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PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 32, Number 2, April 1972

TWO NEW PROOFS OF LERCH’S
FUNCTIONAL EQUATION

BRUCE C. BERNDT
ABSTRACT.

One bright Sunday morning I went to church,
And there I met a man named Lerch.

We both did sing in jubilation,

For he did show me a new equation.

Two simple derivations of the functional equation of
0
> exp[2minx)(n+a)~
n=0
are given. The original proof is due to Lerch.

If x is real and 0<a=1, define

p(x, a,s) = %exp[Zm’nx](n + a)~®,

n=0
where o=Res>1 if x is an integer, and o>0 otherwise. Note that
¢(0, a, s)={(s, a), the Hurwitz zeta-function. Furthermore, if a=1,
@(0, 1, s)={(s), the Riemann zeta-function.
In 1887, Lerch [1] derived the following functional equation for
¢(x, a, s).

THEOREM. Let 0<x<1. Then @(x, a, s) has an analytic continuation to
the entire complex plane and is an entire function of s. Furthermore, for all s,

@(x, a, 1 —s) = (2m)~°T'(s)
(1 - {exp[imis — 2miax]e(—a, 2, s)
+ exp[—imis + 2mia(l — x)]p(a, 1 — x, s)}.

Lerch’s proof [1] of (1) depends upon the evaluation of a certain loop
integral. Our objective here is to give two simple, new proofs of (1). The
first proof uses contour integration; the second employs the Euler-
Maclaurin summation formula. By slight variations of our methods, one
can derive the corresponding result, namely Hurwitz’s formula, for
®(0, a, s)={(s, a).
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404 B. C. BERNDT [April

FIrRST PROOF. Assume that s>>1 is real. With the aid of Euler’s integral
representation for I'(s), it is easy to show that [1, pp. 19-20]

© exp[(l — a)u — 2mix] 4

%) [()g(x, a, 5) = f du.

explu — 2mix] — 1
If we put x=>b+1, then |b|<%. Define

7 exp[2wibz]
(z + a)*sin(nz)’
where the principal branch of (z+a)* is chosen. Choose ¢ so that —a<c<0.
If m is a positive integer, let C,, denote the positively oriented contour
consisting of the right half of the circle with center (c,0) and radius

m+%—c together with the vertical diameter through (c, 0). By the residue
theorem,

F(z) =

3) L F(z)dz = > exp[2minx](n 4+ a)~>.

27Tl Cm n=0
Let I, denote the circular part of C,,. Since |b| <}, there is a constant M,
independent of m, such that for zon I',, m21,

exp[2nibz] <M

sin(7rz)
Hence,
7'(m + HM

j;mF(z) dz T

which tends to 0 as m tends to co since s> 1. Thus, upon letting m tend to
oo in (3), we find that

=

b

1 ct+ion
o(x,a,s) = — — F(z) dz
27i Je—ioo
f”+i” exp[2wibz — wiz]
= z
¢ (z 4 a)(exp[—2miz] — 1)
f”"'w exp[2wibz + miz]
¢ (z 4+ a)¥(exp[2miz] — 1)

We observe that the integrals in (4) converge uniformly in any compact
set of the s-plane since |b|<3%. Hence, (4) shows that ¢(x, a, s) can be
analytically continued to an entire function of s.

Now suppose that —1<s<0. We wish to let c approach —ain (4). Ina
neighborhood of z=—a, we have

C))

exp[2mibz 4+ miz] <Alz+at < Ay,
(z + a)¥(exp[£2miz] — 1)
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1972] TWO NEW PROOFS OF LERCH’S FUNCTIONAL EQUATION 405

where A is some positive number. Since —1<s5<0,

1
f [y~ tdy < .
0

Hence, the two integrals on the right side of (4) converge uniformly on
—a=c=-—a+c¢, for any number £>0. We may then let ¢ tend to —a in
(4) to obtain
@(x, a, s) = i exp[—3}wis — 2mwiab + wia]
'f” exp[—27by + my]
o yi(exp[2my + 2mia] — 1)
— iexp[}wis — 2mwiab — mia]
‘fw exp[27by + wy]
o y'(exp[2my — 2mia] — 1)
If we make the substitutions ¥=2ny and b=x—4 and replace s by 1—s,
the above becomes, for s>1,
o(x, a, 1 — s) = expl3wis — 2mia(x — 1)]2n)"°
J“” exp[—u(x — DJu*?
: du
o explu + 2wia]l — 1
+ exp[—3wis — 2miax]27)~°
' J‘ ©  expluxJu?
0

explu — 2mia]l — 1

dy.

If we now use (2), (1) immediately follows for s>1. By analytic contin-
uation, (1) is valid for all s.

SecoND PrROOF. Let f have a continuous first derivative on [c, m],
where m is a positive integer. Then we have the Euler-Maclaurin sum-
mation formula,

2 fm)= "fw du + 3f(m) + (¢ — [e] — DS

(5) 0<" m
+f (u — [u] — DS (w) du.

