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Preface

This book presents a printed testimony to the fact that George Andrews has passed
the milestone age of 80.

To honor George Andrews on this occasion, the conference “Combinatory
Analysis 2018” was organized at the Pennsylvania State University from June 21
to 24, 2018. As the organizers of this conference, we were planning to produce an
adequate printed document of this event. When we asked Bill Chen, at that time
still the Managing Editor of the Annals of Combinatorics, about the possibility of
having this document as a special issue of his journal, he accepted immediately. We
asked more than 120 participants of the conference and other colleagues of George
Andrews to contribute. As the outcome of a procedure, which followed the standard
rules of journal refereeing, this special issue contained 37 articles related to the
mathematical interests of George Andrews.

All these articles are reprinted in this book version. In addition, this volume
contains extra material more suited for a book rather than for journal publication.

First of all, the reader will find three “Personal Contributions.” At the conference
banquet, Amy Alznauer gave a wonderful after-dinner speech, “The Worlds of
George Andrews, A Daughter’s Take.” Already then we felt that this would make a
unique personal introductory entry to this book. To stay as close as possible to the
original tone of the speech, we asked Amy to edit her text only slightly.

Another personal contribution is by Krishnaswami Alladi, “My association and
collaboration with George Andrews.” In his article, Krishna shares with the reader
various observations of Andrews as a man and mathematician. Besides describing
some aspects of joint work with Andrews, its particular focus is a discussion of joint

The third personal contribution is by Bruce Berndt, “Ramanujan, his lost
notebook, its importance.” The “lost notebook” has generated hundreds of research
and expository papers, as well as several books, in particular, the five Springer
volumes produced by Andrews and Berndt. More than any other mathematician,
Andrews has contributed to our understanding of the “lost notebook.” The primary
purpose of Bruce’s contribution is to relate the history of the “lost notebook” and

v

work in connection with the Capparelli and the Göllnitz theorems.
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the events leading up to Andrews’ rediscovery of it in the Wren Library of Trinity
College, Cambridge.

Another aspect which makes this Andrews volume unique is a special “Photos”
collection. In addition to pictures taken at “Combinatory Analysis 2018,” the reader
finds a variety of photos, many of them not available elsewhere; see sections
“Andrews in Austria,” “Andrews in China,” “Andrews in Florida,” “Andrews in
Illinois,” and “Andrews in India.”

The “Articles” part contains, as already mentioned, reprints of the 37 articles of
the Special Issue of the Annals of Combinatorics, Volume 23, Issue 3–4, November
2019 (in honor of Andrews’ 80th birthday).

In addition, this volume contains two extra contributions: one by Bruce Berndt,
Junxian Li, and Alexandru Zaharescu and one by Louis and Stephanie Kolitsch.

Last but not least, our sincere thanks go to all those who contributed to this
project. In addition to authors and referees, our thanks go to William Y.C. Chen
and his editorial team at the Tianjin University for their outstanding commitment
and great help in the process of preparing this special issue.

Special thanks go to Tanja Gutenbrunner (RISC) who has been of essential help
in the whole project since its early beginnings, and to Ralf Hemmecke (RISC) for
web assistance.

Finally, we want to express kind thanks to our colleagues from Birkhäuser: to
Thomas Hempfling for his enthusiasm about this project, to Sarah Annette Goob for
her patience and help, and to Sabrina Hoecklin for her assistance.

Gainesville, FL Krishnaswami Alladi
Urbana, IL Bruce C. Berndt
Linz, Austria Peter Paule

University Park, PA Ae Ja Yee
July 6, 2020

Duluth, MN James A. Sellers
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Part I
Personal Contributions



The Worlds of George Andrews,
a Daughter’s Take

Amy Alznauer

Abstract This conference is about the world that has grown up around my father’s
research, a world that he tended through his own ideas, his wide and various
collaborations, and the decades of graduate students he has mentored. But there
is another world he has tended with at least as much love and attention. It involves
a smaller crowd, but it is a world just as beautiful and alive as the one gathered here
tonight. So as his daughter, I want to tell you a bit about this other world—the world
of his family.

As a child, you come into a world that is already fully formed and that you somehow
mysteriously inherit. You learn of this prior world through stories—bits and pieces
shared over dinner conversation or at bedtime—and your parents’ lives begin to take
on, or at least they did for me, the grandeur of myth. So, I want to share some of the
stories that I inherited as my father’s daughter.

It always amazes me, that my grandparents’ lives stretch back not only into the
previous century, but the one before that. My grandmother was born in 1894 into
a proper and prosperous Victorian family. But by the time she was 40 years old,
the Great Depression had hit, and she was letting a room in Eugene, Oregon from
her unbeknownst-to-her future mother-in-law.My grandmother and her sister Mary,
both strong, intellectual women, were school teachers and in letters to one another
confessed that they saw themselves as lifelong spinsters.

But then, interrupting these well-laid plans, a red-headed, strapping and silent
young man came to town to board at his mother’s house. Eight years my grand-
mother’s junior, he’d once been studying graduate-level economics at the University
of Chicago, but now on hard times was chopping down trees in the woods of
Wisconsin. He took a shine to this strong, smart woman, who always had words
when he had none, and soon they were married.

A. Alznauer (�)
Northwestern University, Chicago, IL, USA

© Springer Nature Switzerland AG 2021
K. Alladi et al. (eds.), George E. Andrews 80 Years of Combinatory Analysis,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-57050-7_1
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4 A. Alznauer

They moved out of town to take over her father’s country home and 100-acre
farm. And there, Raymond Andrews and 45-year-old Rovena Pearl brought their
first and only child into the world.

George W. Eyre Andrews grew up with few playmates. Instead he had loving, if
a bit non-traditional, parents. His quiet father was a deeply good man, who without
rancor put aside his intellectual aspirations to labor weekly in the Oregon shipyards
to supplement the meager farm income. His mother, older and more educated than
almost every other mother at the time, was enamored of John Dewey, so encouraged
her only child in all of his creative, solitary explorations. And in a manner that I’ve
always thought fitting to this eccentric, old-fashioned family, George fondly called
his parents, not the standard mom and dad, but Pearl and Raymond.

And so again, instead of playmates, George had his parents, and also a huge attic
room in the eaves of their centuries-old farmhouse. His great bedroom windows
went all the way down to the floor, so he could sit there and look out over the
gardens and trees. He had endless nooks and crannies, lined with shelves, where he
displayed his vast collection of arrowheads and fossils he’d found on the farm, his
books, the spy rings he’d ordered from the back of cereal boxes, a powder horn out
of Oregon history, and a Chemeketa Indian bowl.

And he had the farm itself with its orchards and barns and fields of corn. From
the age of four he woke up early with his parents, drank black coffee, and went out
to the barn for chores. They’d listen to the radio while they milked the cows, and
one day, he heard this incredible music, boogie-woogie, pounding out into the barn
and thought it was the saddest, most beautiful music he’d ever heard. My father
says now that I’ve remembered that bit about sadness and beauty wrong, that I’m
stealing a quote from a later blues commentator, and I’m sure he’s right. But this is
the intelligence of myths, which intuitively pull together different sources to make
an even truer picture. At only 4-years-old, George began picking out the blues base-
line, walking the same notes up and down the key-board, over and over, until his
mother thought she might go crazy. She made him promise to practice only after
supper.

Before he was school-age, his mother took him to see his first full-length moving
picture complete with technicolor: Walt Disney’s magnificent Bambi. Amazed by
the giant screen, by the glorious fanfare of images, he stood up on his velvet theater
seat and with arms in the air, cheered out loud. Also at that age he loved the smell
of gasoline and declared one day that a gasoline pie might be a nice thing to eat.

Back then he had charge of a flock of chickens and his parents said he could sell
the eggs at a tiny stand down the road. One day, proud of his full dozen, he walked
across the fields to the stand, holding his carton, swinging his arms in triumph, only
to finally open the lid to a mess of runny eggs. A little later with his mother he
took on the WWII volunteer task of watching for enemy planes. Out there in the
sunshine and rustling corn with his official guidebook and binoculars, feeling like
a spy on a noble mission, he laid back in the cornstalks and watched the blue sky,
mostly finding shapes in the clouds instead of planes, but loving it no less. So, at
6-years-old, when news came over the radio that the war had ended and the adults
celebrated, he ran off to weep over his lost mission.
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He attended a one-room school house. Once in a high school history class they
read about how it used to be on the American prairie: the homesteaders with their
little, white-washed schools, the desks lined up, all the grades in one room, the strict
schoolmarms, the lunch pails and pot-bellied stoves to keep everyone from freezing
in winter. And he wondered why a book would characterize these things as existing
in some distant past, for it described his younger life perfectly.

His mother taught at that school for a few years. And even worse, the neighbors,
a large group of tough farm boys also attended. George, an odd little boy full of
big words and unusual interests, wasn’t like them, so sometimes at lunch they’d
rough him up. But during math class he’d seek revenge. His mother would read out
a problem and ask one of the gang of boys to answer. A long, painful pause would
follow and then a voice from across the room, a much younger voice, would pipe
up. “Soooooo simple,” he’d say. And the cycle of lunchtime abuse and math class
ridicule continued.

As he grew older, his obsession with boogie-woogie piano never let up. He
learned to play by ear and later took up the saxophone in the high-school school
jazz band. At home, he’d sit in his attic, a mason-jar fitted over the arm of his turn-
table to make the same song—maybe Freddie Slack’s Cuban Sugar Mill—repeat
over and over. And he’d sit there, his giant windows open to the farm, and read
Sherlock Holmes’ Sign of the Four. Oh, to be like him, he’d think, to ferret out
clues and solve complex, impossible problems with the power of your mind.

At 16 in recitation and debate class, where he’d win prizes for his animated
renditions of James Thurber, he met this black-haired, blue-eyed girl, as smart as
he. They became debate partners and soon fell in love.

But in just a few years there was a complication. In the engineering program at
Oregon State University, studying to be a patent attorney, George found himself in
the inspiredmathematics class of Prof. Harry Goheen. Suddenly it all came together:
The logic and creativity he’d first found in boogie-woogie, the steady, principle of
the left-hand combinedwith the freedom of the right; the Holmesian search for clues
and grand sweeping theories; the thrill of staring up at a blank sky and suddenly
finding a plane there like a revelation, and even the joy of discovering what you
had once only imagined, made real before you in technicolor. In mathematics, he
found the fulfilment of all of these early passions and was hooked. If he wasn’t such
a dignified young man, he might have stood up in Professor Goheen’s class and
cheered.

So now what to do? The love of his life on one hand and his vocation on the
other. He would soon graduate with a combined bachelor’s and master’s degree and
head off to graduate school, so how to get his 19-year-old love to follow him. He’d
just have to win a Fulbright that’s all, he thought, for how could she resist a trip
to England? So that’s exactly what he did, and he took her up on a mountaintop
and read her a poetic proposal, promising to shower her with diamonds. And a few
months later, with a Fulbright Scholarship to Cambridge University in hand, they
were married with only a pastor and their parents standing by, and soon boarded the
Queen Elizabeth to sail for England.



6 A. Alznauer

I love to think of them there in Cambridge, that first year of their long, joyful
marriage, unaware that 15 years later they would return here, and my father would
come across the forgotten notebook of Ramanujan in the Wren Library. He already
knew about Ramanujan, was enchanted by the biography he’d read in James
Newman’s The World of Mathematics (a book my mother had given him) and was
already on his way to becoming a number theorist himself. But he didn’t know that
a big piece of his future was so close by, waiting for him or someone to discover it.

And the fact of that notebook—once held by the hands of Ramanujan himself
and then lying there unseen but indisputable in a box—has become, for me, a
metaphor for the way my father views mathematics itself. The notebook was
currently undiscovered yet truly there, just as mathematics, my father thinks, is
truly out there, even before people come to know its truths. Mathematics is not
something he creates with his mind, my father thinks, not some intellectual game
played and merely derived from axioms, but a real thing, maybe mysteriously real
in its invisibility, but real nonetheless.

That brings me full circle, to the fully-formed, real world into which all of
us arrive, unknowing, when we are born. In recent years my father has become
enamored of the writings of Michael Polanyi, a chemist turned philosopher, who
writes about this real, prior world that surrounds us. In his collection of lectures,
Tacit Knowledge, Polanyi argues that much of our knowledge is inarticulate, that
we know more than we can say, and that intuition is often our tool for tapping into
the vast world that includes and precedes and encompasses us.

Belief in this real world beyond the self is one of the greatest gifts my father
has given me, and I know I speak for my siblings as well. This world came to me
(to all of us) first through my father’s and mother’s love, that existed before I was
born, and has been there, undiminished throughout my entire life. And then, this
world came to me through the stories that accrued into myth, of his life (and my
mother’s life), giving me one of my earliest glimpses into the reality of a person
beyond the confines of my own being, and a glimpse into the history that formed
me. And finally, this external world came to me through mathematics. Numbers and
theorems seemed to fairly swirl about our home. I could imagine my father down
in his tiny study under the stairs, listening to boogie-woogie, his blue fountain pen
poised over a yellow legal pad, waiting to harness ideas from the sky. And all of this
together gave me the sense of a reality, a presence even, that was large and complex,
rigorous and loving, out there whether I took the time to look or not, and worthy of
a lifetime of discovery.

Before I close, I want to say that just as the world represented in this conference
is not his alone, for everyone here has helped in some way or another, through
intellectual effort or love, to build it; the world of our family is the same. My father
did not build it alone, but with the help first of his parents and then through the
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life-long partnership with my mother—who is one of the warmest, most intelligent,
most beautiful people I have ever known.

So, in closing I want to thank you all and the organizers of this conference for
giving me the chance to participate in celebrating the worlds my beloved father,
George Andrews, helped to shape.



My Association and Collaboration
with George Andrews

Still Going Strong at 80

Krishnaswami Alladi

Abstract This is recollection of my association with George Andrews from 1981,
and a report of my joint work with him in the theory of partitions and q-series
relating to the Göllnitz and Capparelli theorems starting from 1990.

1 Introduction

George Andrews is the undisputed leader on partitions and the work of Ramanujan
combined. After Hardy and Ramanujan, he, more than anyone else in the modern
era, is responsible for making the theory of partitions a central area of research. His
book on partitions [15] published first in 1976 as Volume 2 of the Encyclopedia
of Mathematics (John Wiley), is a bible in the field, and his NSF-CBMS Lectures
[16] of 1984–1985 highlight the fundamental connections between partitions and
Ramanujan’s work with many allied fields. We definitely owe to him our present
understanding of many of the deep identities in Ramanujan’s Lost Notebook. I had
the good fortune to collaborate with him and also interact with him very closely both
at Penn State University (his home turf) where I visited often, and at the University
of Florida, where he has spent the Spring term every year since 2005. I also have
had the pleasure of hosting him in India several times. Thus I have come to know
him really well as a mathematician, colleague, and friend. Here I will first share
with you (in Sect. 2) my observations of him as a man and mathematician. I will

This is a mildly modified version of my paper “My association and collaboration with George
Andrews—Torchbearer of Ramanujan and partitions” that appeared in Lattice Paths Combinatorics
and Applications (G. E. Andrews, C. Krattenthaler, and A. Krinik, Eds.), Proc. 2015 Conf.
in Pomona, Developments in Mathematics, 58 Springer, New York (2019). The permission to
reproduce is gratefully acknowledged.

K. Alladi (�)
Department of Mathematics, University of Florida, Gainesville, FL, USA
e-mail: alladik@ufl.edu

Trends in Mathematics, https://doi.org/10.1007/978-3-030-57050-7_2
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10 K. Alladi

then describe (in Sect. 3) some aspects of our joint work that will highlight his vast
knowledge and brilliance. In Sect. 2, I will describe events chronologically rather
than thematically. In Sect. 3, I will discuss my joint work with him on the Capparelli
and the Göllnitz theorems.

2 Personal Recollections

First Visit to India Even though Andrews has been studying Ramanujan’s work
since the sixties and had been “introduced to India” through the writings of, and on,
Ramanujan, his first visit to India was only in Fall 1981. That academic year, I was
visiting the Institute for Advanced Study in Princeton, and he contacted me saying
that he was planning a visit to India, and to Madras in particular. My father, the late
Professor Alladi Ramakrishnan, was Director of MATSCIENCE, The Institute of
Mathematical Sciences, that he had founded in 1962, and so I put him in touch with
my father who hosted him inMadras and helped arrange a meeting for Andrewswith
Mrs. Janaki Ammal Ramanujan. Upon return from India, Andrews called me from
Penn State, told me that it was an immensely enjoyable and fruitful visit, and that he
appreciated my father’s help and hospitality. To reciprocate, Andrews invited me to
a Colloquium at Penn State where he was Department Chair at that time. Andrews
is always a gracious host, but in his capacity as Chair, he rolled out the red carpet
for me! He hosted a party for me at his house during that visit and that is how our
close friendship began.

I was working at that time in analytic number theory but I wanted to learn
partitions and q-series, and that aspect of the work of Ramanujan. So after I
returned to India from Princeton, I wrote to Andrews and asked him for his papers.
Promptly I received two large packages containing more than 100 of his reprints. So
I started studying them along with his Encyclopedia, and gave a series of lectures
at MATSCIENCE in Madras, the notes of which I still use today. Even after this
course of lectures, I was unsure whether to venture into partitions and q-series. The
infinite series formulae were beautiful, but daunting. The decision to change my
field of research to the theory of partitions and q-series came during the Ramanujan
Centennial in Madras in December 1987.

The Ramanujan Centennial The Ramanujan Centennial was an occasion when
mathematicians from around the world gathered in India to pay homage to the
Indian genius. Among the mathematical luminaries at the conference, there was
a lot of attention on Andrews, Richard Askey and Bruce Berndt—jokingly referred
to in the USA as the “Gang of Three” in the world of Ramanujan. I prefer to refer
to them as the “Great Trinity” of the Ramanujan world, like Brahma, Vishnu, and
Shiva, the three premier Hindu gods! The Great Trinity along with Nobel Laureate
Astrophysicist Subrahmanyam Chandrasekhar and Fields Medalist Atle Selberg,
were the stars of the Ramanujan Centennial. But Andrews occupied a special place
in this elite group, because the Lost Notebook that he unearthed at the Wren Library
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in Cambridge University, was released in published form [22] at a grand public
function in Madras on December 22, 1987, Ramanujan’s 100-th birthday, by India’s
PrimeMinister Rajiv Gandhi, who handed one copy to Janaki Ammal and another to
Andrews. That definitely was a high point in the academic life of Andrews. Andrews
has written a marvelous Preface to that book published by Narosa, which at that time
was part of Springer, India.

December 1987was a politically tense time inMadras because the ChiefMinister
of Madras, M. G. Ramachandran—MGR as he was affectionately known—a former
cine hero to the millions, was terminally ill. There were several conferences in India
around Ramanujan’s 100-th birthday, and Andrews was a speaker in every one of
them. He therefore arrived in Madras about a week before the 100-th birthday of
Ramanujan and spent the first night at my house before traveling by road to a
conference at Annamalai University, south of Madras. I told him that he should
be very careful traveling by road in such a tense time, but he held my hand and said:
“Krishna, do not worry. I am on a pilgrimage here to pay homage to Ramanujan. I
will not let anything perturb me.” As it turned out, one day as he, Askey, and Berndt
were traveling by car on their way back to Madras, the car was suddenly encircled
by a crowd of excited political activists. The car was stopped. Askey and Berndt
were very nervous. But Andrews, cool as a cucumber, rolled down the window,
and threw a load of cash into the air! The crowd cheered and let the car through
because the foreigners had supported their cause. Andrews acted like James Bond,
with tremendous presence of mind! Anyway, everyone made it safely to Madras for
a one day conference I had arranged on December 21, and for the the December 22
function presided by Prime Minister Rajiv Gandhi.

The talks that Andrews gave at various conferences, including the one that I
organized at Anna University on December 21, one day before the 100-th birthday
of Ramanujan, were all for expert audiences. Since Andrews is a charismatic
speaker, I wanted him to give a lecture to a general audience. So my father and
I arranged a talk by him at our home on December 23, under the auspices of the
Alladi Foundation that my father started in 1983 in memory of my grandfather Sir
Alladi Krishnaswami Iyer, one of the most eminent lawyers of India. We invited
the Consul General of the USA to preside over the lecture which was attended by
prominent citizens of Madras in various walks of life—lawyers, judges, aristocrats,
businessmen, college teachers and students. Andrews charmed them all with his
inimitable description of the story of the discovery of Ramanujan’s Lost Notebook.
But something sensational happened that night after Andrews’ lecture: Following
the talk, many of us assembled at the Taj Coromandel Hotel for a dinner in
honor of the conference delegates hosted by Mr. N. Ram, Editor of The Hindu,
India’s National Newspaper, based in Madras. (Ram’s connection with Andrews
was that in 1976, shortly after the Lost Notebook was discovered, he published a
full page interview with Andrews in The Hindu.) After dinner, while we chatting
over cocktails and dessert, the news came in whispers that MGR had passed away,
and so the city would come to a standstill by daybreak once the general public would
hear this news. So under the cover of darkness, we were asked to quietly make our
way back to our hotels. And yes, as predicted, there was a complete shutdown and



12 K. Alladi

the Ramanujan Centenary Conference did not take place on December 24; instead
all talks were squeezed into the next two days. Fortunately, Andrews had spoken at
the conference on December 23. The Goddess of Namakkal had made sure that the
Ramanujan Centenary celebration on December 22, and the talks the next day by
the Great Trinity, would not be affected by such a tragedy!

The Frontiers of Science Lecture in Florida At the University of Florida in
Gainesville, there was a public lecture series called Frontiers of Science. This was
organized by the physics department, and students received one (hour) course credit
for attending these lectures. Many world famous scientists spoke in this lecture
series such as group theorist John Conway, and Johansson, the discoverer of the
“Lucy” skeleton. So after my return from the Ramanujan Centennial, I suggested
to the organizers to invite George Andrews. I never heard back from them and so I
felt they were not interested. Quite surprisingly, three years later, in Fall 1990, they
contacted me and expressed interest in Andrews delivering a Frontiers of Science
Lecture. So Andrews gave such a talk in November 1990, and held the 1000 or
more members of the audience in the University Auditorium in rapt attention as he
described the story of the discovery of the Lost Notebook. That was his first visit
to Florida, but in that visit, our collaboration began in a remarkable way. I will now
relate this fascinating story that will reveal the genius of this man.

In early 1989, I got a phone call from Basil Gordon, one of my former teachers
at UCLA where I did my PhD work. Gordon said that he would be on a fully
paid sabbatical in 1989–1990, and that he would like to spend the Fall of 1989 in
Florida. After the Ramanujan Centennial, I attempted some research on partitions
and q-series, but the visit of Gordon providedme a real opportunity because Gordon
was a dominant force in this domain; in the 1960s he had obtained a far-reaching
generalization of the Rogers–Ramanujan identities to all odd moduli. Gordon and I
first obtained a significant generalization of Schur’s famous 1926 partition theorem
[23] by a new technique which we called the method of weighted words. We then
extended this method to obtain a generalization and refinement of a deep 1967
partition theorem of Göllnitz.We cast this generalization in the form of a remarkable
three parameter q-hypergeometric key identity which we were unable to prove.
When Andrews arrived in Florida for the Frontiers of Science Lecture, I went to
the airport to receive him. I did not waste any time and showed him the identity
right there. He said it was fascinating. During his three day stay in Gainesville, he
thought of nothing else. He focused solely on the identity. In the visitors office that
he occupied in our department, I saw him working on the identity, every day, and
every hour. On the last day, on the way to the airport, he handed me an eight page
proof of this key identity by q-hypergeometric techniques that only he could wield
with such power. That is how my first paper with him (jointly also with Gordon)
came about.

Sabbatical at Penn State, 1992–1993 I was having my first sabbatical in 1992–
1993 and Andrews invited me to Penn State for that entire year. So I went to
State College, Pennsylvania with my family. It was the most productive year of my
academic life—I completed work on five papers of which two were in collaboration
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with Andrews. He and his wife Joy were gracious hosts. They showed us around
State College and we got together as families for picnics. Most importantly,
Andrews gave a year long graduate course on the theory of partitions that I attended.
Although I was doing research in the theory of partitions, I never had a course on
partitions and q-hypergeometric series as a student and so it was a treat for me
to learn from the master. Dennis Eichhorn and Andrew Sills were also taking this
course as graduate students.

The sabbatical year at Penn State gave me time to also write up work I had
done previously. It was there that I finished writing my first joint paper with
Andrews on the Göllnitz theorem. The story of my second joint paper with Andrews
written at Penn State on the Capparelli conjecture is also equally remarkable,
and demonstrates once again Andrews’ power in the area of partitions and q-
hypergeometric series, and so I will relate this now.

In the summer of 1992, the Rademacher Centenary Conference was held at
Penn State. Andrews was a former student of Rademacher, and so he was the
lead organizer of this conference. On the opening day of the conference, Jim
Lepowsky gave a talk on how Lie algebras could be used to discover, and in some
instances, prove, various Rogers–Ramanujan type partition identities. During the
talk, he mentioned a pair of partition identities that his student Stefano Capparelli
had discovered in the study of vertex operators of Lie algebras but was unable
to prove. Even though Andrews was the main conference organizer, he went into
hiding during the breaks to work on the Capparelli Conjecture. By the end of the
conference, he had proved the conjecture; so on the last day, he changed the title
of his talk and spoke about a proof of the Capparelli conjecture! This story bears
similarity to the way in which he proved the three parameter identity for the Göllnitz
theorem that Gordon and I had found but could not prove.

I was not present at the Rademacher Centenary Conference since I was in India
at that time, just two months before reaching Penn State for my sabbatical. But
Basil Gordon was at that conference and he told me this story. Actually, during
Lepowsky’s lecture, Gordon realized that our method of weighted words would
apply to the Capparelli partition theorems and he expressed this view to me in
a telephone call soon after I arrived at Penn State. So during my sabbatical, I
worked out the details of this approach to obtain a two parameter refinement of
the Capparelli theorems, and in that process got a combinatorial proof as well. This
led to my second joint paper with Andrews, with Gordon also as a co-author.

Honorary Doctorate at UF in 2002 In view of his fundamental research and his
contributions to the profession, Andrews is the recipient of numerous honors. He
has received honorary doctorates from the University of Illinois and the University
of Parma. In 2002, he was awarded an Honorary Doctorate by the University of
Florida. I was Department Chair at that time, and it was then that we formalized
the arrangement to have him as a Distinguished Visiting Professor, so that he would
spend the entire Spring Term each year at the University of Florida. Some of his
most important recent works have had a Florida origin, such as his work on Durfee
symbols, and on the function spt (n).
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Visit to SASTRA University, 2003 In 2003, the recently formed SASTRA Uni-
versity, purchased Ramanujan’s home in Kumbakonam, renovated it, and decided
to maintain it as a museum. This was a major event in the preservation of
Ramanujan’s legacy for posterity. To mark the occasion, SASTRA decided to have
an International Conference at their newly constructed Srinivasa Ramanujan Centre
in Kumbakonam to coincide with Ramanujan’s birthday, December 22. I was invited
to organize the technical session and given funds to bring a team of mathematicians
to Kumbakonam. SASTRA was a new entry in the Ramanujan world, but this
conference seemed to me interesting and promising. But how to make a success
of this? So I called Andrews and told him that something exciting is happening in
Ramanujan’s hometown, and I would like him to give the opening lecture at this
conference. He readily agreed. Once he accepted, I called other mathematicians and
told them that Andrews will be there. So they too accepted the invitation to the First
SASTRA Conference. That shows Andrews’ drawing power! That conference was
inaugurated by India’s President Abdul Kalam who also declared open Ramanujan’s
home as a museum and national treasure.

Ramanujan 125, Honorary Doctorate at SASTRA Many things developed after
that 2003 SASTRA conference—the conferences at SASTRA became an annual
event that I help organize, and in 2005 the SASTRA Ramanujan Prize was launched.
SASTRA invited me to be Chair of the Prize Committee. I felt that Andrews’
input would be crucial for the success of the prize. So I invited him to be on the
Prize Committee during the first year, and he readily agreed. I then informed others
about the prize and that Andrews was on the Prize Committee, and they too agreed
enthusiastically. The prize as you know has become one of the most prestigious
in the world, and I am grateful to Andrews for agreeing to serve on the Prize
Committee during the first year.

In view of the annual conferences and the prize, SASTRA had become a major
force in the world of Ramanujan by the time Ramanujan’s 125-th Anniversary
was celebrated in December 2012. So I suggested to the Vice-Chancellor of
SASTRA, that the three greatest figures in the world of Ramanujan—namely the
Trinity—should be recognized by SASTRA with honorary doctorates in Ramanu-
jan’s hometown, Kumbakonam. The Vice-Chancellor liked this suggestion, and
so Andrews, Askey and Berndt were awarded honorary doctorates in a colorful
ceremony with traditional Indian music being played as the recipients walked in.

Birthday Conferences Every 5 Years Andrews has remained productive defying
the passage of time. In view of his enormous influence, and his charm, conferences
in his honor have been organized every 5 years starting from his 60-th birthday, and
I have had the privilege of participating in every one of them—in Maratea, Italy in
1998 for his 60-th, in Penn State in 2003 and 2008 for his 65-th and 70-th, in Tianjin,
China in 2013 for his 75-th, and now in Penn State for his 80th.

In Indian culture, the 80th birthday is of special significance. Somewhere
between the 80th and 81st birthdays, the individual would have seen 1000 crescent
moons, and sighting the crescent moon is auspicious in the Hindu religion because
it adorns the head of Lord Shiva. George Andrews is still going strong at 80, with
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no signs of slowing down. So he is full of mathematical energy and continues to be
our inspiring leader.

G. H. Hardy once said that he had the unique privilege of collaborating with
Ramanujan and Littlewood in something like equal terms. Although I am noHardy, I
can say proudly that I am unique in having had a close collaboration with Paul Erdős
and George Andrews, two of the most influential mathematicians of our time! I next
describe my joint work with Andrews on the Göllnitz and Capparelli theorems.

3 Collaboration with Andrews

Before describing my joint work with Andrews, I need to briefly provide as
background, my joint work with Gordon on Schur’s theorem.

One of the first results in the theory of partitions that one encounters, is a lovely
theorem of Euler, namely:

Theorem E The number of partitions pd(n) of n into distinct parts, equals the
number of partitions po(n) of n into odd parts.

Euler’s proof of this was to consider the product generating functions of these
two partition functions and show they are equal by using the trick

1 + x = 1 − x2

1 − x
.

More precisely,

∞∑

n=0

pd(n)qn =
∞∏

m=1

(1 + qm) =
∞∏

m=1

1 − q2m

1 − qm
=

∞∏

m=1

1

1 − q2m−1
=

∞∑

n=0

po(n)qn.

(1)

Let us think of partitions into distinct parts as those for which the gap between the
parts is ≥ 1, and partitions into odd parts as those whose parts are ≡ ±1 (mod 4). If
Euler’s theorem is viewed in this fashion, then the celebrated Rogers–Ramanujan
partition theorem is the “next level” result with gap ≥ 1 replaced by gap ≥ 2
between parts, and the congruence mod 4 replaced by modulus 5. More precisely,
the first Rogers–Ramanujan partition theorem is:

Theorem R1 The number of partitions of an integer n into parts that differ by ≥ 2,
equals the number of partitions of n into parts ≡ ±1 (mod 5).

In the second Rogers–Ramanujan partition theorem (R2) we consider partitions
whose parts differ by≥ 2 but do not have 1 as a part, and equate these with partitions
into parts≡ ±2 (mod 5). The two Rogers–Ramanujan partition identities can be cast
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in an analytic form, namely

∞∑

n=0

qn2

(q)n
= 1

(q; q5)∞(q4; q5)∞
, (2)

and

∞∑

n=0

qn2+n

(q)n
= 1

(q2; q5)∞(q3; q5)∞
. (3)

In (2) and (3) and in what follows, we have used the standard notation

(a; q)n = (a)n =
n∏

j=1

(1 − aqj−1),

and

(a)∞ = lim
n→∞(a)n, for |q| < 1.

When the base is q , then as on the left in (2) and (3), we do not mention it, but when
the base is other than q , then we always mention it, as on the right in (2) and (3).

Although the Rogers–Ramanujan identities are the next level identities beyond
Euler’s theorem, they are much deeper. They also have a rich history that we will
not get into here. We just mention that the analytic forms of the identities (2) and (3)
were first discovered by Rogers and Ramanujan independently, and it was only later
that MacMahon and Schur independently provided the partition version, namely
Theorems R1 and R2. Neither Rogers nor Ramanujan mentioned the partition
versions of (2) and (3). So in fairness, Theorems R1 and R2 should be called the
MacMahon-Schur theorems.

In the theory of partitions and q-series, a Rogers–Ramanujan (R-R) type identity
is a q-hypergeometric identity in the form of an infinite (possibly multiple) series
equals an infinite product. The series is the generating function of partitions whose
parts satisfy certain difference conditions, whereas the product is the generating
function of partitions whose parts usually satisfy certain congruence conditions.
Since the 1960s, Andrews has spearheaded the study of R-R type identities (see
[15], for instance). R-R type identities arise as solutions of models in statistical
mechanics as first observed by Rodney Baxter in his fundamental work. After
noticing the role of R-R type identities in certain physical problems, Baxter and his
group approached Andrews to provide insight into the structure of such identities.
Andrews then collaboratedwith Baxter and Peter Forrester to determine all R-R type
identities that arise as solutions of the Hard-HexagonModel in statistical mechanics.
For a discussion of a theory of R-R type identities, see Andrews [15, Ch. 9]. For a
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discussion of connections with problems in physics, see Andrews’ CBMS Lectures
[16].

The partition theorem which is the combinatorial interpretation of an R-R type
identity, is called a Rogers–Ramanujan type partition identity. A q-hypergeometric
R-R type identity is usually discovered first and then its combinatorial interpretation
as a partition theorem is given. There are important instances of Rogers–Ramanujan
type partition identities being discovered first and their q-hypergeometric versions
given later. Perhaps the first such significant example is the 1926 partition theorem
of Schur [23].

In emphasizing the partition version of (2) and (3), Schur discovered the “next
level” partition theorem, namely:

Theorem S (Schur 1926) Let T (n) denote the number of partitions of an integer n

into parts ≡ ±1 (mod 6).
Let S(n) denote the number of partitions of n into distinct parts ≡ ±1 (mod 3).
Let S1(n) denote the number of partitions of n into parts that differ by ≥ 3, where

the inequality is strict if a part is a multiple of 3. Then

T (n) = S(n) = S1(n).

The equality T (n) = S(n) is simple and follows easily by using Euler’s trick on
their product generating functions, namely

∞∑

n=0

T (n)qn = 1

(q; q6)∞(q5; q6)∞
= (−q; q3)∞(−q2; q3)∞ =

∞∑

n=0

S(n)qn.

(4)

Thus it is the equality S(n) = S1(n) which is the real challenge. In 1966, Andrews
[11] gave a a new q-theoretic proof of S(n) = S1(n). This enabled him to discover
two infinite families of identities ([12, 13]) modulo 2k − 1 emanating from Schur’s
theorem.

In 1989, in collaboration with Gordon, I obtained a generalization and two
parameter refinement of the equality S(n) = S1(n) (see [10]). The main idea in
[10] was to establish the key identity

∑

i,j

aibj
∑

m

qTi+j−m+Tm

(q)i−m(q)j−m(q)m
= (−aq)∞(−bq)∞, (5)

and to view a two parameter refinement of the equality S(n) = S1(n) as emerging
from (5) under the transformations

(dilation) q �→ q3, and (translations) a �→ aq−2, b �→ bq−1. (6)

In (5) and below, Tm = m(m + 1)/2 is the m-th triangular number.
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The interpretation of the product in (5) as the generating function of bi-partitions
into distinct parts in two colors is clear. In [10] it was shown that the series in (5)
is the generating function of partitions (= words with weights attached) into distinct
parts occurring in three colors - two primary colors a and b, and one secondary color
ab, and satisfying certain gap conditions. We describe this now.

We assume that the integer 1 occurs in two primary colors a and b, and that each
integer n ≥ 2 occurs in the two primary colors as well as in the secondary color ab.
By an, bn, and abn, we denote the integer n in colors a, b, and ab respectively. In
order to discuss partitions, we need to impose an order on the colors, and the order
that Gordon and I chose is

a1 < b1 < ab2 < a2 < b2 < ab3 < a3 < b3 < · · · . (7)

Thus for a given integer n, the order of the colors is

ab < a < b. (8)

The transformations in (6) correspond to the replacements

an �→ 3n − 2, bn �→ 3n − 1, and abn �→ 3n − 3, (9)

Under (9), the ordering of the colored integers in (7) becomes

1 < 2 < 3 < 4 · · · ,

the standard ordering among the positive integers. This is one of the reasons Gordon
and I chose the ordering in (7).

Using the colored integers, Gordon and I gave the following partition inter-
pretation for the series in (5). We defined Type 1 partitions as those of the form
x1 + x2 + · · · , where the xi are symbols from the sequence in (7) with the condition
that the gap between xi and xi+1, namely the difference between the subscripts of
the colored integers they represent, is ≥ 1, with strict inequality if

xi has a lower order color compared to xi+1, (10a)

or

xi, xi+1 are both of secondary color. (10b)

In (10a), the order of the colors is as in (8).
Using (9) it can be shown that that the gap conditions of Type 1 partitions in

(10a) and (10b) translate to the difference conditions of S1(n) in Schur’s theorem.
Two proofs of (5) were given in [10]—one combinatorial, and another using the
q-Chu–Vandermonde Summation. Thus the R-R type identity for Schur’s theorem
came half a century later.
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Gordon then suggested that we should apply the method of weighted words to
generalize and refine the deep 1967 theorem of Göllnitz [19] which is:

Theorem G Let B(n) denote the number of partitions of n into parts ≡ 2, 5, or
11 (mod 12).

Let C(n) denote the number of partitions of n into distinct parts ≡ 2, 4, or
5 (mod 6).

Let D(n) denote the number of partitions of n into parts that differ by ≥ 6,
where the inequality is strict if a part is ≡ 0, 1, or 3 (mod 6), and with 1 and 3 not
occurring as parts. Then

B(n) = C(n) = D(n).

The equality B(n) = C(n) is easy because

∞∑

n=0

B(n)qn =
∞∏

m=1

1

(1 − q12m−10)(1 − q12m−7)(1 − q12m−1)

=
∞∏

m=1

(1 + q6m−4)(1 + q6m−2)(1 + q6m−1) =
∞∑

n=0

C(n)qn. (11)

This is one reason that we focus on the deeper equality C(n) = D(n), the second
reason being that it is this equality which can be refined.

Göllnitz’ proof of Theorem G is very intricate and difficult but he succeeded in
proving Theorem G in the refined form

C(n; k) = D(n; k), (12)

where C(n; k) and D(n; k) denote the number of partitions of the type counted by
C(n) and D(n) respectively, with the extra condition that the number of parts is k,
and with the convention that parts ≡ 0, 1, or 3 (mod 6) are counted twice. Andrews
[14] subsequently provided a simpler proof. I think besides Göllnitz, Andrews is
the only other person to have gone through the difficult details of Göllnitz’ proof of
Theorem G. In Chapter 10 of his famous CBMS Lectures [16], Andrews asks for a
proof that will provide insights into the structure of the Göllnitz theorem.

In view of (12) and our work on Schur’s theorem, Gordon suggested that we
should look at Göllnitz’ theorem in the context of the method of weighted words.
To this end, Gordon and I first considered the product

(−aq)∞(−bq)∞(−cq)∞ (13)
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and viewed the generating function of C(n) as emerging out of (13) under the
substitutions

(dilation) q �→ q6, and (translations) a �→ aq−4, b �→ bq−2, c �→ cq−1.

(14)

The problem then was to find a series that would sum to this product, with the
series representing the generating function of partitions into colored integers with
gap conditions that would correspond to those governing D(n). What Gordon and
I did was to consider the integer 1 to occur in three primary colors a, b, and c, and
integers n ≥ 2 to occur in these three primary colors as well as in three secondary
colors ab, ac, and bc. As before, the symbols an, bn, · · · , bcn represent n in colors
a, b, · · · , bc respectively. Here too we need an ordering on the colored integers, and
the one we chose is

a1 < b1 < c1 < ab2 < ac2 < a2 < bc2 < b2 < c2 < ab3 < . . . . (15)

The effect of the substitutions (14) is to convert the symbols to

{
am �→ 6m − 4, bm �→ 6m − 2, cn �→ 6m − 1, form ≥ 1,

abm �→ 6m − 6, acm �→ 6m − 5, bcn �→ 6m − 3, form ≥ 2.
(16)

so that the ordering (15) becomes

2 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < 11 < 12 < · · · , (17)

This is one reason for the choice of the ordering of symbols in (15), because they
convert to the natural ordering of the integers in (17) under the transformations (16).
Notice that 1, and 3 are missing in (17), and this explains the condition that 1 and 3
do not occur as parts in the partitions enumerated by D(n) in Theorem G.

To view Theorem G in this context, we think of the primary colors a, b, c as
corresponding to the residue classes 2, 4 and 5 (mod 6) and so the secondary colors
ab, ac, bc correspond to the residue classes 2 + 4 ≡ 6, 2 + 5 ≡ 7 and 4 + 5 ≡
9 (mod 6). Note that integers of secondary color occur only when n ≥ 2 and so ab1,
ac1 and bc1 are missing in (15). This is why integers ac1 = 1 and bc1 = 3 do not
appear in (17). This explains the absence of 1 and 3 among the parts enumerated
by D(n) in Theorem G. Note that ab1 corresponds to the integer 0, which is not
counted as a part in ordinary partitions anyway.

In (15) for a given subscript, the ordering of the colors is

ab < ac < a < bc < b < c. (18)

We use (18) to say for instance that ab is of lower order compared to a, or
equivalently that a is of higher order than ab. With this concept of the order of
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colors, we can define Type 1 partitions to be of the form x1 + x2 + . . . , where the
xi are symbols from (15) with the condition that the gap between xi and xi+1 is ≥ 1
with strict inequality if

xi is of lower order (color) compared to xi+1, (19a)

or

if xi and xi+1 are of the same secondary color. (19b)

Under the transformations given by (16), the gap conditions of Type 1 partitions
become the difference conditions governing D(n). Gordon and I then showed that
the generating function of Type 1 partitions is

∑

i,j,k

aibjck
∑

s=α+β+γ+δ+ε+φ

i=α+δ+ε, j=β+δ+φ, k=γ+ε+φ

qTs+Tδ+Tε+Tφ−1(1 − qα(1 − qφ))

(q)α(q)β(q)γ (q)δ(q)ε(q)φ
(20)

Thus our three three parameter key identity for the generalization and refinement of
Göllnitz’ theorem is

∑

i,j,k

aibjck
∑

s=α+β+γ+δ+ε+φ

i=α+δ+ε, j=β+δ+φ, k=γ+ε+φ

qTs+Tδ+Tε+Tφ−1(1 − qα(1 − qφ))

(q)α(q)β(q)γ (q)δ(q)ε(q)φ

=
∑

i,j,k

aibj ckqTi+Tj +Tk

(q)i(q)j (q)k
= (−aq)∞(−bq)∞(−cq)∞ , (21)

The partition interpretation of (21) that Gordon and I had was:

Theorem 1 Let C(n; i, j, k) denote the number of vector partitions (π1; π2; π3) of
n such that π1 has i distinct parts all in color a, π2 has j distinct parts all in color
b, and π3 has k distinct parts all in color c.

Let D(n; α, β, γ, δ, ε, φ) denote the number of Type 1 partitions of n having α

a-parts, β b-parts, . . . , and φ bc-parts.
Then

C(n; i, j, k) =
∑

i=α+δ+ε

j=β+δ+φ

k=γ+ε+φ

D(n; α, β, γ, δ, ε, φ).

It is to be noted that in Theorem 1,

i + j + k = α + β + γ + 2(δ + ε + φ)
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and so the parts in secondary color are counted twice. This corresponds to the
condition that parts ≡ 0, 1, 3 (mod 6) are counted twice in (12).

The proof in [8] that the expression in (20) is the generating function of minimal
partitions is quite involved and goes by induction on s = α +β +γ + δ + ε +φ, the
number of parts of the Type-1 partitions, and also appeals to minimal partitions
whose generating functions are given by multinomial coefficients (see [8] for
details). Thus everything fitted perfectly, but Gordon and I had a problem: we could
not prove the key identity (21). This is where Andrews entered into the picture.
The story of how he proved (21) is described in Section 2. His ingenious proof of
the remarkable key identity (21) relied on the Watson’s q-analogue of Whipple’s
transformation and the 6ψ6 summation of Bailey. For the proof of (21), we refer
the reader to [8]. Let me just say, that there is no one in the world who can match
Andrews’ power in proving multi-variable q-hypergeometric identities!

One of the great advantages of the method of weighted words is that it provides
a key identity for a partition theorem at the base level, and from this one can extract
several partition theorems by suitable dilations and translations. I investigated in
detail a variety of partition theorems that emerge from (21) (see [1, 3]), but will
report here only two major developments that involved Andrews.

As noted earlier, Göllnitz’ theorem pertains to the dilation q �→ q6 in (21), and
so I wanted to investigate the effect under the transformations

(dilation) q �→ q3, (22a)

and

(translations) a �→ aq−2, b �→ bq−1, c �→ c. (22b)

In this case the product in (21) becomes

∞∏

m=1

(1 + aq3m−2)(1 + bq3m−1)(1 + cq3m),

which is the three parameter generating function of partitions into distinct parts,
and therefore is very interesting. The dilation q �→ q6 converts the six colors
a, b, · · · , bc into the six different residue classes mod 6, and under the dilation
in (22a), one gets partitions into parts that differ by ≥ 3 but these partitions have to
be counted with a weight because each positive integer ≥ 3 occurs in two colors—
one primary and one secondary. Two major consequences of this weighted partition
identity were (i) a new proof of Jacobi’s triple product identity for theta functions,
and (ii) a combinatorial proof of a variant of Göllnitz’ theorem which is equivalent
to it. In the course of identifying this variant, I found a new cubic key identity that
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represents it, namely

∑

i,j,k

aibjck(−c)i(−c)j (− ab
c

q)k(−cq)i+jq
Ti+j+k

(q)i(q)j (q)k(−c)i+j

= (−aq)∞(−bq)∞(−cq)∞.

(23)

As in the case of (21), I approached Andrews for a proof of (23), and he supplied
it in a matter of a few days utilizing Jackson’s q-analogue of Dougall’s summation.
This led to our second joint paper [4]. While (23) is quite deep, it is simpler in
structure compared to (21).

Next I investigated the combinatorial consequences of (21) under the

(dilation) q �→ q4, (24a)

but here there are four possible translations depending on which residue class
modulo 4 one chooses to omit for the primary color. For example, the translations

a �→ aq−3, b �→ bq−1, c �→ cq−3, (24b)

omits the residue class 0 (mod 4) for the primary colors, and there are three other
important dilations. Some very interesting weighted partition identities emerge (see
[3]), but I focused on the translations in (24b) owing to the symmetry. This led me
to the following quartic key identity:

∑

i,j,k,�

ai+�bj ck+�qTi+j+k+�+T�
(− bc

a

)
i

(
− abq

c

)

k

(q)i(q)j (q)k(q)�

(1 + bc
a

q2i−1)

(1 + bc
a

qi−1)
= (−aq)∞(−bq)∞(−cq)∞,

(25)

Once again, I approached Andrews for a proof of (25), and he supplied it using
Jackson’s q-analogue of Dougall’s summation. This led to my third paper with
Andrews [5].

When Göllnitz proved his theorem in 1967, it was viewed as a next level result
beyond Schur’s theorem because the two residue classes 1, 2 (mod 3) for S(n) in
Schur’s Theorem are replaced by three residue classes 2, 4, 5 (mod 6) for C(n) in
Göllnitz’ theorem. Apart from this, it is not clear why Göllnitz’ theorem can be
considered as an extension of Schur’s. But then, by our method of weighted words,
one sees exactly how our generalized Göllnitz Theorem 1 is an extension of Schur’s
to the next level, because the key identity (5) for Schur’s theorem is simply the
special case c = 0 in the key identity (21) for Göllnitz’ theorem.

So if Göllnitz’ theorem is the “next level” result beyond Schur’s theorem, why
is it so much more difficult to prove? One reason for this is because in Göllnitz’
theorem, when expanding the product in (21), we consider only the primary and
secondary colors in the series and omit the ternary color abc. Actually, as early as



24 K. Alladi

1968 and 1969, Andrews [12, 13], had obtained two infinite hierarchies of partition
theorems to moduli 2k − 1 when k ≥ 2, where he starts with k residue classes
(mod 2k − 1) and considers the complete set of residue classes (mod 2k − 1) for the
difference conditions. We now describe his results:

For a given integer r ≥ 2, let a1, a2, . . . , ar be r distinct positive integers such
that

k−1∑

i=1

ai < ak, 1 ≤ k ≤ r. (26)

Condition (26) ensures that the 2r−1 sums
∑

εiai , where εi = 0 or 1, not all εi = 0,
are all distinct. Let these sums in increasing order be denoted by α1, α2, . . . , α2r−1.

Next let N ≥ ∑r
i=1 ai ≥ 2r − 1 be a modulus, and AN denote the set of all

positive integers congruent to some ai (mod N). Similarly, letA′
N denote the set of

all positive integers congruent to some αi (mod N) Also let βN(m) denote the least
positive residue of m (mod N). Finally, if m = αj for some j , let φ(m) denote
the number of terms appearing in the defining sum of m and ψ(m) the smallest ai

appearing in this sum. Then the first general theorem of Andrews [12] is:

Theorem A1 Let C∗(AN ; n) denote the number of partitions of n into distinct parts
taken from AN .

Let D∗(A′
N ; n) denote the number of partitions of n into parts b1, b2, . . . , bν

from A′
N such that

bi − bi+1 ≥ Nφ(βN (bi+1)) + ψ(βN(bi+1)) − βN(bi+1). (27)

Then

C∗(AN ; n) = D∗(A′
N ; n).

To describe the second general theorem of Andrews [13], let ai, αi and N

be as above. Now let −AN denote the set of all positive integers congruent to
some −ai (mod N), and −A′

N the set of all positive integers congruent to some
−αi (mod N). The quantities βN(m), φ(m),ψ(m) are also as above. We then have
(Andrews [13]):

Theorem A2 Let C(−AN ; n) denote the number of partitions of n into distinct
parts taken from −AN .

Let D(−A′
N ; n) denote the number of partitions of n into parts b1, b2, . . . , bν ,

taken from −A′
N such that

bi − bi+1 ≥ Nφ(βN (−bi)) + ψ(βN(−bi)) − βN(−bi) (28)
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and also

bν ≥ N(φ(βN (−bs) − 1)).

Then

C(−AN ; n) = D(−A′
N ; n).

When r = 2, a1 = 1, a2 = 2, N = 3 = 2r − 1, Theorems A1 and A2
both become Theorem S. Thus the two hierarchies emanate from Theorem S, and
it is only when r = 2 that the hierarchies coincide. Thus Theorem S is its own
dual. Conditions (27) and (28) can be understood better by classifying bi+1 (in
Theorem A1) and bi (in Theorem A2) in terms of their residue classes (mod N).
In particular, with r = 3, a1 = 1, a2, a3 = 4 and N = 7 = 23 − 1, Theorems A1
and A2 yield the following corollaries.

Corollary 1 Let C∗(n) denote the number of partitions of n into distinct parts ≡ 1,
2 or 4 (mod 7).

Let D∗(n) denote the number of partitions of n in the form b1 + b2 + · · ·ν such
that bi −bi+1 ≥ 7, 7, 12, 7, 10, 10 or 15 if bi+1 ≡ 1, 2, 3, 4, 5, 6 or 7 (mod 7). Then

C∗(n) = D∗(n).

Corollary 2 Let C(n) denote the number of partitions of n into distinct parts ≡ 3,
5 or 6 (mod 7).

Let D(n) denote the number of partitions of n in the form b1+b2+· · ·+bν such
that bi − bi+1 ≥ 10, 10, 7, 12, 7, 7 or 15 if bi ≡ 8, 9, 3, 11, 5, 6 or 14 (mod 7) and
bν 
= 1, 2, 4 or 7. Then

C(n) = D(n).

Andrews’ proofs of Theorems A1 and A2 are extensions of his proof [11] of
Theorem S and not as difficult as the proof of Göllnitz’ theorem. During the 1998
conference in Maratea, Italy, for Andrews’ 60-th birthday organized by Dominique
Foata, I gave a talk outlining a method of weighted words approach generalization
of Theorems A1 and A2 that Gordon and I had worked out. In our approach, we
obtain an “amalgamation process” that yields the weighted words generalization of
the Andrews hierarchy without a q-hypergeometric key identity. In our approach
we have a single partition theorem with multiple parameters, and the two Andrews
hierarchies turn out to be the two extreme (special) cases under suitable choices of
the parameters (for a description of the main ideas of this approach to the Andrews
hierarchies, see [2], pp. 25–27). Dominique Foata then asked whether there is a
hypergeometric key identity that corresponds to this generalization. Even though
the proofs of Theorems A1 and A2 are simpler compared to the the proof of
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Theorem G, no hypergeometric key identity has yet been found to represent the
Andrews hierarchies when 2k − 1 > 3.

In view of the fact that with a complete set of alphabets one gets an infinite
hierarchy of theorems, Andrews raised as a problem in his CBMS Lectures, whether
there exists a partition theorem beyond Göllnitz’ theorem in the same manner as
Göllnitz’ theorem goes beyond Schur. In the language of the method of weighted
words, this is the same as asking whether there exists a partition theorem starting
with four primary colors a, b, c, d and using only a proper subset of the complete
alphabet of 15 colors, that will yield Göllnitz’ theorem when we set the parameter
d = 0. The answer to this difficult problem was found by Alladi-Andrews-
Berkovich in 2000, by noticing that ALL ternary colors have to be dropped but
the quaternary color abcd needs to be retained. This led to a remarkable identity in
four parameters a, b, c, d that went beyond (21). Our paper [7] describes the ideas
behind the construction of this four parameter identity, and provides the proof as
well. I just mention here a striking (mod 15) identity that emerges from this four
parameter q-hypergeometric identity:

Theorem AAB Let P(n) denote the number of partitions of n into distinct parts
≡ −23,−22,−21,−20 (mod 15).

Let G(n) denote the number of partitions of n into parts 
≡ 20, 21, 22, 23

(mod 15), such that the difference between the parts is ≥ 15, with equality
only if a part is ≡ −23,−22,−21,−20 (mod 15), parts which are ≡
±20,±21,±22,±23 (mod 15) are > 15, the difference between the multiples
of 15 is ≥ 60, and the smallest multiple of 15 is

{
≥ 30 + 30τ, if 7 is a part, and

≥ 45 + 30τ, otherwise,

where τ is number of non–multiples of 15 in the partition. Then

G(n) = P(n).

One aspect of Göllnitz’ Theorem G that escaped attention was whether it had
a dual in the sense that Theorems A1 and A2 can be considered as duals. More
precisely, the residue classes of Corollary 1 that constitute the primary colors are
1, 2, 4 (mod 7), whereas the residue classes that constitute the primary colors
in Corollary 2 are −1,−2,−4 (mod 7). Now one can view 2, 4, 5 (mod 6) as
−1,−2,−4 (mod 6). So the question is whether there is a dual result to Theorem G
starting with 1, 2, 4 (mod 6). Andrews found such a theorem, namely:

Theorem A Let B∗(n) denote the number of partitions of n into parts ≡ 1, 7, or
10 (mod 12).

Let C∗(n) denote the number of partitions of n into distinct parts ≡ 1, 2, or
4 (mod 6).
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Let D∗(n) denote the number of partitions of n into parts that differ by at least 6,
where the inequality is strict if the larger part is ≡ 0, 3, or 5 (mod 6), with the
exception that 6 + 1 may appear in the partition. Then

B∗(n) = C∗(n) = D∗(n).

Andrews provided a proof of Theorem A very similar to his proof of Theorem G
in [14]. My role then was to construct a key identity that represented this dual, which
I did. This key identity for the dual, although different from (21), is equivalent to it.
This led to our most recent joint paper [6] which we published in a Special Volume
of The Ramanujan Journal dedicated to the memory of Basil Gordon.

I conclude by describing my joint paper with Andrews on the Capparelli partition
theorems.

In fundamental work [20, 21], Lepowsky and Wilson gave a Lie theoretic proof
of the Rogers–Ramanujan identities and in that process showed how R-R type
identities arise in the study of vertex operators in Lie algebras. Using vertex operator
theory, Stefano Capparelli, a PhD student of Lepowsky in 1992, “discovered” two
new partition results [18] which he could not prove and so he stated them as
conjectures:

Conjecture C1 Let C∗(n) denote the number of partitions of n into parts ≡ ±2,
±3 (mod 12).

Let D(n) denote the number of partitions of n into parts > 1 with minimal
difference 2, where the difference is ≥ 4 unless consecutive parts are both multiples
of 3 or add up to a multiple of 6. Then

C∗(n) = D(n).

He had a second partition result, Conjecture C2, which we do not state here
because the conditions are more complicated; also that is not essential to what we
will describe here.

As mentioned in Part I, Lepowsky stated Conjecture C1 on the opening day of the
Rademacher Centenary Conference at Penn State, and by the time that conference
ended, Andrews had a proof using q-recurrences (see [17]).

The first thing I did on seeing Conjecture C1 was to replace C∗(n) by C(n), the
number of partitions of n into distinct parts ≡ 2, 3, 4 or 6 (mod 6), and to note that

C(n) = C∗(n) (29)

This is because by Euler’s trick

∞∑

n=0

C∗(n)qn = 1

(q2; q12)∞(q3; q12)∞(q9; q12)∞(q10; q12)∞

= (−q2; q6)∞(−q4; q6)∞(−q3; q3)∞ =
∞∑

n=0

C(n)qn. (30)
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One reason for replacingC∗(n) byC(n) is that the equality in (29) can be refined.
Another reason is that Conjecture C2 can be more elegantly stated by replacingC(n)

by the function C′(n) which enumerates the number of partitions into distinct parts
≡ 1, 3, 5, or 6 (mod 6).

The refinement of the Capparelli Conjecture C1 that Andrews, Gordon and I [9]
proved was:

Theorem 2 Let C(n; i, j, k) denote the number of partitions counted by C(n) with
the additional restriction that there are precisely i parts ≡ 4 (mod 6), j parts ≡
2 (mod 6), and of those ≡ 0 (mod 3), exactly k are > 3(i + j).

Let D(n; i, j, k) denote the number of partitions counted by D(n) with the
additional restriction that there are precisely i parts ≡ 1 (mod 3), j parts ≡
2 (mod 3), and k parts ≡ 0 (mod 3). Then

C(n; i, j, k) = D(n; i, j, k).

a1 < b2 < c1 < a2 < b3 < c2 < a3 < b4 < c3 < · · · . (31)

The Capparelli problem corresponds to the transformations

aj �→ 3j − 2, bj �→ 3j − 4, cj �→ 3j, (32)

in which case the inequalities in (31) become

1 < 2 < 3 < 4 < 5 < · · · ,

the natural ordering among the positive integers. With this we were able to
generalize and refine Theorem 2 as follows:

Theorem 3 Let K(n; i, j, k) denote the number of vector partitions of n in the form
(π1, π2, π3) such that π1 has distinct even a-parts, π2 has distinct even b-parts, and
π3 has distinct c-parts such that ν(π1) = i, ν(π2) = j , and the number of parts of
π3 which are > i + j is k.

Let G(n; i, j, k) denote the number of partitions (words) of n into symbols aj ,
bj , cj each > a1, such that the gap between consecutive symbols is given by the
matrix below:

a b c

a 2 2 1
b 0 2 0
c 2 3 1

To establish Theorem 2, we put it in the context of the method of weighted words.
More precisely, let the integer 1 occur in two colors a and c and let integers ≥ 2
occur in three colors a, b and c. As before, the symbols aj , bj and cj represent the
integer j in colors a, b and c respectively. To discuss partitions the ordering of the
symbols we used is
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Then

K(n; i, j, k) = G(n; i, j, k).

Note The matrix above is to read row-wise. Thus if aj is a part of the partition, and
the next larger part has color b, then its weight (= subscript) must be > j + 2.

In [9] we gave a combinatorial proof of Theorem 2 by using some ideas of
Bressoud, and another proof by first showing that it is equivalent to the following
key identity

∑

i,j,k,n

K(n; i, j, k)aibj ckqn =
∑

i,j

aibj q2Ti+2Tj (−q)i+j (−cqi+j+1)∞
(q2; q2)i (q2; q2)j

=
∑

i,j,k,n

G(n; i, j, k)aibj ckqn =
∑

i,j,k

aibj ckq2Ti+2Tj +Tk+(i+j)k

(q)i+j+k

×
[
i + j + k

i + j, k

]

q

[
i + j

i, j

]

q2

,

(33)

and then proving this identity.
The main difficulty in (33) was to show that the series on the right is the

generating function of partitions with gap conditions given by the entries in the
above table. This required the study of minimal partitions having a part in a specified
color as the smallest part. Once the generating function of the G(n; i, j, k) was
shown to be the series on the right in (29), it was not difficult to establish the equality
of this with the series on the left. If we take c = 1, then the generating function on
the left in (33) becomes a product, because

(−q)∞
∑

i,j,k

aibjq2Ti+2Tj

(q2; q2)i (q2; q2)j
= (−q)∞(−aq2; q2)∞(−bq2; q2)∞. (34)

In (30) if we replace q �→ q3, a �→ q−2, b �→ q−4, we get

∞∏

j=0

(1 + q6j−2)(1 + q6j−4)(1 + q3j ) =
∞∑

n=0

C(n)qn,

and so Capparelli’s conjecture follows.
I could say so much more about Andrews’ work on partitions, q-series and

Ramanujan, but here I chose to focus on an aspect of our joint work that shows
that in manipulating q-hypergeometric series, he has no match in our generation.
Even though he towers head and shoulders above the rest in the world of partitions,
q-series and Ramanujan, he is a perfect gentleman always willing to help. It is a
pleasure and a privilege for me to be his friend and collaborator.
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Ramanujan, His Lost Notebook,
Its Importance

Bruce C. Berndt

To George Andrews, my close friend and collaborator, on his
80th birthday

Abstract In the spring of 1976, George Andrews discovered Ramanujan’s lost
notebook in the library of Trinity College, Cambridge. The present paper provides
an account of Andrews’ discovery of the lost notebook and its history. A general
description of its contents as well as discussions of some of the most important
topics therein are given. The paper is intended for a very general audience.

1 Introduction

OnMarch 24, 1915, near the end of his first winter in Cambridge, Ramanujan wrote
to his friend E. Vinayaka Row [31, pp. 116–117] in Madras, “I was not well till the
beginning of this term owing to the weather and consequently I couldn’t publish any
thing for about 5 months.” By the end of his third year in England, Ramanujan was
critically ill, and, for the next 2 years, he was confined to nursing homes. In March,
1919, Ramanujan returned to India where he died on April 26, 1920 at the age of 32.
It is tragic that the onset of his illness was likely caused by at least two incidences
of dysentery, not tuberculosis as then diagnosed, and that his life could likely have
been saved [31, pp. 116–117].

There is no other person in the history of mathematics who accomplished such
a prodigious amount of beautiful, influential, and everlasting mathematics in the
last years of her/his life while suffering from a debilitating illness. The music of
Wagner’s Götterdämmerung or Mahler’s Tragic Sixth Symphony or any art form
cannot begin to convey this tragedy to us. The Final Act of this drama is tragic, but
it is also redemptive. According to Janaki, “he was doing his sums up until four days
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before he died.” Ramanujan was producing his “lost notebook” for us. His beautiful
identities, e.g., for theta functions, mock theta functions, Eisenstein series, other q-
series, continued fractions, and partitions must have provided hours of pleasure for
him while enduring insurmountable pain. We are the beneficiaries of his struggle;
he has left us so much to enjoy.

The path of Ramanujan’s final theorems to us was “bumpy.” But GeorgeAndrews
smoothed out these bumps when in the spring of 1976 he found Ramanujan’s “lost
notebook” while sifting through the papers of the late G. N. Watson at Trinity
College, Cambridge. Perhaps not all readers are aware of many of these bumps,
and so a primary purpose of this paper is to relate the history (as best as we can put
it together) of the “lost notebook” and the events leading up to Andrews’ discovery.

The “lost notebook” has generated hundreds (perhaps thousands) of research and
expository papers, as well as several books. More than any other mathematician,
Andrews has contributed to our understanding of the “lost notebook.” An examina-
tion of the references in the volumes [5–9] that Andrews and the author have written
on the “lost notebook” shows that (besides the self-references to our volumes) 32, 30
and 29 (not necessarily distinct) references to works of Andrews and his co-authors
in, respectively, the first, second, and fifth volumes.

In the latter sections of this paper, we offer comments on a few of the topics
found in the “lost notebook” and other unpublished manuscripts in [62] to which
Andrews and others have contributed.

2 Discovery of the Lost Notebook

As mentioned above, in the spring of 1976, Andrews visited Trinity College Library
at Cambridge University. Dr. Lucy Slater had suggested to him that there were
materials deposited there from the estate of the late G. N. Watson that might be of
interest to him. In one box of materials fromWatson’s estate, Andrews found several
items written by Ramanujan, with the most interesting item being a manuscript
written on 138 sides in Ramanujan’s distinctive handwriting. The sheets contained
over six hundred formulas without proofs. Although technically not a notebook,
and although technically not “lost,” as we shall see in the sequel, it was natural in
view of the fame of Ramanujan’s (earlier) notebooks [61] to call this manuscript
Ramanujan’s lost notebook. Almost certainly, this manuscript, or at least most of it,
was written during the last year of Ramanujan’s life, after his return to India from
England. For an engaging personal account of his discovery of the lost notebook,
see Andrews’ paper [4].

The manuscript contains no introduction or covering letter. In fact, there are
hardly any words in the manuscript. There are a few marks evidently made by
a cataloguer, and there are also a few remarks in the handwriting of Hardy.
Undoubtedly, the most famous objects examined in the lost notebook are the mock
theta functions, about which more will be written later.
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The natural, burning question now is: How did this manuscript of Ramanujan
come into Watson’s possession? We think that the manuscript’s history can be
traced.

3 History of the Lost Notebook

After Ramanujan died on April 26, 1920, his notebooks and unpublished papers
were given by his widow, Janaki, to the University ofMadras. (It should be remarked
that in a conversation with the author, Janaki told him that during the funeral of her
late husband, many of his papers were stolen by two persons. If Janaki’s recollection
is correct, these papers have evidently never been located.) After Ramanujan’s death,
Hardy strongly advocated bringing together all of Ramanujan’s manuscripts, both
published and unpublished, for publication. On August 30, 1923, Francis Dewsbury,
the registrar at the University of Madras, wrote to Hardy informing him that [31,
p. 266]:

I have the honour to advise despatch to-day to your address per registered and insured parcel
post of the four manuscript note-books referred to in my letter No. 6796 of the 2nd idem.

I also forward a packet of miscellaneous papers which have not been copied. It is left
to you to decide whether any or all of them should find a place in the proposed memorial
volume. Kindly preserve them for ultimate return to this office.

(Hardy evidently never returned any of the miscellaneous papers.) Although no
accurate record of this material exists, the amount sent to Hardy was doubtless
substantial. It is therefore highly likely that this “packet of miscellaneous papers”
contained the aforementioned “lost notebook.” R. A. Rankin, in fact, opines [32,
p. 124]:

It is clear that the long MS represents work of Ramanujan subsequent to January 1920 and
there can therefore be little doubt that it constitutes the whole or part of the miscellaneous
papers dispatched to Hardy from Madras on 30 August 1923.

Further details can be found in Rankin’s accounts of Ramanujan’s unpublished
manuscripts [64, 65], [32, pp. 117–142].

In 1934, Hardy passed on to Watson a considerable amount of his material
on Ramanujan. However, it appears that either Watson did not possess the “lost
notebook” in 1936 and 1937 when he published his papers [69, 70] on mock
theta functions, or he had not thoroughly examined it. In any event, Watson [69,
p. 61], [31, p. 330] writes that he believes that Ramanujan was unaware of certain
third order mock theta functions. But, in his lost notebook, Ramanujan did indeed
examine these third order mock theta functions. Watson’s interest in Ramanujan’s
mathematics waned in the late 1930s, and Hardy died in 1947. In conclusion,
sometime between 1934 and 1947 and probably closer to 1947, Hardy gave Watson
the manuscript that we now call the “lost notebook.”
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Watson was Mason Professor of Pure Mathematics at the University of Birming-
ham for most of his career, retiring in 1951. He died in 1965 at the age of 79. Rankin,
who succeeded Watson as Mason Professor but who had since become Professor of
Mathematics at the University of Glasgow, was asked to write an obituary of Watson
for the London Mathematical Society. Rankin wrote [64], [32, p. 120]:

For this purpose I visited Mrs Watson on 12 July 1965 and was shown into a fair-sized
room devoid of furniture and almost knee-deep in manuscripts covering the floor area. In the
space of one day I had time only to make a somewhat cursory examination, but discovered
a number of interesting items. Apart from Watson’s projected and incomplete revision of
Whittaker and Watson’s Modern Analysis in five or more volumes, and his monograph on
Three decades of midland railway locomotives, there was a great deal of material relating
to Ramanujan, including copies of Notebooks 1 and 2, his work with B. M. Wilson on the
Notebooks and much other material. . . . In November 19 1965 Dr J. M. Whittaker who
had been asked by the Royal Society to prepare an obituary notice [71], paid a similar visit
and unearthed a second batch of Ramanujan material. A further batch was given to me in
April 1969 by Mrs Watson and her son George.

Since her late husband had been a Fellow and Scholar at Trinity College and
had had an abiding, lifelong affection for Trinity College, Mrs. Watson agreed with
Rankin’s suggestion that the library at Trinity College would be the most appropriate
place to preserve her husband’s papers. Since Ramanujan had also been a Fellow at
Trinity College, Rankin’s suggestion was even more appropriate.

During the next 3 years, Rankin sorted through Watson’s papers, and dispatched
Watson’s and Ramanujan’s papers to Trinity College in three batches on November
2, 1965; December 26, 1968; and December 30, 1969, with the Ramanujan papers
being in the second shipment. Rankin did not realize the importance of Ramanujan’s
papers, and so when he wrote Watson’s obituary [63] for the Journal of the London
Mathematical Society, he did not mention any of Ramanujan’s manuscripts. Thus,
for almost 8 years, Ramanujan’s “lost notebook” and some fragments of papers
by Ramanujan lay in the library at Trinity College, known only to a few of the
library’s cataloguers, Rankin, Mrs. Watson, Whittaker, and perhaps a few others.
The 138-page manuscript waited there until Andrews found it and brought it before
the mathematical public in the spring of 1976. It was not until the centenary
of Ramanujan’s birth on December 22, 1987, that Narosa Publishing House in
New Delhi published in photocopy form Ramanujan’s lost notebook and his other
unpublished papers [62].

4 The Origin of the Lost Notebook

Having detailed the probable history of Ramanujan’s lost notebook, we return now
to our earlier claim that the lost notebookwas written in the last year of Ramanujan’s
life. On February 17, 1919, Ramanujan returned to India after almost 5 years in
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England, the last two being confined to nursing homes. Despite the weakening
effects of his debilitating illness, Ramanujan continued to work on mathematics.
Of this intense mathematical activity, up to the discovery of the lost notebook, the
mathematical community knew only of the mock theta functions. These functions
were described in Ramanujan’s last letter to Hardy, dated January 12, 1920 [60,
pp. xxix–xxx, 354–355], [31, pp. 220–223], where he wrote:

I am extremely sorry for not writing you a single letter up to now . . . . I discovered
very interesting functions recently which I call “Mock” ϑ-functions. Unlike the “False”
ϑ-functions (studied partially by Prof. Rogers in his interesting paper) they enter into
mathematics as beautifully as the ordinary theta functions. I am sending you with this letter
some examples.

In this letter, Ramanujan defines four third order mock theta functions, ten fifth
order functions, and three seventh order functions. He also includes three identities
satisfied by the third order functions and five identities satisfied by his first five
fifth order functions. He states that the other five fifth order functions also satisfy
similar identities. In addition to the definitions and formulas stated by Ramanujan in
his last letter to Hardy, the lost notebook contains further discoveries of Ramanujan
about mock theta functions. In particular, it contains the five identities for the second
family of fifth order functions that were only mentioned but not stated in the letter.

We think that we have made the case for our assertion that the lost notebook was
composed during the last year of Ramanujan’s life, when, by his own words, he
discovered the mock theta functions. In fact, only a fraction (perhaps less than 10%)
of the notebook is devoted to the mock theta functions themselves.

5 General Content of the Lost Notebook

The next fundamental question is: What is in Ramanujan’s lost notebook besides
mock theta functions? A majority of the results fall under the purview of q-
series. These include mock theta functions, theta functions, partial theta functions,
false theta functions, identities connected with the Rogers–Fine identity, several
results in the theory of partitions, Eisenstein series, modular equations, the Rogers–
Ramanujan continued fraction, other q-continued fractions, asymptotic expansions
of q-series and q-continued fractions, integrals of theta functions, integrals of
q-products, and incomplete elliptic integrals. Other continued fractions, other
integrals, infinite series identities, Dirichlet series, approximations, arithmetic func-
tions, numerical calculations, Diophantine equations, and elementary mathematics
are some of the further topics examined by Ramanujan in his lost notebook.

The Narosa edition [62] contains further unpublished manuscripts, portions of
both published and unpublished papers, letters to Hardy written from nursing
homes, and scattered sheets and fragments. The three most famous of these
unpublished manuscripts are those on the partition function and Ramanujan’s tau
function [7, 30], forty identities for the Rogers–Ramanujan functions [7, 25], and
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the unpublished remainder of Ramanujan’s published paper on highly composite
numbers [57], [60, pp. 78–128], [7].

In the passages that follow, we select certain topics and examples to illustrate
the content and importance of Ramanujan’s discoveries found in his lost notebook.
For an account of all of Ramanujan’s discoveries in [62], consult the five volumes
prepared by Andrews and the author [5–9].

6 q-Series and Theta Functions

The vast majority of entries in Ramanujan’s lost notebook are on q-series. Thus, we
should begin the more technical portion of this essay by giving a brief introduction
to q-series. Generally, a q-series has expressions of the type

(a)n := (a; q)n := (1 − a)(1 − aq) · · · (1 − aqn−1), n ≥ 0, (6.1)

in the summands, where we interpret (a; q)0 = 1. If the base q is understood, we
often use the notation at the far left-hand side of (6.1). Series with factors (a; q)n
in their summands are also called Eulerian series. Our definition of a q-series is
not entirely satisfactory. Some basic functions in the theory of q-series do not
have expressions (6.1) in their summands. Often in the theory of q-series, we let
parameters in the summands tend to 0 or to ∞, and consequently it may happen that
no factors of the type (a; q)n remain in the summands. Perhaps the most important
q-series without factors (a; q)n in their summands are theta functions. Following
the lead of Ramanujan, we define a general theta function f (a, b) by

f (a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1. (6.2)

Perhaps the most useful property of theta functions is the famous Jacobi triple
product identity [16, p. 35, Entry 19] given by

f (a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞, |ab| < 1, (6.3)

where

(a; q)∞ := lim
n→∞(a; q)n, |q| < 1.

