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We study the global stability, the boundedness character, and the periodic nature
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1. INTRODUCTION AND SOME BASIC OBSERVATIONS

We study the global stability, the boundedness character, and the
periodic nature of the positive solutions of the recursive sequence

xny1
x s a q , n s 0, 1, . . . , 1Ž .nq1 xn

w .where a g 0, ` , and where the initial conditions x and x are arbitraryy1 0
positive real numbers.
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w xThe results in this paper confirm Conjecture x.y.4 in 3 .
Ž .Clearly, the only equilibrium point of Eq. 1 is x s a q 1.

We show that a necessary and sufficient condition that every positive
Ž .solution of 1 be bounded is a G 1. Furthermore, we show that if a s 1,

Ž .then every positive solution of 1 converges to a two-cycle, while if a ) 1,
then x s a q 1 is a globally asymptotically stable equilibrium point of Eq.
Ž .1 .

Ž .The linearized equation of Eq. 1 about the equilibrium point x s a q 1
is

1 1
y q y y y s 0, n s 0, 1, . . . . 2Ž .nq1 n ny1a q 1 a q 1

LEMMA 1.1. The following statements are true.

Ž .1. The equilibrium point x s a q 1 of Eq. 1 is locally asymptotically
stable if a ) 1.

Ž . Ž2. The equilibrium point x s a q 1 of Eq. 1 is unstable and in fact is
.a saddle point if 0 F a - 1.

Proof. The proof is a simple consequence of the so-called Linearized
Ž w x .Stability Theorem. See 1, p. 11 .

The proofs of the following three lemmas follow from simple computa-
tions and will be omitted.

LEMMA 1.2. The following statements are true.

Ž .1. Equation 1 has solutions of prime period 2 if and only if a s 1.
� 4̀ Ž . � 4̀2. Suppose a s 1. Let x be a solution of 1 . Then x isn nsy1 n nsy1

Ž .periodic with period 2 if and only if x / 1 and x s x r x y 1 .y1 0 y1 y1

� 4̀ Ž .LEMMA 1.3. Let x be a solution of Eq. 1 which is e¨entuallyn nsy1
� 4̀constant. Then x is the trï ial solutionn nsy1

x s a q 1, n s y1, 0, . . . .n

� 4̀ Ž .LEMMA 1.4. Let x be a solution of Eq. 1 , and let L ) a . Thenn nsy1
the following statements are true.

Ž .1. lim x s L if and only if lim x s Lr L y a .nª` 2 n nª` 2 nq1

Ž .2. lim x s L if and only if lim x s Lr L y a .nª` 2 nq1 nª` 2 n
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Ž .2. ANALYSIS OF THE SEMI-CYCLES OF 1

Ž .In this section, we give some results about the semi-cycles of 1 which
shall be useful in the sequel.

� 4̀ Ž .Let x be a positive solution of Eq. 1 . A positï e semi-cycle ofn nsy1
� 4̀ � 4x consists of a ‘‘string’’ of terms x , x , . . . , x , all greater thann nsy1 l lq1 m
or equal to x, with l G y1 and m F ` and such that

either l s y1 or l ) y1 and x - xly1

and

either m s ` or m - ` and x - x .mq 1

� 4̀A negatï e semi-cycle of x consists of a ‘‘string’’ of termsn nsy1
� 4x , x , . . . , x , all less than x, with l G y1 and m F ` and such thatl lq1 m

either l s y1 or l ) y1 and x G xly1

and

either m s ` or m - ` and x G x .mq 1

� 4̀ Ž .A solution x of Eq. 1 is called nonoscillatory if there existsn nsy1
N G y1 such that either

x ) x for all n G Nn

or

x - x for all n G N.n

� 4̀x is called oscillatory if it is not nonoscillatory.n nsy1

� 4̀ Ž .LEMMA 2.1. Let x be a positï e solution of Eq. 1 which consistsn nsy1
`� 4of a single semi-cycle. Then x con¨erges monotonically to x s a q 1.n nsy1

Proof. Suppose 0 - x - a q 1 for all n G 0. The case where xny1 ny1
G a q 1 for all n G 0 is similar and will be omitted. Note that for n G 0,

xny1
0 - a q s x - a q 1nq1xn

and so

0 - x - x - a q 1,ny1 n

from which the result follows.



