NOTE

A BOOLEAN FUNCTION REQUIRING $3 n$ NETWORK SIZE

Norbert BLUM
Fachbereich 10, Universität des Saarlandes, D-6600 Saarbrücken, Fed. Rep. Germany
Communicated by M.S. Paterson
Received September 1982
Revised July 1983

Abstract

Paul (1977) has proved a $2.5 n$-lower bound for the network complexity of an explicit Boolean function. We modify the definition of Paul's function slightly and prove a $3 n$-lower bound for the network complexity of that function.

1. Introduction

One of the most difficult problems in complexity theory is proving a nonlinear lower bound for the network complexity of an explicit Boolean function. Although it is well known by a counting argument that relative to the full basis most Boolean functions need exponentially many operations, only linear lower bounds with small constant factor are known for explicit Boolean functions. Schnorr [3] first proved a $2 n$-lower bound for an n-ary Boolean function. Next, Paul [2] proved a $2.5 n$-lower bound for another n-ary Boolean function. Stockmeyer [5] proved that the lower bound of Paul holds for a lirger class of functions. In [4] Schnorr gives a 'proof' for a $3 n$-lower bound lor the function defined by Paul, but V'egener [6] pointed out a gap in the proof of a lemma. In [1] we use a weaker version of that lemma and prove a $2.75 n$-lower bound. Here we modify the definition of Paul's function slightly and prove a $3 n$-lower bound.

2. Preliminaries

Let $K=\{0,1\}$ and $F_{n}=\left\{f \mid f: K^{n} \rightarrow K\right\} . F_{2}$ is the set of basic operations. $x_{i}: K^{n} \rightarrow K$ denotes the i th variable. Let $V_{n}=\left\{x_{i} \mid 1 \leqslant i \leqslant n\right\}$.

Definition. A network β is a directed, acyclic graph satisfying the following conditions:
(1) Each node has indegree 0 or 2 .
(2) The nodes v with indegree 0 are the input nodes of β and are labelled with a variable $\mathrm{op}(v) \in V_{n}$.
(3) Each node u with indegree 2 is called a gate and is labelled with an $\mathrm{op}(u) \in F_{2}$. The edges entering u are associated in a fixed ordered way with the arguments of $o p(u) \in F_{2}$.

With each node v we associate a function $\operatorname{res}_{\beta}(v): K^{n} \rightarrow K$ as follows:

$$
\operatorname{res}_{\beta}(v)= \begin{cases}\operatorname{op}(v) & \text { if } v \text { is an input node } \\ \operatorname{res}_{\beta}(u) \operatorname{op}(v) \operatorname{res}_{\beta}(w ; & \text { otherwise } \\ & \text { where } u, w \text { are the predecessors } \\ \text { of } v \text { in that order. }\end{cases}
$$

The network β computes all functions $f \in F_{n}$ such ti:at there exists a node $v \in \beta$ with $\operatorname{res}_{\beta}(v)=f . \operatorname{Res}_{\beta}(v)$ depends on input variable x_{i} if and only if there exists an $\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)$ such that

$$
\operatorname{res}_{\beta}(v)\left(a_{1}, \ldots a_{i}, \ldots, a_{n}\right) \neq \operatorname{res}_{\beta}(v)\left(a_{1}, \ldots, \neg a_{i}, \ldots, a_{n}\right)
$$

$C(f)$ denotes the network complexity of the function f, i.e., $C(f)$ is the minimal number of gates which is necessary for computing f.

For $f \in F_{n}$ and $a \in K$ let

$$
f^{a}=\left\{\begin{array}{cc}
f & \text { if } a=1, \\
\neg f & \text { if } a=0
\end{array}\right.
$$

We say that $f \in F_{2}$ is \wedge-type, if

$$
\exists a, b, c \in K: f(x, y)=\left(x^{a} \wedge y^{b}\right)^{c}
$$

$f \in F_{:}$is \oplus-type, if

$$
\exists a \in K: f(x, y)=(x \oplus y)^{\prime} .
$$

A node $v \in \beta$ such that $\mathrm{op}(v)$ is \wedge-type $(\oplus$-type) is called an \wedge-type gate $(\oplus$-type gate).

