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 ON THE N-TOWER PROBLEM AND RELATED PROBLEMS

 F. THOMAS BRUSS,*

 GUY LOUCHARD ** AND

 JOHN W. TURNER,*** Universiti Libre de Bruxelles

 Abstract

 Consider N towers each made up of a number of counters. At each step a tower is
 chosen at random, a counter removed which is then added to another tower also chosen

 at random. The probability distribution for the time needed to empty one of the towers is

 obtained in the case N = 3. Arguments are set forward as to why no simple formulae can
 be expected for N > 3. An asymptotic expression for the mean time before one of the
 towers becomes empty is derived in the case of four towers when they all initially contain

 a comparably large number of counters. We then study related problems, in particular
 the ruin problem for three players. Here we use simple martingale methodology as well
 as a solution proposed by T. S. Ferguson for a slightly modified problem. Throughout
 the paper it is our main objective to shed light on the reasons why the case N > 3 is so
 substantially different from the case N < 3.

 Keywords: Eigenfunction; sojourn probability; hitting time; harmonic analysis; martin-
 gale; ruin probability; Ferguson's problem; holomorphy; conformal mapping; Liouville's
 theorem

 AMS 2000 Subject Classification: Primary 60J05
 Secondary 60J65

 1. Introduction

 Consider N towers initially containing n l, n2, ...., nN counters respectively. At each step a
 tower is chosen at random, a counter removed from this tower which is then added to another

 tower also chosen at random among the others. A first problem (see [4] and [13]) is to determine

 the mean number of steps T = T(n1, n2....., nN) before one of the towers becomes empty.
 Exact solutions are known for the cases N = 2 and N = 3. In the former case T = n 1n2

 and in the latter T = 3nln2n3/(nl + n2 + n3). The second result was first surmised (see [4])
 from numerical simulations, then shown to obey the equation

 T(nl, n2, n3) = 1 + 4[T(ni + 1, n2 - 1, n3) +T(ni - 1, n2 + 1, n3)

 + T(nl, n2 + 1, n3 - 1)+ T(nI, n2- 1, n3-+ 1)
 + T(ni + 1, n2, n3 - 1) + T(ni - 1, n2, n3 + 1)],

 as well as the boundary conditions (T = 0 if nln2zn3 = 0) and consequently, by uniqueness, to be the exact solution.

 Received 23 August 2002; revision received 6 November 2002.
 * Postal address: Universit6 Libre de Bruxelles, Departement de Mathematique, CP 210 Boulevard du Triomphe,
 B-1050 Bruxelles, Belgium.
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 On the N-tower problem 279

 We refer the reader to [4] for more details.

 The main purpose of this paper is to obtain for N = 3 the complete probability distribution
 for the time needed to empty one of the towers. We then derive simple forms for its mean and
 variance. Our second goal in this paper is to understand why the cases N < 3 and N > 3 are
 very different. Arguments are set forward as to why no simple formulae can be expected for
 N > 3. In the case N = 4, it will be shown that, asymptotically, when a, b, c, d are 0 (1) and
 M is large,

 T(Ma, Mb, Mc, Md) - t2(a, b, c, d)M2 + to(a, b, c, d) + (M-2),

 where the coefficients t2 and to are expressible as series in powers of the symmetric functions

 ok =- + bk + k + dk (k = 1, 2, 3, 4). Then we shall look again briefly at the cases N < 3 and N > 3 in terms of martingales. Finally we present Ferguson's solution of the ruin problem
 for three players which yields a different angle of view of the passage from N < 3 to N > 3.

 2. Conditional probabilities prior to absorption (N = 3)

 We now first concentrate on the case N = 3.

 As the total number C = n I + n2 + n2 3 of counters is conserved, each state can be described
 by the two numbers x = n l and y = n2, the number of counters in the third tower being
 C - x - y. As at each step the state (x, y) can change with probability 1 into any of the states
 (x ? 1, y), (x, y ? 1) or (x ? 1, y j: 1) the problem is equivalent to the following random walk.