For this exposition, in Ramanujan’s notation and with the use of (6.3), only one
special case,

f (−q) := f (−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞, (6.4)
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is relevant for us. If q = e2πiτ , where Im τ > 0, then q1/24f (−q) = η(τ), the
Dedekind eta function. The last equality in (6.4) renders Euler’s pentagonal number
theorem. For a more detailed introduction to q-series, see the author’s paper [19].

7 Mock Theta Functions

As indicated above, mock theta functions are certain kinds of q-series first intro-
duced by Ramanujan in his last letter to Hardy written on 12 January 1920. He
begins his letter by examining the asymptotic behavior of two q-series as t → 0,
where q = e−t . For example,

∞∑

n=0

qn2

(q; q)2n
=

√
t

2π
exp

(
π2

6t
− t

24

)
+ o(1), (7.1)

as t → 0. (We say that a function F(x) = o(1) as x → a if limx→a F (x) = 0.)
The series above is the reciprocal of a theta function, namely, it is the reciprocal
of f (−q), defined in (6.4). Ramanujan then asks if the converse is true. That
is, suppose we have a q-series that exhibits an asymptotic behavior of the kind
described in (7.1) as we approach any exponential singularity e2πim/n of the
function. Must the function actually be a theta function plus some easily described
trivial function? Ramanujan says “not necessarily so.” “When it is not so I call the
function Mock ϑ-function.”

Ramanujan then gives several examples of mock theta functions. For example,
he defines

f (q) :=
∞∑

n=0

qn2

(−q; q)2n
(7.2)

and asserts that

f (q) +
√

π

t
exp

(
π2

24t
− t

24

)
→ 4, (7.3)

as t → 0, with q = e−t . Then he remarks, “It is inconceivable that a single ϑ

function could be found to cut out the singularities of f (q). (The definition of
f (q) in (7.2) has no relation with the function f (−q) defined in (6.4).) Thus,
f (q) is a mock theta function (of the third order). What is the order of a mock
theta function? Ramanujan does not tell us. We emphasize that Ramanujan does
not prove that f (q) is actually a mock theta function according to his somewhat
imprecise definition. Moreover, no one since has actually proved this statement,
nor has anyone proved that any of Ramanujan’s mock theta functions are really
mock theta functions according to his definition. Note that the series on the left
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side of (7.1) is similar in appearance to the series defining f (q) in (7.2); only the
signs of the parameters in the summands’ q-products are different. However, the two
series behave quite differently, both analytically and arithmetically in regard to their
coefficients. Indeed, one of the fascinating features of q-series is that making what
appears to be a small modification in the series terms drastically alters the behavior
of the function. A. Folsom, K. Ono, and R. C. Rhoades [47] established for the first
time that the limit on the right-hand side of (7.3) is indeed equal to 4.

Ramanujan’s lost notebook contains many identities involving mock theta
functions. We offer two identities for fifth order mock theta functions:

χ(q) :=
∞∑

n=0

qn

(qn+1)n
= 1 +

∞∑

n=0

q2n+1

(qn+1)n+1
(7.4)

and

f0(q) + 2�(q2) = (q5; q5)∞(q5; q10)∞
(q; q5)∞(q4; q5)∞

, (7.5)

where

f0(q) :=
∞∑

n=0

qn2

(−q; q)n
, �(q) := −1 +

∞∑

n=0

q5n2

(q; q5)n+1(q4; q5)n
.

All three functions χ(q), f0(q), and �(q) are mock theta functions. Both of these
identities have interesting implications in the theory of partitions, which we address
in Sect. 8.

The discovery of the lost notebook by Andrews and then the publication of the
lost notebook by Narosa in 1988 [62] stimulated an enormous amount of research on
mock theta functions, as researchers found proofs of the many mock theta function
identities found in the lost notebook. We mention only a few of the more important
contributions by: Andrews [2, 3], Andrews and F. Garvan [11], and D. Hickerson
[52] on fifth order mock theta functions; Andrews and Hickerson [12] on sixth order
mock theta functions; Andrews [2] and Hickerson [53] on seventh order mock theta
functions; and Y.-S. Choi [39–42] on tenth order mock theta functions.

As we have seen, Ramanujan’s definition of a mock theta function is somewhat
vague. Can a precise, coherent theory be developed and find its place among the
other great theories of our day? In 1987, at a meeting held at the University of
Illinois commemorating Ramanujan on the centenary of his birth, F. J. Dyson
addressed this question [44, p. 20], [32, p. 269].

The mock theta-functions give us tantalizing hints of a grand synthesis still to be discovered.
Somehow it should be possible to build them into a coherent group-theoretical structure,
analogous to the structure of modular forms which Hecke built around the old theta-
functions of Jacobi. This remains a challenge for the future. My dream is that I will live
to see the day when our young physicists, struggling to bring the predictions of superstring
theory into correspondence with the facts of nature, will be led to enlarge their analytic
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machinery to include not only theta-functions but mock theta-functions. Perhaps we may
one day see a preprint written by a physicist with the title “Mock Atkin-Lehner Symmetry.”
But before this can happen, the purely mathematical exploration of the mock-modular forms
and their mock-symmetries must be carried a great deal farther.

Since we invoke the words, modular form, at times in the sequel, we provide here
a brief definition. Let V (τ) = (aτ + b)/(cτ + d), where a, b, c, and d are integers
such that ad −bc = 1, and where Im τ > 0. Then f (τ) is a modular form of weight
k if

f (V (τ)) = ε(a, b, c, d)(cτ + d)kf (τ ), (7.6)

where k is real (usually an integer or half of an integer) and |ε(a, b, c, d)| = 1.
In recent years, the work of S. Zwegers [72], K. Bringmann and K. Ono [37, 38],

and several others has made progress in the direction envisioned by Dyson. First
it was observed, to take one example, that the infinite product on the right-hand
side of (7.5) essentially coincided with the Fourier expansion of a certain weakly
holomorphic modular form, where the term “weakly holomorphic” indicates that
the modular form is analytic in the upper half-plane, but may have poles at what
are called “cusps” on the real axis. In his doctoral dissertation [72], Zwegers
related mock theta functions to real analytic vector-valuedmodular forms by adding
to Ramanujan’s mock theta functions certain non-holomorphic functions, which
are called period integrals. Earlier work of Andrews [2], who used Bailey pairs
to express Ramanujan’s Eulerian series in terms of Hecke-type series, was also
essential for Zwegers, since he applied his ideas to the Hecke-type series rather than
to Ramanujan’s original series. Zwegers’ real analytic modular forms are examples
of harmonic Maass forms. Briefly, a Maass form satisfies the functional equation
(7.6) with k = 0 and is an eigenfunction of the hyperbolic Laplacian

� := −y2
(

∂2

∂x2 + ∂2

∂y2

)
, (7.7)

where τ = x + iy. A harmonic Maass form M(τ) again satisfies a functional
equation of the type (7.6) when k is an integer and a slightly different functional
equation if k is half of an integer, but the operator (7.7) is replaced by

�k := −y2
(

∂2

∂x2 + ∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

It is now required that �kM = 0.
Returning to (7.2), Bringmann and Ono [38] examined the more general function

R(ω, q) :=
∞∑

n=0

qn2

(ωq; q)n(ω−1q; q)n
(7.8)
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and proved (under certain hypotheses), when ω is a root of unity, that R(ω, q) is the
holomorphic part of a weight 1

2 harmonic Maass form. In general, Bringmann and
Ono showed that each of Ramanujan’s mock theta functions is the holomorphic part
of a harmonic Maass form. We cease our brief discussion of these developments
and ask readers to consult the comprehensive book by Bringmann, Folsom, Ono,
and Rolen [35].

In their famous paper [50], Hardy and Ramanujan developed an asymptotic series
for the partition function p(n), defined to be the number of ways the positive integer
n can be expressed as a sum of positive integers. For example, since 4 = 3 + 1 =
2+ 2 = 2+ 1+ 1 = 1+ 1+ 1+ 1, p(4) = 5. Some years later, improving on their
work, H. Rademacher [56] found a convergent series representation for p(n). If we
write the mock theta function f (q) from (7.2) as f (q) = ∑∞

n=0 α(n)qn, Andrews
[1] analogously found an asymptotic series for α(n). Bringmann and Ono [37] were
able to replace the asymptotic formula by an exact formula confirming a conjecture
of Andrews.

We have sketched only a few highlights among the extensive recent developments
in the theory of mock theta functions. Readers are encouraged to read Ono’s
comprehensive description [55] of these developments. In Ono’s paper, readers will
also find discussions and references to the permeation of mock theta functions in
physics, thus providing evidence for Dyson’s prophetic vision.

8 Partitions

Recall from above the definition of the partition function p(n). Inspecting a table
of p(n), 1 ≤ n ≤ 200, calculated by P. A. MacMahon, Ramanujan was led to
conjecture the congruences

⎧
⎪⎪⎨

⎪⎪⎩

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod11),

(8.1)

which he eventually proved [30, 59, 62]. In 1944, Dyson [43] sought to combinato-
rially explain (8.1) and in doing so defined the rank of a partition to be the largest
part minus the number of parts. For example, the rank of 3+1 is 1. Dyson observed
that the congruence classes for the rank modulo 5 and 7 appeared to divide the
partitions of p(5n+4) and p(7n+5), respectively, into equinumerous classes. These
conjectures were subsequently proved by A. O. L. Atkin and H. P. F. Swinnerton-
Dyer [13]. However, for the third congruence in (8.1), the corresponding criterion
failed, and so Dyson conjectured the existence of a statistic, which he called the
crank, to combinatorially explain the congruence p(11n + 6) ≡ 0 (mod11). The
crank of a partition was found by Andrews and Garvan [10] and is defined to be
the largest part if the partition contains no one’s, and otherwise to be the number of
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parts larger than the number of one’s minus the number of one’s. The crank divides
the partitions into equinumerous congruence classes modulo 5, 7, and 11 for the
three congruences, respectively, in (8.1).

At roughly the same time that Andrews and Garvan found the crank, it was
observed that in his lost notebook, Ramanujan had found the generating functions
for both the rank and the crank. First, if N(m, n) denotes the number of partitions
of n with rank m, then

∞∑

n=0

∞∑

m=−∞
N(m, n)zmqn =

∞∑

n=0

qn2

(zq; q)n(z−1q; q)n
. (8.2)

The generating function (8.2) should be compared with that in (7.8). Second, for
n > 1, let M(m, n) denote the number of partitions of n with crank m. Then,

∞∑

n=0

∞∑

m=−∞
M(m, n)zmqn = (q; q)∞

(zq; q)∞(z−1q; q)∞
. (8.3)

We do not know if Ramanujan knew the combinatorial implications of the rank and
crank. However, in view of the several results on the generating functions for the
rank and crank as well as calculations for cranks found in his lost notebook, it is
clear that he had realized the importance of these two functions [22, 48]. There is
also evidence that his very last mathematical thoughts were on cranks before he died
on April 26, 1920 [23].

Many identities in the lost notebook have partition theoretic implications. As
promised earlier, we now examine the partition-theoretic interpretations of (7.4) and
(7.5).

We state (7.4) in an equivalent form: The number of partitions of a positive
integer N where the smallest part does not repeat and the largest part is at most
twice the smallest part equals the number of partitions of N where the largest part
is odd and the smallest part is larger than half the largest part. As an example, take
N = 7. Then the relevant partitions are, respectively, 7 = 4 + 3 = 2 + 2 + 2 + 1
and 7 = 3 + 2 + 2 = 1 + 1 + 1 + 1 + 1 + 1 + 1. A short proof can be constructed
with the use of Ferrers diagrams.

To examine (7.5), we first define ρ0(n) to be the number of partitions of n with
unique smallest part and all other parts ≤ the double of the smallest part. For
example, ρ0(5) = 3, with the relevant partitions being 5, 3 + 2, and 2 + 2 + 1.
Second, let N(a, b, n) denote the number of partitions of n with rank congruent to
a modulo b. Then (7.5) is equivalent to The First Mock Theta Conjecture,

N(1, 5, 5n) = N(0, 5, 5n) + ρ0(n). (8.4)

For example, if n = 5, thenN(1, 5, 25) = 393,N(0, 5, 25) = 390, and, as observed
above, ρ0(5) = 3. Although (7.5) has been proved by Hickerson, and now also by
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A. Folsom [45] and by Hickerson and E. Mortenson [54], a combinatorial proof of
(8.4) has never been given.

9 Further q-Series

We have discussed only two facets among Ramanujan’s voluminous contributions
to q-series in his lost notebook. In this short section, we briefly provide two more
examples in illustration of this abundance. One of the showpieces in the theory of
q-series is Heine’s transformation [6, p. 6, Thm. 1.2.1]

∞∑

n=0

(a)n(b)n

(c)n(q)n
tn = (b)∞(at)∞

(c)∞(t)∞

∞∑

n=0

(c/b)n(t)n

(at)n(q)n
bn, (9.1)

where |t|, |b| < 1. There are many identities in the lost notebook, whose proofs
naturally use Heine’s transformation [6, Chapter 1]. One consequence of (9.1) is,
for |aq| < 1 [62, p. 38],

∞∑

n=0

(−aq)n

(−aq2; q2)n
=

∞∑

n=0

(−1)nanqn(n+1)/2

(−aq; q)n
. (9.2)

To see how (9.1) can be used to prove (9.2), consult [6, p. 25, Entry 1.6.4]. For
partition-theoretic proofs, see [33] and [26].

Our second identity is given by [62, p. 35], [6, p. 35, Entry 1.7.9]

∞∑

n=0

(−1)nqn(n+1)/2

(q; q)n(1 − q2n+1)
= f (q3, q5), (9.3)

where f (a, b) is defined by (6.2). We see partitions at work on the left-hand side of
(9.3), but on the right-hand side, we observe that these partitions have cancelled each
other out, except on a considerably thinner set of exponents. For a combinatorial
proof of (9.3), see [26].

10 The Rogers–Ramanujan Continued Fraction

As the name suggests, the Rogers–Ramanujan continued fraction

R(q) := q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · · , |q| < 1, (10.1)
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was first studied by L. J. Rogers [66] in 1894 and then by Ramanujan before
he departed for England, for his notebooks [61] contain many properties of this
continued fraction. His study of R(q) continued unabatedly in the lost notebook,
with the first five chapters of [5] focusing on R(q). Readers may find it strange that
the first numerator of R(q) in (10.1) is q1/5. Because R(q) lives in the homes of
theta functions and modular forms, once we see how it relates to the other functions
living in the same homes, we understand more fully why q1/5 is a part of the
continued fraction.

In his first letter to Hardy [60, p. xxvii], [31, p. 29], Ramanujan offered the
elegant value

R(e−2π) =
√
5 + √

5

2
−

√
5 + 1

2

and also that for R(−e−π), and in his second letter, he communicated the value of
R(e−2π

√
5) [60, p. xxviii], [31, p. 37]. In his lost notebook, Ramanujan recorded

several further values; e.g., on page 46 of [62],

R(−e−π
√
3) = (3 + √

5) −
√
6(5 + √

5)

4
.

Keys to evaluating R(q) in closed form are the identity (found in Ramanujan’s
notebooks [16, p. 267])

1

R(q)
− 1 − R(q) = f (−q1/5)

q1/5f (−q5)
, (10.2)

where f (−q) is defined by (6.4), and a similar identity involving R5(q) that can be
derived from (10.2). If one can evaluate the quotient of Dedekind eta functions on
the right-hand side of (10.2) for a certain value of q , then one can determine R(q)

by solving a simple quadratic equation. The evaluation of quotients of eta functions
at points e−π

√
n is usually quite difficult. To this end, evaluating appropriate class

invariants, which are certain quotients of eta functions at e−π
√

n, is often helpful.
The first general theorem for determining values of R(q) in this direction was
developed by the author, H. H. Chan, and L.-C. Zhang [24].

The function R(q) satisfies several beautiful modular equations. For example [5,
p. 92], if u = R(q) and v = R(q2), then

v − u2

v + u2
= uv2.

Because of limitations of space, we must desist from providing further properties
for R(q), but in closing we remark that R(q) also serves as a model, in that its
properties guided Ramanujan and others that followed in their quests of finding



46 B. C. Berndt

analogous theorems for other q-continued fractions. In particular, see Chapters 6–8
in [5].

11 Eisenstein Series

Continuing in his lost notebook the study of Eisenstein series made in [58],
[60, pp. 136–162], Ramanujan offers many further discoveries about these series.
Furthermore, published with his lost notebook are several letters that Ramanujan
wrote to Hardy from nursing homes during his last 2 years in England; these letters
feature Eisenstein series. An account of all of these discoveries can be found in the
last six chapters in [6]. In this section, we briefly discuss some of these results.

In Ramanujan’s notation, the three primary Eisenstein series are

P(q) := 1 − 24
∞∑

k=1

kqk

1 − qk
,

Q(q) := 1 + 240
∞∑

k=1

k3qk

1 − qk
,

R(q) := 1 − 504
∞∑

k=1

k5qk

1 − qk
.

For q = exp(2πiτ), Im τ > 0, in more contemporary notation, Q(q) = E4(τ )

and R(q) = E6(τ ). These two functions are modular forms of weights 4 and 6,
respectively, and are the “building blocks” for modular forms on the full modular
group. The function P(q) is not a modular form, but it is a quasi-modular form,
because it satisfies the same transformation formulas as an ordinary modular form.

As emphasized in Sect. 8, Hardy and Ramanujan [50], [60, pp. 276–309]
found an asymptotic series for the partition function p(n), which arises from the
power series coefficients of the reciprocal of the Dedekind eta-function. As they
indicated near the end of their paper, their methods also apply to coefficients of
further modular forms that are analytic in the upper half-plane. In their last jointly
published paper [51], [60, pp. 310–321], they considered a similar problem for the
coefficients of modular forms having a simple pole in a fundamental region, and, in
particular, they applied their theorem to find interesting series representations for the
coefficients of the reciprocal of the Eisenstein series E6(τ ). In letters from nursing
homes, Ramanujan calculated formulas for the coefficients of further quotients of
Eisenstein series. The formulas, which were first proved in papers by the author with
P. Bialek [20] and with Bialek and A. J. Yee [21], do not fall under the purview of the
general theorem from [51]. As they are too complicated to offer in a short survey,
we invite readers to examine them in the aforementioned papers or to consult [6,
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Chapter 11]. The work of Ramanujan, the author, Bialek, and Yee has recently been
considerably generalized by Bringmann and B. Kane [36].

Ramanujan recorded many beautiful identities for Eisenstein series in [62]. We
close this section with one of them [6, p. 331]. If f (−q) is defined by (6.4), then

Q(q) = f 10(−q)

f 2(−q5)
+ 250qf 4(−q)f 4(−q5) + 3125q2f 10(−q5)

f 2(−q)
.

12 The Circle and Divisor Problems

Let r2(n) denote the number of representations of the positive integer n as a sum of
two squares. The famous circle problem of Gauss is to determine the precise order
of magnitude for the “error term” P(x) defined by

∑

0≤n≤x

′
r2(n) = πx + P(x), (12.1)

as x → ∞, where the prime ′ on the summation sign on the left side indicates
that if x is an integer, only 1

2 r2(x) is counted. We now explain why this problem is
called the circle problem. Each representation of n as a sum of two squares can be
associated with a lattice point in the plane. For example, 5 = (−2)2 + 12 can be
associated with the lattice point (−2, 1). Then each lattice point can be associated
with a unit square, say that unit square for which the lattice point is in the southwest
corner. Thus, the sum in (12.1) is equal to the number of lattice points in the circle
of radius

√
x centered at the origin, or to the sum of the areas of the aforementioned

squares. The area of this circle, namely πx, is a reasonable approximation to the sum
of the areas of these squares. Gauss showed quite easily that the error made in this
approximation is P(x) = O(

√
x). (We say that F(x) = O(G(x)), as x → ∞, if

there exist positive constants A and x0, such that for all x ≥ x0, |F(x)| ≤ A|G(x)|.)
In 1915, Hardy [49] proved that P(x) 
= O(x1/4), as x tends to ∞. In other

words, there is a sequence of points {xn} tending to ∞ on which P(xn) 
= O(x
1/4
n ).

(He actually proved a slightly stronger result.) In connection with his work on the
circle problem, Hardy [49] proved that

∑

0≤n≤x

′
r2(n) = πx +

∞∑

n=1

r2(n)
(x

n

)1/2
J1(2π

√
nx), (12.2)

where J1(x) is the ordinary Bessel function of order 1. After Gauss, almost all
efforts toward obtaining an upper bound for P(x) have ultimately rested upon
(12.2), and methods of estimating the approximating trigonometric series that is
obtained from the asymptotic formula for J1(2π

√
nx) as n → ∞. In 1906,

W. Sierpinski [67] proved that P(x) = O(x1/3), as x tends to ∞, and there
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have been many improvements in a century of work since then, but all with the
exponent greater than 3/10. It is conjectured that P(x) = O(x1/4+ε), for every
ε > 0. In a footnote, Hardy remarks, “The form of this equation was suggested
to me by Mr. S. Ramanujan, to whom I had communicated the analogous formula
for d(1) + d(2) + · · · + d(n), where d(n) is the number of divisors of n.” In this
same paper, Hardy relates a beautiful identity of Ramanujan connected with r2(n);
namely, for a, b > 0, [49, p. 283],

∞∑

n=0

r2(n)√
n + a

e−2π
√

(n+a)b =
∞∑

n=0

r2(n)√
n + b

e−2π
√

(n+b)a, (12.3)

which is not given elsewhere in any of Ramanujan’s published or unpublished
work. Note that the right side of (12.3) is simply the left side with a and b

interchanged. These facts indicate that Ramanujan and Hardy undoubtedly had
probing conversations about the circle problem.

On page 335 in [62], which is not in Ramanujan’s lost notebook, but which is
in one of those fragments published with the lost notebook, Ramanujan offers two
identities involving Bessel functions. To state Ramanujan’s claims, we need to first
define

F(x) =
{

[x], if x is not an integer,

x − 1
2 , if x is an integer,

(12.4)

where, as customary, [x] is the greatest integer less than or equal to x.

Entry 12.1 (p. 335) If 0 < θ < 1, x > 0, and F(x) is defined by (12.4), then

∞∑

n=1

F
(x

n

)
sin(2πnθ) = πx

(
1

2
− θ

)
− 1

4
cot(πθ) (12.5)

+ 1

2

√
x

∞∑

m=1

∞∑

n=0

{
J1

(
4π

√
m(n + θ)x

)
√

m(n + θ)
− J1

(
4π

√
m(n + 1 − θ)x

)
√

m(n + 1 − θ)

}
.

Entry 12.1 was first proved by the author, S. Kim, and A. Zaharescu [28]. It is
possible that Ramanujan did not interpret the right-hand side of (12.5) as an iterated
double series, but as a series with the product mn tending to ∞. The same three
authors [27] also proved (12.5) under this interpretation. In fact, Entry 12.1 was first
established by the author and Zaharescu with the order of summation reversed from
that prescribed by Ramanujan in (12.5) [34].

The Bessel functions in (12.5) bear a striking resemblance to those in (12.2),
and so it is natural to ask if there is a connection between the two formulas.
Berndt, Kim, and Zaharescu [27] proved the following corollary, as a consequence
of their reinterpreted meaning of the double sum in (12.5). It had been previously
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established (although not rigorously) by Berndt and Zaharescu in [34] as a corollary
of their theorem on twisted divisor sums arising from Entry 12.1.

Corollary 12.2 For any x > 0,

∑

0≤n≤x

′
r2(n) = πx (12.6)

+ 2
√

x

∞∑

n=0

∞∑

m=1

⎧
⎪⎪⎨

⎪⎪⎩

J1

(
4π

√
m(n + 1

4 )x

)

√
m(n + 1

4 )

−
J1

(
4π

√
m(n + 3

4 )x

)

√
m(n + 3

4 )

⎫
⎪⎪⎬

⎪⎪⎭
.

Can Corollary 12.2 be employed in place of (12.2) to effect an improvement in
the error term for the circle problem? The advantage of (12.6) is that r2(n) does
not appear on the right-hand side; the disadvantage is that one needs to estimate a
double sum, instead of a single sum in (12.2).

The second identity on page 335 pertains to the famousDirichlet divisor problem.
Let d(n) denote the number of positive divisors of the integer n. Define the “error
term” �(x), for x > 0, by

∑

n≤x

′
d(n) = x (log x + (2γ − 1)) + 1

4
+ �(x), (12.7)

where γ denotes Euler’s constant, and where the prime ′ on the summation sign
on the left side indicates that if x is an integer, then only 1

2d(x) is counted. The
famous Dirichlet divisor problem asks for the correct order of magnitude of �(x)

as x → ∞.
In [62, p. 335], Ramanujan offered an identity for

∞∑

n=1

F
(x

n

)
cos(2πnθ)

analogous to (12.1). See the paper by the author, S. Kim, and A. Zaharescu [27],
where the identity is proved with the order of summation reversed, and the paper
by the author, J. Li, and Zaharescu, where the identity is proved with the order of
summation as given by Ramanujan.
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Part II
Photographs



Peter Paule

Abstract This chapter presents a collection of pictures which show George
Andrews at various events related to research in combinatory analysis. The first
section shows photos taken at the “Combinatory Analysis 2018” conference at
the Pennsylvania State University, U.S.A. The other sections display pictures
originating from research stays of Andrews in Austria, China, Florida, Illinois, and
India.

1 Andrews at Combinatory Analysis 2018

These pictures were taken at “CombinatoryAnalysis 2018—AConference in Honor
of George Andrews’ 80th Birthday”, June 2018, Pennsylvania State University,
U.S.A. Photos [P1+P2] by courtesy of Ae Ja Yee (Department of Mathematics,
The Pennsylvania State University, U.S.A.), photos [P3+P4] by courtesy of James
Sellers (University of Minnesota, Duluth).

Photo P1 Participants of “Combinatory Analysis 2018”

P. Paule (�)
Research Institute for Symbolic Computation, Johannes Kepler University Linz, Linz, Austria
e-mail: peter.paule@risc.jku.at
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Photo P2 George Andrews with former PhD students; from left: Shane Chern, Frank Garvan,
Donny Passary (co-advisor Ae Ja Yee), Mike Hirschhorn, Brandt Kronholm (co-advisor Antun
Milas), Jeremy Lovejoy (co-advisor Ken Ono), Shishuo Fu (co-advisor Ae Ja Yee), William Keith,
Kagan Kursungoz, Jose Plinio Santos, Andrew Sills, Louis Kolitsch

Photo P3+P4 Ae Ja Yee and James Sellers served as the local hosts among the main organizers
of “Combinatory Analysis 2018”

2 Andrews in Austria

Photos [P12+P13] by courtesy of Markus Fulmek (Institut für Mathematik, Univer-
sity of Vienna); photos [P5–P9] by courtesy of Christoph Koutschan (Johann Radon
Institute, RICAM, Linz); photos [P10+P11] by courtesy of Liangjie Ye (AVLGraz).
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Photo P5 Andrews has been
a regular visitor to RISC
(Research Institute for
Symbolic Computation). The
home of RISC is the Castle of
Hagenberg located northeast
of Linz, Upper Austria

Photo P6 Andrews’ speech
on the occasion of the
academic celebration “20
Years of RISC”, June 2008

Photo P7 Academic
celebration “20 Years of
RISC” (June 2008); on the
left of Andrews’ row: Josef
Pühringer (former Governor
of Upper Austria), Bruno
Buchberger (founder of
RISC)
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Photo P8 Andrews as key note speaker on
the occasion of the 10th anniversary of the
RISC collaboration with DESY (Deutsches
Elektronen Synchrotron), Feb 2017

Photo P9 Key note talk at the 10th anniversary
of the RISC collaboration with DESY (Feb
2017); to the left: Roger Germundsson
(Mathematica), Jürgen Gerhard (Maple)

Photo P10 Andrews at the RISC Workshop “Combinatorics, Special Functions and Computer
Algebra” (Hagenberg, May 2018)
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Photo P11 “Combinatorics, Special Functions and Computer Algebra” conference dinner (RISC,
May 2018); from left: Peter Paule, George Andrews, Johann Cigler

Photo P12 Lake Wolfgang is one of the most charming holiday regions in Austria; an ideal
location for the conference center BIFEB at Strobl/St. Wolfgang. At BIFEB several meetings of
the Séminaire Lotharingien de Combinatoire (SLC) were organized. Andrews attended the SLC at
Strobl and at other places
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Photo P13 Andrews was key note speaker at the 81st SLC, Strobl, September 2018

3 Andrews in China

Photos [P14–P20] by courtesy of William Y.C. Chen, Center for Applied Mathe-
matics, Tianjin University, China.

Photo P14 George Andrews
and Richard Askey at Tianjin
Shijidayuan, China, 2004
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Photo P15 Stephen Milne,
Jianyi Shi, George Andrews,
and James Louck at Professor
Shiing-Shen Cern’s home,
2004

Photo P16 Andrews at the
meeting “The Renaissance of
Combinatorics: Advances,
Algorithms, Applications—in
honor of Prof. Doron
Zeilberger’s 60th Birthday”,
Nankai University, August
2010

Photo P17 Andrews
awarded honorary
professorship at Nankai
University, August 2010. To
the right: William Chen
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Photo P18 Andrews at the
meeting “The Combinatorics
of q-Series and Partitions—in
honor of Prof. George
Andrews’ 75th Birthday”,
Nankai University, August
2013

Photo P19 Andrews and the
President of Tianjin
University, Jiajun Li, August
2013

Photo P20 The
inside-painted bottle as a gift
for Prof. Andrews, Tianjin,
August 2013
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4 Andrews in Florida

Photos [P21–P28] by courtesy of Krishna Alladi, University of Florida, Gainesville.

Photo P21 George Andrews in front of the
Science Library on the campus of the
University of Florida in Nov 1990 when
he came to deliver the Frontiers of Science
Lecture

Photo P22 Krishna Alladi is one of Andrews’
strong links to Florida. The picture shows
Alladi with George Andrews in Andrews’
office in the McAllister Building, The
Pennsylvania State University, April 9, 1993
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Photo P24 Joy and George
Andrews after he received an
Honorary Doctorate at the
University of Florida, Dec
2002

Photo P23 The
mathematicians associated
with the Capparelli partition
conjecture and its resolution:
seated—Jim Lepowsky (left)
and Basil Gordon.
Standing—Stefano Capparelli
(left), George Andrews
(middle), and Krishna Alladi
(right)—at the Alladi House
in Gainesville, Florida, Fall
2004
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Photo P25 Krishna Alladi,
John Thompson, George
Andrews, Richard Askey, and
Alladi Ramakrishnan at
Alladi’s home in Florida,
March 2005

Photo P26 Krishna Alladi,
George Andrews, and
Mathura Alladi at the Alladi
home in Gainesville, Florida,
Spring 2006

Photo P27 Alladi
Ramakrishnan and Krishna
Alladi with Andrews who is
Distinguished Visiting
Professor at Florida each
spring, Alladi home in
Gainesville, Feb 2008
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5 Andrews in Illinois

Photos [P29+P30+P31+P33] by courtesy of Bruce Berndt (University of Illinois at
Urbana-Champaign), photo [P34] by courtesy of Koustav Banerjee (RISC, Johannes
Kepler University, Austria).

Photo P29 From left: Sinai
Robins, Marvin Knopp,
George Andrews, and Bruce
Berndt; conference “Modular
Forms and Related Topics” in
honor of Marvin Knopp’s
73rd birthday, Temple
University, Jan 2006
(connection to Illinois via
Bruce Berndt and Paul
Bateman)

Photo P30 Picture taken
2009 in the home of Bruce
and Helen Berndt; back row
from left: Sun Kim, Ole
Warnaar, Bruce Berndt,
George Andrews, Youn-Seo
Choi; front row from left:
Soon-Yi Kang, Song Heng
Chan, Helen Berndt, Heng
Huat Chan

Photo P28 Frank Garvan,
Krishna Alladi, and George
Andrews at “Number
Theory”, a conference in
honor of Krishna Alladi’s
60th birthday, University of
Florida, Gainesville, March
2016
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Photo P31 George Andrews
lecturing at the Illinois
Number Theory Celebration
of Paul Bateman’s 90th and
Bruce Berndt’s 70th birthday,
University of Illinois at
Urbana-Champaign, March
2009

Photo P32 In April 2011 the
Center for Advanced Study at
the University of Illinois
organized a public lecture by
George Andrews; available
on YouTube

Photo P33 Bruce Berndt
with George Andrews, who
received an honorary
doctorate from the University
of Illinois in 2014
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Photo P34 From left: George Andrews, Peter Paule, and Krishna Alladi; banquet, “Analytic and
Combinatorial Number Theory: The Legacy of Ramanujan”, a conference in honor of Bruce C.
Berndt’s 80th birthday, University of Illinois at Urbana-Champaign, June 2019

6 Andrews in India

Photos [P35–P40] by courtesy of Krishnaswami Alladi, Department of Mathemat-
ics, University of Florida at Gainesville, U.S.A.

Photo P35 Andrews lecturing on Ramanujan’s Lost Notebook at the Alladi family home in
Madras, India, during the Ramanujan Centennial, Dec 23, 1987. The Portrait on the wall shows
the late Sir Alladi Krishnaswami Iyer



George Andrews: “Combinatory Analysis 80” Picture Book 69

Photo P37Andrews signing the Visitors Book
in the office of Alladi Ramakrishnan after his
lecture (Madras, India, Dec 23, 1987)

Photo P36 Andrews answering questions after
his talk (Madras, India, Dec 23, 1987). Mr.
John Stempel, Consul General of the United
States, who chaired the talk, is next to Andrews

Photo P38 Krishna Alladi and George Andrews being introduced to Dr. Abdul Kalam, President
of India during the first SASTRA Ramanujan Conference in Kumbakonam, India, Dec 20, 2003
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Photo P39 Krishna Alladi
and George Andrews in front
of Ramanujan’s home in
Kumbakonam, India, Dec 21,
2003

Photo P40 Andrews
receiving an Honorary
Doctorate Degree from
SASTRA University in
Kumbakonam, South India,
during the Ramanujan 125
Celebrations in December
2012. In the rear is SASTRA
Vice-Chancellor R.
Sethuraman, and to Andrews’
left is Dean Swaminathan
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1. Introduction

Recall the usual q-series notation

(a; q)n := (1 − a)(1 − aq) · · · (1 − aqn−1), (1.1)

and let F(q) denote the Kontsevich–Zagier “strange” function [13,14],

F(q) :=
∑

n≥0

(q; q)n.

This series does not converge on any open subset of C, but it is well defined
both at roots of unity and as a power series when q is replaced by 1 − q. The
coefficients ξ(n) of

F(1 − q) = 1 + q + 2q2 + 5q3 + 15q4 + 53q5 + · · ·

The first author was supported by a grant from the Simons Foundation (#426145 to Scott
Ahlgren). Byungchan Kim was supported by the Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education
(NRF-2016R1D1A1A09917344).
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are called the Fishburn numbers, and they count a number of different com-
binatorial objects (see [11] for references).

Andrews and Sellers [4] discovered and proved a wealth of congruences
for ξ(n) modulo primes p. For example, we have

ξ(5n + 4) ≡ ξ(5n + 3) ≡ 0 (mod 5),

ξ(7n + 6) ≡ 0 (mod 7).
(1.2)

In subsequent work of the first two authors [1], Garvan [6], and Straub [12],
similar congruences were obtained for prime powers and for generalized Fish-
burn numbers.

Taking a different approach, Guerzhoy et al. [7] interpreted the coef-
ficients in the asymptotic expansions of the functions P

(1)
a,b,χ(e−t) defined in

(1.8) below in terms of special values of L-functions, and proved congruences
for these coefficients using divisibility properties of binomial coefficients. These
congruences are inherited by any function whose expansion at q = 1 agrees
with one of these expansions; these include the function F(q) and, more gen-
erally, the Kontsevich–Zagier functions described in Sect. 5 below. See [7] for
details.

Although the congruences (1.2) bear a passing resemblance to Ramanu-
jan’s congruences for the partition function p(n), it turns out that they arise
from a divisibility property of the partial sums of F(q). For positive integers
N and s, consider the partial sums

F(q;N) :=
N∑

n=0

(q; q)n

and the s-dissection

F(q;N) =
s−1∑

i=0

qiAs(N, i, qs).

Let S(s) ⊆ {0, 1, . . . , s− 1} denote the set of reductions modulo s of the set of
pentagonal numbers m(3m + 1)/2, where m ∈ Z. The key step in the proof of
Andrews and Sellers is to show that if p is prime and i �∈ S(p) then we have

(1 − q)n | Ap(pn − 1, i, q). (1.3)

This divisibility property is also important for the proof of the congruences in
[6,12].

Andrews and Sellers [4] observed empirically that (1−q)n can be strength-
ened to (q; q)n in (1.3). The first two authors showed that this divisibility
property holds for any s. To be precise, define

λ(N, s) =
⌊N + 1

s

⌋
. (1.4)

Then we have

Theorem 1.1. [1] Suppose that s and N are positive integers and that i �∈ S(s).
Then

(q; q)λ(N,s) | As(N, i, q). (1.5)
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The proof of (1.5) relies on the fact that the Kontsevich–Zagier function
satisfies the “strange identity”

F(q)“ = ” − 1
2

∑

n≥1

n

(
12
n

)
q(n

2−1)/24.

Here the symbol “=” means that the two sides agree to all orders at every root
of unity (this is explained fully in Sections 2 and 5 of [13]). In this paper, we
show that an analogue of Theorem 1.1 holds for a wide class of “strange” q-
hypergeometric series—that is, q-series which agree asymptotically with partial
theta functions.

To state our result, let F and G be functions of the form

F (q) =
∞∑

n=0

(q; q)nfn(q), (1.6)

G(q) =
∞∑

n=0

(q; q2)ngn(q), (1.7)

where fn(q) and gn(q) are polynomials. (Functions of the form (1.6) are ele-
ments of the Habiro ring, which can be viewed as a ring of analytic functions
on the set of roots of unity [8].) Note that F (q) is not necessarily well defined
as a power series in q, but it has a power series expansion at every root of unity
ζ. In other words, F (ζe−t) has a meaningful definition as a formal power series
in t whose coefficients are expressed in the usual way as the “derivatives” of
F (ζe−t) at t = 0. This is explained in detail in the next section. Likewise, G(q)
has a power series expansion at every odd-order root of unity.

We will consider partial theta functions

P
(ν)
a,b,χ(q) :=

∑

n≥0

nνχ(n)q
n2−a

b , (1.8)

where ν ∈ {0, 1}, a ≥ 0 and b > 0 are integers, and χ : Z → C is a function
satisfying the following properties:

χ(n) �= 0 only if
n2 − a

b
∈ Z, (1.9)

and for each root of unity ζ,

the function n �→ ζ
n2−a

b χ(n) is periodic and has mean value zero. (1.10)

These assumptions are enough to ensure that for each root of unity ζ, the
function P

(ν)
a,b,χ(ζe−t) has an asymptotic expansion as t → 0+ (see Sect. 3

below). We note that (1.10) is satisfied by any odd periodic function. To see
this, suppose that χ is odd with period T , and let ζ be a kth root of unity. Set
M = lcm(T, bk). Then we have

ζ
(M−n)2−a

b χ(M − n) = −ζ
n2−a

b χ(n),
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and so
M−1∑

n=0

ζ
n2−a

b χ(n) = 0.

For positive integers s and N , consider the partial sum

F (q;N) :=
N∑

n=0

fn(q)(q; q)n (1.11)

and its s-dissection

F (q;N) =
s−1∑

i=0

qiAF,s(N, i, qs).

Define Sa,b,χ(s) ⊆ {0, 1, . . . , s − 1} by

Sa,b,χ(s) :=
{

n2 − a

b
(mod s) : χ(n) �= 0

}
.

Our first main result is the following.

Theorem 1.2. Suppose that F is a function as in (1.6) and that P
(ν)
a,b,χ is a

function as in (1.8). Suppose that for each root of unity ζ we have the asymp-
totic expansion

P
(ν)
a,b,χ(ζe−t) ∼ F (ζe−t) as t → 0+. (1.12)

Suppose that s and N are positive integers and that i �∈ Sa,b,χ(s). Then we
have

(q; q)λ(N,s) | AF,s(N, i, q).

Analogously, for positive integers s and N with s odd, consider the partial
sum

G(q;N) :=
N∑

n=0

gn(q)(q; q2)n (1.13)

and its s-dissection

G(q;N) =
s−1∑

i=0

qiAG,s(N, i, qs).

Then the AG,s(N, i, qs) also enjoy strong divisibility properties. Define

μ(N, k, s) =
⌊

N

s(2k − 1)
+

1
2

⌋
. (1.14)

Theorem 1.3. Suppose that G is a function as in (1.7) and that P
(ν)
a,b,χ is a

function as in (1.8). Suppose that for each root of unity ζ of odd order we
have

P
(ν)
a,b,χ(ζe−t) ∼ G(ζe−t) as t → 0+. (1.15)
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Suppose that s and N are positive integers with s odd and that i �∈ Sa,b,χ(s).
Then we have

(q; q2)μ(N,1,s) | AG,s(N, i, q).

While a generic q-series of the form (1.6) or (1.7) is not expected to be
related to a partial theta function as in (1.12) or (1.15), there are a number of
examples where this is the case. For example, Hikami [9] introduced a family of
quantum modular forms related to torus knots, which we will discuss in Sect. 5.
For now, we illustrate Theorem 1.3 with an example from Ramanujan’s lost
notebook. Consider the q-series

G(q) =
∑

n≥0

(q; q2)nqn.

From [3, Entry 9.5.2], we have the identity
∑

n≥0

(q; q2)nqn =
∑

n≥0

(−1)nq3n2+2n(1 + q2n+1),

which may be written as
∑

n≥0

(q; q2)nqn =
∑

n≥0

χ6(n)q(n
2−1)/3,

where

χ6(n) :=

⎧
⎪⎨

⎪⎩

1, if n ≡ 1, 2 (mod 6),
−1, if n ≡ 4, 5 (mod 6),
0, otherwise.

Therefore, for each odd-order root of unity ζ we find that

P
(0)
1,3,χ6

(ζe−t) ∼ G(ζe−t) as t → 0+.

Since χ6 is odd, it satisfies conditions (1.9) and (1.10). Thus, from Theorem 1.3,
we find that for i �∈ S1,3,χ6(s) we have

(q; q2)� N
s + 1

2 � | AG,s(N, i, q). (1.16)

For example, when s = 5 we have S1,3,χ6(5) = {0, 1, 3}. For N = 8 we
have

AG,5(8, 2, q) = q2(q; q2)2(1 + q2 − q3 + 2q4 − q5 + 2q6 + q8)

and

AG,5(8, 4, q) = −q(q; q2)2(1 − q + q2)(1 + q + q2 + q4 + q6),

as predicted by (1.16), while the factorizations of AG,5(8, i, q) into irreducible
factors for i ∈ {0, 1, 3} are

AG,5(8, 0, q) = (1 − q)(1 + q4 − 2q5 + · · · − 2q11 + q12),

AG,5(8, 1, q) = 1 + 2q3 − q4 + · · · + q13 − q14,

AG,5(8, 3, q) = q(−1 + q2 − 2q3 + 2q4 − · · · − 2q11 + q12).
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The rest of the paper is organized as follows. In the next section, we
discuss power series expansions of F and G at roots of unity, and in Sect. 3,
we discuss the asymptotic expansions of partial theta functions. In Sect. 4,
we prove the main theorems. In Sect. 5, we give two further examples—one
generalizing (1.5) and one generalizing (1.16). We close with some remarks on
congruences for the coefficients of F (1 − q) and G(1 − q).

2. Power Series Expansions of F and G

Let F (q) be a function as in (1.6) and G(q) be a function as in (1.7). Here we
collect some facts which allow us to meaningfully define F (ζe−t) and G(ζe−t)
as formal power series.

Lemma 2.1. Let F (q;N) be as in (1.11), and let G(q;N) be as in (1.13). Sup-
pose that ζ is a kth root of unity.

1. The values
(
q d
dq

)�

F (q;N)
∣∣
q=ζ

are stable for N ≥ (� + 1)k − 1.

2. If k is odd then the values
(
q d
dq

)�

G(q;N)
∣∣
q=ζ

are stable for 2N ≥ (2� +
1)k.

Proof. For each positive integer k, we have

(1 − qk)�+1 | (q; q)N for N ≥ (� + 1)k,

(1 − q2k−1)�+1 | (q; q2)N for 2N ≥ (2� + 1)(2k − 1) + 1.

It follows that for 0 ≤ j ≤ � we have
(

d
dq

)j

(q; q)N

∣∣
q=ζ

= 0 for N ≥ (� + 1)k,

(
d
dq

)j

(q; q2)N

∣∣
q=ζ

= 0 for odd k and 2N ≥ (2� + 1)k + 1.

The lemma follows since for any polynomial f(q), the polynomial
(
q d
dq

)�

f(q)

is a linear combination (with polynomial coefficients) of
(

q
dq

)j

f(q) with 0 ≤
j ≤ � (see for example [4, Lemma 2.2]). �

For any polynomial f(q), any ζ and any � ≥ 0, we have [4, Lemma 2.3]
(

d
dt

)�

f(ζe−t)
∣∣
t=0

= (−1)�

(
q

d
dq

)�

f(q)
∣∣
q=ζ

. (2.1)

Let F (q) be as in (1.6) and let ζ be a kth root of unity. The last fact together
with Lemma 2.1 allows us to define

(
d
dt

)�

F (ζe−t)
∣∣
t=0

:=
(

d
dt

)�

F (ζe−t;N)
∣∣
t=0

for any N ≥ k(� + 1) − 1.

We, therefore, have a formal power series expansion

F (ζe−t) =
∞∑

�=0

(
d
dt

)�
F (ζe−t)

∣∣
t=0

�!
t�. (2.2)
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Similarly, if G(q) is a function as in (1.7) and ζ is a kth root of unity
with odd k, then we can define

(
d
dt

)�

G(ζe−t)
∣∣
t=0

:=
(

d
dt

)�

G(ζe−t;N)
∣∣
t=0

for any 2N ≥ k(2� + 1),

(2.3)

using (2.1) and Lemma 2.1. Thus, we have a formal power series expansion

G(ζe−t) =
∞∑

�=0

(
d
dt

)�
G(ζe−t)

∣∣
t=0

�!
t�. (2.4)

3. The Asymptotics of P
(ν )
a,b,χ

In this section, we discuss the asymptotic expansion of the partial theta func-
tions P

(ν)
a,b,χ(q) defined in (1.8). Recall that

P
(ν)
a,b,χ(q) :=

∑

n≥0

nνχ(n)q
n2−a

b ,

where ν ∈ {0, 1}, a ≥ 0 and b > 0 are integers, and χ : Z → C is a function
satisfying properties (1.9) and (1.10).

The properties which we describe in the next proposition are more or less
standard (see, for example, [10, p. 98]). For convenience and completeness we
sketch a proof of the following:

Proposition 3.1. Suppose that P
(ν)
a,b,χ(q) is as in (1.8). Let ζ be a root of unity

and let N be a period of the function n �→ ζ
n2−a

b χ(n). Then we have the
asymptotic expansion

P
(ν)
a,b,χ(ζe−t) ∼

∞∑

n=0

γn(ζ)tn, t → 0+,

where

γn(ζ) =
∑

1≤m≤N
χ(m) �=0

a(m,n,N)ζ
m2−a

b (3.1)

with certain complex numbers a(m,n,N).

We begin with a lemma. For n ≥ 0, let Bn(x) denote the nth Bernoulli
polynomial. In the rest of this section, we use s for a complex variable since
there can be no confusion with the parameter s used above.

Lemma 3.2. Let C : Z → C be a function with period N and mean value zero,
and let

L(s, C) :=
∞∑

n=1

C(n)
ns

, Re(s) > 0.
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Then L(s, C) has an analytic continuation to C, and we have

L(−n,C) =
−Nn

n + 1

N∑

m=1

C(m)Bn+1

(m

N

)
for n ≥ 0. (3.2)

Proof. Let ζ(s, α) denote the Hurwitz zeta function, whose properties are de-
scribed, for example, in [5, Chapter 12]. We have

L(s, C) = N−s
N∑

m=1

C(m)ζ
(
s, m

N

)
. (3.3)

The lemma follows using the fact that each Hurwitz zeta function has only
a simple pole with residue 1 at s = 1 and the formula for the value of each
function at s = −n [5, Theorem 12.13]. �

Proof of Proposition 3.1. It is enough to prove the proposition for the function

f(t) := e− at
b P

(ν)
a,b,χ(ζe−t) =

∑

n≥1

nνχ(n)ζ
n2−a

b e− n2t
b , t > 0.

Setting

C(n) := ζ
n2−a

b χ(n), (3.4)

we have the Mellin transform
∫ ∞

0

f(t)ts−1 dt = bsΓ(s)L(2s − ν, C), Re(s) >
1
2
.

Inverting, we find that

f(t) =
1

2πi

∫

x=c

bsΓ(s)L(2s − ν, C)t−s ds,

for c > 1
2 , where we write s = x + iy. Using (3.3), the functional equation for

the Hurwitz zeta functions, and the asymptotics of the Gamma function, we
find that, for fixed x, the function L(s, C) has at most polynomial growth in
|y| as |y| → ∞. Shifting the contour to the line x = −R − 1

2 , we find that for
each R ≥ 0 we have

f(t) =
R∑

n=0

(−1)n

bnn!
L(−2n − ν, C)tn + O

(
tR+ 1

2

)
,

from which

f(t) ∼
∞∑

n=0

(−1)n

bnn!
L(−2n − ν, C)tn.

The proposition follows from (3.4) and (3.2). �
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4. Proofs of Theorems 1.2 and 1.3

We begin with a lemma. The first assertion is proved in [4, Lemma 2.4], and
the second, which is basically equation (2.4) in [1], follows by extracting an
arithmetic progression using orthogonality. (We note that there is an error
in the published version of [1] which is corrected below; in that version the
operators d

dq and q d
dq are conflated in the statements of (2.3) and (2.4). This

does not affect the truth of the rest of the results.)
Let C�,i,j(s) be the array of integers defined recursively as follows:

1. C0,0,0(s) = 1,
2. C�,i,0(s) = i� and C�,i,j(s) = 0 for j ≥ � + 1 or j < 0,
3. C�+1,i,j(s) = (i + js)C�,i,j(s) + sC�,i,j−1(s) for 1 ≤ j ≤ �.

Lemma 4.1. Suppose that s is a positive integer and that

h(q) =
s−1∑

i=0

qiAs(i, qs)

with polynomials As(i, q). Then the following are true:
1. For all � ≥ 0, we have

(
q

d
dq

)�

h(q) =
�∑

j=0

s−1∑

i=0

C�,i,j(s)qi+jsA(j)
s (i, qs).

2. Let ζs be a primitive sth root of unity. Then for � ≥ 0 and i0 ∈ {0, . . . , s−
1}, we have

�∑

j=0

C�,i0,j(s)qi0+jsA(j)
s (i0, qs) =

1
s

s−1∑

k=0

ζ−ki0
s

((
q d
dq

)�

h(q)
) ∣∣∣

q→ζk
s q

. (4.1)

Proof of Theorem 1.2. Suppose that F (q) and Pa,b,χ(q) are as in the statement
of the theorem. Suppose that s and k are positive integers, that i �∈ Sa,b,χ(s)
and that ζk is a primitive kth root of unity. Let Φk(q) be the kth cyclotomic
polynomial. Recall the definition (1.4) of λ(N, s) and note that since

(q; q)n = ±
n∏

k=1

Φk(q)� n
k � (4.2)

and ⌊�x
s 
k

⌋
=

⌊ x

ks

⌋
,

we have

(q; q)λ(N,s) = ±
λ(N,s)∏

k=1

Φk(q)λ(N,ks).

Therefore, Theorem 1.2 will follow once we show for each � ≥ 0 that

A
(�)
F,s(N, i, ζk) = 0 for N ≥ (� + 1)ks − 1

81



436 S. Ahlgren et al.

since this implies that Φk(q)λ(N,ks) | AF,s(N, i, q) for 1 ≤ k ≤ λ(N, s).
From the definition we find that

AF,s(N, i, q) =
k−1∑

j=0

qjAF,ks(N, i + js, qk).

If i �∈ Sa,b,χ(s), then i + js �∈ Sa,b,χ(ks). It is, therefore, enough to show that
for all s, k, and �, and for i �∈ Sa,b,χ(ks), we have

A
(�)
F,ks(N, i, 1) = 0 for N ≥ (� + 1)ks − 1.

After replacing ks by s, it is enough to show that for all s and �, and for
i �∈ Sa,b,χ(s), we have

A
(�)
F,s(N, i, 1) = 0 for N ≥ (� + 1)s − 1. (4.3)

We prove (4.3) by induction on �. For the base case � = 0, assume that
N ≥ s − 1. Using (4.1) with q = 1 gives

AF,s(N, i, 1) =
1
s

s−1∑

j=0

ζ−ji
s F (ζj

s ;N).

By (1.12), (2.1), Lemma 2.1, and Proposition 3.1, we find that

AF,s(N, i, 1) =
1
s

s∑

j=1

ζ−ji
s γ0(ζj

s ).

By (3.1) and orthogonality (recalling that i �∈ Sa,b,χ(s)), we find that

AF,s(N, i, 1) = 0.

For the induction step, suppose that N ≥ (� + 1)s − 1, that i �∈ Sa,b,χ(s),
and that (4.3) holds with � replaced by j for 1 ≤ j ≤ � − 1. By (4.1) and the
induction hypothesis we have

C�,i,�(s)A
(�)
F,s(N, i, 1) =

1
s

s∑

j=1

ζ−ji
s

(
q

d
dq

)�

F (q;N)
∣∣
q=ζj

s
.

Using Proposition 3.1, (2.2), (3.1), and orthogonality, we find as above that

C�,i,�(t)A
(�)
F,s(N, i, 1) = 0.

This establishes (4.3) since C�,i,�(s) > 0. Theorem 1.2 follows. �

Proof of Theorem 1.3. Suppose that s and k are positive integers with s odd,
that i �∈ Sa,b,χ(s) and that ζ2k−1 is a (2k − 1)th root of unity. Recall the
definition (1.14) of μ(N, k, s). In analogy with (4.2), we have

(q; q2)n = ±
n∏

k=1

Φ2k−1(q)
� (2n−1)
2(2k−1)+

1
2 �,

and as above we obtain

(q; q2)μ(N,1,s) = ±
μ(N,1,s)∏

k=1

Φ2k−1(q)μ(N,k,s).
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Therefore, Theorem 1.3 follows once we show for each � ≥ 0 that

A
(�)
G,s(N, i, ζ2k−1) = 0 for 2N ≥ (2� + 1)(2k − 1)s.

The rest of the proof is similar to that of Theorem 1.2 (we require s to
be odd because G(q) has a series expansion only at odd-order roots of unity).
Arguing as above, we show that for each odd s we have

A
(�)
G,s(N, i, 1) = 0 for 2N ≥ (2� + 1)s,

and the result follows. �

5. Examples

In this section, we illustrate Theorems 1.2 and 1.3 with two families of exam-
ples.

5.1. The Generalized Kontsevich–Zagier Functions

In a study of quantum modular forms related to torus knots and the Andrews–
Gordon identities, Hikami [9] defined the functions

X(α)
m (q) :=

∑

k1,k2,...,km≥0

(q; q)km
qk2

1+···+k2
m−1+kα+1+···+km−1

×

⎛

⎜⎝
m−1∏

i=1
i�=α

[
ki+1

ki

]
⎞

⎟⎠
[
kα+1 + 1

kα

]
,

(5.1)

where m is a positive integer and α ∈ {0, 1, . . . ,m−1}. Here we have used the
usual q-binomial coefficient (or Gaussian polynomial)

[
n

k

]
:=

[
n

k

]

q

:=

{
(q;q)n

(q;q)k(q;q)n−k
, if 0 ≤ k ≤ n,

0, otherwise.

The simplest example

X
(0)
1 (q) =

∑

n≥0

(q; q)n

is the Kontsevich–Zagier function. From (5.1) we can write

X(α)
m (q) =

∑

km≥0

(q; q)km
f
(α)
km

(q),

with polynomials f
(α)
km

(q).
Hikami’s identity [9, eq. (70)] implies that for each root of unity ζ, we

have

P
(1)

(2m−2α−1)2,8(2m+1),χ
(α)
8m+4

(ζe−t) ∼ X(α)
m (ζe−t)
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as t → 0+, where χ
(α)
8m+4(n) is defined by

χ
(α)
8m+4(n) =

⎧
⎪⎨

⎪⎩

−1/2, if n ≡ 2m − 2α − 1 or 6m + 2α + 5 (mod 8m + 4),

1/2, if n ≡ 2m + 2α + 3 or 6m − 2α + 1 (mod 8m + 4),

0, otherwise.

(5.2)

The function χ
(α)
8m+4(n) satisfies condition (1.9). For (1.10) we record a short

lemma.

Lemma 5.1. Suppose that χ
(α)
8m+4(n) is as defined in (5.2) and that ζ is a root

of unity of order M . Define

ψ(n) = ζ
n2−(2m−2α−1)2

8(2m+1) χ
(α)
8m+4(n).

Then
M(8m+4)∑

n=1

ψ(n) = 0.

Proof. Note that ψ is supported on odd integers, so we assume in what follows
that n is odd. From the definition, we have

χ
(α)
8m+4(n + M(4m + 2)) = (−1)Mχ

(α)
8m+4(n). (5.3)

The exponent in the ratio of the corresponding powers of ζ is mM2 + M2+Mn
2 .

So the ratio of these powers of ζ is

ζ
M2+Mn

2 .

If M is odd then this becomes ζM(M+n
2 ) = 1, while if M is even then this

becomes ζ
M2
2 ζ

M
2 n = −1 (since M is the order of ζ and n is odd). Therefore,

the ratio in either case is (−1)M+1. Combining this with (5.3) gives
ψ(n + M(4m + 2)) = −ψ(n),

from which the lemma follows. �

Therefore, X
(α)
m (q) satisfies the conditions of Theorem 1.2, and we obtain

the following.

Corollary 5.2. If s is a positive integer and i �∈ S
(2m−2α−1)2,8(2m+1),χ

(α)
8m+4

(s),
then

(q; q)λ(N,s)

∣∣A
X

(α)
m ,s

(N, i, q),

where A
X

(α)
m ,s

(N, i, q) are the coefficients in the s-dissection of the partial sums

(in km) of X
(α)
m (q).

For example, when s = 3 we have S
9,40,χ

(0)
20

(3) = {0, 1} and S
1,40,χ

(1)
20

(3) =
{0, 2}. For N = 8 we have

A
X

(0)
2 ,3

(8, 2, q) = (q; q)3(1 + q)(1 + q + q2)(1 − q + · · · − q25 + q26)
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and

A
X

(1)
2 ,3

(8, 1, q) = (q; q)3(1 + q)(1 − q + q2)

× (1 + q + q2)(1 + 2q + · · · − q26 + q27),

as predicted by Corollary 5.2, while

A
X

(0)
2 ,3

(8, 0, q) = (1 − q + q2)(9 + 9q + · · · + q33 + q34),

A
X

(0)
2 ,3

(8, 1, q) = −8 − 7q + · · · + q34 − q35,

A
X

(1)
2 ,3

(8, 0, q) = 9 − 7q + · · · + 2q36 + q39,

and

A
X

(1)
2 ,3

(8, 2, q) = −7 + 3q3 − · · · + q36 − q38

are not divisible by (q; q)3.

5.2. An Example with ν = 0
For k ≥ 1, let Gk(q) denote the q-series

Gk(q) =
∑

nk≥nk−1≥···≥n1≥0

qnk+2n2
k−1+2nk−1+···+2n2

1+2n1

× (q; q2)nk

[
nk

nk−1

]

q2

· · ·
[
n2

n1

]

q2

.

Then we have the identity

Gk(q) =
∑

n≥0

(−1)nq(2k+1)n2+2kn(1 + q2n+1), (5.4)

which follows from Andrews’ generalization [2] of the Watson–Whipple trans-
formation

N∑

m=0

(1 − aq2m)
(1 − a)

(a, b1, c1, . . . , bk, ck, q−N )m

(q, aq/b1, aq/c1, . . . , aq/bk, aq/ck, aqN+1)m

(
akqk+N

b1c1 · · · bkck

)m

=
(aq, aq/bkck)N

(aq/bk, aq/ck)N

∑

N≥nk−1≥···≥n1≥0

(bk, ck)nk−1 · · · (b2, c2)n1

(q; q)nk−1−nk−2 · · · (q; q)n2−n1(q; q)n1

× (aq/bk−1ck−1)nk−1−nk−2 · · · (aq/b2c2)n2−n1(aq/b1c1)n1

(aq/bk−1, aq/ck−1)nk−1 · · · (aq/b1, aq/c1)n1

× (q−N )nk−1(aq)nk−2+···+n1qnk−1

(bkckq−N/a)nk−1(bk−1ck−1)nk−2 · · · (b2c2)n1
.

Here we have extended the notation in (1.1) to

(a1, a2, . . . , ak)n := (a1; q)n(a2; q)n · · · (ak; q)n.

To deduce (5.4), we set q = q2, a = q2, bk = q, and ck = q2 and then let
N → ∞ along with all other bi, ci.
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The identity (5.4) may be written as

Gk(q) =
∑

n≥0

χ4k+2(n)q
n2−k2
2k+1 ,

where

χ4k+2(n) :=

⎧
⎪⎨

⎪⎩

1, if n ≡ k, k + 1 (mod 4k + 2),
−1, if n ≡ −k,−k − 1 (mod 4k + 2),
0, otherwise.

This implies that for each odd-order root of unity ζ, we have

P
(0)
k2,2k+1,χ4k+2

(ζe−t) ∼ Gk(ζe−t) as t → 0+.

The function χ4k+2(n) satisfies conditions (1.9) and (1.10) (see the remark
following (1.10)), so Theorem 1.3 gives

Corollary 5.3. Suppose that k and N are positive integers, that s is a positive
odd integer, and that i �∈ Sk2,2k+1,χ4k+2(s). then

(q; q2)� N
s + 1

2 � | AGk,s(N, i, q).

6. Remarks on Congruences

Congruences for the coefficients of the functions F (q) and G(q) in Theorems 1.2
and 1.3 can be deduced from the results of [7]. In closing we mention another
approach. Theorems 1.2 and 1.3 guarantee that many of the coefficients in the
s-dissection are divisible by high powers of 1 − q, and the congruences follow
from this fact when s = pr together with an argument as in [1, Section 3].

For example, let Gk be the function defined in the last section and define
ξGk

(n) by

Gk(1 − q) =
∑

n≥0

ξGk
(n)qn.

Consider the expansions

G1(1 − q) =
∑

n≥0

ξG1(n)qn = 1 + q + 2q2 + 6q3 + 25q4 + 135q5 + · · · ,

G2(1 − q) =
∑

n≥0

ξG2(n)qn = 1 + 2q + 6q2 + 28q3 + 189q4 + 1680q5 + · · · .

Then we have such congruences as

ξG1(5
rn − 1) ≡ 0 (mod 5r),

ξG1(7
rn − 1) ≡ 0 (mod 7r),

ξG1(13rn − β) ≡ 0 (mod 13r)

for β ∈ {1, 2, 3, 4}, and
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ξG2(7
rn − 1) ≡ 0 (mod 7r),

ξG2(11rn − 1) ≡ 0 (mod 11r).

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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Dyson’s “Favorite” Identity and Chebyshev
Polynomials of the Third and Fourth Kind

George E. Andrews

Abstract. The combinatorial and analytic properties of Dyson’s “favorite”
identity are studied in detail. In particular, a q-series analog of the anti-
telescoping method is used to provide a new proof of Dyson’s results with
mock theta functions popping up in intermediate steps. This leads to
the appearance of Chebyshev polynomials of the third and fourth kind
in Bailey pairs related to Bailey’s Lemma. The natural relationship with
L.J. Rogers’s pioneering work is also presented.

Mathematics Subject Classification. 05A17, 05A19, 11P83.

Keywords. Partitions, Dyson’s favorite identity, Bailey pairs, Bailey’s
lemma, Partitions, Chebyshev polynomials, Mock theta functions.

1. Introduction

Freeman Dyson, in his article, A Walk Through Ramanujan’s Garden [11],
describes how his study of Rogers–Ramanujan type identities helped to pre-
serve his sanity during the dark days of World War II. Among the results he
discovered was his favorite:

∞∑

n=0

qn2+n
∏n

j=1
(1 + qj + q2j)

(1 − q)(1 − q2) · · · (1 − q2n+1)
=

∞∏

n=1

(1 − q9n)
(1 − qn)

. (1.1)

Dyson’s proof of (1.1) [10, pp. 8–9] and the proof subsequently provided
by Slater [17, p. 161, eq. (92)] are based on what has become known as Bailey’s
Lemma [10, p. 3, eq. (3.1)].

We shall begin in Sect. 2 by providing a proof of (1.1) and three related
identities via q-difference equations. This will necessitate a q-series analog of
anti-telescoping [6] with several new intermediate q-series arising.

With an eye to understanding these new intermediate functions, we
devote Sect. 3 to connections between Vn(x) and Wn(x) (the Chebyshev poly-
nomials of the third and fourth kind, respectively) and surprising Bailey pairs.
For example, in Sect. 4, we prove:
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444 G. E. Andrews

∑

n≥0

qn2+n
∏n

j=1
(1 + 2xqj + q2j)

(1 − q)(1 − q2) · · · (1 − q2n+1)
=

1
∏∞

n=1
(1 − qn)

∑

n≥0

q3(
n+1
2 )Vn(x),

where Vn(x) is the Chebyshev polynomial of the third kind.
Section 4 returns to (1.1) itself to reveal how many other Rogers–

Ramanujan type identities are merely specializations of the natural gener-
alization of (1.1).

Section 5 uses the work of Sect. 3 to establish that many of the new
functions are, in fact, mock theta functions or closely related.

Sections 6 and 7 are devoted to ninth-order mock theta functions and
their generalizations containing Chebyshev polynomials of the third kind. For
example:

∑

n≥1

qn2 ∏n−1

j=1
(1 + 2xqj + q2j)

(1 − q)(1 − q2) · · · (1 − q2n−1)

=
∞∏

n=1

1
1 − qn

∑

m≥1

q2m2−m(1 − q2m)
m−1∑

j=0

Vj(x)q−j(j+1)/2.

To round out a full treatment of (1.1), we provide a natural interpretation
of (1.1) related to sequences in partitions [8] in Sect. 8.

Section 9 considers a companion to (1.1) arising from the quintuple prod-
uct identity, and Sect. 10 considers open questions.

Although he did not use the terminology of Chebyshev polynomials, L.J.
Rogers [15] tacitly used them in his combinations of Fourier series. We shall
describe this relationship in Sect. 10.

I would like to thank the referee who carefully studied the original version
and made numerous helpful suggestions and corrections.

2. A New Proof of Dyson’s Favorite Identity

The identities to be proved are the following:

D4,4(a; q) :=
∑

n≥0

anqn2
(aq2n; q)∞

(q; q)n(aq3n; q3)∞
= Q4,4(a; q3),

D4,3(a; q) :=
∑

n≥0

anqn2+n(aq2n+2; q)∞
(q; q)n(aq3n+3; q3)∞

= Q4,3(a; q3),

D4,2(a; q) :=
∑

n≥0

anqn2+2n(aq2n+3; q)∞
(q; q)n(aq3n+3; q3)∞

= Q4,2(a; q3),

D4,1(a; q) :=
∑

n≥0

anqn2+3n(aq2n+3; q)∞
(q; q)n(aq3n+3; q3)∞

= Q4,1(a; q3),
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where

Qk,i(a; q) =
∑

n≥0

(−1)naknq
1
2 (k+1)n(n+1)−in(1 − aiq(2n+1)i)
(q; q)n(aqn+1; q)∞

with
(A; q)N = (1 − A)(1 − Aq) · · · (1 − AqN−1)

and

(A; q)∞ =
∞∏

n=0

(1 − Aqn).

It has been proved in [1] that the Qk,i(a; q) as doubly analytic functions
in a and q are uniquely determined by the following initial conditions and
q-difference equations:

Qk,0(a; q) = 0, (2.1)

Qk,i(0; q) = Qk,i(a; 0) = 1 for 1 ≤ i ≤ k, (2.2)

and for 1 ≤ i ≤ k,

Qk,i(a; q) − Qk,i−1(a; q) = (aq)i−1Qk,k−i+1(aq; q). (2.3)

Theorem 2.1. For 1 ≤ i ≤ 4:

D4,i(a; q) = Q4,i(a; q3). (2.4)

Proof. In light of the comments proceeding (2.1), the proof of the theorem
merely requires that (2.1)–(2.3) are established (with q → q3) for D4,i(a; q).

First, we note that (2.1) is by definition and (2.2) follows by inspection.
Indeed we see also by inspection that:

D4,1(a; q) = D4,4(aq3; q),

which is (2.3) in the case k = 4, i = 1, q → q3.
Next

D4,2(a; q) − D4,1(a; q)

=
∑

n≥0

anqn2+2n(aq2n+3; q)∞
(q; q)n(aq3n+3; q)∞

−
∑

n≥0

anqn2+3n(aq2n+3; q)∞
(q; q)n(aq3n+3; q3)∞

=
∑

n≥0

anqn2+2n(1 − qn)(aq2n+3; q)∞
(q; q)n(aq3n+3; q3)∞

=
∑

n≥1

anqn2+2n(aq2n+3; q3)∞
(q; q)n−1(aq3n+3; q3)∞

=
∑

n≥0

an+1qn2+4n+3(aq2n+5; q)∞
(q; q)n(aq3n+6; q3)∞

= aq3D4,3(aq3; q), (2.5)

which is (2.3) when k = 4, i = 2, and q → q3.
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Before we proceed to the k = 4, i = 3 case, we shall make some obser-
vations about the simplicity of (2.5). Namely, we merely subtracted the two
series term by term and the resulting new term was exactly what we wanted.
As we move to k = 4, i = 3, we see that this simplicity does not exist. To
produce this simplicity, we require the following intermediate functions:

M320(a; q) :=
∑

n≥0

anqn2+2n(aq2n+2; q)∞
(q; q)n(aq3n+3; q3)∞

,

M321(a; q) :=
∑

n≥0

anqn2
(aq2n+1; q)∞

(q; q)n(aq3n+3; q3)∞
,

M322(a; q) :=
∑

n≥0

anqn2+n(aq2n; q)∞
(q; q)n(aq3n; q3)∞

.

Hence

D4,3(a; q) − D4,2(a; q)

= (D4,3(a; q) − M320(a; q)) + (M320(a; q) − D4,2(a; q))

=
∑

n≥0

anqn2+n(1 − qn)(aq2n+2; q)∞
(q; q)n(aq3n+3; q3)∞

+
∑

n≥0

anqn2+2n(aq2n+3; q)∞((1 − aq2n+2) − 1)
(q; q)n(aq3n+3; q3)∞

=
∑

n≥0

an+1qn2+3n+2(aq2n+4; q)∞
(q; q)n(aq3n+6; q3)∞

−
∑

n≥0

an+1qn2+4n+2(aq2n+3; q)∞
(q; q)n(aq3n+3; q3)∞

= aq2(M321(aq3; q) − M322(aq3; q))

= aq2
∑

n≥0

anqn2+3n(aq2n+4; q)∞
(q; q)n(aq3n+3; q3)∞

× ((1 − aq3n+3) − qn(1 − aq2n+3))

= aq2
∑

n≥0

anqn2+3n(1 − qn)(aq2n+4; q)∞
(q; q)n(aq3n+3; q3)∞

= aq2
∑

n≥0

an+1qn2+5n+4(aq2n+6; q)∞
(q; q)n(aq3n+6; q3)∞

= (aq3)2D4,2(aq3; q),

which establishes (2.3) in the case k = 4, i = 3, q → q3.
Note that in all steps, the same simple term-by-term subtraction occurs.

The intermediate functions provided the necessary component to allow this to
take place.
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To complete the final case of k = 4, i = 4, we require four new interme-
diate functions:

M432(a; q) =
∑

n≥0

anqn2+n(aq2n+1; q)∞
(q; q)n(aq3n+3; q3)∞

,

M433(a; q) =
∑

n≥0

anqn2+2n(aq2n+2; q)∞
(q; q)n(aq3n+3; q3)∞

,

M434(a; q) =
∑

n≥0

anqn2+2n(aq2n; q)∞
(q; q)n(aq3n; q3)∞

,

M435(a; q) =
∑

n≥0

anqn2+3n(aq2n+2; q)∞
(q; q)n(aq3n+3; q3)∞

.

This final step is sufficiently intricate that we shall first split it into the
several term-by-term subtractions that are straightforward:

D4,4(a; q) − M322(a; q) = aqM433(a; q), (2.6)

M322(a; q) − M432(a; q) = −a2q4M434(aq3; q), (2.7)

M432(a; q) − D4,3(a; q) = −aqM435(a; q), (2.8)

M433(a; q) − M435(a; q) = aq3M432(aq3; q), (2.9)

M432(aq3; q) − M434(aq3; q) = aq5D41(aq3; q). (2.10)

Each of (2.6)–(2.10) is proved simply using term-by-term subtraction:

D4,4(a; q) − M322(a; q)

=
∑

n≥0

anqn2
(aq2n; q)∞(1 − qn)

(q; q)n(aq3n; q3)∞

= aq
∑

n≥0

anqn2+2n(aq2n+2; q)∞
(q; q)n(aq3n; q3)∞

= aqM433(a; q),

M322(a; q) − M432(a; q)

=
∑

n≥0

anqn2+n(aq2n+1; q)∞((1 − aq2n) − (1 − aq3n))
(q; q)n(aq3n; q3)∞

= −a2q4
∑

n≥0

anqn2+5n(aq2n+3; q)∞
(q; q)n(aq3n+3; q)∞

= −a2q4M434(aq3; q),

M432(a; q) − D4,3(a; q)

=
∑

n≥0

anqn2+n(aq2n+2; q)∞((1 − aq2n+1) − 1)
(q; q)n(aq3n+3; q3)∞
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= −aqM435(a; q),

M433(a; q) − M435(a; q)

=
∑

n≥0

anqn2+2n(aq2n+2; q)∞(1 − qn)
(q; q)n(aq3n+3; q3)∞

= aq3
∑

n≥0

anqn2+4n(aq2n+4; q)∞
(q; q)n(aq3n+6; q3)∞

= aq3M432(aq3; q),

and finally

M432(aq3; q) − M434(aq3; q)

=
∑

n≥0

anqn2+4n(aq2n+4; q)∞
(q; q)n(aq3n+3; q3)∞

((1 − aq3n+3) − qn(1 − aq2n+3))

=
∑

n≥0

anqn2+4n(aq2n+4; q)∞(1 − qn)
(q; q)n(aq3n+3; q3)∞

= aq5
∑

n≥0

anqn2+6n(aq2n+6; q)∞
(q; q)n(aq3n+6; q3)∞

= aq5D4,1(aq3; q).

