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Abstract We consider a certain abstract of RNA secondary structures, which is
closely related to so-called RNA shapes. The generating function counting the
number of the abstract structures is obtained in three different ways, namely, by
means of Narayana numbers, Chebyshev polynomials and Motzkin paths. We show
that a combinatorial interpretation on 2-Motzkin paths explains a relation between
Motzkin paths and RNA shapes and also provides an identity related to Narayana
numbers and Motzkin polynomial coefficients.

1 Introduction

Ribonucleic acid (RNA) is a single stranded molecule with a backbone of
nucleotides, each of which has one of the four bases, adenine (A), cytosine (C),
guanine (G) and uracil (U). Base pairs are formed intra-molecularly between A-U,
G-C or G-U, leading the sequence of bases to form helical regions. The primary
structure of a RNA is merely the sequence of bases and its three-dimensional
conformation by base pairs is called the tertiary structure. As an intermediate
structure between the primary and the tertiary, the secondary structure is a planar
structure allowing only nested base pairs. This is easy to see in its diagrammatic
representation, see Fig. 1. A sequence of n bases is that of labeled vertices
(1, 2, · · · , n) in a horizontal line and base pairs are drawn as arcs in the upper
half-plane. The condition of nested base pairs means non-crossing arcs: for two
arcs (i,j) and (k,l) where i < j , k < l and i < k, either i < j < k < l or
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Fig. 1 Representations of secondary structures. The RNA structure on the left hand side is
represented as the diagram (top right) and the dot-bracket string (bottom right)

i < k < l < i. Since the functional role of a RNA depends mainly on its 3D
conformation, prediction of RNA folding from the primary structure has long
been an important problem in molecular biology. The most common approach
for the prediction is free energy minimization and many algorithms to compute
the structures with minimum free energy has been developed (see for instance,
[13, 17, 21, 22]).

On the other hand, RNA structures are often considered as combinatorial objects
in terms of representations such as strings over finite alphabets, linear trees or the
diagrams. Combinatorial approaches enumerate the number of possible structures
under various kinds of constraints and observe its statistics to compare with
experimental findings [1, 4, 9, 16, 18]. They also provide classifications of structures
to advance prediction algorithms [8, 14, 15, 20].

In this paper, we consider a certain abstract of secondary structures under a
pure combinatorial point of view regardless of primary structures. The abstract
structure is, in fact, closely related to so-called RNA shapes [8, 10, 12], see Sect. 3.
Although we will consider it apart from prediction algorithms, let us review briefly
the background to RNA shapes in the context of prediction problem. In free
energy minimization scheme, the lowest free energy structures are not necessarily
native structures. One needs to search suboptimal foldings in a certain energy
bandwidth and, in general, obtains a huge set of suboptimal foldings. RNA shapes
classify the foldings according to their structural similarities and provide so-called
shape representatives such that native structures can be found among those shape
representatives. Consequently, it can greatly narrow down the huge set of suboptimal
foldings to probe in order to find native structures.

In the following preliminary, we introduce our combinatorial object, what
we call island diagrams and present basic definitions needed to describe the
diagrams. In Sect. 2, we find the generating function counting the number of island
diagrams in three different ways and through which, one may see the intertwining
relations between Narayana numbers, Chebyshev polynomials and Motzkin paths.
In particular, we find a combinatorial identity, see Eq. (15), which reproduces the
following two identities that Coker provided [5] (see also [3] for a combinatorial
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interpretation):
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where Ck is the Catalan number defined by Ck = 1
k+1

(2k
k

)
for k ≥ 0. We also pro-

vide a combinatorial interpretation on 2-Motzkin paths to explain the identity (15).
The interpretation implies the bijection between π-shapes and Motzkin paths which
was shown in [7, 11].

1.1 Preliminary

A formal definition of secondary structures is given as follows:

Definition 1 (Waterman [20]) A secondary structure is a vertex-labeled graph on
n vertices with an adjacency matrix A = (aij ) (whose element aij = 1 if i and
j are adjacent, and aij = 0 otherwise with aii = 0) fulfilling the following three
conditions:

1. ai,i+1 = 1 for 1 ≤ i ≤ n − 1.
2. For each fixed i, there is at most one aij = 1 where j �= i ± 1
3. If aij = akl = 1, where i < k < j , then i ≤ l ≤ j .