 A particle jumps randomly at each step with probability 1 to one of its neighbours on a
 regular triangular lattice. It is enclosed in a triangular domain D bounded by the lines

 x =O, y=O and x+y= C,

 and starts at a point (a, b) (in triangular coordinates).
 Let p(x, y, n I a, b) be the conditional probability that the particle is at site (x, y) after n

 steps, knowing that it was initially at site (a, b).
 Conditioning on the first transition and using the Markov property, we obtain by standard

 arguments that

 p(x, y, n + 1 I a, b) = [p(x + 1, y,n I a, b) + p(x - 1, y,n I a, b)

 + p(x, y + 1, n I a, b) + p(x, y - 1, n I a, b)

 + p(x + 1, y - 1, n a, b) + p(x - 1, y + 1, n I a, b)]

 -! Axyp(x,y, n I a, b)

 with the absorbing boundary conditions

 p(O, y,n a, b) = p(x, O, n I a, b) = p(x, y, n I a, b)lx+y=C = 0

 and the initial condition

 p(x, y, 0 I a, b) = 3xabyb*

 Here, Axy is the discrete Laplacian operator and Si,j the Kronecker delta function.
 The idea is now to obtain eigenfunctions whose linear combination can be used to determine

 the probability of the random process being in a certain domain.
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 280 F. T. BRUSS ETAL.

 x=0 y=0

 (, -()+ 0

 x+y=c

 FIGURE 1: Triangular domain with three positive (o) and three negative (.) images of (?, r).

 We first look for eigenfunctions of A4, for ?, ri in our triangular domain. Note that, for
 integers r, s,

 Agei(r?+si) = ei(r(?+l)+s) ?+ ei(r(-1)+si) + ei(r?+s(0+l))

 + ei(r +s(-1)) + ei(r(W+l)+s(-1)) + ei(r(-1)+s(o+l))

 = ei(r?+sq) [2 cos r + 2 cos s + 2 cos(r - s)].

 This is a generalization of the classical random walk technique as described for instance in [12,
 Section 21, Propositions P1 and P2].

 To obtain an eigenfunction that vanishes on the boundaries, consider the six basic images of

 (i, lr) with respect to the three lines

 x = 0, y = O and x + y = 0.

 There are (see Figure 1) three negative images (.) at

 (-, -1), (-9 ,~ + ) and ( +1,-i)
 and three positive images (o) including the original point at

 (?9, 1), 1- 9 ) and (i,
 The linear combination

 l = ei(r+s) ei-r-s) ei(-r()+s) - ei(-r-hs) + ei(-r(?+)+s) - ei(-r?+s(?+w)) + ei(ro+s(-?-i)) _ ei(r(-+)-sw)
 is therefore an eigenfunction of A4,, corresponding to the eigenvalue

 2 cos r + 2 cos s + 2 cos(r - s),
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 On the N-tower problem 281

 and it is readily verified that this function is identically 0 if = 0 or 1 = 0 and will vanish if
 S+ ?i = C provided that

 iCs -iCr eiC(r-s) e e e

 From this we obtain the conditions

 2kr 2k'r r + s = , r - 2s = (k, k' integers)
 C C

 or, equivalently,
 2(2k + k') 2(k - k')

 r 7 "T, S= 72" .
 3C 3C

 Separating real and imaginary parts of the linear combination 1 leads to the following
 eigenfunctions for A4,:

 Urs(4; j) = cos(r4 + si7) - cos(ril + s?) + cos[(r - s)? + r]71
 - cos[(r - s)? - s]71 + cos[s? - (r - s)1j] - cos[r? + (r - s)i]

 and

 grs(q, 17) = sin(r4 + si) + sin(ryi + s?) - sin[(r - s)? + r1j]
 + sin[(r - s)? - sij] - sin[s? - (r - s)17] - sin[r? + (r - s)i].

 Note that

 Urs (q, 7) = -Urs (17, ),

 grs(9, 7) = grs(n9, ).

 As the domain contains (C - 1)(C - 2)/2 points, there can only be that number of linearly
 independent functions, of which [C/21 [(C - 1)/2] are symmetric with respect to the exchange
 of ? and ri, and of which [(C - 1)/2J [(C - 2)/2] are antisymmetric. This can be shown to
 restrict the possible values for k and k' to

 k = 1,2 ...., C - 2,
 k' = 1, 2,..., min(k, C - 1 - k)

 for grs and, for Urs,

 k = 1,2 ...., C - 2,
 k' = 1, 2,..., min(k - 1, C - 1 - k).

 With this restriction, the sets {grs and {Urs form orthogonal bases for symmetric and
 antisymmetric functions in D, that is,

 3C2

 grs( , i)g r's'(, 9) = 2 (1 + SsO)Srr'Sss',

 3C2

 urs, (, 1)Ur's'($, i7) = 2 (1 - SsO)Srr'Sss', ,T)ED
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 282 F. T. BRUSS ETAL.

 and furthermore

 Urs (u ,7) = 0. ?,rlED

 At this stage, a remarkable simplification explains why the problem has a simple answer for
 N = 3, that is,

 r

 grs(4, 97) = 3C cot 2bso. (2.1)