Hence

D4,4(a; q) − D4,3(a; q)

= (D4,4(a; q) − M322(a; q)) + (M322(a; q) − M432(a; q))

+ (M432(a; q) − D4,3(a; q))

= aq(M433(a; q) − M435(a; q))

− a2q4M434(aq3; q) (by (2.6), (2.7) and (2.8))

= a2q4(M432(aq3; q) − M434(aq3; q)) (by (2.9))

= a3q9D4,1(aq3; q) (by (2.10)).

�

Now, recall that [1, p. 408]

Qk,i(1; q) =
(qi; q2k+1)∞(q2k+1−i; q2k+1)∞(q2k+1; q2k+1)∞

(q; q)∞
. (2.11)

Hence, Dyson’s favorite identity follows from Theorem 2.1.

Corollary 2.2. Identity (1.1) is valid.

Proof. Take a = 1, i = 3 in Theorem 2.1 and simplify. �

In passing, we note the following instances of Theorem 2.1; a = 1, i = 4
yields [17, p. 162, eq. (93)]; a = 1, i = 2, yields [17, p. 161, eq. (91)], and a = 1,
i = 1, yields [17, p. 161, eq. (90)]. See also [16, p. 109].
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These observations raise the question: Are there identities of interest for
the Mxyz(a; q) functions when a = 1?

To answer this question requires that we take a short detour to study
Chebyshev polynomials of the third and fourth kind.

3. Bailey Pairs and Chebyshev Polynomials

In the past, q-orthogonal polynomials have played an important role in the
study of Rogers–Ramanujan type identities and mock theta functions [4,5,9].

The surprise here is that classical Chebyshev polynomials (NOT q-
Chebyshev) play a central role in studying the Mxyz(a; q) introduced in the
previous section.

We recall that a sequence of pairs of rational functions (αn, βn)n≥0 is
called a Bailey pair with respect to a provided [2, p. 278]:

βn =
n∑

j=0

αj

(q; q)n−j(aq; q)n+j
. (3.1)

The identity (3.1) can be inverted [2, p. 278, eq. (4.1)] to the equivalent for-
mulation:

αn =
(1 − aq2n)

(1 − a)

n∑

j=0

(a; q)n+j(−1)n−jq(
n−j
2 )βj

(q; q)n−j
.

In the following, we shall also need the q-binomial coefficients:
[
A

B

]
=

{
0, if B < 0 or B > A,

(q;q)A
(q;q)B(q;q)A−B

, otherwise.

The Chebyshev polynomials of the third kind, Vn(x) are given by [14, p.
170]:

Vn(x) =

⎧
⎪⎨

⎪⎩

1, if n = 0,

2x − 1, if n = 1,

2xVn−1(x) − Vn−2(x), if n > 1.

(3.2)

The Chebyshev polynomials of the fourth kind, Wn(x) are given by [14,
p. 170]:

Wn(x) =

⎧
⎪⎨

⎪⎩

1, if n = 0,

2x + 1, if n = 1,

2xWn−1(x) − Wn−2(x), if n > 1.

(3.3)

It is a simple exercise to show that

Wn(x) = (−1)nVn(−x). (3.4)

We choose to use both Wn(x) and Vn(x) for simplicity of notation.
Our object in the section is to fit these Chebyshev polynomials into very

natural Bailey pairs.
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Theorem 3.1.
n∏

j=1

(1 + 2xqj + q2j) =
n∑

j=0

q(
j+1
2 )Vj(x)

[
2n + 1
n − j

]
. (3.5)

Remark 3.2. Identity (3.5) is equivalent to saying that
⎛

⎝q(
n+1
2 )Vn(x)
1 − q

,

∏n

j=1
(1 + 2xqj + q2j)

(q; q)2n+1

⎞

⎠ (3.6)

forms a Bailey pair at a = q.

Proof of Theorem 3.1. Let us denote the left side of (3.5) by Ln(x). Then, it
is immediate that Ln(x) is uniquely defined by:

Ln(x) =

{
1, if n = 0,

(1 + 2xqn + q2n)Ln−1(x), if n > 0.

Let us denote the right side of (3.5) by Rn(x). Clearly, R0(x) = 1. There-
fore, to conclude that Ln(x) = Rn(x), we need only show that for n > 0:

2xqnRn−1(x) = Rn(x) − (1 + q2n)Rn−1(x).

Now, by (3.2):

2xVj(x) = Vj+1(x) + Vj−1(x).

Hence, we must show that

qn
n∑

j=0

q(
j+1
2 )(Vj+1(x) + Vj−1(x))

[
2n − 1

n − 1 − j

]

=
∑

j≥0

Vj(x)q(
j+1
2 )

([
2n + 1
n − j

]
− (1 + q2n)

[
2n − 1

n − 1 − j

])
. (3.7)

Now, the Vn(x) form a basis for the polynomials in x. Consequently, the coef-
ficients of Vj(x) on both sides of (3.7) must coincide. Thus, we need only
prove:

qn+(j
2)

[
2n − 1
n − j

]
+ qn+(j+2

2 )
[

2n − 1
n − 2 − j

]

= q(
j+1
2 )

[
2n + 1
n − j

]
− (1 + q2n)

[
2n − 1

n − j − 1

]
, (3.8)

and multiplying both sides of (3.8) by (q; q)n−j(q; q)n−j+1/(q; q)2n−1, we see
that we finally must prove

qn+(j
2)(1 − qn−j)(1 − qn−j+1) + qn+(j+2

2 )(1 − qn−j)(1 − qn−j+1)

= q(
j+1
2 )(1 − q2n+1)(1 − q2n) − (1 + q2n)(1 − qn−j)(1 − qn+j+1)q(

j+1
2 ),
(3.9)

and one easily expands the expressions in (3.9) to determine its validity and
the truth of (3.5). �
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Theorem 3.3.
n−1∏

j=0

(1 + 2xqj + q2j) =
n∑

j=0

q(
j
2)Wj(x)(1 − q2j+1)

(q; q)2n

(q; q)n(q; q)n+j+1
. (3.10)

Remark 3.4. Identity (3.10) is equivalent to saying that
⎛

⎜⎝
q(

n
2)(1 − q2n+1)Wn(x)

1 − q
,

∏n−1

j=0
(1 + 2xqj + q2j)

(q; q)2n

⎞

⎟⎠ (3.11)

forms a Bailey pair at a = q. Also note that this result closely resembles
Theorem 3.1. The change in the second entry of the Bailey pair is the shift in
the index j and a shorter product in the denominator.

Proof of Theorem 3.3. As in Theorem 3.1, we denote the left side of (3.10) by
Ln(x). Then, it is immediate that Ln(x) is uniquely defined by:

Ln(x) =

{
1, if n = 0,

(1 + 2xqn−1 + q2n−2)Ln−1(x), if n > 0.

We now denote the right side of (3.10) by Rn(x). Clearly, R0(x) = 1. To
conclude the proof that Ln(x) = Rn(x), we need only show that for n > 0:

2xqn−1Rn−1(x) = Rn(x) − (1 + q2n−2)Rn−1(x).

Now, by (3.3):
2xWj(x) = Wj+1(x) + Wj−1(x).

Hence, we must show that

qn−1
n∑

j=0

q(
j
2)(Wj+1(x) + Wj−1(x))(1 − q2j+1)

(q; q)2n−2

(q; q)n−j−1(q; q)n+j

=
∑

j≥0

q(
j
2)Wj(x)(1−q2j+1)

(
(q; q)2n

(q; q)n−j(q; q)n+j+1
− (1 + q2n−2)(q; q)2n−2

(q; q)n−1−j(q; q)n+j

)
.

(3.12)

As before, the Wn(x) form a basis for the polynomials in x. Consequently, the
coefficients of Wj(x) on both sides of (3.12) must coincide. Thus, we need only
prove that

qn−1+(j−1
2 )

(
(1 − q2j−1)(q; q)2n−2

(q; q)n−j(q; q)n+j−1
+ q2j−1 (1 − q2j+3)(q; q)2n−2

(q; q)n−1−2(q; q)n+j+1

)

= q(
j
2)(1 − q2j+1)

(
(q; q)2n

(q; q)n−j(q; q)n+j+1
− (1 + q2n−2)(q; q)2n−2

(q; q)n−1−j(q; q)n+j

)
, (3.13)

and multiplying both sides of (3.13) by

(q; q)n−j(q; q)n+j+1/(q)2n−2,

we see that we finally must prove

qn−1+(j−1
2 )(1 − qn+j)(1 − qn+j+1)(1 − q2j−1)
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+ qn−1+(j+1
2 )(1 − qn−j−1)(1 − qn−j)(1 − q2j+3)

= q(
j
2)(1 − q2j+1)

(
(1 − q2n)(1 − q2n−1)

− (1 + q2n−2)(1 − qn−j)(1 − qn+j+1)
)
, (3.14)

and one easily expands the expressions in (3.14) to determine its validity and
the proof of (3.10). �

4. Generalizing Dyson’s Favorite Identity

This section will serve as a prototype for the types of identities that can be
derived using the Bailey pairs given in Sect. 3.

Let us recall the weak form of Bailey’s Lemma in the case a = q [3,
Theorem 2]. Namely, if (αn, βn) form a Bailey pair at a = q, then

∑

n≥0

qn2+nβn =
1

(q2; q)∞

∑

n≥0

qn2+nαn. (4.1)

Inserting the Bailey pair from (3.6) into (4.1), we obtain:

∑

n≥0

qn2+n
∏n

j=1
(1 + 2xqj + q2j)

(q; q)2n+1
=

1
(q; q)∞

∑

n≥0

q3(
n+1
2 )Vn(x). (4.2)

Lemma 4.1. For n ≥ 0:

Vn(−1) = (−1)n(2n + 1), (4.3)

Vn

(
−1

2

)
=

{
−2, if n ≡ 1 (mod 3),
1, otherwise,

(4.4)

Vn(0) =

{
1, if n ≡ 0, 3 (mod 4),
−1, otherwise,

(4.5)

Vn

(
1
2

)
=

⎧
⎪⎨

⎪⎩

1, if n ≡ 0, 5 (mod 6),
0, if n ≡ 1, 4 (mod 6),
−1, if n ≡ 2, 3 (mod 6),

(4.6)

Vn(1) = 1, (4.7)

Vn

(
3
2

)
= F2n+1, (4.8)

Vn

(
−3

2

)
= (−1)nL2n+1, (4.9)

where Fn and Ln are the Fibonacci and Lucas numbers.

Proof. Each of (4.3)–(4.9) is a simple exercise in mathematical induction using
the initial values and recurrence from (3.2). �

Theorem 4.2. Identity (1.1), Dyson’s “favorite identity” is valid.
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Proof. By (4.2) with x = 1
2 :

∑

n≥0

qn2+n
∏n

j=1
(1 + qj + q2j)

(q; q)2n+1

=
1

(q; q)∞

⎛

⎝
∑

n≥0

(
q3(

6n+1
2 ) + q3(

6n+6
2 ) − q3(

6n+3
2 ) − q3(

6n+4
2 )

)
⎞

⎠

=
1

(q; q)∞

( ∞∑

n=−∞

(
q3(

6n+1
2 ) − q3(

6n+3
2 )

))

=
1

(q; q)∞

∑

n≥0

q9n(3n+1)/2(1 − q9(2n+1))

=
1

(q; q)∞
(q9; q9)∞ (by [2, p. 22, Corollary 2.9]).

�

We isolated (1.1) and gave a detailed proof. The remaining values of
Vn(x) given in Lemma 4.1 yield the following identities:

Theorem 4.3.
∑

n≥0

qn2+n(q; q)n

(qn+1; q)n+1
=

(q3; q3)3

(q; q)∞
,

∑

n≥0

qn2+n(−q3; q3)n

(−q; q)n(q; q)2n+1
=

1
(q; q)∞

(
ψ(q3) − 3q3ψ(q27)

)
,

∑

n≥0

qn2+n(−q2; q2)n

(q; q)2n+1
=

1
(q; q)∞

∞∑

n=−∞
q24n2+6n(1 − q12n+3), (4.10)

∑

n≥0

qn2+n(−q; q)2

(q; q)2n+1
=

ψ(q3)
(q; q)∞

,

∑

n≥0

qn2+n
∏n

j=1
(1 + 3qj + q2j)

(q; q)2n+1
=

1
(q; q)∞

∑

n≥0

q3(
n+1
2 )F2n+1, (4.11)

and

∑

n≥0

qn2+n
∏n

j=1
(1 − 3qj + q2j)

(q; q)2n+1
=

1
(q; q)∞

∑

n≥0

q3(
n+1
2 )(−1)nL2n+1,

where

ψ(q) =
(q2; q2)∞
(q; q2)∞

=
∞∑

n=0

q(
n+1
2 ).

Remark 4.4. Of these six identities, (4.10) appears in [7], and (4.11) is from
[16, p. 154, eq. (22)]. The remaining four appear to be new.
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Proof of Theorem 4.3. Each of these identities follows from direct substitution
of the values given for Vn(x) in Lemma 4.1 into (4.2). The only instance where
an auxiliary result is used is (4.10) which additionally requires Jacobi’s famous
result [2, p. 176]:

∞∑

n=0

(−1)n(2n + 1)q(
n+1
2 ) = (q; q)3∞.

�

5. Implications of Theorem 3.3

Just as Theorem 3.1 provided seven corollaries, so too does Theorem 3.3. We
begin by inserting the Bailey pair from (3.11) into (4.1) to obtain:

∑

n≥0

qn2+n
∏n−1

j=0
(1 + 2xqj + q2j)

(q; q)2n
=

1
(q; q)∞

∑

n≥0

qn(3n+1)/2(1 − q2n+1)Wn(x).

(5.1)

In light of (3.4), we can use Lemma 4.1 to provide the special evaluation of
Wn(x):

Theorem 5.1.

∑

n≥0

qn2+n
∏n−1

j=0
(1 − 3qj + q2j)

(q; q)2n

=
1

(q; q)∞

∑

n≥0

qn(3n+1)/2(1 − q2n+1)(−1)nF2n+1,

1 =
1

(q; q)∞

∑

n≥0

qn(3n+1)/2(1 − q2n+1)(−1)n,

1 +
∑

n≥1

qn2+n(−q3; q3)n−1

(−q; q)n−1(q; q)2n

=
−1

(q; q)∞

∑

n≥0

qn(3n+1)/2(1 − q2n+1)
(

n − 1
3

)

=
1

(q; q)∞
(1 − q − q7 + q12 + q15 − q22 − · · · ),

∑

n≥0

qn2+n(−1; q2)n

(q; q)2n

=
1

(q; q)∞

∞∑

n=−∞
qn(3n+1)/2χ4(n)

(where χ4(n) = +1 if n ≡ 0, 1 (mod 4) and − 1 otherwise),
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1 +
∑

n≥1

qn2+n(q3; q3)n−1

(q; q)n−1(q; q)2n
=

1
(q; q)∞

∞∑

n=−∞
qn(3n+1)/2χ12(n)

(where χ12(n) = +1 if n ≡ 0, 1, 7 (mod 12),−1

if n ≡ 4, 10 (mod 12), 0 otherwise),
∑

n≥0

qn2+n(−1; q)2n
(q; q)2n

=
1

(q; q)∞

∞∑

n=−∞
(2n + 1)qn(3n+1)/2,

∑

n≥0

qn2+n
∏n−1

j=0
(1 + 3qj + q2j)

(q; q)2n

=
1

(q; q)∞

∑

n≥0

qn(3n+1)/2(1 − q2n+1)L2n+1. (5.2)

Proof. Each of these seven identities follows successively from the instances:
x = − 3

2 ,−1,− 1
2 , 0, 1

2 , 1, 3
2 of Wn(x) in (5.1). �

6. Generalized Hecke Series

In the previous sections, we have restricted attention to results where Cheby-
shev polynomials have been inserted into the theta-type series, e.g., (4.2) and
(5.2). In this section, we consider a similar phenomenon related to Hecke-type
double series involving indefinite quadratic forms.

Throughout this section, we will require instances of the following iden-
tity:

∑

n≥0

qn2+αn

(q; q)n(q; q)n+β
=

1
(q; q)∞

∑

n≥0

(qα−β ; q)n(−1)nqβn+(n+1
2 )

(q; q)n
, (6.1)

which follows from Heine’s second transformation [12, p. 241, eq. (III.2), a =
b = 1

τ , z = qα+1τ2, c = qβ+1, and τ → 0].

Theorem 6.1.

∑

n≥0

qn2 ∏n

j=1
(1 + 2xqj + q2j)

(q; q)2n

=
1

(q; q)∞

∑

n≥0

q2n2+n(1 − q6n+6)
n∑

j=0

Vj(x)q−(j+1
2 ). (6.2)

Proof. By (3.5):

∑

n≥0

qn2 ∏n

j=1

(
1 + 2xqj + q2j

)

(q; q)2n
=

∑

n≥0

qn2
n∑

j=0

q(
j+1
2 )Vj(x)

[
2n + 1
n − j

]

(q; q)2n
. (6.3)
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Thus, to prove Theorem 6.1, we need only identify the coefficients of Vj(x) in
(6.3) with those in (6.2). Namely, we must prove:

∑

n≥j

qn2+(j+1
2 )

[
2n + 1
n − j

]

(q; q)2n
=

1
(q; q)∞

∑

n≥j

q2n2+n−(j+1
2 ) (

1 − q6n+6
)
. (6.4)

Now

∑

n≥j

qn2+(j+1
2 )

[
2n + 1
n − j

]

(q; q)2n

= qj2+(j+1
2 ) ∑

n≥0

qn2+2nj(1 − q2n+2j+1)
(q; q)n(q; q)n+2j+1

=
qj2+(j+1

2 )

(q; q)∞

(
∑

n≥0

(q−1; q)n

(q; q)n
(−1)nq(2j+1)n+(n+1

2 )

− q2j+1
∑

n≥0

(q; q)n

(q; q)n
(−1)nq(2j+1)n+(n+1

2 )
)

(by (6.1))

=
qj2+(j+1

2 )

(q; q)∞

⎛

⎝1 + q2j+1 − q2j+1
∑

n≥0

(−1)nq(
n+1
2 )+(2j+1)n

⎞

⎠ . (6.5)

Comparing the right sides of (6.4) and (6.5), we see (shifting n → n+ j on the
right of (6.4)) that to complete the proof, we must show that:

∑

n≥0

q2n2+4nj+n(1 − q6n+6j+6) = 1 − q2j+1
∑

n≥1

(−1)nq(
n+1
2 )+(2j+1)n, (6.6)

and

1 − q2j+1
∑

n≥1

(−1)nq(
n+1
2 )+(2j+1)n

= 1 +
∑

n≥1

q(
2n
n )+2n(2j+1) −

∑

n≥0

q(2j+1)+(2n+3
2 )+(2j+1)(2n+2)

=
∑

n≥0

q2n2+4nj+n −
∑

n≥0

q2n2+4nj+7n+6j+6

=
∑

n≥0

q2n2+4nj+n(1 − q6n+6j+6),

and thus, (6.6) is proved and with it (6.2): �
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Theorem 6.2.

∑

n≥0

qn2+2n
∏n

j=1
(1 + 2xqj + q2j)

(q; q)2n+1

=
1

(q; q)∞

∑

n≥0

q2n2+3n(1 − q2n+2)
n∑

j=0

Vj(x)q−(j+1
2 ). (6.7)

Proof. This is proved exactly as Theorem 6.1 is proved; so, we suppress some
of the more tedious details:

∑

n≥0

qn2+2n
∏n

j=1
(1 + 2xqj + q2j)

(q; q)2n+1

=
∑

n≥0

qn2+2n

(q; q)2n+1

n∑

j=0

q(
j+1
2 )Vj(x)

[
2n + 1
n − j

]
(by (3.5)). (6.8)

Thus, to prove (6.7), we must check that the coefficients of Vj(x) in (6.7) and
(6.8) coincide. Hence, we must prove:

∑

n≥j

qn2+2n+(j+1
2 )

(q; q)n−j(q; q)n+j+1
=

1
(q; q)∞

∑

n≥j

q2n3+3n−(j+1
2 )(1 − q2n+2), (6.9)

and identity (6.9) is proved by applying (6.1) to the left side. �

7. Ninth-Order Mock Theta Functions

In this section, we shall study some of the series arising as intermediate func-
tions in Sect. 2. We now remove the infinite products from the Mxyz(a; q).
Namely

mxyz(a; q) =
(a; q)∞
(a; q3)∞

Mxyz(a; q).

Theorem 7.1.

m320(1; q) : =
∑

n≥0

qn2+2n(q3; q3)n

(q; q)n(q; q)2n+1

=
1

(q; q)∞

∞∑

n=0

q2n2+3n(1 − q2n+2)
�n

3 �∑

j=−� n+1
3 �

(−1)jq−3j(3j+1)/2.

(7.1)

Proof. In Theorem 6.2, set x = 1
2 . Then, prove

n∑

j=0

Vj

(
1
2

)
q−j(j+1)/2 =

�n
3 �∑

j=−�n+1
3 �

(−1)jq−3j(3j+1)/2 (7.2)

by mathematical induction using (4.6). �
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Theorem 7.2.

m321(1; q) :=
∑

n≥0

qn2
(q3; q3)n

(q; q)n(q; q)2n

=
1

(q; q)∞

∞∑

n=0

q2n2+n(1 − q6n+6)
�n

3 �∑

j=−� n+1
3 �

(−1)jq−3j(3j+1)/2.

Proof. In Theorem 6.1, set x = 1
2 , and invoke (7.2). �

Lemma 7.3.
∑

n≥1

qn2
(q3; q3)n−1

(q; q)n−1(q; q)2n−1

=
1

(q; q)∞

∑

n≥0

q2n2+3n+1(1 − q2n+2)
�n

3 �∑

j=−�n+1
3 �

(−1)jq−3j(3j+1)/2.

Proof. Shift n to n − 1 on the left side of (7.1) and multiply by q. �
Theorem 7.4.

m322(1; q) = 1 +
∑

n≥0

qn2+n(q3; q3)n−1

(q; q)n(q; q)2n−1

=
1

(q; q)∞

∑

n≥0

q2n2+n(1 − q2n+1)
�n

3 �∑

j=−�n
3 �

(−1)jq−3j(3j+1)/2.

Proof. Define d4,i(a; q) = (a;q)∞
(a;q)∞

d4,i(a; q). Then, by [16, p. 162, eq. (93)]:

d4,4(1; q) = 1 +
∑

n≥1

qn2
(q3; q3)n−1

(q; q)n(q; q)2n−1

=
1

(q; q)∞

∑

n≥0

(−1)nq3(9n2+n)/2(1 − q24n+12). (7.3)

Therefore

d4,4(1; q3) − m322(1; q) =
∑

n≥1

qn2
(q3; q3)n−1

(q; q)n−1(q; q)2n−1
,

and thus, by (7.3) and Lemma 7.3, m322(1; q) is equal to:

1
(q; q)∞

( ∑

n≥0

(−1)nq(27n2+3n)/2(1 − q24n+12)

−
∑

n≥0

q2n2+3n+1
(
1 − q2n+2

) �n
3 �∑

j=−�n+1
3 �

(−1)jq−3j(3j+1)/2

)

=
1

(q; q)∞

( ∑

n≥0

(−1)nq(27n2+3n)/2
(
1 − q24n+12

)
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−
∑

n≥0

q2n2+3n+1

�n
3 �∑

j=−�n+1
3 �

(−1)jq−3j(3j+1)/2

+
∑

n≥1

q2n2+n

�n
3 �∑

j=−�n
3 �

(−1)jq−3j(3j+1)/2

)

=
1

(q; q)∞

( ∑

n≥0

(−1)nq(27n2+3n)/2
(
1 − q24n+12

)

−
∑

n≥0

q2n2+3n+1

�n
3 �∑

j=−�n
3 �

(−1)jq−3k(3j+1)/2

−
∑

n≥0

q2(3n+22+3(3n+2)+1(−1)−n−1q−3(−n−1)(3(−n−1)+1)/2

+
∑

n≥0

q2n2+n

�n
3 �∑

j=−�n
3 �

(−1)jq−3j(3j+1)/2

−
∑

n≥0

q2(3n)2+3n(−1)nq−3n(3n+1)/2

)

=
1

(q; q)∞

∑

n≥0

q2n2+n(1 − q2n+1)
�n

3 �∑

j=−�n
3 �

(−1)jq−3j(3j+1)/2. (7.4)

�
We remark that Ian Wagner has studied these and many related functions

in his Ph.D. thesis (directed by Ken Ono). He observes that some are mock
theta functions (Theorems 12 and 13), and some are “near misses” (Theorem
15).

8. Partition Identities

Let us recall B. Gordon’s celebrated generalization of the Rogers–Ramanujan
identities [13] (cf. [1]).

Gordon’s Theorem. Let Ak,i(n) denote the number of partitions of n into parts
�≡ 0,±i (mod 2k + 1). Let Bk,i(n) denote the number of partitions of n of the
form λ1 + λ2 + · · · + λs, where λj − λj+k−1 ≥ 2 and λ1 ≥ λ2 ≥ · · · λk and, in
addition, at most i − 1 of the λj are equal to 1. Then, for 1 ≤ i ≤ k, n ≥ 0:

Ak,i(n) = Bk,i(n).

The simplest proof [1] of Gordon’s theorem reveals that Qk,i(z; q) is the
generating function for partitions of the Bk,i-type where the exponent of z
counts the number of parts. Thus:

Qk,i(1; q) =
∑

n≥0

Bk,i(n)qn,
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and the result follows by invoking (2.11).
Now, one could assume that nothing more needs to be said about

Q4,i(1; q3). After all this is just Gordon’s theorem at k = 4 with all parts
multiplied by 3.

However, the work in [8] points to a natural alternative interpretation of
partitions generated by Q4,i(x; q3). In the new interpretation, we begin, with
R, the set of all integer partitions in which parts differ by at least 2. We also
speak of maximal sequences of parts in such partitions. We shall say that in
the partition λ1 + λ2 + · · · + λs (λi − λi+1 ≥ 2) :

λm + λm+1 + · · · + λm+j

is maximal if λm−1 −λm > 2, λm+j −λm+j+1 > 2 and λm+i −λm+i+1 = 2 for
0 ≤ i ≤ j − 1.

Theorem 8.1. Let Ci(n) (1 ≤ i ≤ 4) denote the number of partitions of n in
R with the added condition that

all parts are > 4 − i, if j, j + 2, j + 4, . . . , j + (2r − 2) (8.1)

is a maximal sequence of parts; then
when j ≡ 0 (mod 3), r must be ≡ 0, 1 (mod 3),
when j ≡ 1 (mod 3), r must be ≡ 0 (mod 3) and
when j ≡ 2 (mod 3), r must be ≡ 0, 2 (mod 3).

Then
Ci(n) = A4,i

(n

3

)
= B4,i

(n

3

)
(8.2)

(note that if n
3 is not an integer all entries in (8.2) equal 0).

Remark 8.2. As an example, in the case n = 12 and i = 4, B4,4(4) = 4 (the
partitions considered are 4, 3 + 1, 2 + 2, 2 + 1 + 1), and C4(12) also equals 4
with the relevant partitions being 12, 3 + 9, 5 + 7, 2 + 4 + 6.

Proof of Theorem 8.1. We need only show that the generating function
Ki(z; q) for partitions with m parts among the partitions enumerated by Ci(n)
is Q4,i(z; q3). Clearly, the initial conditions (2.1) and (2.2) hold. Thus, we need
only show that (2.3) with q → q3 holds for the Ki(z; q). Namely

K4(z; q) − K3(z; q) = z3q1+3+5K1(zq3; q), (8.3)

K3(z; q) − K2(z; q) = z2q2+4K2(zq3; q), (8.4)

K2(z; q) − K1(z; q) = zq3K3(zq3; q), (8.5)

K1(z; q) = K4(zq3; q). (8.6)

The proof of each of these four identities is similar so we provide full
details for (8.3). We note that Ki(z; q) − Ki−1(z; q) generates those partitions
in which 5 − i is the smallest part. Thus, when i = 4, we can only consider
partitions that have 1 as the smallest part. By (8.1), the shortest allowable
sequence starting with 1 is 1 + 3 + 5. The partitions generated by K1(zq3; q)
are K1 partitions with 3 added to each part. Thus the smallest part is ≤ 7.
Hence, either 1 + 3 + 5 attaches to a previously maximal sequence of length
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now increased by 3 and thus still preserving (8.1) or else 1 + 3 + 5 is itself a
legitimate maximal sequence. Hence, (8.3) is established. Identities (8.4)–(8.6)
follow in the same way.

Therefore, since (2.1)–(2.3) uniquely determine Qk,i(a; q), we see that for
1 ≤ i ≤ 4:

Ki(z; q) = Q4,i(z; q3), (8.7)
and Theorem 8.1 follows by setting z = 1 in (8.7) and comparing coefficients
of qn. �

9. One More Identity

We note that Dyson’s favorite identity (1.1) may be written in the form of an
instance of the quintuple product identity. Namely:

∞∑

n=0

qn2+n(q3; q3)n

(q; q)n(q; q)2n+1

=
(−q3; q9)∞(−q6; q9)∞(q9; q9)∞(q3; q18)∞(q15; q18)∞

(q; q)∞
. (9.1)

One may naturally expect that there is an equally elegant quintuple prod-
uct companion for (9.1), and this is revealed in the following:

Theorem 9.1.
∑

n≥0

qn2
(q3; q3)n

(q; q)n(q; q)2n+1

=
1

(q; q)∞

∞∑

n=−∞
(−1)nq3n(9n+1)/2(1 + q9n+1)

= (−q8; q9)∞(−q; q9)∞(q9; q9)∞(q7; q18)∞(q11; q18)∞/(q; q)∞.

Proof. It is an exercise in mathematical induction to show that
m∑

j=0

qj2
(q3; q3)j

(q; q)j(q; q)2j+1
−

⎛

⎝1 +
m∑

j=1

qj2
(q3; q3)j−1

(q; q)j(q; q)2j−1

⎞

⎠ − q

m∑

j=0

qj2+2j(q3; q3)j

(q; q)j(q; q)2j+2

=
−qm2+4m+3(q3; q3)m

(q; q)m(q; q)2m+2
. (9.2)

Letting m → ∞ in (9.2), we see that:
∑

n≥0

qn2
(q3; q3)n

(q; q)n(q; q)2n+1

= 1 +
∞∑

n=1

qn2
(q3; q3)n−1

(q; q)n(q; q)2n−1
+ q

∞∑

n=0

qn2+2n(q3; q3)n

(q; q)n(q; q)2n+2

=
1

(q; q)∞

( ∞∑

n=−∞
(−1)nq(27n2+3n)/2
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+ q
∞∑

n=−∞
(−1)nq(27n2+21n)/2

)
(by [17, pp. 161–162, eqs. (91) and (93)])

=
1

(q; q)∞

∞∑

n=−∞
(−1)nq3n(9n+1)/2(1 + q9n+1)

=
1

(q; q)∞
(−q8; q9)∞(−q; q9)∞(q9; q9)∞(q7; q18)∞(q11; q18)∞,

by the quintuple product identity with q → q9, z = q [12, p. 134, Ex. 5.16]. �

10. Relation to L.J. Rogers’s Work

We have treated all the discoveries in this paper using standard polynomial
notation. This, in turn, has simplified many of our computations some of which
have been extremely intricate. However, it is important to stress that the sorts
of results in Sect. 3 are effectively finite versions of theorems of L.J. Rogers
[15]. This is not obvious on the surface, because Rogers couched his work in
terms of Fourier series.

To make this relationship clear, we reprove Theorem 3.1 in the style of
L.J. Rogers.

Second Proof of Theorem 3.1

In (3.5), replace x by cos θ = (eiθ + e−iθ)/2. Thus, (3.5) becomes:
n∏

j=1

(1 + eiθqj)(1 + e−iθqj) =
n∑

j=0

q(
j+1
2 )Vj(cos θ)

[
2n + 1
n − j

]
. (10.1)

Now, noting

(−x; q)N+1(−q/x; q)N = x−Nq(
N+1

2 )(−xq−N ; q)2N+1, (10.2)

we may expand the right side of (10.2) by the q-binomial theorem [2, p. 36,
eq. (3.3.6)] to obtain:

(−xq; q)N (−q/x; q)N

=
1

1 + x

2N+1∑

j=0

xjq(
j
2)−Nj

[
2N + 1

j

]

=
N∑

j=0

q(
j+1
2 ) xj+ 1

2 + x−j− 1
2

x
1
2 + x− 1

2

[
2N + 1
N − j

]
. (10.3)

Now, setting x = eiθ in (10.3) and noting that

Vj(cos θ) =
cos(θ(j + 1

2 ))
cos θ

, (10.4)

we deduce (10.1) from (10.4). �
Now, if we let N → ∞ in (10.1), we obtain the actual starting point for

Rogers in his second proof of the Rogers–Ramanujan identities [15]. A similar
treatment can be used for Theorem 3.3.
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11. Conclusion

The entire project began in an attempt to better understand Dyson’s mod 27
identities especially the favorite (1.1). The natural appearance of Mxyz(a; q)
functions naturally led to a quest for proofs of the mock theta specializations.
This in turn led to the Chebyshev polynomials.

It is the latter phenomenon that is so surprising. Orthogonal polynomials
have arisen several times before in the treatment of q-series (cf. [4,5,9]). How-
ever, in each instance, the orthogonal polynomials were q-analogs of classical
orthogonal polynomials.

This is the first instance where classical orthogonal polynomials (namely
Chebyshev polynomials of the third and fourth kinds) entered naturally into
the world of q. This leaves us with at least three topics worthy of further
exploration.
(11.1) Following the lead of Rogers briefly described in Sect. 10, one should

be able to use the other Chebyshev polynomials in further studies of
this nature.

(11.2) There are many more explicit results to be obtained for mxyz(1; q). The
object here was to illustrate the method without obscuring the project
with too many details.

(11.3) In addition to mock theta-type results for mxyz(1; q), there should be
natural combinatorial interpretations related to the ideas in Sect. 8.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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Abstract. We show that there is a concept of q-translation behind the
approach used by Liu to prove summation and transformation identities
for q-series. We revisit the q-translation associated with the Askey–Wilson
operator introduced in Ismail (Ann Comb 5(3–4):347–362, 2001), simplify
its formalism and point out new properties of this translation operator.
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1. Introduction

In this work, we introduce a concept of generalized translation. The motivation
for the next step comes from the following observation. The general solution
to ∂f(x,y)

∂x = ∂f(x,y)
∂y is f(x, y) = g(x + y), as can be seen from the method of

characteristics [7]. Therefore, the translation by y is equivalent to solving the
above-mentioned PDE.

Liu [18] gave an evaluation of a q-beta integral. In [19,20], he gave new
proofs of q-series identities and derived some new ones. He studied functions
satisfying Tq,xF (x, y) = Tq,yF (x, y), where

(Tq,xf)(x) =
f(x) − f(qx)

x
,

This paper started when Ismail attended a lecture by Zhi-Guo Liu where he represented
some of his results. The reader can see that we tried to find a conceptual explanation of his
results. Ismail also greatly acknowledges the help and hospitality of Zhi-Guo Liu and East
China Normal University in Shanghai where this work was presented and completed.
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and used his characterization in a very clever and creative way to evaluate
q-series sums and integrals. We realized that the relationship Tq,xF (x, y) =
Tq,yF (x, y) is a q-analogue of fx = fy and as such it generates a q-translation.
This led us to define a concept of a generalized translation which not only
incorporates the two above-mentioned cases of differential and q-difference
operators but also covers divided difference operators including the Askey–
Wilson operator. Our general approach also covers the q-translation introduced
in [11], which was further studied by Bouzaffour [5], who defined an analogue
of the Fourier transform.

In Sect. 2 we develop a general theory which explains the source of Liu’s
approach. This includes the definition of a general translation. Section 3 con-
tains the definition of the corresponding exponential function. In Sect. 4, we
treat a q-translation model and show that the corresponding exponential func-
tion is a function due to Euler. Section 5 is the first part of the analysis leading
to an Askey–Wilson translation which is later introduced in Sect. 6.

We shall follow the standard notation for hypergeometric functions and
their q-analogues as defined in [1,8,12]. The notation for the Askey–Wilson
operator is as in [10,12] and is different from the original definition in [3], or
in [8].

2. A Formal Construction

The Sheffer classification originated in a series of papers written by I.M. Sheffer
in the 1930s, see, for example, [26]. It is treated in detail in Rainville [23] and
in [12].

We say that a polynomial sequence {pn(x)} belongs to a linear operator
T which reduces the degree of a polynomial by 1 if Tpn(x) = pn−1(x). One
can repeat the same arguments used in Rainville [23] and prove the following
theorem.

Theorem 2.1. Two polynomial sequences {pn(x)} and {qn(x)} belong to the
same operator T if and only if there is a sequence of constants {an} with
a0 �= 0 such that

pn(x) =
n∑

k=0

akqn−k(x).

This is equivalent to
∞∑

n=0

pn(x)tn =

[ ∞∑

n=0

antn

][ ∞∑

k=0

qk(x)tk
]

= h(t)
∞∑

k=0

qk(x)tk,

and h(0) �= 0.

We now give a formal construction for translation operators. It must be
emphasized that in any given case one has to rigorously justify the steps in
the construction. We start with a linear operator Tx whose domains contain
all polynomials and reduces the degree of a polynomial by 1. We also assume
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that we have two sequences of polynomials {un(x)} and {vn(x)} satisfying
Txun(x) = un−1(x), Txvn(x) = vn−1(x), that is, both {un(x)} and {vn(x)}
belong to Tx. Recall that it is tacitly assumed that both un(x) and vn(x) are
polynomials of exact degree n in x.

We now seek functions f(x, y) such that

f(x, y) =
∞∑

m,n=0

fm,num(x)vn(y), (2.1)

and f solves Txf(x, y) = Tyf(x, y). Substituting for f from (2.1) then we
find that fm+1,n = fm,n+1. Hence, fm,n = cm+n for some sequence {cn}.
Therefore,

f(x, y) =
∞∑

n=0

cn

n∑

k=0

uk(x)vn−k(y).

This means that the analogue of shifting x by y in xn is the linear operator
Ey defined by

Eyun(x) =
n∑

k=0

uk(x)vn−k(y). (2.2)

Because we think of Ey as a translation by y we expect E0 to be the identity
operator. This happens if and only if vn(0) = δn,0. It is a fact that given Tx

there is a unique sequence of polynomials vn(x) of positive leading terms, such
that Txvn(x) = vn−1(x) and vn(0) = δn,0. This leads to the formal definition
below.

Definition 2.2. Given an operator Tx, defined on polynomials and mapping a
polynomial of degree n to a polynomial of degree n − 1, for all n, construct
the basic sequence {vn(x)} which belongs to Tx. Let {un(x)} be any other
polynomial sequence belonging to Tx. The generalized translation Ey is the
linear operator defined on polynomials by

Eyun(x) =
n∑

k=0

uk(x)vn−k(y).

To see that Ey is well defined, assume that {wn(x)} is any polynomial
sequence belonging to Tx. Then

wn(x) =
n∑

k=0

an−kuk(x)
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and

Eywn(x) = Ey
n∑

k=0

an−kuk(x)

=
n∑

k=0

an−kEyuk(x)

=
n∑

k=0

an−k

k∑

j=0

uj(x)vk−j(y)

=
n∑

j=0

uj(x)
n−j∑

k=0

an−k−jvk(y)

=
n∑

k=0

vk(y)
n−k∑

j=0

an−k−juj(x)

=
n∑

k=0

vk(y)wn−k(x),

which would be the generalized translation if we had started with {wn(x)} and
{vn(x)}.

Note that EzEy = EyEz because

EzEyun(x) = Ez
n∑

k=0

vk(y)un−k(x)

=
n∑

k=0

vk(y)
n−k∑

j=0

vj(z)un−j−k(x)

=
∑

j,k≥0,j+k≤n

vj(z)vk(y)un−j−k(x),

which is symmetric in y and z.
In the sequel, we shall use the notation

Eyf(x) =
∞∑

n=0

cn

n∑

k=0

uk(x)vn−k(y), if f(x) =
∞∑

n=0

cnun(x). (2.3)

When un(x) = vn(x) then Eyf(x) = Exf(y), otherwise this is not true in
general.

Our next goal is to describe all operators which commute with Ey. In the
case Tx = d

dx , this corresponds to characterizing all shift invariant operators
[9,24,25].

Let A be an operator which maps a polynomial of degree n to a polyno-
mial of degree at most n.
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Theorem 2.3. Let A be as above. Then there is a sequence of polynomials
{ak(x)} such that ak(x) is of degree ≤ k and the action of A on polynomi-
als is given by

A =
∞∑

k=0

ak(x)T k
x , (2.4)

with T 0
x equal to the identity operator.

Proof. Let {un(x)} belong to Tx, u0(x) = 1, and define a0(x) = Au0(x) = a
constant. Define the ak’s inductively by

an(x) = Aun(x) −
n−1∑

k=0

ak(x)un−k(x).

This proves the theorem. �

Theorem 2.4. Let A be an operator which maps a polynomial of degree n to a
polynomial of degree at most n. Then A commutes with Ey if and only if the
aks in (2.4) are constants.

Proof. It is clear that if the aks are constants then the operator commutes with
Ey. The proof of the converse is by induction. Recall that u0(x) = v0(x) = 1.
We first note that

(AEy − EyA)u1(x) = [a0 + a1(x)Tx][v1(y) + u1(x)] − Ey[a0u1(x) + a1(x)]

= a0[v1(y) + u1(x)] + a1(x) − a0[v1(y) + u1(x)] − Eya1(x)

= a1(x) − Eya1(x).

Hence, the above expression vanishes if and only if a1(x) = Eya1(x). Now
write a1(x) = a1,0 + a1,1u1(x). Clearly a1(x) is invariant under Ey if and
only if a1,1u1(x) = a1,1[u1(x) + v1(y)] for all y. Thus, a1,1 = 0. Now assume
that ak(x) is a constant for 1 ≤ k < n. Then

∑n−1
k=0 akT k

x commutes with Ey.
Therefore,

(AEy − EyA)un(x) = an(x)Tn
x

n∑

j=0

uk(x)vn−k(y) − Ey(an(x))

= an(x) − Ey(an(x)),

that is, an(x) is invariant under Ey. As before, set

an(x) =
n∑

j=0

an,juj(x)

to see that an(x) is invariant under Ey if and only if

n∑

j=0

an,juj(x) =
n∑

k=0

an,k

k∑

j=0

uj(x)vk−j(y).
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Clearly this holds if and only if

an,j =
n∑

k=j

an,kvk−j(y) =
n−j∑

k=0

an,k+jvk(y), j = 0, 1, . . . , n,

for all y. The case j = 0 implies that an,k = 0 for k > 0. �

3. Exponential Functions

We define an exponential function E by

E(x; t) = g(t)
∞∑

n=0

un(x)tn, with 1/g(t) =
∞∑

n=0

un(0)tn. (3.1)

Of course it is assumed that the series in (3.1) converges in the x-domain and
for a t-disc, |t| < r, r > 0. The above definition automatically implies

E(0; t) = 1.

Note that TxE(x; t) = tE(x; t). In other words, E(x, t) behaves like an expo-
nential function ext.

Theorem 3.1. The exponential function in (3.1) satisfies the addition theorem

EyE(x; t) = h(t)E(x; t)E(y; t), (3.2)

with h(t) [
∑∞

n=0 vn(0)tn] = 1.

Proof. It is clear that

EyE(x; t) = g(t)
∞∑

n=0

Eyun(x)tn

= g(t)
∞∑

n=0

tn
n∑

k=0

uk(x)vn−k(y)

= g(t)
∞∑

n=0

un(x)tn
∞∑

m=0

vm(y)tm

= E(x; t)
∞∑

m=0

vm(y)tm.

Since {un(x)} and {vn(x)} belong to the same operator, Theorem 2.1
and (3.1) then imply that there is a power series h(t) with h(0) �= 0 such that

∞∑

m=0

vm(y)tm = h(t)E(y; t).

Thus,

h(t) =
1∑∞

m=0 vm(0)tm

and the proof is complete. �

116



A q-Translation Approach to Liu’s Calculus 471

If {vn(x)} is chosen such that vn(0) = δn,0 then the power series h(t) ≡ 1
in (3.2). In the sequel, we shall always assume that

vn(0) = δn,0. (3.3)

The concept of translation brings to mind the fact that the exponential
function is multiplicative under translation, that is, exp(t(x + y)) = etxety.
This motivates the following definition of E(x, y; t):

E(x, y; t) = EyE(x; t) = E(x; t)E(y; t).

The functions E(x; t) and E(x, y; t) depend only on the operator T and
are independent of the choices of {un(x)}. To see this let us start with a
different sequences {wn(x)}, belonging to Tx instead of {un(x)}. Thus, there
exists a power series h(t) with

∞∑

n=0

un(x)tn = h(t)
∞∑

n=0

wn(x)tn.

Therefore,

h(t) =
∞∑

n=0

un(0)tn/

∞∑

n=0

wn(0)tn,

that is,
∑∞

n=0 un(x)tn∑∞
n=0 un(0)tn

=
∑∞

n=0 wn(x)tn∑∞
n=0 wn(0)tn

.

This shows that ∑∞
n=0 wn(x)tn∑∞
n=0 wn(0)tn

=
∑∞

n=0 un(x)tn∑∞
n=0 un(0)tn

holds. Hence, E(x; t) is independent of the choice of the un’s as long as they
belong to T . This also defines E(x, y; t) uniquely.

We now discuss infinitesimal generator. Assume that {vn(x)} belongs to
T but v0(x) = 1, vn(0) = δn,0. It is easy to see that this defines {vn(x)}
uniquely. Moreover, E(x; t) =

∑∞
n=0 vn(x)tn.

Theorem 3.2. If f is a polynomial then

(E(y;Tx))f(x) = (Eyf)(x).

Proof. Let {um(x)} be any polynomial sequence belonging to T . Then

(E(y;Tx))um(x) =
∞∑

n=0

vn(y)Tn
x um(x) =

∞∑

n=0

vn(y)um−n(x) = Eyun(x).

The theorem follows from the linearity of E(y;Tx). �

Theorem 3.3. With I being the identity operator and f a polynomial, we have

lim
y→0

Ey − I

y
f(x) =

∞∑

m=1

v′
m(0)Tm

x f(x).
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Proof. Use Theorem 3.2 to see that

1
y
[Ey − I] f(x) =

∞∑

m=0

vm(y) − vm(0)
y

Tm
x f(x) →

∞∑

m=1

v′
m(0)Tm

x f(x),

as y → 0. �

An immediate consequence of Theorem 3.3 is

lim
y→0

Ey − I

y
f(x) =

∂E(y;Tx)
∂y

∣∣∣∣
y=0

f(x). (3.4)

We now consider the concept of polynomials of binomial type [17,24,25]
in our setup.

Definition 3.4. We say that a polynomial sequence {pn(x)} is of binomial type
relative to Tx if it has a generating function of the form

∞∑

n=0

pn(x)tn = E(x;H(t)), H(t) =
∞∑

n=1

hntn, h1 �= 0.

The dependence on Tx is implicit in the definition of the generalized exponen-
tial E.

Theorem 3.5. Assume that {pn(x)} is a polynomial sequence and pn(0) = δn,0.
Then {pn(x)} is of binomial type relative to Tx if and only if {pn(x)} belongs
to J = J(Tx) :=

∑∞
k=1 akT k

x , where ak are constants, a1 �= 0 and H(t) is the
inverse function of

∑∞
k=1 aktk.

Proof. Assume that {pn(x)} is of binomial type relative to Tx. Let J(t) be the
inverse function to H(t). We assume that {vn(x)} belongs to Tx and satisfies
(3.3). Then

J(Tx)
∞∑

n=0

pn(x)tn = J(Tx)
∞∑

n=0

vn(x)(H(t))n

=
∞∑

m=1

amTm
x

∞∑

n=0

vn(x)(H(t))n

=
∞∑

m=1

am

∞∑

n=m

vn−m(x)(H(t))n

=
∞∑

m=1

am(H(t))mE(x;H(t)) = tE(x;H(t))

= t

∞∑

n=0

pn(x)tn.

This shows that J(Tx)pn(x) = pn−1(x), so {pn(x)} belongs to J(Tx). For the
converse, assume that {vn(x)} belongs to Tx and vn(0) = δn,0. This defines the
function E(x; t). Define H(t) to be the inverse function of

∑∞
k=1 aktk. Then
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construct E(x; t) and define a polynomial sequence {qn(x)} of binomial type
with respect to Tx by

∞∑

n=0

qn(x)tn = E(x;H(t)).

As in the first part {qn(x)} belongs to the same operator as {pn(x)}. Hence,
there exists a sequence of constants bn such that

pn(x) =
n∑

k=0

bkqn−k(x).

Now use

pn(0) = qn(0) = δn,0

and find that

δn,0 =
n∑

k=0

bkδn,k = bn.

Thus, pn(x) = qn(x). �
We now come to the product of functionals. Roman and Rota [24] defined

the product of functionals acting on the vector space of polynomials. Later Joni
and Rota [17], and Ihrig and Ismail [9] observed that the product of functionals
can be described in terms of a coalgebra map Δ. They used Δx = x⊗1+1⊗x.
For a polynomial p, they defined the product of two functionals L and M by

< LM |p(x) >=< L ⊗ M |Δp(x) >:=< L ⊗ M |p(Δx) > .

Using the binomial theorem, we get

< LM |x
n

n!
>=

n∑

k=0

< L|x
k

k!
>< M | xn−k

(n − k)!
> .

We note that the + in the definition of Δx = x ⊗ 1 + 1 ⊗ x is a translation.
This suggests the replacing + by a generalized translation, so we define

< LM |un(x) >=
n∑

k=0

< L|uk(x) >< M |vn−k(x) > .

Note that the product of functional is commutative if and only if vn(x) =
un(x).

We do not know yet how to incorporate the theory of Rota’s umbral
calculus within the present approach using translations.

4. First q-Translation

We now come to work of Liu who essentially utilized the set up of Section 1
to give new proofs of q-series identities and derived some new ones. He looked
at solutions of Tq,xF (x, y) = Tq,yF (x, y), where

(Tq,xf)(x) =
f(x) − f(qx)

x
.
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So this is our Tx. He chose un(x) = vn(x) = xn/(q; q)n. Using our approach
we see that

Ey1xn = (q; q)nEy1
xn

(q; q)n
=

n∑

k=0

[
n

k

]

q

ykxn−k := hn(x, y).

At this stage we need to introduce the multivariable Rogers–Szegő polynomials

hn(x1, x2, . . . , xs) :=
∑

∑
jr=n

(q; q)n∏s
r=1(q; q)jr

s∏

r=1

xjr
r .

If y1, y2, . . . , ys are distinct then it readily follows that
r∏

j=1

Eyjxn = hn(x, y1, y2, . . . , ys).

In the present case un(0) = δn,0 so that g(t) = 1, and the corresponding
exponential function becomes

E(x; t) =
∞∑

n=0

xn

(q; q)n
tn =

1
(xt; q)∞

.

The large n behavior of hn(x, y) is easy to determine. It is easy to see
that

∞∑

n=0

hn(x, y)
tn

(q; q)n
=

1
(xt, yt; q)∞

.

If |y/x| < 1, then using Tannery’s theorem [6, p. 316] or applying Darboux’s
method [22] to the above generating function

lim
n→∞ x−nhn(x, y) =

1
(y/x; q)∞

.

Therefore, when |y| < |x|, the series
∑∞

n=0 anxn converges absolutely if and
only if the series

∑∞
n=0 anhn(x, y) converges absolutely. This means that

Ey
∞∑

n=0

anxn =
∞∑

n=0

anhn(x, y)

is a well-defined operator on the space of analytic functions on a fixed disc,
say |x| ≤ a. This provides a map

∞∑

n=0

anxn →
∞∑

n=0

anhn(x, y).

In this way, we find summation theorems, or identities involving the Rogers–
Szegő polynomials, if we have explicit representation for

∑∞
n=0 anxn and can

evaluate Ey
∑∞

n=0 anxn. Liu’s work contains many instances of this process.
Hence, Ey commutes with Ez for all y, z. Moreover, this translation has

the important symmetry Eyf(x) = Exf(y).
In this case, Theorem 3.3 becomes the following theorem.
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Theorem 4.1. For all polynomials f ,

lim
y→0

Ey − I

y
f(x) =

1
1 − q

Tq,xf(x).

5. The Askey–Wilson Operator

For completeness, we define the Askey–Wilson operator. Given a function f

we set f̆
(
eiθ

)
:= f(x), x = cos θ, that is

f̆(z) = f((z + 1/z)/2), z = e±iθ.

With e(x) = x the Askey–Wilson divided difference operator is defined by

(Dqf)(x) :=
f̆(q1/2z) − f̆(q−1/2z)
ĕ(q1/2z) − ĕ(q−1/2z)

=
f̆(q1/2eiθ) − f̆(q−1/2eiθ)
(q1/2 − q−1/2)(z − 1/z)/2

,

where x = (z + 1/z)/2.
In this case, we let

un(cos θ) := (−i)n (−iq(1−n)/2eiθ,−iq(1−n)/2e−iθ; q)n.

It is straightforward to see that

Dqun(x) =
2(1 − qn)

1 − q
q(1−n)/2un−1(x).

We set

Tx = q−1/4 1 − q

2
Dq,x. (5.1)

Thus, {qn2/4un(x)/(q; q)n} belongs to Tx. To define E(x; t) we choose the un

in (3.1) as qn2/4un(x)/(q; q)n and Tx = Tx. Thus,

E(x; t) = g(t)
∞∑

n=0

qn2/4un(x)
(q; q)n

tn.

The requirement that E(0; t) = 1 gives

1/g(t) =
∞∑

n=0

(−it)n qn2/4

(q; q)n
(q(1−n)/2,−q(1−n)/2; q)n

=
∞∑

n=0

(−it)n qn2/4 (q1−n; q2)n

(q; q)n

=
∞∑

n=0

(−t2)n qn2
(q1−2n; q2)2n

(q; q)2n

=
∞∑

n=0

(−t2)nqn2 (q1−2n, q; q2)n

(q, q2; q2)n

=
∞∑

n=0

t2n(q; q2)n

(q2; q2)n
.
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The q-binomial theorem [1,8] implies g(t) = (t2; q2)∞/(qt2; q2)∞. This iden-
tifies E(x; t) as the q-exponential function Eq introduced by Ismail and Zhang
in [16], namely

Eq(x; t) =
(t2; q2)∞
(qt2; q2)∞

∞∑

n=0

(−ieiθq(1−n)/2,−ie−iθq(1−n)/2; q)n
(−it)n

(q; q)n
qn2/4.

(5.2)

See also [12, Chapter 14].
Ismail and Stanton [15] introduced the polynomial bases

φn(cos θ) = (q1/4eiθ, q1/4e−iθ; q1/2)n, (5.3)

ρn(cos θ) = (1 + e2iθ)(−q2−ne2iθ; q2)n−1e
−inθ, (5.4)

and gave formulas for expanding entire functions in this basis. Observe that
ρn is invariant under q → 1/q. It is easy to see that

Dqφn(x) = −2q1/4 1 − qn

1 − q
φn−1(x), Dqρn(x) = 2q(1−n)/2 1 − qn

1 − q
ρn−1(x).

(5.5)

The q-Hermite polynomials are

Hn(cos θ|q) =
n∑

k=0

[
n

k

]

q

ei(n−2k)θ,

and satisfy the operator formula

DqHn(x|q) = 2q(1−n)/2 1 − qn

1 − q
Hn−1(x|q).

We note that ρn(0) = δn,0 but φn(0) �= 0 for all n while H2n(0|q) �= 0 for any
n. In the language of Sect. 2 we see that qn2/4Hn(x|q)/(q; q)n belongs to Tx.
Using the generating function

∞∑

n=0

Hn(cos θ|q) tn

(q; q)n
=

1
(teiθ, te−iθ; q)∞

,

we find that H2n+1(0|q) = 0, and H2n(0|q) = (−1)n(q; q)2n/(q2; q2)n. This
establishes the generating function

(qt2; q2)∞Eq(x; t) =
∞∑

n=0

tnqn2/4

(q; q)n
Hn(x|q). (5.6)

Theorem 5.1. The polynomials {ρn(x)} have the generating function
∞∑

n=0

qn2/4tn

(q; q)n
tnρn(x) = Eq(x; t). (5.7)

The function Eq(x; t) has the representation

Eq(x; t) =
(−t; q)∞

(tq1/2; q)∞
2φ1

(
q1/4eiθ, q1/4e−iθ

−q1/2

∣∣∣∣ q1/2,−t

)
. (5.8)
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Proof. It is clear from (5.1) and (5.5) that wn(x) = qn2/4ρn(x)/(q; q)n satis-
fies Txwn(x) = wn−1, that is, {wn(x)} belongs to Tx. Therefore, its generat-
ing function must be of the form h(t)Eq(x; t) for some power series h(t). But
ρn(0) = δn,0, E(0; t) = 1. Therefore h(t) ≡ 1 and (5.7) follows. Similarly, (5.5)
implies that (−1)nφn(x)/(q; q)n belongs to Tx; hence,

∞∑

n=0

(−t)nφn(x)
(q; q)n

= h(t) Eq(x; t),

and to find h we take x = 0. Clearly

φn(0) = (iq1/4,−iq1/4; q1/2)n = (−q1/2; q)n,

and the q-binomial theorem shows that h(t) = (q1/2t; q)∞/(−t; q)∞. This
proves (5.8). �

It must be noted that (5.7) is new but (5.8) was first proved in [14].
From (5.3), it is easy to see that

ρ2n(cos θ) = qn(1−n)(−e2iθ,−e−2iθ; q2)n,

ρ2n+1(cos θ) = 2q−n2
cos θ (−qe2iθ,−qe−2iθ; q2)n, (5.9)

see page 261 in [14].

Theorem 5.2. We have the following transformation which changes a base q
to q4:

Eq(cos θ; t) =
(−t; q)∞

(tq1/2; q)∞
2φ1

(
q1/4eiθ, q1/4e−iθ;−q1/2

∣∣ q1/2,−t
)

= 2φ1

( −e2iθ,−e−2iθ; q
∣∣ q2, qt2

)

+
2tq1/4 cos θ

1 − q
2φ1

( −qe2iθ,−qe−2iθ; q3
∣∣ q2, qt2

)
. (5.10)

Proof. The proof follows from (5.7), (5.8), and (5.9). �

We now discuss possible explanations of where (5.10) comes from. Re-
place t by (1 − q)t then let t → 1 in (5.10). It is straightforward to see that
(−t; q)∞/(tq1/2; q)∞, being (with t → t(1 − q))

∞∑

n=0

(−q−1/2; q1/2)n(1 − q)ntn/(q; q)n,

becomes e2t. The 2φ1 on the right-hand side tends to
∞∑

n=0

(
−t

n!
)n(2 sin(θ/2))2n,

which is exp(−4t sin2 θ/2). The right-hand side tends to
∞∑

n=0

(2t cos θ)2n

(2n)!
+ 2t cos θ

∞∑

n=0

(2t cos θ)2n

(2n + 1)!
= cosh(2t cos θ) + sinh(2t cos θ)

= exp(2t cos θ).
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Therefore, (5.10) seems to be a q-analogue of the trigonometric double angle
formula in the form

exp(2t cos 2θ) = exp(2t − 4t sin2 θ).

Another explanation is to observe that the right-hand side of (5.10) is a
sum of an odd and an even function of t. Since the left-hand side of (5.10) is
an analogue of the exponential function exp(xt), its odd and even parts must
be q-analogues of cosh(xt) and sinh(xt). This is indeed the case and these
functions appeared first in [4] even before the function Eq was defined in [16].

The fact that Eq(x; t) has the three different representations (5.2), (5.6),
and (5.8) leads to interesting consequences, the first of them, of course is (5.10).

Theorem 5.3. We have the polynomial expansion

ρn(cos θ) = (1 + e2iθ)(−q2−ne2iθ; q2)n−1e
−inθ

=
�n/2�∑

k=0

[
n

2j

]

q

qj(j+1−n)(q; q2)jHn−2j(cos θ|q),

or equivalently
∫ π

0

(1 + e2iθ)(−q2−ne2iθ; q2)n−1e
−inθHn−2j(cos θ|q)(e2iθ, e−2iθ; q)∞dθ

=
2π(q; q)n

(q; q)∞(q; q)2j
qj(j+1−n)(q; q2)j .

Proof. The theorem follows from (5.6), (5.7) and the orthogonality relation
[12]

(q; q)∞
2π

∫ π

0

Hm(cos θ|q)Hn(cos θ|q)(e2iθ, e−2iθ; q)∞dθ = (q; q)nδm,n.

�
We next introduce another polynomial basis. Let

sn(x; a) = (aq−n/2eiθ, aq−n/2e−iθ; q)n.

Theorem 5.4. We have the expansion

Eq(x; t) = g(t)
∞∑

n=0

(aq−n/2eiθ, aq−n/2e−iθ; q)n

(q; q)n

(
− t

a

)n

qn(n+2)/4,

and
Eq(x0; t)

g(t)
=

∞∑

n=0

(aq−n/2c, aq−n/2/c; q)n

(q; q)n

(
− t

a

)n

qn(n+2)/4, (5.11)

where x0 = (c + 1/c)/2, c �= 0.

Proof. It readily follows that

Dqsn(x; a) =
−2aq−n/2

1 − q
(1 − qn)sn−1(x; a).

Therefore {sn(x; a)(−a)−nqn(n+2)/4/(q; q)n} belongs to Tx which was defined
in (5.1). The theorem now follows from Theorem 2.1. �
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In choosing a and x0 in Theorem 5.4 we should be able to evaluate
Eq(x0; t) and the series defining g. The choice x0 = 0, and a = −iq1/2 leads
to (5.2) which is the original definition of Eq in [16]. Another choice is x0 =
[q1/4 + q−1/4]/2 where the sum in (5.11) becomes

∞∑

n=0

(aq(1−2n)/4, aq−(1+2n)/4; q)n

(q; q)n

(
− t

a

)n

qn(n+2)/4

=
∞∑

n=0

(aq−(1+2n)/4; q1/2)2n

(q; q)n

(
− t

a

)n

qn(n+2)/4.

Clearly (5.8) gives

Eq(x0; t) = (−t; q)∞/(q1/2t; q)∞.

The above series can be summed when a = q(2j+1)/4, j = 0, 1, . . . because it
terminates. The choices j = 0, 1, that is, a = q1/4 or a = q3/4, imply

g(t) =
(−t; q)∞

(tq1/2; q)∞
.

This leads to

Eq(cos θ; t) =
(−t; q)∞

(tq1/2; q)∞

∞∑

n=0

(q(1−2n)/4eiθ, q(1−2n)/4e−iθ; q)n

(q; q)n
× (−t)nq−n/4.

The q−1-Hermite polynomials {hn(x|q)} of Askey [2] and Ismail and Masson
[13]. These are defined by

hn(x|q) = i−nHn(ix|1/q).

It is a simple exercise to see that they have the generating function
∞∑

n=0

hn(sinh ξ|q) tn

(q; q)n
q(

n
2) = (−teξ, te−ξ; q)∞.

This suggests setting

x := (z − 1/z)/2, f(x) = f̆(z),

(Dqf)(x) =
f̆(q1/2z) − f̆(q−1/2z)

(q1/2 − q−1/2)(z + 1/z)/2
(5.12)

and defining another q-exponential function by

Ẽq(x; t) :=
(t2; q2)∞
(qt2; q2)∞

∞∑

n=0

(−zq(1−n)/2, q(1−n)/2/z; q)n
tn

(q; q)n
qn2/4.

It is easy to see that

Dq(−zq(1−n)/2, q(1−n)/2/z; q)n

= 2q(1−n)/2 1 − qn

1 − q
(−zq(2−n)/2, q(2−n)/2/z; q)n−1.
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Hence,

DqẼq(x; t) =
2q1/4t

1 − q
Ẽq(x; t).

On the other hand, [12, (21.6.7)]

Dqhn(x|q) = 2q(1−n)/2 1 − qn

1 − q
hn−1(x|q).

Therefore,

Ẽq(x; t) = g(t)
∞∑

n=0

hn(x|q)
(q; q)n

qn2/4tn,

for some power series g(t). It is known that

h2n+1(0|q) = 0, h2n(0|q) = (−1)nq−n2
(q; q2)n,

see, for example, [12, (21.3.7)]. Therefore,

1
g(t)

=
∞∑

n=0

(−t2)n(q; q2)n(q; q)2n =
∞∑

n=0

(−t2)n(q2; q2)n = 1/(−t2; q2)∞.

This establishes the expansion

Ẽq(x; t) = (−t2; q2)∞
∞∑

n=0

hn(x|q)
(q; q)n

qn2/4tn.

Next we set

ρ̃n(sinh ξ) = e−nξ(1 − e2ξ)(q2−ne2ξ; q2)n−1

= z−n(1 − z2)(q2−nz2; q2)n−1,

and find that

Dqρ̃n(x) = 2q(1−n)/2 1 − qn

1 − q
ρ̃n−1(x).

Therefore,
{

hn(x|q)
(q;q)n

qn2/4
}

and
{

ρ̃n(x)
(q;q)n

qn2/4
}

belong to Dq. Since ρ̃n(0) = δn,0

then

Ẽq(x; t) =
∞∑

n=0

ρ̃n(x)
(q; q)n

qn2/4tn.

From here one can easily derive formulas for Ẽq which are analogous to the
ones we recorded for Eq.

It must be noted that the formulas starting from (5.12) are expected as
analogues of the earlier expansions when we formally replace q by 1/q. This
is so since q → 1/q in the series in

∑∞
n=0 xn/(q; q)n turns it into

∑∞
n=0(−x)n

q(
n+1
2 )/(q; q)n. In other words, q → 1/q maps 1/(x; q)∞ to (qx; q)∞. This formal

process, however, cannot be justified since both series have pole singularities at
the nth roots of unity for all n = 1, 2, . . ., so these series cannot be analytically
continued from |q| < 1 to |q| > 1.
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6. An Askey–Wilson Translation

In this section, we study the translation operator associated with Dq, or Tx

of (5.1). This translation was first considered in [11]. The treatment presented
here is a major simplification of the treatment in [11].

Recall the Ismail–Zhang two variable function [16]

Eq(cos θ, cos φ; t)

:=
(t2; q2)∞
(qt2; q2)∞

∞∑

n=0

(te−iφ)n

(q; q)n
qn2/4(−ei(φ+θ)q(1−n)/2,−ei(φ−θ)q(1−n)/2; q)n.

(6.1)

Motivated by the definition (5.2) we let

un(cos θ, cos φ) := e−inφ(−ei(φ+θ)q(1−n)/2,−ei(φ−θ)q(1−n)/2; q)n.

It is straightforward to see that un(x, y) is symmetric in x and y. Moreover,

Dq,xun(x, y) =
2(1 − qn)

1 − q
q(1−n)/2un−1(x, y).

Theorem 6.1. The polynomials {un(x)} and {ρn(x)} are related via

2xun(x) = ρn+1(x). (6.2)

Proof. With x = (z + 1/z)/2 it is clear that

2xun(x) = (z + 1/z)(−i)n(−izq(1−n)/2; q)n(−iz−1q(1−n)/2; q)n

= (z + 1/z)(−i)n(−izq(1−n)/2; q)n(i/z)n(1 − izq(n−1)/2)

· · · (1 − izq(1−n)/2)

= (1 + z2)z−n−1(−izq(1−n)/2; q)n(izq(1−n)/2; q)n,

which gives (6.2). �

It is clear that Eq(x, y; t) has a convergent expansion in Hn(x|q), so we
let

Eq(x, y; t) =
∞∑

n=0

an(y, t)
qn2/4

(q; q)n
Hn(x|q).

We also know that

TxEq(x, y; t) = TyEq(x, y; t) = tEq(x, y; t).

Therefore,

an+1(y, t) = tan(y, t)

and we conclude that

Eq(x, y; t) = a0(y, t)Eq(x; t).
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But by simple manipulations on the definition (6.1) one can see that Eq(x, y; t)
is symmetric in x and y. Therefore, a0(y, t) = E(y; t)g(t) for some power series
g(t). Finally,

g(t) = Eq(0, y; t)/Eq(0; t)Eq(0; t)

=
(t2; q2)∞
(qt2; q2)∞

∞∑

n=0

(it)n

(q; q)n
qn2/4(q(1−n)/2,−q(1−n)/2; q)n

=
(t2; q2)∞
(qt2; q2)∞

∑

n even

(it)n

(q; q)n
qn2/4(q1−n; q2)n.

The odd terms in the sum vanish; hence,

g(t) =
(t2; q2)∞
(qt2; q2)∞

∞∑

n=0

(−1)nt2n

(q; q)2n
qn2

(q1−2n; q2)2n.

Now

(q1−2n; q2)2n = (q1−2n; q2)n(q; q2)n = (−1)nq−n2
(q, q; q2)n.

The q-binomial theorem shows that g(t) ≡ 1. This proves the addition theorem

Eq(x, y; t) = Eq(x; t)Eq(y; t), (6.3)

originally due to Suslov [27], see also [12]. In the later work [28], Suslov proved
the more general addition theorem

Eq(x; s)Eq(y; t)

=
(t2; q2)∞
(qs2; q2)∞

∞∑

n=0

qn2/4tn

(q; q)n

×e−inφ(−q(1−n)/2ei(φ+θ)s/t,−q(1−n)/2ei(φ−θ)s/t; q)n

×2φ2

(
q−n, s2/t2

−q(1−n)/2ei(φ+θ)s/t,−q(1−n)/2ei(φ−θ)s/t

∣∣∣∣ q, qe2iφ

)
. (6.4)

We expect that (6.4) can be also proved by computing the action of the Askey–
Wilson operator on

qn2/4

(q; q)n
e−inφ(−q(1−n)/2ei(φ+θ)s/t,−q(1−n)/2ei(φ−θ)s/t; q)n

× 2φ2

(
q−n, s2/t2

−q(1−n)/2ei(φ+θ)s/t,−q(1−n)/2ei(φ−θ)s/t

∣∣∣∣ q, qe2iφ

)
.

We define another divided difference operator by

Δq,tf(t) =
f(tq1/2 − f(tq−1/2)

t(q1/2 − q−1/2)
.

We next prove the following theorem.

Theorem 6.2. We have

Δq,tEq(x; t) =
2xq−1/4

(1 − q)
(qt2; q2)∞
(t2; q2)∞

Eq(x; t).
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Proof. Using the identity (6.2), the definition of Eq, and the generating function
(5.7), we find that

2xt
(qt2; q2)∞
(t2; q2)∞

Eq(x; t) =
∞∑

n=0

qn2/4tn+1

(q; q)n
ρn+1(x)

= q1/4
∞∑

n=0

(t/
√

q)n+1(1 − qn+1)
(q; q)n+1

q(n+1)2/4ρn+1(x|q)

= q1/4Eq(x; tq−1/2) − q1/4Eq(x; tq1/2),

where we used the generating function (5.7) in the last step. �

We now apply the definition (2.2) with un and vn replaced by un(x)qn2/4/

(q; q)n and ρn(x)qn2/4/(q; q)n. Therefore,

Ey

(
un(x)qn2/4

(q; q)n

)
=

n∑

k=0

uk(x)qk2/4

(q; q)k

ρn−k(y)q(n−k)2/4

(q; q)n−k
. (6.5)

Indeed the above definition is nothing but

Eyun(x) =
n∑

k=0

[
n

k

]

q

qk(k−n)/2uk(x)ρn−k(y). (6.6)

Thus, the exponential function E(x, t) of Sect. 3 is Eq(x; t).

Theorem 6.3. We have

Eyun(x) = un(x, y). (6.7)

Proof. Multiply (6.5) by tn and add for n ≥ 0. Using (5.2) and (5.7) we find
that

∞∑

n=0

tnEy

(
un(x)qn2/4

(q; q)n

)
=

∞∑

k=0

uk(x)qk2/4

(q; q)k
tkEq(y; t)

= Eq(y; t)
(qt2; q)∞
(t2; q)∞

Eq(x; t)

=
(qt2; q)∞
(t2; q)∞

Eq(x, y; t),

where we used the addition theorem (6.3). The theorem now follows from (6.1).
�

In terms of products (6.7) is

Ey

⎡

⎣
n−1∏

j=0

{2x + i(qj+(1−n)/2 − q−j+(n−1)/2)}
⎤

⎦

=
n−1∏

j=0

[
2x + eiφqj+(1−n)/2 + e−iφq−j+(n−1)/2

]
. (6.8)
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For convenience we write (6.8) in terms of x and y directly by considering even
and odd n separately in the form

Ey
n−1∏

j=0

[
4x2 + (qj−n+1/2 − qn−j−1/2)2

]

=
n−1∏

j=0

[
4x2 + 4y2 + 4xy(qj−n+1/2 + qn−j−1/2) + (qj−n+1/2 − qn−j−1/2)2

]
,

Ey x
n−1∏

j=0

[
4x2 + (qj−n − qn−j)2

]

= (x + y)
n−1∏

j=0

[
4x2 + 4y2 + 4xy(qj−n + qn−j) + (qj−n − qn−j)2

]
,

respectively. Moreover,

Eyxn = Exyn =
n∑

k=0

[
n

k

]

q

qk(k−n)/2xkyn−k. (6.9)

It is clear that (6.9) is a commutative q-binomial theorem. For non-commutative
q-binomial theorem, see [21].

Theorem 6.4. The symmetry relation (Eyf)(x) = (Exf)(y) holds.

It must be noted that the Askey–Wilson operator is invariant under q →
1/q. This is reflected in the definition of the translation in (6.6) since the
Gaussian binomial coefficient

[
n
k

]
q

is a unimodal polynomial in q of order k(n−
k), whose coefficients are symmetric about the middle.

Corollary 6.5. We have

un(x, y) =
n∑

k=0

[
n

k

]

q

qk(k−n)/2uk(x)ρn−k(y).

Definition 6.6. The operator Ey is defined on all polynomials as a linear oper-
ator whose action on the basis {un(x)} is given by (6.5), or (6.7). A polynomial
sequence {pn(x)} is called of Dq-polynomial type if

Eypn(x) =
n∑

k=0

pk(x)pn−k(y).

Theorem 6.7. A polynomial sequence is of Dq-binomial type if and only if it
has a generating function of the type

∞∑

n=0

pn(x)tn = Eq(x;H(t)),

where H(t) =
∑∞

n=1 hntn.
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Proof. For convenience we let

ρ̃n(x) = qn2/4ρn(x)/(q; q)n,

so that

Eyρ̃n(x) =
n∑

k=0

ρ̃k(x)ρ̃n−k(y).

We expand the generating function
∑∞

n=0 pn(x)tn in terms of {ρ̃n(x)}, so we
set

∞∑

n=0

pn(x)tn =
∞∑

k=0

αk(t)ρ̃n(x).

Thus
∞∑

n=0

tn
n∑

k=0

pk(x)pn−k(y) = Ey
∞∑

n=0

pn(x)tn

= Ey
∞∑

n=0

αn(t)ρ̃n(x)

=
∞∑

n=0

αn(t)
n∑

k=0

ρ̃k(x)ρ̃n−k(y)

=
∞∑

n,k=0

αn+k(t)ρ̃k(x)ρ̃n(y).

