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1. Introduction

The notion of parking functions was introduced by Konheim and Weiss in the analysis 
of a well-known computer algorithm: the hashing with linear probing. In [8] Konheim 
and Weiss gave a picturesque description of parking functions via a parking process on 
a one-way street. There are several equivalent definitions for parking functions. In this 
paper we adopt the one in terms of order statistics. For a sequence a = (a0, a1, . . . , an−1), 
let inc(a) = (a(0), a(1), . . . , a(n−1)) be its non-decreasing rearrangement, that is, a(0) ≤
a(1) ≤ · · · ≤ a(n−1), where a(i) is called the i-th order statistic of the sequence a.

Definition 1.1. An integer sequence a = (a0, a1, . . . , an−1) is a parking function if and 
only if its order statistics satisfy the inequalities 0 ≤ a(i) < i + 1 for all i.

The set of parking functions is an object lying in the center of combinatorics and 
appearing in many discrete and algebraic structures. In addition to hashing and linear 
probing, they are also related to enumeration of trees and forests, hyperplane arrange-
ments, noncrossing partitions, monomial ideals, and combinatorial theory of Macdonald 
polynomials, to list a few. See [22] for a survey on its history and some recent devel-
opments. There are various generalizations in literature, for example, vector parking 
functions that depend on a vector u [11,19], G-parking functions related to the critical 
configurations of the sandpile model on a directed graph G [15], parking functions on 
trees and directed graphs that generalize the parking process of Konheim and Weiss 
[3,7,12], and parking sequences allowing cars of different sizes [4]. In this paper we are 
concerned with vector parking functions.

Definition 1.2. Let u = (u0, u1, . . . ) be a sequence of non-decreasing positive integers. 
A u-parking function of length n is a sequence a = (a0, a1, . . . , an−1) ∈ Nn whose order 
statistics satisfy 0 ≤ a(i) < ui for i = 0, 1, . . . , n − 1.

We denote by PFn(u) the set of u-parking functions of length n and by PFn(u) the 
cardinality of PFn(u). When ui = i + 1 for all i, we recover Definition 1.1 and the 
sequences in PFn(u) are referred to as classical parking functions.

A sequence of polynomials from interpolation theory gives a natural algebraic tool to 
study u-parking functions. Those polynomials are called Gončarov polynomials, which 
are the basis of solutions to the Gončarov interpolation problem in numerical analysis. 
The n-th Gončarov polynomial gn(x; u) = gn(x; u0, . . . , un−1) is a monic polynomial of 
degree n depending on the parameters u0, u1, . . . , un−1. The detailed description of the 
algebraic and combinatorial theory of Gončarov polynomials can be found in [11]. The 
main result connecting u-parking functions and Gončarov polynomials is the following 
equation.
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Theorem 1.3 ([11]).

PFn(u) = gn(0;−u0, . . . ,−un−1) = (−1)ngn(0;u0, . . . , un−1). (1.1)

In particular, when u is an arithmetic progression with ui = a + bi for some positive 
integers a and b, PKn(u) = a(a + bn)n−1. For general u, the only formula available 
for computing PKn(u) is a determinantal formula, which is not easy to evaluate. The 
goal of the present paper is to give an explicit formula of the exponential generating 
function of PFn(u) when u is a periodic sequence. Here a sequence u = (u0, u1, . . . )
is periodic with period k and height � if there are positive integers k and � such that 
u0 ≤ u1 ≤ · · · ≤ uk−1 ≤ u0+� and um = q� +ur whenever m = qk+r with 0 ≤ r < k. Our 
analysis will start with an identity called the Appell relation for Gončarov polynomials.

Theorem 1.4 ([11]). Appell relation.

ext =
∞∑

n=0
gn(x;u) tneunt

n! . (1.2)

We will combine Eqs. (1.1) and (1.2) to get explicit generating functions of PFn(u)
for periodic u. The idea is to use the theory of fractional power series and an analog of 
Newton-Puiseux Theorem. This method was used previously in [10] to show the alge-
braicity of the (ordinary) generating functions of lattice paths with periodic boundaries. 
In this paper we extend it to vector parking functions. In particular, our result covers 
rational parking functions, which arose in the study of diagonal harmonic and com-
binatorial theory of Macdonald polynomials. The notion of rational parking functions 
come from an encoding of parking functions as labeled Dyck paths. Next we recall the 
necessary definitions and explain how to fit it into the notion of vector parking functions.

For any sequence a = (a0, a1, . . . , an−1) ∈ Nn, inc(a) can be represented by a 
lattice path from (0, 0) to (n, n) with north step N and east step E. If inc(a) =
(a(0), a(1), . . . , a(n−1)), the lattice path has E-steps from (i, a(i)) to (i + 1, a(i)) for each 
i. The sequence a is a classical parking function if and only if the corresponding lattice 
path is a Dyck path, which stays weakly below the diagonal y = x. To extend this repre-
sentation to a bijection to all parking functions, we assign each E-step in the Dyck path 
a label. If aj1 = aj2 = · · · = ajk = i for j1 < j2 < · · · < jk we label the E-steps in the 
Dyck path at height i as j1, j2, . . . , jk from left to right. Conversely, given a Dyck path 
whose E-steps are labeled by {0, 1, . . . , n − 1} and the labels on each consecutive run of 
E-steps are from small to large, we can recover the parking function by taking aj = i

whenever the E-step with label j is at height i. Fig. 1(a) gives an example of a labeled 
Dyck path and its corresponding parking function.
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(a) Labeled Dyck path for
the parking function (1, 0, 4, 0, 1)
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(b) Labeled Dyck path for the
(4, 7)-parking function (2, 0, 3, 0, 1, 2, 0)

Fig. 1. Parking function and rational parking function.

From this encoding of parking functions Armstrong, Loehr, and Warrington intro-
duced rational parking functions [1].1

Definition 1.5. Let a and b be coprime positive integers. An (a, b)-Dyck path is a lattice 
path from (0, 0) to (b, a) with steps {N, E} that stays weakly below the diagonal y =
ax/b. An (a, b)-parking function of length b is an (a, b)-Dyck path together with a labeling 
of the E-steps by the set {0, 1, . . . , b − 1} such that labels increase in each consecutive 
run of E-steps.

In [1] Armstrong, Loehr, and Warrington considered the Frobenius characteristic of 
parking functions under an action of the symmetric group and showed the following 
theorem using representation theoretical method.

Theorem 1.6. When gcd(a, b) = 1, the number of (a, b)-parking functions of length b is 
ab−1.

Note that when (a, b) = (n +1, n) this recovers the result on classical parking functions: 
the number of parking functions of length n is given by the famous Cayley’s formula 
(n + 1)n−1.

For an (a, b)-Dyck path labeled as described above, define a sequence (x0, x1, . . . , xb−1)
by letting xj = i whenever the E-step with label j is at height i. Fig. 1(b) shows a (4, 7)-
parking function, which corresponds to the sequence (2, 0, 3, 0, 1, 2, 0). It is easy to see 
that a sequence (x0, x1, . . . , xb−1) corresponds to an (a, b)-parking function if and only 
if the height of the i-th E-step is weakly below ia/b for 0 ≤ i < b. Hence we can extend 
the notion of (a, b)-parking functions to arbitrary lengths.

1 The definition here is essentially the one given in [1], except that we change the orientation and put the 
labels on E-steps to make the notation consistent with the rest of the paper.
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Definition 1.7. A sequence (x0, x1, . . . , xn−1) is an (a, b)-parking function of length n if 
and only if its order statistics x(0) ≤ x(1) ≤ · · · ≤ x(n−1) satisfy 0 ≤ x(i) ≤ ia/b for all 
i = 0, 1, . . . , n − 1. Given an (a, b)-parking function x, denote by D(x) its corresponding 
labeled Dyck path.