An edge (i, j) with |i−j | �= 1 is said to be a base pair and a vertex i connected only
to i − 1 and i + 1 is called unpaired. We will call an edge (i, i + 1), 1 ≤ i ≤ n − 1,
a backbone edge. Note that a base pair between adjacent two vertices is not allowed
by definition and the second condition implies non-existence of base triples.

There are many other representations of secondary structures than the dia-
grammatic representation. In this paper, we often use the so-called dot-bracket
representation, see Fig. 1. A secondary structure can be represented as a string S
over the alphabet set {(, ), .} by the following rules [9]:
1. If vertex i is unpaired then Si =“.”.
2. If (i, j) is a base pair and i < j then Si = “(” and Sj =“)”.

In the following, we present the basic definitions of structure elements needed
for our investigations.
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hairpin
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Fig. 2 Structure elements of secondary structures

Definition 2 A secondary structure on (1, 2, · · · , n) consists of the following
structure elements (cf. Fig. 2). By a base pair (i, j), we always assume i < j .

1. The sequence of unpaired vertices (i + 1, i + 2, · · · , j − 1) is a hairpin if (i, j)

is a base pair. The pair (i, j) is said to be the foundation of the hairpin.
2. The sequence of unpaired vertices (i + 1, i + 2, · · · , j − 1) is a bulge if either

(k, j), (k + 1, i) or (i, k + 1), (j, k) are base pairs.
3. The sequence of unpaired vertices (i + 1, i + 2, · · · , j − 1) is a join if (k, i) and

(j, l) are base pairs.
4. A tail is a sequence of unpaired vertices (1, 2, · · · , i − 1), resp. (j + 1, j +

2, · · · , n) such that i, resp. j is paired.
5. An interior loop is two sequences of unpaired vertices (i+1, i+2, · · · , j−1) and

(k+1, k+2, · · · , l−1) such that (i, l) and (j, k) are pairs, where i < j < k < l.
6. For any k ≥ 3 and 0 ≤ l,m ≤ k with l + m = k, a multi loop is l

sequences of unpaired vertices and m empty sequences (i1+1, · · · , j1−1), (i2+
1, · · · , j2 − 1), · · · , (ik + 1, · · · , jk − 1) such that (i1, jk), (j1, i2), · · · , (jk−1,

ik) are base pairs. Here, a sequence (i + 1, · · · , j − 1) is an empty sequence if
i + 1 = j .

7. A stack (or stem) consists of uninterrupted base pairs (i + 1, j − 1), (i + 2, j −
2), · · · , (i + k, j − k) such that neither (i, j) nor (i + k + 1, j − k − 1) is a base
pair. Here the length of the stack is k.

Note that, while other structure elements consist of at least one vertex, a multiloop
does not necessarily have a vertex. In the diagrammatic representation, a multiloop
is a structure bounded by three or more base pairs and backbone edges.

Definition 3 An island is a sequence of paired vertices (i, i+1, · · · , j) such that

1. i − 1 and j + 1 are both unpaired, where 1 < i ≤ j < n.
2. j + 1 is unpaired, where i = 1 and 1 < j < n.
3. i − 1 is unpaired, where 1 < i < n and j = n.

Now we introduce the abstract structures to consider throughout this paper. From
here on, we will call the structures island diagrams for convenience. An island
diagram (cf. Fig. 3) is obtained from secondary structures by
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Fig. 3 An example of island diagrams. This island diagram is the abstract structure of the
secondary structure given in Fig. 2

1. Removing tails.
2. Representing a sequence of consecutive unpaired vertices between two islands

by a single blank.

Accordingly, we retain unpaired regions except for tails but do not account for the
number of unpaired vertices. In terms of the dot-bracket representation, we shall
use the underscore “ ” for the blank: for example, the island diagram “(( ) )”
abstracts the secondary structure “((. . .) . . . .)”. Since the abstraction preserves all
the structure elements (except for tails) in definition 7, we will use them to describe
island diagrams in such a way that, for instance, the blank is a hairpin if its left and
right vertices are paired to each other.