The functions $f \in F_{2}$ can be classified in the following way. There are
(i) 2 constant functions,
(ii) 4 functions depending on one variable,
(iii) 10 functions depending on two variables. 8 of these functions are \wedge-type and 2 are \oplus-type.

For a node v in β let

$$
\operatorname{suc}(v)=\{u \mid v \rightarrow u \text { is an edge in } \beta\}
$$

and

$$
\operatorname{pred}(v)=\{u \mid u \rightarrow v \text { is an edge in } \beta\}
$$

be the set of direct successors and direct predecessors of v.

The functions, associated with the nodes in pred (v), are called input functions of v Throughout this paper, we use the following fact.

Fact. Let β be a network computing $f \in F_{n}$. Let $v \in \beta$ be an \wedge-type gate or a \oplus-type gate. If one input function of v is constant, then we can eliminate gate v and the reduced network still computes f.

Let $U \subset V_{n}$ and $\alpha: U \rightarrow K$ be a mapping. Frequently we consider the restriction f_{α} of $f \in F_{n}$ under the assignment α. More precisely, f_{α} is defined by

$$
f_{\alpha}\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \quad \text { with } y_{i}= \begin{cases}\alpha\left(x_{i}\right) & \text { if } x_{i} \in U \\ x_{i} & \text { if } x_{i} \notin U .\end{cases}
$$

In a natural way an assignment α associates with a network β a subnetwork β_{α} which is derived by fixing input variables according to α and eliminating the unnecessary gates.

In the sequel we write res (v) for $\operatorname{res}_{\beta}(v)$ if β is kept fixed. \# S denotes the cardinality of set S.

For proving the lower bound, we consider paths in a network. ($v \Rightarrow u$) denotes a path from node v to node u. $(v \Rightarrow u$ [denotes a path from node v to a node in pred (u).

3. The lower bound

For $a=a_{1} \cdots a_{r} \in K^{*}$, let (a) denote the binary number represented by $a+1$.
Let

$$
a_{1}=a_{1} \cdots a_{\log n}, \quad a_{2}=a_{\log n+1} \cdots a_{2 \log n}
$$

and

$$
a_{3}=a_{2 \log n+1} \cdots a_{3 \log n} \quad\left(a_{i} \in K\right) .
$$

Then we define

$$
\begin{aligned}
& f: K^{n+3 \log n+1} \rightarrow K, \\
& f\left(a_{1}, \ldots, a_{3 \log n}, r, x_{1}, \ldots x_{n}\right):=x_{\left(a_{1}\right)}^{r} \wedge\left(x_{\left(a_{2}\right)} \oplus x_{\left(a_{3}\right)}\right) .
\end{aligned}
$$

Remark. If $r=1$ and $r_{,}=1$, then $f\left(a_{1}, a_{2}, a_{3}, r, x_{1}, \ldots, x_{n}\right)=x_{\left(a_{2}\right)} \oplus x_{\left(a_{3}\right)}$.
If $r=1$ and $x_{\left(a_{3}\right)}=, i!\in \mathrm{n} f\left(a_{1}, a_{2}, a_{3}, r, x_{1}, \ldots, x_{n}\right)=x_{\left(a_{1}\right)} \wedge x_{\left(a_{2}\right)}$.

Paul has defined the foliowing function:

$$
\begin{aligned}
& h: K^{n+2 \log n+1} \rightarrow K, \\
& h\left(a_{1}, \ldots, a_{2 \log n}, q, x_{1}, \ldots, x_{n}\right)=q\left(x_{\left(a_{1}\right)} \wedge x_{\left(a_{2}\right)}\right) \vee \neg q\left(x_{\left(a_{1}\right)} \oplus x_{\left(a_{2}\right)}\right) .
\end{aligned}
$$

The function f is similar to the function h.

