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Abstract. Consider the generating function for the integer sequence (FmiFni : i ∈ N0),
where m and n are positive integer parameters. We may easily compute this g.f. in terms
of Fibonacci/Lucas numbers using an implementation of an algorithm due to Zeilberger.
However, for the case whereby the integers m and n are of the same parity, we have experi-
mentally discovered that there is a remarkably simpler way of expressing this g.f., compared
to the corresponding expression obtained via Zeilberger’s procedure. We prove this equiva-
lence via Binet’s formula, and then apply our simplified g.f. evaluation to generalize a classic
Fibonacci sum identity given by Freitag, and in relation to the recent work of Melham on
order-2 Fibonacci-type sums. Our evaluations for finite sums over FmiFni are dramatically
simpler compared to corresponding output obtained via Zeilberger’s Cfinite Maple package.

1. Introduction

A C-finite sequence is a sequence that satisfies a linear recurrence equation with constant
coefficients [21]. As indicated in [21], the set of all C-finite sequences is closed under multipli-
cation, i.e., under the Hadamard product operation on sequences [21]. Given two sequences
C1 and C2, the Hadamard product C1C2 refers to the sequence (C1(i)C2(i) : i ∈ N0). Letting
(Fi : i ∈ N0) denote the Fibonacci sequence, if we set C1 as the sequence (Fmi : i ∈ N0) for
a natural number m, and if we set C2 as (Fni : i ∈ N0) for a parameter n ∈ N, a Maple
implementation of a procedure due to Zeilberger [21] allows us to easily express the g.f. for
the Hadamard product

(FmiFni : i ∈ N0) (1.1)

in terms of Fibonacci/Lucas numbers. Using the Mathematica computer algebra system (CAS)
and the On-line Encyclopedia of Integer Sequences (OEIS) [17], we have come to find a strik-
ingly simpler way of evaluating the g.f. for (1.1) for the case whereby n and m are of the same
parity, but state-of-the-art symbolic computation software cannot directly confirm or verify
that our simplified g.f. for (1.1) is equivalent to the output obtained via Zeilberger’s procedure
[21] for the g.f. for (1.1). In this article, we prove this equivalence using Binet’s formula; we
then apply our simplified g.f. to generalize a classic result on Fibonacci sums from [4], and to
build on recently introduced results on order-2 Fibonacci-type sums given in [13].

1.1. An application of Zeilberger’s procedure. For a parameter n in N, it is easily seen
that the generating function for the sequence (Fni : i ∈ N0) is of the form

Fnx

(−1)nx2 − Lnx+ 1
,

recalling that the sequence (Li : i ∈ N0) of Lucas numbers is defined, as per usual, so that
L0 = 2, L1 = 1, and Ln = Ln−1+Ln−2, as in sequence A000032 in the OEIS [17]. Implementing
Zeilberger’s Cfinite package, and then inputting

KefelR(Fm*x/((-1)^m*x^2 - Lm*x + 1), Fn*x/((-1)^n*x^2 - Ln*x + 1), x)
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into Maple, letting expressions as in Fm denote variables or parameters in Maple, we find that
the g.f. for the Hadamard product of the sequences (Fmi : i ∈ N0) and (Fni : i ∈ N0) may be
expressed as below:

−Fm Fn x
(
x2 (−1)m+n − 1

)
1− Lm Ln x+ x2L2

m (−1)n + x2Ln
2 (−1)m − 2x2 (−1)m+n − Lm Ln (−1)m+n x3 + x4

.

Using a heavily experimental approach based on the use of both Mathematica and the OEIS
[17], we came to find, conjecturally, that: If m and n are of the same parity, then

Fm Fn x
(
1− x2

)
1− Lm Ln x+ x2L2

m (−1)n + x2Ln
2 (−1)m − 2x2 − Lm Lnx3 + x4

. (1.2)

may be written as the following remarkably simpler expression:

1

5

(
1− x2

)( 1

1− xLn+m + x2
− 1

1 + (−1)m+1xLn−m + x2

)
. (1.3)