Comparing to Definition 1.2, one sees that (a, b)-parking functions are exactly the 
vector parking functions associated with the integer sequence u = (1 + �ia/b�)i≥0. If a
is not a multiple of b, this sequence is not an arithmetic progression. Nevertheless, it is 
periodic with period b and height a, to which our techniques apply.

The paper is organized as follows. We will describe the method and proofs for rational 
parking functions first, since the results are most clear. In section 2 we prove that the 
equation z = tbe−at has b fractional power series solutions. Then we convert Eq. (1.2)
associated with the vector u = (1 + �ia/b�)i≥0 into a system of linear equations, and 
we solve the system to get an explicit formula for the exponential generating functions 
of PFn(u) in terms of the elementary symmetric functions of the fractional power se-
ries solutions. Section 3 gives a combinatorial approach to enumerate the (a, b)-parking 
functions of length nb. In Section 4 we apply the techniques of fractional power series to 
vector parking functions with general periodic boundaries and present various applica-
tions. In Section 5 we discuss the cases when integers a, b are not relatively prime, and 
in Section 6 we extend the technique to eventually periodic u, i.e., u is periodic except 
for finitely many terms. We end this paper with some open questions in Section 7.

For future use, we briefly recall the definition of Schur functions.
Let α = (α1, α2, . . . , αn) ∈ Nn with α1 > α2 > · · · > αn ≥ 0. Let δ = (n − 1, n −

2, . . . , 1, 0), then we can write α = λ + δ where λ is an integer partition of length 
no greater than n. Here we use the definition and notation from [18, Section 1.7]. In 
particular, the length of an integer partition is the number of non-zero terms in this 
partition. Let x = (x1, x2, . . . , xn) be a set of variables. Define the determinant

aα(x) = aλ+δ(x) = det
(
x
λj+n−j
i

)n
i,j=1 (1.3)

When λ = ∅,

aδ(x) =
∏

1≤i<j≤n

(xi − xj) (1.4)

is the Vandermonde determinant.
The Schur function is defined as

sλ(x) = aλ+δ(x)/aδ(x). (1.5)

In particular, s(1k)(x) = ek(x), the k-th elementary symmetric function of degree k, and 
s(�)(x) = h�(x), the complete homogeneous symmetric function of degree �. For more 
details on symmetric functions, we refer the readers to [14, Chapter 1].
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2. Rational parking functions: an algebraic approach

In this section, we give an algebraic approach to compute the exponential generating 
function of PFn(u), where ui = �ia/b� + 1. This is done in three steps: First, we find 
a system of linear equations of generating functions of PFn(u) using Appell relation. 
Next we simplify the equations using a generalization of Newton-Puiseux Theorem that 
appeared in [10]. Lastly, by Cramer’s rule and computing the determinants for certain 
matrices, we obtain explicit expression of the generating function in terms of symmetric 
functions.

Let PF0(u) = 1. Combining Theorems 1.3 and 1.4 and letting x = 0, we have

1 =
∞∑

n=0
PFn(u) tne−unt

n! . (2.1)

Expanding the right-hand side with ui = �ia/b� + 1, we get

1 =
∑
n≥0

∑
0≤i≤b−1

PFnb+i(u) · t
nb+i · e−(na+ui)·t

(nb + i)!

=
∑
n≥0

PFnb(u)
(nb)! · tnbe−(na+u0)·t +

∑
n≥0

PFnb+1(u)
(nb + 1)! · tnb+1e−(na+u1)·t + · · ·

+
∑
n≥0

PFnb+b−1(u)
(nb + b− 1)! · tnb+b−1e−(na+ub−1)·t

=
∑
n≥0

PFnb(u)
(nb)! · zn · e−u0t +

∑
n≥0

PFnb+1(u)
(nb + 1)! · zn · t · e−u1t + · · ·

+
∑
n≥0

PFnb+b−1(u)
(nb + b− 1)! · zn · tb−1 · e−ub−1t

where z = tb · e−at. Let Qi(z) =
∑
n≥0

PFbn+i(u)
(bn + i)! · zn be the exponential generating 

function for PFbn+i(u), then the above equation can be rewritten as

b−1∑
i=0

Qi(z) · tie−uit = 1. (2.2)

In [10, Lemma 4.1], the authors gave a generalization of the Newton-Puiseux Theorem 
on certain power series.

Lemma 2.1. Let h(t) be a power series such that h(0) = 1. Then the equation

z = tkh(t)
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has k fractional power series solutions τm(z), 0 ≤ m ≤ k − 1 such that

τ0(z) = z1/k +
∑
i≥2

ciz
i/k

and

τm(z) = ωmz1/k +
∑
i≥2

ciω
mizi/k, 1 ≤ m ≤ k − 1,

where ω is a primitive k-th root of unity.

This lemma guarantees that there exist b distinct solutions t0(z), . . . , tb−1(z) to z =
tb · e−at. Thus we obtain b linear equations from Eq. (2.2):

⎛
⎜⎜⎜⎝

e−u0t0 t0e
−u1t0 · · · tb−1

0 e−ub−1t0

e−u0t1 t1e
−u1t1 · · · tb−1

1 e−ub−1t1

...
...

. . .
...

e−u0tb−1 tb−1e
−u1tb−1 · · · tb−1

b−1e
−ub−1tb−1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

Q0(z)
Q1(z)

...
Qb−1(z)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎠ . (2.3)

Denote the coefficient matrix by

A =
(
tji · e−ujti

)b−1
i,j=0. (2.4)

If det(A) �= 0, then by Cramer’s rule, Qi(z) = detAi/ detA, where Ai is the matrix 
obtained by replacing the i-th column of A by a column vector of ones. Note that our 
index starts from 0.

In order to find the determinants, we first simplify the matrix A by finding ti(z).
Following the notation in [17, Section 5.3], we denote R(x) =

∑
n≥1

nn−1x
n

n! as the 

generating function for labeled rooted trees. Then

R(x) = xeR(x). (2.5)

Moreover, fixing w as a primitive b-th root of unity, we let

γi(z) = z1/abωi exp
(

1
a
R
(ωai · a

b
z1/b)). (2.6)

We have the following lemma.

Lemma 2.2. For 0 ≤ i ≤ b − 1, ti(z) = γi(z)a are b solutions to z = tb · e−at.
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Proof. Simplify the expression γa
i :

γa
i = z1/bωia exp

(
R
(ωai · a

b
z1/b))

= z1/bωia ·R
(ωai · a

b
z1/b) · (ωai · a

b
z1/b)−1

= b

a
R
(ωai · a

b
z1/b).

Since gcd(a, b) = 1, {ωai : 0 ≤ i ≤ b − 1} are b distinct roots for xb = 1. Hence ti(z) are 
all distinct.

On the other hand, since R(x) = xeR(x), we can verify

tbi · e−at =
(
b

a
R
(ωai · a

b
z1/b))b

· exp
(
− a · b

a
R
(ωai · a

b
z1/b))

=
(
b

a

)b(
R
(ωai · a

b
z1/b) · exp

(
−R

(ωai · a
b

z1/b)))b

=
(
b

a

)b

·
(ωai · a

b
z1/b)b

= z.

Hence ti(z) is a solution to z = tb · e−at for i = 0, 1, . . . , b − 1. �
We remark that Lemma 2.2 agrees with Lemma 2.1. Just notice that ti can be obtained 

from t0 by substituting ωaiz1/b for z1/b, where ωa is again a primitive b-th root of unity. 
The format in Lemma 2.2 allows us to simplify the entries in the matrix A.

From z = tbi · e−ati we have e−ti = ηz1/a · γ−b
i where η is an a-th root of unity. 

Expanding both sides as fractional power series and comparing the constant coefficient, 
we have η = 1. Hence e−ti = z1/a · γ−b

i and consequently

A =
(
zuj/a · γaj−ujb

i

)b−1
i,j=0. (2.7)

Next, we claim that

Lemma 2.3. Let λi = uib − ia, then λ = (λ0, λ1, . . . , λb−1) ∈ Sb. Here Sn denotes the 
set of permutations of {1, 2, . . . , n}.

