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This thesis describes the first detailed study of
nonl inear luminescence in GalAs, and its application to the
first time resolved luminescence measurements of carrier

4

transport in an electric field. The first direct measurement
of hole sweepout in a photoconductor, and of 1 »ps carrier
sweepout in a Schottky diode are described. Direct observation

of the effects of 'ihtr;nsic"circuits on carrier transport in
¢ -

the latter device may have important uses for high frequency

circuit diagnostics.

ATime resolved lum;nescence measurements are made possible
by a nonlinear dependence of the ©band-band recombinat;on
luminescence on tLe input laser intensity. This noniinearity
has been investiggted as a func;ion of laser power, doping, and
wavelength un&erl Ps photoaxcitafion, and a model based on the
bimolecular nature of the recombination process is present?d
which explains many features of the data. A simple algorithm

for data reduction is . developed to account for the

nonlinearity.
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The technique was applied to measure hole sweepout in a 2
pum active length photoconductor. An average velycity deduced
from the measurement was lower than expected, and initiated an
investigation into field screening effects which might ©be
important at the high photoexcitation densities needed There.
Devices with nonohmic contacts(Schottky diodes) with a .3um
transit dimension were fabricated and pulsewidth limited decays
obtained. A computer model of transport in these devices
showed that transport perturbation due to screening is minimal
because of fast transit times and high fields. However, the
model clearly indicated that effects on transport for fields
near the the peak velocity field will be substantial for

densities above the doping density.

To show that the macroscopic circuit can affect
microscopic transport within a device, experiments were done on
Schottky diodes built into various monolithic circuits. High
photoinjection levels result in large transient potential drops
which c¢an substantially perturdb transport. Diodes incorporated
into a large capacitor which clamped the voltage across the
diode showed response consistent with transit times. Isolation
from this 1large capacitance via an inductor integrated on—chip

resulted in significantly slower observed sweepout times.
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CHAPTER 1

Introduction

1.1 Motivation

The motivation for this work arose out of a general
interest in transport phenomena, and as an extension of
previous work om short transit time photoconductors [1]. In
particular, there was a strong idinterest in using, or
developing, an experimental technique to directly measure
carrier sweepout times and other dynamic variables. An
optical, rather than electrical, measurement technique was
sought as a monitor of <carrier transport to avoid circuit

response time limits on the inherent time resolution of the

.technique. Optical techniques are inherently fast, being

limited only by the laser pulséwidth. Currently, laser
pulsewidths from 1 ps down to 200 fs are consistently
achievable, making optical techniques extremely attractive
for'probing fast transport, carrier relaxation processes and
other carrier dynamics in small structures. fIn this thesis,
a new, all optical technique is described and analyzed[2].
The technique can be sensitive to both electron and hole
transport depending on device design. In a first
application, it is used to measure hole sweepout .in a

photoconductive detector on a 100 picosecond timescalel[3,4].
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The technique is also exploited to measure carrier sweepout
in a submicron transit dimension Schottky diode omn a 1
picosecond timescalel[5,6]. It is clear that a;y technique
that measures carrier sweepout from the active region of a
device will also be sensitive to possible effects on
transport due to parasitic or circuit impedances. In this
thesis, the first direct observation of the <effects of

circuit parameters on device transport is reported.

1.2 Time Resolved Optical Measurements of Carrier Transport

Optical techniques are generally classed as
absorption/transmission, reflectivity, or luminescence
experiments. Early time —resolved measurements in the

picosecond regime include a reflectivity experiment by Shank
et. al.[7] at 77K in which the first measurement of the
subpicosecond relazxation of <carriers from states with
energies high in the band to states near the band edge in
GaAs was made. Another reflectivity experiment by Frigol[8],
using a mnovel two-wavelength laser, monitored picosecond
exciton dynamics in CdSe at: low temperatures and resulted in
an interesting catrier density-dependent diffusion model to
explain the rapid recovery of the excitonic feature at high
densities. Othér ' experimemts included 'light gate' or

luminescence upconversion experiments at low temperatures
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(also in CdSe) by Daly and Mahr([9]. In the past year,
transmission experiments by Erskine et. al.{10] in the
femtosecond regime have illuminated the various contributions
to hot carrier relaxation dynamics in GaAs, AlGaAs and
guantum well structures. At the time this thesis was
initiated, only one optical measurement of transport
phenomena had been reported. This was the work of Shank et.
al.. [11] describing the observatién of velocity overshoot
in a GaAs PIN photodiode at 77K. In that experiment, the
change in absorption near the band edge was monitored via the

Franz—-EKeldysh effect.

