>)')): V(v)*]qm = (ch V(v), J(eA\-4Dq)), by 2.2(*).
?n

Writing e-AIDq as E f(()ed and using the definition of (, ) this equals

I (_1)t(X)eX.V _l)(y)y-(Ee (S())Lx,yE W Jo
S (-1)e(W)eW(V+P) &Pf(()1-WE W (EZ1r 0

0x E (_l)"()ew-1 (A- `)0P p(13)LWE w ENT7 JO
= 5 (-l1)")Pq(w.v - (A - )(q))

WEWas required. El
3. EXTENDING FROBENIUS RECIPROCITY

3.1. Given a left (resp. right) U(g) module M and an automorphism (resp. anti-
automorphism) T of U(g), define MT to be the left U(g) module which is M as a
vector space and admits the action

(a,m) F-- T(a)m (resp. mT(a)).

In particular, for any M c ObO, its 0-dual is defined as 6M:= F~(M*`) c ObO.
Then for all v C h* one has

6M(v) = Fb (Homk (U(B) ?U(b) kI, k))

= F (Homu(b-)(U(g), Homk(k, k))).

It is convenient to designate the left U(b-) module Homk(kr, k)' simply by k>
It is trivial as a U(n-) module and has weight v as a U(r) module because I- is the
identity on U(r).

Lemma. For all v E r*, Frobentius reciprocity gives an isomorphism

F (Homu(b) (U(fg), AM(v))) t wi(Homu() (U(rg)di , o))

In parti'cular, for all A, y 4 wi'th ju anti'dominant, one has an i'somorphi'sm
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ON THE BRYLINSKI-KOSTANT FILTRATION 953

Proof. Let N be a U(b) module and consider 0 c F (Homu(b)(U(g),N)). Fix
a c U(g). For all h c r one has (h.0)(a) = 0(ah) = -0((ad h)a) + hO(a). Thus
U(r)O(a) belongs to the subspace (U(r).O)(a) + 0(ad U(r)a) of N which is finite
dimensional. Consequently the natural injection

F) (Homu(b) (U(g), Ft, (N))) ' > F) (Homu(b) (U(g), N))

is an isomorphism. In particular,

Fv (Homu(b) (U(g),Wa(v))) 'F) (Homu(b) (U(,g), Homu(b-) (U(,g), k*))).

Yet Homu(b-)(U(g),k*) as a left U(b) module is just Homu(b)(U(b),k*) and so
the right hand side above is just

F) (Homu(b) (U(g), Homu(f) (U(b), k*))) 'Fv (Homu(f) (U(g), k*)).

The last assertion follows from 1.5. 0
Remarrks. A similar argument also works in the parabolic case. In particular, the
notation of [J5, Section 2] gives

F) (HomU(p) (U(,g), 6M1, (v) )) 'F) (HomU(,) (U(,g), k* )),

which improves somewhat [J5, 2.6]. As in [J5, Section 2] it implies that AA,/' is

injective in 0- for all ,u antidominant.

3.2. We recall here the definition of the filtration studied in [B1]. Take an element
x C n+. By the Jacobson-Morosov theorem x lies in some TDS with basis (x, h, y).
We assume that x and the TDS are chosen so that h c j. (We remark that this
restriction is already present in Brylinski's work [B1]. It is needed to translate
Kostant's result [K2, Section 4, Corollary 3] to compute the BK filtration for a zero
weight subspace.) Fix v c P+(ir) and let / be a weight of the finite-dimensional
simple U(g) module V(v). The BK filtration Jx on the / weight space V(v)> is
defined by setting JxP(V(v)4) equal to the subspace of elements in V(V)4 annihilated
by xP+1. In what follows, we consider this filtration from a different perspective. In
particular, the left U(g) module V(v) is replaced with a corresponding right U(g)
module. This approach allows us to connect the BK filtration of a finite-dimensional
U(g) module with a similar filtration defined on AA,II.

Consider k as the trivial U(n+) module. One defines the generic Verma module
M := U(g) ?u(i,+) k. The suriection M -* M(v) gives rise to an embedding

6M(v) M- A* - Homu(n,-) (U(g), k*))

where k* denotes the (trivial) U(n-) module Homk(k, k)"'. If we further define

A = Homu(b) (U(g), M

then for ,a antidominant we obtain an embedding(*) -~A\ c > A.
As a U(b) module, M*' is isomorphic to Homk(U(b),k*). Thus FRobenius

reciprocity gives an isomorphism

(**) A - Homk(U(g), k*).
Now fix v c P+(ir) and view V(v)* as a left U(g) module through the principal

antiautomorphism o, hence isomorphic to V(-v). We write V(v)** below to em-
phasize that this is the dual of V(v)* and so considered as a right U(g) module.
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954 ANTHONY JOSEPH, GAIL LETZTER, AND SHMUEL ZELIKSON

In particular, V(v)**A At) = V(v)A,\, for V(v) considered as a left U(g) module
through ar. FRobenius reciprocity gives

V(v)_(;\_ - Hornu (g) (V (v) * (Hornu (b) (U (0) k_))

Thus by 3.1 there is a vector space isomorphism

(PA> : V(v) * *;_)Hornu (g) (V (v) *, AA,/l)

By (*), there is an embedding

Homu(g) (V(v)*, AAI1) c > Homu(g) (V(v)*, A).

Furthermore (**) yields

Homu(g) (V(v)*, A) Homu(g) (V(v)*, (Homk(U(g),k*))),

This combined with FRobenius reciprocity, gives an isomorphism

o : V(v)** ') Homu(g) (V(v)*, A).

Thus the embedding of V(v)**(A ) in V(v)** corresponds to the embedding of

Homu(g)(V(v)*,AA /-) in Homu(g)(V(v)*,A). Moreover the map PA,1, can be
thought of as restriction of o to the -(A - u) weight space of V(v)**.

The point of the above observation is that A (unlike AA/I,), when viewed as
Homk(U(g), k*), admits a right U(g) module structure coming from left multipli-
cation in U(g). This gives V(v)** its natural right U(g) module structure. Now if we
consider A as Homu(b) (U(g), M*I), then the restriction of this right module struc-
ture to U(b) is exactly that which comes from the right U(b) module structure of
M*A* = Homk(U(b), k*) coming from left multiplication in U(b). The above embed-
ding allows us to consider an element x c U(b) applied to V(v)** A _ ) V(v)**.
In particular, consider again an element x c n+ such that the corresponding TDS
is chosen with h c rj. We now restate the BK filtration using this right module
structure as follows. The BK filtration .Fx of V(v)**(A_A) relative to x is defined by

= {V c V(v)**A,- ) I VX + O.