Proof. Assume �ia/b� = j, then ia = jb + r where 0 ≤ r < b. This gives λi = (j + 1)b −
ia = b − r. So 0 < λi ≤ b for all 0 ≤ i ≤ b. The values of λi are all distinct because they 
are in different congruence classes modulo b. Hence λ ∈ Sb. �

Now we are ready to compute detA.
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Proposition 2.4. Let A be the matrix defined in Eq. (2.4), then

detA = sgn(λ) · zc · aδ(γγγ) ·
b−1∏
i=0

γ−b
i .

Here c =
∑b−1

i=0 ui/a, aδ(γγγ) is as defined in Eq. (1.4), and sgn(λ) is the sign of permu-
tation λ. That is, sgn(σ) = (−1)m where m is the number of transpositions to map σ to 
inc(σ).

Proof. Using Eq. (2.7) and Lemma 2.3, we have

detA = det
(
zuj/a · γaj−ujb

i

)b−1

i,j=0

= zc · det
(
γ
−λj

i

)b−1
i,j=0

= sgn(λ) · zc · det
(
γ−1−j
i

)b−1
i,j=0

= sgn(λ) · zc ·
b−1∏
i=0

γ−b
i · det

(
γb−1−j
i

)b−1
i,j=0

= sgn(λ) · zc · aδ(γγγ) ·
b−1∏
i=0

γ−b
i

as desired. �
Using a similar idea, we compute detAi.

Proposition 2.5. For 0 ≤ i ≤ b − 1, let Ai be the matrix obtained by replacing the i-th 
column of A by a column vector of ones, then

detAi = (−1)λi−1 · sgn(λ) · zc−ui/a ·
b−1∏
j=0

γ−b
j · eλi

(γγγ) · aδ(γγγ)

where γγγ = (γ0, γ1, . . . , γb−1) as defined in Eq. (2.6).

Proof. By definition,

detAi = det(ajk)b−1
j,k=0

where ajk = zuj/a · γ−λj

k when k �= i, and aji = 1. Thus

detAi = (−1)λi−1 · sgn(λ) · zc−ui/a ·
b−1∏

γ−b
j · det

(
γ
μj

i

)b−1
i,j=0,
j=0
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where (μ0, μ1, . . . , μb−1) = (b, b −1, . . . , b −λi+1, b −λi−1, . . . , 0) = μ +δ and μ = (1λi), 
a partition with all nonzero parts equal to one. By Eqs. (1.3) and (1.5) we have

detAi = (−1)λi−1 · sgn(λ) · zc−ui/a ·
b−1∏
j=0

γ−b
j · s(1λi )(γγγ) · aδ(γγγ)

= (−1)λi−1 · sgn(λ) · zc−ui/a ·
b−1∏
j=0

γ−b
j · eλi

(γγγ) · aδ(γγγ),

which proves the proposition. �
Combining Propositions 2.4 and 2.5, we find the generating function for (a, b)-parking 

functions of any length.

Theorem 2.6. Assume a, b are two coprime positive integers and u is the sequence given 

by ui = �ia/b� + 1. Let Qi(z) =
∑
n≥0

PFbn+i(u)
(bn + i)! · zn. Then

Qi(z) = (−1)λi−1z−ui/aeλi
(γγγ), (2.8)

where λi = uib − ia and γγγ = (γ0, γ1, . . . , γb−1) is given by Eq. (2.6). Consequently, the 
exponential generating function of PFn(u) can be computed by

∞∑
n=0

PFn(u)z
n

n! =
b−1∑
i=0

ziQi(zb).

Note that when b = 1, (a, b)-parking functions are u-parking functions where u is the 
arithmetic progression with ui = 1 + ai. In this case Theorem 2.6 gives

∑
n≥0

PFn((1 + ai)i≥0)
zn

n! = exp
(

1
a
R(az)

)
.

We can extract the value of PFn((1 + ai)i≥0) by the Lagrange inversion formula and 
hence recover the following formula in [11, Corollary 5.5].

Corollary 2.7. Let ui = 1 + ai for a positive integer a. Then PFn(u) = (1 + an)n−1.

Proof. Let g(z) = 1
aR(az). Then R(x) = x exp(R(x)) implies g(z) = z exp(ag(z)). Ap-

plying a generalized version of the Lagrange inversion formula, for example, see [17, 
Corollary 5.4.3] with G(z) = eaz and H(z) = ez, we have

[zn] exp(g(z)) = [zn]H(g(z)) = 1 [zn−1]H ′(z)G(z)n = 1 [zn−1] exp((1 + an)z),

n n
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which gives PFn(u) = (1 + an)n−1. �
When b > 1, we have the following special cases.

Corollary 2.8. Assume a = � · b + r, where b > 1, � ≥ 0 and r ≤ b − 1, then

Q0(z) = (−1)b−1z−1/a
b−1∏
i=0

γi (2.9)

and

Qb−1(z) = (−1)r−1z−1er(γγγ). (2.10)

Proof. Apply u0 = 1 and ub−1 = a to Theorem 2.6. Note that λ0 = b and λb−1 = r. �
By simplifying the coefficient of z in Eq. (2.9), we obtain a new proof of Theorem 1.6.

Corollary 2.9. Let a, b be two positive integers such that gcd(a, b) = 1.

(i) The number of (a, b)-parking functions of length b is ab−1.

(ii) The number of (a, b)-parking functions of length 2b is (2a)2b−1 + 1
2 ·

(
2b
b

)
a2b−2.

Proof. Using Formula (2.6), we have

Q0(z) =
b−1∏
i=0

exp
(

1
a
R
(ωaia

b
z1/b)) = exp

(
1
a

b−1∑
i=0

R
(ωaia

b
z1/b)).

Let η = ωa. Note that η is also a b-th primitive root of unity. Thus 
∑b−1

i=0 (ηi)n = b if n
is a multiple of b, and the sum is 0 otherwise. Hence

b−1∑
i=0

R

(
ωaia

b
z1/b

)
=

b−1∑
i=0

∑
n≥1

nn−1

n!

(
ωaia

b
z1/b

)n

=
∑
n≥1

nn−1

n!

(
b−1∑
i=0

ωain

)(a
b

)n

zn/b

=
∑
k≥1

(kb)kb−1

(kb)! b
(a
b

)kb

zk

= ab

b! z + a · (2a)2b−1

(2b)! z2 + Kz3,

where K is a formal power series of z. Therefore
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Q0(z) = exp
(
ab−1

b! z + (2a)2b−1

(2b)! z2 + Kz3/a

)

= 1 + ab−1

b! z + 1
(2b)!

(
(2a)2b−1 + 1

2

(
2b
b

)
a2b−2

)
z2 + higher powers of z,

which gives the desired results. �
Another special case is when a = 1. In this case we can simplify γi as

γi(z) = z1/bωi exp
(
R
(ωi

b
z1/b)) = b ·R

(ωi

b
z1/b),

where the last equation follows from Eq. (2.5). Thus Theorem 2.6 has the form

Theorem 2.10. When a = 1, we have

Qi(z) = (−1)b−i−1z−1eb−i(γγγ).

In particular,

Q0(z) = (−1)b−1z−1bb
b−1∏
i=0

R
(ωi

b
z1/b) (2.11)

and

Qb−1(z) = z−1b

b−1∑
i=0

R
(ωi

b
z1/b). (2.12)

Computing the coefficients in Eq. (2.12) we get the following corollary.

Corollary 2.11. When a = 1, that is, when u = (1, 1, . . . , 1, 2, 2, . . . , 2, 3, . . .), the number 
of (1, b)-parking functions of length nb + b − 1 is given by

PFnb+b−1(u) = (n + 1)nb+b−2.

Proof. Expanding Eq. (2.12) we obtain

Qb−1(z) = z−1b ·
b−1∑
i=0

∑
n≥1

nn−1

n!

