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THEOREM 4.30 i
There ezists an absolute constant ¢ so thot for alln, we have Sa(1324) ¢

PROOF  As there areless than 9" classes and less than 32" n-peryyg, ..
in each class that avoid 1324, c =9-32 =288 willdo. | :

We point out that this is certainly not the best upper bound for Sr{1324
With less elegant arguments, the upper bound can be decreased. Neverthe|,d
the conjecture that S,(1324) < 9" is open. It would be interesting ta docd
this conjecture in either direction. As of now, the smallest constant tha;
a chance to play the role of ¢; in the inequality S,(g) < g is cp=fk-|
where k is the length of g. We know from Theorem 4.11 that ng smaf
constant will do. A disproof of the conjecture that S,{1324} < 8™ would 5pd
that sometimes a larger constant is needed.

Numerical evidence suggests that for sny given % the value of Sala]
maximized by the pattern 1325476 .- .. The results of this section prove f
this is indeed the case for k = 4. If we could show that this is true for]
pattern lengths k, then an upper bound given for $,,(1324576 - --) would
an upper bound for all patterns of length k. Exercise 32 and 31 sketch a o
to prove an upper bound for S$,(1324576---), so we would “only” need;
show that there is indeed no pattern of length k that is easier to avoid tX

1325476 ---.

4.4.2 The Pattern 1342

In this subsection, we turn our attention to the pattern 1342. Interestig
we will be able to provide an ezact formula for 5,(1342). This is exceptidy
the only other pattern longer than three for which an exact formula is ko
is 1234. The formuls is given by the following theorem.

THECREM 4.31
For oll pogitive integers n, we have

(T -3n-2)
2

> o 2 — 4)} ~i42
+3Z(-1)ﬂ~'.2‘+1._____f!(:_;)!.(" 0 )

5,(1342) = (~1)"?

i=12
This is a very surprising result. It is straightforward to Drov® f_ 3
formula that 5,(1342) < 8" for all n, and that lims oo § 5.(1342) = §
The result itself is not the only interesting aspect of the facts 7 g
the pattern 1342 We will see that permutations avoiding 1342 ar¢ & g
with two different kinds of objects which at first Jook totally unreeg
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FIGURE 4.3
A 5(0,1)-tree.

first, and for our purposes, more important, type of objects is a specific kind
of labeled trees. '

DEFINITION 4.32 [64] A rooted plane tree with non-negative integer
labels [(v) on each of its vertices v is called a $(0,1)-tree if it satisfies the
following conditions:

¢ if v is g leaf, then I(v) = 0, (this explains the 0 in the name of 5(0,1)-
trees); .

* if v is the root and vy, v, -~ ,vx are its children, then [(v) = Ef=1 1{wg),

* if v is an internal node and vy, vs, -, Vi ore its children, then I{w) <
1+ Ef___l l(v) (this explains the 1 in the name of B(0, 1)-trees).

Example 4.33
Figure 4.3 shows a B(0,1)-tree on 12 vertices. [

Let us call a permutation P = p1P2 - Pn indecomposable if there exists no
jk € [n - 1] s0 that for all i < k < j, we have p; > pj. In other words, p is
indecomposable if it cannot be cut into two parts so that everything before
the cut is larger than everything after the cut. For instanee, 3142 is inde-
tomposable, but 43512 is not as we could choose k =3, that is, we could cut
between the third and fourth entries. If a permutation is not indecomposable,
then we will call it decomposable.

The importance of A(0, 1)-trees for us is explained by the following theorem.
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FIGURE 4.4
The three 8(0, 1)-trees on three vertices.

THEOREM 4.34
For all positive integers n, there is a bijection F from the set of indecom-

. posable 13{2-avoiding n-permutations to the set Dﬁ(o ) of B(0, 1)-trees on n

vertices.

Example 4.35
Let n = 3. Then there are three mdecomposa.ble n-permutations, 123, 132,

and 213, and they all avoid 1342. Correspondmg]y, there are three 6(0 1}-
trees on three vertices, as can be seen in Figure 4.4.

Let t, = IDE(O'UI. If we can prove Theorem 4.34, then we have made a
crucial step in advance as it is known [64] that

(2n - 2)!

=TT e DT

(4.6)

‘We start by treating two special types of 8(0, 1)-trees on n vertices. There
are two things that contribute to the structure of a (0, 1)-tree, namely its {un-
labeled) tree structure, and its labels. We will therefore first look at 8(0,1)-
trees in which one of these two ingredients is trivial, that is, 8(0, 1)-trees-that
consist of a single path only, and 8(0, 1)-trees in which all labels are zero.