Recall that V(v)** is isomorphic to V(v) considered as a left U(g) module through
the antiautomorphism ar. Thus, given a weight -y, the filtration .Fx induces a fil-
tration on V(v)>y which we also denote by .Fx and refer to as the BK filtration on
V(v)>y. It should be noted that this is the same filtration as Jc(x), though we will
not use this latter notation.

One may ask what is the image of .Fxn(V(v)**_/, )) under P,\,? Now 6M(,-A)
is isomorphic to F (Homu(b)(U(b), k>A)) and thus embeds inside of M*I. As a
U(n+) module, M(, - A) is just Fb (Homk(U(n+), k*)), that is, the graded dual
of U(n+). Like M*, this has a right U(n+) module structure coming from left
multiplication in U(n+) (resp. U(b)) and the above embedding is a homomorphism
of U(n+) bimodules. In M(, - A) this right U(n+) action does not commute with
its left U(g) action; but it does commute with its left U(b) action up to translation
of weights (in the obvious manner). Thus

FXn6M(V)) := {m C 6M(v)_ I mxn+l = O}
-YEv-NT

is a U(b) invariant filtration .Fx of 6M(v). We call it the Brylinski-Kostant filtration
of 6M(v) relative to x, more properly with respect to the pair (x, h): h c j.
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ON THE BRYLINSKI-KOSTANT FILTRATION 955

Under the hypothesis that bu is antidominant so that 1.5 applies, set ?F (AAI1) =
Fb-- (Homu(b) (U(g), 7Fx(6(M(/A - A))))).

Lemma. Assume AZ is anttidomirnant. For all n C N the Frobenrius map WP\,lI re-
stricts to anr isomorphism of ?Fx (V(v)A\_1) onto Homu(g) (V(v)*, .Fj (AA I)).

Proof. Recall the isomorphism

o : V(v)** ')4Homu(g) (V(v)*, A).

Given v c V(v)** and c E V(v)*, p(v)(() is the element of Homu(b)(U(g),M*I) =
A such that p(v)%()(a)(c) = v(cat) for all a c U(g) and c c U(b). Note that
p(v)(() is a right U(b) module map and in particular (Q (v)(().b)(a)(c) = v(bcat)
for all v c V(v)**, ( c V(v)*, b E U(b), c c U(b), and a c U(g). Fix ( c
V(v)* and a c U(g), and set 0(v) = (v)(t)(a) c M*%. Recall that the right
U(b) module structure of A comes from the right U(b) module structure of M*.
Hence, the above formula shows that 0(v.b) = 0(v).b with respect to the right
action of U(b) on V(v)** and the previously defined right action of U(b) on M*I.
Now take v c V(v)**(A . Then v.Xn+l = 0 if and only if v(xn+1baO) = 0 for
all ( E V(v)*,b c U(b), and a E U(g). This latter condition is equivalent to
(pA,I1(v)Q D(a) Xn+l = 0 for all ( E V(v)* and a c U((g). Thus v.xn+l = 0 if and
only if p,1,(V)(V(v)*)(U(g)).xn+l = 0. We conclude that v E Fxn(V(v)A\-, ) if and
only if Wp,\,(v)(V(v)*)(U(g)) C Fn(6M(At - A)). Indeed the left-hand side of this
inclusion is a U(b) submodule of M*I and from the definition of Tx the right-hand
side is the largest U(b) submodule of 6M(/1 - A) annihilated by xn+1. Consequently
v c fFxn(V(v)A--, ) if and only if P,, I(v)(V(v)*) c .F7n(AA,I) which is equivalent to
,, bt((v) C Homu(g))(V(v)*,?Fn(AA,t)) as required. El
Remark. We see from the above that a Brylinski-Kostant filtration (which involves
applying powers of x to weight vectors) is in fact rather natural since it leads to a
U(b) invariant filtration on 6M(u - A) and then to a U(g) invariant filtration on
AA\,I. This would have failed had we applied powers of x to arbitrary vectors.

3.3. The above result gives a q-version of FRobenius reciprocity. Recall the defi-
nition and notation of the q character associated to a filtration (see Section 2.2).
Denote chl<xM by chxM for those modules which admit a BK filtration Tx. In
particular,

00

chxV(v>? = q7dim(xn (V(v)>)/.FW1 (V (v))
n=O

and
00

chxF(AI1-) = E3ndim(FxnF(A,) /xn F(A\,
n=O

Corollary. For all A C * anttidominant and A c r* with A -t c P(7r) and
v c P+(ir), one has

chxV(v)A_ = (V(v)*, chxF(AA1\)).

Remark. Of course, for any -y c P(ir), we can choose A, At antidominant and regular
so that -y = A - t. This is an additional flexibility not present in the Brylinski
theory and allows us to analyze the case when -y is not dominant.
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4. THE PRINCIPAL BK FILTRATION OF A DUAL VERMA MODULE

4.1. Let G be the adjoint group of g (generated by exp ad x,: a c A), and
let B (resp. H) be the connected subgroup corresponding to b (resp. r). Fix
x c n+ embedded in some TDS with semisimple element h c r and recall the
BK filtrations TFx on V(v)A_-, on M(u - A) and on A/,/' defined in 3.2. We call
a BK filtration principal if x is regular, equivalently if x belongs to a principal
TDS. Recall that the regular elements of n+ form a simple B orbit. Hence those
satisfying the above condition on the (regular) semisimple element form a single
H orbit. Obviously these filtrations depend on x, though should be independent
of the {b c B I (Ad b)h c rj} orbit to which x belongs. We shall show this for x
regular. We may anticipate a similar result for x Richardson with B replaced by
the corresponding parabolic and H by the corresponding Levi factor. The general
situation is less clear. By Kostant's construction noted in the introduction, it
follows that chxV(v)o is independent of the choice of x in its G orbit given that x
is regular (nilpotent) and satisfies the above condition on h. We shall show exactly
(Section 7) how this is modified for the remaining weight subspaces. The situation
for x non-regular is less clear.

4.2. FRom now on we assume that x c n+ is embedded in a principal TDS, say
(x, h, y), with h E r and consider the BK filtration TFx on 6M(,u - A). Here we can
assume ,u - A = 0 without loss of generality since up to a shift by , - A of weight
spaces the U(b) - U(n+) bimodule structure of 6M(, - A) is independent of ,u - A.