(
ωi

b
z1/b

)n

= z−1b ·
∑ nn−1

n!bn zn/b
b−1∑

ωni.

n≥1 i=0
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Note that when b � |n, 
∑b−1

i=0 ωni = 0, thus the only non-zero terms will be when b|n, in 
which case ωni = 1. So we have

Qb−1(z) = z−1b ·
∑
n≥1

(nb)nb−1

(nb)!bnb z
n · b

= b ·
∑
n≥1

nnb−1

(nb)! z
n−1

= b ·
∑
n≥0

(n + 1)nb+b−1

(nb + b)! zn

= b ·
∑
n≥0

(n + 1)nb+b−1

b(n + 1)(nb + b− 1)!z
n

=
∑
n≥0

(n + 1)nb+b−2

(nb + b− 1)! z
n.

Comparing the coefficients of zn, we obtain the desired result. �
Theorem 2.10 and Corollary 2.11 recover the work of Blake and Konheim [2, Section 2], 

who considered a computer storage problem similar to that of the classical parking 
functions, except that each address (parking space) is capable of holding k items.

3. Rational parking functions: a combinatorial approach

In this section, we give a combinatorial proof for the cardinality of PFnb(u) for ui =
�ia/b� + 1. Again assume a, b are positive integers with gcd(a, b) = 1. From Section 1
we see that PFnb(u) counts the number of certain labeled (a, b)-Dyck paths. We adapt 
the techniques in lattice path counting and consider how the labels would contribute. 
In particular, we use the well-known cycle lemma; see [9] for a survey and many related 
references.

For convenience, we will use PFnb to denote the number of (a, b)-parking functions of 
length nb. Moreover, denote by [n] the set {1, 2, . . . , n} and [n]0 the set {0, 1, 2, . . . , n}.

First we present a purely combinatorial proof of Theorem 1.6, which is an extension of 
Pollak’s classical proof for the formula (n +1)n−1 for classical parking functions; see [16]. 
This proof for rational parking functions, written in terms of cosets in the group (Z/aZ)b, 
was presented in [21, Section 3.1.2] and used in [20, Section 2.4]. For completeness, we 
include the proof here again.

A combinatorial proof of Theorem 1.6. We build a bijection φ : PFb(u) −→ [a − 1]b−1
0

as follows.
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For any (a, b)-parking function c = (c1, c2, . . . , cb) ∈ PFb(u), let φ(c) be its difference 
sequence d = (d1, d2, . . . , db−1), where di = ci+1 − ci mod a. Clearly φ(c) is in the set 
[a − 1]b−1

0 .
To see φ is a bijection, we prove that for any sequence d ∈ [a −1]b−1

0 , there is a unique 
integer k mod a such that (k, k + d1, k + d1 + d2, . . . , k + d1 + · · · + db−1) mod a is an 
(a, b)-parking function.

To show the existence of k, we use the following construction. Given a sequence 
d ∈ [a − 1]b−1

0 , consider the sequence c = (c0, c1, . . . , cb−1) where c0 = 0 and ci =∑i
j=0 dj mod a. Let c(i) be its i-th order statistic. Since gcd(a, b) = 1, the numbers 

{c(i) − ia/b : 0 ≤ i ≤ b −1} are all distinct. Let i be the index that maximizes c(i) − ia/b, 
and let � = c(i). Note that if {c(i) : c(i) − ia/b > 0} = ∅, then � = 0. We claim that 
c − � = (c0 − �, c1 − �, . . . , cb−1 − �) mod a is an (a, b)-parking function, that is, k = −�

mod a.
For j < i, we have c(j)−� = c(j) +a −� mod a and the order statistic for c −� is then 

(0 = c(i)−�, c(i+1)−�, . . . , c(b−1)−�, c(0)+a −�, . . . , c(i−1)+a −�) := (c′(0), c′(1), . . . , c′(b−1)). 
In formula,

c′(j) =
{

c(j+i) − �, if 0 ≤ j ≤ b− i− 1
cj−(b−i) + a− �, if b− i ≤ j ≤ b− 1.

Now let’s check the condition that c′(j) ≤ ja/b.

(i) The case 0 ≤ j ≤ b − i − 1. Since c(i) − ia/b > c(i+j) − (i + j)a/b by our choice of i, 
we have c(i+j) − � = c(i+j) − c(i) ≤ ja/b, that is c′(j) ≤ jb/a.

(ii) The case b − i ≤ j ≤ b − 1. Using c(i) − ia/b > c(i−β) − (i − β)a/b, we have 
c′(j) = c(i−(b−j)) + a − � < c(i) − (b − j)a/b + a − � = a − (b − j)a/b = ja/b.

Thus the sequence c − � is an (a, b)-parking function as desired.
Fig. 2 gives a graphical explanation of the above proof: The lattice path from (0, 0)

to (b, a) corresponds to the order statistics inc(c). Given any lattice path from (0, 0)
to (b, a), find the peak that is furthest from the diagonal y = ax/b. Starting from that 
vertex and cyclically permute the lattice path, we would obtain an (a, b)-Dyck path that 
is fully under the diagonal.

Finally we show the uniqueness of the cyclic shift by proof of contradiction. Assume 
that in addition to the above c − �, there is another p �= � mod a such that c − p is 
also an (a, b)-parking functions. Assume that inc(c − �) = 0m01m1 · · · (a − 1)ma−1 , i.e., it 
contains mi many i for i = 0, . . . , a − 1. Then the inequalities c′(j) ≤ ja/b are equivalent 
to the system

{∑j−1
t=0 mt > jb/a for 0 ≤ j < a− 1∑a−1

mt = b.
t=0
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A

B

Fig. 2. A graphical explanation of the proof.

Since c − p is a cyclic shift of c − �, the order statistics inc(c − p) is of the form 
0mi1mi+1 · · · (a − 1 − i)ma−1(a − i)m0 · · · (a − 1)mi−1 for some i �= 0. Hence we would 
have mi + mi+1 + · · ·+ ma−1 > (a − i)b/a. Combining with 

∑i−1
t=0 mt > ib/a, we obtain ∑a−1

t=0 mt > b, a contradiction. �
Next we generalize this argument to get a recurrence for PFnb.

Theorem 3.1. For any integer n ≥ 1 and gcd(a, b) = 1 we have

PFnb = (na)nb−1 +
∑

�1+···+�k=n
�i≥1,k≥2

(−1)k ·
(

nb

�1b, �2b, . . . , �kb

)
· 1
k
· PF�1b · · ·PF�kb. (3.1)

Proof. Consider the map φ : PFnb(u) −→ [na − 1]nb−1
0 as follows: Given an (a, b)-

parking function c = (c0, c1, . . . , cnb−1) ∈ PFnb(u), φ(c) is the difference sequence d =
(d1, d2, . . . , dnb−1) where di = ci − ci−1 mod na.

By a similar proof as the previous one, it is straightforward to check that given 
d ∈ [na − 1]nb−1

0 , we can construct a sequence c = (c0, c1, . . . , cnb−1) where c0 = 0 and 
ci =

∑i
j=0 dj . Then there exists an � ≥ 0 such that c − � is an (a, b)-parking function of 

length nb − 1. Thus φ is surjective.
However, this map is not injective. Without loss of generality, assume c ∈ PFnb(u)

whose difference sequence is d. Then using a similar argument, we can verify that the 
sequence c − j mod na is an (a, b)-parking function with the same difference sequence 
d if and only if there is an index 0 < j < nb − 1 such that c(j) = ja/b. And since 
gcd(a, b) = 1, this only happens when j is a multiple of b.

We can also give a graphical explanation of this argument. Let c ∈ PFnb(u), and 
let D(c) be its corresponding labeled Dyck path. By definition, D(c) is weakly below 
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the line y = ax/b. If D(c) touches the diagonal at an internal point (kb, ka) for some 
0 < k < n, we can decompose D into two sub-path: D1 from (0, 0) to (kb, ka), and D2
from (kb, ka) to (nb, na). Then the Dyck path D′ = (D2, D1) obtained by attaching the 
initial point of D1 to the end point of D2 is also an (a, b)-Dyck path. On the other hand, 
keeping the labels on D1 and D2 unchanged, we can check that c′ obtained from D′ has 
the same difference sequence as that of c.

