
Separation of Variables for Quantized Enveloping Algebras 

Author(s): Anthony Joseph and Gail Letzter 

Source: American Journal of Mathematics , Feb., 1994, Vol. 116, No. 1 (Feb., 1994), pp. 
127-177  

Published by: The Johns Hopkins University Press 

Stable URL: https://www.jstor.org/stable/2374984

 
REFERENCES 
Linked references are available on JSTOR for this article: 
https://www.jstor.org/stable/2374984?seq=1&cid=pdf-
reference#references_tab_contents 
You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

The Johns Hopkins University Press  is collaborating with JSTOR to digitize, preserve and 
extend access to American Journal of Mathematics

This content downloaded from 
�������������128.6.45.217 on Sun, 20 Apr 2025 23:41:42 UTC�������������� 

All use subject to https://about.jstor.org/terms

https://www.jstor.org/stable/2374984
https://www.jstor.org/stable/2374984?seq=1&cid=pdf-reference#references_tab_contents
https://www.jstor.org/stable/2374984?seq=1&cid=pdf-reference#references_tab_contents


 SEPARATION OF VARIABLES FOR QUANTIZED

 ENVELOPING ALGEBRAS

 By ANTHONY JOSEPH and GAIL LETZTER

 1. Introduction. The base field k is assumed of characteristic zero, with

 K = k(q). The notation is that of [11] but will be redefined where necessary.

 1.1. Let g be a semisimple Lie algebra and U(g) its enveloping algebra. A
 famous theorem of Kostant ([13]; [2], 8.2.4) asserts that U(g) is a free module

 over its centre Z(g). More precisely one can choose an ad U(g) invariant subspace

 H of U(g) such that the multiplication map H 0 Z(g) -* U(g) is an isomorphism.
 Moreover H is a direct sum of simple finite dimensional U(g) modules, where the
 multiplicity of any isomorphism class E is just the dimension of the zero weight

 of E with respect to a Cartan subalgebra 4 of g. Finally Kostant showed that
 one can make a particularly nice choice for H, namely (ad U(g)) U(n+) where
 g = n+ ? E n- is a triangular decomposition for g.

 1.2. Our present aim is to obtain the analogue of Kostant's theorem for the

 quantum group Uq(g) based on g as defined by V.G. Drinfeld and M. Jimbo. We
 prefer to call this the quantized enveloping algebra for g and we shall use the
 notation and conventions of [11], hereafter referred to as JL. Following Kostant

 we call the required tensor product decomposition, a separation of variables.

 1.3. One cannot expect to deduce a separation of variables for Uq(g) by
 any limiting process q -> 1, because this is unlikely to pin down the required free

 generators. Attempts to mimic Kostant's proof also failed. Thus setting U = Uq(g)

 Rosso obtained a triangular decomposition U = U- 0 U0 ? U+ see (JL, 4.8) but

 neither (ad U)U+ or any obvious modification of it seems to give a correct choice

 of free generators. Again although Rosso provided ([20], Sect. II) a nondegenerate

 ad U invariant bilinear form (the Rosso form) on U, this does not specify a choice

 of free generators in any obvious way even in the case g = sf(2). From all this it
 becomes clear that we need a completely new idea.

 Manuscript received May 15, 1991; revised July 31, 1991; revised December 21, 1991.
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 128 ANTHONY JOSEPH AND GAIL LETZTER

 1.4. Fix Zx c Max Z(g) and set Ix = U(g)Zx. Let F denote the canonical
 filtration ([2], 2.3.1) of U(g). Now let S(g) denote the symmetric algebra of 0
 which we identify with gryU(g). Let Y(g) denote the ad g invariant elements
 of S(g) and Y+ the augmentation ideal of S(g). Set J+ = S(g)Y+. The crucial and
 most difficult step in Kostant's proof of his separation theorem for U(g) was to

 establish the primeness of J+. This approach is definitely excluded here. However,

 notice that gryIX D J+. Then an easy argument based on dimension theory and
 the primeness of J+ gives equality and hence the independence of gryIX on X.
 This independence leads quickly to the tensor product decomposition of U(g) over

 Z(g) by simply choosing HEl to be the symmetrization of a graded complement H
 to J+. Finally H can be chosen to be ad U(g) stable; but instead of calculating its
 module structure from algebraic geometry we may calculate directly the module

 structure of HI from the representation theory of U(g).

 1.5. The thrust of this paper is that one can prove independence of X in
 another fashion. An easy argument based on the density of the set of semisimple

 orbits and using the above form shows that S(g) = (ad U(g))S(4). In particular
 we can identify U(g) with (ad U(g))U((). On the other hand it is easy to show
 that the multiplication map S(j) 0 Y(g) -> S(()Y(g) is bijective and so we obtain

 gr(S(()Yx) = S(()Y+ for all Yx c Max Y, which combined with the previous
 equality gives the required independence, if we can show that gr commutes with

 ad U(p). This is a very delicate point. In the enveloping algebra case it holds
 by Kostant's theorem. It may fail in the quantum case, and to get it to hold, we

 must augment the algebra to obtain a so called simply connected version U. Then

 we resolve it in this case by an entirely new reasoning based on distributativity

 laws (6.1, 6.4, 6.8) for sum and intersection of certain vector spaces which are

 only defined in the augmented algebra. This uses in particular 4.10 which does

 not have an immediate analogue in the enveloping algebra case and recent deep

 work of Lusztig [15-17]. This avoids the argument involving the primeness of J+.

 However it does have the disadvantage that one cannot assert that Ix is completely
 prime and hence (by easy Gelfand-Kirillov dimension arguments) equal to the

 annihilator of a Verma module. Possibly the above commutativity can be similarly

 established in the enveloping algebra case. However, in this respect the quantum

 case appears easier and more natural.

 1.6. Our analysis in the quantum case is based on the existence of an ad U

 invariant filtration F of U. At first sight this does not seem too useful as the

 subspaces FPU are infinite dimensional for all i C Z. However recall that a main
 result of JL was to exhibit the subalgebra F(U) on U on which the action of

 ad U is locally finite. A beautiful fact (4.3, 4.4) is that PF(F(U)) := F(U) nF(U)
 is finite dimensional for all i c Z and nonzero only if i > 0. From this we are

 able to give a presentation of F(U) analogous to that for U(g) described in 1.5,

 although the proof is much harder and gives the quite unexpected decomposition
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 QUANTIZED ENVELOPING ALGEBRAS 129

 (4.10) of F(U) referred to above. Then if Z(U) (or simply, Z) denotes the centre

 of F(U) one concludes (Sect. 7) as indicated in 1.5 that F(U) = IHl 0 Z for an

 appropriate ad U invariant subspace IHI of F(U). Moreover HEl is a direct sum

 of simple finite dimensional U modules with the same multiplicities as in the

 classical (enveloping algebra) case. From (JL, 6.2) one can recover that U itself

 is free over Z but this is less interesting. This approach does not immediately

 yield that the Ix := F(U)ZX: Zx c Max Z are completely prime. (Here we make
 a natural technical restriction and only consider those Zx that annihilate Verma
 modules with integral weights; see also Section 8.) However one can recover

 this (8.1 and 8.6) from the classical fact by using a q -> 1 argument developed

 in 6.10-6.17. This also states that Ix is a Verma module annihilator and so
 we can present F(U)/IX as the space of endormorphisms of a Verma module
 which are locally finite for the diagonal action of U. This is the crucial step to

 establishing an analogue of Duflo's theorem for Prim F(U). We also establish the

 rather surprising fact (6.17) that Z(U) specializes to Z(g). In 6.18 we even find
 that the quantum point of view leads to a proof of the hard part of ([6], 4.12)

 characterizing Z(n-).

 1.7. Though we could have avoided this, it turns out that the Rosso form

 also plays a significant role in the interpretation of F(U) and its subsequent

 decomposition. An important question which remains (5.4) is to compute the

 multiplicity of a given simple module in each gradation level. This would give

 the analogues of Kostant's generalized exponents which were first determined by

 Hesselink [4] for the enveloping algebra.

 The decomposition theorem 4.10 was reported at a seminar in the Weizmann

 Institute during September 1990. We would like to thank V. Hinich and S.P.

 Smith for useful discussions and Miriam Abraham for typing a lengthy paper

 under trying circumstances.

 2. An ad-Invariant Filtration of Uq(g).

 2.1. Fix a semisimple Lie algebra g of rank ? and let xi,yi, ti,t1,t i =
 1, 2, ... , . denote the canonical generators of U := Uq(g). We recall that the t1
 commute and

 tjXi tj q Xi q(y) tjyiti- q Y-(i,

 (0 if$i'

 Xiyi - Yi-/Xi = t2--2

 2d 2di otherwise,

 where ( , ) denotes the Cartan inner product on (* and 2di = (ai ai). The
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 130 ANTHONY JOSEPH AND GAIL LETZTER

 xi: i = 1, 2,... , e (resp. yi: i = 1, 2,. . ., e) further satisfy an analogue of the Serre
 relations. Also U can be given a Hopf algebra structure, so that ad a: a E U is

 defined (as an element of Endk(q) U). For further details we refer the reader to JL.

 2.2. We define a filtration {FmU}mEz on U which in some obvious sense

 is given by taking xi, yi, t1 i = 1, 2,.. , e to have degree 1. To do this carefully
 let CU+ (resp. U-) denote the free algebra (over K) generated by the xi (resp.
 yi) and UO the Laurent polynomial ring (over K) generated by the ti, t-1. Let
 U+ (resp. U-) denote the image of U+ (resp. U-) obtained by factoring out the
 corresponding Serre relations which we recall are hofnogeneous. Now U+ (resp.

 U-) is filtered (even graded) by degree and the filtration (gradation) passes to

 U+ (resp. U-). Again U0 is filtered (even graded) by (the negative of) degree.
 Finally recall (JL, 4.8) that we have a triangular decomposition defined by the

 isomorphism U- 0 U0 0 U+ "24 U and given by the multiplication map. Hence
 each u E U can be uniquely written as a sum of terms of form u - u?u+ and we

 define u to belong to .FmU if m < deg u - -deg u? + deg u+ for each such term.

 Call u E U to be of degree m E Z if u E fFmU \ fFM-'U. From the above
 description and the relations in 2.1 we can calculate the degree of any monomial

 (not necessarily ordered) in the xi, yi, ti, G 1. Its degree turns out to be the sum of

 the exponents of the xi, Yi, t71, which justifies our original intuitive definition of
 .F U. Again if a, b c U are monomials, then so is ab and deg ab = deg a+deg b.

 This last relation extends to all a, b c U if we take deg 0 = -oo. We conclude

 that gryU is an integral domain (and hence so is U; but this was already known

 (JL, 4.10 (iv))).
 Unless an ambiguity arises we shall also use xi, yi, ti to denote their images

 in gryLU. It is clear that the relations in 2.1 still hold in gryU except in the

 last of these td must be dropped from the right hand side. It is also clear that
 these and the Serre relations generate all the relations in gryLU. Indeed since the
 filtration respects the weight space decomposition of U+, U-, U0 individually,

 the multiplication map continues to give an isomorphism of U- 0 U0 0 U+ onto

 gr,-U. This presentation of gryU makes the above assertion quite obvious.

 2.3. Taking account of the Hopf algebra structure of U one finds that

 (ad xi)a = xiati - q-2ditiaxi

 (ad yi)a = yiati - q2ditiay,

 (ad ti)a = tiat71

 for all a E U. We conclude that FmU is ad U stable. Set F(U) = {a E U |
 dim(ad U)a < oo}. One checks (JL, 2.3) that F(U) is a subalgebra of U which is

 obviously ad U stable. Set Ym(F(U)) = Fm(U)nF(U). We shall eventually prove
 that dim Fm(F(U)) < 00 for all m E 2. This is consistent with the fact F(U)
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 QUANTIZED ENVELOPING ALGEBRAS 131

 admits a locally finite action of ad U and indicates that the above filtration is

 the best analogue of the canonical filtration of U(s). Another indication is given

 by 6.6.

 3. An Injectivity Property of the Harish-Chandra Map.

 3.1. Let T be the free Abelian group generated by the ti: i = 1 2, ... ., . Let

 X {I a, &2 , . . , at } denote the set of simple roots. Let P(7r) denote the lattice
 of integral weights, Q(7r) the lattice of radical weights and R(7r) = 4P(7r) n Q(7r).

 Define a map r: Q(7r) -- T of Abelian groups by r(aEi) = ti. Set To = r(R(7r)).
 (This is a slight departure from our notation in JL). Order P(7r) through A > ,/t
 if A - ,a is a sum of simple roots with integer coefficients > 0. It restricts to an

 order relation on Q(7r).

 In general P(7r) 0 Q(7r) but we can extend r in an obvious fashion so
 that r(P(lr)) can be viewed as an overgroup of T. Set U? = Kr(P(7r)) which
 is a commutative algebra containing U0 as a subalgebra. Then we can define

 U := U- 0 1[0 0 U+ as an over algebra of U by augmentating slightly the
 relations in 2.1, namely by setting

 T(A)XiT(A) 1 = q(ai\A)Xi , T(A)yiT(A)-l = q-(ciA)yi

 Similarly the Hopf algebra rules can be extended by c(r(A)) = 1 taking
 A(T(A)) = r(A) 0 r(A) and u(r(A)) = r(A)-1 for augmentation, comultiplication
 and antipode. In 4.2 it is convenient to introduce fractional powers, for example

 til2 :=(ai/2) and for this we must extend K by corresponding fractional powers

 in q. Adjoin q1/2 to K and for each i E {1,2,. .. .,e} set iUO = U [t/2,4t/2] and
 iU = U- Xi U0 0 U+ which are Hopf algebras over K(q1/2).

 We call U the simply connected quantized enveloping algebra. All our results

 for U carry over to U with R(7r) replaced by 4P(7r) without change and without

 difficulty. However, our main result for U, namely the separation theorem (7.4)

 fails for U.

 3.2. Identify U0 with KT and let o: U -* KT denote the Harish-Chandra
 map defined by triangular decomposition (JL, 8.1). By (JL, 8.5) one has ~o(F(U))

 C KTO. Given t E T, A E P(7r) set t(A) = q(r (t)9A), where as before ( , ) denotes
 the Cartan inner product on r *. Then define a(A): a E U0 by linearity. Call N(A)
 a highest weight module of highest weight A E P(7r) if it is generated by a vector

 el satisfying xie, = 0, V i and aeA = a(A)eA, V a E UO. Observe that such a
 vector defines a one dimensional B := U?U+ module and that M(A) := U OB KeA
 is the universal highest weight module of highest weight A. It admits (JL, 5.4)

 a unique simple quotient which we denote by L(A). The following extends ([9],

 5.4) to the quantum case.
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 132 ANTHONY JOSEPH AND GAIL LETZTER

 LEMMA. Let M be a finite dimensional ad U submodule of F(U). Then for all

 A c P(ir)

 (o(M)(A) = 0 "=# M C Ann L(A).

 Consequently (p(M) = 0 implies M = 0.

