
Theoretical Computer Science 28 (1984) 337-345

North-Holland
337

NOTE

A BOOLEAN FUNCTION REQUIRING 3n NETWORK SIZE

Norbert BLUM

Farhbereich 10, Universitlit des Saarlandes, D-6600 Saarbrikken, Fed. Rep. Germany

Communicated by M.S. Paterson
Received September 1982
Revised July 1983

Abstract. Paul (1977) has proved a 2.5n-lower bound for the network complexity of an explicit
Boolean function. We modify the definition of Paul’s function slightly and prove a 3n-lower
bound for the network complexity of that function.

1. Introduction

One of the most difficult problems in complexity theory is proving a nonlinear

lower bound for the network complexity of an explicit Boolean function. Although

it is well known by a counting argument that relative to the full basis most Boolean

functions need exponentially many operations, only linear lower bounds with small

constant factor are known for explicit Boolean functions. Schnorr [3] first proved

a 2n-lower bound for an n-ary Boolean function. Next, Paul [2] proved a 2Sn-lower

bound for another n-ary Boolearr function. Stockmeyer [:5] proved that the lower
bound of Paul holds for a hrger- class of functions. In [4] Schnorr gives a ‘proof’

for a 3n-lower bound for the function defined by Paul, but Wegener [6] pointed

out a gap in the proof of a lemma. In [l] we use a weaker version of that lemma

and prove a 2.7%-lower bound. Here we modify the definition of Paul’s function

slightly and prove a 3n--lower bound.

2. Preliminaries

Let K ={O, 1) and F’,* ={flf:K” + K). F2 is the set of basic operations. Xi: K ” + K
denotes the ith variable. Let Vn = {xii 1 G i s n}.

Definibon. A network p is a directed, acyclic graph satisfying the following condi-

tlons:
(1) Each node has indegree 0 or 2.

0304-3975/84/$3.00 @ 1984 Elsevier Science Publishers B.V. (North-Holland)

338 N. Blum

(S) The nodes v with indegree 0 are the input nodes of /3 and are labelled with
a variable op(v) E V,,.

(3) Each node u with indegree 2 is called a gate and is labelled with an op(U) E F?.
The edges entering u are associated in a fixed ordered way with the arguments of

op(u) E F2.

With each node u we associate a funct@n resp (v) : K” + K as follows:

(op(4 1 if u is an input node,

resP(v) = 1 res,(u) op(v) res&W) otherwise,
where u, w are the predecessors
of v in that order.

The network /‘3 computes all functions f E F,, such that there exists a node v E P

with res,(v) = J Resp (v) depends on input variable xi if and only if there exists an

(a,, . . . , Q,, . . . , u,,) such that

res,(u)(u,, . . . a,, . . . , u,,) f hesg(u)(a,, . . . , --ml, . . . , a,).

C‘(fr denotes the network complexity of the function f, i.e., C(f) is the minimal

number of gates which is necessary for c&mputing f
F;‘or f cz l;;l and a E K let

11 f ifu=l,

f (f =
-I if a =O.

WC say that f E F2 is A -type, if

31, h, c E K : f (x. y) =L: (x“ A y’)’ ;

A node o E p such that op(I;) is A -type (O-type) is called an A -type gate (@-type

galit?).

The functions f E F2 can be classified in the following way. There are’

ti) 2 constant function:,

(ii) 4 functions depending on one wriable,
d iiii 14) functions depending CM) two variables. 8 of these functions are A -type

and 2 are @type.

For ti node z’ in /? let

suc(L’) = (I41 1 7 -+ 14 is an edge in p)

pred(rf=(ulIr + o is an edge in p}

Ix: the set of direct successors and direct predecessors of t?.

A Boolean function requiring 3n netH,ork size ‘39

The functions, associated with the nodes in pred(u), ahe called input functions of u

Throughout this paper, we use the following fact.

Fact. Let p be a network computing f E F,. Let v E p be an A -type gate or a 0 -type
gate. If one input function of t‘ is constant, then we can eliminate gate v and thk

reduced network still computes f.

Let U c V, and a: U + K be a mapping. Frequently we consider the restriction

fol of f E F,, under the assignment a. More precisely, fm is defined by

f(a x1 ,..., x,,)=f(y,,. .., yn) with yi=
a(Xi) if Xi E U,

Xi if XiE U.

In a natural way an assignment cy associates with a network p a subnetwork /3(x

which is derived by fixing input variables according to a! and eliminating the

unnecessary gates.
In the sequel we write re5(u) for resp(u) if p is kept fixed. # S denotes the

cardinality of set S.

For proving the lower bound, we consider paths in a network. (u+u) denote!

a path from node u to node u. (v+u[denotes a path from node v to a node in

pred(u).