In other words, given one difference sequence d ∈ [na − 1]nb−1
0 , and let c be a pre-

image of d under the map φ. If D(c) touches the diagonal y = ax/b exactly k − 1 times 
at some internal points, then D(c) can be decomposed into sub-paths D1, D2, . . . , Dk, 
and any cyclic permutation Di, Di+1, . . . , Di−1 with labels unchanged will also recover a 
parking function in φ−1(d). Thus |φ−1(d)| = k and we only need one element from each 
pre-image to compute |φ(PFnb)|.

Let S ⊆ [n − 1] and denote by AS the number of parking functions whose Dyck paths 
hits y = ax/b only at the internal points (sib, sia) for all si ∈ S. Note that |S| = k − 1
implies that the corresponding Dyck path can be decomposed into k segments, each 
is a shorter (a, b)-Dyck path. Denote by BS the number of parking functions whose 
corresponding Dyck paths hits y = ax/b at least at the internal points (sib, sia) for all 
si ∈ S. Then by Principle of Inclusion-Exclusion, we have

BT =
∑
S⊆T

AS

and

AS =
∑
T⊇S

(−1)|T |−|S|BT .

On the other hand, if T = {t1, t2, . . . , tk−1}, then any Dyck path D ∈ BT hits y = ax/b

at least at the points (tib, tia). Since there are nb many horizontal steps in D, if we denote 
by �ib the number of horizontal steps between the points (ti−1b, ti−1a) and (tib, tia) where 
t0 = 0 and tk = n, then (�1, �2, . . . , �k) is a positive integer composition of n. Since there 
are 

(
nb

�1b,...,�kb

)
many ways to choose a labeling of D, and there are PF�1b · · ·PF�kb many 

parking functions with the given decomposition. We have that

BT =
(

nb

�1b, . . . , �kb

)
· PF�1b · · ·PF�kb.

Thus

(na)nb−1 =
∑

S⊆[n−1]

AS

|S| + 1

=
∑ 1

|S| + 1 ·
∑

(−1)|T |−|S|BT
S⊆[n−1] T⊇S
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=
∑

T⊆[n−1]

BT ·
∑
S⊆T

(−1)|T |−|S|

|S| + 1

Using the identity 
k∑

i=0
(−1)k−i

(
k

i

)
1

i + 1 = (−1)k

k + 1 , we can simplify the above equation 

as

(na)nb−1 =
∑

T⊆[n−1]

(−1)|T | BT

|T | + 1

=
n∑

k=1

(−1)k+1 ·
∑
�

1
k

(
nb

�1b, . . . , �kb

)
PF�1b · · ·PF�kb,

where � ranges over all positive integer compositions of n. This simplifies to Eq. (3.1). �
Note that when n = 2 the above formula simplifies to Corollary 2.9(ii).

Define the generating functions P (x) =
∑
n≥1

PFnb

(nb)! · x
nb and let F (x) =

∑
n≥1

(na)nb−1

(nb)! ·

xnb. Multiplying xnb/(nb)! and summing over n ≥ 1 in Eq. (3.1), we get

P (x) = F (x) +
∑
k≥2

(−1)k

k

k∏
i=1

∑
�i≥1

PF�ib

(�ib)!
x�ib

= F (x) +
∑
k≥2

(−1)k

k
P k(x)

= F (x) + P (x) − ln(1 + P (x)).

Thus we obtain the following theorem.

Theorem 3.2. Let PF0 = 1. Then we have 1 + P (x) = exp(F (x)), that is,

∑
n≥0

PFnb

(nb)! · xnb = exp

⎛
⎝∑

n≥1

(na)nb−1

(nb)! · xnb

⎞
⎠ . (3.2)

We remark that Eq. (3.2) is equivalent to Eq. (2.9) by noticing that 1 +P (x) = Q0(xb)
and

F (x) =
∑
n≥1

(na)nb−1

(nb)! · xnb = b

a

∑
n≥1

(nb)nb−1

(nb)!

(ax
b

)nb

= b

a

∑ mm−1

m!

(ax
b

)m

= 1
a

b−1∑
R(ωi ax

b
),
m:b|m i=0
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where ω is a primitive b-th root of unity and R(x) =
∑
n≥1

nn−1x
n

n! .

Using a similar idea, we can consider the number of (a, b)-parking functions whose 
corresponding lattice paths do not touch the line y = ax/b except at the endpoints.

Definition 3.3. A prime (a, b)-parking function of length nb is an integer sequence 
(a0, a1, . . . , anb−1) such that the ith order statistic satisfies a(0) = 0 and 0 ≤ a(i) < ia/b

for i = 1, . . . , nb − 1.

Theorem 3.4. Denote by PPFnb the number of prime (a, b)-parking functions of length 
nb, then

PPFnb = |PFnb| −
∑
�

(−1)k
(

nb

�1b, �2b, . . . , �kb

)
· PF�1b · PF�2b · · ·PF�kb, (3.3)

where the sum is over all compositions of n with at least two parts. As a consequence, 
let Q(x) =

∑
n≥1

PPFnb

(nb)! xnb be its generating function. Then

Q(x) = P (x)
1 + P (x) .

Proof. This follows easily by considering the parking functions whose corresponding 
Dyck paths touches the diagonal y = a/b · x and using the Inclusion-Exclusion Princi-
ple. �

The combinatorial method described in this section provides a different approach to 
study rational parking functions. We expect to extend the lattice path counting tech-
niques to study parking functions whose underlying paths end at a given point, carry 
various weight, or have a piecewise linear boundary.

4. Vector parking functions with a periodic boundary

Notice that Eq. (2.3) does not depend on explicit u values, so it holds for any periodic 
boundary u with period b and height a. In this section, we show that when gcd(a, b) = 1, 
we can still compute the determinant in a similar way and solve the system.

Throughout this section, assume gcd(a, b) = 1.

Lemma 4.1. Let 1 ≤ u0 ≤ u1 ≤ · · · ≤ ub−1. Then for 0 ≤ i ≤ b − 1, the numbers 
λi = uib − ia are distinct.

Proof. It follows from the fact that λi’s are in different congruence classes modulo b, �
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Lemma 4.2. Denote inc(λ) = (λ(0), . . . , λ(b−1)) and let c =
∑b−1

i=0 ui/a. Then

detA = sgn(λ) · zc · sμ(γγγ) · aδ(γγγ) ·
b−1∏
i=0

γ
−λ(b−1)
i . (4.1)

Here γγγ = (γ0, . . . , γb−1) is given by Eq. (2.6), sπ(x) is as defined in Eq. (1.5), and 
μ = (μ0, . . . , μb−1) is a partition where μi = λ(b−1) − λ(i) − (b − i − 1).

Proof. Rewrite z = tbi · e−ati as e−ti = z1/aγ−b
i , then

detA = det
(
zuj/a · γ−λj

i

)b−1

i,j=0

= zc · det
(
γ
−λj

i

)b−1
i,j=0

= sgn(λ) · zc · det
(
γ
−λ(j)
i

)b−1
i,j=0

= sgn(λ) · zc
b−1∏
i=0

γ
−λ(b−1)
i · det(γλ(b−1)−λ(j)

i )b−1
i,j=0

= sgn(λ) · zc · sμ(γγγ) · aδ(γγγ) ·
b−1∏
i=0

γ
−λ(b−1)
i .

Note that by Lemma 4.1, λ(i+1) > λ(i) and λ(b−1) − λ(i) ≥ b − i − 1. It implies that 
μi ≥ μi+1 and μi = λ(b−1) − λ(i) − (b − i − 1) ≥ 0. Thus sμ(γγγ) is well-defined. �

Next we consider detAi.
Consider λ(i) = (λ0, . . . , λi−1, 0, λi+1, λb−1), and let inc(λ(i)) = (λ(i)

0 , λ(i)
1 , . . . , λ(i)

b−1). 
Note that since gcd(a, b) = 1, we have uib − ia �= 0. Thus λ(i)

j with 0 ≤ j ≤ b − 1 are all 
distinct.