To avoid restrictions on dévice design inherent in a
transmission experiment, and to avoid low temperature
operation necessary to achieve good signal 1levels in a
luminescence upconversion experiment, we initially
investigated the use of the reflectivity to monitor <carrier
transport. This technique monitors the change in
reflectivity which results when an electron—hole plasma is
created in a material. Using a simple Drude model, the
change in reflectivity can be <calculated, with the result
that the magnitude of the plasma-induced change in the bulk
reflectivity is zroughly 10_3 for a <carrier density of
lolsﬁcms, 1074 for 1017/cm3 etc. For input power

densities>107 W/cm? (corresponding to carrier
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densities)lol? em "), changes in the reflectivity on the

order of 50-100% were observed. This spurious signal was
found to be due to thermal(heating) effects: at’high powers,
damage to the sample at the position of the laser spot could
clearly be observed. This heating effect put an upper limit
on the <carrier density and hence on the magnitude of the
plasma reflectivity signal. For densities(lo18 cm—S’ in
order to observe an entire experimental decay, extremely good
signal to mnoise ratio is required (roughly 104). Using the
equipment available and simple experimental techniques we
were not able to achieve consistently good enough signal to
noise ratios to warrant further investigation. Recently,
successful transport measurements in graded AlGaAs layers
[12] using this technique havé been published: the extremely
high sensitivity in these experiments was achieved through

the use of a radio frequency chopping and phase sensitive

detection technique.

In the <course of searching for the origin of the
tnexpectedly large signal "described above, we examined the
luminescence to determine the size of the signal due to it at
the detector. Surprisingly, we discovered the nomnlinear
dependence of the luminescence signal on the input laser
powér, and realized its immmediate application to time

fesolved experiments. Subsequeittly, we found that shortly
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before, von der Linde et. al.[13] had published their
observation of the <effect and applied it in a picosecond
measurement of hot carrier relaxation at low éemperatures.
The effect fundamenfally arises from the bimolecular nature
of the band—io-band recombination in GaAs and other direct
gap semiconductors. That the effect was not realized earlier
is somewhat surprising, in view of the mnecessity of
accounting for the bimolecular term in explaining, for
example, the <current dependence of the spontaneous carrier

lifetime in GaAs—AlGaAs double heterostructure lasers[14].

The time resolved luminescence technique facilitated by
the nonlinearity is simple and versatile, and is described in
detail in Chapter 2. In Chapter 3, the ©behavior of the
nonlinearity is investigated in detail, the ©physical origin
of the nonlinearity is discussed and the results of a rate
equation model, showing reasonable qualitative agreement with

the data, are presented.

1.3 Synopsis of Further Chapters: Transport measurements

Chapter 4 iptroduces . the application of the time
resolved luminescence measurements to GaAs under high
electric field conditions. The first experiments were done

on a GaAs photoconductor, and resulted in the first optical
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measurement of hole sweepout in GaAs. An average hole
velocity was inferred from the data. Chapter § dpscribes the
results of measurements made on a planar Schottk} diode with
a 0.3 micron transit dimension. In order to realize transit
time limited response, even in an optical measurement, the
device circuit must be carefully considered. That is, the
transport in the active region of the device can be inhibited
by the circuit. The devices were fabricated in both 'fast’
and 'slow’ monolithic circuits, and the effects of the
circuit on carrier transport.‘reflected in the luminescence
decay, were measured directly for the first time. Simple
circuit models used to predict the voltage transients across
the device =~ due to photoinjected carriers correspond
reasonably well with the data. A omne dimensional numerical
simulation of granspoft in the device was done to estimate
the possibly large perfturbation of the equilibrium potential

and field distribution due to the high photoexcited carrier

density, and to calculate the luminescence signal.

In Chapter 6 all results are summarized and suggestions
for futuré experimengs are discussed. Appendix 1 briefly
describes the fabrication of the Schottky diode structures.
Appendix 2 details the numerical simulation of tramsport im

T3
the devices.
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