On the Recursive Sequence $x_{n+1}=\alpha+x_{n-1} / x_{n}$

A. M. A mleh, E. A. Grove, and G. Ladas*
Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881-0816

and
D. A. Georgiou

Department of Electrical Engineering, Democritus University of Thrace, Xanthis, 67100, Greece

Submitted by William F. Ames
Received N ovember 24, 1998

We study the global stability, the boundedness character, and the periodic nature of the positive solutions of the difference equation $x_{n+1}=\alpha+x_{n-1} / x_{n}$, where $\alpha \in[0, \infty)$, and where the initial conditions x_{-1} and x_{0} are arbitrary positive real numbers. © 1999 A cademic Press

Key Words: difference equation; boundedness; global stability; period-2 solutions

1. INTRODUCTION AND SOME BASIC OBSERVATIONS

We study the global stability, the boundedness character, and the periodic nature of the positive solutions of the recursive sequence

$$
\begin{equation*}
x_{n+1}=\alpha+\frac{x_{n-1}}{x_{n}}, \quad n=0,1, \ldots, \tag{1}
\end{equation*}
$$

where $\alpha \in[0, \infty)$, and where the initial conditions x_{-1} and x_{0} are arbitrary positive real numbers.

* E-mail: gladas@ math.uri.edu

The results in this paper confirm Conjecture x.y. 4 in [3].
Clearly, the only equilibrium point of Eq. (1) is $\bar{x}=\alpha+1$.
We show that a necessary and sufficient condition that every positive solution of (1) be bounded is $\alpha \geq 1$. Furthermore, we show that if $\alpha=1$, then every positive solution of (1) converges to a two-cycle, while if $\alpha>1$, then $\bar{x}=\alpha+1$ is a globally asymptotically stable equilibrium point of Eq . (1).

The linearized equation of Eq. (1) about the equilibrium point $\bar{x}=\alpha+1$ is

$$
\begin{equation*}
y_{n+1}+\frac{1}{\alpha+1} y_{n}-\frac{1}{\alpha+1} y_{n-1}=0, \quad n=0,1, \ldots \tag{2}
\end{equation*}
$$

Lemma 1.1. The following statements are true.

1. The equilibrium point $\bar{x}=\alpha+1$ of Eq. (1) is locally asymptotically stable if $\alpha>1$.
2. The equilibrium point $\bar{x}=\alpha+1$ of Eq. (1) is unstable (and in fact is a saddle point) if $0 \leq \alpha<1$.

Proof. The proof is a simple consequence of the so-called Linearized Stability Theorem. (See [1, p. 11].)

The proofs of the following three lemmas follow from simple computations and will be omitted.

Lemma 1.2. The following statements are true.

1. Equation (1) has solutions of prime period 2 if and only if $\alpha=1$.
2. Suppose $\alpha=1$. Let $\left\{x_{n}\right\}_{n=-1}^{\infty}$ be a solution of (1). Then $\left\{x_{n}\right\}_{n=-1}^{\infty}$ is periodic with period 2 if and only if $x_{-1} \neq 1$ and $x_{0}=x_{-1} /\left(x_{-1}-1\right)$.

Lemma 1.3. Let $\left\{x_{n}\right\}_{n=-1}^{\infty}$ be a solution of Eq. (1) which is eventually constant. Then $\left\{x_{n}\right\}_{n=-1}^{\infty}$ is the trivial solution

$$
x_{n}=\alpha+1, \quad n=-1,0, \ldots .
$$

Lemma 1.4. Let $\left\{x_{n}\right\}_{n=-1}^{\infty}$ be a solution of Eq. (1), and let $L>\alpha$. Then the following statements are true.

1. $\lim _{n \rightarrow \infty} x_{2 n}=L$ if and only if $\lim _{n \rightarrow \infty} x_{2 n+1}=L /(L-\alpha)$.
2. $\lim _{n \rightarrow \infty} x_{2 n+1}=L$ if and only if $\lim _{n \rightarrow \infty} x_{2 n}=L /(L-\alpha)$.