Lemma 4.3.

detAi = sgn(λ(i)) · zc−ui/a · sμ(i)(γγγ) · aδ(γγγ) ·
b−1∏
j=0

γ
−λ

(i)
b−1

j , (4.2)

here μ(i) = (μ(i)
0 , μ(i)

1 , . . . , μ(i)
b−1) is the partition with parts μ(i)

j = λ
(i)
b−1−λ

(i)
j − (b − j−1).

Proof. Replacing the i-th column of A by 1, we get

detAi = det

⎛
⎜⎜⎜⎜⎝
zu0/aγ−λ0

0 · · · 1 · · · zub−1/aγ
−λb−1
0

zu0/aγ−λ0
1 · · · 1 · · · zub−1/aγ

−λb−1
1

...
. . .

...
. . .

...
zu0/aγ−λ0 · · · 1 · · · zub−1/aγ

−λb−1

⎞
⎟⎟⎟⎟⎠
b−1 b−1
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= sgn(λ(i)) · zc−ui/a · det
(
γ
−λ

(i)
j

i

)b−1
i,j=0

= sgn(λ(i)) · zc−ui/a ·
b−1∏
j=1

γ
−λ

(i)
b−1

j · det
(
γ
λ

(i)
b−1−λ

(i)
j

k

)b−1
k,j=0.

By a similar argument as in the proof of Lemma (4.1) we obtain the desired result. �
Combining Lemmas 4.2 and 4.3 we have

Theorem 4.4. For 0 ≤ i ≤ b − 1,

Qi(z) = sgn(λ) · sgn(λ(i)) · z−ui/a ·
b−1∏
j=0

γ
λ(b−1)−λ

(i)
b−1

j ·
sμ(i)(γγγ)
sμ(γγγ) . (4.3)

Next we look at some examples of Theorem 4.4.

Example 1. ui = �ia/b� + �. Consider the parking functions whose corresponding lattice 
paths are weakly below the line y = a/b · x + � − 1, that is, u-parking functions with 
ui = �ia/b� + � for some integer � ≥ 1.

The proof of the following lemma is similar to that of Lemma 2.3 and is omitted here. 
Interested readers can fill the details themselves.

Lemma 4.5. The entries λi = uib − ia form a permutation of the numbers (� − 1)b +
1, (� − 1)b + 2, . . . , �b.

Using the notation in Theorem 4.4, we have λ(i) = �b − b + i + 1 and μi = 0, thus 
sμ(γγγ) = 1. On the other hand, inc(λ(i)) = (0, (� −1)b +1, . . . , λi−1, λi+1, . . . , �b −1, �b).

Theorem 4.6. Denote by di = λi − (� − 1)b − 1, then

Qi(z) = (−1)diz−ui/as((�−1)b+1,1di )(γγγ) (4.4)

Proof. By Lemma 4.2 we have

detA = sgn(λ) · aδ(γγγ) · zc
b−1∏
i=0

γ−�b
i .

On the other hand, if the i-th column in A is replaced by a vector of ones, we have

detAi = sgn(λ) · zc−ui/a · det
(
γγγ−�b
j , γγγ−�b+1

j , . . . , γγγ−λi−1
j ,1, γγγ−λi+1

j , . . . , γγγ
−(�−1)b−1
j

)

= sgn(λ) · zc−ui/a ·
b−1∏
i=0

γ−�b
i · det

(
1, γγγj , . . . , γγγ

�b−λi−1
j , γγγ�b

j , γγγ�b−λi+1
j , . . . , γγγb−1

j

)
,
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here γγγm
j in the determinant means the corresponding column is of the form (γm

0 , γm
1 , . . . ,

γm
b−1)T . Since it takes di = λi − (� − 1)b − 1 transpositions to move the column γγγ�b

j to 
the last, thus

detAi = (−1)di · sgn(λ) · zc−ui/as((�−1)b+1,1di )(γγγ) · aδ(γγγ) ·
b−1∏
i=0

γ−�b
i ,

and we prove the theorem. �
Corollary 4.7. In particular, when i = 0, we can simplify Q0(z) as

Q0(z) = (−1)b−1z−�/as((�−1)b+1,1b−1)(γγγ)

= (−1)b−1z−�/aeb(γγγ) · h(�−1)b(γγγ).

Moreover, when a = 1,

Qb−1(z) = z−�s((�−1)b+1)(γγγ)

= z−�h(�−1)b+1(γγγ).

Example 2. ui = �ia/b� + 1. Next we consider the case where ui = �ia/b� + 1. Using a 
similar argument as in Lemma 2.3, we can show that

Lemma 4.8. Let λi = uib −ia, then λ = (λ0, . . . , λb−1) is a permutation of b, b +1, . . . , 2b −
1.

The above lemma gives that λ(i) = b + i, and μi = λ(b−1) −λ(i) − (b − i − 1) = 0, thus 
sμ(γγγ) = 1.

On the other hand, sgn(λ(i)) = (−1)λi+b · sgn(λ), and inc(λ(i)) = (0, b, b + 1, . . . , λi −
1, λi + 1, . . . , 2b − 1). Thus μi = (b, 1λi−b), and

Theorem 4.9. Let ui = �ia/b� + 1, then

Qi(z) = (−1)λi+b · z−ui/a · s(b,1λi−b)(γγγ). (4.5)

In particular,

Q0(z) = z−1/ahb(γγγ).

5. Extension to non-coprime pairs

In Sections 2 and 4, there are three major steps in our algebraic approach. First, we 
find b distinct solutions to the equation z = tb ·e−at, which allow us to convert the Appell 
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relation (cf. Theorem 1.4) to a system of linear equations whose unknowns are Qi(z)’s 
for 0 ≤ i ≤ b − 1. Second, the system is non-degenerate, hence Qi(z)’s form a unique 
solution of the system. And last, we compute the determinants and use Cramer’s rule to 
solve for Qi(z).

Our method can be extended to the case when gcd(a, b) �= 1 with some restrictions. 
In this section, we briefly discuss this case and give some examples. Throughout this 
section, we assume gcd(a, b) = k > 1.

Let u = (u0, u1, . . .) be a non-decreasing periodic sequence with period b and height 
a. Note that the Appell relation Eq. (2.3) still holds in this case, but we need to seek for 
new solutions ti(z).

Lemma 5.1. Let z = tbe−at. Then there are b solutions ti(z) of the form ti(z) = γa
i (z), 

where

γi(z) = z1/abωi exp
(

1
a
R
(ωai · a

b
z1/b)), (5.1)

and ω is a primitive ab-th root of unity. Explicitly,

ti(z) = b

a
R
(ωai · a

b
z1/b). (5.2)

The proof is similar to that of Lemma 2.2 and is omitted here.
From z = tbe−at, we have e−ti = ηz1/aγ−b

i , where η is an a-th root of unity. By 
comparing the constant term on both sides, we obtain η = ωib for i = 0, 1, . . . , b − 1. 
Thus we can simplify the matrix A in Eq. (2.4) as

A =
(
zuj/a · ωibujγ

aj−ujb
i

)b−1
i,j=0. (5.3)

Theorem 5.2. Let Qi(z) =
∑
n≥0

PFbn+i(u)
(bn + i)! ·zn for 0 ≤ i ≤ b −1 be the generating functions 

for u-parking functions. If detA �= 0, then

Qi(z) = detAi/ detA,

where A =
(
zuj/a ·ωibujγ

aj−ujb
i

)b−1
i,j=0, and Ai is the matrix obtained from A by replacing 

the i-th column by a column vector of ones.