This shows that
∞∑

n,k=0

αn+k(t)ρ̃k(x)ρ̃n(y) =

[ ∞∑

n=0

pn(x)tn
] [ ∞∑

k=0

pk(y)tk
]

=

[ ∞∑

r=0

αr(t)ρ̃r(x)

] [ ∞∑

s=0

αs(t)ρ̃s(x)

]
.

Therefore, αn+k(t) = αn(t)αk(t). This shows that α0(t) = 1 and αn(t) =
[α1(t)]n. This completes the proof. �

It readily follows from (6.5) that

Eyun(x)
qn2/4

(q; q)n
=

n∑

k=0

qk2/4ρk(y)
(q; q)k

T k
x un(x)

qn2/4

(q; q)n
,

where Tx is defined in (5.1). Therefore,

Ey =
∞∑

k=0

qk2/4ρk(y)
(q; q)k

T k
x = Eq(y; Tx).

We use (3.4) to see that the infinitesimal generator of Ey. We first eval-
uate ρ′(0). Clearly

ρ′
n(0) = 2(−i)n−1(q2−n; q2)n−1.
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Therefore, ρ′
2n(0) = 0 and

ρ′
2n+1(0) = 2(−1)n(q1−2n; q2)2n

= 2(−1)n(q1−2n; q2)n(q; q2)n

= 2q−n2
(q; q2)2n.

Now
∞∑

n=0

ρ′
n(0)

qn2/4

(q; q)n
T n

x = 2q1/4
∞∑

n=0

qn(q; q2)2n
(q; q)2n+1

= 2q1/4
∞∑

n=0

qn(q; q2)n

(q2; q2)n(1 − q2n+1)
T 2n+1

x .

Therefore,

lim
y→0

1
y
[Ey − I] = 2q1/4

∞∑

n=0

qn(q; q2)n

(q2; q2)n(1 − q2n+1)
T 2n+1

x .

A more natural alternative is to let y = (ζ + 1/ζ)/2 and evaluate

lim
ζ→i

F (q1/2ζ) − F (q−1/2ζ)
(q1/2 − q−1/2)(ζ − 1/ζ)/2

,

where Ey = F (ζ).

Theorem 6.8.

lim
ζ→i

F (q1/2ζ) − F (q−1/2ζ)
(q1/2 − q−1/2)(ζ − 1/ζ)/2

= Dq. (6.10)

Proof. It is clear that

F (q1/2ζ) − F (q−1/2ζ)
(q1/2 − q−1/2)(ζ − 1/ζ)/2

=
∞∑

n=0

Dq,y
qn2/4ρn(y)

(q; q)n
T n

x

=
2q1/4

1 − q

∞∑

n=0

qn2/4ρn(y)
(q; q)n

T n+1
x → 2q1/4

1 − q
Tx,

as y → 0. �

This means that the translation Ey is an analogue of an exponential
semigroup with product rule

EyEw = Eq(y; Tx)Eq(w; Tx) = Eq(y, w; Tx).

One can then consider the left-hand side of (6.10) as the q-infinitesimal gen-
erator of Ey.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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Combinations of Ranks and Cranks of
Partitions Moduli 6, 9 and 12 and Their
Comparison with the Partition Function

Zafer Selcuk Aygin and Song Heng Chan

Abstract. Let L ∈ {6, 9, 12}. We determine the generating functions of
certain combinations of three ranks and three cranks modulo L in terms
of eta quotients. Then, using the periodicity of signs of these eta quotients,

we compare their values with the values of p(n)
L/3

.

Mathematics Subject Classification. 11A25, 11E20, 11F11, 11F20, 11F30,
11Y35.

Keywords. Eisenstein series, Dedekind eta function, Eta quotients,
Modular forms, Derivatives.

1. Introduction and Notation

Dyson [3] defined the rank of a partition to be the largest part minus the num-
ber of parts. Let p(n), N(a;n) and N(a, L;n) denote the number of partitions
of n; the number of partitions of n with rank a; and the number of parti-
tions of n with rank congruent to a modulo L, respectively. Dyson specifically
conjectured that

N(a, 5; 5n + 4) =
p(5n + 4)

5
, for 0 ≤ a ≤ 4, (1.1)

N(a, 7; 7n + 5) =
p(7n + 5)

7
, for 0 ≤ a ≤ 6, (1.2)

which provide combinatorial interpretations for Ramanujan’s partition con-
gruences modulo 5 and 7. Equations (1.1) and (1.2) were proven by Atkin and
Swinnerton-Dyer in [2]. The rank does not give a combinatorial interpretation

The authors are supported by the Singapore Ministry of Education Academic Research
Fund, Tier 2, project number MOE2014-T2-1-051, ARC40/14.
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for Ramanujan’s partition congruences modulo 11. Thus, Dyson also conjec-
tured the existence of a statistics which can and called it the ‘crank’. Later
Garvan defined cranks and showed that they give the desired combinatorial
interpretation for congruences modulo 11 as well as 5 and 7. Let M(a;n) and
M(a, L;n) denote the number of partitions of n with crank a and the number
of partitions of n with crank congruent to a modulo L. We note the following
elementary equations for future reference:

N(a, L;n) = N(−a, L;n), M(a, L;n) = M(−a, L;n), (1.3)
∞∑

n=0

L−1∑

a=0

N(a, L;n)qn =
∞∑

n=0

p(n)qn,

∞∑

n=0

L−1∑

a=0

M(a, L;n)qn =
∞∑

n=0

p(n)qn,

(1.4)

and for a shorthand notation, we use

N(a, b, c;L;n) = N(a, L;n) + N(b, L;n) + N(c, L;n),

M(a, b, c;L;n) = M(a, L;n) + M(b, L;n) + M(c, L;n).

Let q = e2πiz with z ∈ H, thus |q| < 1. We define the infinite prod-
uct (q; q)∞ =

∏∞
n=1(1 − qn). A specialized version of this product, η(q) =

q1/24(q; q)∞, is called the Dedekind eta function, whose quotients are called
eta quotients.

In [5, Theorem 4.1], Kang proved the following relation between ranks
and cranks:

∞∑

m=−∞

∞∑

n=0

(
N(3m − 1;n) + N(3m;n) + N(3m + 1;n)

)
wmqn

=
(q3; q3)∞
(q; q)∞

∞∑

m=−∞

∞∑

n=0

M(m;n)wmq3n. (1.5)

She then replaces w with −1 to obtain
∞∑

n=0

(
N(0, 1, 1; 6;n) − N(2, 2, 3; 6;n)

)
qn

=
(q3; q3)∞
(q; q)∞

∞∑

n=0

(
M(0, 2;n) − M(1, 2;n)

)
q3n =

(q3; q3)4∞
(q; q)∞(q6; q6)2∞

. (1.6)

Inspired by (1.5), we give generating functions of two variations of three com-
binations of the crank function. Then letting L ∈ {6, 9, 12}, we use her formula
and our results to find the generating functions of

N(3j − 1, 3j, 3j + 1;L;n), for 0 ≤ j ≤ L/3 − 1, (1.7)

M(3j − 1, 3j, 3j + 1;L;n), for 0 ≤ j ≤ L/3 − 1, (1.8)

M(3j − 2, 3j − 1, 3j;L;n), for 0 ≤ j ≤ L/3 − 1, (1.9)
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in terms of the partition function and eta quotients. The signs of the coefficients
of the eta quotients in the generating functions seem to be periodic (except a
few cases). This lets us to compare (1.7)–(1.9) with p(n)

L/3 .
In the next section, we state the main results. In Sect. 3, we define the

Jacobi theta function and give some preliminary results. In Sect. 4, we give
the generating functions of two variations of combinations of three cranks.
The combination in (1.8) is motivated by Kang’s results from [5], and the
combination in (1.9) was chosen because among all other options, this one
gives more elegant results. In Sect. 5, we prove Theorem 2.1. Fourier coefficients
of all combinations of eta quotients that appear in Theorem 2.1 seem to be
periodic in their signs. Some of these are proved in Sect. 6. The rest are left
as conjectures, see Sect. 8. Section 7 is dedicated to the discussion on the
connection of our results to recent results by Hickerson and Mortenson [4].

2. Main Results

Let

F (q) =
∞∑

n=0

anqn,

then we denote
∑∞

n=0 Re(an)qn by Re
(
F (q)

)
and

∑∞
n=0 Im(an)qn by Im

(
F (q)

)
.

Below we state the main theorems.

Theorem 2.1. The generating functions of combinations of three ranks in (1.7)
are given by

∞∑

n=0

N(0, 1, 1; 6;n)qn =
1

2(q; q)∞
+

(q3; q3)4∞
2(q; q)∞(q6; q6)2∞

, (2.1)

∞∑

n=0

N(2, 2, 3; 6;n)qn =
1

2(q; q)∞
− (q3; q3)4∞

2(q; q)∞(q6; q6)2∞
, (2.2)

∞∑

n=0

N(0, 1, 1; 9;n)qn =
1

3(q; q)∞
+

2(q3; q3)3∞
3(q; q)∞(q9; q9)∞

, (2.3)

∞∑

n=0

N(2, 3, 4; 9;n)qn =
1

3(q; q)∞
− (q3; q3)3∞

3(q; q)∞(q9; q9)∞
, (2.4)

∞∑

n=0

N(2, 3, 4; 12;n)qn =
1

4(q; q)∞
− (q3; q3)4∞

4(q; q)∞(q6; q6)2∞
, (2.5)

∞∑

n=0

N(0, 1, 1; 12;n)qn =
1

4(q; q)∞
+

(q3; q3)2∞(q6; q6)∞
2(q; q)∞(q12; q12)∞

+
(q3; q3)4∞

4(q; q)∞(q6; q6)2∞
,

(2.6)
∞∑

n=0

N(5, 5, 6; 12;n)qn =
1

4(q; q)∞
− (q3; q3)2∞(q6; q6)∞

2(q; q)∞(q12; q12)∞
+

(q3; q3)4∞
4(q; q)∞(q6; q6)2∞

.

(2.7)
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The generating functions of combinations of three cranks in (1.8) are given by
∞∑

n=0

M(0, 1, 1; 6;n)qn =
1

2(q; q)∞
+

(q3; q3)4∞
2(q; q)∞(q6; q6)2∞

− 2q2
(q3; q3)∞(q4; q4)∞(q36; q36)2∞

(q2; q2)∞(q12; q12)∞(q18; q18)∞
, (2.8)

∞∑

n=0

M(2, 2, 3; 6;n)qn =
1

2(q; q)∞
− (q3; q3)4∞

2(q; q)∞(q6; q6)2∞

+ 2q2
(q3; q3)∞(q4; q4)∞(q36; q36)2∞

(q2; q2)∞(q12; q12)∞(q18; q18)∞
, (2.9)

∞∑

n=0

M(0, 1, 1; 9;n)qn =
1

3(q; q)∞
+

2(q9; q9)3∞
3(q; q)∞(q27; q27)∞

− 2q2
(q3; q3)∞(q27; q27)2∞

(q; q)∞(q9; q9)∞
, (2.10)

∞∑

n=0

M(2, 3, 4; 9;n)qn =
1

3(q; q)∞
− (q9; q9)3∞

3(q; q)∞(q27; q27)∞

+ q2
(q3; q3)∞(q27; q27)2∞

(q; q)∞(q9; q9)∞
, (2.11)

∞∑

n=0

M(2, 3, 4; 12;n)qn =
1

4(q; q)∞
− (q3; q3)4∞

4(q; q)∞(q6; q6)2∞

+ q2
(q3; q3)∞(q4; q4)∞(q36; q36)2∞

(q2; q2)∞(q12; q12)∞(q18; q18)∞
, (2.12)

∞∑

n=0

M(0, 1, 1; 12;n)qn =
1

4(q; q)∞
+

(q3; q3)4∞
4(q; q)∞(q6; q6)2∞

+
(q2; q2)2∞(q9; q9)2∞

2(q; q)∞(q4; q4)∞(q18; q18)∞

− q2
(q3; q3)∞(q4; q4)∞(q36; q36)2∞

(q2; q2)∞(q12; q12)∞(q18; q18)∞
, (2.13)

∞∑

n=0

M(5, 5, 6; 12;n)qn =
1

4(q; q)∞
+

(q3; q3)4∞
4(q; q)∞(q6; q6)2∞

− (q2; q2)2∞(q9; q9)2∞
2(q; q)∞(q4; q4)∞(q18; q18)∞

− q2
(q3; q3)∞(q4; q4)∞(q36; q36)2∞

(q2; q2)∞(q12; q12)∞(q18; q18)∞
. (2.14)

The generating functions of combinations of three cranks in (1.9) are given by
∞∑

n=0

M(0, 1, 2; 6;n)qn =
1

2(q; q)∞
+

(q; q)∞(q9; q9)2∞
2(q2; q2)∞(q18; q18)∞

, (2.15)
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∞∑

n=0

M(3, 4, 5; 6;n)qn =
1

2(q; q)∞
− (q; q)∞(q9; q9)2∞

2(q2; q2)∞(q18; q18)∞
, (2.16)

∞∑

n=0

M(0, 1, 2; 9;n)qn =
1

3(q; q)∞
+

2
3
Re

(
(q3; q3)∞(ζ3q3; ζ3q3)2∞

(q; q)∞(q9; q9)∞

+(ζ3 − 1)q
(q3; q3)∞(ζ23q3; ζ23q3)∞(q27; q27)∞

(q; q)∞(q9; q9)∞

)
, (2.17)

∞∑

n=0

M(3, 4, 5; 9;n)qn =
1

3(q; q)∞
− 1

3
Re

(
(q3; q3)∞(ζ3q3; ζ3q3)2∞

(q; q)∞(q9; q9)∞

+(ζ3 − 1)q
(q3; q3)∞(ζ23q3; ζ23q3)∞(q27; q27)∞

(q; q)∞(q9; q9)∞

)

− 1√
3
Im

(
(q3; q3)∞(ζ3q3; ζ3q3)2∞

(q; q)∞(q9; q9)∞

+(ζ3 − 1)q
(q3; q3)∞(ζ23q3; ζ23q3)∞(q27; q27)∞

(q; q)∞(q9; q9)∞

)
, (2.18)

∞∑

n=0

M(6, 7, 8; 9;n)qn =
1

3(q; q)∞
− 1

3
Re

(
(q3; q3)∞(ζ3q3; ζ3q3)2∞

(q; q)∞(q9; q9)∞

+(ζ3 − 1)q
(q3; q3)∞(ζ23q3; ζ23q3)∞(q27; q27)∞

(q; q)∞(q9; q9)∞

)

+
1√
3
Im

(
(q3; q3)∞(ζ3q3; ζ3q3)2∞

(q; q)∞(q9; q9)∞

+(ζ3 − 1)q
(q3; q3)∞(ζ23q3; ζ23q3)∞(q27; q27)∞

(q; q)∞(q9; q9)∞

)
, (2.19)

∞∑

n=0

M(0, 1, 2; 12;n)qn =
1

4(q; q)∞
+

(q; q)∞(q9; q9)2∞
4(q2; q2)∞(q18; q18)∞

+
(q4; q4)∞(q6; q6)4∞

2(q2; q2)∞(q3; q3)∞(q12; q12)2∞
, (2.20)

∞∑

n=0

M(3, 4, 5; 12;n)qn =
1

4(q; q)∞
− (q; q)∞(q9; q9)2∞

4(q2; q2)∞(q18; q18)∞

− q
(q2; q2)2∞(q3; q3)∞(q18; q18)2∞

2(q; q)∞(q4; q4)∞(q6; q6)∞(q9; q9)∞
, (2.21)

∞∑

n=0

M(6, 7, 8; 12;n)qn =
1

4(q; q)∞
+

(q; q)∞(q9; q9)2∞
4(q2; q2)∞(q18; q18)∞

− (q4; q4)∞(q6; q6)4∞
2(q2; q2)∞(q3; q3)∞(q12; q12)2∞

, (2.22)
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∞∑

n=0

M(9, 10, 11; 12;n)qn =
1

4(q; q)∞
− (q; q)∞(q9; q9)2∞

4(q2; q2)∞(q18; q18)∞

+ q
(q2; q2)2∞(q3; q3)∞(q18; q18)2∞

2(q; q)∞(q4; q4)∞(q6; q6)∞(q9; q9)∞
. (2.23)

The following rank–crank difference formulae are direct consequences of
Theorem 2.1.

Corollary 2.2. We have
∞∑

n=0

(
N(0, 1, 1; 6;n) − M(0, 1, 1; 6;n)

)
qn

= 2q2
(q3; q3)∞(q4; q4)∞(q36; q36)2∞

(q2; q2)∞(q12; q12)∞(q18; q18)∞
,

∞∑

n=0

(
N(0, 1, 1; 9;n) − M(0, 1, 1; 9;n)

)
qn

=
2(q3; q3)3∞

3(q; q)∞(q9; q9)∞
− 2(q9; q9)3∞

3(q; q)∞(q27; q27)∞
+ 2q2

(q3; q3)∞(q27; q27)2∞
(q; q)∞(q9; q9)∞

,

∞∑

n=0

(
N(2, 3, 4; 12;n) − M(2, 3, 4; 12;n)

)
qn

= −q2
(q3; q3)∞(q4; q4)∞(q36; q36)2∞

(q2; q2)∞(q12; q12)∞(q18; q18)∞
,

∞∑

n=0

(
N(0, 1, 1; 12;n) − M(0, 1, 1; 12;n)

)
qn

=
(q3; q3)2∞(q6; q6)∞
2(q; q)∞(q12; q12)∞

− q
(q2; q2)2∞(q9; q9)2∞

2(q; q)∞(q4; q4)∞(q18; q18)∞

+ q2
(q3; q3)∞(q4; q4)∞(q36; q36)2∞

(q2; q2)∞(q12; q12)∞(q18; q18)∞
.

The coefficients of the combinations of eta quotients in Theorem 2.1 seem
to be alternating in sign (except a few cases), from which comparisons with
3p(n)/L can be deduced. In Sect. 6, we prove the following results. The rest of
the comparisons are technically very challenging and thus left as conjectures,
see Conjecture 8.1.

Theorem 2.3. We have

N(0, 1, 1; 6; 2n) >
p(2n)

2
, for all n ∈ N0, (2.24)

N(0, 1, 1; 6; 2n + 1) <
p(2n + 1)

2
, for all n ∈ N, (2.25)

N(2, 2, 3; 6; 2n) <
p(2n)

2
, for all n ∈ N0, (2.26)
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N(2, 2, 3; 6; 2n + 1) >
p(2n + 1)

2
, for all n ∈ N, (2.27)

N(0, 1, 1; 9;n) >
p(n)

3
, for all n ∈ N0 − {3, 7}, (2.28)

N(2, 3, 4; 9;n) <
p(n)

3
, for all n ∈ N0 − {3, 7}, (2.29)

N(2, 3, 4; 12; 2n) <
p(2n)

4
, for all n ∈ N0, (2.30)

N(2, 3, 4; 12; 2n + 1) >
p(2n + 1)

4
, for all n ∈ N, (2.31)

N(0, 1, 1; 12;n) >
p(n)

4
, for all n ∈ N0, (2.32)

N(5, 5, 6; 12;n) <
p(n)

4
, for all n ∈ N0, (2.33)

M(0, 1, 2; 6; 2n) >
p(2n)

2
, for all n ∈ N0 − {1}, (2.34)

M(0, 1, 2; 6; 2n + 1) <
p(2n + 1)

2
, for all n ∈ N0, (2.35)

M(3, 4, 5; 6; 2n) <
p(2n)

2
, for all n ∈ N0 − {1}, (2.36)

M(3, 4, 5; 6; 2n + 1) >
p(2n + 1)

2
, for all n ∈ N0. (2.37)

3. Further Notation and Preliminary Results

Let us define the Jacobi theta function by

j(w; q) =
∞∑

n=−∞
(−w)nq

n(n−1)
2 =

∞∏

i=0

(1 − wqi)(1 − qi+1/w)(1 − qi+1),

where w is a nonzero complex number. We have

j(qk; q3k) = (qk; qk)∞. (3.1)

Let ζN be an Nth root of unity, then from the definition we observe the
following equalities which will come in handy in the remainder of the paper:

j(w; q)j(ζ3w; q)j(ζ23w; q) =
(q; q)3∞

(q3; q3)∞
j(w3; q3), (3.2)

j(iq9; q9) = (1 + i)
(q9; q9)∞(q36; q36)∞

(q18; q18)∞
, (3.3)

j(i; q3) = (1 − i)
(q3; q3)∞(q12; q12)∞

(q6; q6)∞
, (3.4)

j(iq3; q9)j(iq6; q9) =
(q9; q9)2∞(q12; q12)∞(q18; q18)∞

(q6; q6)∞(q36; q36)∞
, (3.5)
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j(−1; q3) =
2(q6; q6)2∞
(q3; q3)∞

, (3.6)

j(ζ3; q3) = (1 − ζ3)(q9; q9)∞, (3.7)

j(ζ3q3; q9)j(ζ3q6; q9) =
(q9; q9)4∞

(q3; q3)∞(q27; q27)∞
, (3.8)

j(ζ3q9; q9) = (1 − ζ23 )(q27; q27)∞, (3.9)

j(−q3; q9) = j(−q6; q9) =
(q6; q6)∞(q9; q9)2∞

(q3; q3)∞(q18; q18)∞
, (3.10)

j(−q9; q9) =
2(q18; q18)2∞
(q9; q9)∞

, (3.11)

j(q15; q36)j(q33; q36) =
(q3; q3)∞(q18; q18)∞(q36; q36)2∞

(q6; q6)∞(q9; q9)∞
. (3.12)

Next, we state and prove Lemmas 3.1 and 3.2 which will be used in the next
section to prove Theorems 4.1 and 4.2, respectively.

Lemma 3.1. We have

w2j(ζ3w; q)j(ζ23w; q) + ζ23w2j(w; q)j(ζ23w; q) + ζ3w
2j(w; q)j(ζ3w; q)

= 3w3j(w3q3; q9)j(w3q6; q9) + 3w6q2j(w3q9; q9)j(w3q9; q9).

Proof. Noting that

ζm+1
3 + ζn+2m

3 + ζ2n+2
3 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3ζ3, if m ≡ 0 (mod 3) and n ≡ 1 (mod 3),
3ζ23 , if m ≡ 1 (mod 3) and n ≡ 0 (mod 3),
3, if m ≡ 2 (mod 3) and n ≡ 2 (mod 3),
0, otherwise,

we have

w2j(ζ3w; q)j(ζ2
3w; q) + ζ2

3w2j(w; q)j(ζ2
3w; q) + ζ3w

2j(w; q)j(ζ3w; q)

= w2
∞∑

n=−∞

∞∑

m=−∞
(ζm+1

3 + ζn+2m
3 + ζ2n+2

3 )

× (−1)n+mwn+mqn(n−1)/2+m(m−1)/2

= 3ζ2
3w2

∞∑

n=−∞

∞∑

m=−∞
(−1)3n+3m+1w3n+3m+1q3n(3n−1)/2+(3m+1)(3m)/2

+ 3ζ3w
2

∞∑

n=−∞

∞∑

m=−∞
(−1)3n+3m+1w3n+3m+1q(3m+1)3m/2+3n(3n−1)/2

+ 3w2
∞∑

n=−∞

∞∑

m=−∞
(−1)3n+3m+4w3n+3m+4

× q(3n+2)(3n+1)/2+(3m+2)(3m+1)/2

= 3w3
∞∑

n=−∞
(−1)nw3nq3n(q9)(n

2−n)/2
∞∑

m=−∞
(−1)3mw3mq6m(q9)(m

2−m)/2
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+ 3w6q2
∞∑

n=−∞
(−1)nw3nq9n(q9)(n

2−n)/2
∞∑

m=−∞
(−1)3mw3mq9m(q9)(m

2−m)/2

= 3w3j(w3q3; q9)j(w3q6; q9) + 3w6q2j(w3q9; q9)j(w3q9; q9).

�

Lemma 3.2. We have

j(ζ3w; q)j(ζ23w; q) + j(w; q)j(ζ23w; q) + j(w; q)j(ζ3w; q)

= 3j(w3q3; q9)2 + 3w3qj(w3q9; q9)j(w3q6; q9).

Proof. Proceeding as in the proof of Lemma 3.1 with

ζm
3 + ζn+2m

3 + ζ2n
3 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3ζ3, if m ≡ 1 (mod 3) and n ≡ 2 (mod 3),
3ζ23 , if m ≡ 2 (mod 3) and n ≡ 1 (mod 3),
3, if m ≡ 0 (mod 3) and n ≡ 0 (mod 3),
0, otherwise,

we obtain

j(ζ3w; q)j(ζ23w; q) + j(w; q)j(ζ23w; q) + j(w; q)j(ζ3w; q)

=
∞∑

n=−∞

∞∑

m=−∞
(ζm

3 + ζn+2m
3 + ζ2n

3 )(−1)n+mwn+mqn(n−1)/2+m(m−1)/2

= 3ζ3

∞∑

n=−∞

∞∑

m=−∞
(−1)3n+3m+3w3n+3m+3q(3n+2)(3n+1)/2+(3m+1)3m/2

+ 3ζ23

∞∑

n=−∞

∞∑

m=−∞
(−1)3n+3m+3w3n+3m+3q(3n+1)3n/2+(3m+2)(3m+1)/2

+ 3
∞∑

n=−∞

∞∑

m=−∞
(−1)3n+3mw3n+3mq3n(3n−1)/2+3m(3m−1)/2

= 3w3q
∞∑

n=−∞
(−1)nw3nq9nq(9n2−9n)/2

∞∑

m=−∞
(−1)mw3mq6mq(9m2−9m)/2

+ 3
∞∑

n=−∞
(−1)nw3nq3nq(9n2−9n)/2

∞∑

m=−∞
(−1)mw3mq3mq(9m2−9m)/2

= 3w3qj(w3q9; q9)j(w3q6; q9) + 3j(w3q3; q9)2.

�

The following two dissections of the Jacobi theta function will come in
handy in the forthcoming arguments.

Lemma 3.3. For |A|, |B| < 1, we have

j(−A2B;B4) − Aj(−A2B3;B4) = j(A;B).
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Proof.

j(−A2B;B4) − Aj(−A2B3;B4)

=
∞∑

n=−∞
(A2B)n(B4)n(n−1)/2 − A

∞∑

n=−∞
(A2B3)n(B4)n(n−1)/2

=
∞∑

n=−∞
A2nB((2n)2−(2n))/2 −

∞∑

n=−∞
A2n+1B((2n+1)2−(2n+1))/2

= j(A;B).

�

4. Generating Functions

In this section, we give the generating functions for two variations of com-
binations of three cranks, motivated by Kang’s results [5] for ranks. We use
elementary manipulations to obtain our results. Noting that the generating
function of cranks is given by

C(w; q) =
∞∑

m=−∞

∞∑

n=0

M(m;n)wmqn =
(1 − w)(q; q)2∞

j(w; q)
,

we state and prove Theorems 4.1 and 4.2.

Theorem 4.1. We have
∞∑

m=−∞

∞∑

n=0

(
M(3m − 1;n) + M(3m;n) + M(3m + 1;n)

)
wmqn

=
(1 − w)(q3; q3)∞

(q; q)∞

(
j(wq3; q9)j(wq6; q9) + wq2j(wq9; q9)2

j(w; q3)

)
.

Proof. Recall that ζ3 is the third root of unity. Then, we have

C(w; q)
w(1 − w)

+
C(ζ3w; q)

ζ3w(1 − ζ3w)
+

C(ζ23w; q)
ζ23w(1 − ζ23w)

=
1

w(1 − w)

( ∞∑

m=−∞

∞∑

n=0

M(m;n)wmqn

)

+
1

ζ3w(1 − ζ3w)

( ∞∑

m=−∞

∞∑

n=0

M(m;n)(ζ3w)mqn

)

+
1

ζ23w(1 − ζ23w)

( ∞∑

m=−∞

∞∑

n=0

M(m;n)(ζ23w)mqn

)

=
3

1 − w3

( ∞∑

m=−∞

∞∑

n=0

(
M(3m − 1;n)

+ M(3m;n) + M(3m + 1;n)
)
w3mqn

)
. (4.1)
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On the other hand, using Lemma 3.1, we compute

C(w; q)
w(1 − w)

+
C(ζ3w; q)

ζ3w(1 − ζ3w)
+

C(ζ23w; q)
ζ23w(1 − ζ23w)

=
w2(q3; q3)∞

(
j(ζ3w; q)j(ζ23w; q)+ζ23 j(w; q)j(ζ23w; q)+ζ3j(w; q)j(ζ3w; q)

)

w3(q; q)∞j(w3; q3)

=
(q3; q3)∞

(q; q)∞j(w3; q3)
(
3j(w3q3; q9)j(w3q6; q9)+3w3q2j(w3q9; q9)j(w3q9; q9)

)
.

(4.2)

Combining (4.1) with (4.2) and replacing w3 by w, we obtain the desired result.
�

Theorem 4.2. We have
∞∑

m=−∞

∞∑

n=0

(M(3m − 2;n) + M(3m − 1;n) + M(3m;n))wmqn

=
(1 − w)(q3; q3)∞

(q; q)∞

(
j(wq3; q9)2 + wqj(wq9; q9)j(wq6; q9)

j(w; q3)

)
.

Proof. Recalling ζ3 is the third root of unity, then we have

C(w; q)
(1 − w)

+
C(ζ3w; q)
(1 − ζ3w)

+
C(ζ23w; q)
(1 − ζ23w)

=
1

1 − w

( ∞∑

m=−∞

∞∑

n=0

M(m;n)wmqn

)

+
1

1 − ζ3w

( ∞∑

m=−∞

∞∑

n=0

M(m;n)(ζ3w)mqn

)

+
1

1 − ζ23w

( ∞∑

m=−∞

∞∑

n=0

M(m;n)(ζ23w)mqn

)

=
3

1 − w3

( ∞∑

m=−∞

∞∑

n=0

(
M(3m − 2;n)

+M(3m − 1;n) + M(3m;n)
)
w3mqn

)
. (4.3)

On the other hand, we use Lemma 3.2 and obtain

C(w; q)
(1 − w)

+
C(ζ3w; q)
(1 − ζ3w)

+
C(ζ23w; q)
(1 − ζ23w)

=
(q; q)2

j(w; q)
+

(q; q)2

j(ζ3w; q)
+

(q; q)2

j(ζ23w; q)

=
(q3; q3)∞

(
j(ζ3w; q)j(ζ23w; q) + j(w; q)j(ζ23w; q) + j(w; q)j(ζ3w; q)

)

(q; q)∞j(w3; q3)

=
(q3; q3)∞

(q; q)∞j(w3; q3)
(
3j(w3q3; q9)2 + 3w3qj(w3q9; q9)j(w3q6; q9)

)
. (4.4)
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Then, the theorem follows from combining (4.3) with (4.4) and replacing w3

by w. �

5. Proof of Theorem 2.1

The proofs of (2.1) and (2.2) follow from (1.4) and (1.6). Next, we replace w
by ζ3 and by i in (1.5) to obtain

∞∑

n=0

(
N(0, 1, 1; 9;n) − N(2, 3, 4; 9;n)

)
qn

=
(q3; q3)∞
(q; q)∞

∞∑

n=0

(
M(0, 3;n) − M(1, 3;n)

)
q3n

and
∞∑

n=0

(
N(0, 1, 1; 12;n) − N(5, 5, 6; 12;n)

)
qn

=
(q3; q3)∞
(q; q)∞

∞∑

n=0

(
M(0, 4;n) − M(2, 4;n)

)
q3n,

respectively. In [1], Andrews and Lewis proved that
∞∑

n=0

(
M(0, 3;n) − M(1, 3;n)

)
qn =

(q; q)2∞
(q3; q3)∞

,

∞∑

n=0

(
M(0, 4;n) − M(2, 4;n)

)
qn =

(q; q)∞(q2; q2)∞
(q4; q4)∞

.

Thus we have
∞∑

n=0

(
N(0, 1, 1; 9;n) − N(2, 3, 4; 9;n)

)
qn =

(q3; q3)3∞
(q; q)∞(q9; q9)∞

, (5.1)

∞∑

n=0

(
N(0, 1, 1; 12;n) − N(5, 5, 6; 12;n)

)
qn =

(q3; q3)2∞(q6; q6)∞
(q; q)∞(q12; q12)∞

. (5.2)

Hence (2.3) and (2.4) follow from (5.1) and (1.4). The relation (2.5) fol-
lows from the following observation and (2.2):

∞∑

n=0

2N(2, 3, 4; 12;n)qn =
∞∑

n=0

N(2, 2, 3; 6;n)qn.

We obtain (2.6) and (2.7) from (2.1), (5.2) and the following observation:
∞∑

n=0

(
N(0, 1, 1; 12;n) + N(5, 5, 6; 12;n)

)
qn =

∞∑

n=0

N(0, 1, 1; 6;n)qn.

Below in Lemmas 5.1–5.3, we compute the expressions in Theorems 4.1
and 4.2 when w is replaced by second, third and fourth roots of unity. We use
the following three lemmas to prove the rest of the equations similarly.
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Lemma 5.1. We have
∞∑

n=0

(
M(−1, 0, 1; 6;n) − M(2, 3, 4; 6;n)

)
qn

=
(q3; q3)4∞

(q; q)∞(q6; q6)2∞
− 4q2

(q3; q3)∞(q4; q4)∞(q36; q36)2∞
(q2; q2)∞(q12; q12)∞(q18; q18)∞

,

∞∑

n=0

(
M(−2,−1, 0; 6;n) − M(1, 2, 3; 6;n)

)
qn =

(q; q)∞(q9; q9)2∞
(q2; q2)∞(q18; q18)∞

.

Proof. We replace w = −1 in Theorems 4.1 and 4.2. Then, we employ (3.6),
(3.10) and (3.11) to get

∞∑

n=0

(
M(−1, 0, 1; 6;n) − M(2, 2, 3; 6;n)

)
qn

=
2(q3; q3)∞

(q; q)∞

(
j(−q3; q9)j(−q6; q9) − q2j(−q9; q9)2

j(−1; q3)

)

=
1

(q; q)∞

(
(q9; q9)4∞

(q18; q18)2∞
− 4q2

(q3; q3)2∞(q18; q18)4∞
(q6; q6)2∞(q9; q9)2∞

)
,

∞∑

n=0

(
M(−2,−1, 0; 6;n) − M(1, 2, 3; 6;n)

)
qn

=
2(q3; q3)∞

(q; q)∞

(
j(−q3; q9)2 − qj(−q9; q9)j(−q6; q9)

j(−1; q3)

)

=
1

(q; q)∞

(
(q9; q9)4∞

(q18; q18)2∞
− 2q

(q3; q3)∞(q9; q9)∞(q18; q18)∞
(q6; q6)∞

)
.

The eta quotients in brackets are holomorphic. Thus, the lemma follows from
the Sturm Theorem ([6, Theorem 3.13]). �
Lemma 5.2. We have

∞∑

n=0

(
M(−1, 0, 1; 9;n) − M(2, 3, 4; 9;n)

)
qn

=
1

(q; q)∞

(
(q9; q9)3∞

(q27; q27)∞
−3q2

(q3; q3)∞(q27; q27)2∞
(q9; q9)∞

)
,

∞∑

n=0

(
M(−2,−1, 0; 9;n) + ζ3M(1, 2, 3; 9;n) + ζ23M(4, 5, 6; 9;n)

)
qn

=
(q3; q3)∞

(q; q)∞(q9; q9)∞

(
(ζ3q3; ζ3q3)2∞ + (ζ3 − 1)q(q27; q27)∞(ζ23q3; ζ23q3)∞

)
.

Proof. These equations follow from employing (3.1), (3.7), (3.8) and (3.9) after
replacing w = ζ3 in Theorems 4.1 and 4.2, respectively. �
Lemma 5.3. We have

∞∑

n=0

(
M(−1, 0, 1; 12;n) − M(5, 6, 7; 12;n)

)
qn =

(q2; q2)2∞(q9; q9)2∞
(q; q)∞(q4; q4)∞(q18; q18)∞

,
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∞∑

n=0

((
M(−2,−1, 0; 12;n) − M(4, 5, 6; 12;n)

)

+ i
(
M(1, 2, 3; 12;n) − M(7, 8, 9; 12;n)

))
qn

=
(q4; q4)∞(q6; q6)4∞

(q2; q2)∞(q3; q3)∞(q12; q12)2∞
+ iq

(q2; q2)2∞(q3; q3)∞(q18; q18)2∞
(q; q)∞(q4; q4)∞(q6; q6)∞(q9; q9)∞

.

Proof. We first substitute w by i in Theorem 4.1. Then by employing (3.3),
(3.4) and (3.5) we have

(1 − i)(q3; q3)∞
(q; q)∞

(
j(iq3; q9)j(iq6; q9) + iq2j(iq9; q9)2

j(i; q3)

)

=
1

(q; q)∞

(
(q9; q9)2∞(q18; q18)∞

(q36; q36)∞
− 2q2

(q6; q6)∞(q9; q9)2∞(q36; q36)2∞
(q12; q12)∞(q18; q18)2∞

)

=
(q2; q2)2∞(q9; q9)2∞

(q; q)∞(q4; q4)∞(q18; q18)∞
.

The last equality follows from the Sturm Theorem ([6, Theorem 3.13]).
By Lemma 3.3, we have

j(iq3; q9) = j(q15; q36) − iq3j(q33; q36),

j(iq6; q9) = j(q21; q36) − iq6j(q39; q36),

together with (3.3), (3.4) and w replaced by i in Theorem 4.2 we have

(1 − i)(q3; q3)∞
(q; q)∞

(
j(iq3; q9)2 + iqj(iq9; q9)j(iq6; q9)

j(i; q3)

)

=
(q6; q6)∞

(q; q)∞(q12; q12)∞

(
j(q15; q36) − q3j(q3; q36)

) (
j(q15; q36) + q3j(q3; q36)

)

+ q
(q6; q6)∞(q9; q9)∞(q36; q36)∞
(q; q)∞(q12; q12)∞(q18; q18)∞

(
q6j(q39; q36) − j(q21; q36)

)

+ iq
(q6; q6)∞(q9; q9)∞(q36; q36)∞
(q; q)∞(q12; q12)∞(q18; q18)∞

(
q6j(q39; q36) + j(q21; q36)

)

− 2iq3
(q6; q6)∞

(q; q)∞(q12; q12)∞

(
j(q15; q36)j(q33; q36)

)

=
(q6; q6)∞

(q; q)∞(q12; q12)∞
j(q3;−q9)j(−q3;−q9)

+ q
(q6; q6)∞(q9; q9)∞(q36; q36)∞
(q; q)∞(q12; q12)∞(q18; q18)∞

(−j(−q6;−q9)
)

+ iq
(q6; q6)∞(q9; q9)∞(q36; q36)∞
(q; q)∞(q12; q12)∞(q18; q18)∞

(
j(−q6;−q9)

)

− 2iq3
(q6; q6)∞

(q; q)∞(q12; q12)∞

(
j(q15; q36)j(q33; q36)

)

=
(q6; q6)2∞(q18; q18)5∞

(q; q)∞(q9; q9)2∞(q12; q12)∞(q36; q36)2∞
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− q
(q6; q6)4∞(q9; q9)∞(q36; q36)∞

(q; q)∞(q3; q3)∞(q12; q12)2∞(q18; q18)∞

+ iq

(
(q3; q3)∞(q18; q18)4∞

(q; q)∞(q6; q6)∞(q9; q9)∞(q36; q36)∞

−2q2
(q3; q3)∞(q18; q18)∞(q36; q36)2∞

(q; q)∞(q9; q9)∞(q12; q12)∞

)
.

In the second and third steps, we use Lemma 3.3 and (3.10)–(3.12), respec-
tively. Then, the lemma follows from the Sturm Theorem ([6, Theorem 3.13]).

�

6. Proof of Theorem 2.3

Let f(q) =
∑

n anqn be the Fourier series expansion of f . We use [n]f(q) to
denote an.

6.1. Proofs of (2.24)–(2.27)

The following lemma from [7, Theorem 1.1] gives the desired result.

Lemma 6.1 [7, Theorem 1.1]. For all n ≥ 1, we have

[2n]
(q3; q3)4∞

2(q; q)∞(q6; q6)2∞
> 0,

[2n + 1]
(q3; q3)4∞

2(q; q)∞(q6; q6)2∞
< 0.

6.2. Proofs of (2.28)–(2.29)

Lemma 6.2. For all n ≥ 0, except n = 3, or 7, we have

[n]
(q3; q3)3∞

(q; q)∞(q9; q9)∞
> 0.

Proof. We have

q(q9; q9)3∞
(q3; q3)∞

=
η3(q9)
η(q3)

∈ M1(Γ0(27), χ−3),

from which we obtain
q(q9; q9)3∞
(q3; q3)∞

=
∞∑

n=0

∑

d|3n+1

(−3
d

)
q3n+1.

On the other hand, we have
∑

d|3n+1

(−3
d

)
≥ 0, since

∑

d|3n+1,
d≡1(mod 3)

1 ≥
∑

d|3n+1,
d≡2(mod 3)

1.

Thus we have

[n]
(q3; q3)3∞
(q; q)∞

≥ 0, (6.1)
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with
(q3; q3)3∞
(q; q)∞

= 1 + q + 2q2 + 2q4 + q5 + 2q6 + q8 + 2q9 + 2q10 + 2q12

+ 2q14 + 3q16 + O(q17).

The lemma follows from observing that

[9n]
1

(q9; q9)∞
> 0.

�

Observe that (2.28) and (2.29) is a direct consequence of Lemma 6.2.

6.3. Proofs of (2.30)–(2.33)

We obtain (2.30) and (2.31) from (2.26) and (2.27), respectively; and (2.32)
and (2.33) from the following lemma combined with (6.1).

Lemma 6.3. For all n ≥ 0 we have

2[3n]
(q6; q6)∞

(q3; q3)∞(q12; q12)∞
+ [3n]

(q3; q3)∞
(q6; q6)2∞

> 0,

2[3n]
(q6; q6)∞

(q3; q3)∞(q12; q12)∞
− [3n]

(q3; q3)∞
(q6; q6)2∞

> 0.

Proof. Let

f1(q) =
(q6; q6)∞

(q3; q3)∞(q12; q12)∞
.

Replacing q by −q, we obtain

f1(−q) =
(q3; q3)∞
(q6; q6)2∞

.

That is, we have

2f1(q) + f1(−q) = 2
(q6; q6)∞

(q3; q3)∞(q12; q12)∞
+

(q3; q3)∞
(q6; q6)2∞

=
∞∑

n=0

([n]f1(q) + 2[2n]f1(q)) qn,

2f1(q) − f1(−q) = 2
(q6; q6)∞

(q3; q3)∞(q12; q12)∞
− (q3; q3)∞

(q6; q6)2∞

=
∞∑

n=0

([n]f1(q) + 2[2n + 1]f1(q)) qn.

On the other hand, we observe that

f1(q) =
1

(q3; q6)∞(q12; q12)∞
,

that is, we have [3n]f1(q) > 0 for all n ≥ 0, from which the lemma follows.
�
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6.4. Proofs of (2.34)–(2.37)

These follow from Lemma 6.4 below.

Lemma 6.4. For all n > 1 we have

[2n]
(q; q)∞(q9; q9)2∞

(q2; q2)∞(q18; q18)∞
> 0,

[2n − 1]
(q; q)∞(q9; q9)2∞

(q2; q2)∞(q18; q18)∞
< 0.

Proof. Let

f2(q) =
(q; q)∞(q9; q9)2∞

(q2; q2)∞(q18; q18)∞
,

then we have

f2(−q) =
(q2; q2)2∞(q18; q18)5∞

(q; q)∞(q4; q4)∞(q9; q9)2∞(q36; q36)2∞

=
(q18; q18)5∞

(q9; q9)2∞(q36; q36)2∞

(q2; q2)2∞(q3; q3)∞(q12; q12)∞
(q; q)∞(q4; q4)∞(q6; q6)∞

× (q6; q6)∞
(q3; q3)∞(q12; q12)∞

.

Let

f3(q) =
(q18; q18)5∞

(q9; q9)2∞(q36; q36)2∞
= 1 + 4q9 + 4q36 + O(q243),

f4(q) =
(q2; q2)2∞(q3; q3)∞(q12; q12)∞

(q; q)∞(q4; q4)∞(q6; q6)∞
= 1 + q + q5 + q8 + q16 + O(q21),

f5(q) =
(q6; q6)∞

(q3; q3)∞(q12; q12)∞
= 1 + q3 + q6 + 2q9 + 3q12 + O(q15).

It is well known that f3(q) = 1 + 4
∑∞

n=1 q9n2
, thus [n]f3(q) ≥ 0 for all

n ∈ N. We observe that f4(−q) is one of the Kac identities, whose coefficients
are alternating in sign, see [8, Theorem 8.2 (2)]. Thus, [n]f4(q) ≥ 0 for all
n ∈ N. We also have

f5(q) =
(−q3; q3)∞
(q12; q12)∞

,

from which [3n]f5(q) > 0 for all n ∈ N0 follows. Thus [n]f4(q)f5(q) > 0 for
all n ≥ 3. That is, we have [n]f3(q)f4(q)f5(q) = [n]f2(−q) > 0 for all n > 2.
Then we replace q by −q in f2(−q) to complete the proof of the lemma. �
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7. Further Discussion

In this section, we discuss the connection between Theorem 2.1 and recent
results by Hickerson and Mortenson from [4]. Then, we discuss further possi-
bilities in this direction. Let L ∈ N be divisible by 3. Let

D(3j − 1, 3j, 3j + 1;L) =
∞∑

n=0

(
N(3j − 1, 3j, 3j + 1;L;n) − 3p(n)

L

)
qn.

From [4, Theorem 4.1], one can observe that Appell–Lerch sums in D(3j −
1, 3j, 3j + 1;L) cancel out, leaving the generating function to be a theta func-
tion. This explains the beauty of the formulae in (2.1)–(2.7) is not a mere
coincidence. Moreover, one can give the generating functions of combinations
of ranks in (1.7) in terms of Jacobi theta functions. Below we illustrate this
when j = 0 and L = 3 · 2k, where k ∈ N0. By [4, Theorem 4.1] we have

∞∑

n=0

N(0, 1, 1;L;n)qn

=
3

L(q; q)∞
+

(q; q)∞(q3; q3)4∞
2L(q6; q6)2∞

L−1∑

j=1

(1 − ζj
L)(2 + ζj

L)ζ−2j
L j(−ζ2j

L ; q)
j(ζj

L; q)j(−ζ3j
L q; q3)j(−ζ3j

L q2; q3)
.

(7.1)

Now let us consider
∞∑

n=0

N(0, 1, 1; 2L;n)qn

=
3

2L(q; q)∞
+

(q; q)∞(q3; q3)4∞
4L(q6; q6)2∞

2L−1∑

j=1

(1 − ζj
2L)(2 + ζj

2L)ζ−2j
2L j(−ζ2j

2L; q)
j(ζj

2L; q)j(−ζ3j
2Lq; q3)j(−ζ3j

2Lq2; q3)

=
1
2

∞∑

n=0

N(0, 1, 1;L;n)qn

+
(q; q)∞(q3; q3)4∞

4L(q6; q6)2∞

L−1∑

j=0

(1 − ζ2j+1
2L )(2 + ζ2j+1

2L )ζ−4j−2
2L j(−ζ4j+2

2L ; q)
j(ζ2j+1

2L ; q)j(−ζ6j+3
2L q; q3)j(−ζ6j+3

2L q2; q3)
,

where in the last line we use (7.1). This gives a recursive relation for N(0, 1, 1;L).
In general if L = 3 · 2k, then we use this recursion to obtain

∞∑

n=0

N(0, 1, 1;L;n)qn

=
1
2

∞∑

n=0

N(0, 1, 1;L/2;n)qn

+
(q; q)∞(q3; q3)4∞

2L(q6; q6)2∞

L/2−1∑

j=0

(1 − ζ2j+1
L )(2 + ζ2j+1

L )ζ−4j−2
L j(−ζ4j+2

L ; q)
j(ζ2j+1

L ; q)j(−ζ6j+3
L q; q3)j(−ζ6j+3

L q2; q3)
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=
1
2k

∞∑

n=0

N(0, 1, 1; 3;n)qn +
(q; q)∞(q3; q3)4∞

(q6; q6)2∞

×
k−1∑

i=0

2i−1

L

L/2i+1−1∑

j=0

(1 − ζ2j+1
L/2i )(2 + ζ2j+1

L/2i )ζ−4j−2
L/2i j(−ζ4j+2

L/2i ; q)

j(ζ2j+1
L/2i ; q)j(−ζ6j+3

L/2i q; q3)j(−ζ6j+3
L/2i q2; q3)

.

That is by (1.4), we obtain the generating function of N(0, 1, 1;L;n) in terms
of theta functions:

∞∑

n=0

N(0, 1, 1;L;n)qn

=
∞∑

n=0

p(n)
2k

qn +
(q; q)∞(q3; q3)4∞

(q6; q6)2∞

×
k−1∑

i=0

2i−1

L

L/2i+1−1∑

j=0

(1 − ζ2j+1
L/2i )(2 + ζ2j+1

L/2i )ζ−4j−2
L/2i j(−ζ4j+2

L/2i ; q)

j(ζ2j+1
L/2i ; q)j(−ζ6j+3

L/2i q; q3)j(−ζ6j+3
L/2i q2; q3)

. (7.2)

For a fixed L ∈ N, it might be possible to determine the signs of the theta
function in (7.2), which will yield the relations between N(0, 1, 1;L;n) and
p(n)
2k

.

Finally, similar arguments can be done for any 3|L ∈ N other than 3 · 2k.
So for any L divisible by 3, one can derive an equation similar to (7.2). Also,
similar results can be derived for N(3j − 1, 3j, 3j + 1;L;n) for all 0 ≤ j ≤
L/3 − 1.

8. Remarks and Conjectures

Let

F (q) =
(q3; q3)∞(ζ3q3; ζ3q3)2∞

(q; q)∞(q9; q9)∞
+ (ζ3 − 1)q

(q3; q3)∞(ζ23q3; ζ23q3)∞(q27; q27)∞
(q; q)∞(q9; q9)∞

.

We tried linear combinations of all the eta quotients in M1(Γ1(162)) to rep-
resent (q, q)∞Re

(
F (q)

)
and (q, q)∞Im

(
F (q)

)
in terms of eta quotients to no

avail. On the other hand, we have

j(ζ3q3; q9) = (ζ3q3; ζ3q3)∞ = j(q36; q81) − ζ3q
3j(q63; q81) + ζ23q15j(q90; q81),

j(ζ3q6; q9) = (ζ23q3; ζ23q3)∞ = j(q45; q81) − ζ3q
6j(q72; q81) + ζ23q21j(q99; q81),

from which the real and imaginary parts of F (q) can be worked out in terms
of Jacobi theta function. This will give alternate formulae for (2.17)–(2.19).
We prefer the formulae in (2.17)–(2.19).

We note that all the theta functions in (2.1)–(2.23), except (2.17)–(2.19),
are weight 1 modular forms when multiplied by (q, q)∞.

Finally, we state the conjectures for the comparisons of crank combina-
tions with partition function.
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Conjecture 8.1. We have

M(0, 1, 1; 6; 2n) <
p(2n)

2
, for all n ∈ N,

M(0, 1, 1; 6; 2n + 1) >
p(2n + 1)

2
, for all n ∈ N0 − {1},

M(2, 2, 3; 6; 2n) >
p(2n)

2
, for all n ∈ N,

M(2, 2, 3; 6; 2n + 1) <
p(2n + 1)

2
, for all n ∈ N0 − {1},

M(2, 3, 4; 12; 2n) >
p(2n)

4
, for all n ∈ N,

M(2, 3, 4; 12; 2n + 1) <
p(2n + 1)

4
, for all n ∈ N0 − {1},

M(0, 1, 1; 12; 2n) <
p(2n)

4
, for all n ∈ N0 − {0, 3, 4},

M(0, 1, 1; 12; 2n + 1) >
p(2n + 1)

4
, for all n ∈ N0,

M(5, 5, 6; 12; 2n) <
p(2n)

4
, for all n ∈ N0,

M(5, 5, 6; 12; 2n + 1) >
p(2n + 1)

4
, for all n ∈ N0 − {0, 1, 5, 7},

M(0, 1, 2; 12; 2n) >
p(2n)

4
, for all n ∈ N0,

M(0, 1, 2; 12; 2n + 1) <
p(2n + 1)

4
, for all n ∈ N0 − {1, 2, 3, 5},

M(3, 4, 5; 12; 2n) <
p(2n)

4
, for all n ∈ N0,

M(3, 4, 5; 12; 2n + 1) >
p(2n + 1)

4
, for all n ∈ N0 − {0, 5},

M(6, 7, 8; 12; 2n) >
p(2n)

4
, for all n ∈ N0 − {0, 1, 2},

M(6, 7, 8; 12; 2n + 1) <
p(2n + 1)

4
, for all n ∈ N0,

M(9, 10, 11; 12; 2n) <
p(2n)

4
, for all n ∈ N0 − {1, 3},

M(9, 10, 11; 12; 2n + 1) >
p(2n + 1)

4
, for all n ∈ N0.

Additionally, the referee pointed out that the signs of theta parts of
M(0, 1, 1; 9;n), M(2, 3, 4; 9;n), M(0, 1, 2; 9;n), M(3, 4, 5; 9;n) and M(6, 7, 8; 9;n)
are periodic modulo 9 when n ≥ 467. Thus, conjectures similar to Con-
jecture 8.1 can be stated for M(0, 1, 1; 9;n), M(2, 3, 4; 9;n), M(0, 1, 2; 9;n),
M(3, 4, 5; 9;n) and M(6, 7, 8; 9;n).
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[8] Köhler, G.: Eta Products and Theta Series Identities. Springer Monographs in
Mathematics. Springer, Heidelberg (2011)

Zafer Selcuk Aygin
Department of Mathematics and Computer Science
University of Lethbridge
Lethbridge AB T1K 3M4
Canada
e-mail: selcukaygin@ntu.edu.sg;

selcukaygin@gmail.com

Song Heng Chan
Division of Mathematical Sciences
School of Physical and Mathematical Sciences
Nanyang Technological University
21 Nanyang Link
Singapore 637371
Singapore
e-mail: chansh@ntu.edu.sg

Received: 19 July 2018.

Accepted: 10 April 2019.

155



Ann. Comb. 23 (2019) 511–525
c© 2019 Springer Nature Switzerland AG
Published online October 12, 2019
https://doi.org/10.1007/s00026-019-00449-4 Annals of Combinatorics

Combinatorial Proofs of Two Euler-Type
Identities Due to Andrews

To Professor George Andrews on the occasion of his 80th birthday

Cristina Ballantine and Richard Bielak

Abstract. Let a(n) be the number of partitions of n, such that the set of
even parts has exactly one element, b(n) be the difference between the
number of parts in all odd partitions of n and the number of parts in
all distinct partitions of n, and c(n) be the number of partitions of n in
which exactly one part is repeated. Beck conjectured that a(n) = b(n)
and Andrews, using generating functions, proved that a(n) = b(n) =
c(n). We give a combinatorial proof of Andrews’ result. Our proof relies
on bijections between a set and a multiset, where the partitions in the
multiset are decorated with bit strings. We prove combinatorially Beck’s
second conjecture, which was also proved by Andrews using generating
functions. Let c1(n) be the number of partitions of n, such that there is
exactly one part occurring three times, while all other parts occur only
once and let b1(n) be the difference between the total number of parts in
the partitions of n into distinct parts and the total number of different
parts in the partitions of n into odd parts. Then, c1(n) = b1(n).

Mathematics Subject Classification. 05A17, 11P81, 11P83.

Keywords. Partitions, Euler’s identity, Bit strings, Overpartitions.

1. Introduction

In [1], following conjectures of Beck, Andrews considered what happens if one
relaxes the conditions on parts in Euler’s partition identity. He gave analytic
proofs of related identities. In this article, we provide combinatorial proofs of
his results and add another special case.

Given a non-negative integer n, a partition λ of n is a non-increasing
sequence of positive integers λ = (λ1, λ2, . . . , λk) that add up to n, i.e.,∑k

i=1 λi = n. The numbers λi are called the parts of λ and n is called the
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size of λ. The number of parts of the partition is called the length of λ and is
denoted by �(λ).

When convenient, we use the exponential notation for parts in a partition.
The exponent of a part is the multiplicity of the part in the partition. For
example, (7, 52, 4, 33, 12) denotes the partition (7, 5, 5, 4, 3, 3, 3, 1, 1).

Let O(n) be the set of partitions of n with all parts odd and let D(n) be
the set of partitions of n with distinct parts. Then, Euler’s identity states that
|O(n)| = |D(n)|.

For example, if n = 7, we have

O(7) = {(7), (5, 12), (32, 1), (3, 14), (17)}
and

D(7) = {(7), (6, 1), (5, 2), (4, 3), (4, 2, 1)}.

Let A(n) be the set of partitions of n, such that the set of even parts has
exactly one element. Let C(n) be the set of partitions of n in which exactly
one part is repeated.

Thus, for n = 7, we have

A(7) = {(6, 1), (5, 2), (4, 3), (4, 13), (3, 22), (3, 2, 12), (23, 1), (22, 13), (2, 15)}
and

C(7) = {(5, 12), (4, 13), (32, 1), (3, 22), (3, 2, 12), (3, 14), (23, 1), (2, 15), (17)}.

Let a(n) = |A(n)| and c(n) = |C(n)|. Let b(n) be the difference between
the number of parts in all odd partitions of n and the number of parts in all
distinct partitions of n. Thus, b(n) is the difference between the number of
parts in all partitions in O(n) and the number of parts in all partitions in
D(n). In [3,4], Beck conjectured that a(n) = b(n) = c(n). Andrews proved
these identities in [1] using generating functions. In [2], Fu and Tang gave two
generalizations of this result. For one of the generalizations, Fu and Tang gave
a combinatorial proof, and as a particular case, they obtained a combinatorial
proof for a(n) = c(n). We give a combinatorial proof for the identities involving
b(n).

Theorem 1.1. Let n ≥ 1. Then
(i) a(n) = b(n);
(ii) c(n) = b(n).

Example 1.2. When n = 7, from the example above, we have a(7) = c(7) = 9.
To calculate b(7), we see that the total number of parts in all partitions in
O(7) is 19 and the total number of parts in all partitions in D(7) is 10. Thus,
b(7) = 19 − 10 = 9.

The novelty of our proof of Theorem 1.1 is the use of partitions decorated
with bit strings. These are defined in Sect. 2.1. This approach allows us to
create bijections between a set of partitions and a multiset of partitions. We
distinguish the partitions in the multiset via decorations with bit strings.

To state Beck’s second conjectured identity, let T (n) be the subset of
C(n) consisting of partitions of n in which one part is repeated exactly three
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times and all other parts occur only once. Let c1(n) = |T (n)|. Let b1(n) be
the difference between the total number of parts in the partitions of n into
distinct parts and the total number of different parts in the partitions of n
into odd parts. Thus, b1(n) is the difference between the number of parts in all
partitions in D(n) and the number of different parts in all partitions in O(n)
(i.e., parts counted without multiplicity). We will prove combinatorially the
following theorem.

Theorem 1.3. Let n ≥ 1. Then, c1(n) = b1(n).

Example 1.4. We continue our example for n = 7. We have

T (7) = {(4, 13), (23, 1)}.

Therefore, c1(7) = 2. As before, the total number of parts in all partitions in
D(7) is 10. The total number of different parts in the partitions in O(7) is 8.
Thus, b1(7) = 10 − 8 = 2.

After the work for this article was finished, we found out that Yang [5]
has proved these results in greater generality. However, our approach using
decorations with bit strings allows us to extend Theorem 1.3 to an Euler-type
identity in Theorem 3.1. Moreover, we are also able to establish the analogous
result for the case when one part is repeated exactly two times.

2. Combinatorial Proofs of Theorems 1.1 and 1.3

2.1. b(n) as the Cardinality of a Multiset of Partitions

First, we recall Glaisher’s bijection ϕ used to prove Euler’s identity. It is the
map from the set of partitions with odd parts to the set of partitions with
distinct parts which merges equal parts repeatedly.

Example 2.1. For n = 7, Glaisher’s bijection is given by

(7)
ϕ−→ (7)

(5, 1, 1︸︷︷︸) −→ (5, 2)

( 3, 3︸︷︷︸, 1) −→ (6,1)

(3, 1, 1,︸︷︷︸ 1, 1︸︷︷︸
︸ ︷︷ ︸

) −→ (4, 3)

(1, 1,︸︷︷︸ 1, 1,︸︷︷︸
︸ ︷︷ ︸

1, 1,︸︷︷︸ 1) −→ (4, 2, 1)

Thus, each partition λ ∈ O(n) has at least as many parts as its image
ϕ(λ) ∈ D(n).

When calculating b(n), the difference between the number of parts in all
odd partitions of n and the number of parts in all distinct partitions of n, we
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sum up the differences in the number of parts in each pair (λ, ϕ(λ)). Write
each part μj of μ = ϕ(λ) as μj = 2kj ·mj with mj odd. Then, μj was obtained
by merging 2kj parts in λ and thus contributes an excess of 2kj − 1 parts to
the difference. Therefore, the difference between the number of parts of λ and
the number of parts of ϕ(λ) is

∑�(ϕ(λ))
j=1 (2kj − 1).

Definition 2.2. Given a partition μ with parts μj = 2kj · mj , where mj is odd,
the weight of the partition is

wt(μ) =
�(μ)∑

j=1

(2kj − 1).

Thus, wt(μ) > 0 if and only if μ contains at least one even part.
To illustrate Definition 2.2, let

μ = (18, 9, 6, 4, 1) = (2 · 9, 9, 2 · 3, 22 · 1, 1).

Then,

wt(μ) = (2 − 1) + (2 − 1) + (22 − 1) = 5.

We denote by MD(n) the multiset of partitions of n with distinct parts
in which every partition μ ∈ D(n) appears exactly wt(μ) times. For example,
wt(4, 2, 1) = 4 and (4, 2, 1) appears four times in MD(7). Since wt(7) = 0, the
partition (7) does not appear in MD(7).

The discussion above proves the following interpretation of b(n).

Proposition 2.3. Let n ≥ 1. Then, b(n) = |MD(n)|.
To create bijections from A(n) to MD(n) and from C(n) to MD(n), we

need to distinguish identical elements of MD(n) and thus view it as a set.
Recall that all partitions in MD(n) have distinct parts and at least one even
part.

Definition 2.4. A bit string w is a sequence of letters from the alphabet {0, 1}.
The length of a bit string w, denoted �(w), is the number of letters in w. We
refer to position i in w as the ith entry from the right, where the right-most
entry is counted as position 0.

Note that leading zeros are allowed and are recorded. Thus, 010 and 10
are different bit strings, even though they are the binary representation of the
same number. We have �(010) = 3 and �(10) = 2. The empty bit string has
length 0 and is denoted by ∅.

Definition 2.5. A decorated partition is a partition μ with at least one even
part in which one single even part, called the decorated part, has a bit string
w as an index. If the decorated part is μi = 2km, where k ≥ 1 and m is odd,
the index w has length 0 ≤ �(w) ≤ k − 1.

Since there are 2t distinct bit strings of length t, there are 2k − 1 distinct
bit strings w of length 0 ≤ �(w) ≤ k − 1. Thus, for each even part μi = 2km of
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μ, there are 2k −1 possible indices, and for each partition, μ there are precisely
wt(μ) possible decorated partitions with the same parts as μ.

We denote by DD(n) the set of decorated partitions of n with distinct
parts. Note that, by definition, a decorated partition has at least one even
part. Then

|MD(n)| = |DD(n)|
and therefore

b(n) = |DD(n)|.

2.2. A Combinatorial Proof for a(n) = b(n)
We prove that a(n) = b(n) by establishing a one-to-one correspondence be-
tween A(n) and DD(n).

From DD(n) to A(n):
Start with a decorated partition μ ∈ DD(n). Suppose part μi = 2km,

with k ≥ 1 and m odd, is decorated with bit string w of length �(w). Then,
0 ≤ �(w) ≤ k − 1. Let dw be the decimal value of w. We set d∅ = 0.

1. Split part μi into dw +1 parts of size 2k−�(w)m and parts of size m. Thus,
there will be 2k − (dw + 1)2k−�(w) parts of size m. Since dw + 1 ≤ 2�(w),
the resulting number of parts equal to m is non-negative. Moreover, after
the split, there is at least one even part.

2. Every part of size 2tm, with t > k (if it exists), splits completely into
parts of size 2k−�(w)m, i.e., into 2t−k+�(w) parts of size 2k−�(w)m.

3. Every other even part splits into odd parts of equal size, i.e., every part
2uv with v odd, such that 2uv �= 2sm for some s ≥ k, splits into 2u parts
of size v.

The resulting partition λ is in A(n). Its set of even parts is {2k−�(w)m}.

Example 2.6. Consider the decorated partition

μ = (96, 35, 34, 2401, 6, 2) = (25 · 3, 35, 2 · 17, (23 · 3)01, 2 · 3, 2 · 1) ∈ DD(197).

We have k = 3,m = 3, �(w) = 2, dw = 1.

1. Part 24 = 23 · 3 splits into two parts of size 6 and four parts of size 3.
2. Part 96 = 25 · 3 splits into 16 parts of size 6.
3. All other even parts split into odd parts. Thus, part 34 splits into two

parts of size 17, part 6 splits into two parts of size 3, and part 2 splits
into two parts of size 1.

The resulting partition is λ = (35, 172, 618, 36, 12) ∈ A(197).
Similarly, the transformation maps the decorated partition

(96, 35, 34, 2410, 6, 2) ∈ DD(197)

to

(35, 172, 619, 34, 12) ∈ A(197).
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From A(n) to DD(n):
Start with a partition λ ∈ A(n). Then, there is one and only one even

number 2km, k ≥ 1,m odd, among the parts of λ. Let f be the multiplicity of
the even part in λ. As in Glaisher’s bijection, we merge equal parts repeatedly
until we obtain a partition μ with distinct parts. Since λ has an even part, μ
will also have an even part.

Next, we determine the decoration of μ. Consider the parts μji
of the

form 2rim, with m odd (same m as in the even part of λ) and ri ≥ k. We have
j1 < j2 < · · · . For notational convenience, set μj0 = 0. Let h be the positive
integer, such that

h−1∑

i=0

μji
< f · 2km ≤

h∑

i=0

μji
. (2.1)

Then, we will decorate part μjh
= 2rhm.

To determine the decoration, let Nh be the number of parts 2km in λ
that are merged to form all parts of the form 2rm > μjh

. Thus

Nh =
∑h−1

i=0 μji

2km
.

Then, (2.1) becomes

2kmNh < f · 2km ≤ 2kmNh + 2rhm,

which in turn implies Nh < f ≤ Nh + 2rh−k. Therefore, 0 < f − Nh ≤ 2rh−k.
Let d = f −Nh − 1 and � = rh −k. We have 0 ≤ � ≤ rh − 1. Consider the

binary representation of d and insert leading zeros to form a bit string w of
length �. Decorate μjh

with w. The resulting decorated partition is in DD(n).

Example 2.7. Consider the partition λ = (35, 172, 618, 36, 12) ∈ A(197). We
have k = 1,m = 3, f = 18. Glaisher’s bijection produces the partition μ =
(96, 35, 34, 24, 6, 2) ∈ MD(197). The parts of the form 2ri · 3 with ri ≥ 1 are
96, 24, 6. Since 96 < 18 · 6 ≤ 96+24, the decorated part will be 24 = 23 · 3. We
have Nh = 96/6 = 16. To determine the decoration, let d = 18 − 16 − 1 = 1
and � = 3 − 1 = 2. The binary representation of d is 1. To form a bit string
of length 2, we introduce one leading 0. Thus, the decoration is w = 01 and
the resulting decorated partition is (96, 35, 34, 2401, 6, 2) ∈ DD(197). Similarly,
starting with (35, 172, 619, 34, 12) ∈ A(197), after applying Glaisher’s bijection,
we obtain μ = (96, 35, 34, 24, 6, 2) ∈ MD(197). All parameters are the same
as in the previous example with the exception of f = 19. As before, the
decorated part is 24 and � = 2. We have d = 19 − 16 − 1 = 2, whose binary
representation is 10 and already has length 2. Thus, w = 10 and the resulting
decorated partition is (96, 35, 34, 2410, 6, 2) ∈ DD(197).

2.3. A Combinatorial Proof for c(n) = b(n)
We could compose the bijection of Sect. 2.2 with the bijection of [2] (for k =
2) to obtain a combinatorial proof of part (ii) of Theorem 1.1. We give an
alternative proof that c(n) = b(n) by establishing a one-to-one correspondence
between C(n) and DD(n) that does not involve the bijection of [2].
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From DD(n) to C(n):
Start with a decorated partition μ ∈ DD(n). Suppose part μi = 2km,

with k ≥ 1 and m odd, is decorated with bit string w of length �(w) and
decimal value dw. Then, 0 ≤ �(w) ≤ k − 1. We obtain λ from μ by performing
the following steps.

1. Split μi into 2(dw + 1) parts of size 2k−�(w)−1m and a part of size
2i+k−�(w)m for each i such that there is a 0 in position i in w.

2. Each part 2tm with k − �(w) − 1 ≤ t < k splits completely into parts of
size 2k−�(w)−1m, i.e., into 2t−k+�(w)+1 parts of size 2k−�(w)−1m.

Since 2(dw + 1) ≥ 2, the obtained partition λ is in C(n). The repeated part is
2k−�(w)−1m.

Note: If w = ∅, in Step 1, part μi splits into two equal parts of size 2k−1m,
and Step 2 has no effect. If w �= ∅, in Step 1, after splitting off 2(dw + 1) parts
of size 2k−�(w)−1m from μi, we are left with r = 2k−�(w)(2�(w) − dw − 1)m
to split into distinct parts. We do this using Glaisher’s transformation ϕ on
r/m parts equal to m. Thus, in ϕ((mr/m)), there is a part equal to 2jm if
and only if the binary representation of r/m has a 1 in position j. However,
2�(w) − 1 is a bit string of length �(w) with every entry equal to 1. Then, the
binary representation of 2�(w) − dw − 1 (filled with leading zeros if necessary
to create a bit string of length �(w)) is precisely the complement of w, i.e., the
bit string obtained from w by replacing every 0 by 1 and every 1 by 0. Thus,
in ϕ((mr/m)), there will be a part of size 2i+k−�(w)m if and only if there is a
0 in position i in w.

Example 2.8. Consider the decorated partition

μ = (768, 3840110, 105, 96, 25, 12, 9, 6, 2)
= (28 · 3, (27 · 3)0110, 105, 25 · 3, 25, 22 · 3, 9, 2 · 3, 2 · 1) ∈ DD(1407).

We have k = 7, w = 0110, �(w) = 4, dw = 6. The decorated part is μ2.
1. Since 2(dw + 1) = 14 and w has zeros in positions 0 and 3, μ2 splits into

14 parts of size 22 · 3 and one part each of sizes 23 · 3 and 26 · 3.
2. The parts of the form 2t · 3 with 2 ≤ t < 7 are μ4 = 25 · 3 and μ6 = 22 · 3.

Then, μ4 splits into 23 parts of size 22 · 3 and μ6 “splits” into one part of
size 22 · 3.

We obtain the partition

λ = (28 · 3, 26 · 3, 105, 25, 23 · 3, 22 · 3, . . . , 22 · 3︸ ︷︷ ︸
23 times

, 9, 2 · 3, 2 · 1)

= (768, 192, 105, 25, 24, 1223, 9, 6, 2) ∈ C(1407).

From C(n) to DD(n):
Start with a partition λ ∈ C(n). Then, there is one and only one repeated

part among the parts of λ. Suppose the repeated part is 2km, k ≥ 0,m odd,
and denote by f ≥ 2 its multiplicity in λ. As in Glaisher’s bijection, we merge
equal parts repeatedly until we obtain a partition μ with distinct parts. Since
λ has a repeated part, μ will have at least one even part.
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Next, we determine the decoration of μ. In this case, we want to work
with the parts of μ from right to left (i.e., from smallest to largest part). Let
μ̃q = μ�(μ)−q+1. Consider the parts μ̃ji

of the form 2rim, with m odd and
ri ≥ k. If r1 < r2 < · · · , we have j1 < j2 < · · · .

As before, we set μ̃j0 = 0. Let h be the positive integer, such that

h−1∑

i=0

μ̃ji
< f · 2km ≤

h∑

i=0

μ̃ji
. (2.2)

Then, we will decorate part μ̃jh
= 2rhm. Note that 2rhm is the largest part of

μ that is not in λ.
To determine the decoration, let Nh be the number of parts 2km in λ

that merged to form all parts of the form 2rm < μ̃jh
. Thus

Nh =
∑h−1

i=0 μ̃ji

2km
. (2.3)

Then, (2.2) becomes

2kmNh < f · 2km ≤ 2kmNh + 2rhm,

which in turn implies Nh < f ≤ Nh + 2rh−k. Therefore, 0 < f − Nh ≤ 2rh−k.
Let

d =
f − Nh

2
− 1 and � = rh − k − 1.

We have 0 ≤ � ≤ rh − 1. Consider the binary representation of d and insert
leading zeros to form a bit string w of length �. Decorate μ̃jh

with w. The
resulting decorated partition (with parts written in non-increasing order) is in
DD(n).

Note: To see that f −Nh above is always even, consider the three cases below.

(i) If h = 1, then Nh = 0. In this case, we must have f = 2. Thus, f − Nh is
even.

(ii) If f is odd, then after the merge, we have one part equal to 2km con-
tributing to the numerator of Nh in (2.3). All other parts contributing to
the numerator of Nh are divisible by 2 ·2km. Thus, Nh is odd and f −Nh

is even.
(iii) If f is even and at least 2, then after the merge we have no part equal to

2km contributing to the numerator of Nh. All parts contributing to the
numerator of Nh are divisible by 2 · 2km. Thus, Nh is even and f − Nh

is even.

Example 2.9. Consider the partition

λ = (28 · 3, 26 · 3, 105, 25, 23 · 3, 22 · 3, . . . , 22 · 3︸ ︷︷ ︸
23 times

, 9, 2 · 3, 2 · 1)

= (768, 192, 105, 25, 24, 1223, 9, 6, 2) ∈ C(1407).
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We have k = 2 and f = 23. Glaisher’s bijection transforms λ as follows:

(28 · 3, 26 · 3, 105, 25, 23 · 3, 22 · 3, . . . , 22 · 3︸ ︷︷ ︸
23 times

, 9, 2 · 3, 2 · 1)

↓
(28 · 3, 26 · 3, 105, 25, 23 · 3, . . . , 23 · 3︸ ︷︷ ︸

12 times

, 22 · 3, 9, 2 · 3, 2 · 1)

↓
(28 · 3, 26 · 3, 105, 24 · 3, . . . , 24 · 3︸ ︷︷ ︸

6 times

, 25, 22 · 3, 9, 2 · 3, 2 · 1)

↓
(28 · 3, 26 · 3, 105, 25 · 3, 25 · 3, 25 · 3, 25, 22 · 3, 9, 2 · 3, 2 · 1)

↓
(28 · 3, 26 · 3, 26 · 3, 105, 25 · 3, 25, 22 · 3, 9, 2 · 3, 2 · 1)

↓
μ = (28 · 3, 27 · 3, 105, 25 · 3, 25, 22 · 3, 9, 2 · 3, 2 · 1)

The parts of the form 2r · 3 with r ≥ 2 are

μ̃4 = 22 · 3 = 12, μ̃6 = 25 · 3 = 96, μ̃8 = 27 · 3 = 384,

and μ̃9 = 28 · 3 = 768. Since

12 + 96 < 23 · 22 · 3 ≤ 12 + 96 + 384,

the decorated part will be 27 · 3 = 384. We have h = 3 and

N3 =
22 · 3 + 25 · 3

22 · 3
= 1 + 23 = 9.

