Two New Proofs of Lerch's Functional Equation

Author(s): Bruce C. Berndt

Source: Proceedings of the American Mathematical Society, Apr., 1972, Vol. 32, No. 2 (Apr., 1972), pp. 403-408
Published by: American Mathematical Society
Stable URL: https://www.jstor.org/stable/2037827

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

TWO NEW PROOFS OF LERCH'S FUNCTIONAL EQUATION
 BRUCE C. BERNDT

Abstract.

One bright Sunday morning I went to church,
And there I met a man named Lerch.
We both did sing in jubilation,
For he did show me a new equation.
Two simple derivations of the functional equation of

$$
\sum_{n=0}^{\infty} \exp [2 \pi i n x](n+a)^{-s}
$$

are given. The original proof is due to Lerch.
If x is real and $0<a \leqq 1$, define

$$
\varphi(x, a, s)=\sum_{n=0}^{\infty} \exp [2 \pi i n x](n+a)^{-s},
$$

where $\sigma=\operatorname{Re} s>1$ if x is an integer, and $\sigma>0$ otherwise. Note that $\varphi(0, a, s)=\zeta(s, a)$, the Hurwitz zeta-function. Furthermore, if $a=1$, $\varphi(0,1, s)=\zeta(s)$, the Riemann zeta-function.

In 1887, Lerch [1] derived the following functional equation for $\varphi(x, a, s)$.

Theorem. Let $0<x<1$. Then $p(x, a, s)$ has an analytic continuation to the entire complex plane and is an entire function of s. Furthermore, for all s,

$$
\begin{align*}
\varphi(x, a, 1-s)= & (2 \pi)^{-s} \Gamma(s) \\
& \cdot\left\{\exp \left[\frac{1}{2} \pi i s-2 \pi i a x\right] \varphi(-a, x, s)\right. \tag{1}\\
& \left.\quad+\exp \left[-\frac{1}{2} \pi i s+2 \pi i a(1-x)\right] \varphi(a, 1-x, s)\right\} .
\end{align*}
$$

Lerch's proof [1] of (1) depends upon the evaluation of a certain loop integral. Our objective here is to give two simple, new proofs of (1). The first proof uses contour integration; the second employs the EulerMaclaurin summation formula. By slight variations of our methods, one can derive the corresponding result, namely Hurwitz's formula, for $\varphi(0, a, s)=\zeta(s, a)$.

[^0]First Proof. Assume that $s>1$ is real. With the aid of Euler's integral representation for $\Gamma(s)$, it is easy to show that [1, pp. 19-20]

$$
\begin{equation*}
\Gamma(s) \varphi(x, a, s)=\int_{0}^{\infty} \frac{\exp [(1-a) u-2 \pi i x]}{\exp [u-2 \pi i x]-1} u^{s-1} d u \tag{2}
\end{equation*}
$$

If we put $x=b+\frac{1}{2}$, then $|b|<\frac{1}{2}$. Define

$$
F(z)=\frac{\pi \exp [2 \pi i b z]}{(z+a)^{s} \sin (\pi z)},
$$

where the principal branch of $(z+a)^{s}$ is chosen. Choose c so that $-a<c<0$. If m is a positive integer, let C_{m} denote the positively oriented contour consisting of the right half of the circle with center $(c, 0)$ and radius $m+\frac{1}{2}-c$ together with the vertical diameter through $(c, 0)$. By the residue theorem,

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{C_{m}} F(z) d z=\sum_{n=0}^{m} \exp [2 \pi i n x](n+a)^{-s} . \tag{3}
\end{equation*}
$$

Let Γ_{m} denote the circular part of C_{m}. Since $|b|<\frac{1}{2}$, there is a constant M, independent of m, such that for z on $\Gamma_{m}, m \geqq 1$,

$$
\left|\frac{\exp [2 \pi i b z]}{\sin (\pi z)}\right| \leqq M
$$

Hence,

$$
\left|\int_{\Gamma_{m}} F(z) d z\right| \leqq \frac{\pi^{2}\left(m+\frac{3}{2}\right) M}{\left(m+\frac{1}{2}\right)^{s}},
$$

which tends to 0 as m tends to ∞ since $s>1$. Thus, upon letting m tend to ∞ in (3), we find that

$$
\begin{align*}
\varphi(x, a, s)= & -\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(z) d z \\
= & \int_{c}^{c+i \infty} \frac{\exp [2 \pi i b z-\pi i z]}{(z+a)^{s}(\exp [-2 \pi i z]-1)} d z \tag{4}\\
& +\int_{c}^{c-i \infty} \frac{\exp [2 \pi i b z+\pi i z]}{(z+a)^{s}(\exp [2 \pi i z]-1)} d z .
\end{align*}
$$

We observe that the integrals in (4) converge uniformly in any compact set of the s-plane since $|b|<\frac{1}{2}$. Hence, (4) shows that $\varphi(x, a, s)$ can be analytically continued to an entire function of s.

