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Abstract. Paul (1977) has proved a 2.5n-lower bound for the network complexity of an explicit 
Boolean function. We modify the definition of Paul’s function slightly and prove a 3n-lower 
bound for the network complexity of that function. 

1. Introduction 

One of the most difficult problems in complexity theory is proving a nonlinear 

lower bound for the network complexity of an explicit Boolean function. Although 

it is well known by a counting argument that relative to the full basis most Boolean 

functions need exponentially many operations, only linear lower bounds with small 

constant factor are known for explicit Boolean functions. Schnorr [3] first proved 

a 2n-lower bound for an n-ary Boolean function. Next, Paul [2] proved a 2Sn-lower 

bound for another n-ary Boolearr function. Stockmeyer [:5] proved that the lower 
bound of Paul holds for a hrger- class of functions. In [4] Schnorr gives a ‘proof’ 

for a 3n-lower bound for the function defined by Paul, but Wegener [6] pointed 

out a gap in the proof of a lemma. In [l] we use a weaker version of that lemma 

and prove a 2.7%-lower bound. Here we modify the definition of Paul’s function 

slightly and prove a 3n--lower bound. 

2. Preliminaries 

Let K ={O, 1) and F’,* ={flf:K” + K ). F2 is the set of basic operations. Xi: K ” + K 
denotes the ith variable. Let Vn = {xii 1 G i s n}. 

Definibon. A network p is a directed, acyclic graph satisfying the following condi- 

tlons: 
(1) Each node has indegree 0 or 2. 
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(S) The nodes v with indegree 0 are the input nodes of /3 and are labelled with 
a variable op( v) E V,,. 

(3) Each node u with indegree 2 is called a gate and is labelled with an op( U) E F?. 
The edges entering u are associated in a fixed ordered way with the arguments of 

op(u) E F2. 

With each node u we associate a funct@n resp ( v) : K” + K as follows: 

( op( 4 1 if u is an input node, 

resP( v) = 1 res,(u) op(v) res&W) otherwise, 
where u, w are the predecessors 
of v in that order. 

The network /‘3 computes all functions f E F,, such that there exists a node v E P 

with res,( v) = J Resp ( v) depends on input variable xi if and only if there exists an 

(a,, . . . , Q,, . . . , u,,) such that 

res,( u)(u,, . . . a,, . . . , u,,) f hesg( u)( a,, . . . , --ml, . . . , a,). 

C‘( fr denotes the network complexity of the function f, i.e., C(f) is the minimal 

number of gates which is necessary for c&mputing f 
F;‘or f cz l;;l and a E K let 

11 f ifu=l, 

f (f = 
-I if a =O. 

WC say that f E F2 is A -type, if 

31, h, c E K : f (x. y) =L: (x“ A y’)’ ; 

A node o E p such that op( I;) is A -type (O-type) is called an A -type gate (@-type 

galit?). 

The functions f E F2 can be classified in the following way. There are’ 

ti) 2 constant function:, 

(ii) 4 functions depending on one wriable, 
d iiii 14) functions depending CM) two variables. 8 of these functions are A -type 

and 2 are @type. 

For ti node z’ in /? let 

suc( L’ ) = ( I41 1 7 -+ 14 is an edge in p) 

pred(rf=(ulIr + o is an edge in p} 

Ix: the set of direct successors and direct predecessors of t?. 
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The functions, associated with the nodes in pred( u), ahe called input functions of u 

Throughout this paper, we use the following fact. 

Fact. Let p be a network computing f E F,. Let v E p be an A -type gate or a 0 -type 
gate. If one input function of t‘ is constant, then we can eliminate gate v and thk 

reduced network still computes f. 

Let U c V, and a: U + K be a mapping. Frequently we consider the restriction 

fol of f E F,, under the assignment a. More precisely, fm is defined by 

f( a x1 ,..., x,,)=f(y,,. .., yn) with yi= 
a(Xi) if Xi E U, 

Xi if XiE U. 

In a natural way an assignment cy associates with a network p a subnetwork /3(x 

which is derived by fixing input variables according to a! and eliminating the 

unnecessary gates. 
In the sequel we write re5( u) for resp( u) if p is kept fixed. # S denotes the 

cardinality of set S. 

For proving the lower bound, we consider paths in a network. (u+u) denote! 

a path from node u to node u. (v+u[ denotes a path from node v to a node in 

pred( u). 

3. The lower bound 

For a=a,.*.a,EK*, llzt (a) denote the binary number represented by a + 1. 