It is not easy to compute the determinants of A or Ai for general u. However, in 
some special cases we can derive nice formulas. One of such cases is when ui = u for all 
0 ≤ i ≤ b − 1. Then we can simplify the determinant as

detA = det
(
zu/a · ωibuγaj−ub

i

)b−1

i,j=0
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= zbu/a · det
(
γaj−ub
i

)b−1
i,j=0

= zbu/a ·
b−1∏
i=0

γ−ub
i det

(
γaj
i

)b−1
i,j=0

= zbu/a ·
b−1∏
i=0

γ−ub
i · det

(
tji
)b−1
i,j=0

= (−1)b(b−1)/2zbu/a ·
b−1∏
i=0

γ−ub
i · aδ(t).

Note that in the last two steps, we use ti = γa
i . In this case det(A) �= 0, so Theorem 5.2

applies with

detAi = det
(
aj�

)b−1
j,�=0

where aj� = zu/a ·ωjbuγa�−ub
j when � �= i and aji = 1. If we further assume u is a multiple 

of k, then

detAi = z(b−1)u/a

·
b−1∏
i=0

γ−ub
i · det

⎛
⎜⎝1 γa

0 · · · γ
(i−1)a
0 γub

0 γ
(i+1)a
0 · · · γ

(b−1)a
0

...
...

. . .
...

...
...

. . .
...

1 γa
b−1 · · · γ

(i−1)a
b−1 γub

b−1 γ
(i+1)a
b−1 · · · γ

(b−1)a
b−1

⎞
⎟⎠

= (−1)b(b−1)/2+N(i) · z(b−1)u/a ·
b−1∏
i=0

γ−ub
i · aδ(γγγ) · sμ(γγγ).

Here N(i) = |{j : i < j ≤ b − 1 and ja < ub}| and μ(i) is the partition such that the 
decreasing rearrangement of (a, . . . , (i − 1)a, ub, . . . , (b − 1)a) can be written as δ + μ(i).

Combining the above equations, we have

Corollary 5.3. Let ui = u be a multiple of k for i = 0, 1, . . . , b − 1, and let u be the 
non-decreasing sequence of period b and height a with initial terms u, u, . . . , u︸ ︷︷ ︸

b

. Then

Qi(z) = (−1)N(i) · z−u/a ·
sμ(i)(γγγ)aδ(γγγ)

aδ(t)
. (5.4)

In particular, if ui = a for i = 0, 1, . . . , b −1. Then ia −uib = (i −b)a for 0 ≤ i ≤ b −1. 
Moreover, N(i) = b − i − 1, and

detAi = (−1)b−i−1zb−1
b−1∏

t−b
i · eb−i(t)aδ(t).
i=0
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Thus we have

Theorem 5.4. Let u = (a, . . . , a, 2a, . . . , 2a, 3a, . . . , 3a, . . .) be a sequence of period b and 
height a, denote by Qi(z) the generating functions of {PFnb+i(u) : n ≥ 0}. Then

Qi(z) = (−1)b−i−1z−1eb−i(t).

By computing the coefficients of Qb−1(z), we have

Corollary 5.5. Let u = (a, . . . , a, 2a, . . . , 2a, 3a, . . . , 3a, . . .) be a sequence of period b and 
height a. Then

PFmb+b−1(u) = a(m+1)b−1 · (m + 1)(m+1)b−2.

The proof is similar to that of Corollary 2.11 and is omitted here.

Remark 5.6. Note that in Corollary 5.5, u = a · (1, . . . , 1, 2, . . . , 2, 3, . . . , 3, . . .). In [11, 
Corollary 5.6], Kung and Yan showed that if u = kv for an integer k, then PFn(u) =
kn PFn(v). Thus Corollary 5.5 can be derived from the homogeneity of PFn(u) and 
Corollary 2.11. This formula is also mentioned by Gaydarov and Hopkins in [6, Section 
5] without a proof.

6. Eventually periodic boundaries

In this section we will give an example where the vector u is eventually periodic, that 
is, u can be written as the concatenation w0, u′, where w0 = (w0, w0, . . . , wr−1) is a finite 
initial non-decreasing sequence of length r ≥ 1, u′ = (u0, u1, . . .) is a periodic sequence, 
and wr−1 ≤ u0. We will show that in general, the idea of the previous discussion still 
works. But Eq. (2.2) would become

b−1∑
i=0

Qi(z) · ti+re−uit = 1 −
r−1∑
i=0

ai ·
tie−wit

i! (6.1)

for some integers a0, . . . , ar−1, where again z = tb · e−at if u′ is of period b and height 
a. Then again we just need b distinct solutions of z = tb · e−at to convert Eq. (6.1) to 
a linear system and solve it by computing certain determinants. The difference here is 
the right hand side of Eq. (6.1) contains a finite summation. So the solution would be a 
linear sum of r Schur functions.

We will illustrate the process via the following example, and interested readers can 
extend it to general cases.

Let � be a positive integer and let the vector u be (1, � + 1, . . . , � + 1︸ ︷︷ ︸
b

, 2� + 1, . . . , 2� + 1︸ ︷︷ ︸
b

,

3� + 1, . . .), that is,
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un =
{

1, if n = 0,
(k + 1)� + 1, if n = 1 + kb + i for k ≥ 0, 0 ≤ i ≤ b− 1.

Although one can view u as a periodic sequence of length b and height �, with ini-
tial terms (1, � + 1, ...� + 1), we would single out the very first term and treat it as 
“eventually periodic” with first period (� + 1, ..., � + 1). An advantage of doing so is 
that we do not need to worry about whether b and � are coprime or not. We also 
remark that this sequence has appeared in the literature: the boundary u and its cor-
responding Dyck paths yield a solution to the generalized tennis ball problem; see [10, 
Section 5] for details and references. Enumeration of PFn = PFn(u) can be consid-
ered as a “labeled” version of that problem. Interested readers can also choose u to be 
(1, 1, � + 1, . . . , � + 1︸ ︷︷ ︸

b

, 2� + 1, . . . , 2� + 1︸ ︷︷ ︸
b

, 3� +1, . . .), so that the vector is not periodic. The 

calculations will be similar to the ones below, but the terms may look more complicated.
Note that PF0 = 1. Then Appell’s relation implies

∑
k≥0

b−1∑
i=0

PF1+kb+i
t1+kb+ie−(1+(k+1)�)t

(1 + kb + i)! = 1 − e−t

If we write z = tbe−t, then

1 − e−t =
b−1∑
i=0

∑
k≥0

PF1+kb+i
zk

(1 + kb + i)! t
1+ie−(1+�)t

=
b−1∑
i=0

Qi(z)t1+ie−(1+�)t,

where

Qi(z) =
∑
k≥0

PF1+kb+i

(1 + kb + i)!z
k.

Let t0, . . . , tb−1 be the b distinct solutions to z = tbe−t given by Lemma 2.2, that is,

ti = b ·R
(ωi

b
z1/b).

Then the generating functions Qi(z)’s satisfy the system of linear equations

(
tj+1
i e−(�+1)ti

)b−1

i,j=0
·
(
Qi(z)

)b−1

i=0
=

(
1 − e−ti

)b−1

i=0
.

Since e−t = zt−b, we can rewrite the above equation as
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(
z�+1 · tj+1−(�+1)b

i

)b−1

i,j=0
·
(
Qi(z)

)b−1

i=0
=

(
1 − zt−b

i

)b−1

i=0
.

Denote this equation as B 
Q = 
D, then

detB = z(�+1)b
b−1∏
i=0

t
1−(�+1)b
i det

(
tji
)b−1
i,j=0

= (−1)b(b−1)/2 · z(�+1)b · aδ(t) ·
b−1∏
i=0

t
1−(�+1)b
i .

On the other hand, replacing the i-th column of B by the column vector 
D and 
denoting the resulting matrix by Bi, we have

detBi =det

⎛
⎜⎝z�+1t

1−(�+1)b
0 z�+1t

2−(�+1)b
0 · · · 1 · · · z�+1t−�b

0
...