 Let L(A)< denote the U- submodule of L(A) spanned by the weight vectors

 of weight < A. Observe that

 (*) c4(M)(A) = 0 * ? Me, c L(A)C

 Now let m E M be a weight vector. Since (ad yi)m E M it follows that
 myi E Kt lyitim + t71M, Vi. Hence MU- C KTU-M. Then ML(A) = MU-e C
 KTU-MeA, so if o(M)(A) = 0 we conclude from (*) that ML(A) is a proper
 subspace of L(A). Since M is ad U stable a similar calculation shows that ML(A)

 is a U submodule of L(A) hence zero, that is M c Ann L(A). The converse

 implication is immediate from (*). The last part of the lemma results from the

 first part and (JL, 8.3.).

 3.3. Let R(, ) denote the Rosso form ([20], Sect. II) on U. Recall that Rz

 is ad U invariant. Furthermore, for any subspace M c U, A E R(7r) one obtains

 using ([20], Thm. 6) that

 (*) R%(M, T(A)) = pR((M), T(A)) = Wo(M) A A)

 With respect to k let M' denote the orthogonal in F(U) of a subspace M
 of U.

 COROLLARY. For all A E -1 /4 R(7r) one has

 AnnF(u)L(A) = [(ad U)r( -4A)l

 Let M be a finite dimensional ad U stable subspace of F(U). Then by (*)

 ( * *) M C [(ad U)r( - 4A)]' * po(M)(A) = 0

 which by 3.2 is again equivalent to the assertion that M C AnnF(U)L(A).

 3.4. Let P+(7r) (resp. R+(7r)) denote the dominant elements of P(7r) (resp.

 R(7r)). Set

 FO(U)= E (ad U)TQ(,)
 -HER+(Tr)
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 QUANTIZED ENVELOPING ALGEBRAS 133

 By (JL, 6.4) one has FO(U) C F(U).

 LEMMA. FO(U)' = 0. In particular the restriction of TZ to F(U) is nondegen-
 erate.

 Let M be a finite dimensional ad U stable subspace of FO(U)L. Then by
 3.3(*) one has o(M)( - , u) = 0 for all -, C R+(-r). Then by 3.2 we obtain

 Mc n AnnL(jbt)=0

 -HER+(T)4

 where the last step follows by a slight variation on (JL, 8.3.). (Here the intersection

 is not over all the annihilators of finite dimensional modules).

 Remark. We cannot yet deduce that FO(U) = F(U) because the spaces con-
 cerned are infinite dimensional. The analysis of section 4 was motivated by an

 attempt to prove this equality. It is proved in 4.10. Note that in 3.3 both sides

 can be of infinite codimension. Thus such a formula is only possible for quantum

 groups and not for enveloping algebras.

 3.5. Take bt E -R+(7r). Then (ad U)r(p) is a finite dimensional sub-
 space of F(U). Again L( - 1 p) is finite dimensional and from (JL, 6.2) one
 easily checks that any simple weight module in particular L( - 1 /-) is simple
 as an F(U) module. Then by the Jacobson density theorem it follows that ac-

 tion of F(U) on L( - 1 p) defines an isomorphism F(U)/AnnF(U)L(- 1 p)
 EndKL(-4 X) of ad U modules (even of F(U) bimodules). Then by 3.3 we ob-

 tain dim(ad U)r(p) = dim EndKL( - 1). Recall complete reducibility (JL, 5.12)
 and let M be the isotypical component of type E of (ad U)r(p). By 3.3 we have
 Ml D AnnF(U)L(A). By nondegeneracy 3.3 and the finite dimensionality of M we
 have dimKM = codimKML. Thus M (F(U)/M)* by ad U invariance. We con-
 clude that [(ad U)r(p): E] K [F(U)/AnnF(u)L( - 1): E*] and then equality is
 obtained by addition of dimensions. Thus (ad U)r(p) (F(U)/AnnF(U)L(- 1 ))*
 By the self-duality of EndKL( -41) we deduce the

 COROLLARY. The Rosso form defines an isomorphism (ad U)Tr(p)
 EndKL( - (1/4) p) of ad U modules.

 Remarks. By complete reducibility (JL, 5.12) the (unique) copy of the trivial

 representation in the right hand side determines an element z,, of the centre Z(U)
 of U. This was essentially the key step in the construction of Z given in (JL, 8.6).
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 134 ANTHONY JOSEPH AND GAIL LETZTER

 We do not claim that the above isomorphism is the natural one, namely that

 it results from the action of F(U) on L( - pt). The latter is equivalent to

 (*) (ad U)Tr(I) n ((ad U)TQ())1 = 0

 This can probably be checked, but we shall not need it here. We shall even-

 tually obtain (6.7, remark 2) a second proof of this corollary.

 4. A Support Property.

 4.1. Fix i E {1,2,.. .,e} and consider U+ as a T module. Set Ui = K[xi].
 For each m E N the weight subspace of U+ of weight maei is just Kxm. We

 conclude that Ut admits a unique T stable complement Mt in U+. Set Ui = K[yi].
 Similarly U- admits a unique T stable complement M- in U-. Set Li = UT- U0Ui+
 which is a Hopf subalgebra of U. Triangular decomposition (JL, 4.8) gives a direct

 sum decomposition

 U = Li E (M7 U + UMit)

 into ad Li stable subspaces. (Although this is straightforward one needs a little

 more care than in the enveloping algebra case. For example only UMt is ad 'i
 stable and not Mt itself). Let oi denote the projection of U onto Li defined
 by this decomposition. It is clear that we also have a triangular decomposition

 U7- 0 U0 0 Ui+ Li and hence a direct sum decomposition

 Li = U? E (Ui-Li + LiUi+)

 Let oi denote the projection of Li onto UO defined by this decomposition. It
 is clear that o = 'p'p.

 4.2. Given s E KT = U0 we can write s = Z c)r(A) and we set Supp s =

 {A I c) $ O}. If S is a subset of KT we set Supp S = UsEs Supp s. Since
 Q(7r) is W stable, the isomorphism r: Q(7r) T of Abelian groups gives an
 action of the Weyl group W on T. For each A E* we define the norm of A by

 IIAII :=(A, A)1/2. For any U module E admitting a weight space decomposition,
 let Q(E) denote its set of weights (cf. 3.2). Set T< = r(-R+(7r)). For each m E Z,

 set Tm = Fm(F(U)) n T<. Note that Tm = q$ for m < 0. Let wo denote the unique
 longest element of W. Recall that the simple finite dimensional U module with

 lowest weight A E -P+(7r) has highest weight woA.

 PROPOSITION. Let M be a finite dimensional ad U stable subspace of F(U).

 (i) If A E Supp p(M) has maximal norm then WA c Supp p(M).
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 QUANTIZED ENVELOPING ALGEBRAS 135

 (ii) There exist Al, A2, .. , As E -R+(r) n Supp p(M) such that

 Supp p(M) C U4Q(E(!woAj)).

 (iii) If M C Fm(F(U)), then ((M) C KWT<. In particular, s < mt.

 Fix i E {1,2,... ,9 } and recall (3.1) the definition of iU and define similarly
 Li := U- Xi U0 0 Uit as a Hopf algebra. Let wi be the fundamental weight corre-
 sponding to ai. Then Tr(wj): j $ i is central in Li and si invariant. By construction

 the t4 /2 and the Tr(wj): j 7 i generate iUO and are algebraically independent. Again
 by complete reducibility (for Uq(S1(2))) we can write W'(M) as a direct sum of
 simple ad Li submodules Nm and then Supp 9(M) = Em Supp Pi(Nm). It is
 clear that each bt E Supp ( i(Nm) is a multiple of ai/2 plus a fixed sum of the

 wj: j I i. Since (ai, wj) = 0 for j 7 i it follows that if A E Supp 9(M) has
 maximal norm, then the corresponding term, namely '(A, aoY)aoi, which occurs
 in a summand of some Supp (Pi(Nm) also has maximal norm. Thus to prove (i)

 it suffices to show: a), for each simple Ui ~ TUq(sW(2)) module N that the maxi-
 mal norm elements of Supp W(N) take the form {nai, -naei} for some n E 2N.
 Moreover it is easy to see that (ii) will follow if we can furthermore show:

 b), Supp W(N) C {nai, (n - 4)i, ... , -na}. Indeed writing A = noi + bt with
 P = EjZi cjwj E P(7r), it is standard that 4(Q + Supp Wo(N)) belongs to the set of
 weights of the simple U module with extreme weight 'A. Assertions a), b), are

 proved below and in this the i subscript is omitted. In particular, U -Uq(S5(2)).
 Recall (JL, 3.3) that Z(U) = K[z]. One easily checks that F(U) = F(U) and

 in particular Z(U) = Z(U). Consider N as a simple ad U submodule of F(U). By

 (JL, 3.11) there exist n E N and a polynomial p such that the zero weight space

 of N takes the form Kp(z)(ad y)'(xt-l)'. Yet up to a nonzero scalar

 o(ad y)'(xt-1)f) = ,o(xnyn)
 n

 = 1(t2q-2(j- )_t-2q2(j-1))
 j=l

 whilst W(p(z)) = p(p(z)) = p(q2t2 + q-2t-2). Now the restriction of s to the
 zero weight space of U (and hence of N) is a homomorphism, so the required

 assertions follow from the above formulae. Hence (i), (ii) are proved.

 To prove (iii) we remark that by triangular decomposition it is immediate

 that W(Fm(U)) C Fm(U) n T. Thus for each Aj E -R+(7r) n Supp W(M) we have
 r(Aj) E T'. Now take bt E Supp W(M). By (ii) we have bt E 4Q(E(1/4 woAj))
 for some Aj E -R+(7r) n Supp W(M). Choose w E W such that bt' := w,a E
 -P+(7r). Since Aj E Q(7r) it follows that E(1 /4woAj) has lowest weight 1Aj and
 so 50t' = Aj + E krayr, for some kr E 4N. We conclude that bt' E -R+(7r) and
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 136 ANTHONY JOSEPH AND GAIL LETZTER

 SO T(/) = w1 Q() = wl(T(fAj)rtki) C w-'(T< n.Fm-1kr(U)) C W-lTm as
 required.

 Remarks. One can easily choose the polynomial p above so that Supp p(N)

 is not W stable. We shall eventually discuss (4.16) to what extent (for M simple)

 it suffices to take s = 1 in (ii) and furthermore to have equality.

 COROLLARY. Fm(F(U)) = 0 if m < 0 and reduces to scalars if m = 0.

 Let M be a nonzero simple (finite dimensional) ad U submodule of Fm(F(U)).

 If m < 0, then (p(M) = 0 by 4.2(iii) and so M = 0 by 3.2. If m = 0, then W(M)
 reduces to scalars by 4.2(iii). Then by 3.2, M does not annihilate any simple

 highest weight module and in particular not the trivial module. This implies that

 M reduces to scalars.

 4.4. Given A E P(7r) we can write A = E nii : ni E Z, and we define
 ht(A) = E ni to be the height of A. Set

 Pm(7r) ={ E P+(7r) I ht(A) < m}

 PROPOSITION. For each m E N one has dim Fm(F(U)) < x.

 Let M be a nonzero simple ad U submodule of 1m(F(U)), and let A1, A2,...,

 As be as in the conclusion of 4.2. Consider W(M) as a K subspace of rational func-
 tions in the ti: 1, 2, ... , t. By 4.2(ii) every such function is a linear combination

 of form r(uT) ,t E 4Q(E( woAj)), j = 1,2,... , s. From the representation theory
 of such modules we can write r(/I) in the form a-1b where a, b are polynomials in

 the ti: i = 1, 2, ... ., and where a divides njlT(A]j)-l and b divides nj=lT(woAj).
 Since by 4.2(i) we have r(Aj) C Fm(U) and so r(woA)-l E Fm(U) we may elim-
 inate denominators and view W(M) as a K subspace of the space of polynomials
 in the ti : i = 1, 2, ... ., of degree < 2ms. Now suppose p E K[t, 1t2, . . , te]
 of degree r satisfies p(A) = 0, V A E P+(7r). An easy induction argument on

 t implies that p = 0. Since W(M) 7 0 we conclude that if W(M)(A) = 0 for all
 A e P+(7r), then n < 2ms.

 Now take A E P+(7r). View EndKL(A) r L(A) OK L( - woA) as a quotient
 of L(A) OK M( - woA) U ?B (L(A) |B 0KKe-wOA) which has a Verma flag
 with factors MQ- - woA): bt E Q(L(A)). It follows that the simple factors of
 EndKL(A) belong to the set of dominant weights lying in Q(L(A)) - w0A. Obvi-

 ously ht(-woA) = ht(A) and we claim for some u depending only on g that ht(Q) <
 (u - 1)ht(A), for all bt E Q(L(A)). For this we remark that ht(a i) = {1, 0, -1} and
 for g simple there is at most one ai such that ht(ai) = -1. Let wh denote the
 unique shortest element of W such that ht(WhaYj) > 0, V j = 1, 2, ... ., and let
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 QUANTIZED ENVELOPING ALGEBRAS 137

 u 7 1 = maxiht(whwi). An easy representation theory argument shows that WhA
 has maximal height in Q(L(A)). Then ht(ji) < ht(WhA) < (u - I)ht(A) as required.

 Consequently, if M L(8I) with bt E P+(7r) \ P+(r7) it follows that ML(A) = 0
 equivalently by 3.2 that 9(M)(A) = 0 and this must hold for all A E P(7r). Then
 by our previous observation r < 2ms. We conclude that M L(8I) for some

 E P'U 2,. In particular only finitely many nonisomorphic simple modules can
 occur in Fm(F(U)).

 Finally suppose that E is an isomorphism class of a simple module occurring

 in Fm(F(U)). Let Eo denote the zero weight space of E. Since G(Fm(F(U)) C
 KW Tm which is finite dimensional and since o(M) = 0 implies M = 0 by 3.2,

 we conclude that the multiplicity of E in Fm(F(U)) is at most

 dimKKW Tm dimKEo

 which is finite. Combined with our previous observation, this proves the propo-
 sition.

 4.5. For each m E N, set

 Tm = {t E Tm I t t TTm-1}

 LEMMA. Take Tr(A) E Tm. Then dim(ad U)r(A) = (dim L( - 4 A))2 holds in both

 F(U) and grTF(U).

 By the hypothesis A E -R+(7r). By 3.5 we already have dim(ad U)r(A) =
 (dim L( - 1 A))2 in F(U). So it remains to show that this dimensionality esti-
 mate holds in gryF(U). Actually we show that the above equalities hold without
 needing 3.5.

 Recall that U+ (resp. U;) is actually graded by Y and indeed let Ul (resp.
 U-) denote the linear span of the monomials in U+ (resp. U-) of degree m.
 (These gradations of U+, U- are also given by weight space decomposition).

 Observe that

 (ad xj)(ad U,-)r(A) = (ad U-)(ad xj)r(A) mod (ad Um-_1)T(A)

 and so by induction

 m-1

 (ad U+)(ad U)-)T(A) = (ad U-)(ad U+)r(A) mod E (ad Un7)(ad U+)Tr(A) .
 n=O
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 138 ANTHONY JOSEPH AND GAIL LETZTER

 Set I; = Annad u -r(A). Then by the above reasoning we conclude that

 m-I

 (*) Im(ad U+)Tr(A) C E3 (ad U,7)(ad U+)r(A).
 n=O

 Hence

 dim (ad U)r(A) = dim(ad U-)(ad U+)r(A), by triangular decomposition,
 00

 < S dim ad(U;/1I)dim(ad U-)r(A), by (*),
 n=O

 = dim(ad U-)r(A) dim(ad U+)r(A),

 since Ann(ad u-)-r(A) = ED' I; by weight space decomposition. We show below
 that the opposite inequality holds in gryU. This will prove equality throughout

 and so establish the lemma. In view of the Chevalley antiautomorphism (JL, 4.8)

 we shall also obtain

 ( * *) dim L (-4 A) = dim(ad U-)T-(A) = dim(ad U+)T(A)

 for all A E -R0(7r).