2 Generating Function

We enumerate the number of island diagrams g(h, I, �), filtered by the number of
hairpins(h), islands(I ) and basepairs(�). Let G(x, y, z) = ∑

h,I,� g(h, I, �)xh yI z�

denotes the corresponding generating function.We obtain the generating function in
three different ways, by means of Narayana numbers, Chebyshev polynomials and
Motzkin paths. In particular, we provide a bijection map between 2-Motzkin paths
and sequences of matching brackets.

2.1 Narayana Number

The easiest way to obtain the generating function G(x, y, z) is to use a combinato-
rial interpretation of the Narayana numbers, which are defined by

N(n, k) = 1

n

(
n

k

)(
n

k − 1

)
, 1 ≤ k ≤ n . (3)

The Narayana number N(n, k) counts the number of ways arranging n pairs of
brackets to be correctlymatched and contain k pairs as “()”. For instance, the bracket
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representations for N(4, 2) = 6 are given as follows:

(()(())) ((()())) ((())()) ()((())) (())(()) ((()))()

It is easy to recover island diagrams from this representation.

Proposition 1 The generating function has the form

G(x, y, z) =
∑

�,h

N(�, h) xh yh+1 (1 + y)2�−1−h z� . (4)

Its closed form is

G(x, y, z) =
(

y

1 + y

)
1 − A(1 + B) − √

1 − 2A(1 + B) + A2(1 − B)2

2A
(5)

where A = z(1 + y)2 and B = xy/(1 + y).

Proof One may immediately associate bracket representations of the Narayana
numbers with island diagrams.Without regard to underscores, the pair of brackets is
associated with the basepair and the sub-pattern “()” corresponds to the foundation
of the hairpin. It clearly explains the factor N(�, h)xhz�. Now we consider the
insertions of underscores to recover the string representation of island diagrams.
Recall that, in secondary structures, a hairpin consists of at least one unpaired
vertices. Therefore, the foundation of the hairpin “()” must contain a underscore
“( )”. The number h of underscores are so inserted that we have the factor yh+1.
After the insertion of hairpin underscores, there are (2� − 1 − h) places left to
possibly insert underscores. The numbers of all possible insertions are summarized
by the factor (1 + y)2�−1−h. The generating function of the Narayana numbers is
well-known (see for instance [2]) so that one writes the closed form.

2.2 Chebyshev Polynomial

One can also count the number of island diagrams by using the Chebyshev
polynomials of the second kind, which are defined by the recurrence relation:

U0(ξ) = 1 , U1(ξ) = 2ξ , Un+1(ξ) = 2ξUn(ξ) − Un−1(ξ) . (6)

The product of the polynomials expands as

Um(ξ)Un(ξ) =
n∑

k=0

Um−n+2k(ξ) for n ≤ m . (7)
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The relation between island diagrams and Chebyshev polynomials are based on the
Feynman diagram of the Hermitian matrix model, refer to [4]. One may have an
insight from the simplest example:

U2 U2 U2 U0U4

The polynomial Uk corresponds to the island with k vertices. The product U2 U2
expands to U4(no basepair), U2(one basepair) and U0(all vertices are paired). The
island diagram is the one associated with U0 in the expansion of the product. In
general, we have the following theorem. See [4] for its proof.

Theorem 1 Suppose that there exist the number I of islands such that each of which
has ka ≥ 1 vertices for a ∈ {1, · · · , I }. The number of island diagrams one finds by
making base pairs is given by

〈 I∏

a=1

Uka , U0

〉
:= 2

π

∫ 1

−1

I∏

a=1

Uka (ξ)U0(ξ)

√
1 − ξ2dξ . (8)

where Uk(ξ) is the second kind Chebyshev polynomial of degree k.

The Chebyshev polynomials of the second kind are orthogonal with respect to the
weight

√
1 − ξ2: 〈Um,Un〉 = δm,n. Thus, Theorem 1 means that the number of

island diagrams is the coefficient ofU0 = 1 when the product
∏I

a=1 Uka (ξ) expands
to the linear combination of Chebyshev polynomials.