LEMMA 4.36

There is a bijection f from the set of 1342-avoiding n-permutations starting
with the entry 1 and the set of B(0,1)-trees on n vertices consisting of one
smgle path.

Note that a simpler description of the domain of f is that it is the set of
221 _avnidine narmutsticnme nf tha aot 2 2 4... ml
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FIGURE 4.5
The (0, 1)-tree of p = 143265.

PROOF  Let p=pip2---pn be an 1342-avoiding n-permutation so that

m = 1. Take an unlabeled tree on n nodes consisting of a single path and

give the label {(Z} to its 4th node (1 <7 < n — 1) by the following rule:
{{j <i so that p; > p, for at least one 8 > 4,}{ fi<n
HOE
in-1ifi=n

That is, I(i) is the number of entries weakly on the left of p; which are
larger than at least one entry on the right of p;. Note that this way we could
define f on the set of all n-permutations starting with the entry 1, but in that
case, f would not be a bijection. (For example, the images of 1342 and 1432
would be identical.)

Exampje 4.37

p= 143265, then the labels of the nodes of f(p) are, from the leaf to the
Toot, 0,1,2,0,1,1. See Figure 4.5. For easy reference, we wrote p; to the ith
node of the path f(p}. To avoid confusion, in this F1gure and for the rest of
this subsection, the entries of p will be written in small, Roman letters and
the labels of the nodes will be written in large italic letters

It is easy to see that f indeed maps into the set of £(0, 1)-trees: I(i +1) <
Hi)+1 for all i because there can be at most one entry counted by [(i+1) and
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not counted by {(4), namely the entry pi41. All labels are certainly nonnegatiye
and I{1} = 0.

To prove that f is a bijection, it suffices to show that it has an mvel'sg
that is, for any £(0, 1)-tree T consisting of a single path, we can find the on]y
permutation p so that f(p) = T. We claim that given T, we can recover the
entry n of the preimage p. First note that p is 1342-avoiding and starts by 1,
so any entry on the left of n must be smaller than any entry on the right of
n. In particular, the node preceding n must have label 0. Moreover, as n i
larger than any entry following it in p, the entry n is the leftmost entry p; of p
go that 1(5) > 0 for all § > 4 if there is such an entry at all, and n = p, if there
is none. That is, n corresponds to the node which starts the uninterrupteq
sequence of strictly positive labels that ends in the last node as long as there
is such a sequence. Otherwise, n corresponds to the last node.

Once we located where 7 is in p, we can simply delete the node correspond.
ing to it from T and decrement all labels after it by 1. (If this means deleting
the last node, we just change I(n — 1) so it is equal to I(r — 2) to satisfy the
root-condition.) We can indeed do this because the node preceding n had
label 0 and the node after n had a positive label (1 or 2}, by our algorithm
to locate n. Then we can proceed recursively, by finding the position of the
entriesn—1,1—2,---,1in p. This clearly defines the inverse of f, so we have
proved that f is a bijection.

As we promised, we continue by explaining which indecomposable 1342-
avoiding permutations correspond to 8(0, 1)-trees in which all labels are equal
to zero.

LEMMA 4.38

There s a bijection g from the set of 132-avoiding n-permulations ending
with n to the set of B(0,1)-trees on n tvertices with all labels equal to zero.

Note that we could describe the domain of g as the set of indecomposabie
132-avoiding n-permutations, or as the set of (n — 1)-permutations that avoid

132.

PROOF In this proof, we can obviously think of our 8(0,1)-trees as
unlabeled rooted plane trees. A branch of a rooted tree is a subtree whose
root is one of the root’s children. Some rooted trees may have only one braneh,
which does not necessarily mean they consist of a single path.

_We will construct g inductively. There is only one unlabeled 5(0, 1)-tree on 2
vertices and it is the image of the only 1-permutation; p = 1. Using induction,
suppose we have already constructed g for all positive integers k < n. Let
p be a 132-avoiding permutation of length n. Let p’ = pypa---pn_1. Then
there are two possibilities.

3
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(2) The first case is when p’ is decomposable, that is, we can cut p' into
several (at least two) strings p<1>,P<2>, 'y P<n> 80 that all entries of
P<i> are larger than all entries of p.j. if ¢ < j. In this case, g(p) will
have h branches, the branch b; satisfying g(p<;>) = b;. We then obtain
g(p) by connecting all branches ¥; to a common root. Given that we are
in a B(0, 1)-tree, the label of the root is determined by the labels of its
children.