For h, Paul has proved a $2.5 n$-lower bound. First he makes h independent of some inputs x_{i}, which allows him to eliminate 3 gates each. After this, he knows quite exactly, how the 'top' of the network looks. For the remaining s inputs, he proves without an inductive argument the existence of $\frac{5}{2} s-2$ gates.

Theorem 3.1. For the f defined above, there holds the following:

$$
C(f) \geqslant 3 n-3
$$

Proof. First we make f independent of some inputs x_{i} which allows the elimination of 3 gates each. We use for this the entire proof of Paul and only give a sketch of this part. For a more detailed analysis, see [2].

Define for $1 \leqslant s \leqslant n$ the statement E_{s} :

$$
E_{s}: C(f) \geqslant 3 s-3 \text { for any function } f: K^{n+3 \log n+1} \rightarrow K
$$

with the property:

$$
\begin{aligned}
& {\left[\exists S \subseteq\{1, \ldots, n\} \# S=s \text { such that for } a_{1}, a_{2}, a_{3}\right. \text { with }} \\
& \left.\quad\left(a_{1}\right),\left(a_{2}\right),\left(a_{3}\right) \in S: f\left(a_{1}, a_{2}, a_{3}, r, x_{1}, \ldots, x_{n}\right)=x_{\left(a_{1}\right)}^{r} \wedge\left(x_{\left(a_{2}\right)} \oplus x_{\left(a_{3}\right)}\right)\right] .
\end{aligned}
$$

E_{1} is trivially true. Let E_{5-1} be true. Now we prove that E_{s-1} implies E_{3}. Let β be any minimal size network for f. Without loss of generality we assume that for each $i \in S$ there is a unique node $v \in \beta$ with $\operatorname{op}(v)=x_{i}$.
(ase 1. $\exists i \in S$ such that $\# \operatorname{suc}\left(x_{i}\right) \geqslant 3$.
By ixing x_{t} at 0 we can eliminate at least 3 gates of β. The reduced network comptes the restriction f_{5}, \cdots of f. From the induction hypothesis it follows that $C(f) \geq 3 s-3$.

Case 2. $\exists i \in S$ such that $\# \operatorname{suc}\left(x_{i}\right)=2$ and $\exists v \in \operatorname{suc}\left(x_{i}\right)$ such that v is an \wedge-type gate.

Choose $c \in K$ such that $\operatorname{res}(v)_{x_{i} ; \cdot}$ is constant. Then, by fixing x_{i} at c, we can eliminate all nodes in $\operatorname{suc}\left(x_{t}\right)$ and all nodes in $\operatorname{suc}(v)$. Since β is of minimal size. there are at least three such different nodes. The reduced network computes; the restriction f_{5}, \ldots of f. From the induction hypothesis it follows that $C(f) \geqslant 3 s-3$.

Case 3. $\exists i \in S$ such that. $\forall v \in \operatorname{suc}\left(x_{i}\right), v$ is a \oplus-type gate. Then there exist modes $u_{1} \ldots . . u_{\text {r }}$ in β with
(1) $u_{1} \in \operatorname{suc}\left(x_{i}\right)$,
(2) u, is a \oplus-type gate $\forall j \in\{1, \ldots, r\}$,
(3) $u_{i, 1} \in \operatorname{suc}\left(u_{j}\right)$ and $\# \operatorname{suc}\left(u_{j}\right)=1$ for $1 \leqslant j \leqslant r-1$,
(4) $\# \operatorname{suc}\left(u_{r}\right)>1$ or for $w \in \operatorname{suc}\left(u_{r}\right)$ holds: w is an $\wedge-t y p e$ gate.
L.et x_{i}, g_{1} be the input functions of u_{1} and $\operatorname{res}_{\beta}\left(u_{j}\right), g_{j+1}$ be the input functions of $u_{r, 1}, 1 \leqslant j<r$. Paul [2, Case III] proves that u_{1}, \ldots, u_{r} can be chosen such that therce is no path from $x_{\text {, }}$ to the nodes computing g_{1}, \ldots, g_{r}. Then res $\left(u_{r}\right)=x_{i} \oplus g$ or the function $g=g_{1} \oplus \cdots \oplus g$, which does not depend on x_{i}.