By definition 6M(0) = F (Homu(b-)(U(g), k*)) where ko is the trivial U(b-)
module using the notational conventions of 3.1, 3.2. One easily checks the well-
known fact that Homu(b-) (U(g), ko ) and hence 6M(0) is a subalgebra of U(g)* in
which g acts by derivations.

As a left U(b) module, 6M(0) identifies with

Fb (Homu(b) (U(b), k*)) Fb (U(n-)*)

where the left multiplication of U(n-) on itself is extended to an action of U(b-)
via the adjoint action of U(r). Thus 6M(0) I u(b) is just the graded dual of U(n-)
with a left action of U(b) obtained through i,. In particular, 6M(0) I u(b) admits
a right U(n+) action which commutes with its left U(b) action, up to (an obvious)
translation of weights and in which the elements of n+ also act by derivations. Set
x = E7E el, which we recall [D, 8.1.1] is regular and is embedded in a TDS with
semisimple element h c r.

Let V be the largest U(r) invariant subspace of 6M(0) satisfying Vx2 = 0. The
only weight vector in V annihilated by x is the highest weight vector of weight 0
which identifies with the identity 1 of the ring 6M(0). Thus V admits a unique
weight space decomposition as V = V- kl. The main result of [JI, Section 4] is
the following.

Proposition. As a U(r) module V- is isomorphic to n-. Furthermore 6M(0) is
generated by V- as a polynomial algebra and .Fx(6M(0)) = k + V- + + (V-)m,
for all m C N.

Remarks. Of course this is really equivalent to the assertion that

chqxM(0) = J (1 -
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which follows from the Brylinski result on V(v) taking v -+ oo. However the proof in
[Ji] is elementary and in particular independent of Kostant's hard primeness result
[K2] and Broer's vanishing theorem [B, Theorem 2.4] of the higher cohomology of
a line bundle on T*(G/B) corresponding to a dominant weight.

In the variables defined by the weight vectors of V- the action of n+ is by
derivations with at most linear coefficients. Of course the existence of such an action
was a key point in the proof. Here we add that the assertion in [Ji, p. 406, lines 5,
6] is explicitly verified in [J3, Lemma 8.5]. This action comes from twisting slightly
the (linear) coadjoint action of n+ on n- through a suitable evaluation (depending
on h) of the coadjoint action of b on b-. For g simple, the unique highest weight
/ of g gives rise to a vector p-B c V- which through the embedding V(,) c->
6M(/3) and shifting of weights by -/ identifies with the semisimple element h of
the principal TDS containing x. (Observe that V(,) is the adjoint representation
and (ad x)2h = 0.) The remaining weight vectors p-,: -y c A+ of V- are obtained
from p-B by the left action of n+.

Consider as an example g of type A3, with its usual Chevalley basis. To avoid
confusion, we shall note the generators of 6M(O) - S(n-) by a_a. Note that
dim Fx?(6M(O)-O) = 1 and this vector space is spanned by v= a_-1/6 a-oz1_a- 012 -,93
+1/6 a3 a-il 012. One may check that the n+ space generated by v is

V- = {a,,, a Cg 2, a-a3, a--a2 , a_a2- 3, V}

which is isomorphic as an r module to n- (as in [Ji, p. 406 (*)] we get ea2v = 0).
Note also that the vector space .Fx(6M(0)) is different from .F1(6M(0)).

4.3. The above result applies to any other principal TDS with x c n+ and h C
r. This is simply through conjugation by H. Indeed the right action of x on
U(n-)*I is ad r equivariant. Thus if (xn+1 = 0, for some ( C U(n-)*I, then
(Ad h),((Ad h)x)n+l = 0, for all Ad h c H. Yet V is already ad j, hence H stable
and so .Fx(6M(O)) is independent of x. A similar argument applies to .Fx(V(v)A- ).

5. THE PRINCIPAL BK FILTRATION OFAA> P

5.1. Fix A, ,u regular and antidominant with A - ti C P(ir). FRom now on we take
x = EaE e,,. By 4.3 this entails no loss of generality. Recall the operator filtration
?F and the BK filtration JF. defined on A/A,' and on 6M(tt - A) in Section 1 and
Section 3, respectively. Unfortunately .F and .Fx cannot be expected to coincide
(outside M(2)). Indeed to construct .Fx we made use of a choice of variables in
which n+ acts by derivations with at most linear coefficients. Then in order for
.F, .Fx to coincide we would need to know that for this same choice of variables n-
acts by derivations (and possibly a further multiplicative term) with coefficients
which are "on average" at most quadratic. This is a little too much to expect and
indeed fails by the example in 4.2. Nevertheless we show that the filtrations .F, .Fx
on AA,/' are equivalent, more precisely coincide up to choice of the generating copy
of g (see below). One may further conclude that they induce equivalent filtrations
on F(AA,I).

5.2. Let us write A""' simply as A. Recall that by 1.4 and 1.5 one has

.FmA = Fb- (Homu(b) (U(g), .Fm (6M(0)))).

Now .F0(6M(0)) = ko and so P = FYA = Fb- (Homu(b) (U(g), ko)) which is 6M(0)'
as a U(g) module. Furthermore the latter has an algebra structure coming from
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multiplication in U(g) One may easily check (the well-known fact) that this
coincides with the given polynomial algebra structure on P.

The Conze embedding [C] gives an algebra homomorphism of U('0) into A which
is injective when restricted to U(n-). Thus U(n-) can be thought of as a subalgebra
of A. Furthermore there is a vector space isomorphism(*) U(n-)OP A
defined by multiplication in A (see [J5, 1.4(iii)]). As in [J5, Lemma 1.4], we have
T n A = Im(gmU(n-) 0 P), where g denotes the canonical filtration ([D, 2.1]) on

The commutator [g, P] in A is given by the action of g on P. In particular, the
elements of g can be viewed as first order differential operators on P. Consider
the matrix with entries P6,, := [f_,p6]: -y, 6 c A+ in P. By weight space con-
siderations, P6,y is triangular with respect to a lexicographic ordering on A+, and
furthermore

f_= Py/&0p6 for all -y C A+.
6E+

The injectivity assertion of (*) implies that the Py,y are non-zero scalars and
so this matrix is invertible. Recall (Section 1.2) the definition of the polynomial
algebra Q generated by the elements q-y = -0/0py. Note that multiplication
in A gives a vector space isomorphism Q 0jk P ' A and moreover by definition
TFmA = Im(.F?nQ 0 P). In particular, TFmA is g stable.