(b) The second cage is when p’ is indecomposable. As p avoids 132, this is
equivalent to saying that p' ends with its maximal entry n — 1. In this
case, g(p) will have just one branch by, that is, the root of g{p) will have
only one child. We define b, = g(¢'). .

Again, we prove that g is a bijection by showing that it has an inverse.
Let T be an unlabeled plane trée on n vertices with root g. Let g have
t children, and say that, going left-to-right, they are roots of the branches
by, by, - -+, b, which have nj,ns, -+, n; nodes. Then by induction, for each %,
the branch b; corresponds to a 132-avoiding ni-permutation ending with n;.
Now add E;zi 11 Tj to all entries of the permutation p; associated with b,
then concatenate all these strings and add n to the end to get the permutation
D associated with T.>

It is straightforward to check that this procedure always returns the original
permutation, proving our claim.

Example 4.39 ' .

The permutation 45631278 corresponds to the 8(0, 1)-tree with all labels equal
to 0 shown in Figure 4.6. For easy reference, we write p, to the root of g(p),

an}c)i proceeded analogously for the other entries in the recursively defined
Subtrees.

0

Afl easy way to read off the corresponding permutation once we have its
entries written to the corresponding nodes is the well-known postorder read-
Ing: for every node, first write down the entries associated with its children
from Jett, 40 right, then the entry associated with the node itself, and do this
Tecursively for all the children of the node.

Qur plan is to bring Lemmas 4.36 and 4.38 together to prove Theorem 4.34.

his needs some preparation. Optimally, we would take a 1342-avoiding inde-
®mposable n-permutation p, associate its entries to the nodes of an unlabeled
Plane tree T, then define the labels of this tree so that it becomes a £(Q,1)-
_tree_' The question is, however, how do we know what T we should use, and
BT is given, in what order we should write the entries of p to the nodes of T'.

what follows, we develop tllle notions to decide these questions.
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FIGURE 4.6
The £(0, 1}-tree of p = 45631278.

DEFINITION 4.40 Two n-permutations x and y are said to be in the
same weak class if the lefi-to-right minima of £ are the same as those of y,
and they are in the same positions.

T
Example 4.41 .
Permutations 456312 and 465312 are in the.same weak class since their left-
to-right minima are 4, 3 and 1, and they are located at the same positions.
Permutations 31524 and 34152 are not in the same weak class. ﬁ

PROPOSITION 4.42

Each nonempty wesk class C of n-permutations contains ezactly one 152-
avoiding permutation.

PROOF  Take all entries which are not left-to-right minima and fill all

empty positions between the left-to-right minima with them as follows: in
each step place the smallest element which has not been placed yet which is
larger than the previous left-to-right minimum. (This is just what we did in
the proof of the Simion-Schmidt bijection in Lemma 4.3.)
" On the other hand, the resulting permutation will be the only 132-avoiding
permutation in this weak class because any time we deviate from this proce-
dure, (that is, we place something else, not the smallest such entry) we create
a 132-pattern. ’
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the only 182-cvoiding permutation in the weak class C containing p.

Example 4.44
If p= 356214, then N (p) = 345216. [

DEFINITION 4.45 The normalization N(T) of a 5(0,1)-tree T is the
B(0,1)-tree which is isomorphic to T as a plane tree, with all labels equal to
zero.

It turns out that normalization preserves the indecomposable property.

PROPOSITION 4.46 -
A permutation p is indecomposable if and only if N(p) 4s indecomposable.

PROOF  (The author is grateful to Aaron Robertson, who found a cor-
rected a mistake in his original argument.) We will show that whether p is
decomposable or not depends only on the set and position of its left-to-right
minima, which is obviously equivalent to the claim to be proved. Let C be
the weak class containing p, given by the set and position of its left-to-right
minima. It is clear that if p € C' is decomposable, then the only way to cut
it into two parts (so that everything before the cut is larger than everything
after the cut) is to cut it immediately on the left of a left-to-right minimum
6 < n. Now if there is a left-to-right minimum in position n — a + 2, then
the entries 1,2,---,a — 1 must occupy positionsn—a+2n—a+1,---,n.
Therefore, we can cut immediately on the left of position n — a + 2, and p is
decomposable.