 First let s = 0. Then k = k', so that r = 2kzr/C and eicr = 1. Therefore,

 c c-4

 gro(?, j) = 2Y Y[sin(r?) + sin(rn) - sin(r4 + r1)]
 ?,rlED 4=0 Or=0

 C

 = 2 Im (2C + 1 - 34)eire
 4=0

 = 2Im(2C +1)+3C1eir
 r

 = 3C cot -
 2

 If s 0, note that

 D sin(r? + s7) = Im ls1 -eir(C+l) - eis(C+1)1 lei(r-s)(Cl) ,rlED - eis 1 - eIr 1 - ei(r-s)
 Substituting r = (2(2k + k')/3C)7r and s = (2(k - k')/3C)7r, it turns out that, in the sum for

 -,,?,D grs, terms corresponding to image points with respect to the sides cancel two by two. Expanding p in terms of the grs and Urs functions, we obtain that

 p(x, y, n I a, b) = Ars(a, b; n)grs(x, y) + Brs(a, b; n)Urs(x, y),
 r,s r,s

 for some Ars and Brs. Inserting this into the equation

 p(x, y,n + 1 I a, b)= Axyp(x, y, n I a, b)

 yields that

 arsa bn)=[cosr + coss + cos(r - s) ] Ars (a, b; n) = 3 ]Ars (a, b; 0),
 Brs(a b; n) = [cosr ? coss ? cos(r - s) n ' 3 Brs (a, b; 0),
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 On the N-tower problem 283

 where

 Ars(a, b; 0) = 3C2(1 + Sso) grs(x, y)p(x, y, 0 a, b)
 x,yED

 3C2-1 2 (1 + Sso) grs (a, b),

 Brs(a, b; 0) = 3C2(1 - so) Urs(X, y)p(x, y, 0 a, b)
 x,yED

 = C urs (a, b).

 Therefore, the probability Q (n) that at time n the particle will still be inside the domain is equal
 to

 Qabf(n) , p(x, y, nl a, b)
 x,yED

 = j [ Ars(a,b;n)grs(X,y)+ Brs(a,b;n)urs(xy) x,yED r,s r,s

 E Ars(a, b; n) Y grs(x, y)
 r,s x,yED

 E cos r + cos s + cos(r - s) ]n r cosr= cosscos(r )Ars(a, b; 0)3C cot 28so

 I + 2cosr n I r r -l cot - gro(a, b).

 We have thus proved the following theorem.

 Theorem 2.1. The probability Q (n) that the particle is still in the domain after n steps is given
 by

 Q 1 = 1 [ + 2 cos(27rk/ C)]n

 Q(n)- Y k3l k=1

 sin(27rk/C) 2rk a 27rk 2k (a2 b)k . 1 - cos(2nk/C) C C C

 3. Hitting time (N = 3)

 Our next goal is to obtain the expected hitting time of the boundary, that is, the mean time
 to absorption. It can be derived as follows.
 Let p(n) be the probability that absorption occurs at step n (this is equal to Q(n- 1) - Q(n)).

 The generating function q(z) of Q(n) leads to a term 1/(1 - Pz), with

 1 + 2 cos(2xrk/C)
 3

This content downloaded from 
������������128.6.45.205 on Fri, 11 Aug 2023 17:45:57 +00:00������������ 

All use subject to https://about.jstor.org/terms



 284 F T. BRUSS ETAL.

 The generating function p(z) of p(n) is related to q (z) by

 p(z)- 1 q(z) =p(z)-
 z-1

 Hence,

 q(1) = p'(1) = E(T)

 leads to a term 1/(1 - 0), and

 p"(1) E[T(T - 1)]

 q'(1) -  2 2

 leads to a term 0/(1 - 0)2. We obtain

 T (a, b, c)

 E(T)

 3 1 2 rk[ 2ark 2rk 2 k(ab)]
 cos(2rk/C)]2 sinsin in - a b -in -b - sin (a + b)

 k=1

 To compute the sum, we consider now the following integral in the complex plane

 z +z-1 -2 --1 CzC-1 I = - 1i z-cr dz,
 2i 2 2i zc- 1

 where F is a circle of radius R > 1 surrounding the origin and a is a positive integer. We see
 that

 (i) there are simple poles at z = k = e27rik/C (k = 1, 2,...., C - 1) where the residue of
 the integrand equals

 1 sin 2rk-2rikeC
 [1 - cos(27rk/C)]2 C

 (ii) there is a quadruple pole at z = 1, as can be seen by rewriting the integral as

 I = - dz. I=z+f z?1 C -aCd
 r p (z - 1)3 C _ 1

 The origin is a regular point (if a < C), and (if a > 0) the integrand behaves as z-a-2 as
 IzI |-+00c.

