
A large set of permutations avoiding 1324

David Bevan†

March 14, 2014

Abstract

We show that the growth rate of the class of 1324-avoiding permutations exceeds 9.91.

Hasse graphs

To each permutation π, we associate a plane graph, which we denote denote Hπ. To create Hπ,
let vertex i be the point (i,π(i)) in the plane. Now add an edge between vertices i and j, i < j,
if and only if π(i) < π(j) and there is no vertex k such that i < k < j and π(i) < π(k) < π(j). Hπ
corresponds to the Hasse diagram of the poset on the points (i,π(i)), so we call Hπ the Hasse
graph of π.

The subset W

If π avoids the pattern 1324, then Hπ does not have the “diamond” graph H1324 as a minor.
In particular, the subgraph of Hπ induced by a left-to-right minimum of π and the points to
its north-east is a tree, as is that induced by a right-to-left maximum of π and the points to its
south-west.

We restrict our attention to 1324-avoiders whose Hasse graphs are spanned by a sequence of
such trees, rooted at alternate boundaries. Trees rooted at a left-to-right minimum we colour
red, and trees rooted at a right-to-left maximum we colour blue. We refer to these as red trees
and blue trees respectively. We denote by W the set of permutations that can be partitioned
in this way. See Figure 1 for an example of a permutation in W. Note that W does not contain
every 1324-avoider; 2143 /∈W.
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Figure 1: A permutation of length 157 in W(25, 19, 13, 3) and its Hasse graph

We further constrain the permutations we consider in the following ways:

• The first and last trees are red.

• Each red tree contains the same number of vertices (for which we use the variable k).

• Each blue tree contains the same number of vertices (which we denote by `), and has the
same root degree (denoted by d).

Note that the root of each blue tree (a right-to-left maximum) is the uppermost point below the
root of the previous red tree, and the root of each non-initial red tree (a left-to-right minimum)
is the leftmost point to the right of the root of the previous blue tree.

We use W(k, `,d, s) to denote the set of permutations in W with s blue trues whose red trees
each have k vertices and whose blue trees each have ` vertices and root degree d. Every per-
mutation in W(k, `,d, s) has length k+ s(`+ k).

Now, given λ > 0 and δ ∈ (0, 1), let Wλ,δ(k) be the set of permutations W(k, dλke , dδλke ,k)
and n(k, λ) = k+ k(dλke+ k) be the length of each permutation in Wλ,δ(k).

Let us also use γ(λ, δ) to denote the (upper) growth rate of
⋃
kWλ,δ(k):

γ(λ, δ) = lim
k→∞

∣∣Wλ,δ(k)
∣∣1/n(k,λ) .

We will prove the following:

Theorem 0.1. There is some λ > 0 and some δ ∈ (0, 1) such that γ(λ, δ) > 9.91.
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Interleaving of trees

A permutation in W(k, `,d, s) can be built by starting with an arbitrary k-vertex red tree. We
then take an arbitrary `-vertex blue tree with root degree d and horizontally interleave its non-
root vertices with the non-root vertices of the red tree in such a way as to avoid creating a 1324.
Then we take an arbitrary k-vertex red tree and vertically interleave its non-root vertices with
the non-root vertices of the previous blue tree, avoiding creating a 1324. Repeating the last two
steps a total of s times creates the desired permutation.

Note that the interleaving at each step is independent of the interleaving at any previous step.
The only requirement is that no 1324 is created by any of the interleavings. We will describe
four ways of avoiding a 1324, based on increasingly detailed analyses of how the vertices in
red and blue trees may be interleaved.

Approach 1

Figure 2: Interleaving red vertices with blue subtrees

In our first attempt, we arbitrarily interleave the k − 1 non-root red vertices with the d blue
subtrees of the root of the blue tree, the vertices in each blue subtree being placed contiguously.
This is sufficient to avoid creating a 1324. See Figure 2 for an illustration. Let’s use W0(k, `,d, s)
for elements of W(k, `,d, s) built with interleaving restricted in this way, and W0

λ,δ(k) for such
elements of Wλ,δ(k).

Now let N(k, `,d) be the number of ways of building a permutation in W0(k, `,d, s) from a
permutation in W0(k, `,d, s − 1) by adding a new `-vertex blue tree with root degree d and a
new k-vertex red tree. This number is independent of the starting permutation.

Indeed, since the number of `-vertex trees with root degree d is d
`−1

(2`−3−d
`−2

)
(see Flajolet &

Sedgewick [1] pp. 173–174),

N(k, `,d) =

(
k− 1 + d

d

)
× d

`− 1

(
2`− 3 − d

`− 2

)
×
(
k− 1 + d

d

)
× 1
k

(
2k− 2
k− 1

)
,
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the second and fourth terms being the number of ways of choosing the blue and red trees
respectively, and the other two terms being the number of ways performing the two interleav-
ings.