This g.f. equivalence is a main result in this article. Inputting the difference of (1.2) and
(1.3) into current CAS software, and using commands as in Maple’s simplify, we find that
such software cannot confirm or “detect” the equality of (1.2) and (1.3), recalling the required
parity condition. Our simplified g.f. evaluation in (1.3) is of interest in its own right, as empha-
sized in Proposition 1.1 below, noting the symmetry or similarity between the denominators
in (1.5), in contrast to the relatively unwieldy expression in (1.4). Apart from such aesthetic
considerations, in terms of concrete applications concerning our symbolic form in (1.3), since
(1.3) expands as a linear combination of rational functions with quadratic denominators with
closed-form coefficients, this is useful in the construction of identities for equating sums involv-
ing FmiFni and combinations of order-2 recurrences, with reference to our results in Section
3.2 below. As illustrated in a dramatic way in Example 3.2 below, our evaluations for sums
of the form

j∑
i=0

FmiFni

are extremely simple compared to corresponding evaluations obtained via Zeilberger’s Cfinite
package [21].

Proposition 1.1. If m and n are natural numbers of equal parity, then

5Fm Fn x

1− Lm Ln x+ x2L2
m (−1)n + x2L2

n (−1)m − 2x2 − Lm Lnx3 + x4
(1.4)

equals
1

1− xLn+m + x2
− 1

1 + (−1)m+1xLn−m + x2
(1.5)

for suitably bounded x.

2. A simplified generating function evaluation

Again, it is not clear as to why the identity shown in Proposition 1.1 holds true. We prove
this Proposition in this section.

Theorem 2.1. If m ∈ N0 and n ∈ N0 are of the same parity, then the generating function for

FniFmi is
1
5

(
1− x2

) (
1

1−xLn+m+x2 − 1
1+(−1)m+1xLn−m+x2

)
.
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Proof. Suppose that m ∈ N0 and n ∈ N0 are of the same parity. By Binet’s formula, the
generating function for the integer sequence (FniFmi)i∈N0 is:

−
x
(
(−1)mϕ2m − 1

) (
(−1)n+1ϕ2n + 1

) (
(−1)m+n+1 + x2

)
ϕm+n

5 ((−ϕ)m+n − x) (xϕm + (−1)n+1ϕn) ((−1)m+1ϕm + xϕn) (xϕm+n − 1)
.

By assumption that m and n are of the same parity, the above expression may be rewritten
as follows:

−
x
(
x2 − 1

) (
(−1)mϕ2m − 1

) (
(−1)n+1ϕ2n + 1

)
ϕm+n

5 (ϕm+n − x) (xϕm + (−1)n+1ϕn) ((−1)m+1ϕm + xϕn) (xϕm+n − 1)
.

By Binet’s formula for Lucas numbers, it thus remains to prove that the above expression is
equal to:

x
(
x2 − 1

) ((
(−1)mϕ−2m − 1

)
ϕm+n − ϕ−m−n + (−1)mϕm−n

)
5 ((−1)m+1x (ϕm−n + ϕn−m) + x2 + 1) (−x (ϕ−m−n + ϕm+n) + x2 + 1)

.

Equivalently, it remains to prove that

−
(
(−1)mϕ2m − 1

) (
(−1)n+1ϕ2n + 1

)
ϕm+n

(ϕm+n − x) (xϕm + (−1)n+1ϕn) ((−1)m+1ϕm + xϕn) (xϕm+n − 1)

is equal to: ((
(−1)mϕ−2m − 1

)
ϕm+n − ϕ−m−n + (−1)mϕm−n

)
((−1)m+1x (ϕm−n + ϕn−m) + x2 + 1) (−x (ϕ−m−n + ϕm+n) + x2 + 1)

.

Now consider the ratio of the former numerator to the latter numerator:(
(−1)mϕ2m − 1

) (
(−1)n+1ϕ2n + 1

)
ϕm+n

(((−1)mϕ−2m − 1)ϕm+n − ϕ−m−n + (−1)mϕm−n)

It is easily seen that the above quotient is equal to ϕ2m+2n, as may be verified by expanding
the above numerator and expanding the expression ϕ2m+2n((((−1)mϕ−2m−1)ϕm+n−ϕ−m−n+
(−1)mϕm−n)). So, it remains to prove that

1

− (ϕm+n − x) (xϕm + (−1)n+1ϕn) ((−1)m+1ϕm + xϕn) (xϕm+n − 1)

is equal to:

1

ϕ2m+2n ((−1)m+1x (ϕm−n + ϕn−m) + x2 + 1) (−x (ϕ−m−n + ϕm+n) + x2 + 1)
.