 Consequently,
 I=0

 and

 C-I 1 2rk 2rka _ 2 d3 2 Cz- = [1 - cos(2rk/C)]2 C C 3! dz3 LC _1 Jz=1
 k=l

 Sa[2t2 - 3Ca + C2]. 3
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 On the N-tower problem 285

 Finally,

 2 +a+b T(a, b, c)= 3C a(2a2 - 3Ca + C2) + (2b2 - 3Cb + C2) 3C3 3

 a +b 2
 - -(2(a+b)-h3C(a4+hb)'+C2

 3

 3ab(C - a - b) 3abc
 C a+b+c

 In a similar way, the mean square time T2(a, b, c) := E(T2) can be obtained by considering
 the integral

 1 z 1l +-1 -z _P z -1 _ _C-1
 J= f 2+1-z z- -3 z- z dz, 27tri r 2 2 2i zc - 1

 and we find that
 3abc ab + bc + ca -1

 T2 (a, b, c) = a+b+c 2

 Thus, we have proved the following result.

 Theorem 3.1. In the three-tower problem, with initial piles of a, b and c counters, the mean
 and the variance of the waiting time until one of the towers is empty are given by

 3abc
 Ti (a, b, c) =

 a+b+c'

 r2(a' b, c)- a b3abc ab + bc + ca - 1 3abc
 The mean T1 (a, b, c) is already known (see [4]). The variance does not seem to have been

 computed before.

 4. Higher dimensions

 It is stated in [4] that no solution has been found for this problem when N > 3. It is the
 advantage of our approach that we can now see the reason why. Consider the limiting cases
 when N = 3 and N = 4, that is,

 1
 t2 (a, b, c) := lim T(Ma, Mb, Mc),

 M- oo M2
 1

 t2 (a, b, c, d) := lim T(Ma, Mb, Mc, Md).
 M- oo M2

 From the equations for the mean times T(Ma, Mb, Mc) and T(Ma, Mb, Mc, Md) it
 follows that t2 (a, b, c) and t2 (a, b, c, d) obey the Poisson equations

 Fa2 ab2 a a\21

 aa2 ab2? a - b- t2(abc)=-6
 and

 aa2 ?ab2 ? ct2(a, b, c, d) = -12,
 (4.1)
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 286 F. T. BRUSS ETAL.

 with the boundary conditions

 t2(a, b, c) = O if a = O or if b = O or if a + b = C(- c = 0)

 and

 t2(a,b,c,d) = O ifa=Oorifb=Oorifc=Oorifa+b+c=C(a=d=0)

 respectively.
 Introducing new variables through

 a = u + ? /3v, b = u - /3v
 and

 a = -/2u + 4v, b = V/2u - 2v - 2/3w, c = V/2u - 2v + 2/3w,
 leads to a new set of equations (see (4.1))

 2+ ?2r(u, v) = -12 au2 av2
 and

 au2 2 2 (u, v, w) = -72, (4.2) -u2 +v2 +w2
 with the boundary conditions

 r(u, v) = 0 if u + /v = O or if u - 3v = O or if U - =-0 2

 and

 r(u, v, w) = 0 if u + 4v = Oorif/2u -2v - 2/3w = 0

 or if /2u - 2v + 2/3w = 0 or if u - = 0.
 3V/2

 In the first case, the domain is an equilateral triangle and the solution is well known to be
 given by the lowest degree polynomial that vanishes on the edges, namely the product of their
 equations:

 -r(u, v) --(u2 -3v2) U---, C 2)
 and consequently

 3abc
 t2(a, b, c) =  a+b+c

 In the second case, the domain is a tetrahedron and the simplification of the three-tower case
 (see (2.1)) is lost. To see this, note the following:

 (i) The product of the equations of the four faces, being of degree four, cannot be a solution
 of the equation, nor for that matter can any polynomial.

 (ii) The eigenfunctions of the Laplace operator that vanish on the boundary of a domain D
 can be extended analytically by reflection when the boundary contains one or several
 straight edges (two-dimensional case) or plane faces (three-dimensional case). If it is
 possible to fill space by multiple reflections and preserve parity, then the eigenfunctions
 are linear combinations of plane waves. This requires in particular that the vertex (or
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 On the N-tower problem 287

 dihedral) angles be of the form 7r/n, n being an integer. This is true for the equilateral
 triangle, but not for the regular tetrahedron. See, for instance, [14].

 (iii) The fact that the mean waiting times T (a, b) and T (a, b, c) are homogeneous functions
 of degree 2 is no longer true in the four-tower case (e.g. T(2, 2, 2, 2) - 4.193 and not 4).