 4.6. Set G = gr.F(U), GO = gryU0. Let G+ (resp. G-) denote the subalgebra
 of G generated by the xiti (resp. yiti): i = 1, 2,. . ., t. By triangular decomposition
 (2.2) the multiplicity map gives an isomorphism

 (*) G?Go( G - G

 Now set G(A) = G- 0 K-r(A) 0 G+, V A E Q(Qr). Then the above gives a
 direct sum decomposition

 (* *) G= G(A)
 AEQ(7r)

 Observe the rather nice fact that each G(A) is ad U stable (for the induced

 action of ad U on grFU). Again G(A)G(jz) C G(A + /t) and so ( * *) is a gradation
 of G with respect to the Abelian group Q(ir). We can recover the gradation of

 G defined by its identification with gry(U) by setting Qm(TC) = {A E Q(r) I
 deg Tr(A) = m}. Then

 PFn(U)/rn--l (U) = @ G(A).
 )\EQm(7r)
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 QUANTIZED ENVELOPING ALGEBRAS 139

 Now let G+ (resp. G-) denote the subspace of elements of G+ (resp G-) of

 degree exactly m in the xiti (resp. yiti): i = 1, 2,.. ., ?. (This is well-defined and
 corresponds to an obvious weight space decomposition). Now in grrU we have

 (ad xj)yktk = Xjyktktj -q q2djtjyktkXj

 = (Xjyk - YkXj)tjtk = -jkl/(q2dj - q-2dj)

 where 6 is the Kronecker delta. This shows that G- admits a U module structure.

 This is a purely quantum group phenomenon-see also 6.5, 6.6.

 Fix A E Q(Qr), m E N and consider (ad U;)r(A). Note that we can define
 a unique ad T stable subspace G(A)- of G- such that the multiplicity map

 defines an isomorphism of G(A)- 0Kr(A) onto (ad U;)r(A). (This follows from
 inspection of the formulae for the ad yi). Set

 G(A)- = @ G(A)M
 mN

 Obviously dim G(A)- = dim(ad U-)r(A) and we remark that the latter is
 independent of whether the computation is carried out in U or in gryU since

 it involves no commutators between the xi and yj. Define G(A)+ similarly. From
 the above computations and the Hopf algebra rules in U (cf. JL, 9.2 for a similar

 computation) we obtain (in gryU) that

 (ad U+)(ad U;)T(A) = (ad U )(G(A)- 0KT(A))
 m-1

 = G(A)0- G(A)+ KTr(A) mod Z G- 0G(A)+ KTr(A).
 n=O

 Hence in gryU one has

 dim(ad U)Tr(A) > (Z dim G(A)-) dim G(A)+
 mEN~~

 = dim G(A)- dim G(A)+

 = dim(ad U-)r(A) dim(ad U+)r(A)

 as required. This completes the proof of lemma 4.5.

 4.7. The dimensionality formulae in ( * *) of 4.5 have a rather nice inter-

 pretation. First recall that we showed in 4.6 that G- is an ad U module. Thus,
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 140 ANTHONY JOSEPH AND GAIL LETZTER

 for A E Q(ir), we can give G- 0 Kr(A) a U module structure if we can specify

 how the generators act on r(A). We set

 (ad xi).-T(A) = 0, (ad ti).T(A) = qI4 (A i)T(A)

 (ad yi).T(A) = q4 A -i)(1 - q-(A,(i)) (yiti 0 T(A))

 Notice that these relations do not quite coincide with what one would get by

 applying ad xi etc. to r(A). The first two relations express the fact that 'r(A) is
 a highest weight vector of weight - 1 A. This choice of highest weight is not
 arbitrary; but is just what is required to ensure that G - 0 Kr(A) does inherit a U

 module structure and in particular that [ad xi, ad yj] coincides as it should with

 ad[xi,yj] on r(A). All this is easily checked.
 Recall (JL, 5.12) that we have a duality functor 6 on the subcategory Op(X)

 of weight modules whose simple factors are amongst the LQ(): bt E P(7r).

 LEMMA.

 (i) (G-)U+ reduces to scalars.

 (ii) As a U module M := G- 0 Kr(A) is isomorphic to 6M( - 1A).

 (i) Notice that the action of U+ on M is independent of A. In particular

 Mu+ identifies with (G-)U+ 0 Kr(A). Assume (i) fails. Then for any choice A, M
 admits a proper submodule (generated by the T stable complement of Kr(A)

 in (G- 0 Kr(A))U+) such that r(A) has a nonzero image in the quotient. Now
 take A E 4P+(7r). Choose a submodule M' of M maximal with property that
 (M/M')U+ is a one-dimensional subspace of T weight A, which we identify with

 K'r(A). Such a submodule exists because all objects in Op(,) have finite length
 and their simples have the above property. Moreover M' is proper by our previous

 observation. Set N = 6(M/M') and let U+ denote the augmentation ideal of U-.
 The above property translates by duality to give

 N = KT(A) + U+ N

 A standard argument based on induction and weight space decomposition

 shows that N = U-T(A), that is N is a cyclic U- module with cyclic vector T(A).
 Yet N is a U module, hence a highest weight module of highest weight - 1A and
 so an image of M( - 1 A). Our choice of A implies that M( - 1 A) is simple (cf.
 8.2(i)). Hence N is isomorphic to M( - 4A). Using ch to denote formal character

 (JL, 5.2), we obtain

 ch M/M'= ch N = ch M (-4A) =(ch U-)e-4A.
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 QUANTIZED ENVELOPING ALGEBRAS 141

 Now let U- (resp. G7) denote the ad T weight subspace of U- (resp. G-) of

 weight v. It is immediate that G7 = Uv r(v) and so ch G- = ch U-. Hence

 ch M = (ch U-)e-4 = ch(M/M') = ch M - ch M' and so M' = 0. This

 contradiction gives (i).

 By (i) we have Mu = K-r(A) for any A. Then taking N = 6M, we conclude

 as above that N is an image of M( - 1 A) with the same formal character. Hence

 M(- A) N. Since 62 -Id, (ii) results.

 Remark. The calculation hides some deep mathematics. Thus (i) would fail if

 we replaced G- by the free algebra G- generated by the yiti. Indeed by say the
 calculation in (JL, 4.6) the Serre relations provide additional invariants in G-.

 Effectively what we are saying is that these relations generate all the invariants. To

 prove this we need a simple Verna module. The existence of the latter depends on

 the characterization of Z(U) given in (JL, 8.6)-see 8.2(i). Our argument would

 therefore fail in the Kac-Moody case. Moreover in the Kac-Moody case, there

 is an analogous question (cf. [12], 9.11), this time for the Lie algebra whose

 solution is only easy in the symmetrizable case. In the nonsymmetrizable one

 also does not even know if quantization is possible.

 4.8. Set L(A)- = {m E G- 0 KT(A) I dimU-m < oo}.

 COROLLARY.

 (i) G- 0 Kr(A) admits a unique finite dimensional submodule. This is
 nonzero if and only if A E -R+(ir) and then is isomorphic to L( - 1 A).

 (ii) L(A)- # 0 if and only if A E -R+(ir) and then coincides with (ad U-)T(A).

 (i) follows from 4.7 and the classification theory of simple finite dimensional

 modules. (In particular every such module in Op(w) is the unique simple quotient
 of some M(,t): , E P+(7r). See JL, Sect. 5, for example.)

 (ii) Obviously L(A)- is U- stable. Take m E L(A)-. Then (ad U7-)m is finite

 dimensional. By weight space decomposition, this forces yi to act nilpotently on
 each term in the decomposition of m as a linear combination of weight vectors.

 Since this holds for each i it follows from (JL, 4.5) that ad U- acts locally

 finitely on each such vector. Hence L(A) - is U0 stable. From this a straightforward
 computation shows that L(A)- is also U+ stable. Hence L(A)- is a U submodule

 of G- 0Kr(A). By hypothesis the action of U- is locally finite. By weight space
 considerations this also holds (trivially) for the U0 and U+ actions. By triangular

 decomposition, it follows that L(A)- is a sum of finite dimensional modules.

 Consequently the first part of (ii) follows from (i).

 Assume A E -R+(7r). Then dim(ad U-)Tr(A) = dim L( - 1 A) by 4.5(**).
 Now observe that

 (ad yi)Tr(A) = (1- q-("Ai))yitiT(A)
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 142 ANTHONY JOSEPH AND GAIL LETZTER

 which viewed as an element of G- 0KTr(A) coincides with q-I(A,'i)(ad yi) 'r(A).
 (We shall see in 6.7 that this apparently anomolous factor of q does have a role to

 play). We conclude that (ad U-)Tr(A) can be viewed as a finite dimensional U-

 stable subspace of G- 0 KTr(A) and hence as a subspace of L(A)- L( - 1 A).
 Coincidence of dimension proves equality.

 4.9. Fix A E Q(7r) and set

 F(A)= {m E G(A) I dim(ad U)m < 001

 PROPOSITION. F(A) 7 0 if and only if A E -R+(ir). In this case

 F(A) = (ad U)T(A) v

 We can write L(A)- in the form K(A)- OKTr(A) for some uniquely determined
 ad T stable subspace K(A)- of G-. Since L(A)- is a U module with r(A) its

 highest weight vector, it follows that K(A) - is an ad U+ submodule of G-. Define

 L(A)), K(A)) by replacing G- by G+. If A , -R+(7r) then K(A)-- = 0 by 4.8(ii).

 If A E -R+(ir) then by 4.8(ii) we obtain

 (ad U-)T(A) = K(A)- 0 KTr(A)

 Then by the above

 (ad U)T(A) = (ad U+)(ad U-)T(A) = (ad U+)(K(A<)- 0 KT(A))

 = K(A)- 0 (ad U+)Kr(A),

 = K(A)- 0 K(A)+ 0 KT(A)

 by 4.8(ii) again (applied with + and - reversed).

 Now let m E F(A) be an ad T weight vector. We can write m in the form

 m = aj 0 bj 0 T(A)

 with the aj E G- (resp. bj E G+) weight vectors and linearly independent. Now
 take i so that ai has highest degree as a polynomial in the Yrtr: r = 1, 2, ... , .
 Let us say ai E G-. The calculation in 4.6 shows that

 (ad U+)(ai 0 bi 0 Tr(A)) = ai 0 (ad U+)(bi 0 Tr(A))

 m-1

 mod Z G- X0 G+ X0 KT(A) .
 n=O
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 We conclude that the hypothesis dim(ad U+)m < oo and our choice of i and

 the aj imply that

 dim(ad U+)(bi 0 r(A)) < 00

 and so bi E K(A)). Similarly ai E K(A)- if bi has the highest degree. Since
 deg ai - deg bi is constant in the sum we conclude that there is a choice of i such
 that ai X bi E K(A)- 0 K(A)+. If A , -R+(ir) we conclude that ai = bi = 0 and
 so m cannot be nonzero. If A E -R+(ir), then from the obvious inclusion

 (ad U)T(A) C F(A)

 and from the above observations we obtain the required equality.

 4.10. Since the G(A): A E Q(ir) form a direct sum decomposition of G we
 conclude from 4.9 that

 gryFF(U)= f (ad U)T(A)
 AE-R+(7r)

 Then by 4.5 it follows that (ad U)Tr(A): A E -R+(ir) also form a direct sum in

 F(U) and this equals F(U). That is we have proved the

 THEOREM.

 F(U)= (ad U)T(A)
 AE-R+(7r)

 Remark. In particular F*(U) = F(U).

 4.11. For each m E N, set Fm(U) = (ad U)Tm. Then by 4.10 we have the

 COROLLARY.

 F(U) = Fm(U) = (ad U)T<
 mEN

 Remark. This is not a ring grading; but each Fm(U) is ad U stable and

 isomorphic to ym(F(U))/ym-l(F(U)) as a U module.

 4.12. Consider (ad U)Tr(A): A E -R+(7r) as a subspace of the ring gryFF(U).
 Recall the definition of K(A) ? given in 4.9 and that F(A) = (ad U)r(A) =
 K(A)-F,A)(A)+
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 144 ANTHONY JOSEPH AND GAIL LETZTER

 PROPOSITION. For all A, it E -R+(7r) one has

 (i) K(A)- K()- = K(A + )-<.

 (ii) K(A)- K(H)+ = K(H)+ K(A)-.

 (iii) F(A)F(p5) = F(A + 1i).

 Since K(U)- is ad T stable one has K(Q)-T(A) = T(A)K(/)-. Then

 G-TF(A + p) D K(A)-K(Q)-T(A + it) = K(A)-T(A)K(Q)-<T() = L(A)-L(<)-

 Thus the inclusion K(A)-K(<)- C K(A + p)- obtains from (JL, 2.3) applied
 to the defining property (4.8) of L(A + u)-. For equality observe again from (JL,
 2.3) that L(A)- L(U)- is a U submodule of L(A + p)- which is simple by 4.8(i).

 Recall that (ad xi)yjtj is a scalar (in gryFF(U)). Consequently (ad xi)K(A)- C
 G-. Then from the defining property of L(A)- we conclude that K(A)- is ad U+
 stable. Let z E K(A)- be a weight vector of weight (. Then

 (ad xj)z = xztj- q2tjzx
 = xjtjq-((ai)z - q(saj)zxjtj E K(A)-

 Hence xjtjz E K(A)-xjtj+K(A)-. Since K(A)- is spanned by its weight vectors
 and j is arbitrary, we conclude that G+K(A) - C K(A) G-. The reverse inclusion
 follows similarly. Again a similar property holds with + and - interchanged.

 From the isomorphism G- 0 G+ -") G-G+ we obtain K(A)-G+ n GK()+ =
 K(A)-KQ(t)+. All this combined gives (ii).

 Finally

 F(A)F(Q) = K(A)-<T(A)K(A)+K(1a<)- T(Q)K(Q)+

 = K(A<)-K(t)-T(A)T(Q1)K(A)+K(jt)+ , by (ii)
 = K(A + p)-<T(A + a)K(A + a)+ , by (i)

 = F(A + ,u), as required .

 4.13. Take A E -R+(-r). By 3.5 there exists a unique up to scalars element

 zA E F (A) n Z(U). Again we can view F(A) as lying in gryFF(U). By 4.5 it
 is isomorphic to its image and we let y, denote the corresponding element of
 F(A) C gryFF(U) transforming by the trivial representation. Obviously y,A = gr zA.
 Recall also that gryFF(U) is an integral domain (2.2).

 COROLLARY. In gryFF(U) one has

 y,pF(A) C F(A + a)

 for all A, it E -R+(Qr). In particular yi,\Y = yl,+>, up to a nonzero scalar.
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 4.14. Define a new order relation on P+(-r) through it >- A if ,u-A E P+(-r).
 Given it, A E P+(-r) observe that there is a unique maximal element, which
 we denote by it nA , less than both it, A. Given -A, -it E P+(ir) we define
 A n ,i = -( - A n -/,).