Thus

d =
23 − 9

2
− 1 = 6

and � = 7−2−1 = 4. Thus, w = 0110 and the resulting decorated partition is

μ = (28 · 3, (27 · 3)0110, 105, 25 · 3, 25, 22 · 3, 9, 2 · 3, 2 · 1)

= (768, 3840110, 105, 96, 25, 12, 9, 6, 2) ∈ DD(1407).

2.4. b1(n) as the Cardinality of a Set of Overpartitions

As in Sect. 2.1, we use Glaisher’s bijection and calculate b1(n) by summing up
the difference between the number of parts of ϕ(λ) and the number of different
parts of λ for each partition λ ∈ O(n). In ϕ(λ), there is a part of size 2im,
with m odd if and only if there is a 1 in position i of the binary representation
of the multiplicity of m in λ. After the merge, each odd part in λ creates as
many parts in ϕ(λ) as the number of ones in the binary representation of its
multiplicity. Moreover, if we write the parts of ϕ(λ) as 2kimi with mi odd
and ki ≥ 0, all parts 2sm with the same largest odd factor m are obtained by
merging parts equal to m in λ.

For each positive odd integer 2j − 1, denote by oddmϕ(λ)(2j − 1) the
number of parts of ϕ(λ) of the form 2s(2j − 1) for some s ≥ 0. Then, given
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λ ∈ O(n), the difference between the number of parts of ϕ(λ) and the number
of different parts of λ equals

owt(ϕ(λ)) :=
∑

j

oddmϕ(λ)(2j−1) �=0

(oddmϕ(λ)(2j − 1) − 1).

For example, if

ϕ(λ) = (18, 9, 6, 4, 1) = (2 · 9, 9, 2 · 3, 22 · 1, 1),

we have oddmϕ(λ)(9) = 2, oddmϕ(λ)(3) = 1, and oddmϕ(λ)(1) = 2. Thus,
the contribution to b1(38) of the difference between the number of parts of
ϕ(λ) and the number of different parts of λ = (9, 9, 9, 3, 3, 1, 1, 1, 1, 1) equals
owt(ϕ(λ)) = (2 − 1) + (1 − 1) + (2 − 1) = 2.

We denote by MD′(n) the multiset of partitions of n with distinct parts
in which every partition μ ∈ D(n) appears exactly owt(μ) times. Then, b1(n) =
|MD′(n)|. To distinguish equal partitions in MD′(n), we overline certain parts
as explained below.

Let D(n) be the set of overpartitions of n with distinct parts in which
exactly one part is overlined. Part 2sm with s ≥ 0 and m odd may be over-
lined only if there is a part 2tm with t < s. In particular, no odd part can
be overlined. By an overpartition with distinct parts we mean that all parts
have multiplicity one. In particular, p and p̄ cannot both appear as parts of
the overpartition. The discussion above proves the following interpretation of
b1(n).

Proposition 2.10. Let n ≥ 1. Then, b1(n) = |D(n)|.
2.5. A Combinatorial Proof of c1(n) = b1(n)

From D(n) to T (n):
Start with an overpartition μ ∈ D(n). Suppose the overlined part is

μi = 2sm for some s ≥ 1 and m odd. Then, there is a part μj = 2tm of
μ with t < s. Let k be the largest positive integer, such that 2km is a part
of μ and k < s. To obtain λ ∈ T (n) from μ, split μi into two parts equal
to 2km and one part equal to 2jm whenever there is a 1 in position j of
the binary representation of (2s − 2k+1), i.e., one part equal to 2jm for each
j = k + 1, k + 2, . . . , s − 1.

Example 2.11. Let

μ = (768, 48, 46, 9, 6, 5, 2) = (28 · 3, 24 · 3, 2 · 23, 9, 2 · 3, 5, 2 · 1) ∈ D(884).

Then, 28 · 3 splits into two parts equal to 24 · 3 and one part each of size
25 · 3, 26 · 3, 27 · 3. Thus, we obtain the partition

λ = (27 · 3, 26 · 3, 25 · 3, 24 · 3, 24 · 3, 24 · 3, 2 · 23, 9, 2 · 3, 5, 2 · 1)

= (384, 192, 96, 483, 46, 9, 6, 5, 2) ∈ T (884).

Similarly

(768, 48, 46, 9, 6, 5, 2) = (28 · 3, 24 · 3, 2 · 23, 9, 2 · 3, 5, 2 · 1) ∈ D(884)
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transforms into

(28 · 3, 2 · 23, 23 · 3, 22 · 3, 9, 2 · 3, 2 · 3, 2 · 3, 5, 2 · 1) = (768, 46, 24, 12, 9, 63, 5, 2)

∈ T (884).

From T (n) to D(n):
Start with a partition λ ∈ T (n). Merge the parts of λ repeatedly using

Glaisher’s bijection ϕ to obtain a partition μ with distinct parts. Overline the
smallest part of μ that is not a part of λ. Note that if the thrice repeated part
of λ is 2km for some k ≥ 0 and m odd, then in μ, there is a part equal to 2km
and the overlined part is of the form 2tm for some t > k. Thus, we obtain an
overpartition in D(n).

Example 2.12. Let

λ = (27 · 3, 26 · 3, 25 · 3, 24 · 3, 24 · 3, 24 · 3, 2 · 23, 9, 2 · 3, 5, 2 · 1)

= (384, 192, 96, 483, 46, 9, 6, 5, 2) ∈ T (884).

Merging equal parts as in Glaisher’s bijection, we obtain the partition:

μ = (768, 48, 46, 9, 6, 5, 2)

= (28 · 3, 24 · 3, 2 · 23, 9, 2 · 3, 5, 2 · 1) ∈ D(884).

The smallest part of μ that is not a part of λ is 768. Thus, we obtain the
overpartition (768, 48, 46, 9, 6, 5, 2) ∈ D(884).

Similarly, after applying Glaisher’s bijection, the partition

λ = (28 · 3, 2 · 23, 23 · 3, 22 · 3, 9, 2 · 3, 2 · 3, 2 · 3, 5, 2 · 1)

= (768, 46, 24, 12, 9, 63, 5, 2) ∈ T (884)

maps to

μ = (768, 48, 46, 9, 6, 5, 2)

= (28 · 3, 24 · 3, 2 · 23, 9, 2 · 3, 5, 2 · 1) ∈ D(884).

The smallest part of μ not appearing in λ is 48. Thus, we obtain the overpar-
tition (768, 48, 46, 9, 6, 5, 2) ∈ D(884).

Remark 2.13. We could have obtained the transformation above from the com-
binatorial proof of part (ii) of Theorem 1.1. In the transformation from C(n)
to DD(n), we have f = 3, h = 2, and Nh = 1. Thus d = 0 and the decorated
part is the smallest part in the transformed partition μ that did not occur in
the original partition λ. Then

rh = 1 + k + max{j | 2k · m, 2k+1 · m, . . . , 2k+j · m are all parts of λ}.

Thus, in μ, the decorated part 2rh ·m is decorated with a bit string consisting of
all zeros and of length rh−k−1, one less than the difference in exponents of 2 of
the decorated part and the next smallest part with the same largest odd factor
m. Since the decoration of a partition in DD(n) is completely determined by
the part being decorated, we could simply just overline the part.
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3. Extending Theorem 1.3 to an Euler-Type Identity

It is natural to look for the analogue of Theorem 1.1 (i) in the setting of
Theorem 1.3. If in Euler’s partition identity, we relax the condition in D(n)
to allow one part to be repeated exactly three times, how do we relax the
condition on O(n) to obtain an identity? We can search for the condition by
following the proof of Theorem 1.1 part (i) but only for decorated partitions
from DD(n), where an even part is decorated with a bit string consisting
entirely of zeros as in Remark 2.13, i.e., of length one less than the difference
in exponents of 2 of the decorated part and the next smallest part with the
same largest odd factor m. We identify these decorated partitions with the
overpartitions in D(n). Following the algorithm, we see that the set T (n)
has the same cardinality as the set of partitions with exactly one even part
2k · m, k ≥ 1,m odd, which appears with odd multiplicity. Moreover, part m
appears with multiplicity at least 2k−1 and the multiplicity of m must belong
to an interval [2s − 2k−1, 2s − 1] for some s ≥ k. Given the elegant description
of the partitions in T (n), it would be desirable to find a nicer set of the
same cardinality consisting of partitions with only one even part under some
constraints.

Let A′(n) be the subset of A(n) consisting of partitions λ of n, such that
the set of even parts has exactly one element and the following two conditions
hold:
(1) The even part 2k · m, k ≥ 1,m odd, has odd multiplicity.
(2) The largest odd factor m of the even part is a part of λ with multiplicity

between 1 and 2k − 1.
Let a1(n) = |A′(n)|.

Theorem 3.1. Let n ≥ 1. Then, a1(n) = b1(n).

Proof. From D(n) to A′(n):
Start with an overpartition μ ∈ D(n). Suppose the overlined part is

μi = 2s · m, s ≥ 1,m odd. Then, there is a part μj = 2tm of μ with 0 ≤ t < s.
Keep part 2s · m and remove its overline. Split each part of the form 2u · m
with u > s (if it exists) into 2u−s parts equal to 2s · m. Split each part of the
form 2v · m with 0 ≤ v < s into 2v parts equal to m. Split every other even
part into odd parts. Call the obtained partition λ. Then, the multiplicity of
2s · m in λ is odd. Since there is a part μj = 2tm of μ with 0 ≤ t < s, there
will be at least one part equal to m in λ. The largest possible multiplicity of
m in λ is 2s−1 + 2s−2 + · · · + 2 + 1 = 2s − 1. Thus, λ ∈ A′(n).

From A′(n) to D(n):
Let λ ∈ A′(n). Merge equal terms repeatedly (as in Glaisher’s bijection)

to obtain a partition with distinct parts. Overline the part equal to the even
part in λ. Call the obtained overpartition μ. Since the even part 2k · m in λ
has odd multiplicity, there will be a part in μ equal to 2k · m. Since m has
multiplicity between 1 and 2k − 1 in λ, there will be a part of size 2i · m
in μ whenever there is a 1 in position i in the binary representation of the
multiplicity of m in λ. The binary representation of 2k − 1 is a bit string of
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length k − 1 consisting entirely of ones. Thus, in μ, there is at least one part
of size 2t · m with 0 ≤ t < k and μ ∈ D(n). �

From Theorems 1.3 and 3.1, we obtain the following Euler-type identity.

Corollary 3.2. Let n ≥ 1. Then, a1(n) = c1(n).

Example 3.3. Let n = 10. Then

T (20) = {(7, 1, 1, 1), (5, 2, 1, 1, 1), (4, 3, 1, 1, 1), (4, 2, 2, 2),

(3, 2, 2, 2, 1), (3, 3, 3, 1)}
and

A′(10) = {(7, 2, 1), (3, 2, 2, 2, 1), (5, 4, 1), (3, 4, 1, 1, 1), (6, 3, 1), (8, 1, 1)}.

4. One Part Repeated Exactly Two Times, All Other Parts
Distinct

Given the specialization of Theorem 1.1 stated in Theorems 1.3 and 3.1, it is
natural to ask what happens if one considers the set of partitions, such that
one part is repeated exactly two times and all other parts are distinct. Let
S(n) be the subset of C(n) consisting of such partitions and let c2(n) = |S(n)|.
We would like to express c2(n) as an excess of parts between partitions in D(n)
and O(n) (where parts are counted with different multiplicities) to obtain an
identity similar to c(n) = b(n) and c1(n) = b1(n).

Note that b(n) is the difference between the number of parts in all par-
titions in O(n) and the number of parts in all partitions in D(n). Thus, each
part appearing in a partition in O(n) is counted with the multiplicity with
which it appears in the partition. On the other hand, b1(n) is the difference
between the number of parts in all partitions in D(n) and the number of dif-
ferent parts in all partitions in O(n). Here, each part appearing in a partition
in O(n) is counted with multiplicity 1 for that partition.

Definition 4.1. Given a partition λ ∈ O(n), suppose the multiplicity of i in
λ is mi. If i appears in λ, we define the binary order of magnitude of the
multiplicity of i in λ, denoted bommλ(i), to be the number of digits in the
binary representation of mi.

Note that, if mi > 0, then bommλ(i) = 	log2(mi)
 + 1.
Let b2(n) denote the difference between the number of parts in all par-

titions in O(n), each counted as many times as its bomm, and the number of
parts in all partitions in D(n). Since the number of parts in all partitions in
D(n) equals the number of ones in all binary representations of all multiplici-
ties in all partitions of O(n), it follows that b2(n) equals the number of zeros
in all binary representations of all multiplicities in all partitions of O(n). We
have the following theorem.

Theorem 4.2. Let n ≥ 1. Then, c2(n) = b2(n).
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Proof. Let DD′(n) be the subset of decorated partitions μ in DD(n), such that
a part 2sm of μ with s ≥ 1 and m odd can be decorated only if 2s−1m is not
a part of μ. The decoration w must satisfy dw = 0 and 0 ≤ �(w) ≤ s − k − 2,
where k = max{j < s | 2jm is a part of μ} if there is a part 2jm in μ with
j < s, and k = −1 otherwise.

Recall that, in a bit string, the most right position of a digit is position
0 and we count positions from right to left. To see that b2(n) = |DD′(n)| we
argue as follows. If there is a part 2sm in μ ∈ DD′(n), with s ≥ 0 and m odd,
then there is a 1 in position s of the binary representation of multλ(m) with
λ ∈ O(n), such that ϕ(λ) = μ. Here, multλ(m) is the multiplicity of m in the
partition λ. If the part 2sm of μ is decorated, then s ≥ 1 and 2s−1m is not a
part of μ. Then, digit 1 in position s of the binary representation of multλ(m)
is followed by s − k − 1 zeros, where k is defined as above. Note that in this
case, k < s − 1, and therefore, s − k − 1 > 0. Since there are s − k − 1 possible
decorations for part 2sm, the total number of possible decorations of parts of
μ equals the number of zeros in the binary representations of all multiplicities
of the corresponding λ ∈ O(n).

Next, we show that c2(n) = b2(n) by creating a one-to-one correspon-
dence between S(n) and DD′(n).

From DD′(n) to S(n):
Start with a decorated partition μ ∈ DD′(n). Suppose part μi = 2sm, s ≥

1, and m odd is decorated with word w with dw = 0 and 0 ≤ �(w) ≤ s−k − 2,
where k is defined as above. Then, we split 2sm into parts 2s−1m, 2s−2m,
. . . , 2s−�(w)m and two parts equal to 2s−�(w)−1m. Note that if �(w) = 0, then
2s splits into two parts equal to 2s−1m. If there is a part 2jm in μ with j < s,
then k is defined as the largest k < s, such that 2km is a part of μ. Since
s−�(w)−1 ≥ k+1, part 2s−�(w)−1m appears exactly twice and all other parts
appear once. The obtained partition is in S(n).

From S(n) to DD′(n):
Let λ ∈ S(n). Suppose the part that appears exactly twice is 2km with

k ≥ 0 and m odd. Merge the parts of λ repeatedly using Glaisher’s bijection
ϕ to obtain a partition μ with distinct parts. There will be no part equal to
2km in μ. The decorated part will be the only part of μ that is not a part of
λ. As in the proof of Theorem 1.1 (ii), Nh = 0, and since f = 2, we have

d =
f − Nh

2
− 1 = 0.

Moreover, if the decorated part is 2sm with m odd, then �(w) = s − k − 1. If
there is a part 2tm with t < s in μ, then, by construction, t ≤ k − 1. Then,
μ ∈ DD′(n). �

To establish an Euler-type identity, let A′′(n) be the subset of A(n) con-
sisting of partitions λ of n, such that the set of even parts has exactly one
element and the following two conditions hold:

(1) The even part 2k · m, k ≥ 1,m odd, has odd multiplicity.
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(2) The largest odd factor m of the even part is a part of λ with multiplicity
between 0 and 2k − 2.
Let a2(n) = |A′′(n)|. Following the proof of Theorem 3.1, one can show

that a2(n) = b2(n). Then, we have the following theorem.

Theorem 4.3. Let n ≥ 1. Then, a2(n) = b2(n) = c2(n).

Example 4.4. Let n = 10. Then

S(10) = {(8, 1, 1), (6, 2, 1, 1), (5, 3, 1, 1), (6, 2, 2),

(4, 2, 2, 1), (4, 3, 3), (4, 4, 1), (5, 5)}
and

A′′(10) = {(5, 3, 2), (2, 2, 2, 2, 2), (4, 3, 3), (5, 4, 1),

(6, 3, 1), (6, 1, 1, 1, 1), (8, 1, 1), (10)}.
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Abstract. The goal of this paper is to introduce and study noncommutative
Catalan numbers Cn which belong to the free Laurent polynomial alge-
bra Ln in n generators. Our noncommutative numbers admit interesting
(commutative and noncommutative) specializations, one of them related
to Garsia–Haiman (q, t)-versions, another—to solving noncommutative
quadratic equations. We also establish total positivity of the correspond-
ing (noncommutative) Hankel matrices Hn and introduce accompanying
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′
∈ Ln.
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1. Introduction

Catalan numbers cn = 1
n+1

(
2n
n

)
, n ≥ 0 are important combinatorial objects

which satisfy a number of remarkable properties such as:
• The recursion

cn+1 =
n∑

k=0

ckcn−k

for all n ≥ 0 (with c0 = c1 = 1).

This work was partially supported by the NSF Grant DMS-1403527 (A. B.).
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• The determinantal identities

det

⎛

⎜⎜⎝

cm cm+1 · · · cm+n

cm+1 cm+2 · · · cm+n+1

· · ·
cm+n cm+n+1 · · · cm+2n

⎞

⎟⎟⎠ = 1

for n ≥ 0, m ∈ {0, 1}.

Catalan numbers admit various q-deformations [2,9,16] and (q, t)-deforma-
tions [10,11,16]. See, for example, [1,18,19].

In this paper, we introduce and study noncommutative Catalan num-
bers Cn, n ≥ 1, which are totally noncommutative Laurent polynomials in n
variables and satisfy analogs of the recursion and the determinantal identities
(Proposition 2.3; Eq. (2.9)). It turns out that specializing these variables to
appropriate powers of q, we recover Garsia–Haiman (q, 1)-Catalan numbers.
Catalan numbers also satisfy a combinatorial identity [6, Eq. (4.9)] involving
their truncated counterparts ck

n =
(
n+k

k

)− (n+k
k−1

)
(so that cn = cn

n = cn−1
n ):

cn =
∑

a,b∈Z≥0,
a+b≤n,a−b=d

ca
n−bc

b
n−a (1.1)

for each n ∈ Z≥0 and each d ∈ Z with |d| ≤ n (e.g., the right-hand side does
not depend on d). A q-deformation of ck

n was discussed in [7] under the name
of q-ballot numbers.

We introduce noncommutative analogs of truncated Catalan numbers
and establish a noncommutative version of (1.1) (Theorem 2.22). It is curious
that the ck

n satisfy three more combinatorial identities, two of which involve
binomial coefficients:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ck
n+1 =

k∑

j=0

cjc
k−j
n−j ,

k∑

j=0

(−1)jcj
n+k−j ·

(
n − j

k − j

)
= 0,

ck
m+n =

n∑

�=0

ck−�
m+� ·

(
n

�

)
,

(1.2)

where 0 ≤ k < n in the first two identities and 0 ≤ k ≤ m+n in the third one.
We establish a noncommutative generalization of the first identity (1.2)

(Proposition 2.20(c)), define appropriate noncommutative versions �nk� and �nk�
′

of binomial coefficients, and establish analogs of the last two identities (1.2)
with these coefficients (Corollary 2.33; Theorem 2.34) as well as an analog of
the multiplication law for both kinds of noncommutative binomial coefficients
(Theorem 2.32).
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(0,0) (2,0)

(2,2)
(3,2)

(3,3)

Figure 1. MP = x2x
−1
0 x1 for the above path P ∈ P3

In fact, these constructions and results extend our previous work on non-
commutative Laurent phenomenon [3,4], and we expect more such phenomena
to emerge in combinatorics, representation theory, topology, and related fields.

The paper is organized as follows: Sect. 2 contains notation and main
results and the proofs are given in Sect. 3.

2. Notation and Main Results

Let F be the free group generated by xk, k ∈ Z≥0, and Fm be the (free)
subgroup of F generated by x0, . . . , xm.

Denote by P̃n the set of all monotonic lattice paths in [0, n] × [0, n] from
(0, 0) to (n, n). Clearly, |P̃n| =

(
2n
n

)
. We say that P ∈ P̃n is Catalan if, for each

point p = (p1, p2) ∈ P , one has c(p) ≥ 0, where c(p1, p2) = p1−p2 is the content
of p. Denote by Pn ⊂ P̃n the set of all Catalan paths in [0, n] × [0, n]. Clearly,
|Pn| = 1

n+1

(
2n
n

)
is the nth Catalan number, which justifies the terminology.

We say that a point p = (p1, p2) of P ∈ P̃n is a southeast (resp. northwest)
corner of P if (p1 − 1, p2) ∈ P and (p1, p2 + 1) ∈ P (resp. (p1, p2 − 1) ∈ P and
(p1 + 1, p2) ∈ P ) (Fig. 1).

To each P ∈ Pn, we assign an element MP ∈ Fn by

MP =
−→∏

x
sgn(p)
c(p) , (2.1)

where the product is over all corners p ∈ P (taken in the natural order) and

sgn(p) =

{
1, if p is southeast,
−1, if p is northwest.

We define the noncommutative Catalan number Cn ∈ ZFn by:

Cn =
∑

P∈Pn

MP . (2.2)

Clearly, under the counit homomorphism ε : ZF → Z (xk �→ 1), the image
ε(Cn) is |Pn|, the ordinary Catalan number.

Noncommutative Catalan numbers exhibit some symmetries, the first of
which is an anti-automorphism · of ZF , such that xk = xk for k ∈ Z≥0.
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Proposition 2.1. Cn = Cn for all n ≥ 0.

Proof. Define an involution sn : Z2 → Z
2 by sn(x, y) = (n − y, n − x). Clearly,

sn(Pn) = Pn. It is easy to see that:

MP = Msn(P ) (2.3)

for all P ∈ Pn. Therefore,

Cn =
∑

P∈Pn

MP =
∑

P∈Pn

Msn(P ) =
∑

P∈Pn

MP = Cn

for all n ≥ 0.
The proposition is proved. �

Example 2.2. C0 = x0, C1 = x1, C2 = x2 + x1x
−1
0 x1,

C3 = x3 + x2x
−1
1 x2 + x2x

−1
0 x1 + x1x

−1
0 x2 + x1x

−1
0 x1x

−1
0 x1,

C4 = x4 + x3x
−1
2 x3 + x2x

−1
0 x2 + x3x

−1
1 x2 + x2x

−1
1 x3 + x3x

−1
0 x1

+ x1x
−1
0 x3 + x2x

−1
1 x2x

−1
1 x2 + x1x

−1
0 x2x

−1
0 x1

+ x2x
−1
1 x2x

−1
0 x1 + x1x

−1
0 x2x

−1
1 x2 + x2x

−1
0 x1x

−1
0 x1

+ x1x
−1
0 x1x

−1
0 x2 + x1x

−1
0 x1x

−1
0 x1x

−1
0 x1.

It turns out that our noncommutative Catalan numbers satisfy the fol-
lowing generalization of the well-known classical recursion, which we prove in
Sect. 3.1.

Proposition 2.3. For n ≥ 0, one has

Cn+1 =
n∑

k=0

Ckx−1
0 T (Cn−k), Cn+1 =

n∑

k=0

T (Ck)x−1
0 Cn−k (2.4)

for all n ∈ Z≥0, where T : ZF → ZF is an endomorphism of ZF given by
T (xk) = xk+1 for all k ∈ Z≥0.

For example:

C2 = T (C1) + C1x
−1
0 T (C0)

and

C3 = T (C2) + C1x
−1
0 T (C1) + C2x

−1
0 T (C0).

The following is an immediate corollary of Proposition 2.3.

Corollary 2.4. The formal power series

C(t) =
∞∑

n=0

Cntn ∈ (ZF )[[t]]

satisfies:

C(t) = x0 + tC(t)x−1
0 T (C(t)), T (C(t))x−1

0 C(t) = C(t)x−1
0 T (C(t)). (2.5)
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Remark 2.5. Applying ε to (2.5), we obtain the well-known functional equation
c(t) = 1 + tc(t)2 for the classical generating function c(t) =

∑∞
n=0 ε(Cn)tn of

Catalan numbers.

Remark 2.6. After the first version of this paper became available, Philippe Di
Francesco and Rinat Kedem pointed to us that C(t)x−1

0 is a noncommutative
Stieltjes continued fraction, which can be computed by combining methods of
[8, Section 3.3.1] and [13, Section 8] as follows:

C(t)x−1
0 = lim

k→∞
S(x1x

−1
0 , . . . , xkx−1

k−1, t),

where

S(z1, t) = (1 − z1t)−1, S(z1, . . . , zk, t) = S(z1, . . . , zk−2,S(zk, t)zk−1, t)

for k ≥ 2.

Remark 2.7. In fact, there is another recursion

Cn+1 = Cnx−1
0 x1 +

n∑

k=1

Ckx−1
1 T 2(Cn−k)

= x1x
−1
0 Cn +

n−1∑

k=0

T 2(Ck)x−1
1 Cn−k

for n ≥ 1. For instance:

C3 = C2x
−1
0 x1 + C1x

−1
1 T 2(C1) + C2x

−1
1 T 2(C0)

= C2x
−1
0 x1 + x3 + C2x

−1
1 x2.

The recursion leads to the functional equation:

C(t) = x0 + t(C(t)x−1
0 x1 − x0x

−1
1 T 2(C(t)) + C(t)x−1

1 T 2(C(t))),

which we leave as an exercise to the reader.

Remark 2.8. Equation (2.4) can be written in a matrix form:

Hx−1
0 T (H) = T (H)x−1

0 H = H ′,

where H (resp. H ′) is the lower triangular Z≥0 × Z≥0 Toeplitz matrix whose
(i, j)th entry is Ci−j (resp. Ci−j+1) if i ≥ j. Thus, H−1 is a lower triangular
Toeplitz matrix whose (i, j)th entry is −x−1

0 T (Ci−j−1)x−1
0 for i > j.

It turns out that there is a remarkable specialization Cn ∈ ZF1 of Cn.
Indeed, let σ : ZF → ZF1 be a ring homomorphism given by σ(xk) = xk

0x
k
1 ,

k ∈ Z≥0. Abbreviate Cn = σ(Cn) for n ≥ 0.
The following result asserts, in particular, that Cn are noncommutative

polynomials (rather than Laurent polynomials) and they satisfy yet another
noncommutative generalization of the well-known classical recursion for Cata-
lan numbers.
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Proposition 2.9. The elements Cn ∈ Z〈x0, x1〉 are determined by the following
recursion: C0 = 1 and

Cn+1 =
n∑

k=0

Ckx0Cn−kx1 =
n∑

k=0

x0Ckx1Cn−k, (2.6)

for n ≥ 0. In particular, all Cn belong to the free semi-ring Z≥0〈x0, x1〉 ⊂
Z≥0F1.

Our proof of the proposition is based on the identity:

σ(T iCn) = xi
0σ(Cn)xi

1

for i, n ≥ 0 (see Lemma 3.3).

Remark 2.10. Applying σ to the recursions from Remark 2.7 and using the
same argument from the proof of Proposition 2.9, we obtain another recursion
for Cn:

Cn+1 = Cnx0x1 +
n∑

k=1

Ckx−1
1 x0Cn−kx2

1

= x0x1Cn +
n−1∑

k=0

x2
0Ckx1x

−1
0 Cn−k.

Remark 2.11. One can show that the “two-variable” noncommutative Catalan
numbers are invariant under the anti-involution of ZF1 interchanging x0 and
x1.

In fact, we can explicitly compute each Cn. Indeed, assign a monomial
MP ∈ F1 to each P ∈ Pn by:

MP = xj0
0 xj1

1 xj2
0 . . . xj2k

1 ,

where (j0, j1, . . . , j2k) ∈ Z
2k+1
>0 is the sequence of jumps of the path P , i.e.,

the rth northwest corner is (j0 + j2 + · · · + j2r, j1 + j3 + · · · + j2r+1) and rth
southeast corner of P is (j0 + j2 + · · · + j2r, j1 + j3 + · · · + j2r−1). One can
easily see that σ(MP ) = MP , so we obtain the following immediate corollary.

Corollary 2.12. Cn =
∑

P∈Pn
MP for all n ≥ 1.

Example 2.13.

C2 = x2
0x

2
1 + x0x1x0x1,

C3 = x3
0x

3
1 + x2

0x1x0x
2
1 + x2

0x
2
1x0x1 + x0x1x

2
0x

2
1 + x0x1x0x1x0x1,

C4 = x4
0x

4
1 + x3

0x1x0x
3
1 + x2

0x
2
1x

2
0x

2
1 + x3

0x
2
1x0x

2
1 + x2

0x1x
2
0x

3
1 + x3

0x
3
1x0x1

+ x0x1x
3
0x

3
1 + x2

0x1x0x1x0x
2
1 + x0x1x

2
0x

2
1x0x1 + x2

0x1x0x
2
1x0x1

+ x0x1x
2
0x1x0x

2
1 + x2

0x
2
1x0x1x0x1 + x0x1x0x1x

2
0x

2
1

+ x0x1x0x1x0x1x0x1.

The following immediate result is a “two-variable” version of Corollary
2.4.
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Corollary 2.14. The formal power series

C(t) =
∞∑

n=0

Cntn ∈ Z〈x0, x1〉[[t]]

satisfies:
C(t) = 1 + tC(t)x0C(t)x1. (2.7)

Remark 2.15. For t = 1, Eq. (2.7) coincides with the quadratic equation on
formal series K(x0, x1) studied in [17] where a solution of this equation was
presented as a “noncommutative Rogers–Ramanujan continued fraction”.

Remark 2.16. In our previous work [5] on the inversion of
∑

n≥0 xn
0xn

1 in the
ring of formal series Z〈〈x0, x1〉〉 in noncommutative variables x0, x1, we encoun-
tered a quadratic equation D = 1−Dx0x1+Dx0Dx1 for some D ∈ Z〈〈x0, x1〉〉
and noticed that it is very similar to (2.7). This was the starting point of the
project.

Remark 2.17. In fact, there is another group homomorphism π : F → F1 given
by π(xk) = x0 · (x−1

0 x1)k, k ∈ Z≥0, which results in an “almost commutative”
specialization of noncommutative Catalan numbers: π(Cn) = π(xn) · 1

n+1

(
2n
n

)
.

For each 0 ≤ k ≤ n denote by Pk
n, the set of all P ∈ Pn, such that the

rightmost southeast corner p of P satisfies p = (n, y), where y ≤ k. In partic-
ular, Pn−1

n = Pn
n = Pn. For each 0 ≤ k ≤ n, define truncated noncommutative

Catalan number Ck
n ∈ ZFn by

Ck
n =

∑

P∈Pk
n

MP .

The following recursion on Ck
n is immediate.

Lemma 2.18. Ck
n = Ck−1

n + Ck
n−1x

−1
n−k−1xn−k for all 1 ≤ k ≤ n (with the

convention C�
n = 0 if � > n).

Example 2.19. C0
n = xn, Cn−1

n = Cn
n = Cn for all n ≥ 1. Also

C1
n = xn +

n−1∑

i=1

xix
−1
i−1xn−1,

C2
n =

∑

1≤i≤j≤n,j>1

xix
−1
i−1xj−1x

−1
j−2xn−2.

Sometimes, it is convenient to express Ck
n via yi = xix

−1
i−1, i ∈ Z≥1.

Indeed, denote C̃k
n = Ck

nx−1
n−k for k, n ∈ Z≥0, k ≤ n.

The following result generalizes a number of basic properties of truncated
Catalan numbers.

Proposition 2.20. For all 0 ≤ k ≤ n, one has:
(a) C̃k

n =
∑

j1≤...≤jk≤n,
j1≥1,...,jk≥k

yj1yj2−1 . . . yjk−k+1.

(b) C̃k
n = C̃k

n−1 + C̃k−1
n yn+1−k (with the convention C̃�

n = 0 if � > n).
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(c) C̃k
n+1 =

∑k
i=0 C̃i

iT (C̃k−i
n−i).

A proof follows from Lemmas 3.1 and 3.2.

Example 2.21. C̃0
n = 1, C̃1

n = y1 + · · · + yn, and C̃n
n = C̃n−1

n y1 for all n ≥ 1.

C̃2
n =

∑

1≤i≤j≤n,j>1

yiyj−1, C̃3
n =

∑

1≤i≤j≤k≤n,
j>1, k>2

yiyj−1yk−2.

However, the following recursion is rather non-trivial (and we could not
find its classical analog in the literature).

Theorem 2.22.
Cn =

∑

a,b∈Z≥0,
a+b≤n,a−b=d

Ca
n−bx

−1
n−a−bC

b
n−a, (2.8)

for each n ∈ Z≥0 and each d ∈ Z with |d| ≤ n (e.g., the right-hand side does
not depend on d).

A proof is given by Lemmas 3.4–3.6 in Sect. 3.1.

Remark 2.23. In particular, Theorem 2.22 provides another confirmation ·-
invariance of noncommutative Catalan numbers (established in Proposition
2.1).

It turns out that the above “two-variable specialization” σ is also of inter-
est for truncated noncommutative Catalan numbers. Indeed, in the notation
as above, denote Ck

n = σ(Ck
n) and Ck

n
= Ck

nxk−n
1 .

The following is immediate.

Corollary 2.24. In the notation of Proposition 2.9, one has
(a) Ck

n =
∑

P∈Pk
n

MP for all k, n ∈ Z≥0, k ≤ n.

(b) Ck

n
= Ck−1

n
x1 +Ck

n−1
x0 for all 1 ≤ k ≤ n (with the convention C�

n
= 0 if

� > n). In particular, each Ck

n
is a noncommutative polynomial in x0, x1

of degree n + k.

Example 2.25. C0

n
= xn

0 , C1

n
= xn

0x1 +
∑n−1

i=1 xi
0x1x

n−i
0 ,

C2

n
= C1

n
x1 +

∑

1≤i≤j≤n−1,j>1

xi
0x1x

j−i
0 x1x

n−j
0 .

It turns out that our (truncated) noncommutative Catalan numbers C̃k
n

admit another specialization into certain polynomials in Z≥0[q] defined by
Garsia and Haiman in [10]. Namely, let χq : ZF → Z[q, q−1] be a ring ho-
momorphism defined by χq(xk) = q

k(k−1)
2 for k ≥ 0, i.e., χq(yk) = qk−1 for

k ∈ Z≥1.
Define polynomials ck

n(q, t) ∈ Z≥0[q, t], 0 ≤ k ≤ n recursively by c0n(q, t) =
1 and

ck
n(q, t) =

k∑

r=1

[
r + n − k

r

]

q

tk−rq
r(r−1)

2 ck−r
k−1(q, t),
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where
[
n
k

]

q

denotes the q-binomial coefficient [n]q !
[k]q![n−k]q!

,

[n]q! = [1]q . . . [n]q, [k]q =
1 − qn

1 − q
= 1 + q + · · · qk−1.

These polynomials are closely related to polynomials Hn,k(q, t) intro-
duced by Garsia and Haglund ([11, Equation I.24]), namely,

ck
n(q, t) = t−kq− (n+1−k)(n−k)

2 Hn+1,n+1−k(q, t).

In particular, cn
n(q, t) = cn(q, t) is the celebrated (q, t)-Catalan number intro-

duced in [10].
The following result shows that our (truncated) noncommutative Catalan

numbers are noncommutative deformations of (q, 1)-Catalan numbers.

Theorem 2.26. χq(C̃k
n) = ck

n(q, 1) for all k ≤ n. In particular, χq(Cn) =
cn(q, 1) for n ≥ 0.

We prove Theorem 2.26 in Sect. 3.1.

Example 2.27. χq(C̃1
n) = [n + 1]q and

χq(C̃k
n) = χq(C̃k−1

n )qn−k + χq(C̃k
n−1),

for 1 ≤ k ≤ n.

Remark 2.28. It is curious that for another class of q-Catalan numbers:

q
n(n−1)

2 cn(q, q−1) =
1

[n + 1]q

[
2n
n

]

q

,

there is no analog of Theorem 2.26. Also, it would be interesting to find an
appropriate noncommutative deformations of (q, t)-Catalan numbers.

The following result is a generalization of the well-known property of
Hankel determinants of q-Catalan numbers.

Theorem 2.29. For n ≥ 1, m ∈ {0, 1} the determinant of the (n + 1) × (n + 1)
matrix (ci+j+m(q, 1)), i, j = 0, . . . , n, is q

n(n+1)(4n−1+6m)
6 .

We prove Theorem 2.29 in Sect. 3.4.

Define the noncommutative binomial coefficients �nk� ∈ ZFn+k−1, �nk�
′
∈

ZFn by:

�nk� =
∑

yJ , �nk�
′
=
∑

y′
J ,

where each summation is over all subsets J = {j1 < j2 < · · · < jk} of [1, n]
and we abbreviated

yJ = yjk+k−1 . . . yj2+1yj1 , y′
J = yj1+k−1yj2+k−3 . . . yjk+1−k

for j ∈ Z≥1.
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Remark 2.30. The q-binomial coefficients can be expressed as:
[
n
k

]

q

=
∑

qj1+···+jk− k(k+1)
2 ,

where the summation is over all subsets J = {j1 < j2 < · · · < jk} of [1, n].
Therefore, under the above specialization χq : ZF → Z[q, q−1], we have:

χq

(

�nk�
)

= qk(k−1)

[
n
k

]

q

, χq

(

�nk�
′)

= q
k(k−1)

2

[
n
k

]

q

for all k, n ∈ Z≥0.

Example 2.31.

�n0� = �n0�
′
= 1, �n1� = �n1�

′
=

n∑

i=1

yi,

�n2� =
∑

1≤i<j≤n

yj+1yi, �nn� = y2n−1 · · · y3y1 = y[1,n],

� n
n − 1� =

n∑

i=1

y[1,n]\{i}, � n
n − 2� =

∑

1≤i<j≤n

y[1,n]\{i,j},

�n2�
′
=

∑

1≤i<j≤n

yi+1yj−1, �nn�
′
= ynyn−1 · · · y1 = y′

[1,n],

� n
n − 1�

′
=

n∑

i=1

y′
[1,n]\{i}, � n

n − 2�
′
=

∑

1≤i<j≤n

y′
[1,n]\{i,j}.

Clearly, ε

(

�nk�
)

= ε

(

�nk�
′)

=
(
n
k

)
and �nk� = �nk�

′
= 0 if k /∈ [0, n].

Similarly to the classical case, we have an analog of the Pascal triangle
and the multiplication law for noncommutative binomial coefficients.

Theorem 2.32.

�m + n
k � =

∑

a,b∈Z≥0,
a+b=k

Tn+b

(

�ma �
)

�nb�,

�m + n
k �

′
=

∑

a,b∈Z≥0,
a+b=k

T b

(

�ma �
′)

Tm−a

(

�nb�
′)

,

for m,n, k ∈ Z≥0. In particular:

�n + 1
k � = �nk� + yn+k� n

k − 1�, �n + 1
k �

′
= T

(

�nk�
′)

+ yk

(

� n
k − 1�

′)
,

for all n, k ∈ Z≥0.
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Actually, Theorem 2.32 which is proved in Sect. 3.2 together with the
recursion from Proposition 2.20(b) implies the following analog of the multi-
plication law for the truncated noncommutative Catalan numbers, which jus-
tified the introduction of noncommutative binomial coefficients of the “second
kind”.

Corollary 2.33.

C̃k
m+n =

n∑

�=0

C̃k−�
m+� · Tm−k+�

(

�n��
′)

,

for all m,n, k ∈ Z≥0.

The following relation between truncated noncommutative Catalan num-
bers and the binomial coefficients of the “first kind” is rather surprising.

Theorem 2.34.
k∑

j=0

(−1)jC̃j
n+k−j · �n − j

k − j� = 0,

for any 0 < k ≤ n.

We prove Theorem 2.34 in Sect. 3.2 (Lemmas 3.7, 3.8).

Remark 2.35. In fact, there is an accompanying identity:
k∑

j=0

(−1)j�n + k − j
j � · C̃k−j

n−j = 0

for any 0 < k ≤ n, which follows from Theorem 2.43 below. We leave this as
an exercise to the readers.

This turns out to be equivalent to the following “determinantal” identities
between noncommutative truncated Catalan numbers and binomial coefficients
(whose classical analogs also seem to be new).

Theorem 2.36. For all k, n ∈ Z≥0, k ≤ n, one has:

C̃k
n =

∑

J

(−1)k+1−|J|Mn,J , �nk� =
∑

J

(−1)k+1−|J|M̃n,J ,

where each summation is over all subsets J = {0 = j0 < · · · < j� = k} of [0, k]
and

Mn,J = �n + j�−1 + j� − k
j� − j�−1

� · · · �n + j1 + j2 − k
j2 − j1 ��n + j0 + j1 − k

j1 − j0 �,
M̃n,J = C̃j1−j0

n+j0+j1−k · C̃j2−j1
n+j1+j2−k · · · C̃j�−j�−1

n+j�−1+j�−k.

We prove Theorem 2.36 in Sect. 3.4.
Actually, Theorems 2.26, 2.34, and 2.36 hint to some remarkable proper-

ties of Hankel matrices with noncommutative Catalan numbers as entries.
For m ∈ Z≥0, define the Z≥0 × Z≥0 matrix Hm over ZF whose (i, j)th

entry is Cm+i+j , i, j ∈ Z≥0, and for each n ≥ 0, denote by Hm,n the principal
[0, n] × [0, n] submatrix of Hm.
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Example 2.37.

H0,1 =
(

C0 C1

C1 C2

)
, H1,1 =

(
C1 C2

C2 C3

)
,

H0,2 =

⎛

⎝
C0 C1 C2

C1 C2 C3

C2 C3 C4

⎞

⎠ , H1,2 =

⎛

⎝
C1 C2 C3

C2 C3 C4

C3 C4 C5

⎞

⎠ .

We refer to all Hm and Hn
m as noncommutative Hankel–Catalan matrices

by analogy with its classical counterpart ε(Hm,n) ∈ Matn+1,n+1(Z).
We will finish the section by showing that each Hm,n, m ∈ {0, 1}, n ≥ 0

admits a Gauss factorization over ZF involving truncated noncommutative
Catalan numbers and its inverse (which is also a matrix over ZF ) is given by
an interesting combinatorial formula involving our noncommutative binomial
coefficients.

For m ∈ {0, 1}, let Lm be the lower unitriangular Z≥0 × Z≥0 matrix
whose (j, i)th entry, 0 ≤ i ≤ j, is C̃j−i

i+j+m, and let Um be the upper triangular

Z≥0 × Z≥0 matrix whose (i, j)th entry, 0 ≤ i ≤ j, is Cj−i
i+j+m.

Theorem 2.38. Hm = Lm · Um for each m ∈ {0, 1}.
We prove Theorem 2.38 in Sect. 3.3.

Remark 2.39. A classical version of this result, ε(Hm) = ε(Lm) · ε(Um), was
established in [1].

Theorem 2.38 and [12, Theorem 4.9.7] imply the following immediate
corollary.

Corollary 2.40. Cj−i
m+i+j equals the quasideterminant:
∣∣∣∣∣∣∣∣∣∣

Cm Cm+1 · · · Cm+i

Cm+1 Cm+2 · · · Cm+i+1

· · ·
Cm+i−1 Cm+i · · · Cm+2i−1

Cm+j Cm+j+1 · · · Cm+i+j

∣∣∣∣∣∣∣∣∣∣

for 0 ≤ i ≤ j, m ∈ {0, 1} (see [14,15] for notation). In particular:
∣∣∣∣∣∣∣∣

Cm Cm+1 · · · Cm+n

Cm+1 Cm+2 · · · Cm+n+1

· · ·
Cm+n Cm+n+1 · · · Cm+2n

∣∣∣∣∣∣∣∣
= xm+2n (2.9)

for all n ∈ Z≥0, m ∈ {0, 1}.
Remark 2.41. In fact, (2.9) is a noncommutative generalization of the well-
known fact that det(ε(H0,n)) = det(ε(H1,n)) = 1 for n ≥ 0. Moreover, sim-
ilarly to the classical case, noncommutative Catalan numbers are uniquely
determined by (2.9) for n ∈ Z≥0, m ∈ {0, 1}.
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Remark 2.42. Noncommutative Hankel quasideterminants were introduced in
[13] in the context of inversion of noncommutative power series. In fact, [13,
Corollary 8.3] asserts that such an inverse can be expressed via continued
fractions involving such quasideterminants of the coefficients of the series in
question. This correlates with Remark 2.6 above.

For m ∈ {0, 1}, let L−
m be the lower unitriangular Z≥0×Z≥0 matrix whose

(j, i)th entry, 0 ≤ i ≤ j, is (−1)i+j�i + j + m
j − i �, and let U−

m be the upper trian-

gular Z≥0×Z≥0 matrix whose (i, j)th entry, 0 ≤ i ≤ j, is (−1)i+j�i + j + m
j − i �x−1

2j+m.

For any Z≥0×Z≥0 matrix M , denote by M |n the principal (n+1)×(n+1)-
submatrix of M (e.g., Hm,n = Hm|n).

Theorem 2.43. (Um)−1 = U−
m and (Lm)−1 = L−

m, and hence, (Hm,n)−1 =
U−

m|n · L−
m|n for m ∈ {0, 1}, n ≥ 1.

Remark 2.44. Similar to Remark 2.39, the classical version of this result,
ε(Hm,n)−1 = ε(L−

m|n) · ε(U−
m)|n, seems to be new.

Computation of H−1
m for m ≥ 2 is a more challenging task, which we will

perform elsewhere.

3. Proofs of Main Results

3.1. Proofs of Propositions 2.3, 2.9, 2.20 and Theorems 2.22, 2.26

We start with a proof of Proposition 2.20. Then, specializations will lead to
Propositions 2.3 and 2.9.

Proof of Proposition 2.20. Prove (a) first. Denote by Jk
n the set of all sequences

j = (j1, . . . , jk) ∈ Z
k, such that j1 ≤ · · · ≤ jk ≤ n and j1 ≥ 1, . . . , jk ≥ k.

For each P ∈ Pk
n and s ∈ [1, k], denote by js(P ) the minimum of x-

coordinates of all points in P whose y-coordinate is s. For each j = (j1, . . . , jk) ∈
Z

k with js ≥ s, s ∈ [1, k], we abbreviate yj = yj1yj2−1 . . . yjk−k+1.
The following is immediate.

Lemma 3.1. For all k, n ∈ Z≥0, k ≤ n, one has:
(a) The assignment P �→ j(P ) = (j1(P ), . . . , jk(P )) defines a bijection Pk

n→̃Jk
n.

(b) For each P ∈ Pk
n, we have: MP x−1

n−k = yj(P ).

Using Lemma 3.1(b), we obtain C̃k
n =

∑
j∈Jk

n

yj and, thus, finish the proof

of (a).
Prove (b). It is easy to see that Jk

n = Jk
n−1 
 (Jk−1

n , n). Therefore,

C̃k
n =

∑

j∈Jk
n

yj =
∑

j∈Jk
n

yj +
∑

j∈(Jk−1
n ,n)

yj = C̃k
n−1 + C̃k−1

n yn+1−k.

This proves (b).
To prove (c), we need the following result.
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Lemma 3.2. Jk
n+1 =

⊔k
i=0 J

i
i×T i+1(Jk−i

n−i) for all k, n ∈ Z≥0, 0 ≤ k ≤ n, where
T = Tr : Zr → Z

r, and r ≥ 1 is the translation given by x �→ x + (1, . . . , 1)︸ ︷︷ ︸
r

.

Proof. For each j = (j1, . . . , jk) ∈ Jk
n+1, denote by ij the largest i ∈ [1, k], such

that ji = i and set i(j) = 0 if such an i does not exist. This implies that:

{j ∈ Jk
n+1 : ij = i} = Ji

i × T i+1(Jk−i
n−i−1)

for all i ∈ [0, k] (the first factor is empty for i = 0).
The lemma is proved. �

Taking into account that for j = (j′, T i+1(j′′)) ∈ Ji
i×T i+1(Jk−i

n−i), we have
yj = yj′T (yj′′), we obtain:

C̃k
n+1 =

∑

j∈Jk
n+1

yj =
∑

i∈[0,k],j′∈Ji
i,j

′′∈Jk−i
n−i

yj′T (yj′′) =
k∑

i=0

C̃i
iT (C̃k−i

n−i).

This proves (c).
Proposition 2.20 is proved. �

Proof of Theorem 2.26. Applying χq to C̃k
n+1 given by Proposition 2.20(c) and

using the fact that χq(T (y)) = qdχq(y) for any homogeneous noncommutative
polynomial of degree d in y1, y2, . . ., we obtain:

χq(C̃k
n+1) =

k∑

i=0

qk−iχq(C̃i
i )χq(C̃k−i

n−i)

for all 0 ≤ k ≤ n. In view of [16, Eq. (3.41)] and that Fn,k(q, t) = Hn,k(q, t) =
tn−kq

k(k−1)
2 cn−k

n−1(q, t) for all 0 ≤ k < n, we obtain the same recursion ck
n+1 =∑k

i=0 ci
i(q, 1)qk−ick−i

n−i(q, 1) for all 0 ≤ k ≤ n. Using this and taking into ac-
count that χq(C̃n

n+1) = χq(C̃n+1
n+1 ), we conclude that χq(C̃k

n) = ck
n(q, 1) for all

0 ≤ k ≤ n.
The theorem is proved. �

Proof of Proposition 2.3. Indeed, taking into account that Cr = C̃r
r · x0 =

C̃r−1
r y1x0 for all r ≥ 1, we see that the first identity (2.4) is equivalent to

C̃n
n+1 =

∑n
k=0 C̃k

kT (C̃n−k
n−k ) which coincides with the assertion of Proposition

2.20(c) with k = n.
The second identity (2.4) follows from the first one and Proposition 2.1

by applying the anti-involution ·.
Proposition 2.3 is proved. �

Proof of Proposition 2.9. We say that x ∈ F is alternating if it is of the form
xi1x

−1
i2

xi3 . . . x−1
is−1

xis
for some i1, . . . , is ∈ Z≥0 and denote by F alt the set of

all alternating elements in F . We also denote by ZF alt the Z-linear span of
F alt in ZF . We need the following fact.

Lemma 3.3. σ(T (x)) = x0σ(x)x1 for all x ∈ ZF alt.
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Proof. We first prove the assertion for all x ∈ F alt. Indeed, let

x = xi1x
−1
i2

xi3 · · · x−1
is−1

xis

for some i1, i2, . . . , is ≥ 0. We have:

σ(T (x)) = σ(xi1+1x
−1
i2+1xi3+1 · · · x−1

is−1+1xis+1)

= (xi1+1
0 xi1+1

1 )(xi2+1
0 xi2+1

1 )−1(xi3+1
0 xi3+1

1 )

· · · (xis−1+1
0 x

is−1+1
1 )−1(xis+1

0 xis+1
1 )

= x0 · (xi1
0 xi1

1 )(xi2
0 xi2

1 )−1(xi3
0 xi3

1 ) · · · (xis−1
0 x

is−1
1 )−1(xis

0 xis
1 ) · x1

= x0σ(x)x1.

By linearity of σ, we obtain the assertion for all x ∈ ZF alt.
The lemma is proved. �

Since each Ck belongs to ZF alt, Lemma 3.3 implies that σ(T (Ck)) =
x0σ(Ck)x1 = x0Ckx1 for all k ≥ 0. Using this and applying σ to the first
identity (2.4), we obtain (2.6).

Proposition 2.9 is proved. �

Proof of Theorem 2.22. In the notation of the proof of Proposition 2.20, for
all 0 ≤ k ≤ n, denote by Jk

n the set of all j = (j1, . . . , jn) ∈ Jn
n, such that

j1 ≥ n − k.

Lemma 3.4. C
k

n · x−1
0 =

∑
j∈Jk

n
yj for all 0 ≤ k ≤ n.

Proof. Indeed, in view of (2.3), we obtain using Lemma 3.1(b):

Ck
nx−1

0 =
∑

P∈Pk
n

MP · x−1
0 =

∑

P∈Pk
n

Msn(P ) · x−1
0 =

∑

P∈Pk
n

yj(sn(P )) =
∑

j∈J
k
n

yj,

because Jk
n = j(sn(Pk

n)).
The lemma is proved. �

Furthermore, after multiplying x−1
0 on the right hand of (2.8), the asser-

tion of Theorem 2.22 is equivalent to:

C̃n
n =

∑

a,b∈Z≥0,
a+b≤n,a−b=d

C̃a
n−b · (Cb

n−ax−1
0 ), (3.1)

for each n ∈ Z≥0 and each d ∈ Z with |d| ≤ n.

Lemma 3.5. Let d ∈ [1 − n, n − 1]. For each j = (j1, . . . , jn) ∈ Jn
n, there exists

a unique a = a(j, d) ∈ [max(0, d), n] such that ja ≤ n + d − a ≤ ja+1 (with the
convention j0 = 0, jn+1 = ∞).

Proof. Consider the graph of the linear function y = n+d−x on the coordinate
plain. Set a = k if there exists 1 ≤ k ≤ n, such the point with coordinates
(k, jk) is closest to the graph from the left. Otherwise, set a = 0. �
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For a ∈ [max(0, d), n], denote by Jn
n(a, d) the set of all j ∈ Jn

n such that
a(j, d) = a.

We need the following fact (in the notation of Lemmas 3.2 and 3.4).

Lemma 3.6. Jn
n(a, d) = Ja

n+d−a × T a(Ja−d
n−a).

Proof. Clearly, for any sequence j ∈ Jn
n(a, d), its subsequence j′ = (j1, . . . , ja)

belongs to Ja
n+d−a and the subsequence j′′ = (ja+1, . . . , jn) belongs to

T a(Ja−d
n−a).
Conversely, it is also clear that for any sequences j′ ∈ Ja

n+d−a and j′′ ∈
T a(Ja−d

n−a), their concatenation j = (j′, j′′) belongs to Jn
n(a, d).

The lemma is proved. �

For any two sequences of integers j′ = (j′
1, . . . , j

′
k) and j′′ = (j′′

1 , . . . , j′′
� ),

define the shifted concatenation by j′•j′′ = (j′, T k(j′′)). We use now an obvious
fact that if j′ = (j′

1, . . . , j
′
k), j′′ = (j′′

1 , . . . , j′′
� ), then

yj′•j′′ = yj′yj′′ .

Then, applying this formula to j = (j′, T a(j′′)) ∈ Ja
n+d−a × T a(Ja−d

n−a), we
obtain:

C̃n
n+1 =

∑

j∈Jn
n

yj =
∑

a∈[max(0,d),n],

j′∈Ja
n+d−a,j′′∈Ja−d

n−a

yj′yj′′

=
∑

a∈[max(0,d),n]

C̃a
n+d−a · (Ca−d

n−ax−1
0 ).

This proves (3.1).
Theorem 2.22 is proved. �

3.2. Proofs of Theorems 2.32 and 2.34

Proof of Theorem 2.32. For any set X and k ≥ 0, denote by
{

X
k

}
the set of

all subsets J ⊂ X of cardinality |J | = k. Clearly,
{

[1,m + n]
k

}
=

⊔

a,b∈Z≥0,
a+b=k

{
[1,m]

a

}
× Tm

({
[1, n]

b

})
,

for all m,n, k ∈ Z≥0 in the notation of Lemma 3.2, where we view each J ∈{
[1, n]

k

}
naturally as an element of Zb.

Taking into account that for

J = (J ′, Tm(J ′′)) ∈
{

[1,m]
a

}
× Tm

({
[1, n]

b

})
,
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a+b = k, we have yJ = Tm+a(yJ ′′)yJ ′ and y′
J = T b(y′

J ′)Tm−a(y′
J ′′), we obtain

for m,n, k ∈ Z≥0:

�m + n
k � =

∑

J∈
⎧
⎨

⎩
[1,m + n]

k

⎫
⎬

⎭

yJ

=
∑

a,b∈Z≥0,
a+b=k,

J′∈
⎧
⎨

⎩
[1,m]

k

⎫
⎬

⎭,J ′′∈
⎧
⎨

⎩
[1, n]

k

⎫
⎬

⎭

Tm−a(yJ ′′)yJ ′

=
∑

a,b∈Z≥0,
a+b=k

Tm+a

(

�nb�
)

�ma �,

�m + n
k �

′
=

∑

J∈
⎧
⎨

⎩
[1,m + n]

k

⎫
⎬

⎭

y′
J

=
∑

a,b∈Z≥0,
a+b=k,

J′∈
⎧
⎨

⎩
[1,m]

k

⎫
⎬

⎭,J ′′∈
⎧
⎨

⎩
[1, n]

k

⎫
⎬

⎭

T b(y′
J ′)Tm−a(y′

J ′′)

=
∑

a,b∈Z≥0,
a+b=k

T b

(

�ma �
′)

Tm−a

(

�nb�
′)

.

Theorem 2.32 is proved. �

Proof of Theorem 2.34. For each 0 ≤ j ≤ k ≤ n, denote by Ij,k;n the set of all
i = (i1, . . . , ik) ∈ Z

k
≥1, such that ij ≤ n + k + 1 − 2j, ij+1 ≤ n + k − 1 − 2j,

is ≤ is+1 + 1 for all s ∈ [1, j], and is > is+1 + 1 for all s ∈ [j + 1, k]. (with the
convention that if j ∈ {0, k}, then meaningless inequalities are omitted and
I−1,k;n = Ik+1,k;n = ∅).

The following statement is straightforward.

Lemma 3.7. C̃j
n+k−j ·�n − j

k − j� =
∑

i∈Ij,k;n

Yi for all 0 ≤ j ≤ k, where we abbreviate

Yi = yi1 . . . yik
.

For j ∈ [0, k + 1], denote I−
j,k;n = Ij−1,k;n ∩ Ij,k;n. By definition, I−

0,k =
I−
k+1,k = ∅ and the following is immediate.

Lemma 3.8. I−
j,k;n is the set of all i = (i1, . . . , im) ∈ Ij,k;n, such that ij ≤

ij+1 + 1 for all j ∈ [0, k]. In particular, Ij,k;n = I−
j,k;n 
 I−

j+1,k;n for j ∈ [0, k].
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Using Lemmas 3.7 and 3.8, we obtain for all 0 < k ≤ n:
k∑

j=0

(−1)jC̃j
n+k−j · �n − j

k − j� =
∑

j∈[0,k],i∈Ij,k;n

(−1)jYi

=
∑

j∈[0,k],i∈I−j,k;n

(−1)jYi +
∑

j∈[0,k],i∈I−j+1,k;n

(−1)jYi

= 0.

Theorem 2.34 is proved. �
3.3. Proofs of Theorems 2.38 and 2.43

Proof of Theorem 2.38. We prove Theorem 2.38 first. Indeed, the assertion is
equivalent to:

(Hm)ij =
min(i,j)∑

k=0

(Lm)ik(Um)kj ,

i.e., to

Cm+i+j =
min(i,j)∑

k=0

Ci−k
i+k+m · x−1

2k+mCj−k
k+j+m

for all i, j ∈ Z≥0, m ∈ {0, 1}. This identity coincides with that from Theorem
2.22 taken with n = m + i + j, a = i − k, b = j − k, and d = i − j.

Theorem 2.38 is proved. �
Proof of Theorem 2.43. It suffices to do so only for L−

m (the argument for U−
m

is identical). Indeed, the assertion is equivalent to:
j′∑

k′=i′
(Lm)j′k′(L−

m)k′i′ = δi′j′ ,

i.e., to
j′∑

k′=i′
C̃j′−k′

j′+k′+m · (−1)i′+k′�i
′ + k′ + m

k′ − i′ � = 0

for all 0 ≤ i′ < j′. It is easy to show that this identity coincides with that from
Theorem 2.34 taken with n = i′ + j′ + m, j = j′ − k′, and k = j′ − i′.

Theorem 2.43 is proved. �
3.4. Proofs of Theorems 2.29 and 2.36

Proof of Theorem 2.36. We start with a proof of Theorem 2.36. The following
is well known.

Lemma 3.9. Any lower unitriangular Z≥0 × Z≥0 matrix A = (aij) over an
associative unital ring A is invertible and

(A−1)ji =
∑

j=i1>i2>···>ik=i,k≥1

(−1)k−1ai1,i2 . . . aik−1,ik

for all 1 ≤ i ≤ j ≤ n.

190



Noncommutative Catalan Numbers 545

Applying Lemma 3.9 with A = L−
m, i.e., aji = C̃i−j

i+j+m and using Theorem

2.43 in the form (A−1)ji = (−1)i+j�i + j + m
j − i �, we obtain the first identity.

Swapping A and A−1, we obtain the second one.
Theorem 2.36 is proved. �

Proof of Theorem 2.29. Recall from [15] that for any matrix over a commuta-
tive ring, its determinant equals the product of its principal quasiminors. Let
Hn

m = χq(Hn
m) = (ci+j+m(q, 1)), i, j = 0, . . . , n, where χq : ZF → Z[q, q−1]

is defined in Sect. 2. Since all principal submatrices of Hn
m are Hk

m, k =
0, 1, . . . , n, these and Corollary 2.40 guarantee that

det(Hn
m) =

n∏

k=0

χq(xm+2k) = q
∑m

k=0
(m+2k)(m+2k−1)

2 = q
n(n+1)(4n−1+6m)

6 .

Theorem 2.29 is proved. �
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Elementary Polynomial Identities Involving
q-Trinomial Coefficients

To George E. Andrews, on the occasion of his 80th birthday

Alexander Berkovich and Ali Kemal Uncu

Abstract. We use the q-binomial theorem to prove three new polynomial
identities involving q-trinomial coefficients. We then use summation for-
mulas for the q-trinomial coefficients to convert our identities into another
set of three polynomial identities, which imply Capparelli’s partition the-
orems when the degree of the polynomial tends to infinity. This way we
also obtain an interesting new result for the sum of the Capparelli’s prod-
ucts. We finish this paper by proposing an infinite hierarchy of polynomial
identities.

Mathematics Subject Classification. 11B65, 11C08, 11P81, 11P82, 11P83,
11P84, 05A10, 05A15, 05A17.

Keywords. Happy Birthday, Capparelli’s partition theorems, q-Trinomial
coefficients, q-Series, Polynomial identities.

1. Introduction

George E. Andrews is known for his many accomplishments and impeccable
leadership in both his mathematical contributions and in service to the com-
munity of mathematics. His influence on research keeps opening new horizons,
and at the same time, new doors to young researchers. There are many areas of
study he introduced that are now saturated with world-class mathematicians,
yet there are many more that the community is only catching up studying.
Here, we look at one of these lesser-studied objects: q-trinomial coefficients.
Introduced by Andrews in collaboration with Baxter, the q-trinomial coeffi-
cients are defined by

(
L, b
a

; q
)

2

:=
∑

n≥0

qn(n+b) (q; q)L

(q; q)n(q; q)n+a(q; q)L−2n−a
, (1.1)
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where, for any non-negative integer n, (a; q)n is the standard q-Pochhammer
symbol [3]:

(a; q)n := (1 − a)(1 − aq)(1 − aq2) . . . (1 − aqn−1).

Here and throughout |q| < 1.
It is easy to verify that

L∑

a=−L

(
L, b
a

; 1
)

2

ta =
(

t + 1 +
1
t

)L

,

which implies the generalized Pascal Triangle for (1.1) with q = 1:

1
1 1 1

1 2 3 2 1
1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1
...

...
...

...
...

...
...

...
...

...
. . . .

The q-trinomial coefficients were studied in [1,2,4–10,14–17]. Neverthe-
less, it appears that the following identities are new.

Theorem 1.1.
∑

n≥0

(−1)nq(3n2+n)/2 (q3; q3)L

(q; q)L−2n(q3; q3)n

+ q2L+1
∑

n≥0

(−1)nq(3n2−n)/2 (q3; q3)L

(q; q)L−2n(q3; q3)n

=
L∑

j=−L

{
qL+j+1

(
L, j + 1

j
; q3

)

2

+ qL+4j

(
L, j
j − 1 ; q3

)

2

}
, (1.2)

∑

n≥0

(−1)nq(3n2−n)/2 (q3; q3)L

(q; q)L−2n(q3; q3)n
=

L∑

j=−L

q2L−j

(
L, j − 1

j
; q3

)

2

, (1.3)

∑

n≥0

(−1)nq(3n2+n)/2 (q3; q3)L

(q; q)L−2n(q3; q3)n
=

L∑

j=−L

qL−j

(
L, j
j

; q3
)

2

. (1.4)

From the left-hand sides of (1.2)–(1.4), we can easily discover the limiting
formulas:

1
(q; q3)∞

,
1

(q2; q3)∞
, and

1
(q; q3)∞

,

respectively, as L → ∞ with the aid of the q-binomial theorem. However, this
is not as easy to see that from the right-hand sides of these identities.

These identities are related to combinatorics and partition theory. As an
example, we will show that (1.2) and (1.4) in Theorem 1.1 imply Capparelli’s
partition theorems. Moreover, (1.3) implies the following new interesting result.
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Theorem 1.2.

∑

m,n≥0

q2m2+6mn+6n2−2m−3n

(q; q)m(q3; q3)n
= (−q2,−q4; q6)∞(−q3; q3)∞

+ (−q,−q5; q6)∞(−q3; q3)∞. (1.5)

In Sect. 2, we give a comprehensive list of definitions and identities that
will be used in this paper. Section 3 has the proof of Theorem 1.1. This section
also includes the dual of these identities and a necessary version of Bailey’s
lemma for the q-trinomial coefficients. We find new polynomial identities that
yield Capparelli’s partition theorem in Sect. 4. Theorem 1.2, which includes
the sum of the two Capparelli’s theorem’s products, is also proven in Sect. 4.
This section also contains a comparison of the mentioned polynomial identities
and the previously found polynomial identities [10] that also imply Capparelli’s
partition theorems. The outlook section, Sect. 5, includes two new results the
authors are planning on presenting soon: a doubly bounded identity involv-
ing Warnaar’s refinement of the q-trinomial coefficients, and also an infinite
hierarchy of q-series identities.

2. Necessary Definitions and Identities

We use the standard notation as in [3]. For formal variables ai and q, and a
non-negative integer n:

(a; q)∞ := lim
n→∞(a; q)n, (2.1)

(a1, a2, . . . , ak; q)n := (a1; q)n(a2; q)n · · · (ak; q)n. (2.2)

We can extend the definition of the q-Pochhamer symbol to negative n as
follows:

(a; q)n =
(a; q)∞

(aqn; q)∞
. (2.3)

Observe that (2.1) implies

1
(q; q)n

= 0 if n < 0. (2.4)

In addition, observe that for non-negative n, we have

(q−1; q−1)n = (−1)nq−(n+1
2 )(q; q)n. (2.5)

We define the q-binomial coefficients in the classical manner as
[
m + n

m

]

q

:=

{
(q)m+n

(q)m(q)n
, for m,n ≥ 0,

0, otherwise.
(2.6)

It is well known that for m ∈ Z≥0

lim
N→∞

[
N

m

]

q

=
1

(q; q)m
, (2.7)
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for any j ∈ Z≥0 and ν = 0 or 1

lim
M→∞

[
2M + ν

M − j

]

q

=
1

(q; q)∞
. (2.8)

We define another q-trinomial coefficient for any integer n:

Tn

(
L
a

; q
)

:= q(L(L−n)−a(a−n))/2

(
L, a − n

a
;
1
q

)

2

. (2.9)

Theorem 2.1 (q-Binomial theorem). For variables a, q, and z

∑

n≥0

(a; q)n

(q; q)n
zn =

(az; q)∞
(z; q)∞

. (2.10)

In addition, note that the q-exponential sum
∑

n≥0

qn(n−1)/2

(q; q)n
zn = (−z; q)∞ (2.11)

is a limiting case (a → ∞ after the variable change z �→ −z/a) of (2.10).
Another ingredient we will use here is the Jacobi Triple Product Identity

[3].

Theorem 2.2 (Jacobi triple product identity).
∞∑

j=−∞
zjqj2

=
(
q2,−zq,−q

z
; q2

)

∞
. (2.12)

3. Proof of Theorem 1.1 and Some q-Trinomial Summation
Formulas

We start with the following lemma.

Lemma 3.1. For any integer n, we have

∑

L≥0

∞∑

j=−∞

xjtL

(q; q)L

(
L, j − n

j
; q

)

2

=
(t2q−n; q)∞

(t, t
xq−n, tx; q)∞

. (3.1)

The n = 0 case of (3.1) first appeared in the work of Andrews [2, p. 153,
(6.6)].

Proof of Lemma 3.1. We start by writing definition (1.1) on the left-hand side
of formula (3.1). After a simple cancellation, one sees that the triple sum
can be untangled by the change of the summation variables ν = k + j, and
μ = L − 2k − j. This change of summation variables, keeping (2.3) in mind,
shows that the left-hand side sum of (3.1) can be written as:

∑

k≥0

x−ktkq−nk

(q; q)k

∑

ν≥0

xνtνqkν

(q; q)ν

∑

μ≥0

tμ

(q; q)μ
. (3.2)
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One can apply the q-Binomial Theorem starting from the innermost sum of
(3.2). After applying the q-binomial Theorem 2.1 with (a, z) = (0, t), and
(a, z) = (0, xtqk), we get

1
(t; q)∞

∑

k≥0

x−ktkq−nk

(q; q)k(xtqk; q)∞
. (3.3)

We rewrite (xtqk; q)∞ using (2.1), take the k-free portion out of the summation,
and use (2.10) once again with (a, z) = (xt, x−1tqn) to finish the proof. �

We can prove Theorem 1.1 using Lemma 3.1.

Proof of Theorem 1.1. Instead of proving these identities directly, we will prove
the equality of their generating functions. It is clear that one can prove the
equality of the two sides of polynomial identities of the form

AL(q) = BL(q)

by a multi-variable generating function equivalence

∑

L≥0

tL

(q3; q3)L
AL(q) =

∑

L≥0

tL

(q3; q3)L
BL(q). (3.4)

On the right-hand side of (3.4) with the choice of BL(q) being the right-
hand sides of (1.2)–(1.4), we get

(t2q2; q3)∞
(t; q)∞

(1 + q)
(1 + tq)

,
(t2q; q3)∞

(t; q)∞
, and

(t2q2; q3)∞
(t; q)∞

, (3.5)

respectively, by Lemma 3.1. Hence, all we need to do is to show that the left-
hand side of (3.4) with the choice of AL(q) being the left-hand sides of (1.2)–
(1.4) yields the same products.

The left-hand side of (1.2) has two sums. The first sum of the left-hand
side of (1.2) after being multiplied by tL/(q3; q3)L, summing over L as sug-
gested in (3.4), and after simple cancellations turns into

∑

L,n≥0

(−1)n q
3n2+n

2 tL

(q; q)L−2n(q3; q3)n
. (3.6)

We introduce the new summation variable ν = L−2n. This factors the double
sum fully. Keeping (2.3) in mind, we rewrite (3.6) as

∑

ν≥0

tν

(q; q)ν

∑

n≥0

q3n(n−1)/2

(q3; q3)n
(−t2q)n.

Then, using (2.10) and (2.11) on the two sums, respectively, we see that (3.6)
is equal to

(t2q; q3)∞
(t; q)∞

.
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The same exact calculation can be done for the second sum on the left-hand
side of (1.2), and the left-hand side sums of (1.3) and (1.4). After the simpli-
fications, we see that the products we get from the left-hand side sums after
(3.4) is applied to them, are the same as the products (3.5). �

In the identities of Theorem 1.1, we replace q �→ 1/q, multiply both sides
of the equations by q3L2/2, use (2.4) and (2.9), and do elementary simplifica-
tions to get the following theorem.

Theorem 3.2.
∑

n≥0

q(
L−2n

2 ) (q3; q3)L

(q; q)L−2n(q3; q3)n
+ qL+1

∑

n≥0

q(
L−2n+1

2 )+n (q3; q3)L

(q; q)L−2n(q3; q3)n

=
L∑

j=−L

q
3j2+j

2

{
T−1

(
L
j

; q3
)

+ T−1

(
L

j + 1 ; q3
)}

, (3.7)

∑

n≥0

q(
L−2n

2 ) (q3; q3)L

(q; q)L−2n(q3; q3)n
=

L∑

j=−L

q
3j2−j

2 T1

(
L
j

; q3
)

, (3.8)

∑

n≥0

q
(L−2n)2

2
(q3; q3)L

(q; q)L−2n(q3; q3)n
=

L∑

j=−L

q
3j2+2j

2 T0

(
L
j

; q3
)

. (3.9)

Building on the development in [7,9,14], Warnaar [15, eqs. (10), (14)]
proved the following summation formulas.

Theorem 3.3 (Warnaar).

∑

i≥0

q
i2
2

[
L

i

]

q

T0

(
i
a

; q
)

= q
a2
2

[
2L

L − a

]

q

, (3.10)

∑

i≥0

q(
i
2)(1 + qL)

[
L

i

]

q

T1

(
i
a

; q
)

= (1 + qa)q(
a
2)

[
2L

L − a

]

q

. (3.11)

We found a similar new summation formula:

Theorem 3.4.
∑

i≥0

q(
i+1
2 )

[
L

i

]

q

{
T−1

(
i
a

; q
)

+ T−1

(
i

a + 1 ; q
)}

= q(
a+1
2 )

[
2L + 1
L − a

]

q

. (3.12)

Proof. To prove (3.12), we need the following identity of Berkovich–McCoy–
Orrick [8, p. 815, (4.8)]:

T−1

(
L
a

; q
)

+ T−1

(
L

a + 1 ; q
)

=
1

1 − qL+1

{
T1

(
L + 1

a
; q

)
− q(L+1−a)/2T0

(
L + 1

a
; q

)}
. (3.13)
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After the use of (3.13) on the left-hand side of (3.12), we employ

1
1 − qi+1

[
L

i

]

q

=
1

1 − qL+1

[
L + 1
i + 1

]

q

, (3.14)

and summations (3.10) and (3.11). This yields the right-hand side of (3.12)
after some elementary simplifications. �

Theorem 3.5. Let Fj(L) and αj(a) be sequences, depending on L and a, re-
spectively, for j = −1, 0 or 1. If

F0(L) =
∞∑

a=−∞
α0(a)T0

(
L
a

; q
)

, (3.15)

F1(L) =
∞∑

a=−∞
α1(a)T1

(
L
a

; q
)

, (3.16)

F−1(L) =
∞∑

a=−∞
α−1(a)

{
T−1

(
L
a

; q
)

+ T−1

(
L

a + 1 ; q
)}

(3.17)

hold, then
∑

i≥0

q
i2
2

[
L

i

]

q

F0(i) =
∞∑

a=−∞
α0(a)q

a2
2

[
2L

L − a

]

q

, (3.18)

(1 + qL)
∑

i≥0

q(
i
2)

[
L

i

]

q

F1(i) =
∞∑

a=−∞
α1(a)(1 + qa)q(

a
2)

[
2L

L − a

]

q

, (3.19)

∑

i≥0

q(
i+1
2 )

[
L

i

]

q

F−1(i) =
∞∑

a=−∞
α−1(a)q(

a+1
2 )

[
2L + 1
L − a

]

q

(3.20)

are true.