...
. . .

...
. . .

...
z�+1t

1−(�+1)b
b−1 z�+1t

2−(�+1)b
b−1 · · · 1 · · · z�+1t−�b

b−1

⎞
⎟⎠

− det

⎛
⎜⎝z�+1t

1−(�+1)b
0 z�+1t

2−(�+1)b
0 · · · zt−b

0 · · · z�+1t−�b
0

...
...

. . .
...

. . .
...

z�+1t
1−(�+1)b
b−1 z�+1t

2−(�+1)b
b−1 · · · zt−b

b−1 · · · z�+1t−�b
b−1

⎞
⎟⎠

Let B(0)
i and B(1)

i be the two matrices in the above formula. We calculate their deter-
minants.

detB(0)
i = z(b−1)(�+1)

b−1∏
j=0

t
1−(�+1)b
j det

⎛
⎜⎝1 t0 · · · t

(�+1)b−1
0 · · · tb−1

0
...

...
. . .

...
. . .

...
1 tb−1 · · · t

(�+1)b−1
b−1 · · · tb−1

b−1

⎞
⎟⎠

= (−1)b−i−1z(b−1)(�+1)

×
b−1∏
j=0

t
1−(�+1)b
j det

⎛
⎜⎝1 t0 · · · ti−1

0 ti+1
0 · · · tb−1

0 t
(�+1)b−1
0

...
...

. . .
...

...
. . .

...
...

1 tb−1 · · · ti−1
b−1 ti+1

b−1 · · · tb−1
b−1 t

(�+1)b−1
b−1

⎞
⎟⎠

= (−1)b−i−1 · (−1)b(b−1)/2 · z(b−1)(�+1)
b−1∏
j=0

t
1−(�+1)b
j s(�b,1b−i−1)(t)aδ(t).

Similarly,

detB(1)
i = z(b−1)(�+1)+1

b−1∏
j=0

t
1−(�+1)b
j det

⎛
⎜⎝1 t0 · · · t�b−1

0 · · · tb−1
0

...
...

. . .
...

. . .
...

1 t · · · t�b−1 · · · tb−1

⎞
⎟⎠
b−1 b−1 b−1
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= (−1)b−i−1z(b−1)(�+1)+1

×
b−1∏
j=0

t
1−(�+1)b
j det

⎛
⎜⎝1 t0 · · · ti−1

0 ti+1
0 · · · tb−1

0 t�b−1
0

...
...

. . .
...

...
. . .

...
...

1 tb−1 · · · ti−1
b−1 ti+1

b−1 · · · tb−1
b−1 t�b−1

b−1

⎞
⎟⎠

= (−1)b−i−1 · (−1)b(b−1)/2 · z(b−1)(�+1)+1
b−1∏
j=0

t
1−(�+1)b
j s((�−1)b,1b−i−1)(t)aδ(t),

if � > 1. When � = 1, detBi = 0 if 0 ≤ i < b − 1, and

detB(1)
b−1 = (−1)b−i−1 · (−1)b(b−1)/2 · z(b−1)(�+1)+1

b−1∏
j=0

t
1−(�+1)b
j aδ(t).

In conclusion,

(i) When � > 1,

Qi(z) = detBi

detB
= (−1)b−i−1(z−(�+1)s(�b,1b−i−1)(t) − z−�s((�−1)b,1b−i−1)(t)

)
(6.2)

In particular, when i = b − 1

Qb−1(z) = z−(�+1)h�b(t) − z−�h(�−1)b(t).

(ii) When � = 1,

Qi(z) =
{

(−1)b−i−1z−(�+1)s(b,1b−i−1)(t), if 0 ≤ i ≤ b− 2,
z−(�+1)hb(t) − z−�, if i = b− 1

(6.3)

We remark that although Eqs. (6.2) and (6.3) contain negative powers of z, they are 
indeed formal power series of z. As an example, consider b = 2 and � = 1. Then

Q0(z) = −z−2s(2,1)(t) = −z−2t0t1(t0 + t1)

Q1(z) = z−2h2(t) − z−1 = z−2(t20 + t0t1 + t21) − z−1,

where ti = 2R((−1)iz1/2/2) = (−1)iz1/2eti/2. Let

G(z) =
∑
m≥1

m2m−1

(2m)! zm.

Then t0 + t1 = 2G(z) and t0t1 = −z exp(G(z)). Hence we can rewrite Q0(z) and Q1(z)
as
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Q0(z) = = z−1(t0 + t1) exp
(

1
2(t0 + t1)

)
,

= 2z−1G(z) exp(G(z)),

and

Q1(z) = z−2(t0 + t1)2 − z−2t0t1 − z−1

= 4z−2G(z)2 + z−1 exp(G(z)) − z−1.

7. Concluding remarks and open questions

In [11], Kung and Yan found the relation between Gončarov polynomials and u-
parking functions.

PFn(u) = gn(0;−u0, . . . ,−un−1) = (−1)ngn(0;u0, . . . , un−1). (7.1)

The parameters u0, . . . , un−1 for Gončarov polynomials can take any real values, for 
which the most simple and useful case is when u is given by a linear function, i.e., 
ui = a + ib for some real constants a, b. However, Eq. (7.1) only holds when u is an 
integer sequence. One natural question is to ask whether we can have an explicit relation 
between rational parking functions and Gončarov polynomials with non-integral but lin-
ear u? In [13], the authors introduced generalized Gončarov polynomials by replacing the 
differentiation operator with a delta operator. One direction of solving this problem is to 
find an appropriate delta operator or a variation of the generalized Gončarov polynomi-
als that work in the rational case. For more details of Gončarov polynomials and delta 
operators, we refer the readers to [13].

In our work, when the generating function can be expressed in terms of elementary 
symmetric functions, we can derive nice enumerative formulas on (a, b)-parking functions 
of certain lengths by computing the coefficients. However, for the more general case of 
Schur functions we can hardly simplify the coefficients. In particular, when the generating 
functions are expressed as complete homogeneous symmetric functions, such as in the 
examples in Section 4, we would like to find some interpretations of the coefficients. For 
example, let a = 1 and b = 2 in Theorem 4.9, then Q0(z) = z−1(γ2

0 + γ2
1 + γ0γ1). In this 

case, γi = 2R
(
(−1)iz1/2/2

)
. Using the formula

Rk(z) = k ·
∑
n≥k

nn−k · (n− 1)!
(n− k)! · x

n

n!

we can simplify z−1(γ2
0 + γ2

1) as

z−1(γ2
0 + γ2

1) = 4z−1
(
R2(1

z1/2) + R2(− 1
z1/2))
2 2
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= 4z−1 · 2 ·
∑
n≥2

nn−2 · (n− 1)!
(n− 2)!n!

((1
2z

1/2)n +
(
− 1

2z
1/2)n)

= 4z−1
(

2
∑
n≥1

(2n)2n−2(2n− 1)!
(2n− 2)!

(1
2
)2n−1 zn

(2n)!

)

= 4
∑
n≥1

n2n−2

2n · (2n− 2)!z
n−1

= 2 ·
∑
n≥0

(n + 1)2n−1

(2n)! · zn.

However, the term z−1γ0γ1 can not be simplified easily. It is also interesting to find 
combinatorial meanings of these coefficients, which may help us to find combinatorial 
proofs of the results appeared in Section 4.

There are many elegant q-analogues for classical parking functions. For example, the 
following two results are proved by Foata and Riordan [5]. Given a classical parking 
function c = (c0, c1, . . . , cn−1), let tie(c) = {i : 0 ≤ i < n − 1 and ci = ci+1}. Then we 
have a q-analogue of Caylay’s formula:

∑
c∈PFn

qtie(c) = (q + n)n−1.

Similarly, if Z(c) is the number of zeros in c, then

∑
c∈PFn

qZ(c) = q(q + n)n−1.

Can we extend these results to rational parking functions? In particular, can we have a 
q-analogue of the generating functions in terms of the symmetric functions?
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