Let 

a, = a, - * - all,,,,q a, = all,,,,-+ I . - - a2h,g,l 

and 

a,=a 2Il?gtI+l ’ * * GI~,~,, (ai E 0 

Then we define 

Remark. If r= 1 and y , ,= 1, then f(a,, a2, a3, r, x,, . . . , x,)=xca2+3xta3). 

If r= 1 and x(~~)= , ;! c:n f(a,,az,a,,r,x,,. . . ,x,,)=x~,,~Ax~~~~. 

Paul has defined the following function: 

hh.. . 9 a21,,,,l, 4, x1,. . . 7 x,,) =db,, A h,J v ~q(-bl@-b2J. 

The function f is similar to the function h. 



For h, Paul has) proved a 2.5 n-lower bound. First he makes F independent of 
some inputs xi, which allows him to eliminate 3 gates each. After this, he knows 
quite exactly, how the ‘top’ of the network looks. For the remaining s inputs, he 
proves without an inductive argument the existence of $s - 2 gates. 

Theorem 3.1. For the f defined above, there holds the following: 

C(f)a3n-3. 

Proof. First we make f independent of some inputs Xi which allows the elimination 
of 3 gates each. We use for this the entire proof of Paul and only give a sketch of 
this part. For a more detailed analysis, see [2]. 

Define for 1 s s6 n the statement Es: 

E,:C(f)z3s-3 for any function f:K’*+3’“g’*+’ +K 

with the property: 

[3SE{l,..., n} #S=s~uchthatfora,,a,,a~ with 

k-j is trivially true. Let E, , be true. Now we prove that Es+ implies E,. Let /3 be 

any minimal size network for f. Without loss of generality we assume that for each 
i c S there is a unique node t’ E /3 with op( V) = xi. 

Gee I. 3i E S such that # SUC(X,) 5: ?. 
By 5xing X, at 0 we can eliminate at least 3 gates of p. T-he reduced network 

compt.tes the restriction _f,, _ (, of f. From the induction hypothesis it fo!!sws that 

Cq-, e*- zs - 3. 

<‘use 2. 3i E S such that # suc( x,) = 2 and 3 L: E suc(x,) such that :J is an A -type 
gate. 

Choose c E K such that res( c) Xr.. I. is constant. Then, by fixing xi at c, we can 

eliminate al! nodes in suc(.x,) and all nodes in suc( v). Since p is of minimal size. 

there are at least three such different nodes. The reduced network computes the 

rest ricrt ion f t, ( of J From the induction hypothesis it follows that C(f) 2 3s’-- 3. 
GISY 3. 3ic S such that. VV E suc( A-, 1, c is a O-type gate. Then there exist &odes 

id I..... al, in p with 
( 11 IL1 c suc(x,), 

(21 ct, is a O-type gate VjC(l.. . . , r). 

(3, I4,+1 csuc!Iq)and #suc(~,)=l for l~j~~--1. 

i 4) I; sucl 14,) > I or for 1%’ c suc( II,) holds: w is an A -type gate. 
I.ct -G ~1 be the input functions of 14[ and res,( M,), g,+ 1 be the input functions of 

I4 ,’ 1 l 1 _- j’ I: Paul [ 2, Case III] proves that ul,. . . ,14, can be chosen such that 
thcrc* is n(r path from X, to the nodes computing g,, . . . , g,. Then res(u,.) = _@g 
‘or the functic\n is = g, @ a - . OR, which does not depend on x,. 
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Hence res(u,)X,:=g and res(u,).,:=,, are constant. Therefore, for each of the 
substitutions Xi := g and Xi := lg, we can eliminate u, and all nodes in suc( u,). g can 
be computed with I- 1 extra gates. We distinguish two cases: 

(i) # suc( u,) 3 2. Then we eliminate at least r + 2 gates by fixing xi at g or at 18. 

(ii) # suc( u,) = 1. Then w E suc( u,.) is an A -type gate. Choose g E {g, lg} such 

that res( ~)~,:.g is constai’lt. Then by fixing Xi at g, we can eliminate at least r+ 2 
gates, namely u,, w and ali nodes in suc( w). 

The induction hypothesis now implies C(f) 2 3s - 3. 

If none of Cases l-3 applies, then Vi E S the following holds: 

(i) # suc(xi) = 1. We denote the node in suC( Xi) by Gi. 

(ii) Gi is hn A -type gate. 