In order to reproduce the generating function given in (4), we need to take
the number of hairpins into account as well. Let us first consider the case of
island diagrams in which every blank(underscore) is a hairpin. A hairpin is
accompanied with the foundation of the hairpin, that is, h basepairs are assigned
as the foundations. Since those basepairs are the most nested ones, the number

of the island diagrams is simply given by
〈
Uk1−1

∏h
j=2 Ukj −2 Ukh+1−1, U0

〉
. The

foundations of the hairpin take one vertex from the outermost islands and take two
vertices from the others. In fact, the island diagrams having only hairpins are no
different from strings of matching brackets which represents Narayana numbers as
shown in the previous subsection. By just putting ( ) → (), we recover the bracket
representations. Thus, we have the following corollary:

Corollary 1.1 For any � ∈ N and 1 ≤ h ≤ �,

N(�, h) =
∑

k1+···+kh+1=2(�−h)

〈 h+1∏

a=1

Uka , U0

〉
(9)

where ka for a ∈ {1, · · · , h + 1} are non-negative integers.
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Now we find the generating function G(x, y, z). Note that a basepair must be
made across at least one hairpin. Conversely, no basepair can be made amongst
consecutive islands that do not have a hairpin inbetween. We regard a group of
maximally consecutive islands with no hairpin inbetween as one effective island.
Then, a backbone of island diagram can be seen as an alternate arrangement of
effective island and hairpin. This is nothing but the case that every blank is a hairpin.
One additional thing to consider is the number of ways to make an effective island
having ka vertices out of Ia islands, which is given by

(
ka−1
Ia−1

)
. Therefore, we find

g(h, I, �) =
∑

{ka,Ia}

h+1∏

a=1

(
ka − 1

Ia − 1

)〈
Uk1−1

h∏

j=2

Ukj −2 Ukh+1−1, U0

〉
(10)

where the summation runs over k1 + · · · + kh+1 = 2� and I1 + · · · + Ih+1 = I . By
means of Corollary 1.1, one can obtain the generating function (4).

We mention that one may also find the generating function by direct calculation
of the integral in (10). Using the generating function of the Chebyshev polynomial,

∑

k≥0

k∑

i=0

(
k

i

)
zk/2yiUk(ξ) = 1

1 − 2
√

z(1 + y)ξ + z(1 + y)2
, (11)

the integral is calculated to give

G(x, y, z) =
∑

h

xh zh yh+1 (1 + y)h−1
2F1(h + 1, h; 2; z(1+ y)2) (12)

where 2F1(a, b; c; z) is the hypergeometric function. One may easily show that
2F1(h + 1, h; 2; z) = ∑

k≥0 N(h + k, h)zk and therefore obtains the generating
function (4).

2.3 Motzkin Path

The generating function G(x, y, z) can also be written in terms of Motzkin
polynomial coefficients. The Motzkin numbers Mn and the Motzkin polynomial
coefficients M(n, k) are defined as

Mn =
�n/2�∑

k=0

M(n, k) where M(n, k) =
(

n

2k

)
Ck . (13)
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Let us consider the combinatorial identity in the following theorem. It is easy to
prove using the generating function of the Motzkin polynomials:

∑

�≥1

�(�−1)/2�∑

p=0

M(� − 1, p)A�−1Bp = 1 − A − √
(1 − A)2 − 4A2B

2A2B
. (14)

Theorem 2 For any integer � ≥ 1, there holds

y

1 + y

�∑

h=1

N(�, h) (x y)h (1 + y)2�−h

= x y2
� �−1

2 �∑

p=0

M(� − 1, p)
(
x y (1 + y)3

)p (
(1 + y)(1 + y + x y)

)�−2p−1
.

(15)

Proof The left hand side is [z�]G(x, y, z) given in (4). Multiplying z� and taking
the summation over � at each side, one can check that the right hand side is indeed
the generating function G(x, y, z).