 When A, it E -R+(7r) we do not necessarily have it n A E -R+(7r). This
 simple combinatorial failure renders the results in sections 6.8, 6.9 and 7.2-7.4

 valid only for the simply connected case.

 LEMMA. For all it, A E -4P+(7r), one has K(j,)- n K(A)- = K(An ,l -u.

 Fix i E { 1, 2,. . ., 1}. Observe that -((i,,u nl A) = min{-(cai, ,u),-(agi, A)}
 Suppose that -(oi, it) < -(ai, A) and take ( E K(,u)- n K(A)-. One eas-
 ily checks that the condition (ad yj)'c,r([t) = 0 is equivalent to the condition
 (ad yx)nTr(Qzl n A) = 0. Then by the defining property (4.8) of L(A)- and weight
 space decomposition, it follows that ad yi acts nilpotently on Tr(u nl A). This

 holds for all i and so by (JL, 5.9) we conclude that (ad U-4xr(j nA ) is finite
 dimensional. Comparison of actions shows that (Tr(,u n A) E L(A n ia)- and so
 ( E K(jt nA )-, that is K(tt)- n K(A)- c K(Qt n A)-. The opposite inclusion is
 immediate from 4.12(i) and the fact that 1 E K(Q), V ,t E -4P+(ir).

 4.15. The following will settle an issue raised by 4.2(ii).

 LEMMA. For each A E -R+(7r) one has

 (p(F(A)) = K{T(41u): t E Q(E(1/4 woA))} v

 We have (ad U)Tr(A) = (ad U+)(ad U-)Tr(A). Moreover we can write

 (ad U-)Tr(A) = K(A<)-T(A) since the commutation relations in U- 0 U0 are

 unchanged by gryF. Let K(A),y denote the space of vectors of weight -i in
 K(A)-. By 4.8 and the definition of K(A)- we have K(A),y - 0 = 1/4 A -

 , Q(E(1/4 A)) -= A + 4,u E 4Q(E(1/4 woA)). Set I,H = EK{r(v)lv E
 4QI(E(1/4 woA)) and v < A + 4,t}. To prove the lemma it suffices to show

 for all ,t E Q(E(1/4 woA)) - 1/4 A that F,\, := o((ad U+)(K(A)-Tr(A)) =
 KTr(A+4ta)mod II,. This will be proved by induction with respect to order relation
 >. It is clear for ,t = 0, which corresponds to ~o((ad U+),T(A)) = T(A).

 Analogous to 4.6(***) we have

 (*) (ad xi)yjtj = q2diq2di {ti - 11

 It follows that if we calculate (ad xj)K(A)yT(A) mod UU++ then the contri-
 bution from the second term on the right hand side of (*) exactly corresponds to

 the action of U on G- defined in 4.7. We conclude that the resulting term lies in

 K(A)-+ a r(A). By our induction hypothesis this gives a contribution to FA,\,, lying

This content downloaded from 
�������������128.6.45.217 on Sun, 20 Apr 2025 23:41:42 UTC�������������� 

All use subject to https://about.jstor.org/terms



 146 ANTHONY JOSEPH AND GAIL LETZTER

 in I. Consequently we can ignore this term in (*). With this modified rule, it is

 clear that ~o((ad U+)pr(A)) C Kr(A + 4,u), for all p E K(A),7.

 It remains to show that this term is nonzero if p 7 0. We shall deduce this from

 4.7(i). Indeed it is easy to see that it is enough to show for a E G- that (ad xi)a =

 0, V i implies a E K. Yet here we must set (ad xi)yjtj = 6ijt4/(q2di - q-2di) which
 differs from the rule used in establishing 4.7(i).

 We can assume that a is a weight vector of weight -,u < 0. Then (ad xi)a = 0
 translates to xia ti = q-(0"ai)axiti and hence. to xi(ar(-2ta))t7 1 - q2ditil (aT(-2ta))xi
 =0. Observe that aT( - 21a) is a polynomial in the yt7-1 and that

 * ) 1)t-I _ q2di t-y (y;t- )Xi = (xyj -yjxi)t1t q1 _q xi(yjtj-. q j j yjxi)t ti q2di - q-2di

 by our (new) rule. Finally note that the map xi y yi, yi - xi, ti -4 t71 extends to

 an automorphism 0 of U taking in particular yjtj-1 to xjtj and xibt7 1 -q2ditl 1bxi to

 yi0(b)ti -q2diti0(b)yi = (ad yi)0(b). Consequently we have only to show for a E G+

 that (ad yi)a = 0, V i implies a E K. By (**) we have (ad yi)xjtj = 6ij/(q2di q-2di)
 which is just the (old) rule used in establishing 4.7(i) (with +, -interchanged).

 Thus our assertion follows from 4.7(i).

 4.16. Corollary. Take A E -R+(7r) and let M be an ad U submodule of

 (ad U)T(A). Then

 {WA)} C Supp (o(M) C 4Q(E(1/4 woA))

 that is it suffices to take s = 1 in 4.2(ii).
 The second inclusion follows from 4.15. Then by 4.2(i) for the first inclusion

 it suffices to show that A E Supp (p(M). By 4.5, gryFM is a nonzero submodule
 of G(A) and hence of (ad U)Tr(A) considered as an (ad U) submodule of G(U).

 Writing (ad U)Tr(A) = K(A) - OKr(A) 0K(A)' ' L( - 1/4A) OL(1/4A)*, we see
 that it suffices to show that every U submodule N lying in a T x T complement

 to e-1/4A 0 el/4A is zero. Indeed if a E N is a nonzero highest weight vector

 it must take the form a = e-1/4A Of mod L( - 1/4A) 0 L(1/4A)* (notation
 3.2) for some nonzero weight vectorf E L(1/4A)*. (An easy calculation shows

 that only such vectors can satisfy xia = 0, V i). Then up to nonzero scalar
 N 3 yia = e-1/4A 0 y;f mod L( - 1/4A) X L(1/4A)* and so some b E N takes

 the above form with f 7 0 and satisfying yif = 0, V i. Then f = e1/4 A, up to a
 nonzero scalar.

 Remark. It is clear from 4.15 that one cannot take s = 1 in 4.2(ii) for an

 arbitrary simple ad U submodule M of U. Finally if M = KzA, then by (JL, 8.6,
 eq.6) one has Supp ~o(M) = 4Q2(E(1/4 woA)). Yet as noted in loc. cit. one may
 choose z' E Z(U) such that Supp ~o(Kz') = {WA}.
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 5. Multiplicities.

 5.1. We establish a number of results below which are not all strictly

 necessary for our main theorems. However, we want to leave open the possibility

 of an alternative proof of 6.12 not based on taking specialization at q = 1 and

 using Kostant's theorem.

 Fix an isomorphism class E of finite dimensional simple U modules and let

 F(U)E denote the E isotypical component of F(U) considered as a U module for

 adjoint action.

 LEMMA. F(U)E is a finitely generated Z(U) module.

 Fix a basis {eS} for the zero weight space Eo of E. By 4.2 we have (p(es) E
 KWT<. Set r = dim Eo < ox. Consider {f o(es)}Sr1 as an r-tuple in (KWT<)r. By
 (JL, 8.6) it follows that KWT< is a finitely generated module over (p(Z(U)) and

 hence so is (KWT<)r. Now let Es denote the subspace of F(U)E spanned by the
 copies of the vector eS in the various submodules of F(U) isomorphic to E. It is
 clear that we may regard Es as a Z(U) module. Since the restriction of ( to the
 zero weight space is a homomorphism (JL, 8.1) we conclude that {(p(s)}s= is
 a finitely generated module over (Z(U)). By the injectivity assertion of 3.2 we
 conclude that F(U)E is finitely generated over Z(U).

 5.2. Given any weight module E we let Q(E) denote its set of weights.

 Take A, it E P+(ir). We call A sufficiently large relative to it, noted A >> ,A, if
 A + Q(L(,t)) C P+(ir). The following is well-known but we give the proof for
 completion. Let L(,t)o denote the zero weight space of L(jt).

 LEMMA. For all A, ,u E P+( ir) one has dim Homu(EndKL(A), L(jt)) < dim L(jt)o
 with equality if A >> it.

 A standard isomorphism gives

 (*) dimKHomu(EndKL(A), L(,u)) = dimKHomu(L([t) OK L(A), L(A))

 for all A, , E P+(-r). Now assume A >> ,. By say the isomorphism discussed

 in 4.4 we have

 L(A) X L(Q-t)= E L(A + v)
 vE.Q(L(/-))

 It is immediate from this that the right hand side of (*) is just dim L(,t)o as
 required.
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 148 ANTHONY JOSEPH AND GAIL LETZTER

 For the general case, observe that by 4.13 we have for each A, E R+(-r) an

 injection

 ( * *) EndKL(A) c-* EndKL(A + O

 of U modules (for the adjoint action). Warning -( * *) is not a ring embedding.

 This result can be extended to P+(ir) by augmenting U as in 4.2. Alternatively one

 can just prove the corresponding result for enveloping algebras. This is essentially

 well-known; but for completion we give a proof below.

 Set b = ( 0D n+ and let k: ( E (* denote the one dimensional b module of

 weight A. Recall that wo is the unique longest element of W. Let e,OA E L(A) :
 A e P+(ir) denote a choice of lowest weight vector for L(A). Assume ( E P+(7r).

 From the well-known formula for Annu(b)eWo0 (see [7], 2.13 for example) we
 obtain a surjection

 k,Oe 8)k L(A) ' <-L(A +)

 of b modules. Let A 4 w . A denote the translated action of W-see 6.15.

 Dualizing and tensoring by kWO.(A+\) gives an injection

 L(A + ~)* 0 kwo.(A+o) + L(A)' 0 kwo0.

 of b modules. Set n = dim n+ . Now apply the derived functor D' defined in

 ([7], 2.9, 2.15, 5.5). It is left exact, commutes with tensoring over a g module

 and satisfies D' kwo , = L(A) for A C P+(-r), by ([7], 5.6). Hence we obtain

 EndKL(A + ) - L(A + 0)*X0L(A + ) ( L(A)* 0 L(A)

 as required. Instead of the functor Dwo one can take global sections of an ap-
 propriate sheaf over the flag variety and apply the Borel-Weil theorem to get

 the asserted claim. In any case it is clear that the quantum group proof is more

 elementary. We shall see in 6.2(i) that this elementary proof has an enveloping

 algebra analogue.

 5.3. We shall need the following properties of Poincare series Rv(q) defined

 for any graded K vector space V by

 00 00

 Rv(q) = S (dim Vm)qm where V = D Vi
 m=O m=O

 Let A be a commutative graded K-algebra (K infinite) with generators y 1, Y2,
 ... ,Yn homogeneous of degrees 1 < d1, ... , dn < o. Taking appropriate powers
 of the yi we can find a subalgebra B with finitely many generators homogeneous of
 the same degree such that A is a finitely generated B module. By the normalization
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 QUANTIZED ENVELOPING ALGEBRAS 149

 lemma we can assume (up to a linear transfornation) that the first r of these

 generate a polynomial subring S over which B and hence A is finitely generated.

 Without loss of generality we can assume these generators to be Y i, Y2. Yr
 Let S+ denote the augmentation ideal of S.

 Let M be a graded A module generated by finitely many homogeneous ele-

 ments of degree > 0. Let L (resp. C) denote the kernel (resp. cokemel) of the

 endomorphism m I-4 ylm of M. Then

 (*) ~~~~Rm(q)(l - q d1) = Rc(q) - qdI RL (q)

 Noting that L and C are finitely generated over K[y2, .. ., y] an easy induc-
 tion argument using (*) shows that

 QM(q) := Rm(q)IRS(q)

 is a polynomial. Let Fr(S) denote the fraction field of S. Let rksM denote

 the dimension of Fr(S) Os M over Fr(S) and choose homogeneous generators
 ml,m2,. . -,mr E M with r = rkQ(M), to form a basis for this vector space. (For

 some calculations it is useful to note that the mi can be chosen from a graded
 complement of S+M in M). Then N Z Smi is a free S module of rank r, whilst
 M/N is torsion. We conclude that

 QM(M) = QN(M) + QM/N(M) = rksM .

 In particular,

 PM(q) := RM(q)/RA(q) = QM (q)/QA(q)

 has no pole at q = 1. In general PM(1) need not be an integer.

 Now assume that A in an integral domain and let Fr(A), rkA(M) be defined

 as for S above. Then a similar argument (using say 8.4(*) to show that PM(1)

 vanishes on torsion modules) gives

 PM(1)=rkAM

 Let I+ denote the augmentation ideal of A. Any graded complement V to I+M

 in M generates M over A, from which we conclude that

 dimKM/I+M > rkAM = PM(l )

 More generally let Ix be an ideal of codimension 1 in A. Choose a complemen-
 tary subspace Vx to IXM in M and set N = AVx. One has M = N+IXM and that Vx

 complements IXN in N. It follows that the composite map N c-* M - M/IXM
 factors to an isomorphism N/IXN -- M/IXM. Moreover IX(M/N) = M/N.
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 Since M/N is a finitely generated A module, it follows by Nakayama's lemma

 that M/N is torsion with respect to the Ore set A \ I. and so by the above
 PM/N(M) = 0. Consequently

 PM(M) = PN(1) < dim V. = dim(M/IIM)

 5.4. Fix it E P+(7r) and define the Poincare series

 00

 RIjq):= E [Fm(U): L(tz)jqm
 m=O

 Obviously Ro(q) corresponds to the Poincare series for Z(U) considered as

 a graded vector space. Recall (2.2) that gryF(U) is an integral domain. Fix an
 isomorphism class E as in 5.1. By 4.13 and the uniform bound implied by 5.2 we

 conclude for each i E { 1, 2,. . . , ?} that [y.,F(Qt): E] = [F(jt + wi): E] if (1a, ay)
 is sufficiently large. This implies that gryF(U) is a finitely generated (graded)

 Y(U) := gryFZ(U) module. Since Y(U) is finite over the noetherian ring Y(U)
 we conclude it holds with U replaced by U. Set P,(q) = R,(q)/Ro(q). By 5.3,

 PA,(q) has no pole at q = 1 and since Y(U) is an integral domain PI'(1) E N.
 Should Y(U) be a polynomial ring then Pt, is a polynomial. Should F(U) be free
 over Y(U), then the coefficients of PA,(q) are integers > 0. The corresponding

 exponents are the natural analogues of Kostant's generalized exponents which

 were computed for enveloping algebras by Hesselink [4]. We remark that

 LEMMA. For all 1a E P+(ir) one has

 P/jl) = dim L(p)o

 Let R'(q) be the sum of the first n terms in the expansion of R1,(q). By 5.2
 we obtain R,(q) - RI(q) = (Ro(q) - Rn(q)) dim L(p)o, for all n sufficiently large.
 Dividing by Ro(q) and evaluating at q = 1 proves the required assertion.

 5.5. For a separation theorem we actually need a refinement of 5.4. Set

 G(U) = grpF(U). Let Y(U) denote the (central) subalgebra of G(U) of elements
 of G(U) which transform by the trivial representation of U (under adjoint action).