 In order to solve the Poisson equation (4.2) for r (u, v, w) it will prove convenient to introduce
 a final change of variables,

 12V/ 12V_ 12V x = w, y = - u - 3, z = - v.
 C C C

 The equation (4.2) then becomes

 82 a2 a2 C2
 + + - Jt2(x, y, z) = ax2 a 2 aZ2 4

 with t2 vanishing on the surface of the regular tetrahedron with vertices at

 (0, -3, 0), (0, 1, 2/2), (2, 1,-/2), (-/, 1,-/2).
 The centre of gravity of the tetrahedron is now at the origin (0, 0, 0) and its four threefold

 symmetry axes pass through this point.

 Let t2 (x, y, z) = -C2(x2 + y2 +2)/24 + v(x, y, z). As v is harmonic, it can be expanded in
 terms of harmonic polynomials which are invariant with respect to all elements of the complete
 tetrahedral group Td (of order 24).
 The following procedure was adopted: first determine all harmonic polynomials of a given

 degree, then construct those polynomials that are invariant with respect to the tetrahedral

 group. Finally, by the Gram-Schmidt method, construct harmonic polynomials {Pk} which
 are orthogonal on the surface of the tetrahedron, i.e.

 I Pm Pn do = mn.
 aT

 We have calculated such polynomials up to degree 10. In order to appreciate the error when
 expanding v(x, y, z) over a finite subset of harmonic polynomials, the harmonic function 1/r
 was integrated over the surface of the tetrahedron t, then it was approximated as

 10

 Ecn Pn
 n=l

 and this sum was then integrated over t. This gives

 f - do - 17.70453...
 Tr

 10

 ffXc Pn d 17-.7038
 The various changes of variables have destroyed the complete symmetry between the original

 ones (a, b, c, d). This can, however, be restored quite easily by expressing the final result for
 t2 (a, b, c, d) in terms of the elementary symmetric functions

 cak = ak + bk +ck + dk (k = 1,2,3,4).
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 288 F. T. BRUSS ETAL.

 The final result is

 t2 (a, b, c, d)

 a2 - 2c2 5
 4 + (400o3 - 30o02o1 + 3oj3)
 4 228crl

 35

 - 290132 (3420o4 - 4012or31rl - 1539ar2 + 2946or2o 2 - 318r4f)

 + 4-4 (-3.6610292803r4cr2 - 9809714552r4r 2 + 4.4745913425cr3

 - 3.05085773363ar2r1 + 2.03859123830a3a2 + 1.2639267753r23

 + 1.0494295175ar22r2 - 1.1791335896or2r22or4 + 0.1419326645cr6)

 + 14(-33.5215508266oa43 + 19.01242781044a2cr 1 - 1.18892475897o4oj3

 + 41.0122273160cr321 + 17.52262884120c3ar2 - 515803385251lr3c2cr2

 + 6.175281175303arf - 11.0260987264a23 1 + 18.1716326001or2a3

 - 4.16117515250r2cr15 + 0.2577443659cr7)

 where all reals are given with a precision of 10 decimal digits.
 Unfortunately, further terms in the series become too cumbersome to be given explicitly, but

 we have in fact calculated them up to and including order 10.
 The next term to of the asymptotic expansion obeys the equation

 Q2ito(a, b, c, d) = -1 22t2(a, b, c, d),

 where

 2 a2 a2 a a 2 a a 2 a a2]
 1-a2 +b52 + c2+ a b + b ac + c a ' [4 a 4 4 a a 4 a a 4 a a

 ac4 8b4 ( 4 aa ab (ab ac (c aa)
 with the same boundary conditions as for t2. Using as before the variables (x, y, z) which
 centre the tetrahedron at the origin, and restricting the expansion of t2 to its first three terms,

 yields the equation

 [ a2 a2 a2 245
 + + to(x, y, z) = + higher terms ax2 ay2 to1x\ y 2 z 1018

 so that, to within this approximation,

 490
 to(a, b, c, d) = 5092 t2 (a, b, c, d).

 5O094
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 On the N-tower problem 289

 TABLE 1: Exact and asymptotic mean waiting time for the case N = 4.

 a b c d t2 to M Texact Tasympt
 1 1 1 1 1.0637 -0.064 1 1 1.00

 2 4.193 4.19

 3 9.513 9.51

 4 16.959 16.96

 5 26.532 26.53

 6 38.233 38.23

 1 1 1 1 0.3470 -0.53 2 1.333 1.33
 4 5.499 5.50

 6 12.439 12.44

 8 22.154 22.15

 1 1 1 1 0.1680 -0.40 3 1.467 1.47
 6 6.004 6.01

 9 13.564 13.57

 1 2 2 2 0.5632 -0.60 3 5.011 5.01
 6 20.220 20.22

 1 2 1 1 0.2395 -0.042 3 2.112 2.11

 6 8.581 8.58

 9 19.359 19.36

 1 1 2 1 0.4264 -0.046 3 3.794 3.79 3 3
 6 15.308 15.30

 1 1 0.4794 -0.051 2 1.867 1.87

 4 7.621 7.62

 6 17.209 17.21

 1 3 2 0.2037 -0.043 7 9.934 9.94

 1 1 1 1 0.0447 -0.019 6 1.577 1.59
 1 1 1 0.0330 -0.016 7 1.587 1.60
 1 1 1 1 0.0253 -0.013 8 1.594 1.61