For fixed λ > 0 and δ ∈ (0, 1), by applying Stirling’s approximation we obtain

lim
k→∞N(k, dλke , dδλke) = E(λ, δ)kO(k−3),

where

E(λ, δ) = 4
(2 − δ)(2−δ)λ

(1 − δ)(1−δ)λ
(1 + δλ)2(1+δλ)

(δλ)2δλ .

For fixed, λ, E(λ, δ) achieves a maximum when δ has the value

δλ =
2λ− 1 +

√
1 + 4λ+ 8λ2

2λ(2 + λ)
.

Now, from the fact that ∣∣W0(k, `,d, s)
∣∣ =

1
k

(
2k− 2
k− 1

)
N(k, `,d)s,

it can easily be ascertained that the growth rate is given by

lim
k→∞

∣∣W0
λ,δ(k)

∣∣1/n(k,λ) = E(λ, δλ)
1/(1+λ) .

Numerically maximising by setting λ ≈ 0.61840 (with δλ ≈ 0.86238) gives us a first lower
bound for the growth rate of Av(1324) of 9.40399.

Concentration of distributions

To improve on this lower bound, we depend critically on the fact that the distributions of many
parameters of combinatorial classes are concentrated in the sense that their standard deviation
is of an asymptotic order smaller than the mean. For example, the expected proportion of leaf
vertices in an n-vertex plane tree is 1

2 (for n > 2), with standard deviation O(n−1/2) (see [1]
p. 182).

As a result of Chebyshev’s inequality, such distributions have the following concentration
property (see [1] Proposition III.3):

Proposition 0.2. If Xn is a sequence of random variables with means µn = E[Xn] and standard
deviations σn = σ[Xn] satisfying the conditions

lim
n→∞µn = µ, lim

n→∞σn = 0,

then, Xn is concentrated at µ in the sense that, for any ε > 0, given sufficiently large n,

P[µ(1 − ε) 6 Xn 6 µ(1 + ε)] > 1 − ε.

In practice, this means that, as long as we consider only a finite number of (independent and/or
mutually exclusive) concentrated parameters, we can work on the assumption that, asymptot-
ically, the value of each parameter is entirely concentrated at its limiting mean.
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Approach 2

For the second and subsequent approaches, we interpret N(k, `,d) as giving the number of
ways of choosing new red and blue trees and of choosing the positions of the roots of the d blue
subtrees relative to the vertices of the red trees. We will refer to roots of blue subtrees simply as
blue roots. We now consider what freedom we have in positioning the non-root vertices of the
blue subtrees relative to the vertices of a red tree. Without loss of generality, we will limit our
discussion to the case of horizontal interleaving (as in Figure 2).

Our first (elementary) observation is that the non-root vertices of a blue subtree must occur to
the right of any blue root to its left. In an interleaving of red vertices and blue roots, let us call
the number of contiguous red vertices immediately to the left of a blue root u, the gap size for
u. The following properties enable us to establish the asymptotic behaviour.

Given λ > 0 and δ ∈ (0, 1), consider interleavings of k − 1 red vertices with the roots of dδλke
blue subtrees. For each j > 0, let the parameter ϕk(j) be the expected proportion of blue roots
in an interleaving which have gap size j. Also, let ϕk(> j) =

∑
i>jϕk(i) be the expected pro-

portion of blue roots in an interleaving which have gap size greater than j.

Proposition 0.3. ϕk(j) is concentrated at µϕ(j) = δλ(1 − δλ)−(j+1). Similarly, ϕk(> j) is concen-
trated at µϕ(>j) = (1 + δλ)−(j+1).

Note: Proofs that parameters satisfy the concentration conditions are currently omitted.

Figure 3: Interleaving red leaves with a blue subtree

Our second observation is as follows. Consider an interleaving of red vertices and blue roots.
Suppose that the root u of some blue subtree τ has gap size at least j, and also that the j red
vertices immediately to the left of u are all leaves. Then, any non-root vertices of τmay be arbi-
trarily interleaved with the j red leaves without creating a 1324. See Figure 3 for an illustration.
To determine the asymptotic behaviour, we use the following properties.

For each j > 0, letωk(j) be the expected proportion of positions in a red tree which have exactly
j contiguous leaves immediately to their left. Also, let ωk(> j) =

∑
i>jωk(i) be the expected

proportion of positions in a red tree which have at least j contiguous leaves immediately to their
left.