 By 4.10, Y(U) is spanned by the y: ( c -R+(7r). Let Y+ denote the ideal of

 Y(U) generated by the y : ( $ 0. It is a graded ideal of Y(U) complemented
 by the scalars. Set J+ = G(U)Y+ which is a two-sided ideal of G(U). By 5.3 and

 5.4 we have [G(U)/J+ : L(ya)] > dim L(,a)o for all ia c P+(7r). What we need
 is equality. This question motivated Section 4 where equality is proved in the

 simply connected case. The following example shows that equality cannot hold

 in general. Moreover, a similar phenomenon can be expected whenever R+ is not

 stable under the cap operation of 4.14.
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 Example. Take U = Uq(s((3)). The "adjoint representation" with highest

 weight a l + oa2 occurs in (ad U)T( - 4wi) C G(U[): i = 1, 2 with highest weight
 vector ei given by

 el = (x2t2xlt -q-2 xltlx2t2)T( - 4ui), for i = 1
 e2 = (xltlx2t2 - q -2X2t2Xltl)T( - 4W2), for i = 2 .

 Note that ei, e2 are distinct and do not lie in U. Let yi: i = 1, 2 be a basis
 vector for the trivial one dimensional submodule of (ad U)T( - 4wi). Since 4(wi +
 W2), l2w1, 12W2 c R+(7r) it follows that ely2, ely2, e2y1, e2y2 c G(Uv) n grpU =
 G(U). Taking account that the above weights are minimal nonzero elements of

 R+(7r) it easily follows that [G(U)/J+ E(al + a2)] > 4. Moreover the relations
 (ely2)(y3) = (ely2)(yly2) and similarly with e2 show explicitly that G(U) is not
 free over Y(U). On the other hand el, e2 are free generators of the highest weight
 space of G(U)E considered as a module over Y(U).

 6. Specialization.

 6.1. It is well known (cf. [8], 3.5 for example) that g acts by derivations

 on S(n-) in such a manner that S(n-) is isomorphic to 6M(O) as a U(g) module.

 Moreover one may twist this action in the following fashion. Under action by

 derivations, the identity 1 of S(n-) has zero weight. For any A c r* we can

 arrange for g to act by inhomogeneous derivations (i.e. allow also multiplication

 by functions) so that the identity has weight A. In this case S(n-) is isomorphic

 to 6M(A). We call A the twisting parameter. Given A c P+(r), then the unique
 simple submodule L(A) of 6M(A) is finite dimensional. For consistency with the

 notation of Sect. 4 we denote by S(-4A)- the subspace of 6M(A) which identifies

 with L(A). All this is quite elementary; but may also be viewed geometrically as

 follows. Given A c P(7r) one may define the sheaf G XB k\ on the flag variety
 G/B. Then 6M(A) identifies with the space of local sections on the open Bruhat
 cell and for A c P+(7r), its socle L(A) identifies with the space of global sections.

 This point of view is quite unnecessary for us; but may benefit some readers.

 LEMMA. For all A, ,b c -4P+(7r) one has

 (i) S(A)-S(p) - = S(A + ,)-, inparticularS(A)- C S(,)j- if A < ,b.
 (ii) S(A)- n s(,f = S(Afn ,f

 (iii) (Ez=l s(Ajf)- S( = s Z_1 (s(Aj)- n s(p)-). v t c N+, V Ai, H E
 -4P+(7r).

 (i) and (ii) follow as in 4.12(i) and 4.14.

 (iii) As pointed out to us by P. Polo this is an easy consequence of recent

 work of G. Lusztig who in a series of papers [15-17] has studied a canonical

 basis for U+. Here we shall only require the canonical basis B := {bi}iEi of
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 U(n+) which we obtain on specialization. This consists of weight vectors ([17],

 Prop. 11.2) and has following the basic property ([17], Cor. 11.10). Letf_x denote

 a lowest weight vector for L(A)*: A c PQ(7r). Set Ix = {i c I I bjf_g, $ O}. Then
 {bif_,\ I i c I,14 is a basis for L(A)*. We remark that the result is stated more
 exactly in this form in ([15], Introduction) where it is proved in the simply-laced
 case.

 It remains to observe that B gives rise to a basis {ai}iei, indexed by I, of

 S(n-) such that for each A c PQ(7r) the subset {aj}jEIA is a basis for L(A), the
 latter being identified as above with a subspace of S(n-).

 Let ?: S(n-) -- k denote the augmentation of- S(n-) and b |-+ a(b) the

 principal antiautomorphism of U(n+). Recall that n+ acts on S(n-) by derivations

 and so we have a bilinear form F(a, b) := e(c(a)b) on U(n+) x S(n-). Recall
 the well-known fact that S(n-)' reduces to scalars-the proof can be made to

 follow 4.7(i). It easily follows {b c S(n-) I F(a, b) = 0, V a c U(n+)} = 0. Since
 F(a, b) = 0 whenever a c U(n+),,, b c S(n-)-, with ,a, v c Q+(7r) distinct, we
 conclude that {b c S(n-)_ I (a, b) = 0, V a c U(n+)4l = 0. Since dim U(n+),, =
 dim S(n-)_ < xo it follows that F restricts to a nondegenerate pairing F,, of

 U(n+), with S(n-)_/. Let {aj}jE, be the basis of S(n-) obtained from B through
 this pairing. That is F(bi, aj) = 6ij, V i,j c I, where 6 denotes the Kronecker
 delta.

 To show that the above basis has the required property is straightforward.

 Let {ry: j c I}1 be a basis for L(A) dual to the basis {bjf_x: i c I}1 of
 L(A)*. Then (vqj, bif_) = 6i , V i,j c Ix. Moreover this equality extends to all
 i C I by the fundamental fact that bif_g, = 0 if i c I \ I,\. Now identify the rj
 with elements of S(n-) through the embedding L(A) E 6M(A) -~- S(n-) where
 we recall that the last isomorphism is a map of U(n+) modules. Then we can

 write 6ij = (j/,bif_\) = (u(bi)rqj,f\) = E(cr(bj)rqy) = F(bj, nj), V i c I, j c I,.
 Consequently rj = aj, V j c I,x, as required.

 Remarks. We see from the above analysis that L(A): A c P+(7r) can be

 embedded in S(n-) as a U(n+) submodule in only one way. Actually this is an

 elementary fact and indeed

 L(A) = {b E S(n-) F(a,b) = 0, V a C Annu(+jf_QX}

 for any such embedding.

 It is also possible that (iii) can be recovered from ([19], 4.1); but this is less
 immediate.

 Finally via 6.6 we shall see that a result analogous to (iii) holds also for

 the K(,u)-: ,t c -4P+(7r) defined in Sect. 4. This may also be proved directly
 by the above method from Lusztig's basis for U+ and using 4.7(i) to obtain a
 nondegenerate pairing U+ x G- -+ K.
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 6.2. The results of 6.1 of course hold with-replaced by + and in particular

 we let S(A)+: A E -4P+(7r) denote the corresponding finite dimensional subspace

 of S(n+). One should of course realize that S(A)+ is the submodule of the dual

 of a Verma module defined with respect to the opposed Borel b - and has lowest

 weight -A. Then S(A)+ identifies with (S(A)-)* as a U(g) module. Consequently

 under the diagonal action of U(g) we have a unique up to scalars invariant element

 y? E S(A) 0 S(A)+: A E -4P+(7r).

 LEMMA. For all A, ,t c -4P+(-7r) one has

 (i) yo(S(u)- 0 S(t)+) c S(A + )- 0 S(A + I)+,
 (ii) 00 0

 up to a nonzero scalar.

 Apply 6.1(i).

 6.3. Let w c P+(7r) be the fundamental weight corresponding to ae E 7r.

 LEMMA. Y?-4w is an irreducible element of S(n-) 0 S(n+).

 First we remark that the action of n+ on S(n-) is independent of the twisting

 parameter and is always by derivations. Secondly in what follows we shall always

 view S( - 4w)- as a subspace of S(n-). Then the weights are translated by -w
 and in particular it has lowest weight i := wow - w, where wo denotes the unique
 longest element of W. Let b,, denote the corresponding element of S(4w)+. It

 is standard that the term al,b_, occurs in Yo-4w with a nonzero coefficient in
 the obvious well-defined sense. Suppose Yo-4w factors nontrivially. Then an easy

 weight space analysis shows that a1, factors nontrivially as a product of weight

 vectors al1,a112 c S(n).
 For each 3 c ir, let p-0 denote the unique up to scalars vector of weight

 -/ in S(n-) and xo c g (resp. so E W) the corresponding root vector (resp.
 reflection). Recall that if xJ,3a = 0 a E S(n-), V a 3 C ir then a is a scalar.
 Consequently if xr a = 1 for some r > 0, then a = pr ', up to a nonzero scalar.
 (All this is of course well-known).

 Fix 3 c 7r. By nilpotence and because S(n-) is an integral domain, we can

 find integers rl, r2 > 0 such that X+l 1a Xr2+1a 0. Then ra1= Or = Q 11=X a12=O.Thenx ,
 ri + r2 whilst up to a nonzero scalar

 xrpH = (xrjl al1)(xr2a12) $0.

 Thus xra11, is an extreme weight vector of S( - 4w) hence of weight s3woW -w

 and factors nontrivially unless a1i = pri for some i c {1,2}. By a standard
 induction procedure on decreasing length of Weyl group elements we conclude

 from this that S( - 4w)- admits an extreme weight of the form PS1B 2 Si, 2 2
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 integers > 0, /1, /32 c 7r. Thus s101 + S2/2 = w - ww, for some w c W. Then
 necessarily 31 $ /2 for otherwise 13= = 02= a and Sl +S2 = 1 which is impossible.

 Yet applying xo,,xo2 we conclude that both p1,p-, c S( - 4w)-. This again
 implies /1 = a = /32. This contradiction proves the lemma.

 Remark. The Yo : ,t c P+((7r) are linearly independent by 6.1 (ii). It follows
 that the Y? 4w are algebraically independent.

 6.4. Take A, ,t c P+(7r). With respect to >-, let ,t U A denote the unique

 smallest element of P+(7r) greater than both ,u, A. Given A, ,u, A', IL' c P+(7r) such
 that ,a + A = ,t' + A' one easily checks that ,a U tL' + A n A' = ,t + A. Of course

 similar considerations apply to -4P+(7r). For all ,u, v c -4P+(7r) with v < 1tt

 set Sv(jt) := y0 1_(S(p)- 0 S(jt)+). Given v C -4P+(7r), set -4P+(7r) = {,1 E
 -4P+(7r) I ,t > v}.

 PROPOSITION. For all v c -4P+(7r) one has

 (i) sv(t) nf = s f v '), V , ' c -4P+(X).

 (ii) Sv(bt) n (z 1 Sv(Aj)) = Z>i (Sv(Qt) n Sv(Aj)), V ,a, A1, A2, .. , At c
 -4P+V(r), V t E N+ .

 The inclusions D are immediate from 6.2. (i) Since S(n) 0 S(n+) is a unique
 factorization domain it follows by 6.3 that any element in the left hand side of

 (i) takes the form yo id with d c S(n-) 0 S(n+). We claim that d is locally
 finite with respect to the diagonal action of U(g) in S(n-) 0 S(n+) where the
 action in each factor is defined relative to the twisting parameter ,a n f a'. By

 the Leibnitz formula for twisted derivations (twisting parameters add) and using

 that You is invariant for the twist defined by ,a U /a' and is nonzero divisor, we
 obtain d c S(,t n 1a') {a c S(n-) 0 S(n+) I dim U(g)a < ox for the diagonal
 action of g defined by the twisting parameter ,a n 1a'}. It remains to show that

 S(,a) = S(,)- 0S(,a)+, V,a c -4P+(7r). The inclusion D is clear. Since the action of
 U(n+) on S(n-) is locally finite and independent of the twist, we can assume that
 every finite dimensional U(n+) submodule E C S(,u) belongs to some F 0 S(n+)
 with F finite dimensional. Let : E -> F 0 S(n+) denote the embedding which

 results. From the standard isomorphism b |-- TVp of Homu(,+)(E, F 0 S(n+)) onto
 Homu(n+)(E 0 F*, S(n+)) we conclude that Im g C (F 0 Im TV,). Yet Im T1p is a
 finite dimensional U(n+) submodule of S(n+), hence contained in S(,a)+. A similar

 argument with + replaced by - completes the proof of (i).

 (ii) Given a a positive root we can write a = E kioai: ki c N, ai c 7r and we
 set o(oa) = E ki. Give the polynomial algebra S(n+) (resp. S(n-)) a grading by
 declaring the generatorx, (resp. x- ) corresponding to the positive root a, to have
 degree o(oa). Then S(,)-, SQ(t)+ and S(,a) = SQ<)- 0 S(,a)+ are graded subspaces
 of S(n-), S(n+) and S(n-) 0 S(n+) respectively. Given 0 $ a c S(n-) 0 S(n+)
 we denote by gr a the lowest degree component of a and define ? deg a to be
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 the degree of gr a. Observe that gr yo /:t c -4P+(7r) is a nonzero scalar which
 we may assume equal to 1 and so ? deg y?? = 0.

 Take a E SV(ja) n Zt SV(Aj) nonzero. We can write a = Z5-i aj. Then possi-
 bly dropping some terms (of higher degree) we have, for some I C { 1, 2, .. . ,t

 that one of the following hold.

 Case 1. gr a = Z1El gr aj .

 Case 2. ZEj1gr aj = 0 .

 We shall prove by induction on l deg, which is permissible because all the

 elements lie in the finite dimensional space S(v), and by induction on t, that these

 imply that we can choose aj c Sv(ja). This will prove the assertion.

 Consider case 1. It is clear that gr a E s((a)n Efl S(Aj) and so by 6.1 (iii) we
 can write gr a = b: bjE s(1)fnS(Aj) = s(,alnAj), by 6.1(ii). Set cj = yv_(Itnxjbj
 which by 6.1(i) and 6.2(i) lies in Sv(j) n Sv(Aj). Then gr cj = bj. Set c = E cj.
 It follows easily that ? deg(a - c) > ? deg a. Yet a - c E Sv(ja) n Z- Sv(Aj) and
 so the assertion follows by the induction hypothesis.

 Consider case 2. This is just case 1 with t reduced by 1. It therefore means

 that we can find cj c Sv(A ) such that E cj = 0 and gr aj = gr c;, fa j c I. Then
 l deg(aj - cj) > ? deg aj, V a j E I whilst a = E (aj - cj). Consequently we return
 to cases 1 or 2 with ? deg increased, which holds by the induction hypothesis.

 This completes the proof of (ii).

 Remarks. Notice that the argument of (ii) gives a second proof of (i). We

 remark that the isomorphism T constructed in (i) is valid for any Hopf algebra,

 in particular, UW. Combined with 4.7(ii) and 6.7 this leads (by the analysis of (i))

 to a more elegant proof of 4.9.

 6.5. We need the result corresponding to 6.4 in the noncommutative ring

 G(U). For this we use specialization at q = 1. Set A = k[q,q1]. Here we might

 define G- to be the A subring generated by the elements yiti i = 1, 2, ... , and
 set

 V- = AA/(q - 1)

 As in (JL, 4.10) it follows easily that V- is isomorphic to U(n-). However this

 is the wrong thing to do! The reason is that the induced action of U(0) (obtained

 from 4.7(*) through the identification U ?A A/(q - 1) U(g) ?k k[T], notation
 JL, 4.10 is not well-defined because of the denominator in 4.6(***). Only the

 action of U(b-) is defined (via 4.7(*)) and it is easy to see that this is just the
 adjoint action. Nevertheless we shall need this specialization later and we call it
 the U-specialization of G- at q = 1.
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 156 ANTHONY JOSEPH AND GAIL LETZTER

 6.6. It is convenient to replace A by the localization Ao of k[q] at the prime
 ideal (q - 1). (Actually only a small number of roots of unity must be avoided).