3. The lower bound

For a=a,.*.a,EK*, llzt (a) denote the binary number represented by a + 1.

Let

a, = a, - * - all,,,,q a, = all,,,,-+ I . - - a2h,g,l

and

a,=a 2Il?gtI+l ’ * * GI~,~,, (ai E 0

Then we define

Remark. If r= 1 and y , ,= 1, then f(a,, a2, a3, r, x,, . . . , x,)=xca2+3xta3).

If r= 1 and x(~~)= , ;! c:n f(a,,az,a,,r,x,,. . . ,x,,)=x~,,~Ax~~~~.

Paul has defined the following function:

hh.. . 9 a21,,,,l, 4, x1,. . . 7 x,,) =db,, A h,J v ~q(-bl@-b2J.

The function f is similar to the function h.

For h, Paul has) proved a 2.5 n-lower bound. First he makes F independent of
some inputs xi, which allows him to eliminate 3 gates each. After this, he knows
quite exactly, how the ‘top’ of the network looks. For the remaining s inputs, he
proves without an inductive argument the existence of $s - 2 gates.

Theorem 3.1. For the f defined above, there holds the following:

C(f)a3n-3.

Proof. First we make f independent of some inputs Xi which allows the elimination
of 3 gates each. We use for this the entire proof of Paul and only give a sketch of
this part. For a more detailed analysis, see [2].

Define for 1 s s6 n the statement Es:

E,:C(f)z3s-3 for any function f:K’*+3’“g’*+’ +K

with the property:

[3SE{l,..., n} #S=s~uchthatfora,,a,,a~ with

k-j is trivially true. Let E, , be true. Now we prove that Es+ implies E,. Let /3 be

any minimal size network for f. Without loss of generality we assume that for each
i c S there is a unique node t’ E /3 with op(V) = xi.

Gee I. 3i E S such that # SUC(X,) 5: ?.
By 5xing X, at 0 we can eliminate at least 3 gates of p. T-he reduced network

compt.tes the restriction _f,, _ (, of f. From the induction hypothesis it fo!!sws that

Cq-, e*- zs - 3.

<‘use 2. 3i E S such that # suc(x,) = 2 and 3 L: E suc(x,) such that :J is an A -type
gate.

Choose c E K such that res(c) Xr.. I. is constant. Then, by fixing xi at c, we can

eliminate al! nodes in suc(.x,) and all nodes in suc(v). Since p is of minimal size.

there are at least three such different nodes. The reduced network computes the

rest ricrt ion f t, (of J From the induction hypothesis it follows that C(f) 2 3s’-- 3.
GISY 3. 3ic S such that. VV E suc(A-, 1, c is a O-type gate. Then there exist &odes

id I..... al, in p with
(11 IL1 c suc(x,),

(21 ct, is a O-type gate VjC(l.. . . , r).

(3, I4,+1 csuc!Iq)and #suc(~,)=l for l~j~~--1.

i 4) I; sucl 14,) > I or for 1%’ c suc(II,) holds: w is an A -type gate.
I.ct -G ~1 be the input functions of 14[and res,(M,), g,+ 1 be the input functions of

I4 ,’ 1 l 1 _- j’ I: Paul [2, Case III] proves that ul,. . . ,14, can be chosen such that
thcrc* is n(r path from X, to the nodes computing g,, . . . , g,. Then res(u,.) = _@g
‘or the functic\n is = g, @ a - . OR, which does not depend on x,.

A Boolean function requiring 3n network size 341

Hence res(u,)X,:=g and res(u,).,:=,, are constant. Therefore, for each of the
substitutions Xi := g and Xi := lg, we can eliminate u, and all nodes in suc(u,). g can
be computed with I- 1 extra gates. We distinguish two cases:

(i) # suc(u,) 3 2. Then we eliminate at least r + 2 gates by fixing xi at g or at 18.

(ii) # suc(u,) = 1. Then w E suc(u,.) is an A -type gate. Choose g E {g, lg} such

that res(~)~,:.g is constai’lt. Then by fixing Xi at g, we can eliminate at least r+ 2
gates, namely u,, w and ali nodes in suc(w).

The induction hypothesis now implies C(f) 2 3s - 3.

If none of Cases l-3 applies, then Vi E S the following holds:

(i) # suc(xi) = 1. We denote the node in suC(Xi) by Gi.

(ii) Gi is hn A -type gate.

Let G = {Gil i E S}. Paul proves the following lemma.

Lemma 3.2. Vi, j E S with i # j, Gi f Gj.