Now suppose that $-1<s<0$. We wish to let c approach $-a$ in (4). In a neighborhood of $z=-a$, we have

$$
\left|\frac{\exp [2 \pi i b z \pm \pi i z]}{(z+a)^{s}(\exp [\pm 2 \pi i z]-1)}\right| \leqq A|z+a|^{-s-1} \leqq A|y|^{-s-1}
$$

where A is some positive number. Since $-1<s<0$,

$$
\int_{0}^{\mp 1}|y|^{s-1} d y<\infty .
$$

Hence, the two integrals on the right side of (4) converge uniformly on $-a \leqq c \leqq-a+\varepsilon$, for any number $\varepsilon>0$. We may then let c tend to $-a$ in (4) to obtain

$$
\begin{aligned}
\varphi(x, a, s)= & i \exp \left[-\frac{1}{2} \pi i s-2 \pi i a b+\pi i a\right] \\
& \cdot \int_{0}^{\infty} \frac{\exp [-2 \pi b y+\pi y]}{y^{s}(\exp [2 \pi y+2 \pi i a]-1)} d y \\
& -i \exp \left[\frac{1}{2} \pi i s-2 \pi i a b-\pi i a\right] \\
& \cdot \int_{0}^{\infty} \frac{\exp [2 \pi b y+\pi y]}{y^{s}(\exp [2 \pi y-2 \pi i a]-1)} d y .
\end{aligned}
$$

If we make the substitutions $u=2 \pi y$ and $b=x-\frac{1}{2}$ and replace s by $1-s$, the above becomes, for $s>1$,

$$
\begin{aligned}
\varphi(x, a, 1-s)= & \exp \left[\frac{1}{2} \pi i s-2 \pi i a(x-1)\right](2 \pi)^{-s} \\
& \cdot \int_{0}^{\infty} \frac{\exp [-u(x-1)] u^{s-1}}{\exp [u+2 \pi i a]-1} d u \\
& +\exp \left[-\frac{1}{2} \pi i s-2 \pi i a x\right](2 \pi)^{-s} \\
& \cdot \int_{0}^{\infty} \frac{\exp [u x] u^{s-1}}{\exp [u-2 \pi i a]-1} d u .
\end{aligned}
$$

If we now use (2), (1) immediately follows for $s>1$. By analytic continuation, (1) is valid for all s.

Second Proof. Let f have a continuous first derivative on $[c, m$], where m is a positive integer. Then we have the Euler-Maclaurin summation formula,

$$
\begin{align*}
\sum_{c<n \leqq m} f(n)= & \int_{c}^{m} f(u) d u+\frac{1}{2} f(m)+\left(c-[c]-\frac{1}{2}\right) f(c) \tag{5}\\
& +\int_{c}^{m}\left(u-[u]-\frac{1}{2}\right) f^{\prime}(u) d u .
\end{align*}
$$

Put $c=1-a$ and $f(u)=(u+a)^{-s} \exp (2 \pi i u x)$, where $\sigma>0$. Then, upon letting m tend to ∞ in (5), we obtain

$$
\begin{align*}
\varphi(x, a, s)-a^{-s}= & \int_{1-a}^{\infty}(u+a)^{-s} \exp [2 \pi i u x] d u \\
& +\left(\frac{1}{2}-a\right) \exp [2 \pi i x(1-a)] \\
& -s \int_{1-a}^{\infty} \frac{u-[u]-\frac{1}{2}}{(u+a)^{s+1}} \exp [2 \pi i u x] d u \tag{6}\\
& +2 \pi i x \int_{1-a}^{\infty} \frac{u-[u]-\frac{1}{2}}{(u+a)^{s}} \exp [2 \pi i u x] d u .
\end{align*}
$$

The three integrals on the right side of (6) all converge for $\sigma>0$ by Dirichlet's test.

