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THE PROBLEM OF RANDOM INTERVALS ON A LINE
By C. DOMB
Recetved 23 August 1946

1. Statement of the problem. Suppose that events occur at random points on a line
from ¢ = ~ o0 to + 00, the probability of an event occurring between ¢ and ¢ + dt being
Adt. If we select any interval of the line, say the interval [0, y], there will be a finite
probability that it contains 0,1,2,...,7,...events; in fact, it is not difficult to show that
these probabilities form a Poisson distribution, the probability that the interval con-
tains r events being A"y e—2¥/r! (see e.g. (1)). Consider the case when each event consists
of an interval of length « (an event being characterized by its first point). What is the
probability that the covered portion of the interval [0, ] lies between x and z + dx?

A related problem*, that of n given intervals at random points on the circumference
of a circle, has been discussed by W. L. Stevens(2). The methods used in the present
paper, however, are basically different from those of Stevens, since the concept of
random events on an infinite line leads naturally to the use of continuous processes.
Some of the results given by Stevens will be deduced in the course of the work.

- The problem has also been discussed recently in a paper by H. E. Robbins(3). He is
concerned with the moments of the resulting distribution, whereas we are more con-
cerned with its explicit formulation. The problem of the moments will be dealt with
in §11.

2. The basic equation. Lett T(z,y) be the probability that the covered portion of
the interval [0, y] is less than or equal to z; and let W(z, y) dx be the probability that
the covered portion of the interval lies between = and xz+dx. Then W(x,y) is the
differential coefficient of T'(z,y) with respect to x.. Both W(z,y) and T(z,y) will be
zeroifx<Oory—x<0. )

It is clear that there will be a finite probability of the interval being completely
uncovered or completely covered. Hence the function 7'(z,y) has a discontinuous
jump at z = 0 and z = y. Similarly, there will be a finite probability of the interval
consisting of exactly  non-overlapping events (including no overlapping at the end-
points), where r has the values 1,2,3, ..., 7, n being the integral part of y/e. Hence
T(z,y) has a discontinuous jump at each of the points z = a,2«,...,na. At any
discontinuity of 7T'(z,y) the function W(z,y) is not defined in the pure mathematical
sense. However, W(z,y) is more convenient to deal with than 7T'(z, y), and we therefore
use the d-function notation; if 7'(z,y) has a jump of magnitude K at x = k we say that
W(z,y) has a é-function singularity at z = k and contains the term Ké&(x— k). Thus
W (z,y) will have §-function singularities at z = 0, «, 2¢, ..., 7, y.

* I am indebted to H. Jeffreys for drawing my attention to this aspect of the problem, and
for & number of helpful suggestions.

t We are here considering the problem described at the beginning of §1. The case of n given
events will be dealt with in §7.

https://doi.org/10.1017/50305004100023562 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004100023562

330 C. DomB

Let w(z, y,£) dxd& be the probability that the covered portion of the interval [0, ]
lies between z and z +dx, and that the last event (i.e. that immediately preceding the
right-hand end of the interval) occurred between £ and £ +d£ from the right-hand end
of the interval.

Consider first the case a < z; then at least one event must have occurred in [0, y],
and the possible values of £ range from 0 to y. Divide [0,y] into two subintervals
[0,y—£&]land [y — &, y]. Thenif £ <a, w(z, y, §) dx dE corresponds exactly to the following
two independent events:

(a) w(x—§,y—E&,0)daxdf in the interval [0,y —£]. .
(b) No eventin [y—§,y].
Therefore w(z,y, ) =eMwx—£,y-§0) (¢<a)
and by a similar argument . (1)
_ w(z,y,§) = e Mw@E—a,y—£,0) (a<f)
By dividing [0, ] into [0,y — d£] and [y — d§, y] we can show that
w(x,y, 0)drdf = AdEW (x,y) dz. 2)
Using (1) and (2) we obtain

v & y—x+a
Wy = w9, €)d = [2e Waty-pag+ [ 2 We-ay-£dE (3

for a<z. (The upper limit of the second integral is taken as y—x+a, since
Wrx—a,y—§ =0if y—Ef<z—a.)