Hence $\operatorname{res}\left(u_{r}\right)_{x_{i}=g}$ and res $\left(u_{r}\right)_{x_{i}=\neg g}$ are constant. Therefore, for each of the substitutions $x_{i}:=g$ and $x_{i}:=\neg g$, we can eliminate u_{r} and all nodes in suc $\left(u_{r}\right) . g$ can be computed with $r-1$ extra gates. We distinguish two cases:
(i) \# $\operatorname{suc}\left(u_{r}\right) \geqslant 2$. Then we eliminate at least $r+2$ gates by fixing x_{i} at g or at $\neg g$.
(ii) $\# \operatorname{suc}\left(u_{r}\right)=1$. Then $w \in \operatorname{suc}\left(u_{r}\right)$ is an \wedge-type gate. Choose $\tilde{g} \in\{g, \neg g\}$ such that res $(w)_{x_{i}=\tilde{g}}$ is constant. Then by fixing x_{i} at \tilde{g}, we can eliminate at least $r+2$ gates, namely u_{r}, w and all nodes in $\operatorname{suc}(w)$.

The induction hypothesis now implies $C(f) \geqslant 3 s-3$.
If none of Cases $1-3$ applies, then $\forall i \in S$ the following holds:
(i) $\# \operatorname{suc}^{(}\left(x_{i}\right)=1$. We denote the node in $\operatorname{suc}\left(x_{i}\right)$ by G_{i}.
(ii) G_{i} is an \wedge-type gate.

Let $G=\left\{G_{i} \mid i \in S\right\}$. Paul proves the following lemma.
Lemma 3.2. $\forall i, j \in S$ with $i \neq j, G_{i} \neq G_{j}$.
Proof. Suppose $\exists i, j \in S, i \neq j$, with $G_{i}=G_{j}$. Then there exists a $c \in K$ such that $\operatorname{res}\left(G_{j}\right)_{x_{i}=c}$ is constant. Hence $f_{x_{i}=\mathrm{c}}$ does not depend on x_{j}. But $f\left(a_{1}, a_{2}, a_{3}, r\right.$, $\left.x_{1}, \ldots, x_{n}\right)=c \oplus x_{1}$ for $\left(a_{1}\right) \neq i, j, r=1, x_{\left(a_{1}\right)}=i,\left(a_{2}\right)=i, x_{i}=c$ and $\left(a_{3}\right)=j$ depends on x_{j}, a contradiction.

Case 4. $\exists i \in S$ such that $\# \operatorname{suc}\left(G_{i}\right) \geqslant 2$.
Consider $c \in K$ with $\operatorname{res}\left(G_{i}\right)_{x_{i}=c}$ is constant. Then fixing x_{i} at c eliminates G_{i} and all nodes in $\operatorname{suc}\left(G_{i}\right)$. There are at least.three different such gates. Hence from the induction hypothesis it follows that $C(f) \geqslant 3 s-3$.

It remains to consider the following case:
Case 5. $\forall i \in S$ we have that $\# \operatorname{suc}\left(G_{i}\right)=1$.
We denote the unique direct successor of G_{i} by Q_{i}. Before analysing Case 5 , we give some definitions.

A path $(v \Rightarrow w)$ in β is called free, if no node $\neq v, w$ is in G
A node w in β is called a split, ii the outdegree of w is $\geqslant 2$.
Let t be the node of β with res $(t)=f$. A split w in β is called a free split, if $\exists u_{1}, u_{2} \in \beta, u_{1} \neq u_{2}$, such that
(a) $u_{1}, u_{2} \in \operatorname{suc}(w)$,
(b) \exists free paths $\left(u_{1} \Rightarrow t\right)$ and $\left(u_{2} \Rightarrow t\right)$ in β.

A node w is called the collector of the free paths $\left(G_{i} \Rightarrow t\right)$ and $\left(G_{j} \Rightarrow t\right), i \neq j$, if w is the first node which lies on both paths.