 Identify G- with G- OKT(A) with the action defined by 4.7(*). Call A the twisting

 parameter. Note that the action of U+ on G- in 4.7(*) is just the adjoint action,

 so is independent of the twisting parameter A and moreover increases weights.

 We may therefore define the Ao submodule G- of G- inductively as follows.
 View G- as a module for the adjoint action of T and extend the order relation

 (3.1) on Q(r) to a total order. Set G- = AO, Fix ( c Q-(7r), let G- denote the (

 weight subspace of G-, assume that G- is defined for all q > ( and set

 G= = {a c G-I(adxi)a c + i},

 By say (JL, 2.2, 3.1) we conclude that G- is an Ao-subring of G-. It is obviously

 stable for the adjoint action of U+ and T. To show that it is stable for the adjoint

 action of U- we may use induction on the order. Thus suppose (ad yi) G- c
 77

 G-i for all q > (. Then

 (q2((,ai) _ q-2((,ai))

 + (ad yi)G. C G-

 by the induction hypothesis and noting that the offending pole at q = 1 cancels.

 From this we conclude that (adyi)G6 C G , as required. This result also
 applies to the twisted action of 4.7(*) as this is obtained from the adjoint action by

 just modifying what happens to 1. Here one quickly checks that (adyi). 1 c G-i
 for all i, where again the offending pole cancels.

 From the above we see that 9i = (q -q- )yiti c G- for all i; but yiti , G-.
 Set

 S- =G AAo/(q - 1)

 We call this the S-specialization of G- at q = 1. A further computation which

 we omit shows that the images of the ji in S- commute! The reader may therefore
 anticipate that S- = S(n-) as an algebra. Actually this follows quite easily from

 the theory of 0 rings developed in [8].

 Let 0 denote the Bemstein-Gelfand-Gelfand 0 category for U(g). A ring S

 on which g acts by derivations such that S belongs as a U(g) module to 0 is

 called an 0 ring. Suppose S is isomorphic to 6M(O) as a module and that the
 tiivial one-dimensional submodule L(O) of 6M(O) contains an identity 1 for S.
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 QUANTIZED ENVELOPING ALGEBRAS 157

 We claim that S is isomorphic to S(n-) as a ring. Indeed by a general result of

 Dixmier ([2], 3.3.2) any minimal prime P of S is a submodule and so is either

 zero or contains the unique simple submodule L(O) of 6M(O), hence the identity

 of S. We conclude that S is a prime 0 ring and then the required assertion follows

 from ([8], 5.6(ii)-see also 3.5, 3.6 for conventions). The theory used in [8] is

 quite deep and in particular uses Formanek's theorem for p.i. rings. However

 since (6M(O))'+ is one dimensional the much simpler arguments given in ([8],
 Sect. 3) also apply.

 It remains to show that S- has the properties claim above. Here we can take

 the twisting parameter A to be 0, because the definition of S- is independent

 of A. Then the action of U on G- is just the adjoint action and so it follows

 that the resulting action of g on S- is by derivations. That H?(n+,S-) reduces

 to scalars will follow exactly as for the corresponding assertion for G- noted

 in 4.7. Obviously each Gj is Ao torsion-free. We prove it is finitely generated

 by induction on the order relation. For this it is enough to recall that Go- = Ao

 by definition and to note that by 4.7 for ( < 0, the map a ~-+ {xia}j1 is an Ao
 module injection of Gej into 3i- Gb.. Since Ao is principal, we conclude that
 G- is free and dimkS- = rank G- = dimKG-. Hence with respect to formal

 characters we have

 ch S- = ch G- = ch 6M(O) .

 As in 4.7, this and the previous observation suffice to prove that S- 6M(O).

 Again clearly the zero weight space of S- is spanned by the identity. Had we

 taken the twisted action with twisting parameter A we would have concluded that

 S- 6M(A). Summarizing

 PROPOSITION. S- is isomorphic to S(n-) as a ring and to 6M(A) as a g module.

 Remark. Of course if A $ 0, then only n+ must act by derivations, whilst b-

 acts by inhomogeneous derivations.

 6.7. It is now completely obvious that K(A)-: A c -4P+(ir) passes to

 S(A)- under S-specialization. More precisely

 (K(A)- n G ) 0AO Ao/(q - 1)

 is a nonzero finite dimensional 0 submodule of 6M( - 1/4A) hence necessarily
 isomorphic to L( - 1/4A), so equal to S(A)-. To show that y, passes to yo needs
 one further (amusing) observation.

 Fix A E -4P'(7r) and recall that (ad U)T(A) = K(A)- 0KT(A)0K(A)+. Hence
 we can identify (ad U)T(A) with K(A)?- K(A)+. Now of course (ad U)T(A) admits

 the adjoint action of U whilst K(A)- &K(A)+ identifies with L(-A/4) 0 L(- A/4)*
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 158 ANTHONY JOSEPH AND GAIL LETZTER

 and so admits a diagonal action of U. We claim that these two actions coincide.

 More precisely

 LEMMA. The above identification gives a U module isomorphism of (ad U)T(A)

 onto K(A)- 0 K(A)+.

 Recall that the comultiplication A applied to yi gives yi 0 t71 + tj 0 yi. Then
 from the remark in 4.8 or directly from 4.7(*) we obtain

 c(yi)(l 0 1) = yil X1 t 1 + til X1 yji
 = ql/4( Ai)(ad yi)T(A) q-l/4(A\,i) 1 + 0

 = (ad yi)T(A) in (ad U)T(A)

 In other words the offending factor q l/4(A,$i) cancels! A similar assertion

 holds for xi. This proves the lemma.

 Remark 1. In passing from (ad U)T(A) to K(A) 0 K(A)+ we drop the factor

 T(A). In this sense yx passes to yo, that is if we take a representative of yA C
 K(A)- 0 K(A)+ then its image in S(A)- 0 S(A)+ is invariant by the lemma and

 hence a multiple of yo. Clearing denominators we can assume it to be a nonzero
 multiple.

 Remark 2. It is perhaps worth noting that the above analysis can be used

 to considerably simplify the construction of the centre Z(U) given in (JL, Sect.

 8). Take A c -R+(7r). Then L( - 1/4A) is finite dimensional and we have iso-

 morphisms (ad U)T(A) "I* K(A)- 0 K(A)+ -L* L( - 1/4A) 0 L( - 1/4A)* Z_
 EndKL( - 1/4A) of U modules. By 4.5 we can further identify (ad U)T(A) with
 a U submodule of F(U). This recovers 3.5 but notice we do not now need either

 the Rosso form or complete reducibility. Yet the identity on EndKL( - 1/4A)
 defines a (trivial) one dimensional submodule which through the above isomor-

 phisms gives a nonzero element z\ E Z(U). This can be used in (JL, 8.6) and
 obliviates the need for (JL, Sect. 6) and complete reducibility (JL, 5.12). One

 cannot immediately get that

 Z(U) = Kz\
 AE-R+(-7)

 from 4.10, because we used the existence of a simple Verma module in 4.7 which

 in turn requires via 8.2(i) some knowledge of the centre. Nevertheless this can

 be provided by the z: A E -R+(ir). Consequently we could also avoid the
 Weyl character formula analysis in (JL, 8.6). In any case the tenacious reader

 will observe that by these means the centre can be constructed in a remarkably

 simple and almost computational-free fashion.
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 QUANTIZED ENVELOPING ALGEBRAS 159

 6.8. We can now prove the required analogue of 6.4. Fix v c -4P+(7r)

 and recall that -4P+(7r) = {,u E-4P+(7r) I ,u > v}. Fix v C -4P+(7r) and set
 Rv(l) = yv-,,(ad U)T(p,), V a ,a c -4P+(7r).

 THEOREM. For all v c -4P+(7r) one has

 (i) Rv(,a) n Rv(QI) = Rv(t n p'), Vu, pU ' c -4P+(Xr).

 (ii) Rv(I,) n Z Rv(Aj) = (Rv(t) n R(j)),

 pq, A19A29 .. , t E -4P+V(7r) V t E N.

 The inclusions D are immediate from 4.13. Thus we only have to show that

 dimensions coincide. This follows from 6.4 and specialization. Here we remark

 that intersection with G- 0 G+ which is a free Ao module, must give free Ao
 submodules.

 Remark. The perspicacious reader will notice that we can also prove this

 result directly via the remarks in 6.1 and 6.4.

 6.9. We can now establish the result searched for in 5.5. Let J+ denote the

 ideal of G(U) generated by the augmentation ideal of Y(U).

 COROLLARY. For all ,t E P+(7r) one has

 v v

 [G(U)/J+ L L(,)] = dim L(pt)o

 Fix an isomorphism class E of U modules and let G(U)E denote the isotypical

 component of G(U) considered as a U module for the adjoint action. Fix v E

 -4P+(7r) and set

 GV(U)= E (ad U)T(QI)

 HE C-4P+ (7r)

 Set GV(U)E = G(U)E n GV(U). Since G(U) = lim GV(U),it is enough to
 show that [GV(ulJ)/+ n GV(U) E] dim EO for all v sufficiently large.

 We have

 Gv(U)/J+ nGU(U)= ( (ad U)T(Q) / E R7Q(l1)
 /-t>v /-t >,q v

 It is clear that 6.8 extends in the obvious fashion to a corresponding assertion

 for each isomorphism class. Recalling that the yl, are nonzero divisors, distribu-
 tativity allows one to compute by the usual set theoretic rules the multiplicity of

 E in the right hand side above to be [(ad U)rT(v): E]. Indeed it is immediate that
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 160 ANTHONY JOSEPH AND GAIL LETZTER

 the multiplicity of E in the denominator of the right hand side takes the form

 Z cj[(ad U)T((): E]. We claim that ce = 1 if ( > v and zero otherwise. This
 will establish the above estimate. First observe that the Rv(lvQ) for different rq lie
 in the distinct direct summands F(rq) = (ad U)T(q). For q fixed we can write

 [Rt>) wEhywiF@,-wi)
 A > 71 iEIrZ

 where 1, C { 1, 2,.. ., } is maximal with the property that -wi E -4Pv.
 By 6.8 and because the Ywi are nonzero divisors the rigSht hand side has dimension

 r

 S E (- 1)-ldim F(rq - - Wi)
 s=1 i,i2,..1s EI1

 (distinct)

 where r = IIq1. Now a given term in the right hand side, say dim F(s) with
 = -wil-Wi2 - - - - wis, occurs in a similar development of the R77 (,a).

 Without loss of generality we can assume that q is maximal in -4P+(Xr) with
 the property that such a term appears. Then q is unique because if ii1, 072 are two
 such choices then so is 71 U 7q2 < v. Then q' = q -wjl- w2-... -wt: with
 the j indices being all possible subcollections of the i indices. It follows that the
 overall contribution to such a term is the sum

 (1)s-1 + ( _lys-2 + (s Ee ( -t-1 S)

 as required. By 5.2 and 3.5 this gives the required assertion.

 6.10. The following sections are not needed for our separation theorem;

 but are required to determine Verma module annihilators and particularly to set

 up Duflo's theorem as discussed in 1.6. First we start with a

 CONJECTURE. For all A ? P(7r), ,t E -R+(7r) one has

 AnnF(u)M(A) n (ad U)T(QtI) = 0 .

 A priori this seems very surprising, because (ad U)T(QtI) already contains a
 central element z11 which by analogy with the enveloping algebra situation we

 would expect to annihilate some Verma module. Actually by (JL, 8.6) we can

 easily compute how z11 acts on M(A). Let (ch L((), r) denote the polynomial in

 q, q-1 obtained from ch L(() by replacing ev by q(V?7). Then by (JL, 8.6) we find
 that z11 acts on M(A) by the polynomial

 (p(zl,)(A) = (ch L( - 1/41a), -4(A + p))
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 QUANTIZED ENVELOPING ALGEBRAS 161

 This takes the value dim L( - 1/41a) at q = 1 and so in particular is nonzero.
 An instant corollary of 3.5 and the above conjecture would be that

 (*) [F(U)/AnnF(U)M(A): LQ(,)] > dim L(I)o

 V A E P(7r)g /- E P+(7r).
 The importance of (*) arises in the following way. Let M, N be U modules.

 Then HomK(M,N) is a U bimodule in a standard way. Using the antipode a of

 U on the second factor, it then becomes a U 0 U module and hence a U module

 for the diagonal action. Set

 F(M,N) = G( E HomK(M,N) I dim Uf < oo} .

 Unlike the enveloping algebra case, this won't be a U 0 U submodule of

 HomK(M, N); but it is an F(U) 0 F(U) submodule. Moreover if M = N the action

 of F(U) on M gives a homomorphism F(U) -- F(M,N) with kernel AnnF(U)M.
 Now take M = M(A): A E P(7r). As in 5.2 the classical reasoning (combine 8.3

 and 8.5(i)) gives

 [F(M(A),M(A)): LQ(,)] < dim L(I)o, V Ht E P+(Qr)

 This forces equality in (*) and by (*) we have an isomorphism

 F(U)1AnnF(u)M(A) F(M(A), M(A))

 In the following we shall establish a weak version of our conjecture which

 will be enough to establish (*).

 6.11. Set El' = (ad U(g))U(n-), H' = (ad U(g))S(n-). The latter is just
 Kostant's space of harmonic elements of S(g). It is a deep consequence of his

 work ([2], 8.4) that Hl' does not meet and is even a complementary subspace to
 the annihilator of any Verma module for U(g).

 Fix [ E -R+(7r) and recall F(,u) = (ad U)T(Q4). Let U denote the A subring
 of U generated by the xi,yi: i = 1, 2, . ... ,1 . Recall that

 U OA A/(q - 1) - U(g) Ok k[T]

 and further specialize by sending the now central elements ti to the identity.
 Under this process FQ() (more precisely F(tQ) := n (ad U)T(p1)) specializes
 to an ad U(g) stable subspace F(,I)' of U(g) which by 3.5 is isomorphic to an
 image of EndkL( - 1/41a) viewed as g module under the diagonal action. By the
 freeness assertion of (JL, 5.10(i)), to prove our conjecture it suffices to show that

 dim F(,I)' = dim FQ(,) and that F(,I)' C I'.
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 162 ANTHONY JOSEPH AND GAIL LETZTER

 Consider the subspace L(,t)- = KQ,)- K KT(p) of FQ(,) defined in 4.8, 4.9.
 We recall that KQ(,)- C G- consists of zero degree elements of F(U) (or of
 G(U)). We have already analyzed in some detail how KQ(,)- specializes in 6.6.
 However this was its S-specialization. Here we are taking its U-specialization

 T(-t<)-. This lies in U(n-) and is stable under the adjoint action of b-; but does
 not admit an n+ action. In particular (see remark in 6.18) one does not have

 gr T(u)- = S(,)- with respect to the canonical filtration of U(n-). Nevertheless
 weight space considerations do force them to coincide in some limiting sense for

 large itt.