When z < « the covered portions must occur within the regions [0, ] and [y — =z, ¥].
Values of £ can now be divided into two categories (@) 0<{<z, (b) y<E<y+a.

Case (a) gives rise to a termfz)te—"g W(z—§&,y—£)dE as above. Case (b) may be further
0 .

subdivided into the following:

(i) An event in [x —a,z+dxr—a] and no event in [z +dz—a,y]. The probability is
Ae~Av—z+a) gy

(ii) The finite probability that the line is completely covered by an event occurring
in [—«,0] and no events occurring in [0,y]. This is only relevant when y <«, and

-involves &(y—x). (The case in which the line is completely covered but events also

occur in [0, y] has been covered by (a).) It gives rise to a term &(y —z) e=2*[1 — e~Xa—9],
We must also add a term e-*¥-=+2) §(z) to represent the finite probability that the line
is completely uncovered.

Hence we have

W(z,y) = f : A W(x—£,y—£)dE+e 20—+ [A 4 8(x)]
+8(y—z)e Al —e M) (x<a). 4)

Equations (3) and (4) are the basic equations which completely determine the form
of W(z,y).
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3. Formal solution of the equations. The basic equations assume a more tractable
form if we change variables. Write y—x = z and put W(z,z+z)=f(=z,2). Then (3)

and (4) become
f(z,2) = f:Ae—Mf<x-§,z)d§+ f TN f@—azra—f)dE (@<z) ()

and
f(z,2)= J. :Ae"‘g flx—§,2)dE + e MDA+ O(z)]+ e 8(2) [e M —e 2] (z<a). (6)

The coefficient e~*2 of §(z) in (6) has been inserted for convenience and makes no
difference to the value of the term.

The second integral in (5) can be written as

e—“"r AeMf (2 —at, z— ) dny = e‘*“‘“’f A f (@2, §)dL.
0 0

Thus flz,z) = ja/\e—"gf(a:—g, z)d§+e"‘("‘+2)fz/\e"€f(x—oc, 0d¢ (a<z). (M
0 0

Equations (6) and (7) are amenable to treatment by Laplace transforms in z. We
use the notation of van der Pol; if f(x) has Laplace transform F(p) we write f(z) = F(p).
Let f(x,2)= F(p,z). As mentioned in §2 f(,2z) does not exist in the mathematical
sense at certain points, and Laplace transforms are only strictly applicable to

f “J(w,2)da= Fp,2)p.

If this integral has a discontinuity of magnitude K at z = k the corresponding Laplace
transform contains a term Ke~*P; thus, if for convenience we work with F(p,z), we
obtain a term Kpe~*?, which is then to be interpreted as Kd(x — k). The following results
can easily be deduced from Laplace transform theory:

é(z)=p,
fe-a2) @za).
0 (z<a)}7e Fp.2),

f Nl ) dE+ p% F(p,2),

f NeMfz-a,0)d (x>a)
0

0 (z<a)

F"e‘“ﬂx—g,z)dg (xza)} A

}¢ f “AeM e F(p,{)dL,
Jo

=_ " _e—ap+d)
=T Ae F(p,2),

0 (x<d)
eM—e 2 (z<a)) . p(l—e ) —Ae2%(1 —e2P)
0 (:a:;ac)}T P+A ’

Applying these results to (6) and (7) we obtain
F(p.2) = 2 P, [1 - o] + o090k e Fip, g
0

—p—Aa) _ \p—Aa(] _ p—ap
A AL -] et 4 o) LTI 0T
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If we write F(p,z)e** = G(p, 2), (8) simplifies to the form

6p.2) = 4+ B 6(p,)dt+03() (9)
0
_ e M(p+A)(p+A-2AeP) Ae—dP+N(p + A)
where A= p+Ae_a(p+A) ) B = W ’
_ p(l—er2)— Qe (1 —eP)
and 0= P+ Ae—@+D

Equation (9) can be solved in the ordinary way for G(p,z) (by making use of the
properties of §-functions) and we obtain

G(p,2) = Cé(2)+ (4 + BC)eP>. (10)
This solution will be found to be valid on substituting in (9).