ON THE RECURSIVE SEQUENCE x s a q x rxnq1 ny1 n 793

� 4̀ Ž .LEMMA 2.2. Let x be a positï e solution of Eq. 1 which consistsn nsy1
� 4̀of at least two semi-cycles. Then x is oscillatory. Moreo¨er, with then nsy1

possible exception of the first semi-cycle, e¨ery semi-cycle has length 1 and
� 4̀e¨ery term of x is strictly greater than a , and with the possiblen nsy1

� 4̀exception of the first two semi-cycles, no term of x is e¨er equal ton nsy1
a q 1.

Proof. It suffices to consider the following two cases.

Case 1. Suppose x - a q 1 F x . Theny1 0

x xy1 0
x s a q - a q 1 and x s a q ) a q 1.1 2x x0 1

Case 2. Suppose x - a q 1 F x . Then0 y1

x xy1 0
x s a q ) a q 1 and x s a q - a q 1.1 2x x0 1

The next lemma will be useful in the sequel in determining the limiting
Ž .behavior of positive solutions of Eq. 1 .

� 4̀ Ž .LEMMA 2.3. Let x be a positï e solution of Eq. 1 , and let N G 0n nsy1
be a nonnegatï e integer. Then the following statements are true.

1. x ) x if and only if x q a x y x x ) 0.Nq1 Ny1 Ny1 N Ny1 N

2. x s x if and only if x q a x y x x s 0.Nq1 Ny1 Ny1 N Ny1 N

3. x - x if and only if x q a x y x x - 0.Nq1 Ny1 Ny1 N Ny1 N

Proof. The proof follows from the computation

x a x q x y x xNy1 N Ny1 Ny1 N
x y x s a q y x s .Nq1 Ny1 Ny1ž /x xN Ny1

3. THE CASE 0 F a - 1

In this section, we consider the case where 0 F a - 1, and we show that
Ž .there exist positive solutions of Eq. 1 which are unbounded.
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� 4̀ Ž .THEOREM 3.1. Let 0 F a - 1, and let x be a solution of Eq. 1n nsy1
Ž .such that 0 - x F 1 and x G 1r 1 y a . Then the following statementsy1 0

are true.

1. lim x s `.nª` 2 n

2. lim x s a .nª` 2 nq1

Ž .Proof. Note that 1r 1 y a ) a q 1, and so x ) a q 1. It suffices to0
show that

xx g a , 1 and x G a q x .Ž1 2 0

Indeed, x s a q x rx ) a . Also,1 y1 0

x 1y1
x s a q F a q F a q 1 y a s 1,Ž .1 x x0 0

Ž xand so x g a , 1 . Hence x s a q x rx G a q x .1 2 0 1 0

4. THE CASE a s 1

In this section, we consider the case where a s 1, and we show that
Ž .every positive solution of Eq. 1 converges to a two-cycle.

Ž .Clearly, if a s 1, then the unique equilibrium point of Eq. 1 is x s 2.

� 4̀THEOREM 4.1. Let a s 1, and let x be a positï e solution of Eq.n nsy1
Ž .1 . Then the following statements are true.

� 4̀ � 4̀1. Suppose x consists of a single semi-cycle. Then xn nsy1 n nsy1
con¨erges monotonically to x s 2.

� 4̀ � 4̀2. Suppose x consists of at least two semi-cycles. Then xn nsy1 n nsy1
Ž .con¨erges to a prime period-2 solution of Eq. 1 .

� 4̀Proof. We know by Lemma 2.1 that if x consists of a singlen nsy1
`� 4semi-cycle, then x converges monotonically to x. So it suffices ton nsy1

� 4̀consider the case where x consists of at least two semi-cycles.n nsy1
� 4̀So assume that x consists of at least two semi-cycles. We know byn nsy1
� 4̀Lemma 2.2 that x is oscillatory, and that except for possibly then nsy1

� 4̀first semi-cycle, every semi-cycle has length 1 and every term of x isn nsy1
greater than a s 1.

Now observe that for n G 0,

x q x y x xny1 n ny1 n
x q x y x x s ,n nq1 n nq1 xn
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and so by Lemma 2.3, the following three statements are true:

Ž .a Suppose x - x . Theny1 1

x - x - x - ???y1 1 3

and
x - x - x - ??? .0 2 4

Ž .b Suppose x s x . Theny1 1

x s x s x s ???y1 1 3

and
x s x s x s ??? .0 2 4

Ž .c Suppose x ) x . Theny1 1

x ) x ) x ) ???y1 1 3

and
x ) x ) x ) ??? .0 2 4

Ž .The proof of the theorem follows from Lemma 1.4 and statements a ,
Ž . Ž .b , and c above.