We remark that more generally each g E g viewed as an element of A takes the
form

(*) g= EPalaP>+Pg
-YEA+

where PD9 = [g,py] and so are determined by the action of g on A. If g E 4, then

Pg is a scalar and the choice of these scalars determines, through the action of n-,
the remaining Pg. Comparison with [J5, 1.3, 1.4] shows that the possible solutions
are exactly those given by the A""/' ,u tE *. We denote by Pg(,u) the solution
corresponding to ,a c 4*. The map ,a | - Pg(a) is easily seen to be linear.

Now consider gr.A. It is a commutative algebra isomorphic to Q Ok P and
inherits a g module structure via diagonal action. As already noted in [J5, 1.3] the
isomorphism class of gr.A is independent of the choice of ,a (equivalently of the
lower order terms Pg above) and so is completely determined by the action of o on
itself and on P. Indeed we may write grFg = EEA+ P9q_y and these expressions
determine the kernel of the surjective map S(gryF) 0 P -* gr.A.

5.3. By 3.1 we have an isomorphism A-A Fb- (Homu(f) (U(g), k*)) of U(g) mod-
ules. Now the right-hand side identifies with a subalgebra B of U(,O)*. This is
not isomorphic to A as an algebra since U(g)* is commutative. Recall (4.2) that
6M(O) = F (Homu(b-)(U(g), k*)) also identifies with a subalgebra of U(g)* and
that TF, is a filtration of 6M(O) with this algebra structure. Define the coproduct
A/(a) = a,?a2 on U(g), using the summation convention of [J2, 1.1.8]. One has B =
Fb-(Ho?nu(b)(U(g),6M(O))) with multiplication defined by OO'(a) = O(ai)O'(a2).
Then (7mB)(JFT?B)(a) C (?F7B)(al)(?(FxmB)(a2) C (?T72(6M(0)))MFxM'(6M(0)))
c Fxm+m' (6M(O)) and so .Fxm is a filtration of B as an algebra. In what follows it is
convenient to assume g is simple. The general case is similar. Recall the definitions
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of V, V-, and the p-, of Section 4.2. Define 0-, c Homu(b)(U(g),6M(0)) to
vanish on the augmentation U(n-)+ of U(n-) and to take the value p-, c 6M(0)
on 1.

Lemma. The U(g) submodule generated by 0_ is isomorphic to the adjoint rep-
resentation V(/3).

Proof. It is clear that 0: is n- invariant and of weight -/. Fix a c ir and set
n = (aV, /). A standard sa(2) calculation shows that x,.(Xn+1.0_g) - 0, whereas
for any a' c 7r \ {a } one has x_,,.(xn+01.O_) = 0 trivially. It follows that xn+1 0_0
vanishes on U(n-)+. On the other hand,

(Xn+1.0-,)(1) = 0_,(xn+l) = xn+1(0_,(1)) = xn+lp_, c V-.

Yet -/ + (n + 1)a is not a root and hence cannot be a weight of V-. This proves
that Xn+'.O-o = 0 and hence the lemma. DH
5.4. We now try to reconstruct

B = Fb- (Homu(b) (U(g), 6M(0)))

from P = Fb (Homu(b) (U(g), ko)) =FxoB and V(,) C .FxB, following the observa-
tions in 5.1. Set V1 = {0 c V(,) I 0(1) 78 0}. The subspace {0(1) I 0 c V1} lies in
Fx16M(0) = V and contains p-. FRom the formulae in [Ji, p. 406] describing the
n+ action on V, this subspace must equal V. Thus the set of weights of V1 coincides
with -A+ U {0} and we let V17 denote the subspace spanned by vectors of non-zero
weight. Let IC denote the degree filtration on the polynomial ring S(V(/)) and its
subring S(V,7).

Lemma. The map S(V17) 0 P -* B defined by multiplication in the commutative
algebra B is an algebra isomorphism. Furthermore FxB = Im(ICm(S(V,7)) 0 P).

Proof. Observe that (paradoxically) V17 is n- invariant. Indeed it is just the
subspace of the adjoint representation spanned by the weight vectors of weight
-ty: -y c A+. Recall further that g acts by derivations on B.

Injectivity. Since n- acts locally nilpotent on P and on V,7, it is enough
to show that there is no non-zero n- invariant element in the kernel. Recall that
pn reduces to scalars. Then a standard calculation shows that any non-zero n-
invariant 0 of S(V17) 0 P, viewed as a sum of weight vectors of P with coefficients
in S(V17), must have a non-zero coefficient, say 0', of 1.

For any weight vector 0? c P one has 0y (1) c kl, which hence vanishes if -y 78 0.
We conclude that 0 = 0(1) = 0'(1). On the other hand, the map 0' | > 0'(1) is
an algebra homomorphism of S(V17) onto 6M(0) S(V-), which is the identity
on V17 and so is an isomorphism. We conclude that 0' = 0 and this contradiction
establishes injectivity.

Surjectivity. Let M be a finite-dimensional submodule of 6M(0). Given
N, N' c ObO we write ch N < ch N' if dim N, < dim N' for all v E * Exactly
as in [J5, 2.2] one obtains

(*) ch F (Homu(b)(U(g),M)) < D ch M.
Through the definition of V(,) and P one has

(**) Im(ICmS(V,7) 0 P) C FxmB.
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Consequently

ch Im(ICm (S(V17) 0 P)) < ch Fb (Homu(b) (U(g), v7 (6M(O))))

< ch K/m(S(V17))D, by (*).

Yet by the injectivity established above, the left-hand side equals

ch ICm(S(V,7))ch P = ch (tm(S(V17))D.

We conclude that equality holds in (**). This proves surjectivity and the lastpart. DH
5.5. We would now like to show that FmA and .F7B are isomorphic as U(g)
modules for all m C N. Now P = -FA = Y'B, whileg c CF?A and V(,) C JFB.
By 5.2 and 5.4 we have surjections

(*) gm(U(,0)) 0 P __ .F,nA, kAm(S(V(/))) 0 P ->* JTB

and the left-hand sides are isomorphic as U(,g) modules. The trouble is that these
maps have kernels. Already this can cause the image of some a c gm(U(g)) to lie
in some gm A with m' < m. Actually after Borho-Brylinski [BB] this only arises
when b is replaced by a parabolic which is not of confluent type in the terminology
of [JL, Section 8]. (For an example, see [JLT, 12.3]). Nevertheless it serves as a
warning.