 1 1 1 1 0.0201 -0.011 9 1.598 1.62

 For various values of the parameters, Table 1 compares the exact value of the mean waiting
 time obtained by solving the recurrence (a three decimal approximation to the exact rational
 value is in fact given) and the approximate asymptotic value as given by M2t2 + to.

 The last four lines are included to show that even when the four initial piles are far from
 being 'comparably large' the asymptotic value is still a good approximation.

 5. Related problems

 We now discuss a few problems which are closely related. Our goal is to show that in these
 problems the difficulty in passing from dimension three (i.e. N = 3 in the tower problem) to a
 higher dimension has the same origin as before, that is, we will always be confronted with the
 barriers (i), (ii), (iii) described in Section 4.

 The tower problem for N = 2 can, of course, be seen as a ruin problem for two players: in
 a series of independent games of two players A and B with initial capital a and b respectively,
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 290 F. T. BRUSS ETAL.

 and win probability 1 for each player, we suppose that the winner receives 1 unit from the loser.

 Here a and b are again positive integers (a = n 1, b = n2) and T = T (a, b) is now the expected
 duration of the game until A or B is ruined. This is actually the classical ruin problem for two
 players whose solution is well known (see e.g. [5]). If WA is the probability that A wins the
 sequence of games, i.e. B is ruined before A, then

 a

 WA = b a+b

 More generally, if A wins each game with probability p and B with the complementary
 probability q = 1 - p, then

 (q/p)a+b - (q/p)a
 WA =

 (q/p)a+b -_ 1

 (see [5, Chapter XIV, Section 2]).
 For N = 3, the tower problem can be considered as a ruin problem for three players in a

 sequence of independent games where a randomly selected player (the loser) has to pay 1 unit
 to a randomly selected player among the remaining two players (the winner). However, the
 following ruin problem is more natural.

 Three-players ruin problems. Three gamblers with initial fortunes of a, b and c units play a
 sequence of independent and fair games. In each game, the winner receives one unit from each
 of the other players, until one of them is ruined.

 Problem 1. Find the probability that a specific player is ruined.

 Problem 2. What is the expected number of games until at least one player is ruined.

 Problem 1 was posed to the first-named author by T. S. Ferguson (in the mid-1990s). Further,
 Ferguson later solved, in a nice way, a close modification of this problem (see below). However,
 he was not really satisfied with his solution: since it seems to depend on a specification
 construction which is possible in dimension three, it gives little insight into how to generalize
 it for more than three players.

 We first look at Problem 2.

 5.1. Solution of Problem 2

 Let R1 be the random time until at least one player is ruined. We want to find E(R1).
 Recalling the article by Li [10] on the study of the occurrence of patterns, it is easy to recall
 little martingale tricks to find a straightforward answer to this, namely

 abc
 E(R1) = (5.1)

 a+b+c-2

 Proof Let Xn, Yn and Zn be the capital of players A, B and C respectively after the nth
 game. Note that Xo = a, Yo = b and Zo = c and that Xn + Yn + Zn = a + b + c for all n.

 Also, by definition, XR1 YR1 ZRl = 0. Since all games are fair, the winning probability equals
 1 for each player so that

 E(XnYnZn I Xn-1 = x, Yn-1 = y, Zn-1 = z) = xyz - (x + y + z) + 2.

 But then, putting K = a + b + c,

 g (n) := Xn YnZn + n(K - 2) (5.2)
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 On the N-tower problem 291

 is a martingale. Put t(n) = gf(n)l1{R>n + ?g(R1)1{R<_n}. Now note that E(R1) < xo because each of the Markov chains Xn, Yn and Zn is bounded and has at least one absorbing
 state (namely 0). Since Xn YnZn is bounded, the stopped martingale ji(n) is finite almost
 surely. Therefore, the optional stopping theorem (see e.g. [2, Theorem 35.2]) applies with
 E(g(R1)) = E(gi(Ri)) = E(gt(0)) = XoYoZo = abc. Hence, from (5.2) and using the fact
 that XR1 YRIZR1 = 0,

 E(R1)(K - 2) = abc,

 which is equivalent to (5.1) since K > 3 by definition.