Proposition 0.4. ωk(j) is concentrated at µω(j) = 2−(j+1). Similarly, ωk(> j) is concentrated at
µω(> j) = 2−j.
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We need to combine ϕk(j) andωk(j) as follows. Given λ and δ, consider interleavings of k− 1
red vertices with the roots of dδλke blue subtrees. For each j > 0, let χk(j) be the expected
proportion of blue subtrees whose non-root vertices can be interleaved arbitrarily with exactly
j red leaves. If we call the j red vertices immediately to the left of a blue root, its first j red
vertices, then this is the case if either the gap size is j and each of the first j red vertices is a leaf,
or else the gap size exceeds j, the first j red vertices are all leaves but the next red vertex is an
internal vertex. Hence,

χk(j) = ϕk(j)ωk(> j) + ϕk(>j)ωk(j),

and χk(j) is concentrated at

µχ(j) = µϕ(j)µω(> j) + µϕ(>j)µω(j) =
1 + 2δλ

(2 + 2δλ)j+1 .

We also require the distribution of blue subtree sizes. Given λ and δ, for each positive i, let
ψk(i) be the expected proportion of the subtrees in a dλke-vertex tree with root degree dδλke
that have i vertices.

Proposition 0.5. ψk(i) is concentrated at

µψ(i) =
1
i

(
2i− 2
i− 1

)
(1 − δ)i−1

(2 − δ)2i−1 .

Thus, for each i and j, asymptotically, i-vertex blue subtrees whose non-root vertices can be
interleaved arbitrarily with exactly j red leaves contribute a factor of(

i− 1 + j

j

)µψ(i)µχ(j)dδλke
to the number of ways of interleaving a red tree with a blue tree.

So, for each n, the growth rate is at least

γ ′
n(λ, δ) = E(λ, δ)

1/(1+λ) ×
n∏
i=2

n∏
j=1

(
i− 1 + j

j

)2µψ(i)µχ(j)δλ/(1+λ)

,

the factor of 2 in the exponent being due to the fact that two interleavings occur when a new
blue true and a new red tree are added.

With n = 50, numerical maximisation by setting λ ≈ 0.69161 and δ ≈ 0.77341 gives us a second
lower bound for the growth rate of Av(1324) of 9.73384.

The rate of convergence is such that we can have high confidence that these are actually the
first six decimal digits of lim

n→∞max
λ,δ

γ ′
n(λ, δ).
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Figure 4: Interleaving a blue subtree with its red forest

Approach 3

Our third attempt is based on the following observation. Suppose v is the nearest red vertex to
the right of the root u of some blue subtree τ. Then no vertex of τ can be positioned to the left
of the parent of v in the red tree, since otherwise a 1324 would be created. Thus vertices of τ can
only be interleaved with those red vertices positioned between u and the parent of v. We will
call the graph induced by this set of red vertices the red forest for (the position of) u (or τ). See
Figure 4 for an illustration.

If exactly the rightmost j vertices of a red forest are leaves, we will say that the forest has j
right leaves. Suppose that the red forest for an i-vertex blue subtree τ has h vertices and j right
leaves. Then, assuming the gap size is at least h, the non-root vertices of τ can be interleaved
with the vertices of the red forest in at least

Q(i,h, j) =

(
i− 1 + j

j

)
+ (i− 1)(h− j)

ways. The first summand comes from the fact that the non-root vertices of τ can be interleaved
arbitrarily with the right leaves. The second summand counts the possible interleavings in
which vertices of τ occur in precisely two positions, one of which is to the right of all the leaves
of the red forest and the other of which is somewhere to the left of the right leaves.

For each positive h and each j (0 6 j 6 h), let ωk(h, j) be the expected proportion of posi-
tions in a red tree which have an h-vertex red forest with j right leaves. Also, let ωk(>h, j) =∑
i>hωk(i, j) be the expected proportion of positions in a red tree which have a red forest with

at least h vertices and j right leaves.

Proposition 0.6. ωk(h, j) is concentrated at

µω(h, j) =
j

22s+1(2s− j)

(
2s− j
s

)
.

Similarly,ωk(>h, j) is concentrated at

µω(>h, j) =
j

(2h− j)22h+1

(
2h− j

h

)
3F2(1,h− j

2 ,h+ 1
2 − j

2 ;h+ 1,h− j+ 1; 1).
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We combine ϕk(h) and ωk(h, j) as follows. Given λ and δ, consider interleavings of k − 1 red
vertices with the roots of dδλke blue subtrees. For each h and j, let χk(h, j) be the expected
proportion of blue subtrees whose non-root vertices can be interleaved with h vertices of a red
forest the rightmost j vertices of which are leaves. Then,

χk(h, j) =

{
ϕk(h)ωk(>h, j) + ϕk(>h)ωk(h, j), j < h,

ϕk(h)ωk(>h) + ϕk(>h)ωk(h,h), j = h,

and χk(h, j) is concentrated at

µχ(h, j) =

{
µϕ(h)µω(>h, j) + µϕ(>h)µω(h, j), j < h,

µϕ(h)µω(>h) + µϕ(>h)µω(h,h), j = h.