Proof. We apply (3.10)–(3.12) to (3.15)–(3.17) and get (3.18)–(3.20), respec-
tively. �

4. New Polynomial Identities Implying Capparelli’s Partition
Theorems

We apply (3.18) to (3.9) to get

∑

L,n≥0

q
(L−2n)2+3L2

2
(q3; q3)M

(q; q)L−2n(q3; q3)n(q3; q3)M−L
=

M∑

j=−M

q3j2+j

[
2M

M + j

]

q3

.

(4.1)
We introduce the new variable m = L − 2n, and let

Q(m,n) := 2m2 + 6mn + 6n2,

and observe that

Q(m,n) =
(L − 2n)2 + 3L2

2
,
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after the change of variable. Hence, (4.1) can be written as follows.

Theorem 4.1.

∑

m,n≥0

qQ(m,n)(q3; q3)M

(q; q)m(q3; q3)n(q3; q3)M−2n−m
=

M∑

j=−M

q3j2+j

[
2M

M + j

]

q3

. (4.2)

Recall that (4.2) is Theorem 7.1 in [10]. Letting M → ∞ in (4.2), us-
ing (2.8), and the Jacobi Triple Product Identity (2.12) on the right-hand side,
we obtain the following.

Theorem 4.2.
∑

m,n≥0

qQ(m,n)

(q; q)m(q3; q3)n
= (−q2,−q4; q6)∞(−q3; q3)∞. (4.3)

The authors recently discovered another polynomial identity [10, Theo-
rem 1.3, (1.12)] that implies the same q-series identity (4.3) as N → ∞:

Theorem 4.3. For any non-negative integer N , we have
∑

m,n≥0

qQ(m,n)

[
3(N − 2n − m)

m

]

q

[
2(N − 2n − m) + n

n

]

q3

=
N∑

l=0

q3(
N−2l

2 )
[
N

2l

]

q3

(−q2,−q4; q6)l.

The identity (4.3) was independently proposed by Kanade–Russell [12]
and Kurşungöz [13]. They showed that (4.3) is equivalent to the following
partition theorem.

Theorem 4.4 (Capparelli’s first partition theorem [11]). For any integer n,
the number of partitions of n into distinct parts where no part is congruent
to ±1 modulo 6 is equal to the number of partitions of n into parts, not equal
to 1, where the minimal difference between consecutive parts is 2. In fact,
the difference between consecutive parts is greater than or equal to 4 unless
consecutive parts are 3k and 3k + 3 (yielding a difference of 3), or 3k − 1 and
3k + 1 (yielding a difference of 2) for some k ∈ N.

Theorem 4.4 was first proven by Andrews in [2].
Analogously, we apply (3.19) to (3.8). This way we are led to the theorem:

Theorem 4.5.
∑

m,n≥0

qQ(m,n)−2m−3n(q3; q3)M

(q; q)m(q3; q3)n(q3; q3)M−2n−m
(1 + q3M )

=
M∑

j=−M

q3j2−2j(1 + q3j)
[

2M

M + j

]

q3

. (4.4)
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Letting M tend to infinity, and using (2.8) and (2.12) on the right-hand
side proves Theorem 1.2.

Similar to the above calculations, we apply (3.20) to (3.7) and get the
theorem:

Theorem 4.6.
∑

m,n≥0

qQ(m,n)+m+3n(q3; q3)M

(q; q)m(q3; q3)n(q3; q3)M−2n−m
+

∑

m,n≥0

qQ(m,n)+3m+6n+1(q3; q3)M

(q; q)m(q3; q3)n(q3; q3)M−2n−m

=
M∑

j=−M−1

q3j2+2j

[
2M + 1
M − j

]

q3

. (4.5)

Letting M → ∞ and using (2.8) and (2.12) on the right-hand side, we
get the result:

Theorem 4.7.
∑

m,n≥0

qQ(m,n)+m+3n

(q; q)m(q3; q3)n
+

∑

m,n≥0

qQ(m,n)+3m+6n+1

(q; q)m(q3; q3)n
= (−q,−q5; q6)∞(−q3; q3)∞.

(4.6)

It is instructive to compare (4.5) with the following polynomial identity
[10, Theorem 1.3, (1.12)], which also implies (4.6) as N → ∞:

Theorem 4.8. For any non-negative integer N , we have
∑

m,n≥0

qQ(m,n)+m+3n

[
3(N − 2n − m) + 2

m

]

q

[
2(N − 2n − m) + n + 1

n

]

q3

+
∑

m,n≥0

qQ(m,n)+3m+6n+1

[
3(N − 2n − m)

m

]

q

[
2(N − 2n − m) + n

n

]

q3

=
N∑

l=0

q3(
N−2l

2 )
[
N + 1
2l + 1

]

q3

(−q; q6)l+1(−q5; q6)l.

We note that (4.6) first appeared in Kurşungöz [13]. In fact, this is equiv-
alent to the Cappareli’s second partition theorem.

Theorem 4.9 (Capparelli’s second partition theorem [11]). For any integer n,
the number of partitions of n into distinct parts, where no part is congruent
to ±2 modulo 6 is equal to the number of partitions of n into parts, not equal
to 2, where the minimal difference between consecutive parts is 2. In fact,
the difference between consecutive parts is greater than or equal to 4 unless
consecutive parts are 3k and 3k + 3 (yielding a difference of 3), or 3k − 1 and
3k + 1 (yielding a difference of 2) for some k ∈ N.

We note that Kurşungöz [13] showed the equivalence of (4.6) to Theo-
rem 4.9. On the other hand, Kanade–Russell [12] showed the equivalence of
a slightly different (yet equivalent) double sum identity to the Capparelli’s
Second Partition Theorem.
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Comparing Theorems 4.1 and 4.3, and Theorems 4.6 and 4.8, we see
that the identities proven here look somewhat simpler. On the other hand,
the objects that appear on both sides of the identities from [10] clearly come
with combinatorial interpretations and are made up of objects with mani-
festly positive coefficients. It is not necessarily clear that the left-hand sides
of (4.2), (4.4), and (4.5) have positive coefficients at first sight. A combinato-
rial study of these objects as generating functions, which would also show the
non-negativity of the coefficients of these polynomials, is a task for the future.

5. Outlook

Identity (3.9) is the special case M → ∞ of the following doubly bounded
identity.

Theorem 5.1.
∑

m≥0,
L≡m(mod2)

q
m2
2

[
3M

m

]

q

[
2M + L−m

2

2M

]

q3

=
∞∑

j=−∞
q

3j2+2j
2 T

(
L, M
j, j

; q3
)

, (5.1)

where

T
(

L, M
a, b

; q

)
:=

∑

n≥0,
L−a≡n(mod2)

q
n2

2

[
M

n

]

q

[
M + b + L−a−n

2

M + b

]

q

[
M − b + L+a−n

2

M − b

]

q

.

(5.2)

The refinement (5.2) of the q-trinomial coefficients was first introduced
by Warnaar [16,17].

In the forthcoming paper, we will show that Theorem 5.1 implies the
following infinite hierarchy of identities.

Theorem 5.2. Let ν be a positive integer, and let Nk = nk + nk+1 + · · · + nν ,
for k = 1, 2, . . . , ν. Then

∑

i,m,n1,n2,...,nν≥0,
i+m≡N1+N2+···+Nν(mod 2)

q
m2+3(i2+N2

1+N2
2+···+N2

ν )
2

[
L − N1

i

]

q3

[
3nν

m

]

q

×
[
2nν + (i − N1 − N2 − · · · − Nν − m)/2

2nν

]

q3

ν−1∏

j=1

[
i − ∑j

k=1 Nk + nj

nj

]

q3

=
∞∑

j=∞
q3(

ν+2
2 )j2+j

(
L, (ν + 2)j
(ν + 2)j ; q3

)

2

. (5.3)
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MA (1996)

[5] Andrews, G.E.: q-Trinomial coefficients and Rogers-Ramanujan type identities.
In: Berndt, B.C., Diamond, H.G., Halberstam, H., Hildebrand, A. (eds.) An-
alytic Number Theory (Allerton Park, IL, 1989), Progr. Math., 85, pp. 1–11.
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1. Introduction

The so-called Borwein conjectures, due to Peter Borwein (circa 1990), were
popularized by Andrews [1]. The first of these concerns the expansion of finite
products of the form

(1 − q)(1 − q2)(1 − q4)(1 − q5)(1 − q7)(1 − q8) . . .

into a power series in q and the sign pattern displayed by the coefficients. In
June 2018, in a conference at Penn State celebrating Andrews’ 80th birthday,
Chen Wang, a young Ph.D. student studying at the University of Vienna,
announced that he has vanquished the first of the Borwein conjectures. In this
paper, we propose another set of Borwein-type conjectures. The conjectures
here are consistent with the first two Borwein conjectures, and one given by
Ismail et al. [5,11]. At the same time, they do not appear to be very far from
these conjectures in form and content. However, they are on different lines from
other extensions of Borwein conjectures considered in [2,3,5,10,11,13,14].

Borwein’s first conjecture may be stated as follows: the polynomials
An(q), Bn(q), and Cn(q) defined by
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n−1∏

i=0

(1 − q3i+1)(1 − q3i+2) = An(q3) − qBn(q3) − q2Cn(q3), (1.1)

each have non-negative coefficients. This is the one now settled by Wang [12].
We say that the polynomial on the left-hand side satisfies the Borwein + − −
condition.

Our first conjecture considers products of the form
n−1∏

i=0

(1 − q3i+1)(1 − q3i+2)
m∏

j=1

n−1∏

i=−n

(1 − pjq3i+1)(1 − pjq3i+2).

Computational evidence suggests that for fixed k, the coefficient of pk (a Lau-
rent polynomial in q) satisfies the Borwein +−− condition for n large enough.
For m = 0, this reduces to the left-hand side of (1.1).

This paper is organized as follows. In Sect. 2 we present a precise state-
ment of this conjecture and outline the computational evidence for this con-
jecture. We also make another—even more general—conjecture, which is mo-
tivated by the first two Borwein conjectures, and Andrews’ refinement of these
conjectures. Our third and most general conjecture is motivated by Ismail,
Kim and Stanton [5, Conjecture 1] (see also Stanton [11, Conjecture 3]). In
Sect. 3, we make some remarks concerning the connection to multiple basic
hypergeometric series with Macdonald polynomial argument.

2. The Conjectures

Let a, p and q be formal variables. We shall work in the ring of Laurent
polynomials in q. For n being a non-negative integer or infinity, the q-shifted
factorial is defined as follows:

(a; q)n =
n−1∏

j=0

(1 − aqj).

For convenience, we write

(a1, . . . , am; q)n =
m∏

k=1

(ak; q)n

for products of q-shifted factorials. With this notation, our first conjecture can
be stated as follows.

Conjecture 2.1. Let m and k be non-negative integers. Let the Laurent poly-
nomials Am,n,k(q), Bm,n,k(q), and Cm,n,k(q) be defined by

(q, q2; q3)n

m∏

j=1

(pjq, pjq2; q3)n(pjq−1, pjq−2; q−3)n

=
∑

k≥0

pk
[
Am,n,k(q3) − qBm,n,k(q3) − q2Cm,n,k(q3)

]
. (2.1)
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Then for each m, k ≥ 0, there is a non-negative integer Nm,k such that if
n ≥ Nm,k then the Laurent polynomials Am,n,k(q), Bm,n,k(q), and Cm,n,k(q)
have non-negative coefficients.

Further, for m = 1 we have N1,k = 0 for k ≤ 4, and N1,k = �k
4 � for

k ≥ 5, while for m > 1, Nm,k ≡ Nk is independent of m.

Notes

1. The case m = 0 or k = 0 of Conjecture 2.1 is consistent with the first
Borwein conjecture, see [1, Equation (1.1)].

2. For given m and n, the summation index k is bounded by

k ≤ 4n

(
m + 1

2

)
= 2m(m + 1)n.

3. For m = 1, we must have n ≥ k/4. Indeed, n = �k
4 � are the values of

Nm,k in Table 1 for m = 1 for k ≥ 5. For k < 5, �k
4 � = 1, so we have

Nm,k = 0, since for n = 0 the statement of the conjecture holds trivially.
4. We examined the products for m = 1, 2, . . . , 10; k = 0, 1, 2, . . . , 15; and

n = 0, 1, 2, . . . , 25. For fixed m and k, the value of Nm,k such that the
coefficient of pk in the products satisfies the Borwein + − − condition
for Nm,k ≤ n ≤ 25 (for m ≤ 5) is recorded in Table 1. The values for
m = 6, 7, . . . , 10 were the same as for m = 5. Thus for m > 1, the values
of Nm,k appear to be independent of m.

5. The coefficients of Am,n,k(q) were non-negative for all the values of m,n,
and k that we computed.

6. The coefficients of powers of q in q2Cm,n,k(q3) are the same as those of
qBm,n,k(q3), but in reverse order, that is, we have,

qn2−1Bm,n,k(q−1) = Cm,n,k(q).

This can be seen by replacing q by q−1 in (2.1) and comparing the two
sides.

7. One can ask, as did Stanton for [11, Conjecture 3], whether Conjecture 2.1
holds for n = ∞. However, this question is not applicable here, since the
product on the left-hand side of (2.1) is not defined at n = ∞.
We now make a few remarks about the form of Conjecture 2.1. The

modified theta function is defined as

θ(a; p) = (a; p)∞(p/a; p)∞.

Here we take n = ∞ and replace q by p in the definition of the q-shifted
factorial. This product is convergent if |p| < 1. Consider the theta-shifted
factorials defined as [4, Eq. (11.2.5)]

(a; q, p)n =
n−1∏

i=0

θ(aqi; p) =
n−1∏

i=0

∞∏

j=0

(
1 − apjqi

)(
1 − pj+1q−i/a

)
.

As a natural extension of the Borwein Conjecture, consider

(q; q3, p)n(q2; q3, p)n,
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or,

n−1∏

i=0

∞∏

j=0

(
1 − pjq3i+1

)(
1 − pjq3i+2

)(
1 − pj+1q−3i−1

)(
1 − pj+1q−3i−2

)
.

The product in Conjecture 2.1 should now be transparent. It is obtained by
truncating the infinite products indexed by j. Indeed, one can try even more
general ways to truncate the products.

Conjecture 2.2. Let m1, m2, n1, n2, n3, and k be non-negative integers. Let the
Laurent polynomials A(q) = Am1,m2,n1,n2,n3,k(q), B(q) = Bm1,m2,n1,n2,n3,k(q)
and C(q) = Cm1,m2,n1,n2,n3,k(q) be defined by

(q, q2; q3)n1

m1∏

j=1

(pjq, pjq2; q3)n2

m2∏

j=1

(pjq−1, pjq−2; q−3)n3

=
∑

k≥0

pk
[
A(q3) − qB(q3) − q2C(q3)

]
. (2.2)

For given k, if m1,m2 ≥ 1, and n1, n2 and n3 are large enough, then the
polynomials A(q), B(q), and C(q) have non-negative coefficients.

Notes

1. Borwein’s second conjecture [1, Eq. (1.3)] states that

(q, q2; q3)2n

satisfies the Borwein + − − condition. If we take m1 = 1, m2 = 0,
n2 = n1, p = 1, and ignore the condition m1,m2 ≥ 1, then the statement
of Conjecture 2.2, reduces to Borwein’s second conjecture.

2. Andrews’ refinement of Borwein’s first two conjectures [1, eq. (1.5), x = p]
states that for each k, the coefficient of pk in

(q, q2; q3)n1(pq, pq2; q3)n2

satisfies the Borwein + − − condition. Ae Ja Yee kindly informed us
(private communication, January 2019), that Andrews’ refinement does
not hold. For example, it fails for n1 = 1, n2 = 40, and k = 40. Again, if
we take m1 = 1 and m2 = 0, the statement of Conjecture 2.2 reduces to
Andrews’ refinement of Borwein’s first two conjectures.

3. Our numerical experiments suggest that we must have m1,m2 ≥ 1 in
Conjecture 2.2. But the data we generated do not contradict Borwein’s
second conjecture. Further, it may still be true that Andrews’ refinement
of Borwein’s conjectures is true for large enough values of n1 and n2.

4. It appears that Table 1 is relevant to Conjecture 2.2 too. We observed the
following from the data we generated. Let k be fixed, and m1,m2 ≥ 2.
Let n = min{n1, n2, n3}. Now if n ≥ Nk, where Nk ≡ N2,k is taken from
Table 1, the coefficients of pk in the expansion of the products in question
satisfy the Borwein + − − condition.
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Next, on the suggestion of Dennis Stanton, we examine a conjecture due
to Ismail, Kim and Stanton [5, Conjecture 1] (see also Stanton [11, Conjec-
ture 3]), who considered

(qa, qK−a; qK)n =
∞∑

m=0

amqm,

where a and K are relatively prime integers with a < K/2. These authors
conjectured:

If K is odd, then

am ≥ 0 if m ≡ ±aj mod K, for some non-negative even integer j < K/2,

and,

am ≤ 0 if m ≡ ±aj mod K, for some positive odd integer j < K/2.

In [11], this conjecture is followed by the statement: If K is even, then
(−1)mam ≥ 0. The unfortunate placement of this statement suggests that it
is part of the conjecture. In fact, it is easy to prove. Since a is relatively prime
to K, and K is even, both a and K − a are odd. Thus all the factors in the
product are of the form (1 − qodd). Now to obtain a term qm with m even, we
will need to multiply an even number of monomials of the form (−qodd), so
the sign will be positive. Similarly, if m is odd, the sign will be negative.

As in Conjecture 2.2, we consider the formal expression

(qa; qK , p)n(qK−a; qK , p)n,

truncate the infinite products, and check whether the coefficients satisfy a
similar sign pattern. For K even, it is easy to see that an analogous statement
holds for the coefficient of pk for all non-negative integers k.

For K odd, we found that the sign pattern is the same as mentioned
above, but only when a = �K/2	. In this case, the pattern is an elegant
extension of Borwein’s +−−. When K is of the form 4l +1 or 4l +3, the sign
pattern is as follows:

K = 4l + 1 : + + · · · +︸ ︷︷ ︸
l+1

− − · · · −︸ ︷︷ ︸
2l

+ + · · · +︸ ︷︷ ︸
l

K = 4l + 3 : + + · · · +︸ ︷︷ ︸
l+1

− − · · · −︸ ︷︷ ︸
2l+2

+ + · · · +︸ ︷︷ ︸
l

For example, when K = 5, then the pattern is ++−−+, and when K = 7, then
the pattern is ++−−−−+. (As before, the + sign represents a non-negative,
and the − sign represents a non-positive coefficient.)

In what follows, we have replaced K by 2K +1; we consider only the odd
powers of the base q.

Conjecture 2.3. Let m1, m2, n1, n2, n3, and k be non-negative integers. Let K
be any positive number. Let the Laurent polynomials Ak(q) =
Am1,m2,n1,n2,n3,k,K(q) be defined by
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(qK , qK+1; q2K+1)n1

m1∏

j=1

(pjqK , pjqK+1; q2K+1)n2

×
m2∏

j=1

(pjq−K , pjq−K−1; q−2K−1)n3 =
∑

k≥0

pkAk(q), (2.3)

where Ak(q) is a Laurent polynomial of the form

Ak(q) =
∑

M

aM,kqM .

Let l = � 2K+1
4 	. For given k and K, if m1,m2 ≥ 1, and n1, n2 and n3 are

large enough, then the coefficients aM,k satisfy the following sign pattern:

aM,k =

{
≥ 0, if M ≡ 0,±i mod 2K + 1, for i = 1, 2, . . . , l,

≤ 0, otherwise.

Notes

1. If m1 = 0 = m2, then the products on the left-hand side of (2.3) are a
special case of those considered in [5, Conjecture 1].

2. When K = 1, Conjecture 2.3 reduces to Conjecture 2.2.
3. We gathered data for the following values of the variables systematically:

m1,m2 ∈ {2, 3},

n1, n2, n3 ∈ {1, 2, . . . , 5},

k ∈ {1, 2, . . . , 10},

K ∈ {2, 3, 4, . . . , 14}.

In addition, we considered many random values, with

m1,m2, n1, n2, n3 ∈ {0, 1, . . . , 10},

k ∈ {0, 1, . . . , 30},

K ∈ {1, 2, 3, 4, . . . , 20}.

In case we obtained a set of values that did not satisfy the required sign
pattern, we performed further computations with larger values of n1, n2

or n3.
4. In our experiments, we found only a few values where the predicted sign

pattern does not hold, even for large values of n1, n2 and n3. All of these
were with either m1 = 0 or m2 = 0. For example, when m1 = 4,m2 =
0,K = 3, k = 18. In particular the coefficient of p18q26 is predicted to be
negative, but is in fact 1, when n1 and n2 are large. This is the reason for
the condition m1,m2 ≥ 1 in the statements of Conjectures 2.2 and 2.3.

3. Multiple Series Representations

In this section we extend Andrews’ explicit expressions for the polynomials
An(q), Bn(q) and Cn(q) of (1.1) appearing in the first Borwein conjecture.
Andrews [1, Eqs. (3.4)–(3.6)] showed that
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An(q) =
∞∑

λ=−∞
(−1)λqλ(9λ+1)/2

[
2n

n + 3λ

]
, (3.1a)

Bn(q) =
∞∑

λ=−∞
(−1)λqλ(9λ−5)/2

[
2n

n + 3λ − 1

]
, (3.1b)

Cn(q) =
∞∑

λ=−∞
(−1)λqλ(9λ+7)/2

[
2n

n + 3λ + 1

]
, (3.1c)

where
[
m
j

]
=

⎧
⎨

⎩

0, if j < 0 or j > m,
(q; q)m

(q; q)j(q; q)m−j
, otherwise,

denotes the q-binomial coefficient. We use a result of Kaneko [7] from the
theory of basic hypergeometric series with Macdonald polynomial argument
(see [6,8]) to give analogous expressions for the functions involved in Conjec-
ture 2.1.

Let Fm,n(p, q) denote the left-hand side of (2.1). We first dissect it as
follows:

Fm,n(p, q) = F 0
m,n(p, q3) − qF 1

m,n(p, q3) − q2F 2
m,n(p, q3).

Thus, we have the definitions:

F 0
m,n(p, q) =

2m(m+1)n∑

k=0

pkAm,n,k(q),

F 1
m,n(p, q) =

2m(m+1)n∑

k=0

pkBm,n,k(q),

F 2
m,n(p, q) =

2m(m+1)n∑

k=0

pkCm,n,k(q).

We extend Andrews’ identities by writing each F l
m,n(p, q) (for l = 0, 1, 2) as a

(2m + 1)-fold sum.
In the following, λ is an integer partition. That is, λ is any sequence

λ = (λ1, λ2, . . . , λn, . . . )

of non-negative integers such that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · , and contains
only finitely many non-zero terms, called the parts of λ. We use the symbol
|λ| = λ1 + λ2 + · · · and say λ is a partition of |λ|. In slight misuse of notation
we shall also use λ to denote finite non-increasing sequences of integers which
are not necessarily all non-negative. For such sequences λ the symbol |λ| is
understood to denote the sum of the elements of λ, as one would expect.
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Theorem 3.1. For l = 0, 1, 2 we have

F l
m,n(p, q) = (−1)(

l+1
2 ) pm(m+1)nq−mn2

×
∑

n≥λ1≥λ2≥···≥λ2m+1≥−n
|λ| ≡−l (mod 3)

⎛

⎝
∏

1≤i<j≤2m+1

(1 − pj−iqλi−λj )(pj−i+1; q)λi−λj

(1 − pj−i)(pj−i−1q; q)λi−λj

×
2m+1∏

i=1

(pi−1q; q)2n

(pi−1q; q)n−λi
(p2m+1−iq; q)n+λi

× (−1)|λ|p
∑2m+1

i=1 (i−1−m)λi × q(
λ1+1

2 )+···+(λ2m+1+1
2 )− |λ|+l

3

⎞

⎠ .

Remark 3.2. From the expression in Theorem 3.1, it is not obvious that the
functions F l

m,n(p, q) are actually polynomials in p of degree 2m(m + 1)n.

Before proving the theorem, we outline some background information
from the theory of basic hypergeometric series with Macdonald polynomial
argument. For the definition of the Macdonald polynomials Pλ(x1, . . . , xn; q, t)
together with their most essential properties, we refer to Macdonald’s book [9].

In particular, the Pλ(x1, . . . , xn; q, t) are homogenous in x1, . . . , xn of de-
gree |λ|; we have, after scaling each xi by z,

Pλ(zx1, . . . , zxn; q, t) = z|λ|Pλ(x1, . . . , xn; q, t). (3.2)

We also make use of the principal specialization formula [9, p. 343, Ex. 5]: Let

Pλ(1, t, . . . , tn−1; q, t) = tn(λ)
∏

1≤i<j≤n

(tj−i+1; q)λi−λj

(tj−i; q)λi−λj

, (3.3)

where λ has at most n parts, and n(λ) =
∑n

i=1(i − 1)λi.
We require the following lemma.

Lemma 3.3. Let N be a non-negative integer. Then

n∏

i=1

(zt1−i, z−1qti−1; q)N

=
∑

N≥λ1≥λ2≥···≥λn≥−N

⎛

⎝
∏

1≤i<j≤n

(1 − qλi−λj tj−i)(tj−i+1; q)λi−λj

(1 − tj−i)(qtj−i−1; q)λi−λj

×
n∏

i=1

(qti−1; q)2N

(qti−1; q)N−λi
(qtn−i; q)N+λi

× q(
λ1+1

2 )+···+(λn+1
2 )t

∑n
i=1(i−1)λi(−z−1)|λ|

⎞

⎠ .
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Proof. We use a reformulation of a result by Kaneko [7, Lemma 2]. Let N be
a non-negative integer. Then

n∏

i=1

(−xiq,−x−1
i ; q)N

=
∑

N≥λ1≥λ2≥···≥λn≥−N

⎛

⎝
∏

1≤i<j≤n

(qtj−i; q)λi−λj

(qtj−i−1; q)λi−λj

×
n∏

i=1

(qti−1; q)2N

(qti−1; q)N−λi
(qtn−i; q)N+λi

× q

(
λ1+1

2

)
+···+

(
λn+1

2

)

× (x1 · · ·xn)
λnPλ−λn(x1, . . . , xn; q, t)

⎞

⎠ ,

where λ − λn stands for the partition (λ1 − λn, . . . , λn − λn).
In Kaneko’s identity, we take xi = −z−1ti−1, for 1 ≤ i ≤ n, and make use

of the homogeneity (3.2) and the principal specialization in (3.3), to obtain
the lemma. �

Proof of Theorem 3.1. We first observe that the product on the left-hand side
of (2.1) can be written as

m∏

j=0

(pjq, pjq2; q3)n

m∏

j=1

(pjq−1, pjq−2; q−3)n

= pm(m+1)nq−3mn2
2m+1∏

i=1

(p−m+i−1q2, pm−i+1q; q3)n.

Next, we apply the (n,N, z, q, t) �→ (2m + 1, n, pmq, q3, p) case of Lemma 3.3
to arrive at

m∏

j=0

(pjq, pjq2; q3)n

m∏

j=1

(pjq−1, pjq−2; q−3)n

= pm(m+1)nq−3mn2 ∑

n≥λ1≥λ2≥···≥λ2m+1≥−n

×
⎛

⎝
∏

1≤i<j≤2m+1

(1 − pj−iq3λi−3λj )(pj−i+1; q3)λi−λj

(1 − pj−i)(pj−i−1q3; q3)λi−λj

×
2m+1∏

i=1

(pi−1q3; q3)2n

(pi−1q3; q3)n−λi
(p2m+1−iq3; q3)n+λi

× (−1)|λ|p
∑2m+1

i=1 (i−1−m)λi

× q
3
(

λ1+1
2

)
+···+3

(
λ2m+1+1

2

)
−|λ|

⎞

⎠ .

By picking the coefficients of ql with l belonging to a residue class modulo
3, we obtain the theorem. �
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Remark 3.4. We can obtain a more general multiseries expression for the prod-
ucts

m∏

j=0

(pjqa, pjq2K+1−a; q2K+1)n

m∏

j=1

(pjq−a, pjqa−1−2K ; q−2K−1)n

by following a similar analysis as carried out in the proof of Theorem 3.1, where
we apply the (n,N, z, q, t) �→ (2m + 1, n, pmqa, q2K+1, p) case of Lemma 3.3.
The case a = K gives the products on the left-hand side of (2.3), with n =
n1 = n2 = n3 and m = m1 = m2.

Acknowledgements

We thank Dennis Stanton and the anonymous referee for helpful suggestions.
The computational results presented here have been achieved in part using
the Vienna Scientific Cluster (VSC). The research of the first author was par-
tially supported by the Austrian Science Fund (FWF), grant F50-N15, in the
framework of the Special Research Program “Algorithmic and Enumerative
Combinatorics”. The research of the second author was partially supported by
the Austrian Science Fund (FWF), grant P 3205-N35. Open access funding is
provided by the University of Vienna.

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Andrews, G.E.: On a conjecture of Peter Borwein. J. Symbolic Comput. 20(5-6),
487–501 (1995)

[2] Berkovich, A., Warnaar, S.O.: Positivity preserving transformations for q-
binomial coefficients. Trans. Amer. Math. Soc. 357(6), 2291–2351 (2005)

[3] Bressoud, D.M.: The Borwein conjecture and partitions with prescribed hook
differences. Electron. J. Combin. 3(2), #R4 (1996)

[4] Gasper, G., Rahman, M.: Basic Hypergeometric Series. Second Edition. Ency-
clopedia of Mathematics and Its Applications, Vol. 96. Cambridge University
Press, Cambridge (2004)

[5] Ismail, M.E.H., Kim, D., Stanton, D.: Lattice paths and positive trigonometric
sums. Constr. Approx. 15(1), 69–81 (1999)

217

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


572 G. Bhatnagar and M. J. Schlosser

[6] Kaneko, J.: q-Selberg integrals and Macdonald polynomials. Ann. Sci. École
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Abstract. In this note, we give three identities for partitions with parts
separated by parity, which were recently introduced by Andrews.
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1. Introduction

Recently, Andrews [1] studied integer partitions in which all parts of a given
parity are smaller than those of the opposite parity. Furthermore, he considered
eight subcases based on the parity of the smaller parts and parts of a given
parity appearing at most once or an unlimited number of times. Following
Andrews, we use “ed” for evens distinct, “eu” for evens unlimited, “od” for
odds distinct, and “ou” for odds unlimited. With “zw” and “xy” from the
four choices above, we let F zw

xy (q) denote the generating function of partitions
where zw specifies the parity and condition of the larger parts and xy specifies
the parity and condition of the smaller parts.

The eight relevant generating functions are:

F ou
eu (q) :=

∞∑

n=0

q2n

(q2; q2)n (q2n+1; q2)∞
,

F od
eu (q) :=

∞∑

n=0

q2n
(−q2n+1; q2

)
∞

(q2; q2)n
,

The research of the first author is supported by the Alfried Krupp Prize for Young University
Teachers of the Krupp foundation and the research leading to these results receives fund-
ing from the European Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013)/ERC Grant Agreement No. 335220–AQSER.
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F ou
ed (q) :=

∞∑

n=0

(−q2; q2
)
n

q2n+2

(q2n+3; q2)∞
,

F od
ed (q) :=

∞∑

n=0

q2n+2
(−q2; q2

)
n

(−q2n+3; q2
)
∞ ,

F eu
ou (q) :=

∞∑

n=0

q2n+1

(q; q2)n+1 (q2n+2; q2)∞
,

F ed
ou (q) :=

∞∑

n=0

q2n+1
(−q2n+2; q2

)
∞

(q; q2)n+1

,

F eu
od (q) :=

∞∑

n=0

q2n+1
(− q; q2

)
n

(q2n+2; q2)∞
,

F ed
od (q) :=

∞∑

n=0

q2n+1
(− q; q2

)
n

(−q2n+2; q2
)
∞ .

Here, we are using the standard product notation:

(a; q)n :=
n−1∏

j=0

(1 − aqj)

for n ∈ N0 ∪ {∞}. We note that with the exception of F ou
eu (q) and F od

eu (q), we
do not allow the subpartition consisting of the smaller parts to be empty.

Andrews’ identities (after minor corrections) can be stated as:

F ou
eu (q) =

1
(1 − q) (q2; q2)∞

,

F od
eu (q) =

1
2

(
1

(q2; q2)∞
+

(− q; q2
)2
∞

)
,

F ou
ed (− q) =

1
2 (− q; q2)∞

(
(− q; q)∞ − 1 −

∞∑

n=0

q
n(3n−1)

2 (1 − qn)

)
,

F eu
ou (q) =

1
1 − q

(
1

(q; q2)∞
− 1

(q2; q2)∞

)
,

F ed
ou (− q) = −

(−q2; q2
)
∞

2

(
2 − 1

(− q; q)∞
−

∞∑

n=0

qn
2+n

(− q; q)2n (1 + qn+1)

)
,

F eu
od (− q) = − 1

(q2; q2)∞

∞∑

j=1

∞∑

n=j

(−1)n+j
q

n(3n+1)
2 −j2

(
1 − q2n+1

)
.

Surprisingly, these identities are derived with little more than the q-binomial
theorem, Heine’s transformation, and the Rogers–Fine identity. In the follow-
ing theorem, we give new identities for F od

ed (q), F ed
od (q), and F ed

ou (− q).
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Theorem 1.1. The following identities hold:

F od
ed (q) =

q
(− q; q2

)
∞

1 − q

(
1 − (−q2; q2)∞

(− q; q2)∞

)
, (1.1)

F ed
od (q) =

q(−q2; q2)∞
1 − q

(
2 − (− q; q2)∞

(−q2; q2)∞

)
, (1.2)

F ed
ou (− q) = −

(−q2; q2
)
∞

2

(
2 − 1

(− q; q)∞

− 2
(q; q)∞

∑

n∈Z

(−1)n q
3n(n+1)

2

1 + qn

)
. (1.3)

Remark 1.2. The functions F od
ed (q) and F ed

od (q) are basically modular functions.
Also we find that F ed

ou (− q) is related to Ramanujan’s third-order mock theta
function f(q), as:

f(q) :=
∞∑

n=0

qn
2

(− q; q)2n
=

2
(q; q)∞

∑

n∈Z

(−1)n q
n(3n+1)

2

1 + qn

= 2 − 2
(q; q)∞

∑

n∈Z

(−1)n q
3n(n+1)

2

1 + qn
,

where the final equality uses Euler’s pentagonal number theorem.

2. Proof of Theorem 1.1

To prove Eqs. (1.1) and (1.2), we require the following q-series identity:

∞∑

n=0

(x; q)nqn

(y; q)n
=

q(x; q)∞

y(y; q)∞
(
1 − xq

y

) +

(
1 − q

y

)

(
1 − xq

y

) . (2.1)

We note that (2.1) is (4.1) from [3] and was proved with Heine’s transformation
[4, p. 241, (III.2)]. To prove Eq. (1.3), we require the concept of a Bailey pair
and Bailey’s Lemma, which are described in [2, Chapter 3]. A pair of sequences
(α, β) is called a Bailey pair relative to a = q if:

βn =
n∑

j=0

αj

(q; q)n−j(q2; q)n+j
.

A limiting form of Bailey’s Lemma states that if (αn, βn) is a Bailey pair
relative to q, then

∞∑

n=0

qn
2+nβn =

1
(q2; q)∞

∞∑

n=0

qn
2+nαn. (2.2)

The Bailey pair that we use is given by:

β′
n :=

1
(− q; q)2n(1 + qn+1)

, α′
n :=

2(−1)nq
n(n+1)

2 (1 − q2n+1)
(1 − q)(1 + qn)(1 + qn+1)

, (2.3)
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which follows from taking the Bailey pair from Theorem 8 of [5] with a → q,
b = −1, c = −q, and d = −1 and dividing both αn and βn by (1 + q).

Proof of Theorem 1.1. We find that:

F od
ed (q) =

(− q; q2
)
∞

∞∑

n=1

(−q2; q2
)
n−1

q2n

(− q; q2)n

=

(− q; q2
)
∞

2

(
−1 +

∞∑

n=0

(−1; q2
)
n

q2n

(− q; q2)n

)
.

With q �→ q2, x = −1, and y = −q, Eq. (2.1) implies that:
∞∑

n=0

(−1; q2)q2n

(− q; q2)n
= − q

(−1; q2
)
∞

(− q; q2)∞ (1 − q)
+

1 + q

1 − q
.

Equation (1.1) then follows after elementary simplifications.
Similarly, we have that:

F ed
od (q) =

(−q2; q2
)
∞

∞∑

n=0

(− q; q2
)
n

q2n+1

(−q2; q2)n
.

By applying (2.1) with q �→ q2, x = −q, and y = −q2, we find that
∞∑

n=0

(− q; q2
)
q2n

(−q2; q2)n
= −

(− q; q2
)
∞

(−q2; q2)∞ (1 − q)
+

2
1 − q

,

and (1.2) follows.
For F ed

ou (q), we begin with Andrews’ identity [1]:

F ed
ou (− q) = −

(−q2; q2
)
∞

2

(
2 − 1

(− q; q)∞
−

∞∑

n=0

qn
2+n

(− q; q)2n (1 + qn+1)

)
.

By applying (2.2) to the Bailey pair (α′, β′) in (2.3), we have that:
∞∑

n=0

qn
2+n

(− q; q)2n (1 + qn+1)
=

2
(q; q)∞

∞∑

n=0

(−1)nq
3n(n+1)

2
(
1 − q2n+1

)

(1 + qn) (1 + qn+1)
.

We use the partial fraction decomposition:

1 − q2n+1

(1 + qn) (1 + qn+1)
=

1
1 + qn

− qn+1

1 + qn+1
,

to deduce that
∞∑

n=0

(−1)nq
3n(n+1)

2
(
1 − q2n+1

)

(1 + qn) (1 + qn+1)
=

∞∑

n=0

(−1)nq
3n(n+1)

2

(
1

1 + qn
− qn+1

1 + qn+1

)

=
∑

n∈Z

(−1)nq
3n(n+1)

2

1 + qn
.

Altogether, this implies Eq. (1.3). �
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By applying Theorem 1.1 part 3 of [6] to the Bailey pair E(3) of [7], we
find that:

F ed
od (− q) = −q (q; q)∞

(−q2; q2
)
∞

(q2; q2)2∞

×
∞∑

n=0

∞∑

m=0

(−1)m q
n(n+3)

2 +2nm+2m2+2m
(
1 + q2m+1

)
.

As such, we have that
⎛

⎝
∑

n,m≥0

−
∑

n,m<0

⎞

⎠ (−1)mq
n(n+3)

2 +2nm+2m(m+1)

=
2
(
q2; q2

)
∞

(1 + q) (q; q2)∞
−

(
q2; q2

)
∞

(1 + q) (−q2; q2)∞
.

We note that the corresponding quadratic form is degenerate, and so a priori,
the modularity properties of this theta function are unclear. More generally,
one can prove directly that, for c ∈ N:

∑

n,m≥0

znwmqn
2+2cnm+c2m2

=
1

1 − w
zc

c−1∑

k=0

∞∑

n=0

zcn+kq(cn+k)2
(

1 − wn+1

zcn+c

)
.

The above is a sum of partial theta functions, which sometimes combine to
give a modular form.
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Abstract. In his lost notebook, Ramanujan listed five identities related to
the false theta function:

f(q) =
∞∑

n=0

(−1)nqn(n+1)/2.

A new combinatorial interpretation and a proof of one of these identities
are given. The methods of the proof allow for new multivariate general-
izations of this identity. Additionally, the same technique can be used to
obtain a combinatorial interpretation of another one of the identities.

Mathematics Subject Classification. Primary 05A17; Secondary 05A19.

Keywords. Partitions, Overpartitions, False theta functions.

1. Introduction

Rogers [16] introduced false theta functions, which are series that would be
classical theta functions except for changes in signs of an infinite number of
terms. In his notebooks [14] and the lost notebook [15], Ramanujan recorded
many false theta function identities that he discovered. However, in Ramanu-
jan’s last letter to Hardy in 1920, Ramanujan introduced mock theta functions
and shifted his focus away from false theta functions. The mathematical com-
munity followed Ramanujan’s lead and largely ignored false theta functions
for the next several decades.

In recent times, there has been an increase in interest in false theta func-
tions. G.E. Andrews devoted a section of [3] to partition theoretic applications
of false theta functions. More recently, such as in [1,2,9,10,13], researchers
have found combinatorial proofs of some of Ramanujan’s false theta function
identities.

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57050-7_14&domain=pdf


580 H. E. Burson

In his lost notebook [15] (cf. [5, p. 227]), Ramanujan stated five identities
related to the false theta function:

f(q) =
∞∑

n=0

(−1)nqn(n+1)/2, |q| < 1. (1.1)

These identities were first proved by Andrews in [4], using identities such
as the Rogers–Fine identity and Heine’s transformation. Other analytic proofs
have been given in [7,11,17]. There are no previously known bijective proofs
of any of these identities.

In this paper, we adopt the standard q-series notation:

(a; q)n =
n−1∏

j=0

(1 − aqj), |q| < 1, n ∈ {0, 1, 2 . . .}.

We will focus on a bijective proof of Ramanujan’s identity for f(q4).

Theorem 1.1. (Ramanujan) If f(q) is defined by (1.1), then for |q| < 1:
∞∑

n=0

(q; q2)n qn

(−q; q2)n+1
= f(q4).

The combinatorial interpretation of this identity has several similarities
to the combinatorial version of Euler’s pentagonal number theorem, which was
bijectively proved by Franklin [12]. Since the function in the pentagonal num-
ber theorem is a theta function, these similarities are not obvious analytically.

In Sect. 2, we explain the necessary background on partitions. Then, in
Sect. 3, we introduce a new combinatorial analog of Theorem 1.1 and give its
bijective proof in Sect. 4. In Sect. 5, we introduce new identities that arise
from generalizing the proof in Sect. 4. Finally, in Sect. 6, we give a similar
combinatorial interpretation of another one of Ramanujan’s identities.

2. Background

We use several tools from the theory of partitions. Recall that a partition of n is
a non-increasing sequence of integers (π1, π2, . . . , πk), where π1+π2+· · ·+πk =
n. An overpartition of n is a partition of n where the first appearance of a
part of any size may be overlined. For example, (7, 6, 5, 5, 5, 3, 2, 2, 2) is an
overpartition of 37. We can create a graphical representation of a partition,
called a Ferrers diagram, by making an array of boxes whose ith row has as
many boxes as the ith part of the partition. There is a variation of a Ferrers
diagram called an m-modular diagram (also called a MacMahon diagram)
where the part mj +r with 0 ≤ r < m is represented by a row made of j boxes
containing an m following one box containing an r.

For this paper, we create an analog of a two-modular diagram called
a boxed two-modular diagram, which is a graphical representation of a pair
(k, π) where k is a non-negative integer and π is a partition. To obtain the
boxed two-modular diagram, we represent π as a two-modular diagram and k
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as a row of one 0 and k 1s at the top of the diagram. For example, the figure
below is a boxed two-modular diagram for the pair (3, (8, 7, 5, 5, 3)) :

0 1 1 1
2 2 2 2
1 2 2 2
1 2 2
1 2 2
1 2

Note that, if π is a partition into odd parts with the largest part no
greater than 2k + 1, the boxed 2-modular diagram will have the shape of a
partition and the boxes in the first column will not contain any 2s. In this case,
our boxed two-modular diagram is exactly the odd Ferrers graph introduced
in [6] and named in [8].

To represent an overpartition, we add a shaded box to the end of any
overlined part. Note that, to maintain the general shape of a Ferrers diagram,
we must require that any overlined part be no larger than 2k – 1. For example,
the figure below is a boxed 2-modular diagram for the pair (3, (8, 7, 5̄, 5, 3)) :

0 1 1 1
2 2 2 2
1 2 2 2
1 2 2
1 2 2
1 2

We use the following notation when discussing pairs (k, π).
• Pn is the set of pairs (k, π) where k is a non-negative integer and π is an

overpartition of n − k into odd parts of size no greater than 2k + 1 and
with all overlined parts of size no greater than 2k − 1.

• ν(π) is the number of parts of the overpartition π.
• s(π) is the size of the smallest part of π.
• ν�(k, π) is the number of parts of size 2k + 1 in π.
• νs(π) is the number of times the smallest part appears in π.

3. Combinatorial Interpretation

In this section, we interpret Theorem 1.1 in terms of pairs (k, π) ∈ Pn. We
count each pair (k, π) ∈ Pn with weight (−1)ν(π).

Theorem 3.1. Let po(n) (resp. pe(n)) be the number of pairs (k, π), where k is
a non-negative integer and π is an overpartition of n − k into an odd number
(resp. even number) of odd parts of size not exceeding 2k+1, where all overlined
parts must have size < 2k + 1. Then, for n ≥ 0:

pe(n) − po(n) =

{
(−1)k, if n = 2k(k + 1),
0, otherwise.

Theorem 3.2. Theorems 1.1 and 3.1 are equivalent.

227



582 H. E. Burson

Proof. The equivalence of the right sides is trivial, so we focus on the left
sides. Note that (q; q2)k generates partitions into distinct odd parts of size
no greater than 2k − 1, where each partition into ν parts has weight (−1)ν .
Similarly, 1

(−q;q2)k+1
generates partitions into odd parts of size no greater than

2k + 1, where each partition into ν parts has weight (−1)ν . Thus, if we let
the parts coming from (q; q2)k be overlined, we find that (q;q2)k

(−q;q2)k+1
generates

overpartitions into odd parts of size no greater than 2k+1, where all overlined
parts are no larger than 2k − 1, and each overpartition into ν parts is counted
with weight (−1)ν . Additionally, qk generates the integer k. Therefore

∞∑

k=0

(q; q2)kqk

(−q; q2)k+1
=

∞∑

n=0

[pe(n) − po(n)]qn,

where pe(n) and po(n) are as defined in Theorem 3.1. �

4. Proof of the Main Theorem

We devote this section to proving Theorem 3.1 combinatorially. To obtain the
bijection, we split Pn into cases. First, we show that conjugation is a sign-
reversing involution on the case where k + ν(π) ≡ 1 (mod 2). Then, for the
case where k + ν(π) ≡ 0 (mod 2), we further divide this subset of Pn into
cases depending on the relative sizes of the last row and the last column of
the boxed 2-modular diagram and introduce variations of the conjugation that
provide sign-reversing bijections and involutions on these cases.

4.1. Conjugation

For an ordinary partition π, the conjugate partition π′ is defined to be the
partition created by reflecting the Ferrers diagram of π about the line y = −x.
Similarly, for a pair (k, π), where k is a non-negative integer and π is a partition
into odd parts of size ≤ 2k + 1, we can reflect our boxed 2-modular diagram
about the line y = −x to get the conjugate pair (k′, π′).

Example 4.1. The conjugate of (4, (9, 9, 7, 7, 5, 5, 3)) is (7, (15, 13, 9, 5)) :

0 1 1 1 1
1 2 2 2 2
1 2 2 2 2
1 2 2 2
1 2 2 2
1 2 2
1 2 2
1 2

→
0 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2
1 2 2 2 2 2 2
1 2 2 2 2
1 2 2

Furthermore, we note that conjugation generalizes to the overpartition
case. Specifically, we let (k′, π′) be the conjugate partition of the pair (k, π) ∈
Pn. Then, for every j, where a part of size 2j +1 is overlined in π, the (j +1)st

part in π′ must be overlined.

Example 4.2. The conjugate of (3, (7, 5, 5, 5, 3, 1, 1, 1)) is (8, (11, 9, 3)) :
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0 1 1 1
1 2 2 2
1 2 2
1 2 2
1 2 2
1 2
1
1
1

→
0 1 1 1 1 1 1 1 1
1 2 2 2 2 2
1 2 2 2 2
1 2

Note that, because conjugation swaps rows and columns and preserves the
boxes in the diagram, k′ = ν(π), ν(π′) = k, and k′+|π′| = k+|π|. Furthermore,
since conjugation is its own inverse, we obtain the following lemma.

Lemma 4.3. Let Sn,k,� be the set of pairs (k, π), where k is a non-negative
integer and π is an overpartition of n − k into � odd parts of size ≤ 2k + 1,
with all overlined parts no larger than 2k − 1. Then, |Sn,k,�| = |Sn,�,k|.

When k + ν(π) ≡ 1 (mod 2), conjugation is sign-reversing, which leads
to the next lemma.

Lemma 4.4. Conjugation is a sign-reversing involution on pairs (k, π) ∈ Pn

counted with weight (−1)ν(π), when k + ν(π) ≡ 1 (mod 2).

Proof. This follows from Lemma 4.3 and the fact that k �≡ ν(π) (mod 2), so
conjugation must be sign-reversing. �

4.2. Variations

For the case k + ν(π) ≡ 0 (mod 2), we consider two variations of conjuga-
tion. First, we define φs(k, π) by fixing the last row of the boxed two-modular
diagram for (k, π) and conjugating the remainder of the diagram.

Example 4.5. φs(4, (9, 9, 9, 7, 7, 5)) = (5, (11, 11, 11, 7, 5))

0 1 1 1 1
1 2 2 2 2
1 2 2 2 2
1 2 2 2 2
1 2 2 2
1 2 2 2
1 2 2

φs−→

0 1 1 1 1 1
1 2 2 2 2 2
1 2 2 2 2 2
1 2 2 2 2 2
1 2 2 2
1 2 2

Note that φs is well defined for pairs (k, π) ∈ Pn where the last row of the
boxed two-modular diagram is shorter than the last column. Equivalently, φs is
well defined when s(π)−1

2 < ν�(k, π). Furthermore, φs is also well defined when
s(π)−1

2 = ν�(k, π), s(π) < 2k+1, and the last part of π is not overlined. The last
condition is necessary to maintain the restriction on overpartitions that only
the first part of any size may be overlined. If we define (ks, πs) = φs((k, π)),
we can note that ks = ν(π) − 1 and ν(πs) = k + 1. Moreover, the size of the
penultimate part of π determines ν�(φs(k, π)), so we consider separately the
cases where νs(π) = 1 and νs(π) > 1. Then, we have the following lemmas.
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Lemma 4.6. The map φs is a sign-reversing involution on the set {(k, π) ∈
Pn : k + ν(π) ≡ 0 (mod 2), s(π) < 2ν�(k, π) + 1, and νs(π) = 1}.

Proof. Let (k, π) ∈ Pn, such that k + ν(π) ≡ 0 (mod 2), s(π) < 2ν�(k, π) +
1, and νs(π) = 1. Let (ks, πs) = φs(k, π). Since νs(π) = 1, the second smallest
part of π, which determines ν�(ks, πs), will be larger than s(π) = s(πs), so
s(πs) < 2ν�(ks, πs)+1. Moreover, since s(π) < 2ν�(k, π)+1, νs(πs) = 1. Thus,
(ks, πs) ∈ Pn, ks+ν(πs) ≡ 0 (mod 2), s(πs) < 2ν�(ks, πs)+1, and νs(πs) = 1.
Finally, since ν(π) ≡ k �≡ k + 1 (mod 2) and ν(πs) = k + 1, ν(πs) �≡ ν(π)
(mod 2), so the map is sign-reversing. �
Lemma 4.7. The map φs is a sign-reversing involution on the set {(k, π) ∈
Pn : k+ν(π) ≡ 0 (mod 2), s(π) = 2ν�(k, π)+1, s(π) �= 2k+1, and νs(π) > 1}.

Proof. Let (k, π) ∈ Pn, such that k + ν(π) ≡ 0 (mod 2), s(π) = 2ν�(k, π) +
1, s(π) �= 2k + 1 and νs(π) > 1. Since s(π) �= 2k + 1, φs is well defined and
we can let (ks, πs) = φs(k, π). Since νs(π) > 1, 2ν�(ks, πs) + 1 = s(π) = s(πs).
Furthermore, because s(π) �= 2k + 1 and νs(π) > 1, ν�(k, π) < ν(π) − 1, we
have s(πs) = s(π) = 2ν�(k, π) + 1 < 2ν(π) − 1 = 2ks + 1. Moreover, since
s(π) = 2ν�(k, π) + 1, νs(πs) > 1. Thus, (ks, πs) ∈ Pn, ks + ν(πs) ≡ 0 (mod 2),
s(πs) = 2ν�(ks, πs) + 1, s(πs) �= 2k + 1, and νs(πs) > 1. Finally, as explained
above, the map is sign-reversing, because ν(πs) �≡ ν(π) (mod 2). �

Another variation of conjugation is φr, defined as φr(k, π) = conj ◦ φs ◦
conj(k, π), where conj is the conjugation map described in Sect. 4.1. Note
that this is the same as fixing the right-most column of the boxed 2-modular
diagram, and conjugating the remainder.

Example 4.8. We have φr(5, (11, 11, 9, 9, 7, 7, 7)) = (8, (17, 17, 15, 9)).

0 1 1 1 1 1
1 2 2 2 2 2
1 2 2 2 2 2
1 2 2 2 2
1 2 2 2 2
1 2 2 2
1 2 2 2
1 2 2 2

conj−−−−→

0 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2
1 2 2 2 2
1 2 2

φs−−−→

0 1 1 1 1
1 2 2 2 2
1 2 2 2 2
1 2 2 2 2
1 2 2 2 2
1 2 2 2
1 2 2 2
1 2 2 2
1 2 2

conj−−−−→
0 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2
1 2 2 2 2

Note that φr is well defined for pairs (k, π) ∈ Pn where the last row of
the boxed 2-modular diagram is longer than the last column. Equivalently, φr

is well defined when s(π)−1
2 > ν�(k, π). Thus, we obtain the following lemma.

Lemma 4.9. The map φr is a sign-reversing involution on the set {(k, π) ∈
Pn : k + ν(π) ≡ 0 (mod 2), s(π) > 2ν�(k, π)+1, and π has a part of size 2k −
1}.
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Proof. Let (k, π) ∈ Pn, such that k + ν(π) ≡ 0 (mod 2), s(π) > 2ν�(k, π) +
1, and π has a part of size 2k−1. Let (k′, π′) be the conjugate of (k, π). Then,
s(π′) < 2ν�(k′, π′) + 1 and νs(π) = 1, so we can apply Lemma 4.3. �

After applying Lemmas 4.4, 4.6, 4.7, and 4.9, we are left with four cases,
all of which have k + ν(π) ≡ 0 (mod 2).

• Case 1: The smallest part of π appears once and is equal to 2ν�(k, π)+1 �=
2k + 1.

• Case 2: The smallest part of π appears multiple times and is smaller than
2ν�(k, π) + 1.

• Case 3: The smallest part of π is greater than 2ν�(k, π) + 1 and π has no
part of size 2k − 1.

• Case 4: s(π) = 2ν�(k, π) + 1 = 2k + 1.

Note that applying φs to a pair (k, π) in Case 1 reduces the number
of distinct parts by one. Since the number of overpartitions of a given shape
depends on the number of distinct parts, reducing the number of distinct parts
by one requires us to restrict which parts of π may be overlined. The next two
lemmas provide the details of dividing Case 1 into two halves by considering
whether or not the smallest part is overlined.

Lemma 4.10. There is a sign-reversing bijection between the pairs in Case 1
where the smallest part is not overlined and the pairs in Case 2.

Proof. Let (k, π) be a pair in Case 1 where the smallest part of π is not
overlined. Since the smallest part of π is not overlined, φs is well defined. Thus,
let (ks, πs) = φs(k, π). Since νs(π) = 1, s(πs) < 2ν�(ks, πs) + 1. Moreover,
because s(π) = 2ν�(k, π) + 1, νs(πs) > 1. Therefore, (ks, πs) is in Case 2.

Since φs is its own inverse, we can take a pair (k2, π2) in Case 2 and
apply φs to find a pair in Case 1. Because π2 has more than one appearance
of the smallest part, the last part will not be overlined, so the smallest part of
φs(k2, π2) will not be overlined. �
Lemma 4.11. There is a sign-reversing bijection between the pairs in Case 1,
where the smallest part is overlined, and the pairs in Case 3.

Proof. Note that conjugation is a sign-preserving bijection between the pairs
in Case 2 and the pairs in Case 3. Thus, we can remove the overline on the
smallest part of π, apply φs, and take the conjugate to obtain a sign-reversing
bijection between the pairs in Case 1, where the smallest part is overlined, and
the pairs in Case 3. �

Now, the only pairs left are those in Case 4. These occur exactly when
n = k + |π| = 2k(k + 1), proving Theorem 3.1.

5. Generalizations

First, we note that all of our maps preserve the number of boxes containing a
1 in our diagrams. Furthermore, this number of 1s is exactly k + ν(π). Thus,
if we let z count the number of 1s in the diagram, we obtain a generalization:
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Theorem 5.1.
∞∑

n=0

(zq; q2)nznqn

(−zq; q2)n+1
=

∞∑

n=0

(−1)nz2nq2n(n+1).

Theorem 1.1 is the case z = 1 of this generalization. Additionally, we
can generalize boxed two-modular diagrams as boxed m-modular diagrams by
replacing the 2s in the diagram with m’s and all 1s with r’s to allow parts
of size r (mod m) for some fixed 0 ≤ r < m. Then, we obtain the following
generalization:
Theorem 5.2.

∞∑

n=0

(zqr; qm)nznqrn

(−zqr; qm)n+1
=

∞∑

n=0

(−1)nz2nqn(mn+2r),

Theorem 5.2 yields Theorem 1.1 when z = 1, m = 2, and r = 1. Analyt-
ically, Theorem 5.2 follows from the Rogers–Fine identity.

6. Further Work

This work allows us to obtain a similar combinatorial interpretation for another
one of Ramanujan’s identities.
Theorem 6.1. (Ramanujan) If f(q) is defined by (1.1), then for |q| < 1:

∞∑

k=0

qk(q; q2)k

(−q; q)2k+1
= f(q3).

We can interpret Theorem 6.1 in terms of pairs (k, π) ∈ P ′
n where P ′

n

contains all pairs (k, π) where k ∈ Z≥0, π is an overpartition into parts of size
≤ 2k+1 where all overlined parts are odd and of size ≤ 2k−1, and k+ |π| = n.
We count each pair with weight (−1)ν(π).
Theorem 6.2. Let p′

0(n) (resp. p′
e(n)) be the number of pairs (k, π) ∈ P ′

n where
π has an odd number (resp. even number) of parts. Then, for n ≥ 0:

p′
e(n) − p′

o(n) =

{
(−1)k, if n = 3k(k+1)

2 ,

0, otherwise.

Due to the presence of even parts in the partition, a bijective proof of
Theorem 6.2 appears to be more difficult than the proof of Theorem 3.1 and
would be a welcome contribution. We suspect that the involution necessary for
a bijective proof of Theorem 6.2 will fix pairs (k, (2k +2k − 1+ · · · +(k +1))).

Acknowledgements

The author would like to thank Bruce Berndt for suggesting this project, and
also thank Frank Garvan for suggesting Theorem 5.1 and Dennis Eichhorn for
his many helpful comments.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

232



False Theta Function 587

References

[1] Alladi, K.: A partial theta identity of Ramanujan and its number-theoretic
interpretation. Ramanujan J. 20(3), 329–339 (2009). https://doi.org/10.1007/
s11139-009-9177-x

[2] Alladi, K.: A combinatorial study and comparison of partial theta identities of
Andrews and Ramanujan. Ramanujan J. 23(1-3), 227–241 (2010). https://doi.
org/10.1007/s11139-009-9188-7

[3] Andrews, G.E.: Partitions: Yesterday and Today. New Zealand Mathematical
Society, Wellington, New Zealand (1979)

[4] Andrews, G.E.: Ramanujan’s “lost” notebook. I. Partial θ-functions. Adv. Math.
41(2), 137–172 (1981). https://doi.org/10.1016/0001-8708(81)90013-X

[5] Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook, Part I. , Springer,
New York pp 229–331 (2005)

[6] Andrews, G.E.: Partitions, Durfee symbols, and the Atkin–Garvan moments of
ranks. Inventiones mathematicae 169(1), 37–73 (2007). https://doi.org/10.1007/
s00222-007-0043-4

[7] Andrews, G.E., Warnaar, S.O.: The Bailey transform and false theta functions.
Ramanujan J. 14(1), 173–188 (2007)

[8] Andrews, G.E.: Integer Partitions with Even Parts Below Odd Parts and the
Mock Theta Functions. Ann. comb. 22(3), 433–445. https://doi.org/10.1007/
s00026-018-0398-9

[9] Berndt, B.C., Kim, B., Yee, A.J.: Ramanujan’s lost notebook: combinatorial
proofs of identities associated with Heine’s transformation or partial theta func-
tions. J. Combin. Theory Ser. A 117(7), 957–973 (2010). https://doi.org/10.
1142/S179304211000306X

[10] Berndt, B.C., Yee, A.J.: Combinatorial proofs of identities in Ramanujan’s lost
notebook associated with the Rogers-Fine identity and false theta functions.
Ann. Comb. 7(4), 409–423 (2003). https://doi.org/10.1007/s00026-003-0194-y

[11] Chu, W., Zhang, W.: Bilateral Bailey lemma and false theta functions.
Int. J. Number Theory 6(3), 515–577 (2010). https://doi.org/10.1142/
S179304211000306X
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Abstract.We establish an algorithm for producing formulas for p(n,m,N),
the function enumerating partitions of n into at most m parts with no
part larger than N . Recent combinatorial results of H. Hahn et al. on
a collection of partition identities for p(n, 3, N) are considered. We offer
direct proofs of these identities and then place them in a larger context
of the unimodality of Gaussian polynomials

[
N+m

m

]
whose coefficients are

precisely p(n,m,N). We give complete characterizations of the maximal

coefficients of
[
M
3

]
and

[
M
4

]
. Furthermore, we prove a general theorem on

the period of quasipolynomials for central/maximal coefficients of Gauss-
ian polynomials. We place some of Hahn’s identities into the context of
some known results on differences of partitions into at most m parts,
p(n,m), which we then extend to p(n,m,N).
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1. Prologue

There is no question that George Andrews knows his mathematics. He also
knows his mathematicians, his students in particular. The origins of this paper
begin with the following message sent by George Andrews to the fourth author.

It occurred to me that you might think about applying your methods
to the coefficients in the Gaussian polynomial (i.e. p(j,k,n)). Given
the success of Hahn et al., this seems like a likely venture.

Best wishes, George
email, 6/7/2017

A. Hernandez was partially supported by the US National Science Foundation DUE-1458830.
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As happy as we are that Professor Andrews knows us, we are ever more thank-
ful that we know him.

2. Introduction

Along with the celebrated Hardy–Ramanujan [19] asymptotic formula for the
unrestricted partition function, given by

p(n) ∼ eπ
√

2n
3

4n
√

3
as n → ∞, formulas for partition functions remain at the leading edge of
research. In this paper, we introduce a very natural way of producing formulas
for p(n,m,N), the function that enumerates partitions of n into at most m
parts with no part larger than N . For example, following the methods in this
paper, the formula for p(12k+2, 4, 12j+5) obtained after a few straightforward
computations:

p(12k + 2, 4, 12j + 5) = 2
(
k+3
3

)
+ 39

(
k+2
3

)
+ 30

(
k+1
3

)
+
(
k
3

)− 41
(
k+2−j

3

)

− 194
(
k+1−j

3

)− 53
(
k−j
3

)
+ 2
(
k+2−2j

3

)
+ 160

(
k+1−2j

3

)

+ 250
(
k−2j

3

)
+ 20

(
k−1−2j

3

)− 16
(
k+1−3j

3

)− 173
(
k−3j

3

)

− 98
(
k−1−3j

3

)− (k−2−3j
3

)
+ 15

(
k−4j

3

)

+ 48
(
k−1−4j

3

)
+ 9
(
k−2−4j

3

)
.

With a computer algebra program, one might compute p(420k + 297, 7, 420j),
which begins with 248893190

(
k+6
6

)
+ 40291579602

(
k+5
6

)
+ · · · and concludes

approximately 50 terms later with · · · − 8212122234
(
k+1−7j

6

)− 1805085
(
k−7j

6

)
.

The techniques employed in this paper lead us to a complete character-
ization of the maximal coefficients of all Gaussian polynomials of the form[
N+3
3

]
in Sect. 4. This characterization is complete in terms of quantity and

quality. For example, we prove that for � ≥ 0, there are exactly three largest
coefficients of

[
4�+1
3

]
, and they are p(6� − 4, 3, 4� − 2), p(6� − 3, 3, 4� − 2)

and p(6� − 2, 3, 4� − 2) and that they are equal to 2�2. We go on to char-
acterize the maximal coefficients of

[
N+4
4

]
and then establish a general the-

orem on the period of quasipolynomials for maximal coefficients of Gaussian
polynomials in Sect. 5. Section 6 details a general result on the difference
p(n,m,N) − p(n − 1,m,N − 1).

Despite the fact that the generating function for p(n,m,N) is the well-
known Gaussian polynomial denoted by

[
N+m

m

]
, the authors could find very

little information on formulas for p(n,m,N). However, a Hardy–Ramanujan
formula can be found in [1] and formulas based on Sylvester’s “waves” can
be found in [24]. Further asymptotic behavior of the coefficients of Gaussian
polynomials can be found in [26]. Although Sylvester [27] was the first to
prove the unimodality of Gaussian polynomials, we make special mention of
Kathleen O’Hara’s celebrated constructive proof of unimodality [22]. Recent
results on strict unimodality may be found in [8] and [23].
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In this paper, we will also encounter the function p(n,m) which enu-
merates partitions of n into at most m parts. Unlike p(n,m,N), formulas for
p(n,m) are plentiful. Many formulas for specific small values of m are cat-
alogued in [12,13,15,21]. Andrews [3] notes several varieties of formulas for
p(n, 4). The simplest among these may be the 1896 result of Glösel [14]:

p(n, 4) =
⌊⌊n + 4

2

⌋2(
3
⌊n + 9

2

⌋
−
⌊n + 10

2

⌋) 1
36

⌉
, (2.1)

where �·� is the nearest integer function. In [25], one will find a computer
algebra (Maple) package that “completely automatically discovers, and then
proves, explicit expressions . . . for p(n,m) for any desired m” in similar fashion
to (2.1).

The methods in this paper can also be applied to compute formulas for
p(n,m), although the resulting formulas are of a different nature than (2.1)
and those in the previously cited references. Our methods come from a novel
manipulation of generating functions and q-series initially informed by the
arithmetic of E. Ehrhart’s polyhedral combinatorics [9–11]. In short, we create
a piece-wise polynomial, otherwise known as a quasipolynomial, and our results
follow after a bit of arithmetic.

Definition 2.1. A function f(n) is a quasipolynomial if there exist d polynomi-
als f0(n), . . . , fd−1(n), such that

f(n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f0(n), if n ≡ 0 (mod d),
f1(n), if n ≡ 1 (mod d),
...

...
fd−1(n), if n ≡ d − 1 (mod d),

for all n ∈ Z. The polynomials fi are called the constituents of f and the
number of them, d, is the period of f .

The formulas which we present for p(n, 3, N) and p(n, 3) will be displayed
following the format of Definition 2.1.

We will express these formulas in a binomial basis
(
a
b

)
and/or a monomial

basis αkn+βkn−1+· · ·+ωk+z, as appropriate, because there is geometric and
combinatorial meaning inferred from each format. The accompanying Ehrhart
Theory and polyhedral geometry will not be considered beyond just a few
scattered comments in this paper. However, the geometric implications could
be of significant interest and may be considered in future research.

Breuer’s paper [6] is a very nice and comprehensive introduction to
Ehrhart’s ideas and [7] features an exploration of the deeper geometric, alge-
braic, and combinatorial mathematics related to partitions.
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3. Background Information

The generating functions for the partition functions p(n,m) and p(n,m,N)
are well known:

∞∑

n=0

p(n,m)qn =
1

(1 − q)(1 − q2) · · · (1 − qm)
=

1
(q; q)m

, (3.1)

mN∑

n=0

p(n,m,N)qn =
(q; q)N+m

(q; q)m(q; q)N
=

(qN+1; q)m

(q; q)m
=
[
N + m

m

]
. (3.2)

For n < 0, we agree that p(n,m) = p(n,m,N) = 0 and whenever n > Nm,
p(n,m,N) = 0.

Gaussian polynomials
[
N+m

m

]
are q-analogues of binomial coefficients. A

proof that
[
N+m

m

]
is a polynomial can be found in Chapter 3 of [2]. Also, in

Chapter 14 of [2], one can find a small table of coefficients for a selection of
Gaussian polynomials.

We require the following definition.

Definition 3.1. Let lcm(m) denote the least common multiple of the numbers
1, 2, 3, . . . ,m.

For example, lcm(3) = 6, lcm(4) = 12, lcm(5) = 60, etc.

3.1. Quasipolynomials for p(n,m)

Because it is somewhat simpler, we begin with p(n,m). Our procedure is to
recast the generating function for p(n,m) as the product of a polynomial and
a generating function for binomial coefficients:

∞∑

n=0

p(n,m)qn =
1

(q; q)m
=

1
(q; q)m

×
(

(1−q lcm(m))m

(q;q)m

)

(
(1−q lcm(m))m

(q;q)m

)

=

∏m
j=1

∑ lcm(m)−j
j

i=0 qij

(1 − q lcm(m))m

=
m∏

j=1

lcm(m)−j
j∑

i=0

qij ×
∞∑

k=0

(
k + m − 1

m − 1

)
q lcm(m)k

= Em(q) ×
∞∑

k=0

(
k + m − 1

m − 1

)
q lcm(m)k. (3.3)

The penultimate equality in (3.3) comes from the generating function for bino-
mial coefficients:

1
(1 − q)b

=
∑

a≥0

(
a + b − 1

b − 1

)
qa,
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and the final equality is simply introducing some notation:

Em(q) =
m∏

j=1

lcm(m)−j
j∑

i=0

qij . (3.4)

To establish a quasipolynomial and obtain formulas for p(n,m), one fixes m
and then proceeds to multiply and collect like terms in the far right side of
(3.3). With the exponent on q being lcm(m)k in the far right side of (3.3),
it is natural to set n = lcm(m)k + r for 0 ≤ r < lcm(m) and expect a
quasipolynomial of period lcm(m).

As a worked example and because we will use this information later in
Sect. 6.2, we compute the quasipolynomial for p(n, 3):

∞∑

n=0

p(n, 3)qn =
1

(q; q)3
= E3(q) ×

∑

k=0

(
k + 2

2

)
q6k.

Noting that

E3(q)=1+q+2q2+3q3+4q4+5q5+4q6+5q7 + 4q8+3q9+2q10+q11+q12,

we compute for instance, the formula for p(6k + 1, 3):
∞∑

k=0

p(6k + 1, 3)q6k+1 =
(
q + 5q7

)×
∞∑

k=0

(
k + 2

2

)
q6k

=
∞∑

k=0

((
k + 2

2

)
+ 5
(

k + 1
2

))
q6k+1. (3.5)

Hence

p(6k + 1, 3) =
(

k + 2
2

)
+ 5
(

k + 1
2

)
= 3k2 + 4k + 1.

Multiplying and collecting like terms five more times give us the complete
quasipolynomial for p(n, 3) displayed below:

p(n, 3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(6k, 3) = 1
(
k+2
2

)
+ 4
(
k+1
2

)
+ 1
(
k
2

)
= 3k2 + 3k + 1,

p(6k + 1, 3) = 1
(
k+2
2

)
+ 5
(
k+1
2

)
= 3k2 + 4k + 1,

p(6k + 2, 3) = 2
(
k+2
2

)
+ 4
(
k+1
2

)
= 3k2 + 5k + 2,

p(6k + 3, 3) = 3
(
k+2
2

)
+ 3
(
k+1
2

)
= 3k2 + 6k + 3,

p(6k + 4, 3) = 4
(
k+2
2

)
+ 2
(
k+1
2

)
= 3k2 + 7k + 4,

p(6k + 5, 3) = 5
(
k+2
2

)
+ 1
(
k+1
2

)
= 3k2 + 8k + 5.

(3.6)

3.2. Quasipolynomials for p(n,m,N)

Following the notation Em(q) in (3.4), for Gaussian polynomials, we set

(qN+1; q)m = Gm,N (q) (3.7)
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and write
[
N + m

m

]
=

mN∑

n=0

p(n,m,N)qn

= Gm,N (q) × Em(q) ×
∞∑

k=0

(
k + m − 1

m − 1

)
q lcm(m)k. (3.8)

Despite the fact that we are expressing the Gaussian polynomial as the
product of a polynomial and a power series, the procedure for computing a
quasipolynomial for p(n,m,N) is the same as it was for p(n,m). After setting

n = lcm(m)k + r

for 0 ≤ r < lcm(m) and

N = lcm(m)j + t

for 0 ≤ t < lcm(m), we multiply and collect like terms in the right side of
(3.8). Because there are lcm(m) choices for N in Gm,N and there are lcm(m)
constituents part and parcel with Em(q), the natural quasipolynomial in two
variables for p(n,m,N) consists of lcm(m)2 constituents.

We compute the 36 constituents of the quasipolynomial for p(n, 3, N):
[
N + 3

3

]
=

3N∑

n=0

p(n, 3, N)qn =
(q; q)N+3

(q; q)3(q; q)N

= G3,N (q) × E3(q) ×
∞∑

k=0

(
k + 2

2

)
q6k. (3.9)

We expand G3,N (q) × E3(q) below:

G3,N (q) × E3(q)

= 1 + q + 2q2 + 3q3 + 4q4 + 5q5 + 4q6 + 5q7 + 4q8 + 3q9 + 2q10 + q11 + q12

− q1+N − 2q2+N − 4q3+N − 6q4+N − 9q5+N − 12q6+N − 13q7+N

− 14q8+N − 13q9+N − 12q10+N − 9q11+N − 6q12+N − 4q13+N − 2q14+N

− q15+N + q3+2N + 2q4+2N + 4q5+2N + 6q6+2N + 9q7+2N + 12q8+2N

+ 13q9+2N + 14q10+2N + 13q11+2N + 12q12+2N + 9q13+2N + 6q14+2N

+ 4q15+2N + 2q16+2N + q17+2N − q6+3N − q7+3N − 2q8+3N − 3q9+3N

− 4q10+3N − 5q11+3N − 4q12+3N − 5q13+3N − 4q14+3N − 3q15+3N

− 2q16+3N − q17+3N − q18+3N . (3.10)

Depending on N modulo 6 in (3.10), we establish the quasipolynomial for
p(n, 3, N). The 36 constituents for this quasipolynomial appear in Appendix
A and are referenced from there throughout the remainder of the paper.