To compare the above kernels, recall that the matrix with entries P6a: 6, a E /+
introduced in 5.2 is invertible. We may define elements q' e E B: y E A, through

(**) -_ = E q' aPfl
6E+

with f E V(/)_ corresponding to a Chevalley basis element through the iso-
morphism of 5.3. By 5.4, these are algebraically independent so they generate a
polynomial subalgebra Q' of B. Furthermore the multiplicatioii map Q' Ok P -)B
is an algebra isomorphism. Define a Poisson bracket on B through {ql , p} 1=
and all other Poisson brackets on generators equal to zero. It follows easily from 5.4
and the choice of P6 in (**) that B is isomorphic to grFA as a Poisson algebra by
sending gr.&/&py to ql . Furthermore a F-- {ql , a} is just &/&pa on P. By this
and the choice of P6 the action of V17 C V(/B) on P defined by this Poisson bracket
coincides with the action of n-. Moreover identifying V17 as a subspace of B, the
Poisson bracket defines an action of V17 on itself which is just the adjoint action of
n-. This is a simple consequence of the expressions being first order in qf_ (resp.
9/&py) and our embedding of g into A being a Lie algebra homomorphism. Then
by 5.4 the action on V,7 on B as derivations can be recovered by its restriction to
P and this adjoint action.

We can now describe how V(:) lies in B in terms of the ql , pa variables. Since

V(:) c F4B, we can already write each g E V(p) in the form

g = Eq' > P,5 +?P9 Pa9,P9 E P.
yE+

Now the action of n- on V(:) brings each such element into V17 whose form
we already know. Since in P only the constants Poisson-commute with all the
q' : -Y E A+, it follows that the P-5g (which for g of positive weight are polynomials
with no constant term) are uniquely determined. Again the P9 for g E V(:) of
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strictly positive weight have no constant terms; but the ph, for h E V(:) of weight
zero, are scalars. It follows that the Pg are uniquely determined by these scalars.
(One may remark that their precise values are related to the choice of regular
nilpotent x and are not zero.) Finally by comparison of commutation with Poisson
bracket which coincide up to degree one we may further conclude the Pa, Pg are
exactly the same polynomials as given in 5.2, when these scalars match up.

It is not too obvious that the above observation means that we can also match up
the kernels in (*) which lie in non-isomorphic algebras. However we can immediately
conclude that the action of g on gr.A and gr.F B coincide, since both are defined
by using the Poisson bracket and the same expressions, namely g = Z,A+ q_aP r,
for the elements of g. Then by 2.1 we conclude that B is graded injective for the
principal BK filtration Fx. This leads to the

Proposition. Suppose A, At * are regular anrtidomirnant and A - A E P+(7r).
Then gr.F. AA,I is injective in O6-.

Proof. The case A = A is the above. For the general case we make a construction
similar to 2.1 which has the advantage of being even more transparent. Indeed for
the multiplication defined by the coproduct on U(g) we may observe that AA,' =
Fb - (Homu(b) (U(g), 5M(/t - A))) becomes a module over the commutative algebra

Fb -(Homu(b)(U(g),SM(O))) = B.

Consider the unique up to scalars n- invariant element 0-(A-/) E AA,'I whose value
on 1 E U(g) has weight t - A. Forgetting the [ action this is just the identity
in B = A'A,. Consequently AA,I' = BO-(A-/-). Now 0-(A-/A) generates the finite-
dimensional simple U(g) submodule V(-(A - At)) of 5M(A -/t) = ?AA4-[, and
a fortiori AA,' = BV(-(A-/t)) = A1'8V(-(A-At)). Now we already know that AA,I'
is a direct summand of A',"' 0 V(-(A - A)), by the Jantzen translation principle
(see Section 2.1, proof of Proposition 2.1, or [J5, 3.1, 3.2]) and because A, A are
in the same facette. Consequently this direct summand is just obtained by the
above multiplication which hence takes injectives to injectives. Finally Fx Al',
is injective for each m and V(-(A - At)) c F0(A,AI). Consequently Fx7(AAI[) =
.xm(A1't"))V(-(A - At)) is injective. Splitting off injectives concludes the proof. 0

5.6. Combining the above observations we now obtain the Brylinski-Broer result.

Theorem. For all ,, v E P+(7r) and x = c ee : cOg E k \ {O}, one has

chxV(()v = m(q).

Proof. Take A, A sufficiently antidominant so we may write v = A - A. Combine
5.4 and 2.3 to determine

[.FF(AAIL) V(()]and conclude by 3.3. D
6. MINIMAL c-TYPE

6.1. Take g E g and recall the definition of the linear map At F P9(At) of [ into P
representing the possible solutions to 5.2(*). They describe the zeroth order terms
in the description of the algebra homomorphisms U(g) -* A',". The diagonal
action of g on A'A, results from these embeddings of g and the composition of
homomorphisms sending A/,/' x AA,>' x AA,A to AA,>t. The action of x C g in gr.FAAbt'
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coming from the zeroth order terms is just multiplication by P9(,) - P9(A)
P9(u - A). In particular the identity 1 E gr.FAA,I/ has weight -(A - A). This
analysis gives the following

Lemma. The isomorphism class of gr.FAA/,: A, At E j* depends only on A - A.

Remark. Of course the grpFAAI1 can all be identified with the polynomial ring QOP
and in this common space isomorphism can be replaced by equality.

6.2. Since we shall need to use .Fx instead of F it is important to observe that the
same results hold for .Fx.

Lemma. For all A, A *, one may identify gr.FAA,It and gr.FXA',A as g modules
by sending q_ to q' L, for all ay E A+.

Proof. When A = ,t, this just summarizes a conclusion of 5.4. For the general case,
observe that the identity 1 E A becomes a vector of weight -(A - At) in A'A,I. As in
5.4 one may use the action of n- to show that in gr.F.AA,A the zeroth order term
coming fromn the diagonal action of g is just multiplication by P9(-(A - At)), asrequired. D
Remark. Combined with 2.1 this gives a second proof of 5.5.

6.3. We already know by 3.1 that AA,/': A,At E *, ,A antidominant, is injective in
0-. This allows us to calculate the multiplicities [F(AAIt): V(v)*] and we remark
that these may also be computed from FRobenius reciprocity using the simplicity of
M(At) (see [J4, 10.5], for example). Again if A is dominant one may also calculate
these multiplicities using (see [JLT, 10.7], for example) the projectivity of M(A).
Finally if A, A are in the same facette, then assuming A - A E P(7r) one may use the
injectivity of A',"' [J5, 3.6] combined with the translation principle of [J5, Section 3]
to compute multiplicities. (Here and in what follows the reader can take A, A *
in the same facette to just mean that A, A are regular and both dominant or both
antidominant.) FRom the above one has the

Proposition. Take A,At E [*, with A - A E P(7r) and v E P(7r). Assume one of
the following holds:
(i) At is antidominant.
(ii) A is dominant.
(iii) A, A are in the same facette.
Then [F(AAIt): V(v)*] = dim V(v)l\_I.