Note that the identity (15) reproduces the Coker’s two identities. When we substitute
x/y for x and then put y = 0, we get the identity (1). Furthermore, the substitution
x → y/(1 + y) leads to the identity (2).1

We will investigate how the right hand side in (15) represents island diagrams.
In order to do that, we need a combinatorial interpretation of 2-Motkzin paths.
Let us first introduce the Motzkin paths, that can also be called 1-Motkzin paths.
A Motzkin path of size n is a lattice path starting at (0, 0) and ending at (n, 0) in
the integer plane Z × Z, which satisfies two conditions: (1) It never passes below
the x-axis. (2) Its allowed steps are the up step (1, 1), the down step (1,−1) and
the horizontal step (1, 0). We denote by U , D and H an up step, a down step and
a horizontal step, respectively. The Motzkin polynomial coefficient M(n, k) is the
number of Motzkin paths of size n with k up steps. Since the Motkzin number Mn

is given by the sum of M(n, k) over the number of up steps, Mn is the number of
Motzkin paths of size n. See for instance, the following figure depicting a Motzkin
path of M(7, 2):

1In order to deduce the identity, one may need the Touchard’s identity [19]: Cn =∑
k Ck

(
n−1
2k

)
2n−2k−1, which can be also derived from (1) when x = 1.
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On the other hand, 2-Motzkin paths allow two kinds of horizontal steps, which
often distinguish one from another by a color, let us say,R and B denoting a red and
a blue step, respectively. We provide a bijection map between 2-Motzkin paths and
strings of matching brackets.2 Suppose we have a 2-Motzkin path of size n given by
a string q1 q2 · · · qn over the set {U,D,R,B}. The corresponding string of brackets
Sn can be obtained by the following rules:

1. We begin with “()” : Let S0 = ().
2. For any 1 ≤ k ≤ n, suppose there exist a string of brackets S′ and a string

of matching brackets S′′ which are possibly empty such that Sk−1 has the form
S′(S′′). Then Sk is given by

S′((S′′)() if qk = U, S′(S′′)) if qk = D,

S′(S′′)() if qk = R, S′((S′′)) if qk = B.

For example, the string of matching brackets corresponding to the 2-Motzkin
path UBURDD is obtained as follows:

()
U−→ (()()

B−→(()(())
U−→ (()((())()

R−→ (()((())()()
D−→ (()((())()())

D−→ (()((())()()))

We remark here that only blue steps can make a stack. In other words, directly
nested structures such as “(())” never occur without blue steps. Therefore, a 1-
Motzkin path can be translated into a string of matching brackets without directly
nested brackets. This is one of the 14 interpretations of Motzkin numbers provided
by Donaghey and Shapiro in [7]. Later, in [11], it was also shown using context-
free grammars in the context of RNA shapes. We also remark that the Motzkin
polynomial coefficient M(� − 1, u) is the number of ways arranging � pairs of
brackets to be correctly matched and contain � − u pairs as “()” with no occurrence
of directly nested bracket.

Now we go back to the generating function on the right hand side in (15) and
rewrite it as

G(x, y, z) =
∑

�,u

M(� − 1, u) (xy2z)
(
(1 + y)

√
z
)u (

xy(1 + y)z
)u

× (
(1 + y)

√
z
)d (

(1 + y)2z + xy(1+ y)z
)s

(16)

2Sequences of matching brackets are only Dyck paths. A bijection map between Dyck paths and
2-Motzkin paths was introduced by Delest and Viennot [6]. But here we present a different way of
mapping than the well-known one.
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where u, d and s stand for the number of up, down and horizontal steps, respectively
(u = d , u + d + s = � − 1). Let us explain each factor in detail by means of
the above rules. The term xy2z is merely the starting hairpin “( )” (recall that the
exponent of x, y and z are the number of hairpins, islands and basepairs, resp.).
At each up step, one has a left bracket and a hairpin to add. For a given non-
empty string S of island diagrams, suppose that we add a left bracket then there are
the two possibilities, “(S” and “( S” corresponding to

√
z and y

√
z, respectively.