4. Interpretation of the solution. In order to interpret (10) in terms of  we expand

the exponential as a power series,
B2 Brzr
1+ Bz+—+...+—+....
21 r!
We then have to interpret terms of the form ABr, CBr. For this we must expand the
denominators in ascending powers of e-*?. Any term multiplied by e—"*? gives zero if
x <ra. Asa typical example 4 B" is expanded in the following form:

A\r+l
AT g~(rtDAa g=1ap(p 4 X — Ae—oP) ( 1+ 1—9)

\

x I:l _OADA ey D +2) (&)Z-m+»+ ] _
P 2! p
Clearly all terms of this are zero unless x> rx. The enumeration of all terms in the
general case is very complicated. When ra <z <(r+1)a only terms up to 4B and
CBr in the expansion of the exponential need be considered.

5. The 8-function terms. By examining the terms in the expansion of (10) it is quite
easy to sort out the d-function singularities which were mentioned in §2. First, the
coefficient of &(z), C, is the probability that the whole interval is covered; this will be
dealt with separately in the next section. All §-function terms in z will be given by
terms of the form ¢(z) pe~"*? in the expansion of (10). B and C do not give rise to such
terms but A does; hence the only terms of F(p,z) that need be considered in this
connexion are of the form A Brzre=*2/r!.

The zero order term is pe—*=+2; this corresponds to the probability e~*w+% of the
interval being completely uncovered.

The rth order term is pATz’ e—(r+VAz ¢—12p ¢~A2/r | giving rise to a term §(x —ra). Hence
the probability that exactly » non-overlapping events occur in the interval (including
no overlapping at the end-points) is

X(y—ra)evidrl  (y>ra). (11)
This must be made up of the following independent probabilities:

(a) Exactly r events occur in [0,y —«]; probability A"(y —a) e=*w=2)/r!.

(b) No event oceurs in [ —a, 0] or [y — a,y]; probability e~2A=.

(¢) Given r events occurring in [0,y — ], no two overlap.
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By examining (11) we deduce that the probability of (c) is
y—ra\’
( — ) . (12)

From (12) we can deduce a result obtained by Stevens. Given r intervals of length a
at random points on a circle what is the probability that no two overlap? Let y be the
length of the circumference of the circle. Choose the beginning of any one interval
as origin measuring in an anticlockwise direction round the circumference. Then no
two intervals overlap if, and only if, (a) all (r — 1) remaining intervals occurin [,y — ],
and (b) no two of these intervals overlap.

Using (12), we obtain for the required probability

T

6. Probability that total interval is covered. We conclude from (10) that the prob-
ability of the total interval being covered is given by
p(l — e—/\a) Ae—/\a(l — e—ap)
P+ Ae~P+D)
It is easy to deduce this result from first principles by a method similar to that used
in §§2 and 3. For if z(y) is the probability that the total interval is covered we can
deduce the equations

oy) = j “Realy - £)dE w>a),

(14)

3 - (15)
and 2(y) = fo AeM2(y—E)dE+e W —e A2 (y<a),

which lead to the same result as (14).
Expanding (14) we obtain

[(l — e-—/\a) —_ e—/\a(l — e—ap) z ( —_ l)r(p) e—Ta®+2),
Collecting together the terms in e—*? we find a,fter a little simplification that they are

(= 1)+l e~r+a [(p) (P\)m]

Hence we can write down 2(y) in a simple explicit form

2y) = 1-e~u(1+/\y)+e—2&a|:,\(y )+ =)
. —(r a /\ y rra)f Af+l(y — ,’.a)r+1
4 (= 1)+ g-tr+IA [ D) :|+..., (16)

all terms beyond y—na being ignored if na <y <(n+1)a. The expression for z(y)
assumes a more empirical form if we choose new variables, Aa = 8, y/a = v, 2(y) = {(v).