We display one constituent followed by a definition as fuel for discussion.
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Example 3.2. Replacing N with 6j+4 in (3.10), expanding G3,6j+4(q)×E3(q),
and selecting exponents of the form n = 6k + 3 as one multiplies and collects
like terms, we obtain the following constituent:

p(6k + 3, 3, 6j + 4) = 3
(
k+2
2

)
+ 3
(
k+1
2

)− 9
(
k+1−j

2

)− 9
(
k−j
2

)
+ 9
(
k−2j

2

)

+ 9
(
k−1−2j

2

)− 3
(
k−1−3j

2

)− 3
(
k−2−3j

2

)
. (3.11)

Regarding the constituents of p(n,m,N), we adhere to a strict interpre-
tation of binomial terms.

Definition 3.3. Let a and b be natural numbers.
• Whenever a < b, then

(
a
b

)
= 0.

• Whenever a ≥ b, we allow the usual translation to the monomial basis:(
a
b

)
= a!

b!(a−b)! .

The immediate reason for this comes from our q-series arithmetic where
we recast the standard generating function for p(n,m,N) from an index of n to
a new index of k for k ≥ 0 and the fact that N is non-negative. Another reason
for this interpretation comes from the polyhedral geometry in which a term
like 9

(
k−2j

2

)
in (3.11) indicates a certain “tiling” of a slice of a certain partition

cone. See [6,7] for more information. There are partition theoretic interpreta-
tions for some negative variables when it comes to theorems of combinatorial
reciprocity [5].

4. A Characterization of the Maximal Coefficients of
[
N+3

3

]

4.1. Motivation from Recent Results

We are motivated by the following results of Hahn et al. in [17] and [18].

Theorem 4.1 ([17]). For any integer � ≥ 1, one has:

p(6� − 3, 3, 4� − 2) − p(6� − 4, 3, 4� − 2) = 0, (4.1)

p(6�, 3, 4�) − p(6� − 1, 3, 4�) = 1, (4.2)

p(6� − 3, 3, 4� − 1) − p(6� − 4, 3, 4� − 1) = 1, (4.3)

p(6�, 3, 4� + 1) − p(6� − 1, 3, 4� + 1) = 1. (4.4)

Theorem 4.2 ([18]). For any integer � ≥ 1, one has:

p(6�, 3, 4�) − p(6� − 3, 3, 4� − 1) = � + 1, (4.5)

p(6� − 1, 3, 4�) − p(6� − 4, 3, 4� − 1) = � + 1, (4.6)

p(6� + 3, 3, 4� + 2) − p(6�, 3, 4� + 1) = � + 1, (4.7)

p(6� + 2, 3, 4� + 2) − p(6� − 1, 3, 4� + 1) = � + 2. (4.8)

Theorem 4.1 was first established in [17] while working on detection
of subgroups of GLn by representations and are part of Langlands’ beyond
endoscopy proposal [16]. Combinatorial proofs of both theorems appear in
[18].
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Notice that both Theorem 4.1 and Theorem 4.2 deal with coefficients
near or at the middle of Gaussian polynomials

[
N+3
3

]
. It is possible to directly

verify each line of Theorem 4.1 simply by referring to the relevant constituents
from the quasipolynomial for p(n, 3, N) in Appendix A. Instead, we prove a
result that places Theorem 4.1 in the context of the unimodality of all Gauss-
ian polynomials of the form

[
N+3
3

]
. The first part of the characterization is

established by Theorem 4.6 which, depending on N , describes how many max-
imal coefficients for

[
N+3
3

]
which one should expect. The second part of this

characterization is found in Corollary 4.8 in which we create a quasipolynomial
of period 4 for the maximal coefficients of

[
N+3
3

]
. We state analogous results

for
[
N+4
4

]
in Sect. 4.4.

4.2. Enumerating the Maximal Coefficients of
[N+3

3

]

We require the following definitions before we can prove our results.

Definition 4.3. A polynomial

P (q) = a0 + a1q + a2q
2 + · · · + adq

d

of degree d is said to be reciprocal if for each i, one has ai = ad−i.

Definition 4.4. A polynomial

P (q) = a0 + a1q + a2q
2 + · · · + adq

d

of degree d is called unimodal if there exists m, such that

a0 ≤ a1 ≤ a2 ≤ · · · ≤ am ≥ am+1 ≥ am+2 ≥ · · · ≥ ad.

Because the coefficients of Gaussian polynomials are positive, unimodal
and reciprocal, it follows that the value of the central coefficient(s) of a Gauss-
ian polynomial will be greater than or equal to all the other coefficients.

Remark 4.5. Whenever deg
[
N+m

m

]
is odd, there will be a pair of central

coefficients. Otherwise, there will be a single central coefficient. As such,
p
(�mN

2 �,m,N
)

is one of the central and hence one of the maximal coeffi-
cient(s) of

[
N+m

m

]
, where �·� is the nearest integer function.

Theorem 4.6. There are at most four but never exactly two maximal coeffi-
cients for any Gaussian polynomial of the form

[
N+3
3

]
.

Proof. We will prove Theorem 4.6 in four cases. We will show that for k ≥ 0,
Case 1. There is exactly one largest coefficient for Gaussian polynomials

of the form
[
4k+3

3

]
.

Case 2. There are exactly four largest coefficients for Gaussian polyno-
mials of the form

[
4k+4

3

]
.

Case 3. There are exactly three largest coefficients for Gaussian polyno-
mials of the form

[
4k+5

3

]
.

Case 4. There are exactly four largest coefficients for Gaussian polyno-
mials of the form

[
4k+6

3

]
.

Case 1 is proved entirely from (4.2) of Theorem 4.1. We will make use of
(4.1), from Theorem 4.1, and the quasipolynomial for p(n, 3, N) in Appendix
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A to prove Case 3. The remaining Cases 2 and 4 are verified in the same way
as Case 3 and are left to the reader.

We now treat Case 1. With deg
[
4k+3

3

]
= 12k, there are exactly 12k + 1

terms in these Gaussian polynomials, the central of which is p(6k, 3, 4k)q6k.
For k ≥ 0, we will show:

p(6k − 1, 3, 4k) < p(6k, 3, 4k) > p(6k + 1, 3, 4k).

We note that Case 1 is satisfied in the instance of k = 0 where we have
[
3
3

]
= 1.

Now, by (4.2) of Theorem 4.1 and the reciprocity of Gaussian polynomials, we
immediately obtain:

p(6�, 3, 4�) − p(6� − 1, 3, 4�) = 1,

p(6�, 3, 4�) − p(6� + 1, 3, 4�) = 1.
(4.9)

Replacing � with k in (4.9), we observe that

p(6k − 1, 3, 4k) < p(6k, 3, 4k) > p(6k + 1, 3, 4k).

Hence, Case 1 is proved.
We prove Case 3 by showing

p(6k + 1, 3, 4k + 2) < p(6k + 2, 3, 4k + 2) = p(6k + 3, 3, 4k + 2)

= p(6k + 4, 3, 4k + 2) > p(6k + 5, 3, 4k + 2).

Since deg
[
4k+5

3

]
= 12k + 6, we find that the central coefficient of

[
4k+5

3

]
is:

p(6k + 3, 3, 4k + 2). (4.10)

Because Gaussian polynomials are reciprocal, we have:

p(6k + 2, 3, 4k + 2) = p(6k + 4, 3, 4k + 2). (4.11)

Setting k = � − 1 in both (4.10) and (4.11) and taking the result of (4.1) from
Theorem 4.1, we obtain:

p(6� − 4, 3, 4� − 2) = p(6� − 3, 3, 4� − 2) = p(6� − 2, 3, 4� − 2),

and hence

p(6k + 2, 3, 4k + 2) = p(6k + 3, 3, 4k + 2) = p(6k + 4, 3, 4k + 2). (4.12)

We now show that these three coefficients are maximal by proving:

p(6k + 4, 3, 4k + 2) − p(6k + 5, 3, 4k + 2) = 1, (4.13)

which, because of the reciprocity of the coefficients of Gaussian polynomials,
will simultaneously show:

p(6k + 2, 3, 4k + 2) − p(6k + 1, 3, 4k + 2) = 1. (4.14)

We prove (4.13), hence (4.14), by making use of the quasipolynomial for
p(n, 3, N) in Appendix A. We have three cases to consider in (4.13): 4k + 2 =
6j, 6j + 2 and 6j + 4. For the case 4k + 2 = 6j, we set k = 3f + 1, so that we
may rewrite (4.13) for f ≥ 0 as:

p(6(3f + 1) + 4, 3, 6(2f + 1)) − p(6(3f + 1) + 5, 3, 6(2f + 1)). (4.15)
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Turning to (A.5) and (A.6), we compute (4.15):

p(6(3f + 1) + 4, 3, 6(2f + 1)) − p(6(3f + 1) + 5, 3, 6(2f + 1))

= 4
(
3f+3

2

)
+ 2
(
3f+2

2

)− 6
(
f+2
2

)− 12
(
f+1
2

)
+ 2
(−f+1

2

)
+ 14

(−f
2

)

+
(−f−1

2

)− 4
(−3f−1

2

)− 2
(−3f−2

2

)− 5
(
3f+3

2

)− (3f+2
2

)
+ 9
(
f+2
2

)

+ 9
(
f+1
2

)− 4
(−f+1

2

)− 13
(−f

2

)− (−f−1
2

)
+ 5
(−3f−1

2

)− (−3f−2
2

)

= −(3f+3
2

)
+
(
3f+2

2

)
+ 3
(
f+2
2

)− 3
(
f+1
2

)− 0

= 1. (4.16)

For the case 4k+2 = 6j+2, we set k = 3f and rewrite (4.13) with the relevant
constituents (A.17) and (A.18), so that for f ≥ 0, we compute

p(6(3f) + 4, 3, 6(2f) + 2) − p(6(3f) + 5, 3, 6(2f) + 2) = 1. (4.17)

For the case 4k + 2 = 6j + 4, we set k = 3f + 2 in (A.29) and (A.30) and
following (4.17), we compute

p(6(3f + 2) + 4, 3, 6(2f + 1) + 4) − p(6(3f + 2) + 5, 3, 6(2f + 1) + 4) = 1.
(4.18)

Hence, (4.16), (4.17) and (4.18) establish (4.13) and, simultaneously, by reci-
procity of coefficients, (4.14). Hence, combining (4.12), (4.13) and (4.14), we
obtain:

p(6� − 5, 3, 4� − 2) < p(6� − 4, 3, 4� − 2) = p(6� − 3, 3, 4� − 2)

= p(6� − 2, 3, 4� − 2) > p(6� − 1, 3, 4� − 2).

Thus, Case 3 is settled.
Case 2 and Case 4 are similar to Case 3 and can be verified by the reader

to complete the proof of Theorem 4.6. �

4.3. Formulas for the Maximal Coefficients of
[N+3

3

]

In this section, we establish a quasipolynomial for the maximal coefficients of
Gaussian polynomials

[
N+3
3

]
.

Definition 4.7. For non-negative integers m and N , let Mm(N) denote the
function whose value is equal to the maximal coefficient(s) of the Gaussian
polynomial

[
N+m

m

]
. Note that for all N , M0(N) = 1.

This is a corollary to Theorem 4.6.

Corollary 4.8. For � ≥ 0, the quasipolynomial for M3(N) has period 4 and is
given by:

M3(4� − 2) =

⎧
⎨

⎩

p(6� − 4, 3, 4� − 2)
p(6� − 3, 3, 4� − 2)
p(6� − 2, 3, 4� − 2)

⎫
⎬

⎭ = 2
(

� + 1
2

)
+ 2
(

�

2

)
= 2�2, (4.19)

M3(4� − 1) =

⎧
⎪⎪⎨

⎪⎪⎩

p(6� − 3, 3, 4� − 1)
p(6� − 2, 3, 4� − 1)
p(6� − 1, 3, 4� − 1)
p(6�, 3, 4� − 1)

⎫
⎪⎪⎬

⎪⎪⎭
= 3
(

� + 1
2

)
+
(

�

2

)
= 2�2 + �, (4.20)
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M3(4�) = p(6�, 3, 4�) =
(

� + 2
2

)
+ 2
(

� + 1
2

)
+
(

�

2

)
= 2�2 + 2� + 1,

(4.21)

M3(4� + 1) =

⎧
⎪⎪⎨

⎪⎪⎩

p(6�, 3, 4� + 1)
p(6� + 1, 3, 4� + 1)
p(6� + 2, 3, 4� + 1)
p(6� + 3, 3, 4� + 1)

⎫
⎪⎪⎬

⎪⎪⎭
=
(

� + 2
2

)
+ 3
(

� + 1
2

)
= 2�2 + 3� + 1.

(4.22)

Corollary 4.8 allows for a straightforward proof of Theorem 4.2 which is
completed later in Sect. 6.1.

We prove only (4.21) from Corollary 4.8. With the multiplicity of the
maximal coefficients established by Theorem 4.6, the remainder of Corollary
4.8 is proved simply by referring to the quasipolynomial and is left to the
reader.

Proof. For (4.21), we have the following three cases: 4� = 6j, 6j +2 and 6j +4.
For the case 4� = 6j, we set � = 3f , so that we may rewrite p(6�, 3, 4�) as
p(6(3f), 3, 6(2f)). We now refer to (A.1) in the quasipolynomial for p(n, 3, N)
and compute:

p(6(3f), 3, 6(2f)) =
(
3f+2

2

)
+ 4
(
3f+1

2

)
+
(
3f
2

)− 12
(
f+1
2

)− 6
(
f
2

)
+ 6
(−f+1

2

)

+ 12
(−f

2

)− (−3f+1
2

)− 4
(−3f

2

)− (−3f−1
2

)

= 18f2 + 6f + 1.

Since � = 3f , we replace f with �/3 to arrive at:

p(6�, 3, 4�) = 2�2 + 2� + 1. (4.23)

For the case 4� = 6j+2, we set � = 3f +2, so that we may rewrite p(6�, 3, 4�) as
p(6(3f+2), 3, 6(2f+1)+2) and working from the constituent for p(6k, 3, 6j+2),
we compute:

p(6(3f + 2), 3, 6(2f + 1) + 2)

=
(
3f+4

2

)
+ 4
(
3f+3

2

)
+
(
3f+2

2

)− 6
(
f+2
2

)− 12
(
f+1
2

)

+ 12
(−f

2

)
+ 6
(−f−1

2

)− (−3f−2
2

)− 4
(−3f−3

2

)− (−3f−4
2

)

= 18f2 + 30f + 13.

Since � = 3f + 2, we replace f with (� − 2)/3 to arrive at:

p(6�, 3, 4�) = 2�2 + 2� + 1. (4.24)

We finish the proof of (4.21) by considering the case 4� = 6j + 4. We set
� = 3f +1, so that we may rewrite p(6�, 3, 4�) as p(6(3f +1), 3, 6(2f)+ 4) and
working from the constituent for p(6k, 3, 6j + 4), we compute:

p(6(3f + 1), 3, 6(2f) + 4)

=
(
3f+3

2

)
+ 4
(
3f+2

2

)
+
(
3f+1

2

)− 2
(
f+2
2

)− 14
(
f+1
2

)− 2
(
f
2

)
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+ 2
(−f+1

2

)
+ 14

(−f
2

)
+ 2
(−f−1

2

)− (−3f
2

)− 4
(−3f−1

2

)− (−3f−2
2

)

= 18f2 + 18f + 5.

Since � = 3f + 1, we replace f with (� − 1)/3 to arrive at:

p(6�, 3, 4�) = 2�2 + 2� + 1. (4.25)

Since (4.23), (4.24), and (4.25) are equal, it follows that for � ≥ 0, the maximal
coefficient of the Gaussian polynomial

[
4�+3
3

]
is p(6�, 3, 4�) and is equal to

2�2 + 2� + 1 which proves (4.21) of Corollary 4.8. �

As an after-the-fact observation, we note that the quasipolynomial for
M3(N) goes hand-in-hand with the following generating function

∞∑

N=0

M3(N − 2)qN =
q2(1 + q3)

(1 − q)(1 − q2)(1 − q4)
. (4.26)

After applying the arithmetic from Sect. 3.1, (4.26) yields the same con-
stituents as Corollary 4.8 but without the full context of Theorem 4.6. Never-
theless, this would appear to be a very fruitful area of further inquiry.

4.4. A Characterization of the Maximal Coefficients of
[N+4

4

]

We offer the following results on maximal coefficients of
[
N+4
4

]
. Proofs are

omitted as they are done similarly to Theorem 4.6 and Corollary 4.8.

Theorem 4.9. The maximal coefficient of Gaussian polynomials of the form[
N+4
4

]
is unique except when N = 1 in which case there are exactly 5 coeffi-

cients, each of which is 1.

Corollary 4.10. For � ≥ 0, the quasipolynomial for M4(N) has period 6 and is
given by:

M4(6�) = p(12�, 4, 6�) =
(
�+3
3

)
+ 14

(
�+2
3

)
+ 20

(
�+1
3

)
+
(

�
3

)

= 6�3 +
15�2

2
+

7�

2
+ 1,

M4(6� + 1) = p(12� + 2, 4, 6� + 1) =
(
�+3
3

)
+ 20

(
�+2
3

)
+ 14

(
�+1
3

)
+
(

�
3

)

= 6�3 +
21�2

2
+

13�

2
+ 1,

M4(6� + 2) = p(12� + 4, 4, 6� + 2) = 3
(
�+3
3

)
+ 21

(
�+2
3

)
+ 12

(
�+1
3

)

= 6�3 +
27�2

2
+

21�

2
+ 3,

M4(6� + 3) = p(12� + 6, 4, 6� + 3) = 5
(
�+3
3

)
+ 23

(
�+2
3

)
+ 8
(
�+1
3

)

= 6�3 +
33�2

2
+

31�

2
+ 5,

M4(6� + 4) = p(12� + 8, 4, 6� + 4) = 8
(
�+3
3

)
+ 23

(
�+2
3

)
+ 5
(
�+1
3

)

= 6�3 +
39�2

2
+

43�

2
+ 8,
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M4(6� + 5) = p(12� + 10, 4, 6� + 5) = 12
(
�+3
3

)
+ 21

(
�+2
3

)
+ 3
(
�+1
3

)
,

= 6�3 +
45�2

2
+

57�

2
+ 12.

One cannot help, but notice that

p(12� + 6, 4, 6� + 2) ≡ p(12� + 10, 4, 6� + 5) ≡ 0 (mod 3).

And, similar to (4.26), we have:
∞∑

N=0

M4(N)qn =
(1 + q3)

(1 − q)(1 − q2)2(1 − q3)
. (4.27)

5. On the Period of Quasipolynomials for Maximal Coefficients
of
[
N+m

m

]

One might expect that the period of the corresponding quasipolynomial for
Mm(N) would naturally be lcm(m). However, Corollary 4.8 and Corollary 4.10
lead us to the following result.

Theorem 5.1. The quasipolynomial for Mm(N) has period: 2·lcm(m)
m .

We note that 2·lcm(m)
m ≤ lcm(m) for m ≥ 2, with equality for m = 2.

Proof. Beginning with Remark 4.5, we set N = lcm(m)j + b for 0 ≤ b ≤
lcm(m) − 1 and write:

p

(⌊mN

2

⌉
,m,N

)
= p

(
mlcm(m)j

2
+
⌊mN

2

⌉
,m, lcm(m)j + b

)
. (5.1)

Set

mlcm(m)j
2

+
⌊mN

2

⌉
= lcm(m)k + a

for 0 ≤ a ≤ lcm(m) − 1 and solve for j which depends on k to obtain:

j =
2
(
lcm(m)k + a −

⌊
mN
2

⌉)

mlcm(m)
. (5.2)

Now, set k = lcm(m)f
2 + i, for those i with |i| < lcm(m)

4 , such that

lcm(m)i + a −
⌊mN

2

⌉
= lcm(m)t

for some integer t ≥ 0. We are interested in only these k.
Setting

j =
2
(

lcm(m)f
2 + t

)

m
,
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we rewrite the left side of (5.1) as:

p

⎛

⎜⎜⎝
mlcm(m)

(
2
(

lcm(m)f
2 +t

)

m

)

2
+
⌊mN

2

⌉
,m, lcm(m)

⎛

⎝
2
(

lcm(m)f
2

+ t
)

m

⎞

⎠+ b

⎞

⎟⎟⎠ .

(5.3)

Writing
⌊mN

2

⌉
= xlcm(m) + r1

for 0 ≤ r1 ≤ lcm(m) − 1 and

b = x
2
(

lcm(m)f
2 + t

)

m
+ r2

for 0 ≤ r2 ≤ 2·lcm(m)
m − 1, we rewrite (5.3) as:

p

(
lcm(m)

(
lcm(m)f

2
+ t+ x

)
+ r1,m,

2 · lcm(m)

m

(
lcm(m)f

2
+ t+ x

)
+ r2

)
.

(5.4)

Finally, allowing

lcm(m)f
2

+ t + x = �,

we have

p

(⌊mN

2

⌉
,m,N

)
= p

(
lcm(m)� + r1,m,

2 · lcm(m)
m

� + r2

)
. (5.5)

Hence, quasipolynomials for Mm(N) have a period of length 2·lcm(m)
m . �

It can be shown that the quasipolynomial for M5(N) has period 24, and
curiously, for M6(N), the period is even shorter with length 20.

The 2·lcm(m)
m period of Mm(N) appears to extend well beyond the col-

lection of maximal/central coefficients of Gaussian polynomials. For example,
just as the period of M4(N) in Corollary 4.10 is 6, it can be shown that the
quasipolynomials for the coefficients that are one and two terms away from
the center of

[
N+4
4

]
also have a period of 6.

6. On the Difference p(n,m,N) − p(n − 1,m,N − 1)

In this section, we provide a direct proof of Theorem 4.2, which, having already
completed the relevant computations from the quasipolynomial in Appendix
A, is straightforward.

We are further motivated to extend known theorems on first differences
of p(n, 3) and p(n, 4) to p(n, 3, N) and p(n, 4, N) respectively after establishing
a generalization on first differences of p(n,m,N).
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6.1. Proof of Theorem 4.2

Proof. We first prove (4.5) of Theorem 4.2. Since both p(6�, 3, 4�) and p(6� −
3, 3, 4� − 1) from (4.5) are maximal coefficients of their respective Gaussian
polynomials, we use (4.21) and (4.20) from Corollary 4.8 to compute:

p(6�, 3, 4�) − p(6� − 3, 3, 4� − 1) = 2�2 + 2� + 1 − (2�2 + �) = � + 1, (6.1)

which verifies (4.5).
The proof of (4.6) is slightly different, because p(6� − 1, 3, 4�) and

p(6� − 4, 3, 4� − 1) are not central coefficients. However, (4.2) and (4.3) tell us
respectively, that p(6�, 3, 4�)− 1 = p(6�− 1, 3, 4�) and p(6�− 3, 3, 4�− 1)− 1 =
p(6� − 4, 3, 4� − 1), which together with (6.1) yields (4.6).

To prove (4.7), we replace � with � + 1 in p(6� − 3, 3, 4� − 2) in (4.19) to
obtain:

p(6� + 3, 3, 4� + 2) = 2�2 + 4� + 2. (6.2)

Computing the difference between (6.2) and (4.22) proves (4.7).
The proof of (4.8) is done similarly to (4.7) and completes the proof of

Theorem 4.2. �
Corollary 4.8 lets us expand Theorem 4.2 slightly. For example, with (4.5)

in mind, one has:

p(6�, 3, 4�) −

⎧
⎪⎪⎨

⎪⎪⎩

p(6� − 3, 3, 4� − 1)
p(6� − 2, 3, 4� − 1)
p(6� − 1, 3, 4� − 1)
p(6�, 3, 4� − 1)

⎫
⎪⎪⎬

⎪⎪⎭
= � + 1.

6.2. Known Results on First Differences of p(n, 3) and p(n, 4) are Extended
to p(n, 3, N) and p(n, 4, N)

Theorem 4.2 describes the differences of Gaussian polynomial coefficients
which are near the middle of their respective generating polynomials. What
can be said of related differences that are away from the middle of their gen-
erating polynomials? To answer this question, we consider Theorem 6.1 and
Theorem 6.2 on differences of partitions into three and four parts, respectively.
These theorems are proved combinatorially in [4]. Quasipolynomials allow for
direct proofs.

Theorem 6.1 ([4]). For k ≥ 0, one has:

p(6k + 1, 3) − p(6k, 3)
p(6k − 1, 3) − p(6k − 2, 3)
p(6k − 2, 3) − p(6k − 3, 3)

⎫
⎬

⎭ = p(2k − 1, 2),

p(6k + 3, 3) − p(6k + 2, 3)
p(6k + 2, 3) − p(6k + 1, 3)
p(6k, 3) − p(6k − 1, 3)

⎫
⎬

⎭ = p(2k, 2).

Theorem 6.2 ([4]). For k ≥ 0, one has:

p(2k − 3, 4) − p(2k − 4, 4) = p(k − 3, 3),
p(2k − 4, 4) − p(2k − 5, 4) = p(k − 2, 3).

249



604 A. Castillo et al.

We provide a new and very direct proof of Theorem 6.1 below.

Proof. Referring to the six constituents of the quasipolynomial for p(n, 3) in
(3.6), one computes:

p(6k + 1, 3)− p(6k, 3) = 3k2 + 4k + 1− (3k2 + 3k + 1)
p(6k − 1, 3)− p(6k − 2, 3) = 3k2 + 2k − (3k2 + k)
p(6k − 2, 3)− p(6k − 3, 3) = 3k2 + k − (3k2)

⎫
⎬

⎭ = k = p(2k − 1, 2)

and
p(6k + 3, 3)− p(6k + 2, 3) = 3k2 + 6k + 3− (3k2 + 5k + 2)
p(6k + 2, 3)− p(6k + 1, 3) = 3k2 + 5k + 2− (3k2 + 4k + 1)

p(6k, 3)− p(6k − 1, 3) = 3k2 + 4k + 1− (3k2 + 2k)

⎫
⎬

⎭ = k + 1 = p(2k, 2).

�

The direct proof of Theorem 6.2 follows from the 12 constituents of the
quasipolynomial for p(n, 4) and is left to the reader. A forthcoming paper by
the fifth author [20] will generalize the difference p(n,m)−p(n−1,m) in terms
of p(n,m − 1).

Motivated by Theorem 4.2, we extend Theorem 6.1 and Theorem 6.2
to the coefficients of Gaussian polynomials. The extensions are corollaries of
a general theorem, Theorem 6.3 below, that we state and prove and which
requires the q-binomial theorem:

(z; q)m =
m∑

h=0

[
m
h

]
(−1)hq

h(h−1)
2 zh. (6.3)

Theorem 6.3. For n < 2N + 2:

p(n,m,N) − p(n − 1,m,N − 1) = p(n,m) − p(n − 1,m).

Proof. We manipulate a difference of generating functions to show

p(n,m,N) − p(n − 1,m,N − 1) = p(n,m) − p(n − 1,m)

for all n < 2N + 2:
∞∑

n=0

(p(n,m,N) − p(n − 1,m,N − 1)) qn

=
(qN+1; q)m

(q; q)m
− q

(qN ; q)m

(q; q)m

=
(qN+1; q)m−1((1 − qm+N ) − q(1 − qN ))

(q; q)m

=

(qN+1; q)m−1(1 − q)

(
m+N−1∑

i=0

qi −
N∑

j=1

qj

)

(q; q)m

=

( ∞∑

n=0

(p(n,m) − p(n − 1,m)) qn

)
(qN+1; q)m−1

(
1 +

m−1∑

i=1

qN+i

)
.

(6.4)
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We apply the q-binomial theorem (6.3) to re-express (qN+1; q)m−1 in (6.4):

(qN+1; q)m−1

=
m−1∑

h=0

[
m − 1

h

]
q

h(h−1)
2 +h(N+1)

=
m−1∑

h=0

h(m−1−h)∑

i=0

(−1)hp(i, h,m − 1 − h)q
h(h−1)

2 +h(N+1)+i

= 1 −
m−2∑

j=0

qN+1+j +
m−1∑

h=2

h(m−1−h)∑

i=0

(−1)hp(i, h,m − 1 − h)q
h(h−1)

2 +h(N+1)+i.

(6.5)

Note that the following polynomial from (6.5), denoted by A(q), has degree
strictly greater than 2N + 2:

A(q) =
m−1∑

h=2

h(m−1−h)∑

i=0

(−1)hp(i, h,m − 1 − h)q
h(h−1)

2 +h(N+1)+i.

Now, we have:

(qN+1; q)m−1

(
1 +

m−1∑

i=1

qN+i

)

=

⎛

⎝1 − qN+1
m−2∑

j=0

qj + A(q)

⎞

⎠
(

1 + qN+1
m−2∑

i=0

qi

)

= 1 − q2N+2

⎛

⎝
m−2∑

j=0

qj

⎞

⎠
2

+ A(q) + qN+1
m−2∑

i=0

qiA(q). (6.6)

Therefore, the smallest non-zero power of q in (6.6) is 2N + 2, and Theorem
6.3 is proved. �

The cases for m = 3, 4 echo Theorem 6.1 and Theorem 6.2 and are left
to the reader to verify.

Corollary 6.4. For k < 2N−3
6 , one has:

p(6k + 1, 3, N) − p(6k, 3, N − 1)
p(6k − 1, 3, N) − p(6k − 1, 3, N − 1)
p(6k − 2, 3, N) − p(6k − 3, 3, N − 1)

⎫
⎬

⎭ = k = p(2k − 1, 2),

p(6k + 3, 3, N) − p(6k + 2, 3, N − 1)
p(6k + 2, 3, N) − p(6k + 1, 3, N − 1)
p(6k, 3, N) − p(6k − 1, 3, N − 1)

⎫
⎬

⎭ = k + 1 = p(2k, 2).

Corollary 6.5. For k < 2N−9
12 , one has:

p(2k − 3, 4, N) − p(2k − 4, 4, N − 1) = p(k − 3, 3),
p(2k − 4, 4, N) − p(2k − 5, 4, N − 1) = p(k − 2, 3).
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Appendix A. The 36 Constituents of the Quasipolynomial for
p(n, 3, N) Arranged by N (mod 6)

N = 6j

p(6k, 3, 6j) =
(k+2

2

)
+ 4

(k+1
2

)
+
(k
2

)− 12
(k+1−j

2

)− 6
(k−j

2

)
+ 6

(k+1−2j
2

)

+ 12
(k−2j

2

)− (k+1−3j
2

)− 4
(k−3j

2

)− (k−1−3j
2

)
(A.1)

p(6k + 1, 3, 6j) =
(k+2

2

)
+ 5

(k+1
2

)− (k+2−j
2

)− 13
(k+1−j

2

)− 4
(k−j

2

)

+ 9
(k+1−2j

2

)
+ 9

(k−2j
2

)− (k+1−3j
2

)− 5
(k−3j

2

)
(A.2)

p(6k + 2, 3, 6j) = 2
(k+2

2

)
+ 4

(k+1
2

)− 2
(k+2−j

2

)− 14
(k+1−j

2

)− 2
(k−j

2

)

+ 12
(k+1−2j

2

)
+ 6

(k−2j
2

)− 2
(k+1−3j

2

)− 4
(k−3j

2

)
(A.3)

p(6k + 3, 3, 6j) = 3
(k+2

2

)
+ 3

(k+1
2

)− 4
(k+2−j

2

)− 13
(k+1−j

2

)− (k−j
2

)
+
(k+2−2j

2

)

+ 13
(k+1−2j

2

)
+ 4

(k−2j
2

)− 3
(k+1−3j

2

)− 3
(k−3j

2

)
(A.4)

p(6k + 4, 3, 6j) = 4
(k+2

2

)
+ 2

(k+1
2

)− 6
(k+2−j

2

)− 12
(k+1−j

2

)
+ 2

(k+2−2j
2

)

+ 14
(k+1−2j

2

)
+ 2

(k−2j
2

)− 4
(k+1−3j

2

)− 2
(k−3j

2

)
(A.5)

p(6k + 5, 3, 6j) = 5
(k+2

2

)
+
(k+1

2

)− 9
(k+2−j

2

)− 9
(k+1−j

2

)
+ 4

(k+2−2j
2

)

+ 13
(k+1−2j

2

)
+
(k−2j

2

)− 5
(k+1−3j

2

)− (k−3j
2

)
(A.6)
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N = 6j + 1

p(6k, 3, 6j + 1) =
(k+2

2

)
+ 4

(k+1
2

)
+
(k
2

)− 9
(k+1−j

2

)− 9
(k−j

2

)
+ 2

(k+1−2j
2

)

+ 14
(k−2j

2

)
+ 2

(k−1−2j
2

)− 3
(k−3j

2

)− 3
(k−1−3j

2

)
(A.7)

p(6k + 1, 3, 6j + 1) =
(k+2

2

)
+ 5

(k+1
2

)− 12
(k+1−j

2

)− 6
(k−j

2

)
+ 4

(k+1−2j
2

)

+ 13
(k−2j

2

)
+
(k−1−2j

2

)− 4
(k−3j

2

)− 2
(k−1−3j

2

)
(A.8)

p(6k + 2, 3, 6j + 1) = 2
(k+2

2

)
+ 4

(k+1
2

)− (k+2−j
2

)− 13
(k+1−j

2

)− 4
(k−j

2

)

+ 6
(k+1−2j

2

)
+ 12

(k−2j
2

)− 5
(k−3j

2

)− (k−1−3j
2

)
(A.9)

p(6k + 3, 3, 6j + 1) = 3
(k+2

2

)
+ 3

(k+1
2

)− 2
(k+2−j

2

)− 14
(k+1−j

2

)− 2
(k−j

2

)

+ 9
(k+1−2j

2

)
+ 9

(k−2j
2

)− (k+1−3j
2

)− 4
(k−3j

2

)− (k−1−3j
2

)
(A.10)

p(6k + 4, 3, 6j + 1) = 4
(k+2

2

)
+ 2

(k+1
2

)− 4
(k+2−j

2

)− 13
(k+1−j

2

)− (k−j
2

)

+ 12
(k+1−2j

2

)
+ 6

(k−2j
2

)− (k+1−3j
2

)− 5
(k−3j

2

)
(A.11)

p(6k + 5, 3, 6j + 1) = 5
(k+2

2

)
+
(k+1

2

)− 6
(k+2−j

2

)− 12
(k+1−j

2

)
+
(k+2−2j

2

)

+ 13
(k+1−2j

2

)
+ 4

(k−2j
2

)− 2
(k+1−3j

2

)− 4
(k−3j

2

)
(A.12)

N = 6j + 2

p(6k, 3, 6j + 2) =
(k+2

2

)
+ 4

(k+1
2

)
+
(k
2

)− 6
(k+1−j

2

)− 12
(k−j

2

)
+ 12

(k−2j
2

)

+ 6
(k−1−2j

2

)− (k−1−3j
2

)− 4
(k−2−3j

2

)− (k−3−3j
2

)
(A.13)

p(6k + 1, 3, 6j + 2) =
(k+2

2

)
+ 5

(k+1
2

)− 9
(k+1−j

2

)− 9
(k−j

2

)
+
(k+1−2j

2

)

+ 13
(k−2j

2

)
+ 4

(k−1−2j
2

)− (k−3j
2

)− 5
(k−1−3j

2

)
(A.14)

p(6k + 2, 3, 6j + 2) = 2
(k+2

2

)
+ 4

(k+1
2

)− 12
(k+1−j

2

)− 6
(k−j

2

)
+ 2

(k+1−2j
2

)

+ 14
(k−2j

2

)
+ 2

(k−1−2j
2

)− 2
(k−3j

2

)− 4
(k−1−3j

2

)
(A.15)

p(6k + 3, 3, 6j + 2) = 3
(k+2

2

)
+ 3

(k+1
2

)− (k+2−j
2

)− 13
(k+1−j

2

)− 4
(k−j

2

)
+ 4

(k+1−2j
2

)

+ 13
(k−2j

2

)
+
(k−1−2j

2

)− 3
(k−3j

2

)− 3
(k−1−3j

2

)
(A.16)

p(6k + 4, 3, 6j + 2) = 4
(k+2

2

)
+ 2

(k+1
2

)− 2
(k+2−j

2

)− 14
(k+1−j

2

)− 2
(k−j

2

)

+ 6
(k+1−2j

2

)
+ 12

(k−2j
2

)− 4
(k−3j

2

)− 2
(k−1−3j

2

)
(A.17)

p(6k + 5, 3, 6j + 2) = 5
(k+2

2

)
+
(k+1

2

)− 4
(k+2−j

2

)− 13
(k+1−j

2

)− (k−j
2

)

+ 9
(k+1−2j

2

)
+ 9

(k−2j
2

)− 5
(k−3j

2

)− (k−1−3j
2

)
(A.18)

N = 6j + 3

p(6k, 3, 6j + 3) =
(k+2

2

)
+ 4

(k+1
2

)
+
(k
2

)− 4
(k+1−j

2

)− 13
(k−j

2

)− (k−1−j
2

)

+ 6
(k−2j

2

)
+ 12

(k−1−2j
2

)− 3
(k−1−3j

2

)− 3
(k−2−3j

2

)
(A.19)
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p(6k + 1, 3, 6j + 3) =
(k+2

2

)
+ 5

(k+1
2

)− 6
(k+1−j

2

)− 12
(k−j

2

)
+ 9

(k−2j
2

)

+ 9
(k−1−2j

2

)− 4
(k−1−3j

2

)− 2
(k−2−3j

2

)
(A.20)

p(6k + 2, 3, 6j + 3) = 2
(k+2

2

)
+ 4

(k+1
2

)− 9
(k+1−j

2

)− 9
(k−j

2

)
+ 12

(k−2j
2

)

+ 6
(k−1−2j

2

)− 5
(k−1−3j

2

)− (k−2−3j
2

)
(A.21)

p(6k + 3, 3, 6j + 3) = 3
(k+2

2

)
+ 3

(k+1
2

)− 12
(k+1−j

2

)− 6
(k−j

2

)
+
(k+1−2j

2

)
+ 13

(k−2j
2

)

+ 4
(k−1−2j

2

)− (k−3j
2

)− 4
(k−1−3j

2

)− (k−2−3j
2

)
(A.22)

p(6k + 4, 3, 6j + 3) = 4
(k+2

2

)
+ 2

(k+1
2

)− (k+2−j
2

)− 13
(k+1−j

2

)− 4
(k−j

2

)
+ 2

(k+1−2j
2

)

+ 14
(k−2j

2

)
+ 2

(k−1−2j
2

)− (k−3j
2

)− 5
(k−1−3j

2

)
(A.23)

p(6k + 5, 3, 6j + 3) = 5
(k+2

2

)
+
(k+1

2

)− 2
(k+2−j

2

)− 14
(k+1−j

2

)− 2
(k−j

2

)
+ 4

(k+1−2j
2

)

+ 13
(k−2j

2

)
+
(k−1−2j

2

)− 2
(k−3j

2

)− 4
(k−1−3j

2

)
(A.24)

N = 6j + 4

p(6k, 3, 6j + 4) =
(k+2

2

)
+ 4

(k+1
2

)
+
(k
2

)− 2
(k+1−j

2

)− 14
(k−j

2

)

− 2
(k−1−j

2

)
+ 2

(k−2j
2

)
+ 14

(k−1−2j
2

)
+ 2

(k−2−2j
2

)

− (k−1−3j
2

)− 4
(k−2−3j

2

)− (k−3−3j
2

)
(A.25)

p(6k + 1, 3, 6j + 4) =
(k+2

2

)
+ 5

(k+1
2

)− 4
(k+1−j

2

)− 13
(k−j

2

)− (k−1−j
2

)
+ 4

(k−2j
2

)

+ 13
(k−1−2j

2

)
+
(k−2−2j

2

)− (k−1−3j
2

)− 5
(k−2−3j

2

)
(A.26)

p(6k + 2, 3, 6j + 4) = 2
(k+2

2

)
+ 4

(k+1
2

)− 6
(k+1−j

2

)− 12
(k−j

2

)
+ 6

(k−2j
2

)

+ 12
(k−1−2j

2

)− 2
(k−1−3j

2

)− 4
(k−2−3j

2

)
(A.27)

p(6k + 3, 3, 6j + 4) = 3
(k+2

2

)
+ 3

(k+1
2

)− 9
(k+1−j

2

)− 9
(k−j

2

)
+ 9

(k−2j
2

)

+ 9
(k−1−2j

2

)− 3
(k−1−3j

2

)− 3
(k−2−3j

2

)
(A.28)

p(6k + 4, 3, 6j + 4) = 4
(k+2

2

)
+ 2

(k+1
2

)− 12
(k+1−j

2

)− 6
(k−j

2

)
+ 12

(k−2j
2

)

+ 6
(k−1−2j

2

)− 4
(k−1−3j

2

)− 2
(k−2−3j

2

)
(A.29)

p(6k + 5, 3, 6j + 4) = 5
(k+2

2

)
+
(k+1

2

)− (k+2−j
2

)− 13
(k+1−j

2

)− 4
(k−j

2

)
+
(k+1−2j

2

)

+ 13
(k−2j

2

)
+ 4

(k−1−2j
2

)− 5
(k−1−3j

2

)− (k−2−3j
2

)
(A.30)

N = 6j + 5

p(6k, 3, 6j + 5) =
(k+2

2

)
+ 4

(k+1
2

)
+
(k
2

)− (k+1−j
2

)− 13
(k−j

2

)− 4
(k−1−j

2

)

+ 12
(k−1−2j

2

)
+ 6

(k−2−2j
2

)− 3
(k−2−3j

2

)− 3
(k−3−3j

2

)
(A.31)

p(6k + 1, 3, 6j + 5) =
(k+2

2

)
+ 5

(k+1
2

)− 2
(k+1−j

2

)− 14
(k−j

2

)

− 2
(k−1−j

2

)
+
(k−2j

2

)
+ 13

(k−1−2j
2

)
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+ 4
(k−2−2j

2

)− 4
(k−2−3j

2

)− 2
(k−3−3j

2

)
(A.32)

p(6k + 2, 3, 6j + 5) = 2
(k+2

2

)
+ 4

(k+1
2

)− 4
(k+1−j

2

)− 13
(k−j

2

)− (k−1−j
2

)

+ 2
(k−2j

2

)
+ 14

(k−1−2j
2

)
+ 2

(k−2−2j
2

)

− 5
(k−2−3j

2

)− (k−3−3j
2

)
(A.33)

p(6k + 3, 3, 6j + 5) = 3
(k+2

2

)
+ 3

(k+1
2

)− 6
(k+1−j

2

)− 12
(k−j

2

)
+ 4

(k−2j
2

)

+ 13
(k−1−2j

2

)
+
(k−2−2j

2

)− (k−1−3j
2

)

− 4
(k−2−3j

2

)− (k−3−3j
2

)
(A.34)

p(6k + 4, 3, 6j + 5) = 4
(k+2

2

)
+ 2

(k+1
2

)− 9
(k+1−j

2

)− 9
(k−j

2

)
+ 6

(k−2j
2

)

+ 12
(k−1−2j

2

)− (k−1−3j
2

)− 5
(k−2−3j

2

)
(A.35)

p(6k + 5, 3, 6j + 5) = 5
(k+2

2

)
+
(k+1

2

)− 12
(k+1−j

2

)− 6
(k−j

2

)
+ 9

(k−2j
2

)

+ 9
(k−1−2j

2

)− 2
(k−1−3j

2

)− 4
(k−2−3j

2

)− 4
(k−2−3j

2

)
(A.36)
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Finding Modular Functions for
Ramanujan-Type Identities

Dedicated to Professor George E. Andrews on the occasion of his 80th
birthday

William Y. C. Chen, Julia Q. D. Du and Jack C. D. Zhao

Abstract. This paper is concerned with a class of partition functions a(n)
introduced by Radu and defined in terms of eta-quotients. By utilizing
the transformation laws of Newman, Schoeneberg and Robins, and Radu’s
algorithms, we present an algorithm to find Ramanujan-type identities for
a(mn + t). While this algorithm is not guaranteed to succeed, it applies
to many cases. For example, we deduce a witness identity for p(11n + 6)
with integer coefficients. Our algorithm also leads to Ramanujan-type
identities for the overpartition functions p(5n + 2) and p(5n + 3) and
Andrews–Paule’s broken 2-diamond partition functions �2(25n+14) and
�2(25n+24). It can also be extended to derive Ramanujan-type identities
on a more general class of partition functions. For example, it yields the
Ramanujan-type identities on Andrews’ singular overpartition functions
Q3,1(9n + 3) and Q3,1(9n + 6) due to Shen, the 2-dissection formulas of
Ramanujan, and the 8-dissection formulas due to Hirschhorn.

Mathematics Subject Classification. 05A15, 11P83, 11P84, 05A17.

Keywords. Ramanujan-type identities, Modular functions, Generalized
eta-functions, Partition functions.

1. Introduction

Throughout this paper, we follow the standard q-series notation in [16]:

(a; q)∞ =
∞∏

n=0

(1 − aqn) and (a1, a2, . . . , am; q)∞ =
m∏

j=1

(aj ; q)∞,

where |q| < 1. In the study of congruence properties and identities on the
partition functions, Radu [35–37] defined a class of partition functions a(n) by
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∞∑

n=0

a(n)qn =
∏

δ|M
(qδ; qδ)rδ∞, (1.1)

where M is a positive integer and rδ are integers. Many partition functions
fall into the framework of the above definition of a(n), such as the partition
function p(n), the overpartition function p(n) [11], the Ramanujan τ -function
[18,19,39], the k-colored partition functions, the t-core partition functions, the
2-colored Frobenius partition functions, and the broken k-diamond partition
functions Δk(n) [4].

In this paper, we aim to present an algorithm to compute the generating
function:

∞∑

n=0

a(mn + t)qn, (1.2)

260

for fixed m > 0 and 0 ≤ t ≤ m − 1 by finding suitable modular functions for
Γ1(N). When M = 1 and r1 = −1, a(n) specializes to the partition function

∞∑

n=0

p(mn + t)qmn+t = (−1)(m−1)t (qm2
; qm2

)∞
(qm; qm)m+1∞

det Mt, (1.3)

where Mt = (g−t−i+j)(m−1)×(m−1):

gt =
∑

1
2n(3n+1)≡t(mod m)

(−1)nq
1
2n(3n+1),

and gt = gs when t ≡ s (mod m). In view of (1.3), he derived some identities
on p(n), for example:

∞∑

n=0

p(5n)qn =
(q5; q5)∞

(q; q)2∞(q, q4; q5)8∞
− 3q

(q5; q5)6∞(q, q4; q5)2∞
(q; q)7∞

(1.4)

and
( ∞∑

n=0

p(5n)qn

) ( ∞∑

n=0

p(5n + 3)qn

)
= 3

(q5; q5)4∞
(q; q)6∞

+ 25q
(q5; q5)10∞
(q; q)12∞

.

Atkin and Swinnerton-Dyer [5] have shown that gt can always be expressed by
certain infinite products for m > 3. Then, the left-hand side of (1.3) can be
expressed in terms of certain infinite products. Kolberg pointed out that when
m > 5, this becomes much more complicated. For m = 11, 13, Bilgici and Ekin
[7,8] used the method of Kolberg to compute the generating function:

∞∑

n=0

p(mn + t)qmn+t

for all 0 ≤ t ≤ m − 1.

p(n). Kolberg [26] proved that for any prime m, and 0 ≤ t ≤ m − 1:
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Based on the ideas of Rademacher [33], Newman [28,29], and Kolberg
[26], Radu [37] developed an algorithm to verify the congruences

a(mn + t) ≡ 0 (mod u), (1.5)

for any given m, t and u, and for all n ≥ 0, where a(n) is defined in (1.1).
Moreover, Radu [35] developed an algorithm, called the Ramanujan–Kolberg
algorithm, to derive identities on the generating functions of a(mn + t) using
modular functions for Γ0(N). A description of the Ramanujan–Kolberg algo-
rithm can be found in Paule and Radu [32]. Smoot [46] developed a Mathemat-
ica package RaduRK to implement Radu’s algorithm. It should be mentioned
that Eichhorn [13] extended the technique in [14,15] to partition functions
a(n) defined by

∞∑

n=0

a(n)qn =
L∏

j=1

(qj ; qj)ej∞, (1.6)

where L is a positive integer and ej are integers, and reduced the verification
of the congruences (1.5) to a finite number of cases. It is easy to see that the
defining relations (1.1) and (1.6) are equivalent to each other. In this paper, we
shall adopt the form of (1.1) in accordance with the notation of eta-quotients.

Recall that the Dedekind eta-function η(τ) is defined by

η(τ) = q
1
24

∞∏

n=1

(1 − qn),

where q = e2πiτ , τ ∈ H = {τ ∈ C : Im(τ) > 0}. An eta-quotient is a function
of the form

∏

δ|M
ηrδ(δτ),

where M ≥ 1 and each rδ is an integer.
The Ramanujan–Kolberg algorithm leads to verifications of some iden-

tities on p(n) due to Ramanujan [38], Zuckerman [50], and Kolberg [26]; for
example:

∞∑

n=0

p(5n + 4)qn = 5
(q5; q5)5∞
(q; q)6∞

,

see [38, eq. (18)]. It should be noted that there are some Ramanujan-type
identities that are not covered by the Ramanujan–Kolberg algorithm, such as
the identity (1.4).

In this paper, we develop an algorithm to derive Ramanujan-type identi-
ties for a(mn+ t) for m > 0 and 0 ≤ t ≤ m−1, which is essentially a modified
version of Radu’s algorithm. We first find a necessary and sufficient condition
for a product of a generalized eta-quotient and the generating function (1.2) to
be a modular function for Γ1(N) up to a power of q. Then, we try to express
this modular function as a linear combination of generalized eta-quotients over
Q.
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For example, our algorithm leads to a verification of (1.4) for p(5n).
Moreover, we obtain Ramanujan-type identities for the overpartition functions
p(5n+2) and p(5n+3) and the broken 2-diamond partition functions Δ2(25n+
14) and Δ2(25n+24). We also obtain the following witness identity with integer
coefficients for p(11n + 6).

Theorem 1.1. We have

z0

∞∑

n=0

p(11n + 6)qn

= 11z10 + 121z8e + 330z9 − 484z7e − 990z8 + 484z6e + 792z7

− 484z5e + 44z6 + 1089z4e − 132z5 − 1452z3e − 451z4

+ 968z2e + 748z3 − 242ze − 429z2 + 77z + 11, (1.7)

where

z0 =
(q; q)24∞

q20(q11; q11)23∞(q, q10; q11)28∞(q2, q9; q11)16∞(q3, q8; q11)12∞(q4, q7; q11)4∞
,

z =
(q; q)∞

q2(q11; q11)∞(q, q10; q11)3∞(q2, q9; q11)2∞
, (1.8)

e =
(q; q)3∞

q3(q11; q11)3∞(q, q10; q11)5∞(q2, q9; q11)5∞(q3, q8; q11)4∞(q4, q7; q11)∞
.

(1.9)

Bilgici and Ekin [8] deduced a witness identity for p(11n+6) with integer
coefficients using the method of Kolberg. Radu [35] obtained a witness iden-
tity for p(11n + 6) using the Ramanujan–Kolberg algorithm. Hemmecke [20]
generalized Radu’s algorithm and derived a witness identity for p(11n + 6).
Paule and Radu [31] found a polynomial relation on the generating function
of p(11n + 6), which can also be viewed as a witness identity. Moreover, Paule
and Radu [30] found a witness identity for p(11n+6) in terms of eta-quotients
and the U2-operator acting on eta-quotients.

Our algorithm can be extended to a more general class of partition func-
tions b(n) defined by

∞∑

n=0

b(n)qn =
∏

δ|M
(qδ; qδ)rδ∞

∏

δ|M
0<g<δ

(qg, qδ−g; qδ)rδ,g∞ , (1.10)

where M is a positive integer, and rδ and rδ,g are integers. Notice that (1.10)
is a generalized eta-quotient up to a power of q.

Recall that for a positive integer δ and a residue class g (mod δ), the
generalized Dedekind eta-function ηδ,g(τ) is defined by

ηδ,g(τ) = q
δ
2 P2( g

δ ) ∏

n>0
n≡g(modδ)

(1 − qn)
∏

n>0
n≡−g(modδ)

(1 − qn), (1.11)

where

P2(t) = {t}2 − {t} +
1
6
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is the second Bernoulli function and {t} is the fractional part of t; see, for
example, [41,43]. Note that

ηδ,0(τ) = η2(δτ) and ηδ, δ
2
(τ) =

η2( δ
2τ)

η2(δτ)
. (1.12)

A generalized eta-quotient is a function of the form
∏

δ|M
0≤g<δ

η
rδ,g

δ,g (τ), (1.13)

where M ≥ 1 and

rδ,g ∈
{

1
2Z, if g = 0 or g = δ

2 ,

Z, otherwise,

see, for example, Robins [41]. In view of (1.12), when g = 0 or g = δ
2 , if

rδ,g ∈ 1
2Z, then the powers of the eta-functions in (1.13) are integers.

For partition functions b(n) as defined in (1.10), our algorithm can be
extended to derive Ramanujan-type identities on b(mn + t) for m > 0 and
0 ≤ t ≤ m − 1, such as the Ramanujan-type identities on Andrews’ singular
overpartition functions Q3,1(9n + 3) and Q3,1(9n + 6) due to Shen [45]. The
extended algorithm can also be employed to derive dissection formulas, such
as the 2-dissection formulas of Ramanujan, first proved by Andrews [2], and
the 8-dissection formulas due to Hirschhorn [22].

2. Finding Modular Functions for Γ1(N)

For the partition functions a(n) as defined by (1.1), namely,
∞∑

n=0

a(n)qn =
∏

δ|M
(qδ; qδ)rδ∞,

where M is a positive integer and rδ are integers, Radu [37] defined

gm,t(τ) = q
t−�
m

∞∑

n=0

a(mn + t)qn, (2.1)

where

� = − 1
24

∑

δ|M
δrδ.

Let φ(τ) be a generalized eta-quotient, and let F (τ) = φ(τ)gm,t(τ). The
objective of this section is to give a criterion for F (τ) to be a modular function
for Γ1(N). We find that the transformation formula for gm,t(τ) under Γ1(N)∗

is analogous to the transformation formula of Radu [37, Lemma 2.14] with
respect to Γ0(N)∗. Then, we utilize the transformation laws of Newman [29]
and Robins [41] to obtain the transformation formula of F (τ). With the aid
of the Laurent expansions of φ(τ) and gm,t(τ), we obtain a necessary and
sufficient condition for F (τ) to be a modular function for Γ1(N).
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We first state the conditions on N . In fact, we make the following changes
on the conditions on N given by Definition 34 and Definition 35 in [35]: change
the condition δ|mN for every δ|M with rδ �= 0 to M |N , and add the fol-
lowing condition 7. For completeness, we list all the conditions on N . Let
κ = gcd(m2 − 1, 24). Assume that N satisfies the following conditions:

1. M |N .
2. p|N for any prime p|m.
3. κN

∑
δ|M rδ ≡ 0 (mod 8).

4. κmN2
∑

δ|M
rδ

δ ≡ 0 (mod 24).
5. 24m

gcd(κα(t),24m) |N , where α(t) = −∑
δ|M δrδ − 24t.

6. Let
∏

δ|M δ|rδ| = 2zj, where z ∈ N and j is odd. If 2|m, then κN ≡ 0
(mod 4) and Nz ≡ 0 (mod 8), or z ≡ 0 (mod 2) and N(j − 1) ≡ 0
(mod 8).

7. Let Sn = {j2 (mod n) : j ∈ Zn, gcd(j, n) = 1, j ≡ 1 (mod N)}. For any
s ∈ S24mM ,

s − 1
24

∑

δ|M
δrδ + ts ≡ t (mod m).

Note that there always exists N satisfying the above conditions, because N =
24mM would make a feasible choice. From now on, we denote by γ the matrix(

a b
c d

)
.

Theorem 2.1. For a given partition function a(n) as defined by (1.1), and for
given integers m and t, suppose that N is a positive integer satisfying the
conditions 1–7. Let

F (τ) = φ(τ) gm,t(τ),

where

φ(τ) =
∏

δ|N
ηaδ(δτ)

∏

δ|N
0<g≤�δ/2�

η
aδ,g

δ,g (τ), (2.2)

and aδ and aδ,g are integers. Then, F (τ) is a modular function with respect to
Γ1(N) if and only if aδ and aδ,g satisfy the following conditions:
(1)

∑
δ|N aδ +

∑
δ|M rδ = 0.

(2) N
∑

δ|N
aδ

δ + 2N
∑

δ|N
0<g≤�δ/2�

aδ,g

δ + Nm
∑

δ|M
rδ

δ ≡ 0 (mod 24).

(3)
∑

δ|N δaδ + 12
∑

δ|N
0<g≤�δ/2�

δP2

(
g
δ

)
aδ,g + m

∑
δ|M δrδ + (m2−1)α(t)

m ≡ 0

(mod 24).
(4) For any integer 0 < a < 12N with gcd (a, 6) = 1 and a ≡ 1 (mod N):

∏

δ|N

(
δ

a

)|aδ| ∏

δ|M

(
mδ

a

)|rδ|
e
∑

δ|N
∑�δ/2�

g=1 πi
(

g
δ − 1

2

)
(a−1)aδ,g = 1.

For example, consider the overpartition function p(n). Recall that an
overpartition of a positive integer n is a partition of n where the first occurrence
of each distinct part may be overlined, and the number of overpartitions of n
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is denoted by p(n) for n ≥ 1 and p(0) = 1. As noted by Corteel and Lovejoy
[11], the generating function of p(n) is given by:

∞∑

n=0

p(n)qn =
(q2; q2)∞
(q; q)2∞

.

For the overpartition function p(5n + 2), we see that N = 10 satisfies the
conditions 1–7. Next, we proceed to find a generalized eta-quotient φ(τ), such
that φ(τ)g5,2(τ) is a modular function for Γ1(10). By the above theorem, the
function

∏

δ|10
ηaδ(δτ)

∏

δ|10
0<g≤�δ/2�

η
aδ,g

δ,g (τ) g5,2(τ)

is a modular function for Γ1(10) if and only if aδ and aδ,g fulfill the following
conditions:⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 + a2 + a5 + a10 − 1 = 0,
10a1 + 5a2 + 10a2,1 + 2a5 + 4a5,1 + 4a5,2 + a10 + 2a10,1

+2a10,2 + 2a10,3 + 2a10,4 + 2a10,5 − 3 ≡ 0 (mod 24),
a1 + 2a2 − 2a2,1 + 5a5 + 2a5,1

5 − 22a5,2
5 + 10a10 + 46a10,1

5

+ 4a10,2
5 − 26a10,3

5 − 44a10,4
5 − 10a10,5 + 48

5 ≡ 0 (mod 24),
(
10
a

) ∏
δ|10

(
δ
a

)|aδ|
e
∑

δ|10
∑�δ/2�

g=1 πi
(

g
δ − 1

2

)
(a−1)aδ,g = 1,

(2.3)

for any 0 < a < 120 with gcd(a, 6) = 1 and a ≡ 1 (mod 10). We find that

(a1, a2, a2,1, a5, a5,1, a5,2, a10, a10,1, a10,2, a10,3, a10,4, a10,5)

= (0, 0, 0, 0, 0, 0, 1, 0, 0, 0,−8, 9)

is an integer solution of (2.3). Let

φ(τ) =
η(10τ)η9

10,5(τ)
η8
10,4(τ)

.

Since

g5,2(τ) = q
2
5

∞∑

n=0

p(5n + 2)qn,

we find that

F (τ) = q
2
5 φ(τ)

∞∑

n=0

p(5n + 2)qn (2.4)

is a modular function with respect to Γ1(10).
Let

Γ1(N)∗ =
{(

a b

c d

)
∈ Γ1(N) : gcd (a, 6) = 1, ac > 0

}
.

The following lemma asserts that the invariance of the function f(τ) under
Γ1(N) is equivalent to the invariance under Γ1(N)∗.
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Lemma 2.2. Let k be an integer, N be a positive integer, and f : H → C be a
function, such that

f(γτ) = (cτ + d)kf(τ) (2.5)

for any γ ∈ Γ1(N)∗. Then, f is weight-k invariant under Γ1(N).

Proof. Let

A =
{(

a b

c d

)
∈ Γ1(N) : gcd(a, 6) = 1

}
.

By Lemma 3 of Newman [29], we know that Γ1(N) is generated by A. Hence,
it suffices to show that

f(γτ) = (cτ + d)kf(τ)

for any γ ∈ A. By the condition of Lemma 2.2, we may restrict our attention
only to two cases. (1) γ ∈ A, a > 0 and c ≤ 0. (2) γ ∈ A, a < 0 and c ≥ 0.
Here, we only consider the first case, and the second case can be justified in
the same manner. For the first case, since a > 0 and c ≤ 0, there exists a
positive integer x, such that ax + c

N > 0. Let

γ1 =
(

1 0
Nx 1

)
and γ2 =

(
a b

Nax + c Nbx + d

)
.

Then, γ2 = γ1γ and γ1 ∈ Γ1(N)∗. Therefore,

f(γ2τ) = f(γ1(γτ)) = (Nx(γτ) + 1)k
f(γτ). (2.6)

Since γ ∈ A, we have gcd(a, 6) = 1, and so, γ2 ∈ Γ1(N)∗. Applying (2.5) with
γ2 ∈ Γ1(N)∗, we get

f(γ2τ) = ((Nax + c)τ + (Nbx + d))k
f(τ). (2.7)

Combining (2.6) and (2.7), we deduce that

f(γτ) = (cτ + d)k
f(τ),

as claimed. �

The following transformation formula for gm,t(τ) under Γ1(N)∗ is analo-
gous to the transformation formula of Radu [37, Lemma 2.14] with respect to
Γ0(N)∗. The proof parallels that of Radu, and hence, it is omitted.

Lemma 2.3. For a given partition function a(n) as defined by (1.1), and for
given integers m and t, let N be a positive integer satisfying the above condi-
tions 1–7. For any γ ∈ Γ1(N)∗, we have

gm,t(γτ) = (cτ + d)
1
2

∑
δ|M

rδ

eπiζ(γ)
∏

δ|M
L(mδc, a)|rδ| gm,t(τ),

where

L(c, a) =

{(
c
a

)
, if a > 0,(

−c
−a

)
, otherwise,

266



Finding Modular Functions for Ramanujan-Type Identities 621

(−) is the Jacobi symbol,

ζ(γ) =
ab(m2 − 1)α(t)

12m
+

abm

12

∑

δ|M
δrδ − acm

12

∑

δ|M

rδ

δ
+

sgn(c) (a − 1)
4

∑

δ|M
rδ,

and α(t) is defined as in the condition 5.

Next, we derive a transformation formula for F (τ) under Γ1(N)∗. Recall
the notation of Schoeneberg [43]:

η
(s)
g,h(τ)=α0(h)eπiP2(

g
δ )τ

∏

m>0
m≡g(modδ)

(
1−ζh

δ e
2πiτ

δ m
) ∏

m>0
m≡−g(modδ)

(
1−ζ−h

δ e
2πiτ

δ m
)

,

(2.8)

where ζδ is a primitive δth root of unity,

α0(h) =

{
(1 − ζ−h

δ )eπiP1(h
δ ), if g ≡ 0 (mod δ) and h �≡ 0 (mod δ),

1, otherwise,

the first Bernoulli function P1(x) is given by

P1(x) =

{
x − �x	 − 1

2 , if x �∈ Z,

0, otherwise,

and �x	 is the greatest integer less than or equal to x. Since

ηδ,g(τ) = q
δ
2 P2( g

δ ) ∏

n>0
n≡g(modδ)

(1 − qn)
∏

n>0
n≡−g(modδ)

(1 − qn),

we have

ηδ,g(τ) = η
(s)
g,0(δτ). (2.9)

Lemma 2.4. For a given partition function a(n) as defined by (1.1), and for
given integers m and t, let N be a positive integer satisfying the conditions
1–7, and

F (τ) =
∏

δ|N
ηaδ(δτ)

∏

δ|N
0<g≤�δ/2�

η
aδ,g

δ,g (τ) gm,t(τ), (2.10)

where aδ and aδ,g are integers. Then, for any γ ∈ Γ1(N)∗,

F (γτ) =
∏

δ|N
L

( c

δ
, a

)aδ ∏

δ|M
L(mδc, a)|rδ|eπi(ν(γ)+ξ(γ))

× (cτ + d)
1
2

(
∑

δ|N
aδ+

∑
δ|M

rδ

)

F (τ), (2.11)

where

ν(γ) =
∑

δ|N
0<g≤�δ/2�

(
g

δ
− 1

2

)
(a − 1)aδ,g (2.12)
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and

ξ(γ) =
a − 1

4
sgn(c)

( ∑

δ|N
aδ +

∑

δ|M
rδ

)

− ac

⎛

⎜⎝
∑

δ|N

aδ

12δ
+

∑

δ|N
0<g≤�δ/2�

aδ,g

6δ
+

∑

δ|M

mrδ

12δ

⎞

⎟⎠

+ ab

⎛

⎜⎝
∑

δ|N

δaδ

12
+

∑

δ|N
0<g≤�δ/2�

δP2

(g

δ

)
aδ,g +

∑

δ|M

mδrδ

12
+

(m2 − 1)α(t)
12m

⎞

⎟⎠ .

(2.13)

Proof. For any γ =
(

a b
c d

)
∈ Γ1(N)∗, we have

F (γτ) =
∏

δ|N
ηaδ(δγτ)

∏

δ|N
0<g≤�δ/2�

η
aδ,g

δ,g (γτ) gm,t(γτ). (2.14)

For any δ|N , let γ′
δ = ( a δb

c
δ d ). Since γ ∈ Γ1(N)∗, we have N |c and so δ|c for

any δ|N . It follows that γ′
δ ∈ Γ. Thus, (2.14) can be written as:

F (γτ) =
∏

δ|N
ηaδ(γ′

δ(δτ))
∏

δ|N
0<g≤�δ/2�

η
aδ,g

δ,g (γτ) gm,t(γτ). (2.15)

The transformation formula of Newman [29, Lemma 2] states that for any
γ ∈ Γ with a > 0, c > 0, and gcd(a, 6) = 1,

η(γτ) =
( c

a

)
e− aπi

12 (c−b−3)(−i(cτ + d))
1
2 η(τ).

Therefore, for any γ ∈ Γ with ac > 0 and gcd(a, 6) = 1, we have

η(γτ) = L(c, a) eπi( a
12 (−c+b)+ a−1

4 sgn(c))(cτ + d)
1
2 η(τ). (2.16)

Since γ ∈ Γ1(N)∗, we see that gcd(a, 6) = 1 and ac > 0. Applying the trans-
formation formula (2.16) to each γ′

δ, we deduce that
∏

δ|N
ηaδ(γ′

δ(δτ)) =
∏

δ|N
L

( c

δ
, a

)aδ

eπi( a
12 (− c

δ +δb)+ a−1
4 sgn(c))aδ(cτ + d)

aδ
2 ηaδ(δτ).

(2.17)

Using the transformation formula of Robins [41, Theorem 2]:

ηδ,g(γτ) = eπi(δabP2( g
δ )− ac

6δ +(a−1)( g
δ − 1

2 ))ηδ,g(τ),

we find that∏

δ|N
0<g≤�δ/2�

η
aδ,g

δ,g (γτ) =
∏

δ|N
0<g≤�δ/2�

eπi(δabP2( g
δ )− ac

6δ +(a−1)( g
δ − 1

2 ))aδ,gη
aδ,g

δ,g (τ).

(2.18)

Substituting the transformation formulas in (2.17), (2.18) and Lemma 2.3 into
(2.15), we reach the transformation formula (2.11). �
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To prove Theorem 2.1, we need the Laurent expansions of gm,t(γτ) and
φ(γτ) for γ ∈ Γ. Let us recall the two maps p : Γ × Zm → Q and p : Γ → Q

defined by Radu [37], namely, for γ ∈ Γ and λ ∈ Zm:

p(γ, λ) =
1
24

∑

δ|M

gcd2(δ(a + κλc),mc)
δm

rδ (2.19)

and for γ ∈ Γ:

p(γ) = min{p(γ, λ) : λ = 0, 1, . . . ,m − 1}. (2.20)

The parabolic subgroup of Γ is defined by

Γ∞ =
{

±
(

1 b

0 1

)
: b ∈ Z

}
.

For any γ ∈ Γ, the (Γ1(N),Γ∞)-double coset of γ is given by

Γ1(N)γΓ∞ = {γNγγ∞ : γN ∈ Γ1(N), γ∞ ∈ Γ∞}.

Assume that Γ has the following disjoint decomposition:

Γ =
ε⋃

i=1

Γ1(N)γiΓ∞, (2.21)

where R = {γ1, γ2, . . . , γε} ⊆ Γ. Denote the set of (Γ1(N),Γ∞)-double cosets
in Γ by Γ1(N)\Γ/Γ∞. Then, (2.21) can be written as:

Γ1(N)\Γ/Γ∞ = {Γ1(N)γΓ∞ : γ ∈ R}.

We say that R is a complete set of representatives of the double cosets Γ1(N)\
Γ/Γ∞.

The following lemma gives a Laurent expansion of gm,t(γτ), and the proof
is similar to that of Lemma 3.4 in Radu [37], and hence, it is omitted.

Lemma 2.5. For a given partition function a(n) as defined by (1.1), and for
given integers m and t, let N be a positive integer satisfying the conditions
1–7, and R = {γ1, γ2, . . . , γε} be a complete set of representatives of the double
cosets Γ1(N)\Γ/Γ∞. For any γ ∈ Γ, assume that γ ∈ Γ1(N)γiΓ∞ for some

gm,t(γτ) = (cτ + d)
1
2

∑
δ|M rδqp(γi)h(q).

The following lemma gives a Laurent expansion of φ(γτ) for any γ ∈ Γ.

Lemma 2.6. Let

φ(τ) =
∏

δ|N
ηaδ(δτ)

∏

δ|N
0<g≤�δ/2�

η
aδ,g

δ,g (τ),

where aδ and aδ,g are integers. For any γ ∈ Γ, there exist a positive integer w

and a Taylor series h∗(q) in powers of q
1
w , such that

φ(γτ) = (cτ + d)
1
2

∑
δ|N aδqp∗(γ)h∗(q),
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where

p∗(γ) =
1
24

∑

δ|N

gcd2 (δ, c)
δ

aδ +
1
2

∑

δ|N
0<g≤�δ/2�

gcd2 (δ, c)
δ

P2

(
ag

gcd (δ, c)

)
aδ,g.

Furthermore, for any γ1 ∈ Γ and γ2 ∈ Γ1(N)γ1Γ∞, we have p∗(γ1) = p∗(γ2).

Proof. For any γ =
(

a b
c d

)
∈ Γ, we have

φ(γτ) =
∏

δ|N
ηaδ(δγτ)

∏

δ|N
0<g≤�δ/2�

η
aδ,g

δ,g (γτ).

It follows from (2.9) that

φ(γτ) =
∏

δ|N
ηaδ(δγτ)

∏

δ|N
0<g≤�δ/2�

η
(s)
g,0

aδ,g

(δγτ). (2.22)

Since gcd(a, c) = 1, for any δ|N , there exist integers xδ and yδ, such that

δaxδ + cyδ = gcd(δa, c) = gcd(δ, c),

and hence
(

δa δb

c d

)
=

(
δa

gcd(δ,c) − yδ

c
gcd(δ,c) xδ

)(
gcd(δ, c) δbxδ + dyδ

0 δ
gcd(δ,c)

)
. (2.23)

Set

γδ =

(
δa

gcd(δ,c) − yδ

c
gcd(δ,c) xδ

)
and Tδ =

(
gcd(δ, c) δbxδ + dyδ

0 δ
gcd(δ,c)

)
.

Note that γδ ∈ Γ. Combining (2.22) and (2.23), we deduce that

φ(γτ) =
∏

δ|N
ηaδ(γδTδτ)

∏

δ|N
0<g≤�δ/2�

η
(s)
g,0

aδ,g

(γδTδτ). (2.24)

By the transformation law for η(τ) under Γ [34, p. 145], namely, there exists
a map ε′ : Γ → C, such that for any γ ∈ Γ:

η(γτ) = ε′(γ)(cτ + d)
1
2 η(τ),

and the transformation formula for η
(s)
g,h(τ) under Γ in [43, p. 199 (30)], namely,

when 0 < g < δ, there exists a map ε1 : Γ → C, such that for any γ ∈ Γ:

η
(s)
g,h(γτ) = ε1(γ) η

(s)
g′,h′(τ),

where g′ = ag + ch, h′ = bg + dh, it follows from (2.24) that there is a map
ε : Γ → C, such that for any γ ∈ Γ:

φ(γτ) = ε(γ)(cτ + d)
1
2

∑
δ|N

aδ ∏

δ|N
ηaδ(Tδτ)

∏

δ|N
0<g≤�δ/2�

η
(s)

δa
gcd(δ,c) g,−yδg

aδ,g

(Tδτ).

(2.25)
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Substituting the q-expansions of the eta-function and the generalized eta-
function into (2.25), we see that there exist a positive integer w and a Taylor
series h∗(q) in powers of q

1
w , such that

φ(γτ) = (cτ + d)
1
2

∑
δ|N aδqp∗(γ)h∗(q).

Next, we aim to show that p∗(γ1) = p∗(γ2) for any γ1 ∈ Γ and γ2 ∈
Γ1(N)γ1Γ∞. Under the assumption that γ2 ∈ Γ1(N)γ1Γ∞, there exist γ3 ∈
Γ1(N) and γ4 ∈ Γ∞, such that

γ2 = γ3γ1γ4. (2.26)

Write

γ1 =
(

a1 b1
c1 d1

)
, γ2 =

(
a2 b2
c2 d2

)
, γ3 =

(
a3 b3
c3 d3

)
, γ4 =

( ±1 b4
0 ± 1

)
.

Owing to (2.26), we find that

a2 = ±(a1a3 + b3c1) (2.27)

and

c2 = ±(a1c3 + c1d3). (2.28)

For any δ|N , since γ3 ∈ Γ1(N), we see that a3 ≡ 1 (mod δ), δ|c3 and gcd(δ, d3)
= 1. Using (2.27), it can be verified that

a2g ≡ ±a1g (mod gcd (δ, c1)). (2.29)

In view of (2.28), we obtain that

gcd(δ, c2) = gcd(δ, c1). (2.30)

Combining (2.29) and (2.30), we arrive at

P2

(
a1g

gcd(δ, c1)

)
= P2

(
a2g

gcd(δ, c2)

)
; (2.31)

here, we have used the fact that P2(−α) = P2(α) for any α ∈ R. Combining
(2.30) and (2.31), we conclude that p∗(γ1) = p∗(γ2), as claimed. �

We are now ready to complete the proof of Theorem 2.1.