Thus, we get the factor (1 + y)
√

z at every up step and, in the same manner, at
every down step. Likewise, adding a hairpin introduces the factor xy(1 + y)z since
“S( )” and “S ( )” corresponds to xyz and xy2z, respectively. On the other hand, a
horizontal step can be eitherR orB. A red step is to add a hairpin and corresponds to
xy(1+ y)z. A blue step is to add one basepair nesting the string “(S)” and there are
three possibilities: the stack “((S))” for z, the two bulges “( (S))” and “((S) )” for
yz and the interior loop “( (S) )” for y2z. Therefore, we get ((1+y)2z+xy(1+y)z)

at each horizontal step.
Note that the number of up steps is the number of multiloops since every up step

opens a new multiloop. Thus the generating function written in terms of Motzkin
polynomials can be said to classify island diagrams by the number of basepairs
and multiloops while the one written in terms of Narayana numbers classify island
diagrams by the number of basepairs and hairpins.

3 Single-Stack Diagrams and RNA Shapes

An island diagram is called a single-stack diagram if the length of each stack in
the diagram is 1 so that each basepair is a stem by itself. Let s(h, I, k) denotes the
number of single-stack diagrams classified by the number of hairpins(h), islands(I )
and stems(k) and let S(x, y, z) = ∑

h,I,k s(h, I, k)xhyI zk denotes its generating
function. The island diagrams with k stems and � basepairs build on the single-stack
diagrams with k stems. The number of ways stacking � − k basepairs on k stems is(
�−1
k−1

)
and we have

g(h, I, �) =
�∑

k=1

(
� − 1

k − 1

)
s(h, I, k) . (17)

Multiplying xhyI z� at each side and summing over h, I , �, one finds the relation

G(x, y, z) = S
(
x, y,

z

1 − z

)
(18)
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and equivalently, S(x, y, z) = G(x, y, z/(1+z)). In terms of Motzkin polynomials,
the generating function S(x, y, z) expands to

S(x, y, z) =
∑

k,u

M(� − 1, u) (xy2z)
(
(1 + y)

√
z
)u (

xy(1 + y)z
)u

× (
(1 + y)

√
z
)d (

(2y + y2)z + xy(1 + y)z
)s

(19)

where u, d and s stand for the number of up, down and horizontal steps, respectively
(u = d , u + d + s = k − 1). This is the same as (16) except for one thing.
Recall that only blue steps make a directly nested bracket and from which we get
three possibilities by putting underscores, i.e., a stack for z, two bulges for yz and
an interior loop for y2z. One obtains single-stack diagrams by getting rid of the
possibility of stacking and hence the one different thing is the factor z such that one
has (2y + y2)z instead of (1 + y)2z.

We mention that the single-stack diagram is closely related to the π ′-shape (or
type 1), which is one of the five RNA abstract shapes provided in [8] classifying sec-
ondary structures according to their structural similarities. π ′-shape is an abstraction
of secondary structures preserving their loop configurations and unpaired regions.
A stem is represented as one basepair and a sequence of maximally consecutive
unpaired vertices is considered as an unpaired region regardless of the number of
unpaired vertices in it. In terms of the dot-bracket representation, a length k stem
“(k· · · )k” is represented by a pair of squared brackets “[ · · · ]” and an unpaired
region is depicted by an underscore. For instance, the π ′-shape “ [[[ ] [ ]] ]” can
abstract from the secondary structure “ . . . ((((. . .)..((. . .))))..)”. The only difference
between single-stack diagrams and π ′-shapes is whether or not to retain tales.

On the other hand, π-shape (or type 5) ignores unpaired regions such that,
for example, the π ′-shape “ [[[ ] [ ]] ]” results in the π-shape “[[][]]”. Con-
sequently, π-shapes retain only hairpin and multiloop configurations. One may
immediately notice that the string representations of π-shapes are nothing but
the sequences of matching brackets without directly nested brackets. Therefore,
as was shown in the previous section, there is a bijection map between π-shapes
and 1-Motzkin paths. Accordingly, one finds the theorem 3.1 in [11] that the
number of π-shapes with � pairs of squared brackets is the Motzkin number M�−1.
Furthermore, the Motzkin polynomial coefficient M(� − 1, u) is the number of π-
shapes with u multiloops and � − u hairpins.
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