 This solution (see [3]) was instigated by the article of Li [10] and found independently of
 the work of Stirzaker [13] (whose priority is acknowledged). Stirzaker showed more, however,
 namely

 2ab

 E(R2) = ab + bc + ca - ,a- a+b+c-2

 where R2 is the time when a single player is left in the game. He also solved several other
 modifications in this context, in particular the expected time in a modified four-tower problem
 until one tower has all the counters (see [13, p. 56]). However, the fact that the problem is
 slightly modified is essential.

 These methods do not seem to generalize easily to more than three players. Also, if the games
 are unfair (i.e. if the win probablilities in each game are not the same for all three players) it
 is not at all evident that a suitable martingale or two or more independent martingales can be
 found, even for the case N = 3.

 5.2. Ferguson's modification for the game of three players

 Ferguson later solved a modification of Problem 1 [6] and we are grateful for his agreement
 for his solution to be given in the context of this paper because here the difference between the
 cases N < 3 and N > 3 appears under a different light. Ferguson modeled his problem as a
 Brownian motion in the plane of the equilateral triangle with barycentric coordinates (x, y, z)
 starting at the initial point, (a, b, c), and computed the probability that the Brownian motion
 first exits the triangle along one of the specified edges. The edge z = 0, for instance, stands for
 the third player being ruined first. We note that the sum of the initial capitals a + b + c = s
 remains fixed throughout the game.

 The method of solution that Ferguson uses here is to find a conformal mapping of the
 equilateral triangle onto the unit circle that maps the point (a, b, c) into the origin. Indeed,
 it has been known for a long time that a conformal mapping preserves the properties of a
 Brownian motion (see e.g. [9, Theorems 56.1 and 56.2]). Then the desired probability will be
 the proportion of the image of the edge z = 0 on the circumference of the circle.

 We shall give a few more details and references to explain this approach. We recall that a
 conformal mapping preserves the relative shape of a configuration in the sense that it preserves
 relations of magnitude and angles in a neighbourhood of each point.

 Take the equilateral triangle, A, in the complex plane to be the triangle with vertices (-1, 0),

 (1, 0) and (0, i/3 ). The mapping of A into the unit circle is effected in two parts: first, a map
 of the triangle into the upper half plane, and then a map of the upper half plane into the circle.
 The reason for the choice of the intermediate step, that is, the mapping into the half plane, is a
 consequence of the classical theorem of Liouville (see e.g. [1, Theorem A.3.7]): although the
 whole plane C is homeomorphic to the unit disk, it is impossible to map it conformally onto
 the unit disk.
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 Take now the mapping of the triangle into the upper half plane to be the inverse map of

 2 z dt

 1 B( 4, 1) (1 - t2)2/3 (5.3)

 where B(a, fi) is the beta function, and B(2, 1) = 2 fo (1 - t2)-2/3 dt. This maps the upper
 half plane into A, mapping z = 0 into w = 0, z = 1 into w = 1, z = -1 into w = -1
 and z = oc into w = i/3. This is a special case of the Schwarz-Christoffel transformation
 (see e.g. [11]). The conformal mapping of the upper half plane into a polygon is analyzed in
 [8, p. 176, Theorem 1].

 After mapping w into z by the inverse of this transformation, the upper half plane is mapped

 into the unit disc by means of a M6bius transformation (see [11]) that maps an arbitrary point
 zo = xo + iyo with yo > 0 of the upper half plane into the origin. This is

 Z - Zo

 i(z --7o)
 This maps an arbitrary point z = xi of the real axis to the point

 S2yo(xo - xl) i[y - (xo - l)2] (54)
 yO + (xo - xl)2

 on the unit circle. In particular, z = xo goes to t = i, z = xo - yo goes to t = 1 and z = xo + yo
 goes to t = -1. The main use of (5.4) is to find the arguments of the images of z = -1 and
 z = +1. These are

 0- = arctan 2 _ (xo + 1)2
 2yo(xo + 1)

 Sarctan (xo - 1)2 01 = arctan(5.5)
 2yo (xo - 1)

 respectively. The desired probability is (81 - 8_1)/27r where zo is the image of (a, b, c) under
 the inverse map (5.3).
 The only difficulty in computation is the map (5.3). First consider the case of z = iy pure

 imaginary. We find

 2 ly dt
 =B(, 1) (1 - t2)2/3
 2i fY dx

 B(1, 1) Jo (1 + X2)2/3

 iB(, 1, y2/(1 + y2))

 = 6 ) (5.6)
 Here, B(a, Bf, z) = fS x-1(1 - x)B-1 dx is the incomplete beta function. Since w must
 converge to the top point of A as y goes to oo, we must have B(1, 4) = IB(1, ?). The
 mapping (5.6) becomes

 ixI3B(1, ,1 y2/(1 ? y2))
 W 811,
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 On the N-tower problem 293

 which is i/3 times the beta distribution function with parameters 1 and 1 evaluated at
 y2/(1 + y2).