Then {(v) = 1—e-4(1 +ﬁv)+e-zﬂ[ﬂ(v— 1)+'g—j(v— 1)2]-—.

+(—-1)y+ e“'“)ﬂ[g (v—r)y+ (r't:zl) ! (v —r)’“] +.... (17)
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7. The case of n given events. Derivation of Stevens’s solution. We can divide the
general solution W(z,y) into mutually exclusive categories in which exactly n events
oceur in [ — e, y]. The probability that exactly n events occur in [ —a, ] is

Ay + o)t e Mvta)p 1,

Let W, (z, y) dz be the probability that, given n events occurring in [ — «, %], the covered
portion of [0,y] lies between z and z +dzx. Then
Wi,y = 5 “@tar
n=0 A T

Hence, if we expand W(z,y)e’¥+* in ascending powers of A, the coefficient of A™ will
be a function of 2 and y only, and completely determines W, (x, ). The complete solution
W.(z,y) is very complicated, but the method can fairly easily be applied to z(y) to
determine z,(y), the probability that given n events in [ —a,y] the interval [0,y] is
completely covered.

We have to expand z(y) eXv+ in ascending powers of A. It is convenient to go back
to the Laplace transform of equation (14). If 2(y) = Z(p), then

NI (). (18)

Aa Aa
Ay+a) - PE oy Pt P P
2(y)e : P_AZ(p A) P—A p—RA p—AiieP (19)
The first term of (19), pere/(p — A) = eXv+a) and the coefficient of A™ is (y +a)"/n!.
The second term is - § (%)8 % (/—\)t (1 —eP}.
s=1 t=1\P

The term involving A” is

- (2)"[1 +(l—e=P) 4 ...+ (1—eP)n] = — (%)"eap[l —(1—e )], (20)

Taking the Laplace transform of (20) and dividing the coefficient of A® by (y +a)"/n!
we deduce that
" _— n —_— - n
Za(y) = 1 —"+101(y—z—0—‘) +-n+102(§;+—2) 4o 4 (= 1), (’/;Tl“) +..., (2])
the series terminating with s equal to the integral part of (y + a)/a if this is not greater
than n + 1, otherwise with s = n+ 1. In the latter case z,(y)=0, as can easily be seen
from the form of the Laplace transform of (y + a)" 2, (y).

Now consider » intervals at random points on the circumference of a circle. Choose
the end of one interval arbitrarily as origin, and measure distances anticlockwise round
the circumference. Let y be the length of the circumference of the circle. Then the
probability that the circle is completely covered is the probability that given (n— 1)
events occurring in [ —a,y—a] the interval [0,y —a] is completely covered. This is
2p—1(y—a), which is the solution given by Stevens.

A problem somewhat similar to that discussed in this section has been dealt with in
a recent paper by Votaw(4) by methods substantially different from those used here.

8. The distribution of gaps. The method of the preceding sections can be applied to
determine the probability distribution of the number of gaps in a given interval of
line [0, ], and hence to deduce Stevens’s results for a circle. Let u,(y) be the probability
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that the interval [0, y] contains 7 gaps (including gaps at the beginning and end of the
interval). Then u,(y) = 0 when y<(r—1)a(r>1), u,(y) is identical with z(y) of §86,
and u,(y) includes the case when the interval is completely uncovered. Let u,(y, £) d&
be the probability that the interval [0,y] contains » gaps, and that the last event
occurred between £ and £ + d£ from the end of the interval. By analogy with equation (1)

we deduce that u(y, &) = AeMufy—£)dE (E<a)

and e b et acicy] @7

(22)