The next four lemmas are due to Paul, except the observation that C is a \oplus-type gate in Lemma 3.4, which is due to Schnorr.

Lemma 3.3. $\forall i \in S, \exists$ free path $\left(G_{i} \Rightarrow t\right)$.
Proof. Suppose that no free path $\left(G_{i} \Rightarrow t\right)$ exists. Then each path $\left(G_{i} \Rightarrow t\right)$ passes some G_{j} with $j \neq i$. Construct the assignment α by fixing all variables except x_{i}, such
that
(i) $\operatorname{res}\left(G_{\nu}\right)_{\alpha}$ is constant $\forall \nu \in S \backslash\{i\}$,
(ii) $f_{a}=x_{i}^{a}, a \in K$.

Since each path ($G_{i} \Rightarrow t$) goes through some G_{u} with $\nu \neq i$, res $(t)_{\alpha}$ does not depen on x_{i}. But this is a contradiction to $f_{\alpha}=x_{i}^{a}$ and $\operatorname{res}(t)_{\alpha}=f_{\alpha}$.

Note that from Lemma 3.3 it follows that $G \cap Q=\emptyset$.
Lemma 3.4. Let $i, j \in S, i \neq j$. Let C be the collevtor of a free path $\left(G_{i} \Rightarrow t\right)$ and c free path ($G_{j} \Rightarrow t$).

Let

$$
\exists \text { free split } \neq C \text { on path }\left(G_{i} \Rightarrow C\right)
$$

and

$$
\exists \text { free split } \neq C \text { on path }\left(G_{j} \Rightarrow C\right) .
$$

Then the following holds:
(i) C is $a \oplus$-type gate, and
(ii) \exists free path $\left(G_{i} \Rightarrow G_{j}\right)$, or \exists free path $\left(G_{j} \Rightarrow G_{i}\right)$.

Proof. Suppose, the assertion does not hold. We distinguish two cases.
(a) C is an \oplus-type gate.

Construct assignment α by fixing all variables except x_{i}, x_{j} such that
(i) $\operatorname{res}\left(G_{\nu}\right)_{a}$ is constant $\left.\forall \nu \in S \backslash i, j\right\}$,
(ii) $f_{\text {" }}=x_{i} \wedge x_{j}^{a}, a \in K$.

By assumption, all paths ($\left.G_{i} \Rightarrow t\right)$ and ($G_{j} \Rightarrow t$) go through C or a $G_{i}, \nu \in S \backslash\{i, j\}$. Thus res $(C)_{,}=\left(x_{i} \oplus x_{j}\right)^{b}, b \in K$, or res $(C)_{a}$ depends on at most one variable, and so the same holds for res $(t)_{\alpha}$. Hence $f_{\alpha} \neq \operatorname{res}(t)_{\alpha}$, a contradiction.
(b) C is an \wedge-type gate.

Construct assignment α by fixing all variables except x_{i}, x_{j} such that
(i) $\operatorname{res}\left(G_{x}\right)_{a}$ is constant $\forall \nu \in S \backslash\{i, j\}$.
(ii) $f_{\alpha}=x_{i} \oplus x_{j}$.
(Here, we need the control variable r for forcing that such an assignment α exists.)
If res $\left(G_{l}\right)_{d}$ depends on x_{i}, choose $c \in K$ such that $\operatorname{res}\left(G_{j}\right)_{\alpha_{x}, x_{i}, c, c}$ is constant. Hence res $\left(H_{a, ~, ~, ~ d o e s ~ n o t ~ d e p e n d ~ o n ~} x_{j}\right.$, but $f_{a, x_{i}-c}=c \oplus x_{j}$ depends on x_{j}, a contradiction. The case where res $\left(G_{i}\right)_{\alpha}$ depends on x_{j} is symmetric.
Now, by assumption, all paths $\left(G_{i} \Rightarrow t\right)$ and $\left(G_{j} \Rightarrow t\right)$ go through C or a G_{i}, $u \in S \backslash\{i, j\}$. Since $\operatorname{res}(C)_{a}=\left(x_{i}^{a} \wedge x_{j}^{b}\right)^{c}, a, b, c \in K$ or $\operatorname{res}(C)_{\alpha}$ depends on at most one variable; for res $(t)_{c}$ the same holds.