2. ANALYSIS OF THE SEMI-CYCLES OF (1)

In this section, we give some results about the semi-cycles of (1) which shall be useful in the sequel.

Let $\left\{x_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq. (1). A positive semi-cycle of $\left\{x_{n}\right\}_{n=-1}^{\infty}$ consists of a "string" of terms $\left\{x_{l}, x_{l+1}, \ldots, x_{m}\right\}$, all greater than or equal to \bar{x}, with $l \geq-1$ and $m \leq \infty$ and such that

$$
\text { either } l=-1 \text { or } l>-1 \text { and } x_{l-1}<\bar{x}
$$

and

$$
\text { either } m=\infty \text { or } m<\infty \text { and } x_{m+1}<\bar{x} \text {. }
$$

A negative semi-cycle of $\left\{x_{n}\right\}_{n=-1}^{\infty}$ consists of a "string" of terms $\left\{x_{l}, x_{l+1}, \ldots, x_{m}\right\}$, all less than \bar{x}, with $l \geq-1$ and $m \leq \infty$ and such that

$$
\text { either } l=-1 \text { or } l>-1 \text { and } x_{l-1} \geq \bar{x}
$$

and

$$
\text { either } m=\infty \quad \text { or } \quad m<\infty \text { and } x_{m+1} \geq \bar{x} .
$$

A solution $\left\{x_{n}\right\}_{n=-1}^{\infty}$ of Eq. (1) is called nonoscillatory if there exists $N \geq-1$ such that either

$$
x_{n}>\bar{x} \quad \text { for all } n \geq N
$$

or

$$
x_{n}<\bar{x} \quad \text { for all } n \geq N .
$$

$\left\{x_{n}\right\}_{n=-1}^{\infty}$ is called oscillatory if it is not nonoscillatory.
Lemma 2.1. Let $\left\{x_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq. (1) which consists of a single semi-cycle. Then $\left\{x_{n}\right\}_{n=-1}^{\infty}$ converges monotonically to $\bar{x}=\alpha+1$.

Proof. Suppose $0<x_{n-1}<\alpha+1$ for all $n \geq 0$. The case where x_{n-1} $\geq \alpha+1$ for all $n \geq 0$ is similar and will be omitted. Note that for $n \geq 0$,

$$
0<\alpha+\frac{x_{n-1}}{x_{n}}=x_{n+1}<\alpha+1
$$

and so

$$
0<x_{n-1}<x_{n}<\alpha+1,
$$

from which the result follows.

Lemma 2.2. Let $\left\{x_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq. (1) which consists of at least two semi-cycles. Then $\left\{x_{n}\right\}_{n=-1}^{\infty}$ is oscillatory. Moreover, with the possible exception of the first semi-cycle, every semi-cycle has length 1 and every term of $\left\{x_{n}\right\}_{n=-1}^{\infty}$ is strictly greater than α, and with the possible exception of the first two semi-cycles, no term of $\left\{x_{n}\right\}_{n=-1}^{\infty}$ is ever equal to $\alpha+1$.

Proof. It suffices to consider the following two cases.
Case 1. Suppose $x_{-1}<\alpha+1 \leq x_{0}$. Then

$$
x_{1}=\alpha+\frac{x_{-1}}{x_{0}}<\alpha+1 \quad \text { and } \quad x_{2}=\alpha+\frac{x_{0}}{x_{1}}>\alpha+1
$$

Case 2. Suppose $x_{0}<\alpha+1 \leq x_{-1}$. Then

$$
x_{1}=\alpha+\frac{x_{-1}}{x_{0}}>\alpha+1 \quad \text { and } \quad x_{2}=\alpha+\frac{x_{0}}{x_{1}}<\alpha+1
$$

The next lemma will be useful in the sequel in determining the limiting behavior of positive solutions of Eq. (1).

Lemma 2.3. Let $\left\{x_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq. (1), and let $N \geq 0$ be a nonnegative integer. Then the following statements are true.