When 7 > 2 values of £ between 0 and y cover all possible cases; but when r = 1 a term

must be added to take account of values of £ >y. Hence we have

u,(y) = f “Aeu(y—£)dE+ f “eu,_(y—E)dE (r>2)
. ; (¥>a).
() = f "Ry~ E)dE + f A ugly — ) g+ e

When y < a only u,(y) need be taken into accbunt, and we have

uy(y) = f “AeKuyly—g)dE+en (y<a),

but it is also convenient from the point of view of Laplace transforms to write

uly) = f AeNuy-df (r>2,y<a)

(23)

(24)

We now take Laplace transforms in y, and write «,(y) = U,(p). Using results similar

to those quoted in § 3 we obtain

U A g U Ae M)U 59
r(P)—p_‘_A[ —e ] r(P)'l'm— (p) (r>2),
Ae—a(IH-A)
or U(p) = P+ AT U, 1(p) (r>2),
A Ae—D+) pe—io+a) :
= — -— —a(D+A) R —Aa —_p—a
and  U(p) = =5 (1= NP+ — 3= o)+ =y +em (1 —e7).

Substituting the value of Uy(p) from § 6 we obtain, after a little simplification,

U(p) = L= Ge@)] __plp+A)e?
\p) = D+ Ae@HD T [p+ Ae—=@ IR’

) Ar-1 p(p + /\) ez g—(r—1)ap

Hence, by (25), Ulp)= [p + Ae— T 07 (r=1).
We may verify that
o + Ae—P+A
2 U -t P < 1- v,

by (26). To derive an expression for u,(y) we expand (27) in the form

Ulp) = (1 +§) (%)'_le-"‘“ g~r—Dap [1 _ '1*'!1) (2) e—adP+A)

+———(r+ D(r+2) /_\)ze_m+»+ ...+(_1)a(r+ D...(r+e) (%)’e-’w(ﬁ”h-.

21 8!
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so that, forr>1,
Ay —r—lay-! A(y—7—la)y riia

(r—1)! r! —r+1)e
[AT(y —ra)” ATtl(y—ra)t! SrED) (7 48) e
X oy D) +...4+(-1) A e
Ay —rFe—Taytet Ay —rrs—1 1a)’+3:|

| s D! (r+9)!

where all terms beyond (y—mna) are ignored if na<y<(n+1)a. In terms of the
empirical variables of (17), if u,(y) becomes £ (v),

Cpr Yy —r—1y-1 friv—r—1y

R AN I
—ﬂr(v_,r)r ﬂr+1(l,_,r)r+1 (’I'-I- 1) ("_'+8) —{r+8)8

xL p) T +...+(—1)5———————8! e

Qr+s—1{y gyt g— 1)r+s-1 +8(y— 1+ g)+

9 frretv—r+s—1)r+s-1  fris(y—r ) ":I 3 (29)

(r+s—1)! (r+s)!

We can now use the method of § 7 to deal with the case of » given events. If we

0 n n
expand «,(y) eXv+2) in the form 3 A_(y:*'a)_
n=0 :

u,(y) = gria

-

(28)

&) = e

Uy (¥), %, (y) is the probability that, given

n events occurring in [ —«, y], the interval [0, y] contains » gaps. We again return to the
Laplace transform U,(p); we have, by (27),
pzAr—l e—{r—1lep

(p— A+ Ae—op)r+l
= e)r-le—('—l)“? [1 +(r+ 1)%(1 —e*P)+ ...+ r+1)...(r+3) (%)3(1 —e Py 4 ] .

Al +a)iL — Ax —
u ) 2= LU -

s!
!
The term in A" is A ne—(r—l)ap _(p+D! (1 — e—ap)n-r+1,
riin—r+1)I
and hence
) =206 () e (E) v
x (Q—_—;—:Z;M)” + ] (30)

The case of n intervals at random points on the circumference of a circle can be dealt
with by an argument similar to that given at the end of §7. We deduce that for n
intervals the probability of  gapsis u,,_,(y — ), which is in agreement with the solution
given by Stevens.