Let G = {Gil i E S}. Paul proves the following lemma. 

Lemma 3.2. Vi, j E S with i # j, Gi f Gj. 

Proof. Suppose 3, Jo S, i Z j, with GI = Gj. Then there exists a c E K such that 
res( Gj).xi:=c is constant. Hence fxizEr doe> not depend on Xi. But f( a,, a,, as, r, 

Xl,..-9 X,)=cQXifor(a,)#i,j,r=1,x,,,,=:.(~,)=i,xi=cand(a3)=jde~,ends 

on Xi, a contradiction. 

Case 4. 3 E S such that # suc( Gi) 2 2. 
Consider c E K with res( Gi) x,:=c is constant. Then fixing X, at c eliminates Gi and 

all nodes in suc(GJ. There are at least.three different such gates. Hence from the 
induction hypothesis it follows that C(f) 2 3s - 3. 

It remains to consider the following case: 

Case 5. Vi E S we have that # suc( GJ = 1. 

We denote the unique direct successor of Gi by Qi. Before ilnalysing Case 5, we 
give some definitions. 

A plath ( u* w) in /3 is called free, if no node f u, w is in G, 

A node w in /3 is called a spZit, if the outdegree of w is 2 2. 

Let t be the node of p with re$ t) =fi A split w in J3 is cnlled a free split, if 
3u,, U+ /3, u1 f u2, such that 

(a) ul, zf2 e suc( w), 

(b) 3f~ee paths (u+?) and (u+t) in p. 
A node w is called the collector of the free paths (Gi+ t) and (G,=> t), i #j, if 

w is the first node which lies on both paths. 

The next four lemmas are due to Paul, except the observation that C is a 3-type 

gate in Lemma 3.4, which is due to Schnorr. 

Lemma 3.3. Vi E S, 3 free path (Gi+ t). 

Proof. Suppose that no free path ( Gi+ t) exists. Then each path (67, + t) passes 

some G, with j f i. Construct the assignment a! by fixing all variables except Xi, such 
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that 

(i) res( G,,), is constant Vv E S\{ i), 

(ii) fil = x:, a E K. 
Since each path ( Gi+ t) goes through some G, with t’ f i, res( t)* does not depenr 

on Xi. But this is a contradiction to fa = x9 and res(t), = fQ. 

Note that from Lemma 3.3 it follows that G n (3 = 41. 

Lemma 3.4. Let i, j E S, i # j. Let C be the colktor of a free path ( Gi * t) and c 
ftee path (G,+ t). 

Let 

and 

3’free split Z C on path ( Gi + C) 

3 free split z C on path (G+ C). 

Then the foIlowing holds: 
ii) C is a 0 -type gate, and 

(ii) 3 free path (Gj+ G,), or 3 free path (G+G,). 

Proof. Suppose, the assertion does not hold. ‘We distinguish two cases. 

(a) C is an O-type gate. 

construct assignment cy by fixing all variables except x;, Xj such that 
(,i) res(G,),, is const\ant VvE S\{i, j}, 

(ii) f, =xJ$‘, aE K. 
By assumption, all paths (G,+ t) and (G,* t) go through C or a G,., 1’ E S\{ i, j}. 

Thus res( c‘),, - ( .I-, 0 _x, i I’, b E K * or rey(C),, depends on at most one variable, and 

so the same holds for res(t),,. Hence I), f res( t),, a contradiction. 
(b) C‘isan A -type gate. 
Construct assignment u by fixing all variables except q, xJ such that 

( i) res( G,. I(, is constant V v E S\{ i, j}. 

(ii, iI = x, 0 x,. 

(Here, we need the control variable r for forcing that such an assignment cy exists.) 

If rest G,),, depends on x,, choose c E K such that res( G,>,,.,, (. is constant. Hence 

resw,, ,, ‘ does not depend on x1, but Ll,.t,:- (. = CO -Xj depends on xi, a contradiction. 

The case where res( G,),, depends on x, is symmetric. 

Nowv, by assumption, all paths (G,+ t) and (G+ t) go through C or a G,., 
2’ < S\{ i, j). Since res( C ),, = (x: A x/” ) “, a, b. c E K or res( C),, depends on at most 
.jne variable; for resft),, the same holds. 

Hence i, f rcs( f),,. ;L contradiction. 

From Lemma 3.4 we immediately have the following. 
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Now we have isolated 2s gates, namely the gates Gi, r)i for j E S. Let Q = { Qil i E S}. 