Remarks. The same calculation goes through in the parabolic case. For arbitrary
A, A c [* these multiplicities (in the present Borel case) were calculated in [GJ, 3.4]
and are rather complicated in general. The latter shows that the isomorphism class
of A'A,I does not only depend on A - ,t, even if A - A E P+(qr), when A,At are not
in the same facette.

6.4. For all v E P(7r), define the length of v to be (v, v). If any one of the hypotheses
of 6.3 holds it follows that V(A - At)* occurs with multiplicity 1 in F(AAIA) and
furthermore if any other V(v)* occurs in F(AAIt), then (v, v) > (A - At, A - t).
Following a convention introduced by D.A. Vogan (in the slightly different context
of simple Harish-Chandra modules) we call V(A - At)* the unique minimal t type
of F(AAI/). We say that F(AAIt) is generated by its minimal t-type if F(AA,A) =
F(AA,14)V(A - /t)*. The following is essentially well known. We give the proof for
completion as it is rather important for our considerations.
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Lemma. Assume A,1 E b* are in the same facette and A -, E P(1r). Then
F(AAIt) is generated by its minimal t-type.

Proof. View V := V(A - At)* as the unique minimal t-type of F(AA4t). Then
the composition V x M(A) -* M(At) gives rise to a U(g) module map o: V 0
M(A) -* M(At). We claim that (o is just the projection onto the direct summand
of V 0 M(A) having the same central character as M(At). Following [D, 7.6.14] let
{ue } be a basis of V formed from weight vectors ordered so all the partial sums
zn i+1 kuej are U(b) submodules of V. Induction gives a Verma flag V 0 M(A)
Ml D M2 D * D Mn+1 = 0 with ufivA mod Mi+1 the canonical generator of
.AllilMi+l M(A + i). The hypothesis of the lemma implies after Jantzen [J, 2.6]
that only one of these, namely M(A + Aut -A), has the appropriate central character.
Thus by universality fo factors through the projection onto M(At) defined by central
character decomposition and Im(p is a quotient of this copy of M(At). Yet VvA :& 0,
so Imp is a non-zero submodule of M(At). Since M(At) is indecomposable, this
proves the claim.

Since dim V < oc, the natural injection is an isomorphism

(p:Homk(k, V) 0 Homk(M(A), M(A)) -*Homk(M(A), V 0 M(A))

with HoMk (M(A), M(At)) a direct summand of the right-hand side. Taking U(g)
locally finite parts, we obtain an isomorphism

V 0 F(AAA-) _ F(Homk(M(A), V 0 M(A)))

with F(AAI/) a direct summand of the right-hand side. From our claim and the
definition of bo, it follows that the projection onto this direct summand is just
that obtained by taking V to be the minimal t-type of F(AAI/) and through the
composition of homomorphisms V x F(AAA-) - F(A-'I[) deduced from ~. Hence
VF(AAA-) = F(AAAL). Since the map U(g) -* F(AAA') defined by the action of U(O)
on M(A) is surjective (see [J4, 10.5], for a proof independent of Kostant's primeness
result [K2]), we may conclude that F(Al'8")V D U(g)V = VU(0) = VF(AAAI) =F(A',A), as required. D
Remark. This argument also clarifies the argument in 2.1. A further point there
was that in the dominant case A - At E P+(7r), the minimal t-type has degree 0.
We shall calculate this degree in general.

6.5. Now fix A,Aut E [* in the same facette and assume A - At E P(7r). Let r be
the smallest initeger > 0 such that V(A - At)* C xrF(V(A - At)*). We say that
gr.F (F(A,AI)) is generated by its minimal t-type if one has

(*) nx `r(F(A8X8))V(A - At)* = Txm(F(AAIL)), for all m E N,

or equivalently

(**) gr.F (F(A1',"))V(A - /)*= gr.F (F(A'I8))
A priori, this is a much stronger property than the conclusion of 6.5 except if
A E P+(7r) and At = 0. Indeed when At = 0 (as noted already in [J5, Section
1]) the gradation on A/,/' Q 0k P induced by the degree gradation on Q is
a gradation of U(g) modules (for the diagonal action). Moreover the condition
A - At P+(7r) implies that V(A - At)* is a subspace of P (and hence of degree 0).
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Right multiplication by P preserves this gradation and so by 6.4 we obtain for all
A E P+(ir) that

JFm(F(AOO?))V(A)* =.Fm(F(AA,o)), for all m E N,

or equivalently

grFF(A?'?)V(A)* = gr.FF(AAO).

More generally if A, A * are in the same facette and A-At E P+(7r), by 6.1 and 6.3
we can identify grjFF(A,AI) with grjFF(AA-[P,O) and grj7F(A['>") with gr.FF(A0'0).
Taking account of 6.2, gr.F,A',/I and grpFAAI/ can be identified as g modules and
as algebras. Therefore the argument above proves the

Proposition. Assume A, At E * are in the same facette and A - A E P+(1r). Then
gry-, (F(AAIt)) is generated by its minimal t-type.

6.6. Fix v C P+(7r) and w E W. Choose A, A C [ * sufficiently antidominant so
that A - A wv. Recall 6.1 and 6.2. We denote by H (v) the hypothesis that
gr.F. (F(AAIA)) is generated by its minimal t type (which is isomorphic to V(v)*).

7. NON-DOMINANT WEIGHTS

7.1. Take x as in 5.1. Fix ( E P+(ir) and v E P(7r). We wish to calculate
chxV((),. Since we have determined this for v dominant, it is enough to relate it
with chxV((),av for each a c ir. Here we had the conjecture (which we now prove
in Theorem 7.6)

(C1) chxV(4),,, = q(a Vx) chx V($) v
To motivate this, we first note that it is compatible with the action of the princi-

pal TDS denoted (x,h,y). Take v E P+(7r). Given w E W, set S(w) { E /+
wa E A\-}. Then a standard calculation shows that (Cl) implies

(C1)wL chxV((),,v = ( (O V) chxV(()v.