1. $x_{N+1}>x_{N-1}$ if and only if $x_{N-1}+\alpha x_{N}-x_{N-1} x_{N}>0$.
2. $x_{N+1}=x_{N-1}$ if and only if $x_{N-1}+\alpha x_{N}-x_{N-1} x_{N}=0$.
3. $x_{N+1}<x_{N-1}$ if and only if $x_{N-1}+\alpha x_{N}-x_{N-1} x_{N}<0$.

Proof. The proof follows from the computation

$$
x_{N+1}-x_{N-1}=\left(\alpha+\frac{x_{N-1}}{x_{N}}\right)-x_{N-1}=\frac{\alpha x_{N}+x_{N-1}-x_{N-1} x_{N}}{x_{N-1}} .
$$

3. THE CASE $0 \leq \alpha<1$

In this section, we consider the case where $0 \leq \alpha<1$, and we show that there exist positive solutions of Eq . (1) which are unbounded.

Theorem 3.1. Let $0 \leq \alpha<1$, and let $\left\{x_{n}\right\}_{n=-1}^{\infty}$ be a solution of Eq. (1) such that $0<x_{-1} \leq 1$ and $x_{0} \geq 1 /(1-\alpha)$. Then the following statements are true.

1. $\lim _{n \rightarrow \infty} x_{2 n}=\infty$.
2. $\lim _{n \rightarrow \infty} x_{2 n+1}=\alpha$.

Proof. Note that $1 /(1-\alpha)>\alpha+1$, and so $x_{0}>\alpha+1$. It suffices to show that

$$
x_{1} \in(\alpha, 1] \quad \text { and } \quad x_{2} \geq \alpha+x_{0}
$$

Indeed, $x_{1}=\alpha+x_{-1} / x_{0}>\alpha$. Also,

$$
x_{1}=\alpha+\frac{x_{-1}}{x_{0}} \leq \alpha+\frac{1}{x_{0}} \leq \alpha+(1-\alpha)=1
$$

and so $x_{1} \in(\alpha, 1]$. Hence $x_{2}=\alpha+x_{0} / x_{1} \geq \alpha+x_{0}$.

4. THE CASE $\alpha=1$

In this section, we consider the case where $\alpha=1$, and we show that every positive solution of Eq. (1) converges to a two-cycle.

Clearly, if $\alpha=1$, then the unique equilibrium point of Eq. (1) is $\bar{x}=2$.
Theorem 4.1. Let $\alpha=1$, and let $\left\{x_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq. (1). Then the following statements are true.

1. Suppose $\left\{x_{n}\right\}_{n=-1}^{\infty}$ consists of a single semi-cycle. Then $\left\{x_{n}\right\}_{n=-1}^{\infty}$ converges monotonically to $\bar{x}=2$.
2. Suppose $\left\{x_{n}\right\}_{n=-1}^{\infty}$ consists of at least two semi-cycles. Then $\left\{x_{n}\right\}_{n=-1}^{\infty}$ converges to a prime period-2 solution of Eq. (1).
Proof. We know by Lemma 2.1 that if $\left\{x_{n}\right\}_{n=-1}^{\infty}$ consists of a single semi-cycle, then $\left\{x_{n}\right\}_{n=-1}^{\infty}$ converges monotonically to \bar{x}. So it suffices to consider the case where $\left\{x_{n}\right\}_{n=-1}^{\infty}$ consists of at least two semi-cycles.
So assume that $\left\{x_{n}\right\}_{n=-1}^{\infty}$ consists of at least two semi-cycles. We know by Lemma 2.2 that $\left\{x_{n}\right\}_{n=-1}^{\infty}$ is oscillatory, and that except for possibly the first semi-cycle, every semi-cycle has length 1 and every term of $\left\{x_{n}\right\}_{n=-1}^{\infty}$ is greater than $\alpha=1$.