If there is no such a, then for all left-to-right minima m, all the entries
L,2,---,m — 1 must be to the right of m. However, in one of the positions
i-m+2,n—m+1,---,n, there exists an element y > m, implying that our
Permutation p is not decomposable.

COROLLARY 4.47

Ifp is an indecomposable n-permutation, then N(p) always ends in the entry
n.

_PROOF Note that the only way for a 132-avoiding n-permutation to be
decomposable is for it to end with n. If p 18 a 132-avoiding n-permutation
30d n js not the last entry, then we may cut it just after the entry n. Then
the statement, follows from Proposition 4.46.

Now we are in a position to prove Theorem 4.34.
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FIGURE 4.7
The unlabeled trees of N(p) = 4521367 and p = 4621357.

PROOF  (of Theorem 4.34.) Let p be an indecomposable 1342-avoiding
n-permutation. Take N(p) = r. By Corollary 4.47 its last element is n. Define
F(r) to be the unlabeled plane tree S associated with by the bijection g of
Lemma 4.38. So g is just the restriction of F' to the set of indecomposable
132-avoiding permutations.

This uniabeled tree S is the tree we are going to work with. First, we will
write the entries of p to the nodes of-S. (The reader should recall that we
did this in the proof of Lemma 4.36, and that the enéries of p written to the
nodes of S are not to be confused with the labels of the nodes.) We will do
this in the order specified by p and N(p). That is, N(p) is a 132-avoiding
permutation, s0 its entries are in natural bijection with the nodes of S as
we saw in Lemma 4.38. We then let the permutation p(N({p))~! act on the
entries of N(p) (written to the nodes of S) to get the order in which we write
the entries of p to S. Note in particular that the left-to-right minima are kept
fixed.

Example 4.48

Let p = 4621357. Then N(p) = 4521367, and the unlabeled plane tree §
associated with these permutations is shown in Figure 4.7, together with the
order in which the entries of p are written to the nodes. Note that p and N(p)
only differ in the transposition (56&. This is why it is these two entries whose
positions have been swapped.

Now we are going to define the label I(v) of each node v for the new 8(0,1)-
tree T = F(p) that we are constructing from S. As an unlabeled tree, T
will be isomorphic to S, but its labels will be different. Let i be the ith
node of T in the postorder reading, the node to which we wrote p;. We say

#hot s Rnnda ;. if thars i0 on alomant . an that ne n: 1: are written in this

i
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FIGURE 4.8
The image F'(p) of p = 4621357.

p; reaches py. if there is a subsequence Py, Pitay, - * " Pitar, P Of entries so that
i<i4ay <i4az < - <i+a <kandthat any entry in this subsequence
beats the next one. In particular, if z beats y, then z also reaches y.

Example 4.49 -
Let p = 3716254. Then 7 beats 6, 6 beats 2, therefore 7 reaches 2. [}

Finally, we set

{fy= | {jis a descendant of ¢ (inclusive) so that there is at least one
k > i for which p; reaches pr},

and let F(p) be the (0, 1)-tree defined by these labels. A descendant of
18 an element of the tree whose top element is i. Note that this rule is an
extension of the labeling rule we have in Lemma 4.36.

First, it is easy to see that F' indeed maps into the set Dﬁto’”. Indeed,
let v be an internal node and let ¥y,Vq,--+, Uk be its children. Then I{v) <
I+ 21;1 {(u) because there can be at most one entry counted by I(v) and
Dot counted by any of its children’s labels, namely v itself. Second, all labels

]ars certainly nonnegative and all leaves, that is, the left-to-right minima, have
abel 0. .

Example 4.50

n Example 4.48 we have created the unlabeled tree S for p = 4621357. Ap-
Plication of the above rule shows that F(p) is the #(0, 1)-tree shown in Figure
48. Indeed, the only 132-pattern of p is 465, and that is counted only once,
at the entry 6. [f'
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FIGURE 4.9
The tree S and F(p) for p = 58371624.

Example 4.51

Let p = 58371624, then we have N(p) = 56341278, giving rise to the unlabeled
tree shown on the left of Figure 4.9. We then compute the labels of F(p) to
obtain the tree shown on the right of Figure 4.9.

To prove that F is a bijection, it suffices to show that it has an inverse.
That is, it suffices to show that for any 8(0,1)-tree T € Dﬁ(o'l), we can find
a unigue permutation p so that F(p) =T.

We again claim that given T, we can recover the node j that has the entry
n of the preimage p associated with it, and so we can recover the position of
n in the preimage.