Expand the former denominator as follows:

x4ϕ2m+2n−x3ϕm+n+(−1)m+1x3ϕ3m+n+(−1)n+1x3ϕm+3n−x3ϕ3m+3n+x2(−1)m+n+2ϕ2m+2n+
x2ϕ2m+2n + (−1)m+2x2ϕ4m+2n + (−1)n+2x2ϕ2m+4n + x(−1)m+n+3ϕm+n + (−1)m+3xϕ3m+n +
(−1)n+3xϕm+3n + x(−1)m+n+3ϕ3m+3n + (−1)m+n+4ϕ2m+2n + (−1)m+2x2ϕ2m + (−1)n+2x2ϕ2n

Expand the latter denominator as follows:

x4ϕ2m+2n − x3ϕm+n + (−1)m+1x3ϕ3m+n + (−1)m+1x3ϕm+3n − x3ϕ3m+3n + (−1)m+2x2ϕ2n +
2x2ϕ2m+2n + (−1)m+2x2ϕ4m+2n + (−1)m+2x2ϕ2m+4n − xϕm+n + (−1)m+1xϕ3m+n +

(−1)m+1xϕm+3n − xϕ3m+3n + ϕ2m+2n + (−1)m+2x2ϕ2m.

Simplifying the former denominator using the fact that m and n are of the same parity, it is
easily seen that the above two expressions are equal. □
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Zeilberger’s implementation of an algorithm for computing Hadamard products of g.f.’s [21]
gives us a computer proof that the g.f. for (1.1) is as given by the KefelR function output
shown in Section 1.1. However, we have shown, as above, that this same g.f. is as in Theorem
2.1.

3. Order-2 Fibonacci sums

By multiplying our simplified g.f. in Theorem 2.1 by expressions such as 1
1−x and then using

the Cauchy product for g.f.’s, this gives us interesting results, as in Theorems 3.1–3.4 below.
To begin with, we find it worthwhile to describe how these Theorems build upon and otherwise
relate to relevant background material.

3.1. Background. In 1973, Freitag [4] proved the summation identity

j∑
i=1

Fni =
(−1)nFjn + Fn − F(j+1)n

(−1)n + 1− Ln
.

As described in [4], it is a natural mathematical problem to consider finite sums involving
entries in the Fibonacci sequence that “skip” by a fixed period. With reference to the terms
double-index harmonic number [19] and Euler sum with multiple argument [18], we consider, in
this article, sums over products of multiple-index Fibonacci numbers. It seems that our results
on sums involving FniFmi have not appeared previously, as in references concerning Freitag’s
work in [4], as in [3, 15]. Letting u and v denote Fibonacci-type or Lucas-type sequences, the
evaluation of sums of the form

j∑
i=1

ua+bivc+di

is a topic that has been explored in many past references, as stated in [10], with reference to
publications as in [8, 9, 14].

For integer values aℓ and bℓ, an algorithm was given by Greene and Wilf [5] (cf. [21]) that
may be used to express

j∑
i=0

Fa1j+b1i+c1Fa2j+b2i+c2 · · ·Fakj+bki+ck (3.1)

in closed form with Fibonacci numbers. With regard to Zeilberger’s Maple implementation
of an algorithm for evaluating finite sums as in (3.1), it is unclear as to how this can be
used to obtain our parity-dependent results on sums involving FmiFni in Section 3, with
specific reference to the FindCHvTN program from Zeilberger’s Cfinite Maple package [21]. In
particular, it seems that FindCHvTN does not apply to summands with additional parameters
apart from the upper limit of a given finite sum under consideration. For example, by applying
Zeilberger’s Cfinite package and inputting

FindCHvTN(Fn(), 1, 5, [2*j, 3*j], n, j, 1)

this gives an evaluation for
∑n−1

j=0 F2jF3j , but inputting an expression such as

FindCHvTN(Fn(), 1, 5, [m*j, n*j], n, j, 1)

results in an error message. It is unclear as to how the algorithms in [5] may be applied to
obtain our results as in Theorem 2.1, relative to the corresponding Cfinite output under
consideration in Section 1.1.
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Finite sums of the form indicated in (3.1) for the case whereby k = 2 are often referred to
as order-2 Fibonacci sums [11, 13]. Our proofs for the results given in Section 3.2 significantly
build upon past results on order-2 Fibonacci sums, as in the identity