Now observe that for $n \geq 0$,

$$
x_{n}+x_{n+1}-x_{n} x_{n+1}=\frac{x_{n-1}+x_{n}-x_{n-1} x_{n}}{x_{n}}
$$

and so by Lemma 2.3, the following three statements are true:
(a) Suppose $x_{-1}<x_{1}$. Then

$$
x_{-1}<x_{1}<x_{3}<\cdots
$$

and

$$
x_{0}<x_{2}<x_{4}<\cdots .
$$

(b) Suppose $x_{-1}=x_{1}$. Then

$$
x_{-1}=x_{1}=x_{3}=\cdots
$$

and

$$
x_{0}=x_{2}=x_{4}=\cdots .
$$

(c) Suppose $x_{-1}>x_{1}$. Then

$$
x_{-1}>x_{1}>x_{3}>\cdots
$$

and

$$
x_{0}>x_{2}>x_{4}>\cdots .
$$

The proof of the theorem follows from Lemma 1.4 and statements (a), (b), and (c) above.

5. THE CASE $\alpha>1$

In this section, we consider the case where $\alpha>1$, and we show in Theorem 5.2 that the equilibrium point $\bar{x}=\alpha+1$ of Eq. (1) is globally asymptotically stable. We first give a lemma which shall be useful in the sequel.

Lemma 5.1. Let $\alpha>1$, and let $\left\{x_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq. (1). Then

$$
\alpha+\frac{\alpha-1}{\alpha} \leq \liminf _{n \rightarrow \infty} x_{n} \leq \limsup _{n \rightarrow \infty} x_{n} \leq \frac{\alpha^{2}}{\alpha-1} .
$$

Proof. It follows by Lemmas 2.1 and 2.2 that we may assume that every semi-cycle of $\left\{x_{n}\right\}_{n=-1}^{\infty}$ has length 1, that $\alpha<x_{n}$ for all $n \geq-1$, and that $\alpha<x_{0}<\alpha+1<x_{-1}$.
We shall first show that $\lim \sup _{n \rightarrow \infty} x_{n} \leq \alpha^{2} /(\alpha-1)$. Note that for $n \geq 0$,

$$
x_{2 n+1}<\alpha+\frac{x_{2 n-1}}{\alpha}
$$

So as every solution of the difference equation

$$
y_{m+1}=\alpha+\frac{1}{\alpha} y_{m}, \quad m=0,1, \ldots
$$

converges to $\alpha^{2} /(\alpha-1)$, it follows that $\lim _{\sup }^{n \rightarrow \infty} x_{n} \leq \alpha^{2} /(\alpha-1)$.
We shall next show that $\alpha+(\alpha-1) / \alpha \leq \liminf _{n \rightarrow \infty} x_{n}$. Let $\varepsilon>0$. There clearly exists $N \geq 0$ such that for all $n \geq N$,

$$
x_{2 n-1}<\frac{\alpha^{2}+\varepsilon}{\alpha-1} .
$$

Let $n \geq N$. Then

$$
x_{2 n}=\alpha+\frac{x_{2 n-2}}{x_{2 n-1}}>\alpha+\alpha\left(\frac{\alpha-1}{\alpha^{2}+\varepsilon}\right)=\frac{\alpha^{3}+\alpha \varepsilon+\alpha(\alpha-1)}{\alpha^{2}+\varepsilon},
$$

and so

$$
\liminf _{n \rightarrow \infty} x_{n} \geq \frac{\alpha^{3}+\alpha \varepsilon+\alpha(\alpha-1)}{\alpha^{2}+\varepsilon} .
$$

So as ε is arbitrary, we have

$$
\liminf _{n \rightarrow \infty} x_{n} \geq \frac{\alpha^{3}+\alpha(\alpha-1)}{\alpha^{2}}=\alpha+\frac{\alpha-1}{\alpha} .
$$

We next state the following theorem, a minor modification of Theorem 5.2 in [2], which provides the key step in proving Theorem 5.2.

Theorem A. Let $f:(0, \infty) \times(0, \infty) \rightarrow(0, \infty)$ be a continuous function, and consider the difference equation

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}, x_{n-1}\right), \quad n=0,1, \ldots, \tag{3}
\end{equation*}
$$

where $x_{-1}, x_{0} \in(0, \infty)$. Suppose f satisfies the following conditions:
(a) There exist positive numbers a and b with $a<b$ such that

$$
a \leq f(x, y) \leq b \quad \text { for all } x, y \in[a, b] ;
$$

(b) $f(x, y)$ is nonincreasing in $x \in[a, b]$ for each $y \in[a, b]$, and $f(x, y)$ is nondecreasing in $y \in[a, b]$ for each $x \in[a, b]$;
(c) Equation (3) has no solutions of prime period 2 in $[a, b]$.