 6.12. To prove our two assertions above and hence our conjecture it is

 enough to show that

 (*) dim ad U(g)T(Qi)- = dim F(,I)'

 Let us show that (*) holds in some limiting sense.

 The inclusion relation implied by 4.12(i) gives that T(I-) - C T(A)- whenever

 ,tu, A E -R+(7r) and ,t > A. Regarding -R+(7r) as a directed set, we may form the

 corresponding direct limit and it is immediate from 4.7 that

 ( * *) lim T(jt<)- = U(n-)

 Fix v E PQ(7r). By Kostant ([2], 8.3.9(ii)) one has

 [H': L(v)] = dim L(v)o

 Then by (**) we conclude that

 [ad U(g)T(Qi)-: L(v)] < dim L(v)o

 with equality if -, is sufficiently large. Hence

 [F(Itt)' n Th': L(v)] < dim L(v)o

 with equality if -,t is sufficiently large. As discussed above, this further implies

 (*) of 6.10. We have shown the

 THEOREM. Fix A E P(7r). Then for all v E P+(7r) one has

 [F(U)/AnnF(u)M(A): L(v)] = dim L(v)o .
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 QUANTIZED ENVELOPING ALGEBRAS 163

 Equivalently the action of F(U) on M(A) gives an isomorphism

 F(U)1AnnF(U)M(A) F(M(A), M(A))

 of F(U) bimodules.

 6.13. In this section we show that Z(U) specializes to the centre Z(0) of
 U(g). This is ultimately not needed either for the separation theorem nor for
 Verma module annihilators; but its truth removes what would otherwise seem to

 be a paradox if not a contradiction. Of course the statement itself is paradoxical

 in that Z(U) is not necessarily a polynomial algebra whereas Z(0) is. The point
 is that specialization does not preserve linearity because of the possibility of

 dividing by a power of (q - 1). Indeed Z(U) is spanned by z : ,t E -R+(7r)

 which we saw in 6.9 all specialize to scalars!

 Recall that xi,yi E U (notation, JL 4.10) and so is (t? - t 2)/(q2di - q-2di).
 For our analysis it is convenient to further adjoin the elements

 q i- 1 qdil-

 Since

 hi(l + ti71)(ti + ti7) _ ti - t7-
 (1 + q-di)(qdi + q-di) q2di - q-2di

 this ultimately makes no difference to specialization at q = 1. It is also convenient

 to replace A by Ao. With this slight change we now let U0 denote the Ao subring
 of U0 generated by T and the hi, and U the Ao subring of U generated by
 U+, U-, U0, where U+ (resp. U-) is the Ao subring of U generated by the xi
 (resp. yi) i 1, 2, ... ., f. Including the divided powers makes no difference as we
 are specializing at q = 1.

 Take i E {1,2, ... ,9 } and view- ti as defining the function ,u | q(Ti' ) on
 P(7r). In this sense specialization at q = 1 also sends each ti to 1. Set ay4 = diloai.
 Then hi is replaced by the function ,t -b (q(ai,I) - 1)/(qdi - 1) which becomes
 the function ,tt (aIi Ytt) at q = 1, that is hi specializes to the coroot ai4Y. Identify
 the Cartan subalgebra j of g with the linear span of the a Y : i = 1, 2, ... t.

 Given a E KT, let al,(q) denote the element of K obtained by replacing each
 ti by q(ail'I) and by a(q) the function on P(7r) sending , u al,(q). Given a E u?,
 let a( 1) denote its image in U ?Ao Ao/ (q - 1), that is its specialization at q = 1.
 This can be viewed as an element of S([).

 LEMMA. Suppose a E u0 and a(1) = 0. Then (q - 1<a E U0.
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 164 ANTHONY JOSEPH AND GAIL LETZTER

 This is proved by the usual trick. We can write

 a AZitit A a =Eai, ai Eu,e

 where in A the tt variable no longer appears (though he may still appear). By
 the hypothesis

 a = a- a(l) = EI(Ai - Ai(l))t + E Ai(l)(tt - 1)

 In the first term we note that each ai- _ai(l) specializesgto zero, so we can continue

 by eliminating the tt-, variable. In the second term we can replace the common
 factor tt - 1 by ht(qdi- 1) and then divide by q - 1. This proves the lemma.

 6.14. For each m E N, let Sm([) denote the space of homogeneous polyno-

 mials of degree m on [* and let Um denote the subset of all a E AoT such that
 (q - 1)-ma E UO and let Om(a) denote the specialization of (q - 1)-ma at q = 1.

 LEMMA.

 (i) Take a E Um. Then Om(a) is the element of Sm([) given by

 1 d a,uA)
 1- 1

 m!dqm i=

 (ii) The map Om is a surjection of Um onto Sm([).

 (i) We can write a = (q - 1)mb for some b E UO. Then

 (*) a,l(q) = (q - 1)mb,(q)

 and bl,(1) is defined (by cancelling the (q - 1)' factor). Moreover Om(a) = b(1)
 and the latter is just the function ,tt -+ bl,(1) on P(7r). Yet differentiating (*) we
 obtain

 1 dna/,(q) Iq=l= b[t(l)
 m! dqm

 as required.

 (ii) Take ( E -R+(7r). Then for each integer j > 0, T(fj) is represented by
 the function ,tb | 4 qi((,I_). Its mth derivative at q = 1 takes the value (]j)m = jmfm.

 From the nonvanishing of the determinant of the matrix with entries jn: j, n E
 { 0, 1, 2, ... , m} we can find rational coefficients c;: j = 0, 1, 2, ... ., m such that

 0 O : n < m,

 n ! m :n=m
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 QUANTIZED ENVELOPING ALGEBRAS 165

 Set a = Z Cj1T(j). By the first equation, a(q) has a zero of order m at q - 1 so
 (q -l)-ma E Uo by 6.12. By the second equation and (i), this element specializes
 to (m. Thus (m E Om for all ( E -R+(7r). Obviously Im Om is a linear space and

 it is an elementary fact that all such functions span Sm(t).

 Remark. Notice we have proved the slightly stronger fact that it is enough to

 take T( - R+(7r)) instead of T = T(Q(7r)). Notice that we could even have taken
 smaller subsets, for example r( - rR+(7r)): r any integer > 0 would do.

 6.15. Take A E -R+(7r) and set

 T(A)= T T(wA)q(P,wA)
 weW

 Define

 U = (AE KT(A)) nu?
 AE-R+(-7)

 and m UOO n u?OM
 Define (as usual) a translated action of W on 0 * by w ,b= w(t + p) - p, and

 set

 S(O)W = {b E S(0) I b(w.q) = b(Q), V w E W}.

 LEMMA. EmeN 0m(Um0) -S)W

 One checks that

 -t F- - d (A)Q(i)q-(P,) = (Am, E W.(p + 1t))
 dqm q=1 wEW

 and so defines an element of S([)W . Moreover all invariant polynomials so obtain.
 The assertion is then an easy consequence of 6.13.

 6.16. We showed in (JL, 8.6) that for each A E -R+(7r) there exists z' E

 Z(U) such that V(z') = T(A). (The z' are an appropriate linear combination of
 the zA defined in 4.13, see JL, 8.6, eq.(6)). It would seem from 6.15 and Harish-

 Chandra's ([2], 7.4) description of the centre Z(g) of U(g) that this would imply
 that Z(U) specializes to Z(g). However there is one more snag which is resolved
 by the following

 LEMMA. Given z E Z(U) such that (p(z) E U0. Then z E Z(U) n U.
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 Fix ,u E NMr and let UC (resp. UOC) denote the Ao submodule of U+ (resp.

 U-) of vectors of T-weight ,u (resp. -,u). As noted in (JL, 4.10) these are free Ao

 modules. Take A E -P+(7r) and let ex, denote the canonical highest weight vector
 of the Verma module N(A) for U (as defined in say JL, 5.10) of highest weight

 A. If x&,i E U>, y-jE Up, then we can write x11,iy,jeA in the form m>;ijeA for

 some mA E Ao. We claim that there exist bases {x/,j}, {y-/J} of the free Ao
 modules C+ and U_ such that the matrix mA with entries {m>;j} is invertible

 in Ao, for all A E -P+(7r). This is assured if ml evaluated at q = 1 is invertible in
 /1t

 k, for all A E -P+(7r). Then we see that our claim is an immediate consequence

 of the fact that UC (resp. U_1) specializes to the corresponding weight space of
 U(n+) (resp. U(n-)) and that the contravariant form on the simple (8.2(i)) Verma

 module M(A) for U(g) is nondegenerate.
 Now we can write

 (*) Z=Z SE Y-1,iX1dX11j
 ij pENxr

 .~~~~~~~~~~~~~~~~~~~~~~ 0

 for some xd E U?. Then p(z) = Xo and we must show that Xo E U0 implies

 X/ E Uo for all ,t > 0, all i,j. Lift the order relation (3.1) in Q(7r) to a total order.
 Fix ,u E Q+(7r) and assume that the assertion has been proved for all rq < ,u.

 Consider zy ,,keA. On the one hand this equals y_I,kzeA = XO(A)y-1,,keA. On
 the other hand it may be computed using (*). Comparison of terms and using the

 induction hypothesis gives

 Y-I4X5ixlsyj N,keA A E I()

 By our choice of bases, we deduce that

 Y 1,X(A)e,\E N(A)

 Since N(A) is a free U- module it follows that X5Y(A) E Ao. Since this holds
 for all A in Zariski dense set -P+(7r) we conclude from 6.13 that XX E U?, as
 required.

 Remark. The analysis here is similar in spirit to ([1], Prop. 2.2); see also

 ([1], 3.9).

 6.17. Combining 6.15, 6.16 (JL, 8.6) and ([2], 7.4) we deduce (as explained

 above) the
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 QUANTIZED ENVELOPING ALGEBRAS 167

 THEOREM. The centre Z(U) of U specializes at q = 1, ti = 1, V i to the centre
 Z(g) of U(g). More precisely

 (z(u) n U) J AoT/ (q - 1, ti - 1, V i) = Z(g)
 AoT

 6.18. There is an amusing application of the above to the computation of the

 centre Z(n-) of U(n-). Take ,tb E -R+(7r) and consider a lowest weight vectorf in

 LUH). Recalling 4.8(i), this has weight - 4wop. Under U-specializationf becomes
 an ad U(n-) invariant element of U(n-), that is an element of Z(n-), of weight

 4 (/t - Wop). (Here we must take account of the shift by 4itt of weights). Replacing
 U by U (notation 4.2) we may conclude that the same holds for ,t E -4P+(7r).

 Thus we have shown the

 THEOREM. For each ,tu E -P+(7r), the weight space of Z(n-) of weight itt - woII
 is nonzero.

 Remarks. It can be checked from ([6], Tables I, II) that in nearly all cases the

 w - wow: W fundamental run over the weights of the generators of Z(n-) which
 is a polynomial algebra. Indeed outside types E7, E8 at most the highest root is

 missing from this set. In these good cases one obtains a much simpler proof of

 ([6], Thm. 4.12). We also remark ([6], 4.4) that dim Z(n-)/H1O1 = 1. Now one
 can easily arrange distinct elements itt, pt' E -R+(7r) to satisfy ,tt-wo-tt = i/t-WoII'.
 The corresponding lowest weight vectors f E L(,)7-, f' E LQ(')- must have the
 same U-specialization; yet they cannot have the same S-specialization, because

 this would contradict 6.1(ii) and 6.7.

 7. Separation of Variables.

 7.1. Recall that G(U) = gryF(U), set Y = grgFZ(U) and let Y+ denote
 the space of homogeneous elements in Y of positive degree. In particular Y+ is

 a graded ideal of codimension 1 in Y. Let Max1 Y denote the set of ideals of

 codimension 1 in Y. We shall also use F to denote the induced filtration on

 G(U).

 LEMMA. For all Yx E Max1Y, one has an isomorphism gr,r(T<YX) T.T<Y+
 of graded vector spaces.

 Since E(xi) = 0 (augmentation) it follows that ad xi acts by zero on Z and
 hence by zero on Y. On the other hand in G(U) one has for any Laurent polyno-

 mial p(t) E U0 that

 (ad xi)p(t) = xip(t)ti - q2ditip(t)xi

 = xi(p(t) -pi(tWi
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 168 ANTHONY JOSEPH AND GAIL LETZTER

 where pi(t) is obtained from p(t) by replacing each factor tj by q(ati"ai)tj. This
 operation can be viewed as some exponentiated version of differentiation. In any

 case using the nondegeneracy of the Cartan matrix (a i, caj): i,j = 1,2,. .. , and
 the action of the xi: i = 1, 2,... ., f it easily follows that the multiplication map

 KT< OK Y oT<Y

 is injective and hence an isomorphism.

 Set (T<Yx)m = Fm(G(U)) n T<Yx and (T<Yx)m = (T<Yx)m/(T<YX)m-i.
 Note that we may view Y+ both as an element of Max1 Y and as a graded

 ideal. Since Yx E Max, Y and only the scalars have degree 0 we obtain an
 isomorphism gr,rYx -") Y+ of graded vector spaces and hence an inclusion
 (T<Y+)m C (T<Yx)m, for all m E N. On the other hand each c E T<Yx can be
 written in the form

 n

 c = Eaibi: ai E T<, bi E Yx
 i=1

 with the gr ai linearly independent over K. Set m = max{deg ai + deg bi

 i = 1,2,...,n}. Then c E (T<Yx)m. By the above isomorphism the products
 (gr ai)(gr bi) are linearly independent over K and so (possibly dropping some
 terms of lower degree) we can write

 r

 gr c = Egr ai gr bi E grT<grYx = T<Y+ .
 i=l

 Moreover by the linear independence, gr c E (T<Yx)m - (T<Y+)m-l. This proves
 the opposite inequality and establishes the required isomorphism.

 7.2. The remaining results of this section are only valid for the simply
 v v v v

 connected algebra U. We set in particular Y = Y(U) and T< = {T(- A): A

 4P+(7r)}.

 Given Yx E Max,Y, set Jx = G(U)Yx. Let Y+ denote the augmentation ideal
 of Y.

 PROPOSITION. For all Yx E Max1 Y, one has an isomorphism grFJX G(U)Y+
 of graded vector spaces.

 v v

 By 4.10 we can write G(U) = (ad U)T< and so

 (*) JX = Yx(ad U)T< = (ad U)T<Yx.

 Set Jm = Fm(G(u)) n ix and (T<Y )m = Ym(G(U)) n T<Yx. Since Y is ad U
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 QUANTIZED ENVELOPING ALGEBRAS 169

 invariant, (*) gives the inclusion

 ( * *) JDx D (ad U)(T<Yx)m, V m E N.