9. Moments of the distribution of gaps. The moments of the gap distribution can be
conveniently determined by means of Laplace transforms. Let

: ® © (k) (q7) GF '
moly) = E up)e? = K+ 3T, (31)
where K is independent of 6, and let
mo(y) = My(p) = ZU(p)e”- (32)
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Then the coefficient of 6%/k! in My(p) is the Laplace transform of the kth moment
19(y). Substituting for U/(p) from (27), we obtain

Aef—am+d) def—ap+i \r
My(p) = U),(P)eo[:1+p—_*_/‘\-é——‘w+ (I—’————) +]

+ Ae—ap+d
_ Ui(p)€’[p+Ae—=@+h] Uy(p)
T p—Ae—@N(ef —1) e f— Ae—dPtD[[p 4 Ae—a@+A)]
_(p+A)e?= 1
- 2 3 ’
T R @
31
where ! = 1+ Ae=#»+3/p. The coefficient of § is e~2*(1 + A/p); hence
Hy) = e**(1+Ay). (34)
Similarly, the coefficient of §2/2! is (1 + A/p) e~2*(— 1+ 21); hence
. .
EP(y) = (1 + Ay) + 2¢~2A [’\(y —a)+ /2\7 (R “)2] ' (35)

Higher moments may be determined similarly. The mean-square deviation u® — p@*
is equal to Ayera[1 — 2Aae—2e] + e=Ao[1 — e=A%(1 + 2Aa — A%at)]. (36)

The moments of the gap distribution for » given intervals on a line (and for » intervals
round a circle) can also be conveniently determined by using the Laplace transform of

(y+a)* U, (y)/n!.
Let M (y) = M,5(p),

ni @ n (%) 13
where  m,,(y) = (y-;;x) [1 + r§1uM(y) erﬂ] y+oc) [K § ~ Hn (y)0 :|

and K, is independent of 6. Then, by (30),

Moofp) = (Up)es? 5 w43C, =720 (1 — =sw)nrit
r=0

= (1/p)"e*P[1 — =P + ef—oPn+1

= (1/p)r exP[1 ~ e~2P(0 + 02/2! + 63/3! + ...) "+ (37)
The coefficient of 6 is (n+ 1)/p™; hence
K = (n+1) (yly + )™ (38)
The coefficient of 62/2! is 1/p*[(n+1)+n(n+1)eeP];
hence KD = (n+1) (yly+a)+nln+1) (y—afy+a) (39)

10. Approximations for large lengths of line. For large values of y, expressions such
as (28) become extremely cumbersome to deal with. But an alternative expansion is
then possible which is convenient for this case. If f(y)= F(p), it is well known that
Sf(y) is given by the integral 1 [e+io F(p)

2_77-7:.[ c—icw T
where the constant ¢ must be appropriately chosen, and hence that f(y) can usually
be expanded as a series of residues of F(p)e?? /p The Laplace transforms with which

PSP 43,3 23

eprv dp’
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we are concerned give rise to an infinite series of residues; but for sufficiently large y all
but the first term can effectively be neglected.

As an example consider z(y) of § 6, the probability that the interval [0, ] is covered.
It is convenient to use the empirical notation of (17) and to determine {(v); from (14)
we find that this is given by

q(1 —e=F)—fe—F(1 —e9)e?

residues q + ﬂ e—(ﬂ+q) q

We must now investigate solutions of ¢+ fe~#+2 = 0 or of ge? = — fe#. It is easy to
see that there are two real negative roots, —f and —v; and by plotting the curves
| ge2| = constant, arg (ge?) = constant, in the complex g plane it can be shown that all
the roots lie to the left of min (- £, — ). On examination of (37) it will be seen that the
numerator vanishes at ¢ = 0, — f, and there are no poles at these points. Hence {(»)
is the sum of residues at ¢ = —y and the remaining complex roots of ge? = — fe~#;
and for sufficiently large v the latter can be negleqtéd. (It may be noted that this
approximation is better when y < # than when y > £.) The residue at ¢ = — is easily