Thus, for each n, the growth rate is at least

γ ′′
n(λ, δ) = E(λ, δ)

1/(1+λ) ×
n∏
i=2

n∏
h=1

h∏
j=1

Q(i,h, j)2µψ(i)µχ(h,j)δλ/(1+λ).

With n = 50, numerical maximisation by setting λ ≈ 0.69436 and δ ≈ 0.76151 gives us a third
lower bound for the growth rate of Av(1324) of 9.80058.

The rate of convergence is such that we can have high confidence that these are actually the
first six decimal digits of lim

n→∞max
λ,δ

γ ′′
n(λ, δ).

Approach 4

So far, we have taken no account of the structure of the blue subtrees, and very little account
of the structure of the red forests (only considering the number of right leaves). For our final
attempt, we consider each distinct subtree and forest individually.

For each forest π, let ωk(π) be the expected proportion of positions in a red tree whose red
forest is π. ωk(π) depends only on the size of π. Also, let ωk(>π) be the expected proportion
of positions in a red tree whose red forest has at least |π| vertices, and for which the graph
induced by the rightmost |π| vertices of the forest is π. ωk(>π) depends on both the size of π
and also on the number of components in π.

Proposition 0.7. Let h = |π|.ωk(π) is concentrated at

µω(π) =
h!(h+ 1)!
2h+1(2h)!

.

Similarly,ωk(>π) is concentrated at

µω(>π) =
1

22h−c ,

where c is the number of components of (i.e. the number of trees in) the forest π.
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We combine ϕk(h) and ωk(π) as follows. Given λ and δ, consider interleavings of k − 1 red
vertices with the roots of dδλke blue subtrees. For each forest π, let χk(π) be the expected
proportion of blue subtrees for whom the red vertices with which the blue non-root vertices
can be interleaved induce the forest π. Then,

χk(π) = ϕk(|π|)ωk(>π) + ϕk(> |π|)ωk(π),

and χk(π) is concentrated at

µχ(π) = µϕ(|π|)µω(>π) + µϕ(> |π|)µω(π).

Given λ and δ, for each tree τ, let ψk(τ) be the expected proportion of the subtrees in a dλke-
vertex tree with root degree dδλke that are isomorphic to τ. ψk(τ) depends only on the size
of τ.

Proposition 0.8. Let i = |τ|. ψk(τ) is concentrated at

µψ(τ) =
(1 − δ)i−1

(2 − δ)2i−1 .

Figure 5: The fifteen ways of interleaving blue subtree 2134 with red forest 312 without cre-
ating a 1324

Finally, let Q(τ,π) be the number of ways of interleaving (the non-root vertices of) blue sub-
tree τwith (the vertices in) red forest πwithout creating a 1324.

With these definitions complete, we can now present the following inequality for γ(λ, δ):

γ(λ, δ) > E(λ, δ)
1/(1+λ) ×

∏
τ,π

Q(τ,π)2µψ(τ)µχ(π)δλ/(1+λ),

where the product is over all trees τ and forests π.

Determining Q(τ,π), µψ(τ) and µχ(π) for all except the smallest forests and trees is clearly
infeasible. However, for each n andm (with n 6 m), the growth rate is at least

γn,m(λ, δ) = E(λ, δ)
1/(1+λ) ×

∏
|τ|+|π|6n

Q(τ,π)2µψ(τ)µχ(π)δλ/(1+λ)

×
∏

i+h>n
i,h6m

∏
j6h

Q(i,h, j)2µψ(i)µχ(h,j)δλ/(1+λ).
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Here, the contribution from pairs consisting of a subtree and a forest the sum of whose lengths
does not exceed n are handled exactly. For larger pairs, we use the approximate results from
our third attempt above.

With n = 14 andm = 32, numerical maximisation by setting λ ≈ 0.70869 and δ ≈ 0.73482 gives
us a final lower bound for the growth rate of Av(1324) of 9.91466, thus proving Theorem 0.1.
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Figure 6: A plot of maxλ,δ γn,32(λ, δ) against 1/n2 , and a plot of the estimation for the limiting
growth rate resulting from linearly extrapolating from the pair of points for n and
n− 1 in the first plot

Determining this value requires handling over 1.6 million pairs consisting of a subtree and a
forest. Unfortunately, the rate of convergence at n = 14 is still quite slow, but the data suggests
that lim

n,m→∞max
λ,δ

γn,m(λ, δ) is close to (and probably less than) 9.92. See Figure 6.

A final question

If we let W? =
⋃

k,`,d,s
W(k, `,d, s), then we have the following sequence of inequalities:

gr(Av(1324)) > gr(W) > gr(W?) > max
λ,δ

γ(λ, δ) > 9.91.

Which (if any) of these inequalities are actually identities?
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