In particular, for the unique longest element wo E W one has

(*) ~~~~~chxV((),, = q 2(pvv) )chx V(() v
where pv is the half-sum of the positive coroots. Yet for our choice of x, the
semisimple element h is proportional to 2pV. Now suppose v E V(()> satisfies
xn+lv = 0 and xnv :& 0, yn'+lv = 0, yn'v :& 0. With respect to h, the element xnv
has weight 2n+2(pV, v) and yn'v has weight -2nr+2(pv, v). From[(2) theory these
sum to zero, that is, 2n + 2(pV, v) =-(-2n' + 2(pV, v)). Hence n' = n + 2(pV, v),
which is exactly the prediction of (*).

7.2. For all w E W and v E P+(7r), let us define

4v (w) = E (GV v).
!3ES(w)

Recall that V(v)wv is one-dimensional and fix vwv E V(v)wv non-zero. It is clear
that v - wv is a sum of exactly ?v(w) simple roots. We conclude that xn+lVwv = 0
for all n > 4v(w). On the other hand, (Cl) implies

(C2) max{n E N I xnvwv :& ?} = 4v(W).
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The truth of (C2) is that there are no "accidental" cancellations in applying x' to

vwv .

7.3. FRom 6.2 and the remark in 2.1, it follows that jx(AAIt)/,7x7-1(AAIt) admits
a U(g) filtration with quotients isomorphic to the (QM((A - b) + 3))L, where / is
the sum of exactly m positive roots (their multiplicities being the coefficient of qm
in Pq(/)). Now assume A -, = wv, for some v E P+(qr) and w E W. Then
the largest m for which 5M(v)L can occur is exactly X,(w) and moreover it occurs
with multiplicity 1. Consequently the largest possible degree in which the unique
minimal t-type V(A - At)* of F(AAIt) can occur is also 4v(w). However it is not
clear that it does occur in this degree because the corresponding copy of 5M(v)L
may not be a submodule of Fx7 (AA,A). Thus we formulate the conjecture (which
will also be proved)

(C3)w Suppose A - = wv with v E P+(7r) and w E W. Then the unique minimal
t-type of F(AAIt) occurs in degree 4v(w).

Denote by (C3) the common truth of the (C3)w w E W.

Lemma. Conjectures (C2) and (C3) are equivalent.

Proof. This follows from 3.3. D
Remark. Again (C3), like (C2), is not so innocent. It means that the remaining
5M(v)L occurring in lower degrees cannot be submodules.

Proposition. Take v E P+(ir), w E W and A, A C [* sufficiently antidominant
so that wv = At- . Given that (C3) holds, then so does (Cl) and furthermore
grF. (F(A,AI)) is generated by its unique minimal t-type (isomorphic to V(v)*).

Proof. The proof is by induction on the length of w. For the neutral element, the
conjecture (C1)W is empty and the second assertion is just 6.5.

Now assume we have established (C1)W and Hw(v) of 6.6. If w = wo, there
is nothing left to prove. If not, set v' = wv and choose a E ir such that t :=
(cgv,vI) > 0. Set v" = sav' = v' - ta. We may assume t > 0, without loss
of generality. Now set A' = AIt+"v,, A" = AIt+v",1 and F = F(A1P41),F' =
F(A'), F" = F(A"). Composition of homomorphisms gives A?+v',AAA+v"1,I+?v c
AIt+v"1,1. Recall that this can be viewed as multiplication in the Weyl algebra
A. Thus, if we consider A"' := At?+v1,It+?v we have A'A"' c A". We shall seek
to use the term A"' to transfer gr-F(F'), which we understand by the inductive
hypothesis, onto gr.F (F"), which we want to determine. Recall also that by 6.2,
for any 71, 72 E [j*, gr., (A?71 72) can be identified as an algebra with grF(A?71 72).
Furthermore, the latter is just gr.F(A) as an algebra. (Only the g module structure
changes passing from A71,n2 to the Weyl algebra A using the same filtration F.) In
particular, gr.F A" is a domain which is a key fact in the proof below.

As (At + v") - (At + v') =-ta, it follows that Xt (F= A"')/(Fj1A"') admits
a dual Verma flag with quotients isomorphic to the 5M(-ta + /)t, where : is a
sum of exactly t positive roots. In particular 5M(O)t occurs in Xt and is the only
factor of the form 5M(w.0). (Indeed, it is the only factor annihilated by a power of
the augmentation ideal of the centre of U(g).) Thus 5M(O)- occurs as a submodule
of Xt. Its unique simple submodule is a g invariant element z- of Xt. Choose a
representative z C FTx(A"'1). We remark that one cannot choose a representative
which is g invariant since M(,t + v') is simple and At +v" #7 At + v', which forces
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Hom, (M(p1 + v"), M(,u + v')) = 0. (One may add that s 0O- -a and that
6M(-a)L occurs in degree t - 1. This permits 5M(0)L to occur as a quotient of a
non-trivial extension with 5M(-a)L as a submodule.) Nevertheless z is 0 invariant
mod 11V`(A").

Set 1' = ?w (v) and 1" = ?s (v) = ?w (v) + (aV, v') = t + 1'. Multiplication in
the Weyl algebra yields 1< (A')z c .F$' (A"). Admit (C3)ff. Then V' = V(v')*
occurs as a submodule of < (A'). Now V'z must have a non-zero component in
degree 1" since gryz A" is a domain. Moreover its image in IFT" (A")1/j'F -1(A"1) is
isomorphic to V(v)*. Again observe that 5M(v)- occurs with multiplicity 1 in the
dual Verma flag of this quotient. Hence V(v)t = V(v)* occurs with multiplicity 1
as a Jordan-Holder composition factor. On the other hand, applying (C3)s,w to
A" we obtain V(v)* as a submodule V" of IFT$ (A"). We conclude that

(*) V'z = V" mod .Fj'-1 (A").
By hypothesis Hw(v), any simple module V of F' occurring in degree r, that

is, in Fxr(F')/.Fx-(F'), must satisfy V C TxJ- (F(AILIL))Vf. Thus by (*) we
obtain Vz c 'r-f (F(AA,A))V" mod .xF-7 ?e+-1(Aff). On the other hand, the
image of Vz in .27-e'?e"(Af)/Fr-f1+? -1 (A//) is isomorphic to V. Now gr.FxA"
is a domain, so multiplication by z does not lower multiplicities. Hence, since
JF`r-f1(F(Abtbt))Vff c J-xr-f1+f(Fff) we conclude that

[.Fxr(F1)1/fFxr(F1) V]< [jF7x-fl(F)Vlll/fF"r-fl+fll-'(Fll) V

(**) <? [YjF'-t'" (Fff)/Yye-'?e"-1 (F"t) :V] .