Then there exists exactly one equilibrium \bar{x} of $E q$. (3) which lies in $[a, b]$. Moreover, every solution of Eq. (3) which lies in $[a, b]$ converges to \bar{x}.

We are now ready for the main result of this section.
Theorem 5.2. Let $\alpha>1$. Then $\bar{x}=\alpha+1$ is a globally asymptotically stable equilibrium point of Eq. (1).

Proof. We know by Lemma 1.1 that $\bar{x}=\alpha+1$ is a locally asymptotically stable equilibrium point of Eq. (1). So let $\left\{x_{n}\right\}_{n=-1}^{\infty}$ be a positive solution of Eq. (1). It suffices to show that

$$
\lim _{n \rightarrow \infty} x_{n}=\alpha+1
$$

For $x, y \in(0, \infty)$, set

$$
f(x, y)=\alpha+\frac{y}{x} .
$$

Then $f:(0, \infty) \times(0, \infty) \rightarrow(0, \infty)$ is a continuous function, f decreasing in $x \in(0, \infty)$ for each $y \in(0, \infty)$, and f increasing in $y \in(0, \infty)$ for each $x \in(0, \infty)$. R ecall that by Lemma 1.2, there exist no solutions of Eq. (1) with prime period 2 . Let $\varepsilon>0$, and set

$$
a=\alpha \quad \text { and } \quad b=\frac{\alpha^{2}+\varepsilon}{\alpha-1}
$$

Note that

$$
f\left(\frac{\alpha^{2}+\varepsilon}{\alpha-1}, \alpha\right)=\alpha+\alpha\left(\frac{\alpha-1}{\alpha^{2}+\varepsilon}\right)>\alpha
$$

and

$$
\begin{aligned}
f\left(\alpha, \frac{\alpha^{2}+\varepsilon}{\alpha-1}\right) & =\alpha+\frac{1}{\alpha} \cdot \frac{\alpha^{2}+\varepsilon}{\alpha-1} \\
& =\frac{\alpha^{3}+\varepsilon}{\alpha^{2}-\alpha}<\frac{\alpha^{3}+\varepsilon \cdot \alpha}{\alpha^{2}-\alpha}=\frac{\alpha^{2}+\varepsilon}{\alpha-1} .
\end{aligned}
$$

Hence

$$
\alpha<f(x, y)<\frac{\alpha^{2}+\varepsilon}{\alpha-1} \quad \text { for all } x, y \in\left[\alpha, \frac{\alpha^{2}+\varepsilon}{\alpha-1}\right] .
$$

Finally, note that by Lemma 5.1,

$$
\alpha<\alpha+\frac{\alpha-1}{\alpha} \leq \liminf _{n \rightarrow \infty} x_{n} \leq \limsup _{n \rightarrow \infty} x_{n} \leq \frac{\alpha^{2}}{\alpha-1}<\frac{\alpha^{2}+\varepsilon}{\alpha-1}
$$

and so by Theorem A,

$$
\lim _{n \rightarrow \infty} x_{n}=\alpha+1 .
$$

REFERENCES

1. V. L. K ocic and G. Ladas, "Global Behavior of Nonlinear Difference Equations of Higher Order with A pplications," K luwer A cademic Publishers, D ordrecht, 1993.
2. M.R.S. Kulenović, G. Ladas, and W. S. Sizer, On the recursive sequence $x_{n+1}=\left(\alpha x_{n}+\right.$ $\left.\beta x_{n-1}\right) /\left(\gamma x_{n}+\delta x_{n-1}\right)$, Math. Sci. Res. Hot-line 2, No. 5 (1998), 1-16.
3. G. Ladas, Open problems and conjectures, J. Differential Equations Appl. 5 (to appear).