 As an example, Ferguson computed the probability that Player 3 is ruined when a = b = 0.5

 and c = 1. This point in barycentric coordinates corresponds to the point w = i-v/-/2 in A.
 The median of the beta distribution with parameters 1 and 1 is 0.9510..., so we may solve
 y2/(1 + y2) = 0.9510... to find yo = 4.404... and xo = 0. Substituting into (5.5), we find

 that 0-1 = arctan(yo2 - 1)/2yo = 1.1243.... Since 01 is placed symmetrically across the
 y-axis, the probability that Player 3 is ruined first is 2(7r/2 - 1.1243)/27r = 0. 1421 ....

 What we should note here is again the fact that this method does not apply to more than three

 players because then the original triangle becomes a higher-dimensional pyramid. Indeed, it
 is well known that a conformal map of one open set onto another is locally given by a bi-
 holomorphic transformation of one complex variable, but this equivalence of bi-holomorphy
 and conformity breaks down for higher dimensions. (See Section A3 of [1] for more details.)
 Finally, we note that Ferguson's approach reduced the dimension by one by describing the
 states of the three players as points in the triangle. Hence, here again the intrinsic difficulties
 start with dimension three, which echoes, as we have seen, the situation in our approaches.

 5.3. Ruin as an exit on the sphere

 Ferguson looked also at another version of the problem. Let (Xt, Yt, Zt) be Brownian motion
 in the upper octant of three-space, starting at a point (Xo, Yo, Zo) = (x, y, z) with x > 0, y > 0
 and z > 0. The Brownian motion stops the first time the motion exits the upper octant. The
 problem is to find the probability that the motion exits the upper octant on the x-y plane, that
 is, on the plane z = 0. This analysis extends to any number of players.

 Let Tx denote the time at which a one-dimensional Brownian motion Xt first hits x > 0
 starting at Xo = 0. Using the reflection principle (see e.g. [7]),

 Pr(Tx < t) = 2 Pr(Xt > x)

 = 2 Pr Xt / x >

 fxx 1 2/2
 = 21 e U2/2du

 /V/ 27r

 I e-v v-1/2 dv
 V'7r x2/2t

 =1-I( ,2
 (2' 2t '

 where I (a, x) represents the gamma distribution function. This yields the density

 X -x2/2t -3/2
 fT-(t)= e _27r

 for t > 0. Using this, Ferguson found the probability that the upper octant is exited on the x-y

 plane as Pr(Tz < Tx, Tz < Ty) where Tx, Ty and Tz are independent. For more details, see [6].
 This probability is related to a gambler's ruin probability on the sphere. The projection of

 the Brownian motion (Xt, Yt, Zt) onto the sphere x2 + y2 + z2 = 1 is a Brownian motion
 on the sphere. Therefore, the solution to the above problem is the solution to the problem of
 Brownian motion on the sphere, starting at (x, y, z) on the upper octant of the sphere, of finding

 the probability of exiting the upper octant at z = 0.
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 In contrast to the problems we considered before, the dimension, i.e. the number of players,
 is here of no particular importance. The approach can be extended, in principle, to N > 3. But,
 clearly, this is not a real gambler's ruin problem.

 6. Concluding remarks and an open question

 We have obtained for N = 3 the complete probability distribution for the time needed to
 empty one of the towers. We then derived simple forms for its mean and variance. Our second
 goal in this paper was to understand why the cases N < 3 and N > 3 are very different.
 Arguments have been set forward as to why no simple formulae can be expected for N > 3.
 In the case N = 4, we have obtained asymptotic expressions for the mean when a, b, c, d are

 (9(M) and M is large. Then we have looked again briefly at N < 3 and N > 3 in terms
 of martingales. Finally, we have presented Ferguson's solution of the ruin problem for three
 players which yields a different point of view of the passage from N < 3 to N > 3.
 A final word on martingales: we understand that the case N > 3 is analytically much more

 complex than the case N < 3, both in our approach and in Ferguson's approach. We understand
 also that this difference in complexity is a difference of nature rather than a difference of degree
 and that we should therefore consider the case N < 3 as a lucky coincidence which is explained
 in (2.1) for N = 3 and is obvious for N = 2.
 To the best of the authors' knowledge, there is no general result linking the analytic com-
 plexity of a problem to the difficulty or impossibility of finding a suitable martingale. Hence,
 the following question seems interesting. Will the difficulty in finding martingales to solve
 questions for the N-tower problem always echo the apparent analytic complexity or may
 we always hope to find independent lucky cases for martingales which will belie analytic
 difficulties?
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