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There are many math questions 
that have never been answered.



Others took centuries to solve.



 This is the story of a geometry problem that 
remained unsolved for almost 100 years.



Geometry is the study of shapes and space.

It helps us understand how things fit together,
from tiny soap bubbles to the way the universe curves.



Thousands of years ago, people discovered 
that Earth is shaped like a sphere.



But our planet isn’t perfectly round.
Its spinning squashes it slightly and

the land forms mountains and valleys.

So mathematicians study how 
surfaces bend and stretch.



Here is a surface that is very 
different from the earth.

We can bend this surface into a coffee mug,
 but not into a sphere!



Some surfaces can be bent into spheres. Others cannot.
How can we tell the difference?



The mathematics which studies how surfaces
 and other shapes bend is called topology.



And mathematicians who study 
topology are called topologists.



Imagine a ship sailing between 
two harbors on a sphere. 

We can bend one path into another 
without leaving the surface.

For topologists, this means all paths 
between the harbors are the same.



But on a planet shaped like a donut, a route that loops around 
the hole one way cannot bend into one that loops another way.

So the topologies of these worlds are different!

 Henri Poincaré introduced this idea in 1895,
 and used topology to study the geometry of surfaces.



Henri thought about three-dimensional 
space too. In 1904, he posed a question:

If every loop in a closed space can be shrunk to a 
point, does the space have the same topology as a 

3-sphere?



This question became known as the Poincaré Conjecture.



Over the next 80 years, many 
people thought about topology. 
They discovered many strange 

and fantastical spaces.



And they invented tools to study these spaces. 
But despite all their efforts, no one knew how 

to answer Henri’s question.





Then, in 1982, Bill Thurston found a new way to 
think about three-dimensional geometry.

He described eight special kinds of geometry.





And given any three-dimensional space,





he envisioned a way to cut it so that each
 piece had one of these geometries.



This became known as the Geometrization Conjecture.

This idea became known as the Geometrization Conjecture.

It suggested there was a hidden structure to three-dimensional space.



And if Bill’s idea was true, it would show that Henri’s idea was true too!



Around the same time, Richard Hamilton had another 
idea. He found a way to change the shape of space using 

the way it curves.

Parts which curve one way get larger as time passes.



This process is called Ricci flow.

Parts which curve another way get smaller.



Many people thought about flows, and Richard believed 
they could help solve Henri and Bill’s conjectures.



But there was a problem.



Sometimes Ricci flow would reveal the underlying geometry.

But other times something would go wrong,
 and space would tear itself apart.



No one knew how to control the geometry of these singularities.

So Henri’s question remained unanswered.



Fifteen years later, Grigori Perelman 
made a crucial breakthrough.

He imagined putting a very hot 
object in space and letting its heat 

spread out backwards in time.



The heat gave Grigori a new way to understand Ricci flow.

And helped him figure out what to do when space would tear apart.



Just before the singularity, Grigori carefully cut space into pieces.
 Then he stitched up where the cuts had been made.

This process is known as surgery, and the heat 
helped him understand how to make the cuts.



After each surgery, he restarted the flow.

Grigori repeated this process until all the pieces became simple 
enough. Then he glued them back together to understand the 

original space.



  Over the course of several years, Grigori developed these ideas 
and used them to study the structure of three-dimensional space. 

In November of 2002, Grigori finally shared his work to the world. 
Using Ricci flow, heat and surgery, he solved both the Poincaré and 

Geometrization conjectures.



And mathematicians continue to explore new mysteries.

What will they discover next?



 The proof of the Poincaré conjecture is one of the most significant achievements 
in mathematics, marking the culmination of centuries of development in geometry, topol-
ogy, and partial differential equations.

 I was in high school when I first heard about the conjecture and its solution. Al-
though I didn’t understand any of the details at the time, I was fascinated by the imag-
ery of curvature flows and surgeries carving geometric spaces. It felt like something out 
of science fiction, completely unlike the math in my classes.

 In this book, I have done my best to tell the history of the Poincaré conjecture 
and to communicate that mathematics is a collaborative endeavor, built on the contribu-
tions of countless mathematicians over generations. For young readers, I hope this book 
inspires curiosity and sparks an interest in geometry. For readers with more expertise, 
I hope the illustrations generate further discussion. Math is a beautiful field, and I’m 
excited to share this story with you.



 
Technical Notes

 My goal was to tell the story accurately, both with respect to the mathematics as well as the 
history. In order to provide a cohesive narrative, this book focuses on developments throughout the 
20th century, although it is worth emphasizing that there were many important discoveries before 
that time. In addition, there are several anachronisms between the background text and the main 
story, such as Möbius’ name appearing on the page discussing mathematicians who worked on topol-
ogy after Poincaré.

 There are two additional points of clarification that should be made. First, symplectic geome-
try does not play a role in the Poincaré conjecture. I included the symplectic camel as a reference to 
Gromov, whose contributions to geometric group theory and metric geometry have been instrumental 
in shaping modern geometry and play an important role in both Thurston’s and Perelman’s work. 
Second, the idea of combining Ricci flow with surgery was originally proposed by Hamilton. However, 
he was unable to fully control the geometry of three-dimensional singularities or rule out certain sin-
gularity models that could not be excised by surgery. Although Perelman did not invent surgery, his 
insights into the structure of singularities enabled him to successfully carry out the surgical process 
and complete the proof.

 The background text on several pages incorporates excerpts from the papers cited in the refer-
ences as well as the Universalis Cosmographia, which was the first world map to label the Americas. 
The remaining images were created using Procreate and Photoshop. Many were inspired by existing 
mathematical figures or techniques for visualizing mathematical concepts, while others drew influence 
from artworks and posts depicting specific geometric figures, which are cited in the artwork referenc-
es. The cover art depicts an artistic interpretation of a planet with S2 × S1 geometry.
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