(¢ = ap). (40)

evaluated, and hence ~B( 3 _
g(v)~e_._££._7./__).e—yv. (41)
Y -7) .
If the remaining complex roots are given by — v, (s = 1,2, 3, ...) the quantity neglected
in (38) is -B(B —
Z e._._(_ﬂ,.__m eV, (42)
8 73(1 - ')’3)

As a second example consider the behaviour of the gap distribution for large y.
We determine the limiting form of m,(y); 6 can be taken to be as small as we please, and
we require a power series expansion in . In empirical notation my(v) is given from
(33) and (26) by (g+p)e? o

residues [q + /3 e—(q+ﬂ)] [qe_o + ﬂe—(q+ﬂ) (e—o -1 )] '
The zeroes of the denominator are of the type discussed previously. Consider the
smallest zero, &, of qet = fe~P(ef—1) = e. (44)

(43)

When 6 is small € is also small, and as a first approximation d==¢. Itis possible to expand
& as a power series in ¢, for sufficiently small ¢, and substituting for ¢ in terms of ¢ ﬁom
(41) to obtain an expansion as a power series in §. (The justification for this procedure
follows along the usual lines; see, for example, (5).) The important point to notice
is that for large v and small é only the residue near ¢ = 8 need be considered. Hence
eH(8+9) e
8+ﬂe“‘(ﬂ+a) e—o _ﬂe"(ﬂ'i‘a) (e—e — 1) °
To determine the behaviour of the distribution for large v we form the cumulant
generating function

Ko(v) = log [£(v) +me(v)] ~ logme(v) ~ ¥3 + 0(1), (46)
for large v, by (41). The first three terms in the expansion of 4 are & = € —¢€%+ 3% and,
substituting from (44) and using (46), we obtain

Ky~ vﬂe—ﬂ, Kg~ V[ﬂe_ﬁ— 2ﬂ2 e“2ﬂ], (47)

mg(v) ~ (45)
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in agreement with (34) and (36); also
kg~ V[feF — 6% e~2F 1 943 e—3F], (48)

and, similarly, all higher cumulants are of order ». Hence, if we take ,/v as unit, the
distribution tends to normal about k, with mean square deviation fe—f — 242 ¢~25.

11. Moments of the W (z, y) distribution. Equation (10) can be used to determine the
moments of the W(z, y) distribution, but a certain amount of algebraic manipulation
of Laplace transforms is necessary, since we need the transform of Wz, ) with respect
to z, and not of W(x, x+2) as previously. Let us write

and suppose that vz, y)=V(p,y).
We use the formula from Laplace transform theory(6) that if
f(@)=F(p),
then ef@=(-1p(g) [TL] -0z, (50)

We have, from (10),

F(p,2) = Ce#8(2)+ (4 + BC) po} w

(51)

Expanding 2r = (y — )", and using (50), we easily see that

® d d r I(B Ay (4+ BC)
V — r 1 r(! r—1 ! T, r—8 .4
(p: ?/) pr§0 ?/ 1Y dp cee qu (dp) (dp) rl P (52)

It will be convenient, for the purpose of the algebra, to introduce the operators

d 1
=— and hA=-.
=3 P

Then fzxkv(x,y)dx#(— Vegh hV(p,y) (k= 0,1,2,...)

(B /\)'(A ;BC) (53)

_ ( - l)k z [yfg + 1‘0 yr—l gk+1 +...+ rO yr—e gk+8 +...+ gk+r]

Now let ¢®(y) = f z*v(z, y)dz,

and consider the Laplace transform in y of ¢*(y). We may apply the formula (50) to
(53) and obtain

$9) = (= 1p T (~ 17 [g" b = Cog" g+

(B A) (4+BC)

54
7 (54)

+ ( — 1)8 rC g'r—s hgk+s +...4 ( l)r kgk+r]