4T

PROPOSITION 4.52 )
Suppose p, £ n, that i3, n is not associated with the root vertez. Then each
ancestor of n, including n itself, has a positive label. If p, = n, thenl(n}) =0
and thus there is no vertex with the above property.

PROOF  If p, = n, then there is nothing on the right of n to reach, thus
{(v) enumerates an empty set, yielding p, = 0. Suppose now that p, is ot
the root vertex. ' .

To prove our claim it is enough to show that for any node i that is an
ancestor of p; = n, there is an entry py so that k > 4, and n = p; reaches k.
Indeed, this would imply that the entry p; = n is counted by the label i{f) of
i, forcing (i) > 0. Now let @y, = p1 > ag > --- > a1 = 1 be the left-to-right
minima of p so that n is located between a, and apt1. (If n i3 located to the
right of a; = 1, then a;nz is obviously a 132-pattern for any x located to the
right of n.) Then n certainly beats all elements located between a, and ar41
as a, can play the role of 1 in the 132-pattern. Clearly, n must beat at least
one entry y; on the right of e, as well, otherwise p would be decomposable
hv enttine it rieht before a..i. If oy i3 on the right of €. then we are done as
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is on the other side of a,,4;, where y is located between ar, and a, 41 for
the same reason, and so on. This way we get a subsequence yi, ¥, - - - 50 that
n eaches each of the y:, and this subsequence eventually gets to the right of
i, since in each step we by'oass at least one left-to-right minimum. Thus the
proposition is proved.

The only problem is that there could be many vertices with the property
that all their ancestors have a positive label. If that happens, we resort to the
following Proposition te locate the vertex associated with n,

PROPOSITION 4.53 ’

Suppose p, # n. Then n is the leftmost entry af p which has the property that
each of its ancestors has a positive label,

PROOF  Suppose pi and n botk have this property and that px is on
the left of n. (If there are several candidates for the role of pg, choose the
rightmost one). If p; beats an element y on the right of n by participating in
the 132-pattern x py v, then zpiny is a 1342-pattern, which is a contradiction.
S0 pi does not beat such an element y. In other words, all elements after n are
smaller than all elements before py. Still, p; must reach elements on the right
of i, thus it beats some element v between p, and n. This elément » in turn
beats some element w ou the right of n by participating in some 132-pattern
tuw. However, this would imply that funw ig a 1342-pattern, a contradlctmn,
which proves our claim. i)

Therefore, we can recover the entry n of p from T. Then we can proceed as
in the proof of Lemma 4.36, that is, just delete n, subtract 1 from the labels
of its ancestors and iterate this procedure to get p. H at any time during
this procedure we find that the current root is associated with the maximal

entry that has not been associated with other vertices yet, then there are two
possibilities.

{a) If the tree has only one branch at this moment, then siraply remove its
root (and the maximal entry with it), and adjust the label of the new
oot so that it is the sum of the'labels of its children.

(b) X the tree has more than one branch at this moment, then deleting the
root vertex will split the tree into smaller trees. Then we continue the
Same procedure on each of them. The set of the entries associated to
€ach of these smaller trees is uniquely determined. Indeed, the fact that
our current, trée 7' has more than one branch is equwa.lent to the fact
that the current partial permutatlon ¢’ becomes decomposable when the
maximal elernent (the one associated to the root of 7¥) is removed. We

. have seen this for unlabeled trees in the proof of Lemma 4.38, and we

.
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know from Proposition 4.46 that p is indecomposable if and only if N(p)
is indecomposable. So the entries are assigned to the subtrees gq that
each subtree consists of larger entries than the subtrees on its right.

Therefore, we can always recover p in this way from T'. This proves that i
a bijection, completing the proof of Theorem 4.34.

COROLLARY 4.54
The number of indecomposable 134 2~avoiding n-permutations is

(2n —2)!

5(0,1) = =13. "_‘2._—..___.__.
IDEON =t =327 S “n

il

PROOF  Follows from (4.6) and Theorem 4.3¢. I

Computing the numbers Sy,(1342) is now a breeze, (well, if you like gener-
ating functions).

