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1. It was known to Euler that p(n), the number of unrestricted partitions of n into
non-increasing integral parts, is generated by
2 p(n)at = (1—z) (1 -2~ (1-2%)1. ., (1)
n=0
vith the usual convention that p(0) = 1.
We may regard a partition of n as an arrangement of nodes at integral points of the

" @,) plane; thus 10=5+3+1+1
represented by
5 » * * * *
3 * * *
1 *
1 *
¥
*y

*his ‘ Ferrers-Sylvester graph’ (cf. MacMahon (1), p. 3) represents a partition of » into
ntegersasa two-dimensional arrangement of nodes. We may form a natural generaliza-
tion as follows.

By an *unrestricted m-dimensional partition of n’ we shall understand an arrange-
ment of n nodes at points of Euclidean m-space with non-negative integral coordinates,
with the property that if a node (a,, 4y, ..., ,,) occurs then so also do all the nodes
(%), Zq, .-, Z,,) With 0 € 2; € @, (1 = 1,2,...,m). We denote by p,,(n) the number of
distinct such partitions; trivially p,(n) = 1 for all n. For m > 2 we compare p,,(n)
with 7, (n) defined by

s 0 ~("mn3?)
Z my(n)at = I (1-27) (2)
n=0 r=1
where (}) is the binomial coefficient with the usual conventions. Thus p,(n) is just the
p(n) of (1) above.
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MacMahon (1) proved that py(n) = ma(n), i.e.

Eopa(n)xn = (=) (1—22)-2 (1 —z)-2. . ., (3)
e

but both his proof and that of Chaundy (2) are difficult in comparison with the
straightforward proof of (1).

Presumably MacMahon was aware that (2) did not enumerate partitions correctly
for four or more dimensions (or, as he regarded it, for ‘solid partitions’ of numbers in
three or more dimensions). Nanda (3, 4) assumes that p4(n) = m,(n) and writes down the
form which MacMahon ((1), p. 175) states ‘is shewn later not to be justified’. Thus in
(4) Nanda tabulates 7,(n) and not p,(n). Further work on the form of p,(n) is found
in (8).

It is natural to enquire what m,,(r) for m > 4 does enumerate in this context, and
with this in mind we have computed a number of values of p,(n) and m,,(n). The
computation was carried out on a PDP 8 at Edinburgh University and on the Science
Research Council’s Atlas 1 at Chilton; a description of the program and an Algo’
algorithm for p,,(n) by Bratley and McKay will appear elsewhere (6). The tim
required to compute p,_ (n) from the combinatorial definition increases rapidly wit
m and n, and in the absence of any clear conjecture from the first results we did 1
feel justified in using any more machine time. Writing ‘

E(n) = myp(n) — pp(n),
we found the values of £, (n) given in Table 2 at the end of this note,

2. If we now denote by pk () the number of unrestricted m-dimensional partition<
of » whase nodes lie in some k-dimensional hyperplane but not in any (k-—1)-
dimensional hyperplane, then we clearly have

pkr)=0 if k>m or k>n, (6)
n_ﬂz—ll kn_nil(m)kn
and pm( ) 7 Pru p:m( ) - = k Pk( )’ (ﬁ)
Pailn) = 1.

Thus, regarding p,,(n) as a function of m for fixed n, we may write
n—1 m
pm(n) = Z Gkn(k) H
k=1

where the ¢;, are integers independent of m, and ¢, ,; , = 1. We also have from (2)
that #,(n) is a polynomial in m of degree (n—1) which takes integral values for .
m=12,..m—1,andso

1) =2 Yun().

where the y,,, are integers independent of m, and it is easily seen that y, , , = 1.

Hence n-1 -
En(n) = To(m)=2(m) = '3, a7 ).
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where e, ; , =0 from the above, and ¢, =0 for 1 < k<3 by Euler's and
MacMahon’s results. Thus finally

n—12 m
Enn) =3, (7). )
k=4 k
where the ¢;, are integers independent of m. A more tedious calculation shows that

: n—2
Ya-am = 2*34+n—3, while cn_g_ﬂ=n_2+(n2 ),

80 that gy = 2% 3= l—(%;2) =% (n;:i). , (8)
k>8

Table 1. Values of p,,(n)

m=2 3 4 5 6 7 8
"l 1 1 1 1 1 1 1

2 2 3 4 5 6 v 8
3 3 6 10 15 21 28 36
4 5 13 26 45 71 106 148
6 7 24 59 120 216 357 554
a 11 48 140 326 857 1,107 2,024
7 15 88 307 835 1,907 3,857 7,134
8 922 160 684 2,145 5,507 12,800 24,796
9 30 282 1,484 5,345 15,522 38,430 84,625
10 42 500 3,122 13,220 43,352 118,874 285,784
11 56 859 6,500 32,068 119,140 362,670 953,430
12 i 1,479 13,426 76,065 323,946 1,005,430 3,151,332
13 | 101 2,485 27,248 181,975 860,476 3,271,751 10,314,257
14 | 135 4,187 54,804 425,490 2,308,071 9,673,998

15 | 176 6,879 108,802 982,615 6,056,581

16 | 231 11,297 214,071 2,245,444

17 | 207 18,334 416,849 5,077,090

i8 | 385 29,601 805,124 11,371,250

19 | 490 47,330 1,641,637

2¢ | 627 75278 2,930,320

21 792 118,794 5,628,733

TJsing now the computed values in Table 1, we find

Ean)=0 if m<3 or n<b,
Em(s)=(’f),
R )
pats = (%) (") 1)
9)_19( )+105( )+145(’§)+42(’;‘),
10)_40( )+321( )+755(’§)+545(?)+99(’:). (9)
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The results of (9), apart from MacMahon’s result for m = 3 and all n, are of course
somewhat trivial; the difficult problem is to determine what happens for fixed m and
all n. However, an immediate enquiry is whether £, (n) > 0 form > 4 and » > 6, For
a fixed n, this is certainly true for large enough m by (7) and (8). A stronger form of
the question is:

Are the e, in (7) always positive?

If so (and this seems to us likely), then it would appear that 7,,(n) form > 4andn > 6
enumerates some additional objects which do not satisfy the original partition defini-

tion. A final question is whether, at any rate, m,,(n) gives the right order of magnitude
for p,,(n), i.e.
Is B, (n) = O (m,(n)) valid for fixed m and n—o0?

The numerical evidence is insufficient to justify any conjecture.

Table 2. Values of m,,(n) and E,,(n)

m=2 3 + b 6 7 8

n=1 1 1 1 1 1 1 1

2 2 3 -+ 5 6 7 8

3 3 6 10 15 21 28 36

4 5 13 26 45 71 105 148

5 7 24 59 120 216 357 5564

6 11 48 141 331 672 1,232 2,004
1* 5* 16* 35* 70%

7 158 86 310 855 1,082 4,067 7,624
3 20% 76% 210* 490*

8 22 160 692 2,214 5,817 13,301 27,428
8 69 310% 1,001* 2,632*

9 30 282 1,483 5,645 16,682 42,357 06,231
18 200 1,060 3,927¢ 11,606*

10 42 500 3,162 13,741 16,633 132,845 332,159
40 521 3,281 13,971 46,375*

The non-zero values of X, (n) are given below the values of n,(n), which is easily computed.
An asterisk denotes values deducible from other values using (7) and (8), which provided a check
on the program.
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