Define a partial order > on the set of polynomials in q with integer coefficients
> 0 through E aiq2 > Z biq2 if and only if a> > bi for all i. Then by 3.3 we obtain

chx V(E,),,, > q(av Xv )chx V (E,) vq >
Since equality holds at q = 1, this gives equality for all q, and so (C1),, implies
(C1)sa,, Again [F': V] = [F: V] by 6.3 which forces equality in (**) and hencethe truth of H,,w(v). D
7.5. Suppose g is simply-laced. Then (C2) is a special case of [Z, Theorem 3.2.2]
and follows from a result of Lusztig [L2, Theorem 22.1.7]. The latter asserts in
particular that with respect to the global basis for V(() any monomial in ec, : a E IF
applied to vwe is a sum with positive (integer) coefficients. Thus there can be no
"accidental" cancellations in applying a power of x to vw. One may therefore
conclude

Proposition. Suppose g is simply-laced. Then (C2) holds.

7.6. We now obtain our main result. Set x = aG,r ea,.

Theorem. Take ,, v E P+(7r) and w E W. Then
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Proof. Given (C2), 7.3-7.4 imply (C1)W, and we may conclude by 5.6. By 7.5
this completes the proof for g simply-laced. The non-simply-laced case is treatedbelow. D
7.7. Let (C2). denote (C2) when v is the ith fundamental weight and (C2)F is the
common truth of the (C2)i.

Lemma. (C2)F implies (C2).

Proof. With respect to multiplication in P the V(v): v E P+(7r) satisfy Cartan
multiplication, that is, V(v)V(v') = V(v + v'), for all v, v' E P+(7r). Furthermore
vwvvwvl = vw(+VvI),I for all w E W. Since P is a domain, it follows that (C2) for
v, v' implies (C2) for v + v' as required. O
7.8. Suppose 0 is of type A,-, and let e i, j = 1, 2, In, be the standard
matrix elements in Endkkn. Let V be the standard n-dimensional representation of
0 with basis {V1, v2, *, vn} chosen so that ei,i+lvi+l = vi. Take s E {1, 2, ... I n -
1}. Then As V is a fundamental representation of g and has basis vil /Avi2 A A /-vi,:
1 ? ii < i2 < ...< i < n. For this choice of basis, the matrix coefficients of the

1+i 1,2, ,n - 1, are either 1 or 0. Thus (C2)5 holds for all s. Combined
with 7.7, this gives a simple proof of (C2) in type A,-1.

7.9. Let (x, h, y) be an s-triple and V a finite-dimensional module for the corre-
sponding 5s(2) algebra. Let v E V be an h-eigenvector having eigenvalue j E Z and
consider xyv. It is easy to show that there exists ci E Q such that

xyv -C E cyX'V

and moreover there may be several such expressions. We say that V admits posi-
tivity if it is always possible to take the c2 > 0. We remark that if V is simple, then
xyv and the y2x2v are integer multiples > 0 of v.

Lemma. Suppose every simple in V has dimension < 5. Then V admits positivity.

Proof. Since xy = yx + h we can assume j < 0. We can assume yv -7 0 and so by
the hypothesis we are reduced to j -1, -2. If j -1, then yv belongs to the
isotypical component of V corresponding to the simple with lowest weight -3 and
moreover so does x2v. Consequently y2x2v and xyv are non-zero and equal up to a
positive rational number. If j =-2 a similar argument shows that the same holdsfor the pair y3x3v and xyv. D
7.10. Let V be a finite-dimensional g module. We say that V admits positivity if
for every a E ir, V admits positivity with respect to the s-triple (en, hca, fo ).

For each sequence I = (a,, a2 I ... I am) of simple roots let FI = f-Oll f -02 ... f-0 m
be the corresponding monomial in the negative root vectors of degree III m.

Now take V = V(,u): ,u E P+(7r), with vA its highest weight vector.

Lemma. Assume that V(/t) admits positivity. For every monomial FI: III > 1,
there exists c2 rational > 0 and monomials F1i: IIij < It- 1 such that eoFIv(At) =
c cFji v (pI).
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Proof. The proof is by induction on III. Choose a E ir such that FI = f-EF1. By
positivity

eOg Fj v (/l) = ejg f-_ o FIv V (/l) Z cif_aeaFI,

for some ci rational > 0, while if / E ir \ {a } one has

eoFjv(1u) = f_e0Fjv(,u).

By the induction hypothesis the assertion follows easily. D

7.11. It is immediate from 7.10 that if V(,u) admits positivity it also satisfies (C2).
Now the hypothesis of 7.9 is satisfied for the fundamental module V(WU) with
respect to every s-triple (e:, ho, f-0): / E ir, as long as the coefficient of aV in any
coroot does not exceed 4. This proves the

Corollary. (C2)F and hence (C2) holds for every simple Lie algebra outside E8.

Remark. Of course E8 is simply-laced, so (C2) holds by 7.5. This completes the
proof of 7.6.

7.12. Take g of type B2 with a (resp. a') the short (resp. long) simple root. Let
(x, h, y) (resp. (x', h', y')) be the corresponding s-triple. Consider v E V(3wo +?wo)
of highest weight and set v' = y'y3v. Then

xyv' = hy'y3v + yy'xy3v =-y'y3v + 3yy'y2v =-y3y'v + 3y2y'yv.

Since y3y'v -7 0, this does not have the required form. More generally if v' generates
a direct sum V of the 6-, 4-, 2-dimensional simple , modules, then V does not
admit positivity.

INDEX OF NOTATION

Symbols appearing frequently are given below in order of appearance.

Introduction k.
1.1 a, U(a), S(a), g, j, /\+, /\, 7r, P(7r), P+(7r), p, so', W, w.A, bO, n+,
eog, If_0g, hog, ,i a, Li V(v).
1.2 kAj M(A), vA, A, q_0g) Pce, Q, PI AA,/A.
1.3 F.
1.4 Fb (M), bo Fr - (M).
1.5 5M(/1)
2.1 0, 60, 0-, 0-, RA

At

2.2 Dq, D, F(M), S, J.
2.3 Pq, ml(q).
3.1 MT, 5.
3.2 Ml XAl Fx
3.3 chx.
4.1 G, B, H.
4.2 V, V-, p -.
5.2 P6, PI P_, P9, P9(1u).
5.3 B.
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5.4 V1, V17.
5.5 q--Y Q ,
6.6 HW (v).
7.1 S(w), wo, pV.
7.2 v(w).
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