Hence $f_{a} \neq$ res $(t)_{, ~}$, a contradiction.

From Lemma 3.4 we immediately have the following.
Lemma 3.5. $\forall i$. J $\in \mathscr{S}$ if $i \neq j$ holds, then $Q_{i} \neq Q_{i}$.

Now we have isolated $2 s$ gates, namely the gates G_{i}, Q_{i} for $i \in S$. Let $Q=\left\{Q_{i} \mid i \in S\right\}$.
Lemma 3.6. There are at least $s-1$ mutually distinct splits in ρ.
Proof. Let $S^{\prime}=S$. Choose $i, j \in S^{\prime}$ with free paths $\left(G_{i} \Rightarrow t\right)$ and ($G_{j} \Rightarrow t$) such that for every $l \in S^{\prime} \backslash\{i, j\}$ no free path $\left(G_{l} \Rightarrow t\right)$ goes through the collector C of the free paths ($G_{i} \Rightarrow t$) and ($G_{j} \Rightarrow t$).

From Lemma 3.4 follows that one of the paths ($G_{i} \Rightarrow C\left[\right.$ and $\left(G_{j} \Rightarrow C[\right.$ respectively, splits into a free path to the output node t or splits into a free path to the node G_{j} and G_{i}, respectively. Without loss of generality let the path ($G_{i} \Rightarrow C \mathrm{~L}$ split. Set $S^{\prime}=S^{\prime}-\{i\}$. Note, that by construction no path $\left(G_{l} \Rightarrow t\right), l \in S^{\prime}$, has a common node with the path ($G_{i} \Rightarrow C$.

Repeating this argument $s-1$ times proves the lemma.

The rest of the proof is new.
Since we have at least $s-1$ splits, we have to connect at least $2(s-1)$ edges with the output node t. For edges, which correspond tiv a free path, no node in G can help to connect these with the output node t on the free paths by the definition of a free path. Next we prove, that all but one of the $s-1$ splits from Lemma 3.6 have to be free.

Assume, less than $s-1$ splits, isolated in the proof of Lemma 3.6, are free. Then by Lemma 3.4 there exist $i, j, i \neq j$, with the following property:

Let C be the collector of the free paths $\left(G_{i} \Rightarrow t\right)$ and $\left(G_{j} \Rightarrow t\right)$. Then there is no free split on the path ($G_{i} \Rightarrow C\left[\right.$ and no free split on the path $\left(G_{j} \Rightarrow C[\right.$. There is a free path ($G_{i} \Rightarrow G_{j}$) and C is a \oplus-type gate.

Then we have the following situation:

.emma 3.7. $\forall \nu \in S\left\{\{j\}, \exists\right.$ free path $\left(G_{\nu} \Rightarrow G_{i}\right)$ or \exists free path $\left(G_{r} \Rightarrow G_{j}\right)$.
'roof. For i we know by assumption that \exists free path $\left(G_{i} \Rightarrow G_{i}\right)$. Assume $\exists I \in S \backslash\{i, j\}$ ith

$$
\exists \text { free path }\left(G_{l} \Rightarrow G_{i}\right) \quad \text { and } \quad \exists \text { free path }\left(G_{l} \Rightarrow G_{j}\right) \text {. }
$$

Now we construct assignment α by fixing all variables except x_{i}, x_{j}, x_{l} such that
(a) $\operatorname{res}\left(G_{v}\right)_{\alpha}$ is constant $\forall \nu \in S \backslash\{i, j, l\}$,
(b) $f_{a}=x_{j} \wedge\left(x_{i} \oplus x_{i}\right)$.