Proof. Suppose 3, Jo S, i Z j, with GI = Gj. Then there exists a c E K such that
res(Gj).xi:=c is constant. Hence fxizEr doe> not depend on Xi. But f(a,, a,, as, r,

Xl,..-9 X,)=cQXifor(a,)#i,j,r=1,x,,,,=:.(~,)=i,xi=cand(a3)=jde~,ends

on Xi, a contradiction.

Case 4. 3 E S such that # suc(Gi) 2 2.
Consider c E K with res(Gi) x,:=c is constant. Then fixing X, at c eliminates Gi and

all nodes in suc(GJ. There are at least.three different such gates. Hence from the
induction hypothesis it follows that C(f) 2 3s - 3.

It remains to consider the following case:

Case 5. Vi E S we have that # suc(GJ = 1.

We denote the unique direct successor of Gi by Qi. Before ilnalysing Case 5, we
give some definitions.

A plath (u* w) in /3 is called free, if no node f u, w is in G,

A node w in /3 is called a spZit, if the outdegree of w is 2 2.

Let t be the node of p with re$ t) =fi A split w in J3 is cnlled a free split, if
3u,, U+ /3, u1 f u2, such that

(a) ul, zf2 e suc(w),

(b) 3f~ee paths (u+?) and (u+t) in p.
A node w is called the collector of the free paths (Gi+ t) and (G,=> t), i #j, if

w is the first node which lies on both paths.

The next four lemmas are due to Paul, except the observation that C is a 3-type

gate in Lemma 3.4, which is due to Schnorr.

Lemma 3.3. Vi E S, 3 free path (Gi+ t).

Proof. Suppose that no free path (Gi+ t) exists. Then each path (67, + t) passes

some G, with j f i. Construct the assignment a! by fixing all variables except Xi, such

342 iV. Bium

that

(i) res(G,,), is constant Vv E S\{ i),

(ii) fil = x:, a E K.
Since each path (Gi+ t) goes through some G, with t’ f i, res(t)* does not depenr

on Xi. But this is a contradiction to fa = x9 and res(t), = fQ.

Note that from Lemma 3.3 it follows that G n (3 = 41.

Lemma 3.4. Let i, j E S, i # j. Let C be the colktor of a free path (Gi * t) and c
ftee path (G,+ t).

Let

and

3’free split Z C on path (Gi + C)

3 free split z C on path (G+ C).

Then the foIlowing holds:
ii) C is a 0 -type gate, and

(ii) 3 free path (Gj+ G,), or 3 free path (G+G,).

Proof. Suppose, the assertion does not hold. ‘We distinguish two cases.

(a) C is an O-type gate.

construct assignment cy by fixing all variables except x;, Xj such that
(,i) res(G,),, is const\ant VvE S\{i, j},

(ii) f, =xJ$‘, aE K.
By assumption, all paths (G,+ t) and (G,* t) go through C or a G,., 1’ E S\{ i, j}.

Thus res(c‘),, - (.I-, 0 _x, i I’, b E K * or rey(C),, depends on at most one variable, and

so the same holds for res(t),,. Hence I), f res(t),, a contradiction.
(b) C‘isan A -type gate.
Construct assignment u by fixing all variables except q, xJ such that

(i) res(G,. I(, is constant V v E S\{ i, j}.

(ii, iI = x, 0 x,.

(Here, we need the control variable r for forcing that such an assignment cy exists.)

If rest G,),, depends on x,, choose c E K such that res(G,>,,.,, (. is constant. Hence

resw,, ,, ‘ does not depend on x1, but Ll,.t,:- (. = CO -Xj depends on xi, a contradiction.

The case where res(G,),, depends on x, is symmetric.

Nowv, by assumption, all paths (G,+ t) and (G+ t) go through C or a G,.,
2’ < S\{ i, j). Since res(C),, = (x: A x/”) “, a, b. c E K or res(C),, depends on at most
.jne variable; for resft),, the same holds.

Hence i, f rcs(f),,. ;L contradiction.

From Lemma 3.4 we immediately have the following.

A Boolean ,function requiring 3n network size 343

Now we have isolated 2s gates, namely the gates Gi, r)i for j E S. Let Q = { Qil i E S}.

Lemma 3.6. There are at least s - 1 mutually distinct splits in /?.

Proof. Let S’ = S. Choose i9 jE S’ with free paths (G,+ t) and (G+ t) such that

for every 1 E S’\{i, j} no free path (G+ t) goes through the collector C of the free

paths (Gi*t) and (G+t).
From Lemma 3.4 follows that one of the paths (Gi =+ C[and (Gi =+ C[respectively,

splits into a free path to the output node t or splits into a free path to the node Gj

and Gj, respectively. Without loss of generality let the path (Gi+ Cl split. Set

S’ = S’-(i). Note, that by construction no path (G+ t), 1 E S’, has a common node

with the path (Gi q C[.