First, assume that $0<\sigma<1$. Since

$$
\begin{equation*}
[u]-u+\frac{1}{2}=\sum_{n=1}^{\infty} \frac{\sin (2 \pi n u)}{\pi n} \tag{7}
\end{equation*}
$$

if u is not an integer, we have formally

$$
\begin{align*}
& \int_{-a}^{\infty} \frac{u-[u]-\frac{1}{2}}{(u+a)^{s}} \exp [2 \pi i u x] d u \\
& =-\frac{1}{\pi} \int_{0}^{\infty} u^{-s} \exp [2 \pi i(u-a) x] \sum_{n=1}^{\infty} \frac{1}{n} \sin (2 \pi n\{u-a\}) d u \\
& \begin{array}{r}
(8) \\
\quad \frac{\exp [-2 \pi i a x]}{2 \pi i} \sum_{n=1}^{\infty} \frac{1}{n}\left\{\exp [2 \pi i n a] \int_{0}^{\infty} u^{-s} \exp [2 \pi i u(x-n)] d u\right. \\
\\
\left.\quad-\exp [-2 \pi i n a] \int_{0}^{\infty} u^{-s} \exp [2 \pi i u(x+n)] d u\right\} .
\end{array} \tag{8}
\end{align*}
$$

We must justify the inversion in order of summation and integration. Since the Fourier series in (7) is boundedly convergent, the inversion is justified if we integrate over $(0, b)$, where b is any finite number [$\mathbf{2}, \mathrm{p} .41]$. We need then only show that, for $0<\sigma<1$,

$$
\begin{align*}
& \lim _{b \rightarrow \infty} \sum_{n=1}^{\infty} \frac{1}{n}\left\{\exp [2 \pi i n a] \int_{b}^{\infty} u^{-s} \exp [2 \pi i u(x-n)] d u\right. \\
& \tag{9}\\
& \left.\quad-\exp [-2 \pi i n a] \int_{b}^{\infty} u^{-s} \exp [2 \pi i u(x+n)] d u\right\}=0 .
\end{align*}
$$

Upon an integration by parts,

$$
\begin{aligned}
\int_{b}^{\infty} u^{-s} \exp [2 \pi i u(x-n)] d u & =O\left(b^{-\sigma} / n\right) \\
+ & \frac{s}{2 \pi i(x-n)} \int_{b}^{\infty} u^{-s-1} \exp [2 \pi i u(x-n)] d u=O\left(b^{-\sigma} / n\right)
\end{aligned}
$$

as b tends to ∞. By the same argument we obtain the same O-estimate for the integrals involving $\exp \{2 \pi i u(x+n)\}$. Hence, (9) now easily follows.

Now, if $0<\sigma<1$ and $d \neq 0$ is real, we have [2, pp. 107-1c•]

$$
\begin{equation*}
\int_{0}^{\infty} u^{-s} \exp [i d u] d u=\Gamma(1-s)|d|^{s-1} \exp \left[\frac{1}{2} \pi i(1-s) \operatorname{sgn} d\right] \tag{10}
\end{equation*}
$$

Thus, (8) becomes

$$
\begin{aligned}
& \int_{-a}^{\infty} \frac{u-[u]-\frac{1}{2}}{(u+a)^{s}} \exp [2 \pi i u x] d u \\
&=-(2 \pi)^{s-2} \Gamma(1-s) \exp \left[\frac{1}{2} \pi i s-2 \pi i a x\right] \\
& \cdot \sum_{n=1}^{\infty}\left\{\frac{\exp [2 \pi i n a]}{n(n-x)^{1-s}}+\frac{\exp [-\pi i s-2 \pi i n a]}{n(n+x)^{1-s}}\right\} .
\end{aligned}
$$

Using (10) again, we have, for $0<\sigma<1$,

$$
\begin{align*}
& \int_{-a}^{\infty}(u+a)^{-s} \exp [2 \pi i u x] d u \\
&=\exp [-2 \pi i a x] \int_{0}^{\infty} u^{-s} \exp [2 \pi i u x] d u \tag{12}\\
&=\dot{\Gamma}(1-s)(2 \pi x)^{s-1} \exp \left[\frac{1}{2} \pi i(1-s)-2 \pi i a x\right]
\end{align*}
$$

Hence, substituting (11) and (12) into (6), we obtain, for $0<\sigma<1$,

$$
\begin{align*}
& \varphi(x, a, x)-a^{-s} \\
& =\quad \Gamma(1-s)(2 \pi x)^{s-1} \exp \left[\frac{1}{2} \pi i(1-s)-2 \pi i a x\right] \\
& \quad-\int_{-a}^{1-a}(u+a)^{-s} \exp [2 \pi i u x]\left\{1+2 \pi i x\left(u-[u]-\frac{1}{2}\right)\right\} d u \\
& \quad+\left(\frac{1}{2}-a\right) \exp [2 \pi i x(1-a)]-s \int_{1-a}^{\infty} \frac{u-[u]-\frac{1}{2}}{(u+a)^{s+1}} \exp [2 \pi i u x] d u \tag{13}\\
& \quad+x(2 \pi)^{s-1} \Gamma(1-s) \exp \left[\frac{1}{2} \pi i(s-1)-2 \pi i a x\right] \\
& \quad \cdot \sum_{n=1}^{\infty}\left\{\frac{\exp [2 \pi i n a]}{n(n-x)^{1-s}}+\frac{\exp [-\pi i s-2 \pi i n a]}{n(n+x)^{1-s}}\right\} .
\end{align*}
$$