We distinguish two cases:

Case 1. $\operatorname{res}\left(G_{j}\right)_{\alpha}$ does not depend on x_{i}. Now fix x_{l} at $a \in K$ such that $\operatorname{res}\left(G_{l}\right)_{\alpha, x_{i}:=a}$ is constant. Then $f_{\alpha, x_{i}=a}=x_{j} \wedge x_{i}^{b}, b \in K$.

Now, as in the proof of Lemma 3.4, we show that Case 1 cannot happen.
Case 2. res $\left(G_{j}\right)_{\alpha}$ depends on x_{i}.
Hence $\operatorname{res}\left(G_{j}\right)_{\alpha}=\left(x_{i}^{c} \wedge x_{j}^{d}\right)^{e}, c, d, e \in K$. Fix x_{i} at $\neg c$. Then $\operatorname{res}\left(G_{j}\right)_{\alpha, x_{i}=\neg c}$ is constant and hence res $(t)_{\alpha, x_{r}=\neg c}$ does not depend on x_{j}. But

$$
f_{\alpha, x_{i}:, c}=x_{j} \wedge\left(\neg c \oplus x_{l}\right)=x_{j} \wedge x_{l}^{c}
$$

depends on $x_{\text {, }}$, a contradiction.
Now we prove that all other splits, which are isolated in the proof of Lemma 3.6, have to be free.

Lemma 3.8. $\forall l, \nu \in S \backslash j\}, \nu \neq l$, if D is the collector of a free path $\left(G_{l} \Rightarrow t\right)$ and a free path $\left(G_{v} \Rightarrow t\right)$, then

$$
\exists \text { free split } \neq D \text { on path }\left(G_{l} \Rightarrow D\right)
$$

or

$$
\exists \text { free split } \neq D \text { on path }\left(G_{،} \Rightarrow D\right) .
$$

Proof. Assume that \exists free split on path $\left(G_{l} \Rightarrow D\right)$ and \exists free split on path ($\left.G_{r} \Rightarrow D\right)$. Then applying Lemma 3.7 to l, ν there exists a path $\left(G_{j} \Rightarrow G_{l}\right)$ (ir there exists a path ($G_{j} \Rightarrow G_{i}$). But by construction, there exist paths ($G_{l} \Rightarrow G_{j}$) and ($G_{i} \Rightarrow G_{j}$) and. hence, we have a cycle in the network. But this cannot happen by the definition of a network.

From !emma 3.8 we can directiy derive the following.
Lemma 3.9. There are at least $s-2$ mutually distinct free splits in β.
By Lemma 3.9 and Lemma 3.3 we have to connect at least $2(s-2)+2$ edges on free paths to the output node t. Since the paths are free, the nodes in G cannot help to connect these edges to the output node. For the nodes in Q only one input wire is free for connecting these edges. There are s nodes in Q. Hence at least $s-2$ edges have to connect to the output node using new nodes. One new node (except the output node) can decrease the number of edges only by one. The output node can decrease the number of edges only by two. Hence we need at least $s-3$ new gates.

Hence

$$
C(f) \geqslant \# G+\# Q+s-3=3 s-3
$$

This finishes the proof of the theorem.

Acknowledgment

I would like to thank Kurt Mehlhorn and Mike Paterson for valuable comments. Mike Paterson pointed out that the proof also works for the function f which is much simpler than a previously used function.

References

[1] N. Blum, A $2.75 n$-lower bound on the network complexity of boolean functions, Tech. Rept. A 81/05, Universität des Saarlandes, 1981.
[2] W.J. Paul, A $2.5 n$-lower bound on the combinational complexity of boolean functions, SIAM J. Comput. 6 (1977) 427-443.
[3] C.P. Schnorr, Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen, Computing 13 (1974) 155-1!!.
[4] C.P. Schnorr, A $3 n$-lower bound on the network complexity of boolean functions, Theoret. Comput. Sci. 10 (1980) 83-92.
[5] L.J. Stockmeyer, On the combinational complexity of certain symmetric Boolean functions, Math. Systems Theory 10 (1977) 323-336.
[6] I. Wegener, Private communication, 1981.