In order to simplify (54) we must reduce the operator
gh—"Cigthg+ ...+ (= 1P Cog=hg°+...+ (= 1) hy". (55)
From the formula hg—gh = h?, (56)
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it is not difficult to show that kg —gh' = rhr+1, (57)
gh=hgr—rh2g14+ . +(=1Pr(r-1)...(r—s+ 1) pettgr—s 4 4+ (- 1) rlhr+l, (58)

and hence that (55) reduces to the single term (—1)"»!A™+l, On substituting in
(54) we obtain

- B—-A)y(4+ BC
$M(y) = (- 1)kr§0hrgk( ) ; +BC) (59)
We easily see that PO (y) = pfi '*)'( B 61';' ,
and verify that $Oy) +2(y) = C _*_px‘i- -i/-\ IECI; —1, (60)
by (9).

To evaluate ¢®(y) from (58) we use the relation
krgk = gkhr +kCyrgk 1 Wl . £ XCr(r+ 1) ... (r +8— 1) gk~ hr+e +
+r(r+1)...(r+k—1)kr+%,  (61)

which can easily be deduced from (5 ). Then, substituting in (59), and summing with
respect to r, we have

_ + BC E L B—-A) (A+ BC
#900) = (<10 (S50 B g SN AR e

The kth moment of the distribution W(z,y), 4#¥(y), is given by
H¥(y) = ¢P(y) +y*2(y)

L C (A+BC\ k k! . (B-1) (4+B0)
= l)k[pgk(g)+gk(p+/\—B)+e§1(k—8)!gk p (p+A-Bya)

and, by (9) and (60), this can be simpliﬁed to
Ekldemda | [1—e~dP+0][p 4 Agmap+N]e-2

(k) = (1 —e—Aa _ k+1
pO) = (1—e) 4 (1 A o A (63)
When k& = 1 only the first term must be taken into account. We thus deduce that
V) = y(1—e2e), (64)

#Ay) = y*(1 —e™2%) — e *(y? — 2y A+ 2/A%) + e~ 2A=[(y — o) — 2(y — @) [A + 2/A%].  (85)
The last term in (65) is only to be taken into account when y > «. Higher moments can
be evaluated similarly from (63), if required, but they become rather cumbersome.

The moments of the distribution W, (x,y), for n given events, can be dealt with by
the same method as used for the gap distribution, that is by expanding u®)(y)eMv+=
in powers of A. We easily obtain from (64) and (65),

) =] 1- (L), (66)
w = [1- ) |- hyvar ot rar e

The last two results are in agreement with Robbins(3), if we replace his p by a/(y + ).
Finally we consider the problem of » intervals on a circle, and the resulting distribu-
tion, W/ (x, y) dx representing the probability that the covered portion of the circle of
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circumference y lies between x and z+dz. By an argument similar to that of §7 we

deduce that Wilz.9) = Wos(z—a,y—a),
and hence that

1 () = f LWy — oy —a)da = f " ot @) Wy — ) du
0

MLy — @) +4C, a0y~ a) + ... +FC ety — @) + ...+ ok (68)
As particular examples of (68)
ar y—o\"
) =y|1- —~ ) I (69)

@ (o) = 2| 1 ?/—_“"‘1] 2(Y=\" ' _n-l@y—art—(y—2ayrtt
w0 (y) y[l ( " ) +o =) sl = (70)

REFERENCES

(1) BateMman, H. Phil. Mag. 20 (1910), 698.

(2) StevENns, W. L. Ann. Eugen., London, 9 (1939), 315-20.

(3) Rossins, H. E. Ann. Math. Statist. 15 (1944), 70.

(4) Voraw, D. F. Ann. Math. Statist. 17 (1946), 240.

(5) BromwicH, T. J. I.’A. Infinite series (London, 1926), § 36, p 95; § 55, p. 156.
(6) vax nER Por, B. Phil. Mag. 8 (1929), 861.

PEMBROKE COLLEGE
CAMBRIDGE

https://doi.org/10.1017/50305004100023562 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004100023562