LEMMA 4.55

Let 5, = Sn(1342) and let H(z) = 3 oo, 5az™. Furthermore, let F(z) =
Yomeey tnz®, that is, let F(z) be the generating function of the numbers of
indecomposable 154{2-avoiding permutations. Then

. 1 32z
—_— 1 = =
o= ZZ‘.F S T s e P e gy

{48)

PROOF  Tutte [191] has computed the ordinary generating function of
the numbers ¢, and obtained

F(z) = itnz" = i.‘i .gni M—-—-x“ {49)

. ERY
ot oy (n+ )(n - 1)!
2 _ — R.3/2
_ 822+ 127 -1+ (1 — 8z) . (4.10)
32z

The coefficients of F(z) are the numbers of indecomposable 1342-avoiding
n-permutations. Any 1342-avoiding permutation has a unique decomposition
into indecomposable permutations. This can consist of 1,2, - - -, n blocks, im-
plying that s, = 37 tis,_;. Therefore, H(z) = 1/(1 — F(z)) as claimed.
|

It is time that we mentioned the other kind of objects that are in bijection
=i+l thnsn mammmdbnbinng Thoco ara ranted hicuhicr mang that is nlanar maps
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root), and the underlying graph is bipartite. Tutte was egumerating these
maps {(according to the number 2(n + 1) of vertices) when he obtained formula
(4.9), and Ceri, Jacquard, and Schaeffer then used the §(0, 1)-trees to find a
more combinatorial proof of Tutte’s result.

Now that we have the generating function of the numbers Sn(1342), we are
in a position to obtain an explicit formula for their number. That formula

——

will prove Theorem 4.31.

PROOF  (of Theorem 4.31). Multiply both the numerator and the de-
nominator of H(z) by (~82% + 20z + 1) + (1 — 8)%2. After simplifying we

L4

[ g
(1 —82)3/% — 8z% + 20z + 1
H(z) = CTEERE . (4.11)

As(1-8z)¥ 1 =1-12z4+ 3 ,,,3" 2"*29:"%%:—52))'7, formula (4.11} implies

our claim. |

Se the first few values of S,(1342) are 1, 2, 6, 23, 1083, 512, 2740, 15485,
91245, 555662.

In particular, one sees easily that the forrauia for 5n(1342) given by Theo-
rem (4.31) is dominated by the last summand; in fact, the alternation in sign

assures that this last summand is larger than the whole right hand side if :
n—23 !
< &4+ by Stirling’s formula, we have proved the following !

~— 43t
n>8. As nf'; i

exponential upper bound for S,(1342).
!

COROLLARY 4.56 : ,
For all n, we have S,(1342) < 8", I
i

On the other hand, it is routine to verify that the numbers i, satisfy the
recu_rrence ty = (8n'— 12)tn_1/(n + 1}). As we explained immediately after
Conjecture 4.9, the fact that Sn{1342) < 8" implies that the limit §/5,(1342)

exists. Therefore, by the Squeeze Principle, we obtain the following Corollary.

COROLLARY 4.57
We haye

lim 3/5,(1342) = 8.

; Thiijl result is again striking for two different reasops. On one hand, thia i
€ third time that we can compute lm,_, o, 3/Sp(g) for some pattesn g, In
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4 if ¢ is of length 3,

lim ¥/S.(q) =< (k—1)?if q=123- -k,

n—oo

8 if ¢ = 1342,

In other words, in every case when we saw an exact answer, the exact answer
was an integer. In general, however, that does not hold. Present author {41]
has recently proved that limy, ;00 3/Sa(12453) = 9+ 4v/2. So these limits are
not even always rational.

The other surprise provided by Corollary 4.57 ig that

lim /5,(1342) =8 # lim {/S,(123%) =9.

That is, even in the logarithmic sense, the sequences S,(1342) and S,,(1234)
are different. This phenomenon is not well understood. If we could understand
why the pattern 1342 is really so easy to avoid, then maybe we could use that
information to find other, longer patterns that are easy to avoid.

4.4.3 The Pattern 1234

The pattern 1234 is a monotone pattern, therefore Theorem 4.11, that pro-
vides an asymptotic formula and a very good upper bound for the numbers
Sn(123---k), applies to it. We would like to point out, however, that using
certain techniques beyond the scope of this book, Ira Gessel [105] proved the
following ezact formula for these numbers

' B2k (n\? 3k2+2k+1-—n—2nk
Sn(124=2-), ()6 Sty

The alert reader has probably noticed that the summands on the right-hand
side are not always non-negative, which decreases the hopes for a combinato-
rial proof. However, a few years later Gessel found the following alternative
form for his formula [104]

-t SEGED o

In this new form, all terms are nonnegative, but there is still a division,
suggesting that a direct combinatorial proof is probably difficult to find.

kA wrill mmbiaen dn tha cvtrneinine Aneanlavibe of lascal’s farmnloeas in the next
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