We next observe that the infinite series on the right side of (13) converges absolutely and uniformly on any compact subset of the strip $-1<\sigma<1$. By Dirichlet's test, the integrals on the right side of (13) converge uniformly on any compact subset of the strip $-1<\sigma<1$. Hence, by analytic continuation, (13) is valid for $-1<\sigma<1$. Assume now that $-1<\sigma<0$. Replacing s by $s+1$ in (11), we have

$$
\begin{align*}
& \int_{-a}^{\infty} \frac{u-[u]-\frac{1}{2}}{(u+a)^{s+1}} \exp [2 \pi i u x] d u \\
&=(2 \pi)^{s-1} \Gamma(-s) \exp \left[\frac{1}{2} \pi i(s-1)-2 \pi i a x\right] \tag{14}\\
& \cdot \sum_{n=1}^{\infty}\left\{\frac{\exp [2 \pi i n a]}{n(n-x)^{-s}}-\frac{\exp [-i \pi s-2 \pi i n a]}{n(n+x)^{-s}}\right\} .
\end{align*}
$$

Substitute (14) into (13), use the functional equation of $\Gamma(s)$, and observe that $x /\{n(n-x)\}+1 / n=1 /(n-x)$ and $x /\{n(n+x)\}-1 / n=-1 /(n+x)$. For $-1<\sigma<0$ we arrive at

$$
\begin{aligned}
\varphi(x, a, s) & -a^{-s} \\
= & \Gamma(1-s)(2 \pi x)^{s-1} \exp \left[\frac{1}{2} \pi i(1-s)-2 \pi i a x\right] \\
& -\int_{-a}^{1-a}(u+a)^{-s} \exp [2 \pi i u x] \\
& \cdot\left\{1+2 \pi i x\left(u-[u]-\frac{1}{2}\right)-s(u+a)^{-1}\left(u-[u]-\frac{1}{2}\right)\right\} d u \\
+ & \left(\frac{1}{2}-a\right) \exp [2 \pi i x(1-a)] \\
+ & (2 \pi)^{s-1} \Gamma(1-s) \exp \left[\frac{1}{2} \pi i(s-1)-2 \pi i a x\right] \\
& \cdot\left\{\sum_{n=1}^{\infty} \frac{\exp [2 \pi i n a]}{(n-x)^{1-s}}-\sum_{n=1}^{\infty} \frac{\exp [-\pi i s-2 \pi i n a]}{(n+x)^{1-s}}\right\} .
\end{aligned}
$$

Observe that the first expression on the right side of (15) corresponds to the term $n=0$ for the second series on the right side of (15). In the first series replace n by $n+1$. By an elementary calculation the second expression on the right side of (15) is seen to be

$$
-a^{-s}-\left(\frac{1}{2}-a\right) \exp [2 \pi i x(1-a)] .
$$

Upon these simplifications, (15) now becomes, for $-1<\sigma<0$,

```
\(\varphi(x, a, x)\)
    \(=(2 \pi)^{s-1} \Gamma(1-s) \exp \left[\frac{1}{2} \pi i(s-1)-2 \pi i a x\right]\)
    \(\cdot\{\exp [2 \pi i a] \varphi(a, 1-x, 1-s)-\exp [-\pi i s] \varphi(-a, x, 1-s)\}\).
```

By analytic continuation (16) is valid for all s. Now replace s by $1-s$ in (16) to obtain (1).

References

1. M. Lerch, Note sur la fonction $\mathfrak{R}(w, x, s)=\sum_{k=0}^{\infty} e^{2 k \pi i x} /(w+k)^{s}$, Acta Math. 11 (1887), 19-24.
2. E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford Univ. Press, London, 1939.

Department of Mathematics, University of Illinois, Urbana, Illinois 61801

[^0]: Received by the editors March 3, 1971 and, in revised form, June 18, 1971.
 AMS 1969 subject classifications. Primary 1041; Secondary 1040.
 Key words and phrases. Lerch's zeta-function, Hurwitz zeta-function, Riemann zetafunction, functional equation, Euler-Maclaurin summation formula.