Put ¢c=1—a and f(u)=(u+a)"* exp(2miux), where ¢>0. Then, upon
letting m tend to oo in (5), we obtain

p(x,a,s) —a*=| (u+ a)*exp[2wiux]du

l—a
+ (3 — a)exp[27ix(1 — a)]
(6) *u —[u] — % ,
— SJ;_GW exp[2miux] du

+ 2wix£fai(_7[4%t);s1} exp[2miux] du.
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406 B. C. BERNDT [April

The three integrals on the right side of (6) all converge for ¢>0 by
Dirichlet’s test.
First, assume that 0<o<1. Since

@ W] —u+3= Esm(21mu)

=1 mh
if u is not an integer, we have formally

Lju;u—T;;:_% exp[2miux] du

-1 fﬁou‘s exp[2mi(u — a)x] % 1 sinmn{u — a}) du
m™Jo n=1 N
(3

—2miax] ® ©
PRI S Hexptzminal [ “u explzmiuts — mi du
n 0

2mi n=1

- cxp[—277'1'na]foou_s exp[2miu(x + n)] du}.
0

We must justify the inversion in order of summation and integration.
Since the Fourier series in (7) is boundedly convergent, the inversion is
justified if we integrate over (0, b), where b is any finite number [2, p. 41].
We need then only show that, for 0<o<1,

lim > l{exp[Zﬂina]f u™® exp[2miu(x — »n)] du
b—> o n=1HN b

) o
- exp[——2m’na]f u~* exp[2miu(x + n)] du} = 0.

Upon an integration by parts,
f u *exp[2miu(x — n)] du = O(b™’/n)
b
+— fﬁou“”l exp[2miu(x — n)] du = O(b~°[n),
2mi(x — n) Jo

as b tends to co. By the same argument we obtain the same O-estimate for
the integrals involving exp{2miu(x+n)}. Hence, (9) now easily follows.
Now, if 0< o<1 and d50 is real, we have [2, pp. 107-1C3]

(10) fomu‘s explidu] du = I'(1 — s) |d|** exp[37i(1 — s)sgn d].
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1972] TWO NEW PROOFS OF LERCH’S FUNCTIONAL EQUATION 407
Thus, (8) becomes

© — — 1
J _u[u# exp[2miux] du

- (u + a)’
(11) = —(27)**T'(1 — s)exp[4mis — 2miax]
2 (exp[2mina] = exp[—mis — 2mina]
n=1{n(n — X)) n(n + x)!=*

Using (10) again, we have, for 0<o<1,

f (u + a)~® exp[2miux] du
(12) = exp[—27riax]f u~* exp[2miux] du
0
= I'(1 — s)(2mx)"" exp[hmi(l — s) — 2miax].
Hence, substituting (11) and (12) into (6), we obtain, for 0<o<1,

@(x, a,x) —a™*

=1 — s)2mx)" "t exp[i7i(1 — s) — 2wiax]
—fl_a(u + a)* exp2miux]{1 + 2mix(u — [u] — })} du

oou_[u]_l

(13) 2 exp[2miux] du

+ (3 — a)exp[27ix(1 — a)] — SJ;_a ot
+ x(27)* (1 — s)explimi(s — 1) — 2miax]
2 {exp[zwina] exp[—mis — 27rina]}

n(n — x)!=* n(n + x)*=*

n=1

We next observe that the infinite series on the right side of (13) converges
absolutely and uniformly on any compact subset of the strip —1<o<1.
By Dirichlet’s test, the integrals on the right side of (13) converge uniformly
on any compact subset of the strip —1<o<1. Hence, by analytic con-
tinuation, (13) is valid for —1<o<1. Assume now that —1<o<0. Re-

placing s by s+1 in (11), we have

© — — 1
f u(—u—_%:]l—)s—ﬁzexp[Zwiux] du

(14) = Q2m)'I(—s)exp[imi(s — 1) — 2miax]
2 (exp[2mina]  exp[—ims — 2mina]

neiln(n — x)~° n(n + x)°
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408 B. C. BERNDT

Substitute (14) into (13), use the functional equation of I'(s), and observe
that x/{n(n—x)}+1/n=1/(n—x) and x/{n(n+x)}—1/n=—1/(n+x). For
—1<0<0 we arrive at

p(x,a,s) —a”*

=T'(1 — )Qux)* ' exp[iwi(l — s) — 2miax]
—f1~a(u + a)7® exp[2miux]

(15) AL+ 2mix(u — [u] — ) — s(u + a) N — [u] — D)} du
+ (3 — a)exp[27ix(1 — a)]
+ 7)1 — s)exp[dmi(s — 1) — 2wiax]
® exp[2mina]l 2
: { s

n=1(n — x) w1 (n + x)I=

exp[—mis — 2minal

Observe that the first expression on the right side of (15) corresponds to
the term #n=0 for the second series on the right side of (15). In the first
series replace # by n+1. By an elementary calculation the second expression
on the right side of (15) is seen to be

—a® — (} — a)exp[2mix(1 — a)].

Upon these simplifications, (15) now becomes, for —1<¢<0,

®(x, a, x)
(16) = Q@) (1 — s)exp[imi(s — 1) — 2miax]
- {exp[2mialgp(a, 1 — x, 1 — s) — exp[—mislp(—a, x, 1 — 5)}.

By analytic continuation (16) is valid for all s. Now replace s by 1 —s in
(16) to obtain (1).
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