5. THE CASE a ) 1

In this section, we consider the case where a ) 1, and we show in
Ž .Theorem 5.2 that the equilibrium point x s a q 1 of Eq. 1 is globally

asymptotically stable. We first give a lemma which shall be useful in the
sequel.

� 4̀ Ž .LEMMA 5.1. Let a ) 1, and let x be a positï e solution of Eq. 1 .n nsy1
Then

a y 1 a 2

a q F lim inf x F lim sup x F .n na a y 1nª` nª`

Proof. It follows by Lemmas 2.1 and 2.2 that we may assume that every
� 4̀semi-cycle of x has length 1, that a - x for all n G y1, and thatn nsy1 n

a - x - a q 1 - x .0 y1
2 Ž .We shall first show that lim sup x F a r a y 1 . Note that fornª` n

n G 0,
x2 ny1

x - a q .2 nq1 a
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So as every solution of the difference equation

1
y s a q y , m s 0, 1, . . .mq 1 ma

2 Ž . 2 Ž .converges to a r a y 1 , it follows that lim sup x F a r a y 1 .nª` n
Ž .We shall next show that a q a y 1 ra F lim inf x . Let « ) 0.nª` n

There clearly exists N G 0 such that for all n G N,

a 2 q «
x - .2 ny1 a y 1

Let n G N. Then

x a y 1 a 3 q a« q a a y 1Ž .2 ny2
x s a q ) a q a s ,2 n 2 2ž /x a q « a q «2 ny1

and so

a 3 q a« q a a y 1Ž .
lim inf x G .n 2a q «nª`

So as « is arbitrary, we have

a 3 q a a y 1 a y 1Ž .
lim inf x G s a q .n 2 aanª`

We next state the following theorem, a minor modification of Theorem
w x5.2 in 2 , which provides the key step in proving Theorem 5.2.

Ž . Ž . Ž .THEOREM A. Let f : 0, ` = 0, ` ª 0, ` be a continuous function,
and consider the difference equation

x s f x , x , n s 0, 1, . . . , 3Ž . Ž .nq1 n ny1

Ž .where x , x g 0, ` . Suppose f satisfies the following conditions:y1 0

Ž .a There exist positï e numbers a and b with a - b such that

w xa F f x , y F b for all x , y g a, b ;Ž .
Ž . Ž . w x w xb f x, y is nonincreasing in x g a, b for each y g a, b , and

Ž . w x w xf x, y is nondecreasing in y g a, b for each x g a, b ;
Ž . Ž . w xc Equation 3 has no solutions of prime period 2 in a, b .

Ž . w xThen there exists exactly one equilibrium x of Eq. 3 which lies in a, b .
Ž . w xMoreo¨er, e¨ery solution of Eq. 3 which lies in a, b con¨erges to x.
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We are now ready for the main result of this section.

THEOREM 5.2. Let a ) 1. Then x s a q 1 is a globally asymptotically
Ž .stable equilibrium point of Eq. 1 .

Proof. We know by Lemma 1.1 that x s a q 1 is a locally asymptoti-
Ž . � 4̀cally stable equilibrium point of Eq. 1 . So let x be a positiven nsy1

Ž .solution of Eq. 1 . It suffices to show that

lim x s a q 1.n
nª`

Ž .For x, y g 0, ` , set

y
f x , y s a q .Ž .

x

Ž . Ž . Ž .Then f : 0, ` = 0, ` ª 0, ` is a continuous function, f decreasing in
Ž . Ž . Ž .x g 0, ` for each y g 0, ` , and f increasing in y g 0, ` for each
Ž . Ž .x g 0, ` . Recall that by Lemma 1.2, there exist no solutions of Eq. 1

with prime period 2. Let « ) 0, and set

a 2 q «
a s a and b s .

a y 1

Note that

a 2 q « a y 1
f , a s a q a ) a2ž /ž /a y 1 a q «

and

a 2 q « 1 a 2 q «
f a , s a q ?ž /a y 1 a a y 1

a 3 q « a 3 q « ? a a 2 q «
s - s .2 2 a y 1a y a a y a

Hence

2 2a q « a q «
a - f x , y - for all x , y g a , .Ž .

a y 1 a y 1

Finally, note that by Lemma 5.1,

a y 1 a 2 a 2 q «
a - a q F lim inf x F lim sup x F -n na a y 1 a y 1nª` nª`
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and so by Theorem A,

lim x s a q 1.n
nª`
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