j∑
i=0

F 2
2i =

F4j+2 − 2j − 1

5

given in [20, p. 70] (cf. [11]).
In 2017 [13], Melham introduced a method for evaluating certain order-2 Fibonacci-type

sums. More specifically, writing

Wn(a, b, p) = Wn = pWn−1 +Wn−2,W0 = a,W1 = b

as in [13], a method for evaluating

j∑
i=1

Wai+b1Wai+b2

is given, noting that the coefficient of i in the above summand is the same for both of the
indices of the above W -expressions. So, it is unclear as to how the material from [13] could
be reformulated so as to be applicable to sums as in Theorem 3.1 below.

3.2. Finite sums of products of multiple-index Fibonacci numbers. A remarkable
aspect about our identity highlighted as Theorem 3.1 below is due to how the right-hand side
of this identity is very simple compared to corresponding output from the above referenced
FindCHvTN program [21], as in Example 3.2 below.

Theorem 3.1. If m ∈ N0 and n ∈ N0 are distinct and of the same parity, then

j∑
i=0

FmiFni =
1

5

(
(−1)jm+1

(
(−1)mFj(n−m) + F(j+1)(n−m)

)
Fn−m

+
Fj(m+n) + F(j+1)(m+n)

Fm+n

)
.

Proof. This can be shown to follow in a direct way by applying the partial sum operator 1
1−x

to the g.f. in Theorem 2.1, under the given assumptions on m and n □

Example 3.2. We input

FindCHvTN(Fn(), 1, 6, [2*j, 4*j], n, j, 1)

into Maple, using Zeilberger’s Cfinite package [21]. This gives us that the sum

j∑
i=0

F2iF4i (3.2)

equals the following for all j ∈ N0:

275F 6
j+1

4
−

315FjF
5
j+1

2
+

41FjFj+1

2
− 30F 2

j F
4
j+1 + 170F 3

j F
3
j+1 −

275F 2
j+1

4
− 3F 2

j + F2 jF4 j

In stark contrast, simply by setting m = 2 and n = 4 in Theorem 3.1, we obtain that the sum
in (3.2) also equals

F6j + F6j+6

40
− F2j + F2j+2

5
(3.3)

for all j ∈ N0. It does not seem to be possible to evaluate (3.2) with less terms compared to
the above FindCHvTN output. Without knowing that the second-to-last displayed expression and
the dramatically simpler expression in (3.3) are related via the sum in (3.2), it would be far
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from clear as to why these two expressions should be equal for all j ∈ N0. This is indicative of
the computational usefulness of our identities as in Theorem 3.1.

Theorem 3.3. If m ∈ N0 is even, then the identity

j∑
i=0

F 2
mi =

1

5

(
F2jm

F2m
+

F2(j+1)m

F2m
− (2j + 1)

)
holds true (cf. Theorem 2.3 in [13]).

Proof. Again, this follows in a direct way by applying the partial sum operator to the g.f. in
Theorem 2.1. □

Theorem 3.4. If m ∈ N0 is odd, then the identity

j∑
i=0

F 2
mi =

1

5

(
F2jm

F2m
+

F2(j+1)m

F2m
− (−1)j

)
holds (cf. Theorem 2.3 in [13]).

Proof. This follows from Theorem 2.1 as in the above proofs. □

We may obtain many similarly elegant results by applying operators such as 1
1+x and 1

1−x2

to our g.f. evaluation in Theorem 2.1. For the sake of brevity, we leave a full exploration of
this kind of topic to a separate research endeavour. Also consider the repeated application of
the partial sum operator to our g.f., to build on John Ivie’s work on multiple Fibonacci sums,
as in [7], along with Chu’s very recent work in [2]. The material in [12] motivates extending
our results to k-Fibonacci number sequences.

4. Conclusion

Generating function-based methods and results continue to be frequently involved in re-
search on Fibonacci/Fibonacci-type sequences; in this regard, see publications as in [1, 16, 23].
We encourage the use of the concepts and methods involved in our article in relation to past
research efforts on g.f.-based results on Fibonacci/Fibonacci-type sequences.

Combinatorial proofs for evaluating g.f.’s for products of second-order recurrences are the
subject of the Ph.D. thesis [22]. We encourage the development of combinatorial methods for
proving and generalizing Proposition 1.1.
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