 It is easy to appreciate that 6.8 is just what we need to get equality in (**)

 and hence by 7.1 the assertion of the proposition. In more detail a strict inequality

 in (**) would imply (without loss of generality) that there exist v E-4P+(7r),

 l E-4P+(Xr), a11i E (ad U)T(,i) : i = 1, 2,. . ., s such that

 s

 Z (Yv-iii - X(YV-1t)) alti

 does not lie in (ad U)(T<Yx)m and yet has degree m. Here we can obviously
 assume T(v) has degree n > m and that deg yv-i > 0 all i. Then the cancellation
 of the degree n terms gives EyZ iaHi = 0. Successive application of 6.8 to this

 identity implies that we can find ( E -4P+ (7r) such that a11 = yli-_bi with
 bi E (ad U)-r(() satisfying E bi = 0, or that there will be "shorter" cancellations
 of a similar nature which we dispense with in a fashion similar to that described

 below. Thus

 s s

 S (yv-ii - x(yv-i)) aiy =-E 5-bi
 i=l i=l

 s-1

 -d- 5 (x(yv- i- -X(yv-li+ )Y,ai+ )y-=lb;
 i=l

 From our degree choices, this clearly belongs to (ad U)(T<YX)n-1. Successive
 reduction then gives the required contradiction.

 7.3. By local finiteness and complete irreducibility, G(U)Y+ admits a graded

 ad U stable complement H.

 PROPOSITION. The map h 0 y 4 hy is an isomorphism of H OK vY onto G(U).

 Surjectivity follows as in ([2], 8.2.2). For injectivity consider a sum of the

 form Z ha 0 yy, ha E H, y E Yv with the ha linearly independent of K. By
 choice of H and 7.2 it follows that H n Jx = 0, for each Yx E Max,Y. Now in
 Jx the yy are replaced by scalars say xy E K. Thus we obtain

 h yya = 0 EhyXy=0 ==* Xy =0, VYa

 It is enough to choose X such that y, 0 Yx for some -y to obtain a contradiction.
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 170 ANTHONY JOSEPH AND GAIL LETZTER

 Remark. Notice that to prove 7.3 we can restrict to a given isomorphism

 class E. Moreover we only need to show that grFJX = J+ := G(U)Y+ holds with
 respect to that class.

 By 5.3(**) and 5.4, we have [G(U)/grgFJx: E] > dim Eo. Since grgFJX D J+
 we have a surjection

 G(U)/grFJx := DmGN (G(U))/Jxm G(U)/J+

 which is an isomorphism if and only if equality holds for each m E N. By 6.9

 and the above we conclude that grFJx = J+ and in particular equality does hold
 in 7.2(**). This alternative analysis highlights the essence of our proof.

 7.4. By 4.11 we can choose an ad U stable subspace HI of U such that

 gr Hl = H. By 5.3 and the reasoning in ([2], 8.2.4) we obtain the

 THEOREM. The map h 0 z 4 hz is an isomorphism of IH OK Z(U) onto F(U).

 7.5. A more canonical choice of Hl would result if we could prove the

 following variation of (*) of 3.5. Namely, for all m E N that IZ restricted to
 v v

 Fm(U) is nondegenerate. Let (T<Y+)m denote the space of homogeneous elements

 of degree m in T<Y+. By 4.11 we can identify (ad U)(T<Y+)m with an ad U stable

 subspace of Fm(U). Then its orthogonal Em in Fm(U) is a complementary ad U
 stable subspace (if 3.5(*) holds). Then we may choose

 meN

 This construction more closely follows that of Kostant as described in 1.4.

 Again (if the above assumption on 1R holds) the sum of the restrictions of 1i
 to each Fm(U) defines (most naturally) a nondegenerate ad U invariant bilinear

 form on grgFF(U). One can ask if this form has a simpler description than Ri.

 7.6. (Notation 5.4.) It is clear that

 00

 P,-(q) = E [HmI: L(Q)]qm
 m=O

 for all ,u E P+(7r). In particular from 5.4 we obtain the quantum analogue of

 Kostant's result ([2], 8.3.9(ii)).

 COROLLARY. For all ,u E P+(7r) one has

 [H1E L(p1)] = dim L(Q)o

This content downloaded from 
�������������128.6.45.217 on Sun, 20 Apr 2025 23:41:42 UTC�������������� 

All use subject to https://about.jstor.org/terms



 QUANTIZED ENVELOPING ALGEBRAS 171

 8. Verma Module Annihilators.

 8.1. By extending K one may define (JL, 5.3) a universal highest weight

 module M(A) with any highest weight A E [*. Explicitly we set B = U?U+ and

 M(A) = U ?B KA where KA is the one-dimensional B module in which U++ acts by

 zero and ti by q(A ti). However this is rather unnatural and we prefer to restrict
 to the case A E P(7r) for which no extension of K is needed. The first place

 where this restriction would make a significant difference would be in conjecture

 6.10 which we are unable to prove anyway. Without further notification we shall

 assume henceforth that A E P(7r).

 LEMMA. AnnF(u)M(A) is completely prime.

 Equivalently F(U)/AnnF(u)M(A) is an integral domain. Since the action of

 ad U is locally nilpotent on F(U) it is enough by a standard argument ([9], 8.1) to

 show that (F(U)/AnnF(u)M(A))U is an integral domain. Through the action F(U)

 on M(A) the latter ring embeds in (EndKM(A))U where EndkM(A) is viewed as

 U- module for the diagonal action (cf. 6.10).

 Let e,\ be a choice of highest weight vector for M(A). Recall that M(A) is
 freely generated over U- with generator e\. Hence for each a E (EndKM(A))U
 there is a unique element y(a) E U- such that -y(a)eA\ = aeA. Obviously 'y is
 a linear map. It is clear that (EndKM(A))U is a direct sum of its ad T weight

 spaces. Let aX, E (EndKM(A))U be an element of weight p,. Then

 al1yie, = q-(at18+A-ai)tialyie,

 = q-(ai -) [yia1tie\-(ad yi)a11eA]

 = q-(ai')yia11e\, V i E {1,2, ...,}

 From this we conclude that -y is injective. Furthermore -y(aILav)eA = a,1aveA =

 a1y(av)ex = q -(y(av)a,ieX = q ( -v)y(av)-y(a/)e\ and so

 -y(al,a,) = q-(1t)-y(av)-y(a).

 A standard argument (cf. JL, 9.2) shows that if ab = 0 for some 0 # a,b E

 (EndKM(A))U then the highest weight component al, (resp. bv) of a (resp. b)
 must satisfy a11bv = 0. Then y(bv)y(a1,) = 0, which contradicts the fact that U-
 is an integral domain (JL, 4.10) and the injectivity of -y. This proves the lemma.

 8.2. Consider M(,) C ObOp(,).

 LEMMA.

 (i) M(p) is simple x=?> ,t E -P+(7r).

This content downloaded from 
�������������128.6.45.217 on Sun, 20 Apr 2025 23:41:42 UTC�������������� 

All use subject to https://about.jstor.org/terms



 172 ANTHONY JOSEPH AND GAIL LETZTER

 (ii) M(p,) is projective t==> , E P+(7r).

 Suppose (ayV, ,) E N. Then by (JL, 5.6) we have an exact sequence

 0 - M(si ,u) - M(,u) - MQWt)/M(si * A) - 0

 which is already nonsplit over U- (because the latter is an integral domain (JL,

 4.8) and a Verma module is a free rank one U- module). This gives =?- in (i),
 (ii). The converse assertions follow from (JL, 8.6) and the same reasoning as in

 the enveloping algebra situation.

 8.3. Let E be a simple finite dimensional U module and for each v e

 P(7r), let Ev denote its v-weight subspace. Recall the semisimplicity of finite
 dimensional U modules (LJ, 5.12).

 LEMMA. If either v E P+(7r) or ,u E -P+(7r) then [F(M(v), M(u)) ] =

 dim El-

 For the first assertion, we use, as in the enveloping algebra case, the canonical

 isomorphisms

 Homu(E, HomK(M(v), MQ,)) Homu(E OK M(v), M ))

 Homu(M(v), E* OK M(pW))

 Now as in 4.4, E* 0M(jt) admits a Verma flag with factors M(p + ): ( E Q(E
 Since v is dominant Homu(M(v),M(p, + ()) = 0 unless v = ,u + (. Since M(v) is

 projective (8.2(ii)) the left hand side has dimension dim E* = dim El,,, as
 required.

 For the second assertion we define an algebra homomorphism A U -
 U 0 U through A = (a-1n 0 1) A where a is the antipode and is the Cheval-
 ley antiautomorphism (JL, 4.8). Using triangular decomposition one checks that

 B B n Ai(u) = A(U0) and then as in ([2], 2.2.9) that the multiplication map
 defines a linear isomorphism of (B 0B) OA(Uo) A(U) onto U ? U. Then as in ([2],
 5.5.4, 5.5.8) we obtain isomorphisms

 (M(u) 0 M(v))* HOMB0B(U 0 U, K_ 0 K_>)
 Hom'&(Uo)(l&(U), Kl,-v)

 of U 0 U and A(U) modules respectively. Then as in ([2], 5.5.7) Frobenius
 reciprocity gives

 (*) [(M(,u) 0 M(v))*: E] = dim Es,_>
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 QUANTIZED ENVELOPING ALGEBRAS 173

 Given M,N E ObOp(,), set

 F(M X N)* = {f E (M X N)* dim A(U)a < oo}

 Taking account that 6M is viewed as a U module using tz, whereas (M 0 N)* is

 viewed as a UOU module using a?ca, one checks that the canonical isomorphism

 HomK(N,HomK(M, K)) "I* HomK(M X N, K)

 restricts to an isomorphism of F(N, EM) onto F(M ON)*. Since 3M M if M is
 simple (JL, 5.12) the second assertion of the lemma follows from 8.2(i) and (*).

 8.4. Let A be a K-algebra and M an A module. We denote by dA(M) the

 Gelfand-Kirillov dimension of M over A. General definitions can be found in [ 14].

 Gelfand-Kirillov dimension is rather well-behaved for enveloping algebras (for

 example it takes integer values and is exact-i.e., behaves properly on exact

 sequences). Although we won't need this, recently McConnell [18] has shown

 that this good behaviour extends to Uq(g). For present purposes we only need
 the following two facts which are rather easy and well-known.

 Suppose A is an integral domain and L a nonzero left ideal of A. Then

 (*) dA(A/L)< d(A)-1 .

 Suppose A is a bi-algebra. Let E, M be A modules. Via the comultiplication

 map we may view E 0 M as an A module.

 Suppose dimKE < oo, then

 (* *) dA(EOM) <dA(M)

 LEMMA. Suppose M, N are simple U modules. Then F(M, N) = 0 unless

 du(M) = du(N).

 This follows from (**) exactly as in the proof of ([5], 10.13).

 8.5. Fix A E P+(7r). Set

 F(x,y) = F(M(x. A),M(y. A)), V x,y E W.
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 PROPOSITION. For all w E W,

 (i) The natural maps define an embedding

 F(M(w. A),M(w. A)) c-? F(M(wo * A),M(wo A A))

 of F(U) bimodules.

 (ii) AnnF(u)M(A) = AnnF(u)M(w * A).

 It is immediate from (JL, 6.4) that dF(U) and du coincide on modules admitting

 a weight decomposition. On modules in Op(,) it is also obvious that du and du-
 coincide. We denote this common dimension operator by d. From the formal

 character of U- one easily checks that d(U-) = dim n-, so it is finite.

 (i) Recall that M(w. A) is isomorphic to U- as a U- module. Its submodule

 M(wo A) then identifies with a left ideal L of the integral domain U-. Since

 M(wo A) is simple (8.2(i)) we conclude that M(wo * A) = Soc M(w * A). Hence

 by 8.4 we have F(N,M(w. A)) = 0 unless d(N) > d(M(wo * A)). Now take

 N = M(w A)/M(wo * A). By 8.4(*), d(N) < d(M(w A)) - 1 = d(M(wo A A)) -

 1 < d(M(wo * A)). Consequently F(M(w. A)/M(wo A), M(w. A)) = 0. This in

 turn implies that the natural map F(w, w) ) F(wo, w) is injective. Again by

 8.4, one has F(M(wo * A), M(w. A)/M(wo * A)) = 0 and so the natural injection

 F(wo, w) c-- F(wo, wo) is an isomorphism. Combined these prove (i).
 (ii) From the embedding M(wo * A) c-? M(w. A) we obtain AnnF(u)M(wo A) D

 Ann M(w. A). For the converse, consider F(w, w) as a left F(U) module. Obviously

 AnnF(u)F(w, w) D Ann M(w. A) and equality holds because F(w, w)M(w. A) =

 M(w. A). From this the required inclusion results by (i).

 Remark. We apologize here for a slight flaw in the logical order. We used

 8.5(i) in the proof of 6.12 as was noted there. The conclusion of 6.12 (which

 uses Kostant) shows that the embedding in 8.5(i) is an isomorphism. For this

 last result, one can avoid the use of Kostant by using 8.3 with v E P+(7r) and

 reasoning as in ([3], Sect. 3). Again the results of ([3], Sect. 3) carry over to our

 present situation.

 8.6. It is clear Annz(U)M(1a) is an ideal of codimension 1 in Z(U). By
 (JL, 8.6) it follows that Annz(U)M(1a) = Annz(U)M(v) if and only if ,u, v lie in
 the same W. orbit, that if there exists A E P+(Qr) such that ,u, v E W . A. We set
 Z = Annz(u)M(w A): w E W. Obviously AnnF(U)M(W. A) D F(U)Z and we may

 anticipate that equality holds. This would follow easily from Gelfand-Kirillov

 dimension estimates had we known F(U)Z~ to be completely prime. Actually

 since gryF(U)Z~ D G(U)J+, it is enough to show that G(U)J+ is completely

 prime. We do not know this yet. Despite this we shall prove the

 THEOREM. For all ,u E P(7r), one has AnnF(U)M(pu) = F(U)Annz(u)M(Q).
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 QUANTIZED ENVELOPING ALGEBRAS 175

 By 8.5(ii) it is enough to prove this when ,l E -P+(7r). Then the assertion
 follows from 8.3 and 6.12.

 8.7. It is clear from 7.4, 7.6, 6.12 and 8.6 that the inclusion gryF(U)ZS D
 G(U)J+ is in fact an equality, though the proof is hardly direct, nor does it imply
 that G(U)J+ is completely prime.

 Recalling the notation 4.13 and 7.1 choose any homomorphism X: Y - K
 such that X(Y,u) $ 0, V ,u E -R+(Qr) and set Yx = ker X. It turns out that there is
 a direct rather easy proof that G(U)YX is completely prime. However this cannot

 hold for G(U)Y+ or even G(U)Y+ since one can show that this implies that 7.4
 holds for G(U). We expect to come back to these points in a subsequent paper.

 Appendix. Table of Notation Symbols used frequently are given below
 where they are first defined (see also JL, Index of Notation).

 1.-1. - , U(0), Z(0),

 1.2. Uq(g)

 1.3. U

 1.6. Z

 2.1. Xi, Yi, ti, ai

 2.2. TF, UO, U+, U, deg

 2.3. ad

 3.1. T, ir, P(Qr), Q(Qr), R(Qr), T, To, U
 3.2. 9o, M(A), L(A)

 3.3. 1?

 3.4. P+(7r), R+(7r), F*(U)

 4.2. wi, wo

 4.4 T<, T', wo

 4.5. Tm

 4.6. G, G+, G-, Go, GA\, G , G-, G(A)-
 4.9. K(A)-, F(A)

 4.13. zA, yA
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 5.5. G(U), Y(U), Y+, J+

 6.1. S(A)-

 6.2. yo

 6.10. F(M,N)

 6.11. T1', H'

 6.15. w A

 7.3. H

 7.5. 1H
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