’ Repeating this argument s- 1 times proves the lemma.

The rest of the proof is new.

Since we have at least s -- 1 splits, we have to ctirtnect at least 2(s - 1) edges with

the output node t. For edges, which correspond tti a free path, no node int G can

help to connect these with the output node t on the free paths by the definition of
a free path. Next we prove, that all but one of the s - 1 splits from Lemma 3.6 have
to be free.

Assume, less than s- 1 splits, isolated in the proof of Lemma 3.6, are frzc. Then

by Lemma 3.4 there exist i,, j, i f j, with the following property:
Let C be the collector of the free paths (Gi* t) and (Gj* t). Then there is no

free split on the path (G+ C[and no free split on the path (G,+ C[. There is a

free path (G,+ Gi) and C is a O-type gate.

Then we have the following situation:

,emma 3.7. V Y E S’,{ j}, 3 free ptith (G,, + Gi) or 3 free path (G,. + Gj).

‘roof. For d we know by assumption that 3 free path (G+ Gj). Assume 31 E S\{ i, j)
ith

3’free path (Gl* Gi) and Tfree path (G+ G,).

344 N. Blum

Now we construct assignment (Y by fixing all variables except xi, xi, xf such that
(a) res(G,,), is constant Vu E S\{ i, j, l},

(b) fc. ‘= XI A (Xi@X,)m
We distinguish two cases:

Case 1. res(Gj), does not depend on Xi. Now fix xl at Q E K such that res(G,) avx,:=a
is constant. Then fa,x,:=o = Xj A XP, b E K.

Now, as in the proof of Lemma 3.4, we show that Caise 1 cannot happen.
Case 2. res(Gj), depends on Xi.
Hence res(Gj), = (xF A x;)~, C, d, e E K. Fix Xi at 1~. ‘Then res(Gj)cI,Xi:=-,c is con-

stant and hence res(t) n,x,:_ -7c does not depend on Xi. But

f 1x.x,:- ‘C’ = Xi A (lC@ X,) = Xj A X;

depends on x,, a contradiction.

NOW we prove that all other splits, which are isolated in the proof of Lemma 3.6.

have to be free.

Lemma 3.8. VI, u E S\(j}, v f I, if L> is the collector of a free path (G, -I t) and a
free path (G,,+ t), then

3 free split # D on path (G+ D)

3 free split # D on path (G, =$ D).

Pmof. Awme that Zfree split on path (G+ D) and SYfree split on path (G,.+ D).
Then applying Lemma 3.7 to 1, v there exists a path (G,+ GJ (;r there exists a

path (G,+G,.). But by construction. there exist paths (G,+ G,) and (G,.+G,)

and. hence, we have a cycle in the network. But this cannot happen by the definition
rlf a network.

I-?-om ! .emma 3.8 we can directly derive the fo!,lowing.

Lemma 3.9. There are clt letrst s - 2 rnutua/ly distinct -free splits in p.

Bv Lemma 3.9 and Lemma 3.3 we have to connect at least 2(s - 2) + 2 edges 011

free paths to the output node t. Since the paths are free, the nodes in G cannot

help to connect these edges to the output node. For the nodes in Q only one input

wire is free for connecting these edges. There are .q nodes in 0. Hence at least s - 2

cdgcs have to connect to the output node using new nodes. One new node (except

the out put node i can decrease the numb of edges only by one. The output node

c;tn dccrcarsc the number of edges only by two. Hence we need at least s - 3 uew gates.

A Boolean function requiring 3n network size

Hence

C(f)a#G+#Q-t-s-3=3s-3.

This finishes the proof of the theorem.

345

Acknowledgment

I would like to thank Kurt Mehlhorn and Mike Paterson for valuable comments.
Mike Paterson pointed out that the proof also works for the function f which is
much simpler than a previously used function.

References

PI

C23

I31

PI

PI

VI

N. Blum, A 2.?5n-lower bound on the network complexity of boolean functions, Tech. Rept. A
81/05, UniversiGt des Saarlandes, 1981.
W.J. Paul, A 2.5n-lower bound on the combinational complexity of boolean functions, SIAM .I.
Comput. 6 (1977) 427-443.
C.P. Schnorr, Zwei lineare untere Schranken fiir die Komplexitat Boolescher Funktionen, Computing
13 (1974) 155-l?!.
C.P. Schnorr, A 3n-lower bound on the network complexity of boolean functions, Theoret. Comput.
Sci. 10 (1980) 83-92.
L.J. Stockmeyer, On the combinational complexity of certain symmetric Boolean functions, Math.
Systems Theory 10 (1977) 323-336.
I. Wegener, Private communication, 1981.