Lemma 3.6. There are at least s - 1 mutually distinct splits in /?. 

Proof. Let S’ = S. Choose i9 jE S’ with free paths (G,+ t) and (G+ t) such that 

for every 1 E S’\{i, j} no free path (G+ t) goes through the collector C of the free 

paths (Gi*t) and (G+t). 
From Lemma 3.4 follows that one of the paths ( Gi =+ C[ and ( Gi =+ C[ respectively, 

splits into a free path to the output node t or splits into a free path to the node Gj 

and Gj, respectively. Without loss of generality let the path (Gi+ Cl split. Set 

S’ = S’-(i). Note, that by construction no path (G+ t), 1 E S’, has a common node 

with the path ( Gi q C[. 

’ Repeating this argument s- 1 times proves the lemma. 

The rest of the proof is new. 

Since we have at least s -- 1 splits, we have to ctirtnect at least 2( s - 1) edges with 

the output node t. For edges, which correspond tti a free path, no node int G can 

help to connect these with the output node t on the free paths by the definition of 
a free path. Next we prove, that all but one of the s - 1 splits from Lemma 3.6 have 
to be free. 

Assume, less than s- 1 splits, isolated in the proof of Lemma 3.6, are frzc. Then 

by Lemma 3.4 there exist i,, j, i f j, with the following property: 
Let C be the collector of the free paths (Gi* t) and (Gj* t). Then there is no 

free split on the path (G+ C[ and no free split on the path (G,+ C[. There is a 

free path (G,+ Gi) and C is a O-type gate. 

Then we have the following situation: 

,emma 3.7. V Y E S’,{ j}, 3 free ptith (G,, + Gi) or 3 free path (G,. + Gj). 

‘roof. For d we know by assumption that 3 free path (G+ Gj). Assume 31 E S\{ i, j) 
ith 

3’free path (Gl* Gi) and Tfree path (G+ G,). 
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Now we construct assignment (Y by fixing all variables except xi, xi, xf such that 
(a) res( G,,), is constant Vu E S\{ i, j, l}, 

(b) fc. ‘= XI A (Xi@X,)m 
We distinguish two cases: 

Case 1. res( Gj), does not depend on Xi. Now fix xl at Q E K such that res( G,) avx,:=a 
is constant. Then fa,x,:=o = Xj A XP, b E K. 

Now, as in the proof of Lemma 3.4, we show that Caise 1 cannot happen. 
Case 2. res( Gj), depends on Xi. 
Hence res( Gj), = (xF A x;)~, C, d, e E K. Fix Xi at 1~. ‘Then res( Gj)cI,Xi:=-,c is con- 

stant and hence res( t) n,x,:_ -7c does not depend on Xi. But 

f 1x.x,:- ‘C’ = Xi A (lC@ X,) = Xj A X; 

depends on x,, a contradiction. 

NOW we prove that all other splits, which are isolated in the proof of Lemma 3.6. 

have to be free. 

Lemma 3.8. VI, u E S\( j}, v f I, if L> is the collector of a free path (G, -I t) and a 
free path ( G,,+ t), then 

3 free split # D on path (G+ D) 

3 free split # D on path (G, =$ D). 

Pmof. Awme that Zfree split on path (G+ D) and SYfree split on path (G,.+ D). 
Then applying Lemma 3.7 to 1, v there exists a path (G,+ GJ (;r there exists a 

path (G,+G,.). But by construction. there exist paths (G,+ G,) and (G,.+G,) 

and. hence, we have a cycle in the network. But this cannot happen by the definition 
rlf a network. 

I-?-om ! .emma 3.8 we can directly derive the fo!,lowing. 

Lemma 3.9. There are clt letrst s - 2 rnutua/ly distinct -free splits in p. 

Bv Lemma 3.9 and Lemma 3.3 we have to connect at least 2(s - 2) + 2 edges 011 

free paths to the output node t. Since the paths are free, the nodes in G cannot 

help to connect these edges to the output node. For the nodes in Q only one input 

wire is free for connecting these edges. There are .q nodes in 0. Hence at least s - 2 

cdgcs have to connect to the output node using new nodes. One new node (except 

the out put node i can decrease the numb of edges only by one. The output node 

c;tn dccrcarsc the number of edges only by two. Hence we need at least s - 3 uew gates. 
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Hence 

C(f)a#G+#Q-t-s-3=3s-3. 

This finishes the proof of the theorem. 
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