Proof of Theorem 2.1. Assume that

F (τ) =
∏

δ|N
ηaδ(δτ)

∏

δ|N
0<g≤�δ/2�

η
aδ,g

δ,g (τ) gm,t(τ) (2.32)

is a modular function with respect to Γ1(N), where aδ and aδ,g are integers.
We proceed to show that the conditions (1)–(4) are fulfilled by the integers aδ

and aδ,g.
Since Γ1(N)∗ ⊆ Γ1(N) and F (τ) is a modular function for Γ1(N), for

any γ ∈ Γ1(N)∗, we have

F (γτ) = F (τ). (2.33)
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To compute F (γτ), we need the transformation formula for F (τ) under Γ1(N)∗

as given in Lemma 2.4, that is, for any γ ∈ Γ1(N)∗:

F (γτ) =
∏

δ|N
L

( c

δ
, a

)aδ ∏

δ|M
L(mδc, a)|rδ|eπi(ν(γ)+ξ(γ))

× (cτ + d)
1
2

(∑
δ|N aδ+

∑
δ|M rδ

)
F (τ), (2.34)

where ν(γ) and ξ(γ) are defined in (2.12) and (2.13). Combining (2.33) and
(2.34), we see that

∑

δ|N
aδ +

∑

δ|M
rδ = 0,

and thus, (1) is satisfied. Consequently, ξ(γ) reduces to

− ac

⎛

⎜⎝
∑

δ|N

aδ

12δ
+

∑

δ|N
0<g≤�δ/2�

aδ,g

6δ
+

∑

δ|M

mrδ

12δ

⎞

⎟⎠

+ ab

⎛

⎜⎝
∑

δ|N

δaδ

12
+

∑

δ|N
0<g≤�δ/2�

δP2

(g

δ

)
aδ,g +

∑

δ|M

mδrδ

12
+

(m2 − 1)α(t)
12m

⎞

⎟⎠ .

To prove (2), consider the matrix γ =
(

1 0
N 1

) ∈ Γ1(N)∗. In this case, (2.34)
becomes

F (γτ) = e
−πiN

(∑
δ|N

aδ
12δ +

∑
δ|N

∑�δ/2�
g=1

aδ,g
6δ +

∑
δ|M

mrδ
12δ

)

F (τ). (2.35)

Hence, (2) follows from (2.33) and (2.35). Setting γ = ( 1 1
N N+1 ) ∈ Γ1(N)∗,

(2.34) becomes

F (γτ) = e
πi

(∑
δ|N

δaδ
12 +

∑
δ|N

∑�δ/2�
g=1 δP2( g

δ )aδ,g+
∑

δ|M
mδrδ

12 + (m2−1)α(t)
12m

)

F (τ),

which, together with (2.33), implies (3). Using the conditions (1)–(3), it can
be checked that ξ(γ) ≡ 0 (mod 2) for any γ ∈ Γ1(N)∗. It follows that:

eπiξ(γ) = 1,

and so, (2.34) reduces to

F (γτ)=
∏

δ|N
L

( c

δ
, a

)aδ ∏

δ|M
L(mδc, a)|rδ|eπiν(γ)(cτ + d)

1
2

(∑
δ|N aδ+

∑
δ|M rδ

)
F (τ).

(2.36)

By the definition of L, we find that for any δ|N ,

L
( c

δ
, a

)
= L(δc, a) =

(
δ|c|
|a|

)
,

and for any δ|M ,

L(mδc, a) =
(

mδ|c|
|a|

)
.
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Hence, (2.36) is equivalent to

F (γτ)=
∏

δ|N

(
δ|c|
|a|

)|aδ| ∏

δ|M

(
mδ|c|
|a|

)|rδ|
eπiν(γ) (cτ +d)

1
2

(∑
δ|N aδ+

∑
δ|M rδ

)
F (τ).

(2.37)

In view of the condition (1), it is easily verified that

(cτ + d)
1
2 (

∑
δ|N aδ+

∑
δ|M rδ) = 1 (2.38)

and

∏

δ|N

( |c|
|a|

)|aδ| ∏

δ|M

( |c|
|a|

)|rδ|
= 1. (2.39)

Substituting (2.38) and (2.39) into (2.37) yields:

F (γτ) =
∏

δ|N

(
δ

|a|
)|aδ| ∏

δ|M

(
mδ

|a|
)|rδ|

eπiν(γ) F (τ). (2.40)

Comparing (2.33) with (2.40), we deduce that

∏

δ|N

(
δ

|a|
)|aδ| ∏

δ|M

(
mδ

|a|
)|rδ|

eπiν(γ) = 1 (2.41)

for all integers a with gcd (a, 6) = 1 and a ≡ 1 (mod N). Invoking the inter-
pretation of the Jacobi symbol, we conclude that (2.41) holds for all integers
0 < a < 12N with gcd (a, 6) = 1 and a ≡ 1 (mod N). This confirms (4).

Conversely, assume that the integers aδ, aδ,g (δ|N, 0 < g ≤ �δ/2	) satisfy
the conditions (1)–(4). We proceed to show that

F (τ) =
∏

δ|N
ηaδ(δτ)

∏

δ|N
0<g≤�δ/2�

η
aδ,g

δ,g (τ) gm,t(τ)

is a modular function for Γ1(N). It is clear that F (τ) is holomorphic on H.
Based on the conditions (1)–(3), it follows from Lemma 2.4 that the

transformation formula (2.40) for F (τ) holds for any γ ∈ Γ1(N)∗. Given the
condition (4), we see that (2.41) holds for all integers a with gcd (a, 6) = 1
and a ≡ 1 (mod N). Combining (2.40) and (2.41), we find that for any γ ∈
Γ1(N)∗,

F (γτ) = F (τ).

In view of Lemma 2.2, we conclude that F (γτ) = F (τ) for any γ ∈ Γ1(N).
It remains to show that for any γ ∈ Γ, F (γτ) has a Laurent expansion

with a finite principal part in powers of q
1
N . Let γ ∈ Γ and R = {γ1, γ2, . . . , γε}

be a complete set of representatives of the double cosets Γ1(N)\Γ/Γ∞. By the
decomposition of Γ in (2.21), there exist an integer 1 ≤ i ≤ ε and matrices
γN ∈ Γ1(N), γ∞ ∈ Γ∞, such that γ = γNγiγ∞. By Lemmas 2.5 and 2.6, there
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exist a positive integer w and Taylor series h(q) and h∗(q) in powers of q
1
w ,

such that

F (γτ) = (cτ + d)
1
2 (

∑
δ|N aδ+

∑
δ|M rδ) qp(γi)+p∗(γi) h(q)h∗(q). (2.42)

In view of the condition (1), (2.42) reduces to

F (γτ) = qp(γi)+p∗(γi) h(q)h∗(q), (2.43)

which implies that there exists a positive integer k, such that F (γτ) has the
Laurent expansion with a finite principal part in powers of q

1
k . Since we have

shown that F (τ) is invariant under Γ1(N), by Lemma 1.14 in [48], we obtain
that for any γ ∈ Γ, F (γτ) is invariant under γ−1Γ1(N)γ. Notice that

(
1 N
0 1

)
∈

γ−1Γ1(N)γ. Therefore, F (γτ) has period N , namely,

F (γ(τ + N)) = F (γτ).

Thus, F (γτ) has a Laurent expansion in powers of q
1
N . By (2.43), we see that

this Laurent expansion has at most finitely many negative terms. Therefore,
we reach the assertion that F (τ) is a modular function for Γ1(N). �

Given a generating function of a(n) as defined in (1.1) and integers m and
t, we can find an integer N satisfying the conditions 1–7. If we are lucky, we
may use Theorem 2.1 to find integers aδ, aδ,g (δ|N, 0 < g ≤ �δ/2	) satisfying
the conditions (1)–(4), which lead to a generalized eta-quotient:

φ(τ) =
∏

δ|N
ηaδ(δτ)

∏

δ|N
0<g≤�δ/2�

η
aδ,g

δ,g (τ),

such that

F (τ) = φ(τ) gm,t(τ) (2.44)

is a modular function. It should be noted that such a modular function F (τ)
may be not unique. To derive a Ramanujan-type identity for a(mn + t), we
aim to express F (τ) as a linear combination of generalized eta-quotients over
Q. To this end, we first investigate the behavior of F (τ) at each cusp of Γ1(N).
Let us recall some terminology of modular functions, see, for example [12,48].
For γ =

(
a b
c d

)
∈ Γ, the width wγ of a

c relative to Γ1(N) is the minimal positive
integer h, such that

(
1 h

0 1

)
∈ γ−1Γ1(N)γ.

Let f(τ) be a modular function for Γ1(N). It is known that f(γτ) is invariant
under γ−1Γ1(N)γ, see [48, Lemma 1.14]. Therefore, f(γτ) has period wγ ,
which implies that f(γτ) has a Laurent expansion in powers of q1/wγ . Since
f(τ) is a modular function, this Laurent expansion has at most finitely many
negative terms. Write

f(γτ) =
∞∑

n=−∞
bnqn/wγ , (2.45)
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where bn = 0 for almost all negative integers n. Let nγ be the smallest integer,
such that bnγ

�= 0. We call nγ the γ-order of f at a
c , denoted by ordγ(f).

Denote the smallest exponent of q on the right-hand side of (2.45) by vγ , so
that

ordγ(f) = vγwγ . (2.46)

Furthermore, the order of f at the cusp a
c ∈ Q ∪ {∞} is defined by

orda/c(f) = ordγ(f) (2.47)

for some γ ∈ Γ, such that γ∞ = a
c . It is known that orda/c(f) is well defined

(see [12, p. 72]).
The following theorem gives estimates of the orders of F (τ) at cusps of

Γ1(N).

Theorem 2.7. For a given partition function a(n) as defined by (1.1), and for
given integers m and t, let

F (τ) = φ(τ) gm,t(τ),

where

φ(τ) =
∏

δ|N
ηaδ(δτ)

∏

δ|N
0<g≤�δ/2�

η
aδ,g

δ,g (τ),

aδ and aδ,g are integers. Assume that F (τ) is a modular function for Γ1(N).
Let {s1, s2, . . . , sε} be a complete set of inequivalent cusps of Γ1(N), and for
each 1 ≤ i ≤ ε, let αi ∈ Γ be such that αi∞ = si. Then

ordsi
(F (τ)) ≥ wαi

(p(αi) + p∗(αi)), (2.48)

where p(γ) is given by (2.20) and p∗(γ) is defined in Lemma 2.6.

To compute the right-hand side of (2.48), we need the following formula
due to Cho, Koo and Park [10]:

wγ =

{
1, if N = 4 and gcd(c, 4) = 2,

N
gcd(c,N) , otherwise,

(2.49)

where γ = (a b
c d ) ∈ Γ. For example, consider the modular function

F (τ) = q
2
5
η(10τ)η9

10,5(τ)
η8
10,4(τ)

∞∑

n=0

p(5n + 2)qn

for Γ1(10) as given in (2.4). A complete set S(N) of inequivalent cusps of
Γ1(N) has been found in [10, Corollary 4]. In particular, for N = 10, we have

S(10) =
{

0,
1
5
,

1
4
,

3
10

,
1
3
,

3
5
,

1
2
, ∞

}
. (2.50)
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Employing Theorem 2.7, we obtain the following lower bounds of the orders
of F (τ) at cusps of Γ1(10):

ord0(F (τ)) ≥ −3, ord1/5(F (τ)) ≥ 19
5

, ord1/4(F (τ)) ≥ −2,

ord3/10(F (τ)) ≥ −18
5

, ord1/3(F (τ)) ≥ −3, ord3/5(F (τ)) ≥ 27
5

,

ord1/2(F (τ)) ≥ −2, ord∞(F (τ)) ≥ −2
5
.

Notice that F (τ) may have poles at some cusps not equivalent to infinity.
We are now ready to prove Theorem 2.7.

Proof of Theorem 2.7. It is known that there exists a bijection from the set
of all inequivalent cusps of Γ1(N) to the double coset space Γ1(N)\Γ/Γ∞, as
given by

Γ1(N)(a/c) → Γ1(N)
(

a b

c d

)
Γ∞,

see [12, Proposition 3.8.5]. Since {s1, s2, . . . , sε} is a complete set of inequiva-
lent cusps of Γ1(N) and αi∞ = si for 1 ≤ i ≤ ε, we see that {α1, α2, . . . , αε} is
a complete set of representatives of Γ1(N)\Γ/Γ∞. Applying Lemma 2.5 with

gm,t(αiτ) = (cτ + d)
1
2

∑
δ|M rδqp(αi)h(q). (2.51)

By Lemma 2.6, there exist a positive integer w2 and a Taylor series h∗(q) in
powers of q

1
w2 , such that

φ(αiτ) = (cτ + d)
1
2

∑
δ|N aδqp∗(αi)h∗(q). (2.52)

Combining (2.51) and (2.52), we get

F (αiτ) = (cτ + d)
1
2 (

∑
δ|N aδ+

∑
δ|M rδ)qp(αi)+p∗(αi) h(q)h∗(q). (2.53)

Since F (τ) is a modular function for Γ1(N), using the condition (1) in Theorem
2.1, (2.53) reduces to

F (αiτ) = qp(αi)+p∗(αi) h(q)h∗(q). (2.54)

Let vαi
denote the smallest exponent of q on the right-hand side of (2.54). The

relation ordγ(f) = vγwγ as given in (2.46) yields

vαi
=

ordαi
(F (τ))

wαi

. (2.55)

Since h(q) and h∗(q) are Taylor series, it follows from (2.54) that

vαi
≥ p(αi) + p∗(αi). (2.56)

Combining (2.55) and (2.56), we conclude that

ordαi
(F (τ)) ≥ wαi

(p(αi) + p∗(αi)). (2.57)
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By the definition (2.47), we have

ordsi
(F (τ)) = ordαi

(F (τ)). (2.58)

Thus, the estimate (2.48) follows from (2.57) and (2.58). �

3. Sketch of the Algorithm

In this section, we give a sketch of our algorithm. Given a generating function
of a(n) as defined in (1.1) and integers m and t, we can find an integer N
satisfying the conditions 1–7. Assume that we have found a generalized eta-
quotient φ(τ), such that

F (τ) = φ(τ) gm,t(τ) (3.1)

is a modular function for Γ1(N). To derive an expression of F (τ), we consider
a class of modular functions: the set of generalized eta-quotients which are
modular functions for Γ1(N) with poles only at infinity, denoted by GE∞(N).
Note that the notation E∞(N) is used by Radu [35] to denote the set of
modular eta-quotients with poles only at infinity for Γ0(N). Our goal is to
derive an expression of F (τ) in terms of the generators of GE∞(N). Then, we
are led to a Ramanujan-type identity for a(mn + t).

Our algorithm consists of the following steps:

Step 1 Use Theorem 2.1 to find a generalized eta-quotient φ(τ) for which F (τ)
in (3.1) is a modular function for Γ1(N).

Step 2 Find a finite set {z1, z2, . . . , zk} of generators of GE∞(N) by utilizing
a formula of Robins and the theory of Diophantine inequalities.

Step 3 Let 〈GE∞(N)〉Q be the vector space over Q generated by general-
ized eta-quotients in GE∞(N). Employ the Algorithm AB of Radu
for Γ1(N) on {z1, z2, . . . , zk} to generate a modular function z and a
Q[z]-module basis 1, e1, . . . , ew of 〈GE∞(N)〉Q.

Step 4 Find a generalized eta-quotient h in terms of generators of GE∞(N)
for which the modular function hF has a pole only at infinity. Theorem
2.7 can be used to compute the lower bounds of the orders of hF at
all cusps of Γ1(N).

Step 5 Determine whether hF is in 〈GE∞(N)〉Q by applying the Algorithm
MW of Radu to hF , z, and 1, e1, . . . , ew. If this goal can be achieved,
then F can be expressed as a linear combination of generalized eta-
quotients over Q.

For example, let us consider the overpartition function p(5n+2). In Sect.
2, we found that N = 10 satisfies the conditions 1–7.

Step 1 As shown in (2.4):

F (τ) = q
2
5
η(10τ)η9

10,5(τ)
η8
10,4(τ)

∞∑

n=0

p(5n + 2)qn

is a modular function with respect to Γ1(10).
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Step 2 We obtain the following generators of GE∞(10):

z =
η(τ)η(5τ)

η2
5,1(τ)η2(10τ)η10,1(τ)

, z1 =
η2(2τ)η(5τ)η2

5,1(τ)
η(τ)η2(10τ)η4

10,1(τ)
,

z2 =
η3(5τ)η4

5,1(τ)
η(τ)η(2τ)η(10τ)η3

10,1(τ)
, z3 =

η(τ)η2
5,1(τ)η2(10τ)

η2(2τ)η(5τ)η4
10,1(τ)

,

z4 =
η4(τ)η2

5,1(τ)
η3(2τ)η(10τ)η4

10,1(τ)
.

(3.2)

Step 3 Applying the Algorithm AB of Radu to {z, z1, z2, z3, z4}, we find that
1 is a z-module basis of 〈GE∞(10)〉Q. Thus

〈GE∞(10)〉Q = 〈1〉
Q[z] . (3.3)

Step 4 We obtain that

h =
z21z

3
3z

3
4

z6z42
=

η11(τ)η12
5,1(τ)η15(10τ)

η7(2τ)η19(5τ)η14
10,1(τ)

, (3.4)

for which hF has a pole only at infinity.
Step 5 Applying Radu’s Algorithm MW to hF , z, and 1, we see that hF ∈

〈GE∞(10)〉Q and

hF = 4z3 + 4z2 − 32z + 32. (3.5)

The relation (3.5) can be restated as the following theorem. The imple-
mentations of the above steps will be described in the subsequent sections.

Theorem 3.1. We have

y

∞∑

n=0

p(5n + 2)qn = 4z3 + 4z2 − 32z + 32, (3.6)

where

y =
(q; q)11∞(q10; q10)16∞(q, q4; q5)12∞(q5; q10)18∞

q3(q2; q2)7∞(q5; q5)19∞(q, q9; q10)14∞(q4, q6; q10)8∞
,

z =
(q; q)∞(q5; q5)∞

q(q, q4; q5)2∞(q10; q10)2∞(q, q9; q10)∞
.

4. Generators of GE∞(N)

In this section, we show how to implement Step 1 as in the sketch of the
previous section, that is, finding a finite set of generators of GE∞(N).

In light of the symmetry

ηδ,g(τ) = ηδ,δ−g(τ),

for any δ > 0 and �δ/2	 < g ≤ δ, we may rewrite the generalized eta-quotient
h(τ) in GE∞(N) in the following form:

∏

δ|N
0≤g≤�δ/2�

η
aδ,g

δ,g (τ), (4.1)
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where

aδ,g ∈
{

1
2Z, if g = 0 or g = δ

2 ,

Z, otherwise.
(4.2)

Throughout this section, we assume that the generalized eta-quotients are of
the form (4.1).

To find a set of generators of GE∞(N), we first give a characterization of
generalized eta-quotients h(τ) in GE∞(N), which involves the orders of h(τ)
at all cusps of Γ1(N). For any cusp s of Γ1(N), to apply a formula of Robins
[41, Theorem 4] to compute the order of h(τ) at a cusp s, we need to find a
cusp of the form λ

με that is equivalent to s, where ε|N and

gcd(λ,N) = gcd(λ, μ) = gcd(μ,N) = 1. (4.3)

The existence of such a cusp in the above form is ensured by Corollary 4 of
Cho, Koo, and Park [10].

The following theorem gives a characterization of generalized eta-quotients
in GE∞(N).

Theorem 4.1. Let

S(N) = {s1, s2, . . . , sε}
be a complete set of inequivalent cusps of Γ1(N) and sε = ∞. Assume that for
any 1 ≤ i ≤ ε, si is equivalent to λi

μiεi
, where εi|N and

gcd(λi, N) = gcd(λi, μi) = gcd(μi, N) = 1. (4.4)

Then, a generalized eta-quotient h(τ) in the form of (4.1) is in GE∞(N) if
and only if the following conditions hold:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
δ|N

aδ,0 = 0,

N
2

∑
δ|N

0≤g≤�δ/2�

gcd2(δ,ε1)
δε1

P2

(
λ1g

gcd(δ,ε1)

)
aδ,g ∈ N,

...
N
2

∑
δ|N

0≤g≤�δ/2�

gcd2(δ,εε−1)
δεε−1

P2

(
λε−1g

gcd(δ,εε−1)

)
aδ,g ∈ N,

N
2

∑
δ|N

0≤g≤�δ/2�

gcd2(δ,εε)
δεε

P2

(
λεg

gcd(δ,εε)

)
aδ,g ∈ Z.

(4.5)

Proof. Assume that the generalized eta-quotient h(τ) as given by (4.1) is in
GE∞(N). By the transformation formula of Schoeneberg [43, p. 199 (30)] for
η
(s)
g,h(τ), we have

∑

δ|N
aδ,0 = 0, (4.6)

and so, the first condition in (4.5) is satisfied. To show that the remaining
conditions in (4.5) are satisfied, we proceed to compute the order of h(τ) at
each cusp in S(N). Since h(τ) ∈ GE∞(N), for all 1 ≤ i ≤ ε − 1,
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ordsi
(h(τ)) ∈ N (4.7)

and

ordsε
(h(τ)) ∈ Z. (4.8)

For any 1 ≤ i ≤ ε, since si is equivalent to λi

μiεi
, we get

ordsi
(h(τ)) = ordλi/μiεi

(h(τ)).

Using the formula of Robins [41, Theorem 4] for the order of h(τ) at the cusp
λi/μiεi, namely,

ordλi/μiεi
(h(τ)) =

N

2

∑

δ|N
0≤g≤�δ/2�

gcd2(δ, εi)
δεi

P2

(
λig

gcd(δ, εi)

)
aδ,g,

we find that

ordsi
(h(τ)) =

N

2

∑

δ|N
0≤g≤�δ/2�

gcd2(δ, εi)
δεi

P2

(
λig

gcd(δ, εi)

)
aδ,g. (4.9)

For 1 ≤ i ≤ ε − 1, combining (4.7) and (4.9), we obtain that

N

2

∑

δ|N
0≤g≤�δ/2�

gcd2(δ, εi)
δεi

P2

(
λig

gcd(δ, εi)

)
aδ,g ∈ N. (4.10)

Setting i = ε in (4.9), it follows from (4.8) that

N

2

∑

δ|N
0≤g≤�δ/2�

gcd2(δ, εε)
δεε

P2

(
λεg

gcd(δ, εε)

)
aδ,g ∈ Z. (4.11)

Combining (4.6), (4.10), and (4.11), we are led to (4.5).
Conversely, assume that the conditions in (4.5) are satisfied. From (4.5)

and (4.9), we see that

ord0(h(τ)) ∈ Z and ord∞(h(τ)) ∈ Z. (4.12)

The first condition of (4.5) says that
∑

δ|N
aδ,0 = 0. (4.13)

Robins [41] showed that if a generalized eta-quotient h(τ) satisfies (4.12) and
(4.13), then for any γ ∈ Γ1(N):

h(γτ) = h(τ). (4.14)

By (4.9) and the conditions in (4.5), we see that for any s ∈ S(N) \ {∞},

ords(h(τ)) ∈ N. (4.15)

Combining (4.14) and (4.15), we conclude that h(τ) ∈ GE∞(N). �
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Based on the above theorem, the generalized eta-quotients in GE∞(N)
are determined by the solutions of (4.5). Next, we show that (4.5) can be solved
by transforming the conditions in (4.5) to a system of Diophantine inequalities,
so that we can obtain a finite set of generators of GE∞(N).

Set

yi =
N

2

∑

δ|N
0≤g≤�δ/2�

gcd2(δ, εi)
δεi

P2

(
λig

gcd(δ, εi)

)
aδ,g

for 1 ≤ i ≤ ε. It follows from (4.5) that yi ∈ N for 1 ≤ i ≤ ε − 1 and yε ∈ Z.
Let

χδ(g) =

{
2, if g = 0 or g = δ

2 ,

1, otherwise,

and a′
δ,g = χδ(g) aδ,g for any δ|N and 0 ≤ g ≤ �δ/2	. By (4.2), it can be easily

checked that each a′
δ,g is an integer. Then, by Theorem 4.1, h(τ) ∈ GE∞(N)

if and only if a′
δ,g (δ|N, 0 ≤ g ≤ �δ/2	) and yi (1 ≤ i ≤ ε) is an integer solution

of the following Diophantine inequalities:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
δ|N

a′
δ,0 = 0,

N
2

∑
δ|N

0≤g≤�δ/2�

gcd2(δ,ε1)
δε1

P2

(
λ1g

gcd(δ,ε1)

)
a′

δ,g

χδ(g)
− y1 = 0,

...
N
2

∑
δ|N

0≤g≤�δ/2�

gcd2(δ,εε−1)
δεε−1

P2

(
λε−1g

gcd(δ,εε−1)

)
a′

δ,g

χδ(g)
− yε−1 = 0,

N
2

∑
δ|N

0≤g≤�δ/2�

gcd2(δ,εε)
δεε

P2

(
λεg

gcd(δ,εε)

)
a′

δ,g

χδ(g)
− yε = 0,

y1 ≥ 0,
...

yε−1 ≥ 0.

(4.16)

Notice that different cusps may have the same order for h(τ), there may exist
redundant relations in above system of relations. More precisely, if for two
cusps si, sj ∈ S(N)\{∞},

ordsi
(h(τ)) = ordsj

(h(τ)),

then we may ignore the relations contributed by sj . We now assume that after
the elimination of redundant relations, the remaining relations are still in the
same form as in (4.16). It is known that there exist integral vectors α1, . . . , αk,
such that the set of integer solutions of (4.16) is given by

{u1α1 + · · · + ukαk : u1, . . . , uk ∈ N},

see [44, p. 234], which implies that GE∞(N) has a finite set of generators
z1, . . . , zk. One can use the package 4ti2 [1] in SAGE to find such a set of
integral vectors α1, . . . , αk.
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Let us consider the case N = 10 as an example. Notice that for any
generalized eta-quotient h(τ):

ord1/4(h(τ)) = ord1/2(h(τ))

and

ord0(h(τ)) = ord1/3(h(τ)).

By (4.16), we obtain the following Diophantine inequalities after eliminating
the relations contributed by the cusps 1/2 and 1/3:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a′
1,0 + a′

2,0 + a′
5,0 + a′

10,0 = 0,
5 a′

1,0
12 + 5 a′

2,0
24 + 5 a′

2,1
24 + a′

5,0
12 + a5,1

6 + a5,2
6

+a′
10,0
24 + a10,1

12 + a10,2
12 + a10,3

12 + a10,4
12 + a′

10,5
24 − y1 = 0,

...
5 a′

1,0
24 + 5 a′

2,0
12 − 5 a′

2,1
24 + a′

5,0
24 + a′

5,1
12 + a′

5,2
12

+a′
10,0
12 − a′

10,1
12 + a′

10,2
6 − a′

10,3
12 + a′

10,4
6 − a′

10,5
24 − y5 = 0,

a′
1,0
24 + a′

2,0
12 − a′

2,1
24 + 5 a′

5,0
24 + a′

5,1
60 − 11 a′

5,2
60

+ 5 a′
10,0
12 + 23 a′

10,1
60 + a′

10,2
30 − 13 a′

10,3
60 − 11 a′

10,4
30 − 5 a′

10,5
24 − y6 = 0

y1 ≥ 0,
...

y5 ≥ 0.

(4.17)

Each solution (a′
1,0, . . . , a

′
10,5, y1, . . . , y6) of (4.17) can be expressed as:

5∑

i=1

ciαi +
6∑

i=1

diβi, (4.18)

where c1, . . . , c5 are nonnegative integers, d1, . . . , d6 are integers, and

α1 = (−1, 2, 0, 1, 2, 0,−2,−4, 0, 0, 0, 0, 0, 1, 0, 0, 0,−2),

α2 = (−1,−1, 0, 3, 4, 0,−1,−3, 0, 0, 0, 0, 0, 0, 1, 0, 0,−1),

α3 = (1,−2, 0,−1, 2, 0, 2,−4, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1),

α4 = (1, 0, 0, 1,−2, 0,−2,−1, 0, 0, 0, 0, 0, 0, 0, 1, 0,−1),

α5 = (4,−3, 0, 0, 2, 0,−1,−4, 0, 0, 0, 0, 1, 0, 0, 0, 0,−2),

β1 = (0, 0, 0,−1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

β2 = (−1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

β3 = (−1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

β4 = (0,−1, 0, 0, 1, 0, 1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),

β5 = (−1, 1, 0, 1, 0, 0,−1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0),

β6 = (0, 0, 0, 0,−1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0).

Since aδ,g = a′
δ,g/χδ(g), we obtain 11 generalized eta-quotients. It can be

checked that the generalized eta-quotients corresponding to β1, . . . , β6 are
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equal to 1. For example, the generalized eta-quotient corresponding to β1 is
given by

h(τ) =
η

1
2
10,0(τ)η

1
2
10,5(τ)

η
1
2
5,0(τ)

. (4.19)

Invoking (1.12), namely,

ηδ,0(τ) = η2(δτ) and ηδ, δ
2
(τ) =

η2( δ
2τ)

η2(δτ)
,

we obtain that h(τ) = 1. The generalized eta-quotients corresponding to
α1, . . . , α5 are the generators z1, z2, z3, z, z4 as given in (3.2).

5. Radu’s Algorithm AB

In the previous section, it was shown that GE∞(N) admits a finite set of
generators z1, . . . , zk. Radu [37] developed the Algorithm AB to produce a
module basis of 〈E∞(N)〉Q, based on a finite set of generators of E∞(N). In
this section, we demonstrate how to apply Radu’s Algorithm AB to a finite
set of generators of GE∞(N) to derive a modular function z and a module
basis 1, e1, . . . , ew of the Q[z]-module 〈GE∞(N)〉Q.

We first give an overview of Radu’s Algorithm AB. Given modular func-
tions z1, . . . , zk for Γ0(N) with poles only at infinity, Radu’s Algorithm AB
aims to produce a modular function z ∈ Q[z1, . . . , zk] and a z-reduced sequence
e1, . . . , ew ∈ Q[z1, . . . , zk], such that

Q[z1, . . . , zk] = Q[z] + Q[z]e1 + · · · + Q[z]ew. (5.1)

The condition on a z-reduced sequence ensures that 1, e1, . . . , ew form a Q[z]-
module basis of Q[z1, . . . , zk]. The right-hand side of (5.1) is denoted by
〈1, e1, . . . , ew〉Q[z].

Let 〈E∞(N)〉
Q

denote the vector space over Q generated by E∞(N). As
pointed out by Radu [35], 〈E∞(N)〉

Q
does not have a finite basis as a vector

space over Q, but it has a finite basis when considered as a Q[z]-module for
some z in 〈E∞(N)〉

Q
. To obtain such a modular function z and a Q[z]-module

basis, Radu applied the Algorithm AB to the generators z1, . . . , zk of E∞(N)
and then obtained a z-module basis 1, e1, . . . , ew of the Q[z]-module 〈E∞(N)〉

Q

for some z ∈ 〈E∞(N)〉
Q
.

As will be seen, Radu’s Algorithm AB can be adapted to Γ1(N). The
output of Algorithm AB consists of a modular function z ∈ Q[z1, . . . , zk] and a
z-reduced sequence e1, . . . , ew. The output of the Algorithm AB will be carried
over to the Algorithm MC and the Algorithm MW, which require the input
of a z-reduced sequence. Thus, for the purpose of this paper, we do not need
to elaborate on the definition of a z-reduced sequence, which can be found in
[35].

It is known that if f is a modular function for Γ0(N) such that orda/c(f)
≥ 0 for every cusp a/c of Γ0(N), then f is a constant, see Newman [28,
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Section, Proof of Lemma 3], Knopp [25, Chapter 2, Theorem 7], and Radu [35,
Lemma 5]. Notice that this assertion also holds for Γ1(N). Thus, the Algorithm
AB applies to modular functions with poles only at infinity for Γ1(N). It is
worth mentioning that the Algorithm AB is based on the algorithms MC, VB,
and MB, which are also valid for modular functions with poles only at infinity
for Γ1(N). Since the Algorithm MW of Radu is a refinement of the Algorithm
MC, it also works for Γ1(N).

We proceed to find a modular function z and a module basis of Q[z]-
module 〈GE∞(N)〉Q. Let {z1, . . . , zk} be a finite set of generators of GE∞(N).
Note that

〈GE∞(N)〉Q = Q[z1, . . . , zk]. (5.2)

Applying the Algorithm AB to z1, z2, . . . , zk, we obtain a modular function
z ∈ 〈GE∞(N)〉

Q
and a z-reduced sequence e1, . . . , ew ∈ 〈GE∞(N)〉

Q
, such

that

Q[z1, . . . , zk] = 〈1, e1, . . . , ew〉Q[z]. (5.3)

Combining (5.2) and (5.3), we find that

〈GE∞(N)〉
Q

= 〈1, e1, . . . , ew〉Q[z].

Using the property that e1, e2, . . . , ew form a z-reduced sequence, we deduce
that 1, e1, . . . , ew constitute a Q[z]-module basis of 〈GE∞(N)〉Q.

For example, applying the Algorithm AB for Γ1(N) to the generators
z, z1, z2, z3, z4 of GE∞(10) given by (3.2), we obtain that

〈GE∞(10)〉Q = Q[z]. (5.4)

6. Finding a Generalized Eta-Quotient

In this section, we present an implementation of Step 4 in the algorithm out-
lined in Sect. 3. Assume that {z1, z2, . . . , zk} is a set of generators of GE∞(N)
and F (τ) is a modular function for Γ1(N) as given in (3.1). Our objective is
to find a generalized eta-quotient h(τ) of the form:

h(τ) =
k∏

j=1

z
tj

j , (6.1)

such that the modular function hF has a pole only at infinity, that is, for any
cusp s �= ∞,

ords(hF ) ≥ 0, (6.2)

where tj are integers. To find the integers tj for which the relation (6.2) holds,
we shall establish a system of linear inequalities any solution of which leads
to a desired generalized eta-quotient h. The linear inequalities are derived by
the lower bounds of ords(hF ) for all cusps s �= ∞.

Now, we utilize Theorem 2.7 to obtain the lower bound of ords(hF ). Let

S(N) = {s1, s2, . . . , sε}
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be a complete set of inequivalent cusps of Γ1(N) and sε = ∞. For any 1 ≤ i ≤ ε
and 1 ≤ j ≤ k, denote ordsi

zj by bij . By the definition (6.1), we have for each
cusp si,

ordsi
(hF ) =

k∑

j=1

tjbij + ordsi
(F ). (6.3)

By Theorem 2.7, we see that for any 1 ≤ i ≤ ε,

ordsi
(F (τ)) ≥ di, (6.4)

where

di = wαi
(p(αi) + p∗(αi)),

and αi is defined in Theorem 2.7. Combining (6.3) and (6.4), we get

ordsi
(hF ) ≥

k∑

j=1

tjbij + di. (6.5)

Consider the Diophantine inequalities
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k∑
j=1

tjb1j + d1 > −1,

...
k∑

j=1

tjb(ε−1)j + dε−1 > −1.

(6.6)

Now, if we can find integers t1, . . . , tk, such that (6.6) holds, then (6.5) im-
plies that the generalized eta-quotient h(τ) determined by z1, z2, . . . , zk and
t1, t2, . . . , tk satisfies (6.2). Hence, we deduce that any integer solution of (6.6)
leads to a generalized eta-quotient h(τ), such that hF has a pole only at in-
finity.

We note that different generalized eta-quotients h may lead to different
expressions for F . To get a relatively simple expression for F , we impose a fur-
ther condition that the order of hF at infinity is as large as possible. While we
cannot rigorously describe what a simple expression means, intuitively speak-
ing, the above condition appears to play a role in getting a relatively simple
expression for F . Next, we state how to find such a generalized eta-quotient
h(τ).

It is known that there exist integral vectors α1, . . . , αw, β1, . . . , βl, such
that the set of integer solutions of (6.6) is given by

{αi + v1β1 + · · · + vlβl : 1 ≤ i ≤ w and v1, . . . , vl ∈ N}, (6.7)

see [44, p. 234].
The following theorem shows how to find a generalized eta-quotient h,

such that ord∞(hF ) attains the maximum value among all the h satisfying
(6.6).
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Theorem 6.1. For 1 ≤ i ≤ w, let

αi = (αi1, αi2, . . . , αik),

as given in (6.7). Let hi be the generalized eta-quotient determined by z1, z2, . . . , zk

and αi, that is,

hi(τ) =
k∏

j=1

z
αij

j . (6.8)

Assume that

ord∞(h1F ) ≥ ord∞(hiF ) (6.9)

for 2 ≤ i ≤ w. For any integer solution μ = (μ1, μ2, . . . , μk) of (6.6), let g be
the generalized eta-quotient

g(τ) =
k∏

j=1

z
μj

j . (6.10)

Then, we have

ord∞(h1F ) ≥ ord∞(gF ).

Proof. By (6.7), there exist an integer 1 ≤ i ≤ w, and nonnegative integers
v1, . . . , vl, such that

μ = αi + v1β1 + · · · + vlβl. (6.11)

For 1 ≤ j ≤ l, let

βj = (βj1, βj2, . . . , βjk),

and let fj be the generalized eta-quotient defined by

fj(τ) =
k∏

i=1

z
βji

i . (6.12)

Combining (6.8), (6.11), and (6.12), we obtain that

g(τ) = hi

l∏

j=1

f
vj

j .

Thus:

ord∞(gF ) = ord∞(hiF ) +
l∑

j=1

vjord∞(fj). (6.13)

Under the condition (6.9), it follows from (6.13) that

ord∞(gF ) ≤ ord∞(h1F ) +
l∑

j=1

vjord∞(fj). (6.14)

We claim that for each 1 ≤ j ≤ l,

ord∞(fj) ≤ 0. (6.15)
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There are two cases.
Case 1. If fj(τ) is a constant, then ord∞(fj) = 0.
Case 2. If fj(τ) is not a constant, we shall show that ord∞(fj) < 0.

Assume to the contrary that ord∞(fj) ≥ 0. Since fj(τ) is not a constant, there
exists a cusp s �= ∞, such that ords(fj) < 0. By the assumption (6.2), we have
ords(h1F ) ≥ 0. Let d = ords(h1F ). By (6.7), we see that α1 + (d + 1)βj is a
solution of (6.6). It follows that the generalized eta-quotient fd+1

j h1 satisfies
(6.2), and so

ords(fd+1
j h1F ) ≥ 0. (6.16)

However, since ords(fj) < 0, we have

ords(fd+1
j h1F ) = (d + 1)ords(fj) + d < 0,

which contradicts (6.16). Thus, we deduce that ord∞(fj) < 0, as claimed.
Combining the above two cases, we find that (6.15) holds for each 1 ≤ j ≤ l.
In view of (6.14), we conclude that

ord∞(gF ) ≤ ord∞(h1F ), (6.17)

and this completes the proof. �

For the overpartition function p(5n+2), we have found a modular function
F (τ) for Γ1(10) as given in (2.4). For the generators z, z1, z2, z3, z4 of GE∞(10)
as given in (3.2), we obtain the following system of linear inequalities (6.6):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t5 − 3 > −1,

t3 + 19
5 > −1,

t2 − 2 > −1,

t4 − 18
5 > −1,

t1 + 27
5 > −1.

(6.18)

Each integer solution (t1, t2, t3, t4, t5) of (6.18) can be expressed as

α1 +
5∑

i=1

viβi, (6.19)

where v1, . . . , v5 are nonnegative integers, and

α1 = (−6, 2,−4, 3, 3),

β1 = (1, 0, 0, 0, 0),

β2 = (0, 1, 0, 0, 0),

β3 = (0, 0, 1, 0, 0),

β4 = (0, 0, 0, 1, 0),

β5 = (0, 0, 0, 0, 1).

The generalized eta-quotient corresponding to α1 is

h =
z21z

3
3z

3
4

z6z42
=

η11(τ)η12
5,1(τ)η15(10τ)

η7(2τ)η19(5τ)η14
10,1(τ)

, (6.20)
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and hF has a pole only at infinity. Consider a different solution μ = α1+2β2 =
(6, 4,−4, 3, 3) of (6.18), we get a generalized eta-quotient:

h′ =
z41z

3
3z

3
4

z6z42
=

η9(τ)η16
5,1(τ)η11(10τ)

η3(2τ)η17(5τ)η22
10,1(τ)

, (6.21)

and h′F has a pole only at infinity. The orders of hF and h′F at infinity are −3
and −7, respectively. As will be seen in the next section, the Ramanujan-type
identity derived from hF takes a simpler form than that derived from h′F .

7. Ramanujan-Type Identities

Given a partition function a(n) as defined by (1.1), and integers m and t, let

F (τ) = φ(τ) gm,t(τ) (7.1)

be a modular function as given in (3.1), where φ(τ) is a generalized eta-quotient
of the form (2.2), and

gm,t(τ) = q
t−�
m

∞∑

n=0

a(mn + t)qn,

as given in (2.1).
Assume that we have found a generalized eta-quotient h(τ), such that

hF has a pole only at infinity. In Sect. 5, we derived a modular function
z ∈ 〈GE∞(N)〉

Q
and a z-reduced sequence e1, . . . , ew, such that

〈GE∞(N)〉
Q

= Q[z] + Q[z]e1 + · · · + Q[z]ew.

In this section, we aim to derive an expression for hF in terms of z and
the module basis 1, e1, . . . , ew. This leads to a Ramanujan-type identity for
a(mn + t).

We first adapt Radu’s Algorithm MC, original designed for Γ0(N), to
Γ1(N), and apply it to hF , z, and e1, . . . , ew to determine whether hF belongs
to 〈GE∞(N)〉

Q
. By Radu [35, Lemma 5], the Algorithm MC requires the non-

positive parts of the q-expansion of hF , and finite parts of the q-expansions
of z, and e1, . . . , ew. More precisely, by (7.1), the non-positive parts of the
q-expansion of hF can be computed via the generating function (1.1) of a(n)
and the q-expansions of h(τ) and φ(τ). If the algorithm confirms that hF ∈
〈GE∞(N)〉

Q
, then we may utilize the Γ1(N) version of Algorithm MW to

express hF as

hF = p0(z) + p1(z)e1 + · · · + pw(z)ew, (7.2)

where pi(z) ∈ Q[z] for 0 ≤ i ≤ w.
To this end, we first utilize the Radu’s Algorithm MC for Γ1(N) to de-

termine whether hF belongs to 〈GE∞(N)〉
Q
. Once we have confirmed that

hF ∈ 〈GE∞(N)〉
Q
, we may utilize the Algorithm MW of Radu for Γ1(N) to

derive a Ramanujan-type identity for a(mn + t).
We now give an algorithmic derivation of the Ramanujan-type identity

for p(5n + 2), as stated in Theorem 3.1.
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For F , z, and h given in (2.4), (3.2), and (6.20), we have

hF =
4
q3

+
28
q2

+
56
q

+ 140 + O(q),

z =
1
q

+ 2 + 2q + q2 + O(q3).

Applying Radu’s Algorithm MC to hF and z, we deduce that

hF ∈ 〈GE∞(10)〉
Q

.

With the input hF and z, the Algorithm MW yields

hF = 4z3 + 4z2 − 32z + 32. (7.3)

Substituting F , z, and h into (7.3), we obtain the Ramanujan-type identity in
Theorem 3.1. However, if we take h′ as given in (6.21), then we get

h′F = 4z7 − 4z6 − 44z5 + 100z4 − 20z3 − 92z2 + 32z + 32. (7.4)

In the same vain, we obtain a Ramanujan-type identity for p(5n + 3).

Theorem 7.1. We have

y

∞∑

n=0

p(5n + 3)qn = 8z3 − 12z2 + 16z − 16,

where z is given in Theorem 3.1 and

y =
(q; q)12∞(q5; q5)12∞(q, q9; q10)2∞(q4, q6; q10)8∞

q3(q2; q2)7∞(q, q4; q5)6∞(q10; q10)16∞(q5; q10)14∞
.

Notice that Theorems 3.1 and 7.1 can be considered as witness identities
for the following congruences of Hirschhorn and Sellers [24]:

p(5n + 2) ≡ 0 (mod 4),

p(5n + 3) ≡ 0 (mod 4).

8. A Witness Identity for p(11n + 6)

In this section, we demonstrate how our algorithm gives rise to a witness
identity for p(11n + 6). We begin with an overview of the witness identities
due to Bilgici and Ekin [8], Radu [35], and Hemmecke [20]. Bilgici and Ekin [8]
used the method of Kolberg to deduce the generating functions of p(11n + t)
for all 0 ≤ t ≤ 10. In particular, they obtained the following witness identity:

∞∑

n=0

p(11n + 6)qn =11x(−x3
1x4 − x3

2x5 − x3
4x2 − x3

3x1 − x3
5x3 − 14x2

1x4

− 14x2
2x5 − 14x2

4x2 − 14x2
3x1 − 14x2

5x3 − 29x1x4

− 29x2x5 − 29x2x4 − 29x1x3 − 29x3x5 + 106) , (8.1)
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where

x =
q4(q11; q11)11∞

(q; q)12∞
,

x1 = − (q4, q7; q11)2∞(q, q10; q11)∞
(q2, q9; q11)2∞(q5, q6; q11)∞

x2 = − (q2, q9; q11)2∞(q5, q6; q11)∞
q(q, q10; q11)2∞(q3, q8; q11)∞

,

x3 =
q2(q, q10; q11)2∞(q3, q8; q11)∞
(q4, q7; q11)∞(q5, q6; q11)2∞

,

x4 =
(q4, q7; q11)∞(q5, q6; q11)2∞
q(q2, q9; q11)∞(q3, q8; q11)2∞

,

x5 = − (q2, q9; q11)∞(q3, q8; q11)2∞
(q4, q7; q11)2∞(q, q10; q11)∞

.

Using the Ramanujan–Kolberg algorithm, Radu [35] derived a witness identity
for p(11n + 6). A set {M1,M2, . . . ,M7} of generators of E∞(22) can be found
in [35]. For example:

M1 =
η7(τ)η3(11τ)
η3(2τ)η7(22τ)

.

Let

F =
(q; q)10∞(q2; q2)2∞(q11; q11)11∞

q14(q22; q22)22∞

∞∑

n=0

p(11n + 6)qn.

Radu showed that

F = 11(98t4 + 1263t3 + 2877t2 + 1019t − 1997)

+ 11z1(17t2 + 490t2 + 54t − 871)

+ 11z2(t3 + 251t2 + 488t − 614), (8.2)

where

t =
3
88

M1 +
1
11

M2 − 1
8
M4,

z1 = − 5
88

M1 +
2
11

M2 − 1
8
M4 − 3,

z2 =
1
44

M1 − 3
11

M2 +
5
4
M4.

Noting that (1−qn)11 ≡ 1−q11n (mod 11) and (1−qn)8 ≡ (1−q2n)4 (mod 8),
we see that (8.2) implies the Ramanujan congruence for p(11n+6). Hemmecke
[20] generalized Radu’s algorithm and derived the following witness identity:
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F = 112 · 3068M7 + 112 · (3M1 + 4236)M6

+ 11 · (285M1 + 11 · 5972)M5 + 11(1867M1 + 11 · 2476)M2

− 11
8

(M3
1 + 1011M2

1 + 11 · 6588M1 + 112 · 10880)

+
11
8

(M2
1 + 11 · 4497M1 + 112 · 3156)M4. (8.3)

We are now ready to give an algorithmic derivation of the identity for
p(11n + 6) as stated in Theorem 1.1.

Proof of Theorem 1.1. Notice that N = 11 satisfies all the conditions 1–7. We
proceed with the following steps.
Step 1 By Theorem 2.1, we find that

F (τ) = q(q11; q11)∞
∞∑

n=0

p(11n + 6)qn

is a modular function for Γ1(11).
Step 2 Solving the system of Diophantine inequalities (4.16) for N = 11, we

obtain a set of 27 generators of GE∞(11) including z and e as given
in (1.8) and (1.9).

Step 3 Applying Radu’s Algorithm AB, we deduce that

〈GE∞(11)〉Q = 〈1, e〉Q[z].

Step 4 By virtue of Theorems 2.7 and 6.1, we get

h =
η24(τ)

η24(11τ)η28
11,1(τ)η16

11,2(τ)η12
11,3(τ)η4

11,4(τ)

for which hF has a pole only at infinity.
Step 5 Employing Radu’s Algorithm MC and Algorithm MW, we deduce that

hF ∈ 〈GE∞(11)〉Q and

hF = 11z10 + 121z8e + 330z9 − 484z7e − 990z8 + 484z6e + 792z7

− 484z5e + 44z6 + 1089z4e − 132z5 − 1452z3e − 451z4

+ 968z2e + 748z3 − 242ze − 429z2 + 77z + 11.

This completes the proof. �

9. Further Examples

In this section, we derive Ramanujan-type identities on the broken 2-diamond
partition function. The notion of the broken k-diamond partitions was in-
troduced by Andrews and Paule [4] in their study of MacMahon’s partition
analysis. The number of broken k-diamond partitions of n is denoted by Δk(n).
They showed that the generating function of Δk(n) is given by

∞∑

n=0

Δk(n)qn =
(q2; q2)∞(q2k+1; q2k+1)∞
(q; q)3∞(q4k+2; q4k+2)∞

.
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Andrews and Paule conjectured that

Δ2(25n + 14) ≡ 0 (mod 5). (9.1)

Chan [9] proved this conjecture and also showed that

Δ2(25n + 24) ≡ 0 (mod 5). (9.2)

Define a(n) by
∞∑

n=0

a(n)qn =
(q; q)2∞(q2; q2)∞

(q10; q10)∞
.

Since (1− qn)5 ≡ 1− q5n (mod 5), we see that Δ2(n) ≡ a(n) (mod 5). By the
Ramanujan–Kolberg algorithm, Radu [35] obtained the following identity:

(q2; q2)12∞(q5; q5)10∞
q4(q; q)6∞(q10; q10)20∞

( ∞∑

n=0

a(25n + 14)qn

)( ∞∑

n=0

a(25n + 24)qn

)

= 25
(
2t4 + 28t3 + 155t2 + 400t + 400

)
, (9.3)

where

t =
(q; q)3∞(q5; q5)∞

q(q2; q2)∞(q10; q10)3∞
.

The congruences (9.1) and (9.2) are easy consequences of (9.3). Let

z =
(q2; q2)∞(q5; q5)5∞
q(q; q)∞(q10; q10)5∞

.

Using the package RaduRK, Smoot [46] deduced that

(q; q)126∞ (q5; q5)70∞
q58(q2; q2)2∞(q10; q10)190∞

( ∞∑

n=0

Δ2(25n + 14)qn

) ( ∞∑

n=0

Δ2(25n + 24)qn

)

is a polynomial in z of degree 58 with integer coefficients divisible by 25. It
is not hard to see that the above relation implies the congruences (9.1) and
(9.2).

Our algorithm provides the following witness identities for Δ2(25n + 14)
and Δ2(25n + 24).

Theorem 9.1. Let

z =
(q; q)∞(q5; q5)∞

q(q, q4; q5)2∞(q10; q10)2∞(q, q9; q10)∞
.

Then
(q; q)92∞(q5; q5)14∞(q, q4; q5)52∞(q4, q6; q10)4∞

q57(q2; q2)58∞(q10; q10)46∞(q, q9; q10)109∞ (q5; q10)10∞

∞∑

n=0

Δ2(25n + 14)qn (9.4)

and
(q; q)92∞(q, q4; q5)62∞(q5; q10)6∞

q57(q2; q2)59∞(q5; q5)2∞(q10; q10)29∞(q, q9; q10)119∞ (q4, q6; q10)4∞

∞∑

n=0

Δ2(25n+24)qn

(9.5)

are both polynomials in z of degree 57 with integer coefficients divisible by 5.
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More precisely, (9.4) equals

10445z57 + 65072505z56 + 29885191700z55 + 2909565072375z54

+ 58232762317950z53 − 771909964270635z52 − 8976196273201590z51

+ 168096305999838525z50 − 552704071429548750z49

− 6285133254753356625z48 + 76077164750182724400z47

− 350853605818104040400z46 + 430844106211910184000z45

+ 4332665789140456020000z44 − 31965516977695010144000z43

+ 116598487085627561478400z42 − 254498980254624708134400z41

+ 226239786150985106784000z40 + 630144010340120712320000z39

− 3270835930300215379968000z38 + 7873377561448743273881600z37

− 12188753588700934348185600z36 + 11409105186984502777856000z35

− 1853370295840331059200000z34 − 12922596637778941349888000z33

+ 19993842975085327602810880z32 − 4136695001339260651438080z31

− 40585258593920366687027200z30 + 107607975413970670190592000z29

− 189170246667253453894451200z28 + 290673733377906514130370560z27

− 429481500981884772899880960z26 + 614653426107799377123737600z25

− 825958110337598656348160000z24 + 1014095417844181497806848000z23

− 1125028176866670548300595200z22+1129311459482608004707123200z21

− 1033623338399676468559872000z20+869136778177466010173440000z19

− 672028063551221072396288000z18 + 473438441949368700161228800z17

− 299190013959544777788620800z16 + 167798468337926970277888000z15

− 84223564508812395151360000z14 + 39006701101726128144384000z13

− 16949659707832925998284800z12 + 6525804102142065953996800z11

− 1953358789335809261568000z10 + 408567853900785254400000z9

− 90672379909684330496000z8 + 43132985715615837716480z7

− 13837533253868380487680z6 + 78654993658072268800z5

+ 776840149395832832000z4 − 482905506919219200z3

− 31960428074332323840z2 − 1612499772831170560z
− 7036874417766400.

The explicit expression for (9.5) is omitted.
We end this section by noting that our algorithmic approach can be used

to derive dissection formulas on quotients in the form of (1.1), that is,
∏

δ|M

(
qδ; qδ

)rδ

∞ , (9.6)
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where M is a positive integer and rδ, rδ,g are integers. Let a(n) be the partition
function defined by (1.1), and let m be a positive integer. If our algorithm can
be utilized to find a formula for the generating function of a(mn + t) for each
0 ≤ t ≤ m − 1, then we are led to an m-dissection formula on the quotient
(9.6). For example, the algorithm is valid to produce the 5-dissection formulas
for (q; q)∞ and 1

(q;q)∞
, see Berndt [6, p. 165].

10. More General Partition Functions

While many partition functions a(n) are of the form (1.1), there are partition
functions that do not seem to fall into this framework, such as Andrews’ (k, i)-
singular overpartition function Qk,i(n). Andrews [3] derived the generating
function:

∞∑

n=0

Qk,i(n)qn =
(qk,−qi,−qk−i; qk)∞

(q; q)∞
. (10.1)

In general, it is not always the case that a quotient on the right-hand side of
(10.1) can be expressed in the form of (1.1).

The objective of this section is to extend our algorithm to partition func-
tions b(n) defined by

∞∑

n=0

b(n)qn =
∏

δ|M
(qδ; qδ)rδ∞

∏

δ|M
0<g<δ

(qg, qδ−g; qδ)rδ,g∞ , (10.2)

where M is a positive integer and rδ, rδ,g are integers. In fact, for any k and
1 ≤ i < k

2 , (10.1) can be written in the form of (10.2):
∞∑

n=0

Qk,i(n)qn =
(qk; qk)∞(q2i, q2k−2i; q2k)∞

(q; q)∞(qi, qk−i; qk)∞
, (10.3)

where M = 2k:

rδ =

⎧
⎪⎨

⎪⎩

−1, δ = 1,

1, δ = k,

0, otherwise,
and rδ,g =

⎧
⎪⎨

⎪⎩

−1, δ = k, g = i,

1, δ = 2k, g = 2i,

0, otherwise.

Analogous to the generating function gm,t(τ) in Sect. 2 as given by Radu
[37], we adopt the same notation for the generating function of b(mn + t):

gm,t(τ) = q
t−�
m

∞∑

n=0

b(mn + t)qn, (10.4)

where

� = − 1
24

∑

δ|M
δrδ −

∑

δ|M
0<g<δ

δ

2
P2

(g

δ

)
rδ,g.
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As before

P2(t) = {t}2 − {t} +
1
6
,

and {t} is the fractional part of t.
To derive a Ramanujan-type identity for b(mn + t), we follow the same

procedure as in Sect. 3. There are only a few modifications that should be
taken into account to extend Theorems 2.1 and 2.7 to the generating function
gm,t(τ) in (10.4). The proofs are similar to those of Theorems 2.1 and 2.7 and
hence are omitted.

Let φ(τ) be a generalized eta-quotient and F = φ(τ)gm,t(τ). Similar
to Theorem 2.1, we give a criterion for F (τ) to be a modular function for
Γ1(N). Let κ = gcd(m2−1, 24). First, we assume that N satisfies the following
conditions:

1. M |N .
2. p|N for any prime p|m.
3. κN

∑
δ|M

0<g<δ

g
δ rδ,g ≡ 0 (mod 2).

4. κN
∑

δ|M
0<g<δ

rδ,g ≡ 0 (mod 4).

5. κmN2
∑

δ|M
0<g<δ

rδ,g

δ ≡ 0 (mod 12).

6. κN
∑

δ|M rδ ≡ 0 (mod 8).
7. κmN2

∑
δ|M

rδ

δ ≡ 0 (mod 24).
8. 24mM

gcd(κα(t),24mM) |N , where

α(t) = −M
∑

δ|M
δrδ − 12M

∑

δ|M
0<g<δ

δP2

(g

δ

)
rδ,g − 24Mt.

9. Let
∏

δ|M δ|rδ| = 2zj, where z ∈ N and j is odd. If 2|m, then κN ≡ 0
(mod 4) and Nz ≡ 0 (mod 8), or z ≡ 0 (mod 2) and N(j − 1) ≡ 0
(mod 8).

10. Let Sn = {j2 (mod n) : j ∈ Zn, gcd(j, n) = 1, j ≡ 1 (mod N)}. For any
s ∈ S24mM :

s − 1
24

∑

δ|M
δrδ + (s − 1)

∑

δ|M
0<g<δ

δ

2
P2

(g

δ

)
rδ,g + ts ≡ t (mod m).

For a given partition function b(n), and given integers m and t, such a positive
integer N always exists, because N = 24mM satisfies the conditions 1–10. For
example, for Andrews’ (3,1)-singular overpartition function Q3,1(n), and for
m = 9 and t = 3, we have N = 6. Compared with the conditions in Sect. 2,
the conditions 3–5 are required to deal with the generalized eta-quotients.

Theorem 10.1. For a given partition function b(n) as defined by (10.2), and
for given integers m and t, suppose that N is a positive integer satisfying the
conditions 1–10. Let

F (τ) = φ(τ) gm,t(τ),
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where

φ(τ) =
∏

δ|N
ηaδ(δτ)

∏

δ|N
0<g≤�δ/2�

η
aδ,g

δ,g (τ),

and aδ and aδ,g are integers. Then F (τ) is a modular function with respect to
Γ1(N) if and only if aδ and aδ,g satisfy the following conditions:

(1)
∑

δ|N aδ +
∑

δ|M rδ = 0,
(2) N

∑
δ|N

aδ

δ + 2N
∑

δ|N
0<g≤�δ/2�

aδ,g

δ + Nm
∑

δ|M
rδ

δ + 2Nm
∑

δ|M
0<g<δ

rδ,g

δ ≡ 0

(mod 24),
(3)

∑

δ|N
δaδ + 12

∑

δ|N
0<g≤�δ/2�

δP2

(g

δ

)
aδ,g + m

∑

δ|M
δrδ

+12m
∑

δ|M
0<g<δ

δP2

(g

δ

)
rδ,g +

(m2 − 1)α(t)
mM

≡ 0 (mod 24),

where

α(t) = −M
∑

δ|M
δrδ − 12M

∑

δ|M
0<g<δ

δP2

(g

δ

)
rδ,g − 24Mt,

(4) For any integer 0 < a < 12N with gcd (a, 6) = 1 and a ≡ 1 (mod N):

∏

δ|N

(
δ

a

)|aδ| ∏

δ|M

(
mδ

a

)|rδ|
e

∑
δ|N

�δ/2�∑
g=1

πi
(

g
δ − 1

2

)
(a−1)aδ,g+

∑
δ|M

δ−1∑
g=1

πi
(

g
δ − 1

2

)
(a−1)rδ,g

=1.

In the notation p(γ, λ) and p(γ) in (2.19) and (2.20), we define the map
p : Γ × Zm → Q by

p(γ, λ) =
1
24

∑

δ|M

gcd2(δ(a + κλc),mc)
δm

rδ

+
1
2

∑

δ|M
0<g<δ

gcd2(δ(a + κλc),mc)
δm

P2

(
(a + κλc)g

gcd(δ(a + κλc),mc)

)
rδ,g,

and define p(γ) by

p(γ) = min{p(γ, λ) : λ = 0, 1, . . . ,m − 1}. (10.5)

Parallel to Theorem 2.7, we obtain lower bounds of the orders of F (τ) at
cusps of Γ1(N).

Theorem 10.2. For a given partition function b(n) as defined by (10.2), and
for given integers m and t, let

F (τ) = φ(τ) gm,t(τ),
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where

φ(τ) =
∏

δ|N
ηaδ(δτ)

∏

δ|N
0<g≤�δ/2�

η
aδ,g

δ,g (τ),

aδ and aδ,g are integers. Assume that F (τ) is a modular function for Γ1(N).
Let {s1, s2, . . . , sε} be a complete set of inequivalent cusps of Γ1(N), and for
each 1 ≤ i ≤ ε, let αi ∈ Γ be such that αi∞ = si. Then

ordsi
(F (τ)) ≥ wαi

(p(αi) + p∗(αi)), (10.6)

where p(γ) is given by (10.5) and p∗(γ) is defined in Lemma 2.6.

For a given partition function b(n), and given integers m and t, assume
that we have found a generalized eta-quotient φ(τ), such that

F (τ) = φ(τ) gm,t(τ) (10.7)

is a modular function for Γ1(N). Utilizing the algorithm in Sect. 3, we try to
express F (τ) as a linear combination of generalized eta-quotients with level N .
If we succeed, then we obtain a Ramanujan-type identity for b(mn + t). Note
that Theorem 10.2 is needed to find a generalized eta-quotient h(τ), such that
hF has a pole only at infinity.

For example, we can derive Ramanujan-type identities on the singular
overpartition function introduced by Andrews [3]. The number of (k, i)-singular
overpartitions of n is denoted by Qk,i(n) (1 ≤ i < k

2 ). For k = 3 and i = 1,
(10.3) specializes to

∞∑

n=0

Q3,1(n)qn =
(q3; q3)∞(q2, q4; q6)∞

(q; q)∞(q, q2; q3)∞
.

When applied to the above generating function, our algorithm produces the
Ramanujan-type identities on Q3,1(9n + 3) and Q3,1(9n + 6) due to Shen [45].

Theorem 10.3. We have

(q; q)14∞
q(q2; q2)5∞(q3; q3)6∞(q6; q6)3∞

∞∑

n=0

Q3,1(9n + 3)qn = 6z + 96,

and

(q; q)13∞
q(q2; q2)4∞(q3; q3)3∞(q6; q6)6∞

∞∑

n=0

Q3,1(9n + 6)qn = 24z + 96,

where

z =
(q2; q2)3∞(q3; q3)9∞
q(q; q)3∞(q6; q6)9∞

.

Our extended algorithm can also be used to derive dissection formulas
on the quotients in the form of (10.2), that is,

∏

δ|M
(qδ; qδ)rδ∞

∏

δ|M
0<g<δ

(qg, qδ−g; qδ)rδ,g∞ , (10.8)
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where M is a positive integer and rδ, rδ,g are integers. Let b(n) be the partition
function defined by (10.2), and let m be a positive integer. If our algorithm
can be utilized to find a formula for the generating function of b(mn + t)
for each 0 ≤ t ≤ m − 1, then we are led to an m-dissection formula on the
quotient in (10.8). For example, we get the 2- and 4-dissections of the Rogers–
Ramanujan continued fraction [2,21,27,40], the 8-dissections of the Gordon’s
continued fraction [22,49] and the 2-, 3-, 4-, 6-dissections of Ramanujan’s cubic
continued fraction [23,47].

We now demonstrate how to deduce the 2-dissection formula for the
Rogers–Ramanujan continued fraction:

R(q) =
1
1 +

q

1 +
q2

1 +
q3

1 + · · · .

Rogers [42, p. 329] showed that

R(q) =
(q2, q3; q5)∞
(q, q4; q5)∞

. (10.9)

The following 2-dissection formulas of Ramanujan [40, p. 50] were first proved
by Andrews [2]. With respect to the quotient in (10.9), we have to count on the
extended algorithm, because (10.9) cannot be expressed in the form of (1.1).

Theorem 10.4. We have

R(q) =
(q8, q12; q20)2∞

(q6, q14; q20)∞(q10, q10; q20)∞
+ q

(q2, q18; q20)∞(q8, q12; q20)∞
(q4, q16; q20)∞(q10, q10; q20)∞

(10.10)

and

R(q)−1 =
(q4, q16; q20)2∞

(q2, q18; q20)∞(q10, q10; q20)∞
− q

(q4, q16; q20)∞(q6, q14; q20)∞
(q8, q12; q20)∞(q10, q10; q20)∞

.

(10.11)

Proof. As far as (10.9) is concerned, we have M = 5, r5,1 = −1, and r5,2 = 1.
We find that N = 10 satisfies the conditions 1–10. Let r(n) be defined by

R(q) =
∞∑

n=0

r(n)qn.

Employing our algorithm, we obtain that
∞∑

n=0

r(2n)qn =
z1z3
z2z2

· η2
10,5(τ)

η2
10,4(τ)

and
∞∑

n=0

r(2n + 1)qn =
z32z

4

z21z
3
3

· η8
10,4(τ)

η8
10,5(τ)

,

where z, z1, z2, and z3 are given in (3.2). A direct computation yields (10.10).
Similarly, we get (10.11). This completes the proof. �

298



Finding Modular Functions for Ramanujan-Type Identities 653

Gordon [17] showed that

1 + q +
q2

1 + q3 +
q4

1 + q5 +
q6

1 + q7 + · · · =
(q3, q5; q8)∞
(q, q7; q8)∞

. (10.12)

Using our algorithm, we deduce the following 8-dissection formulas of
Hirschhorn for (10.12) and its reciprocal, see [22, pp. 373–374].

Theorem 10.5. (Hirschhorn [22]) We have
(
q3, q5; q8

)
∞

(q, q7; q8)∞
=

(−q24,−q32,−q32,−q40, q64, q64; q64
)
∞

(q8, q16, q16, q24, q32, q32; q32)∞

+ q

(−q16,−q24,−q40,−q48, q64, q64; q64
)
∞

(q16, q8, q24, q24, q48, q64, q64; q64)∞

+ q2
(−q16,−q24,−q40,−q48, q64, q64; q64

)
∞

(q8, q16, q16, q24, q32, q64; q64; q64)∞

− 2q12
(−q8,−q16,−q64,−q64, q64, q64; q64

)
∞

(q8, q16, q16, q24, q32, q32; q32)∞

− q5
(−q8,−q16,−q48,−q56, q64, q64; q64

)
∞

(q8, q8, q24, q24, q32, q32; q32)∞

− q6
(−q8,−q16,−q48,−q56, q64, q64; q64

)
∞

(q8, q16, q16, q24, q32, q32; q32)∞
,

(
q, q7; q8

)
∞

(q3, q5; q8)∞
=

(−q16,−q24,−q40,−q48, q64, q64; q64
)
∞

(q8, q8, q24, q24, q32, q32; q32)∞

− q

(−q16,−q24,−q40,−q48, q64, q64; q64
)
∞

(q8, q16, q16, q24, q32, q32; q32)∞

+ q3
(−q8,−q32,−q32,−q56, q64, q64; q64

)
∞

(q8, q16, q16, q24, q32, q32; q32)∞

− q4
(−q8,−q16,−q48,−q56, q64, q64; q64

)
∞

(q8, q8, q24, q24, q32, q32; q32)∞

+ q5
(−q8,−q16,−q48,−q56, q64, q64; q64

)
∞

(q8, q16, q16, q24, q32, q32; q32)∞

− 2q7
(−q24,−q40,−q64,−q64, q64, q64; q64

)
∞

(q8, q16, q16, q24, q32, q32; q32)∞
.

Ramanujan’s cubic continued fraction is defined by

1
1 +

q + q2

1 +
q2 + q4

1 + · · · ,

which equals
(
q, q5; q6

)
∞

(q3, q3; q6)∞
, (10.13)
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see [40, p. 44]. Applying our algorithm to (10.13) and its reciprocal, we are
led to the 2-, 3-, 4-, and 6-dissection formulas in Theorem 1.1–Theorem 1.4 in
[23].
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Partitions into Distinct Parts Modulo
Powers of 5
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Abstract. If pD(n) denotes the number of partitions of n into distinct
parts, it is known that for α ≥ 1 and n ≥ 0,

pD

(
52α+1n +

52α+2 − 1

24

)
≡ 0 (mod 5α).

We give a completely elementary proof of this fact.
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1. Introduction

Let pD(n) denote the number of partitions of n into distinct parts. Then
∑

n≥0

pD(n)qn = (−q; q)∞ =
E(q2)
E(q)

,

where

E(q) = (q; q)∞.

Baruah and Begum [1] proved the following results:
∑

n≥0

pD(5n + 1)qn =
E(q2)2E(q5)3

E(q)4E(q10)
, (1.1)

∑

n≥0

pD(25n + 1)qn =
E(q2)3E(q5)4

E(q)5E(q10)2

×
(

1 + 160q

(
E(q2)E(q10)3

E(q)3E(q5)

)
+ 2800q2

(
E(q2)E(q10)3

E(q)3E(q5)

)2
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+16000q3
(

E(q2)E(q10)3

E(q)3E(q5)

)3

+ 32000q4
(

E(q2)E(q10)3

E(q)3E(q5)

)4
)

, (1.2)

as well as the corresponding result for
∑

n≥0 pD(125n + 26)qn.
Inspired by their work, we prove the following general result.

Theorem 1.1. For α ≥ 1,

∑

n≥0

pD

(
52α−1n +

52α − 1
24

)
qn = γ

(52α−1)/24∑

i=1

x2α−1,iζ
i−1, (1.3)

∑

n≥0

pD

(
52αn +

52α − 1
24

)
qn = δ

(52α+1−5)/24∑

i=1

x2α,iζ
i−1, (1.4)

where

γ =
E(q2)2E(q5)3

E(q)4E(q10)
, δ =

E(q2)3E(q5)4

E(q)5E(q10)2
, ζ = q

E(q2)E(q10)3

E(q)3E(q5)

and where the coefficient vectors xα = (xα,1, xα,2, . . . ) are given recursively
by

x1 = (1, 0, . . . ),

and for α ≥ 1,

x2α = x2α−1A

and

x2α+1 = x2αB,

where A is the matrix (αi,j)i,j≥1 and B is the matrix (βi,j)i,j≥1, where the αi,j

and βi,j are given by
∑

i,j≥1

αi,jx
iyj =

Nα

D′

and
∑

i,j≥1

βi,jx
iyj =

Nβ

D′ ,

where

Nα = (y + 160y2 + 2800y3 + 16000y4 + 32000y5)x

+ (180y2 + 3000y3 + 16800y4 + 32000y5)x2

+ (75y2 + 1215y3 + 6600y4 + 12000y5)x3

+ (14y2 + 220y3 + 1150y4 + 2000y5)x4

+ (y2 + 15y3 + 75y4 + 125y5)x5,

Nβ = (5y + 660y2 + 14400y3 + 120000y4 + 448000y5 + 640000y6)x

+ (y + 680y2 + 14900y3 + 123200y4 + 456000y5 + 640000y6)x2
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+ (265y2 + 5785y3 + 47500y4 + 174000y5 + 240000y6)x3

+ (46y2 + 1000y3 + 8150y4 + 29500y5 + 40000y6)x4

+ (3y2 + 65y3 + 525y4 + 1875y5 + 2500y6)x5

and

D′ = 1 − (205y + 4300y2 + 34000y3 + 120000y4 + 160000y5)x

− (215y + 4475y2 + 35000y3 + 122000y4 + 160000y5)x2

− (85y + 1750y2 + 13525y3 + 46000y4 + 60000y5)x3

− (15y + 305y2 + 2325y3 + 7875y4 + 10000y5)x4

− (y + 20y2 + 150y3 + 500y4 + 625y5)x5.

Furthermore, for α ≥ 1,

x2α+1,i ≡ 0 (mod 5α),

x2α+2,i ≡ 0 (mod 5α),

from which it follows that for α ≥ 1,

pD

(
52α+1n +

52α+2 − 1
24

)
≡ 0 (mod 5α), (1.5)

pD

(
52α+2n +

52α+2 − 1
24

)
≡ 0 (mod 5α). (1.6)

(Of course, (1.6) is a special case of (1.5).)

This result is due to Rødseth [6] and independently to Gordon and Hughes
[3]. See also Lovejoy [5].

2. Preliminaries

Let

R(q) =
(

q, q4

q2, q3
; q5

)

∞
, χ(−q) = (q; q2)∞ =

E(q)
E(q2)

.

Then ([4, (8.1.1)])

E(q) = E(q25)
(

1
R(q5)

− q − q2R(q5)
)

,

([4, (8.4.4)])

1
E(q)

=
E(q25)5

E(q5)6

(
1

R(q5)4
+

q

R(q5)3
+

2q2

R(q5)2
+

3q3

R(q5)
+ 5q4

−3q5R(q5) + 2q6R(q5)2 − q7R(q5)3 + q8R(q5)4
)

,

([4, (40.2.3)])

R(q2) − R(q)2 = 2q

(
q, q, q9, q9

q3, q5, q5, q7
; q10

)

∞
, (2.1)
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([4, (40.2.4)])

R(q2) + R(q)2 = 2
(

q, q4, q6, q9

q2, q5, q5, q8
; q10

)

∞
, (2.2)

([4, (41.1.3)])

1 − qR(q)R(q2)2 =
(

q, q4, q5, q5, q6, q9

q2, q3, q3, q7, q7, q8
; q10

)

∞
, (2.3)

([4, (41.1.2)])

1 + qR(q)R(q2)2 =
(

q2, q2, q5, q5, q8, q8

q, q4, q4, q6, q6, q9
; q10

)

∞
, (2.4)

([4, (34.8.4)])

E(q2)4

E(q)2
− q

E(q10)4

E(q5)2
=

E(q2)E(q5)3

E(q)E(q10)

and ([4, (34.8.3)])

E(q5)4

E(q10)2
− E(q)4

E(q2)2
= 4q

E(q)E(q10)3

E(q2)E(q5)
.

We require the following results.

Lemma 2.1.

R(q2)
R(q)2

− R(q)2

R(q2)
= 4q

χ(−q)
χ(−q5)5

, (2.5)

R(q2) − R(q)2

R(q2) + R(q)2
= qR(q)R(q2)2, (2.6)

1
R(q)R(q2)2

− q2R(q)R(q2)2 =
χ(−q5)5

χ(−q)
, (2.7)

1 − qR(q)R(q2)2

1 + qR(q)R(q2)2
=

R(q)2

R(q2)
, (2.8)

R(q)
R(q2)3

+ q2
R(q2)3

R(q)
=

χ(−q5)5

χ(−q)
− 2q + 4q2

χ(−q)
χ(−q5)5

, (2.9)

1
R(q)3R(q2)

+ q2R(q)3R(q2) =
χ(−q5)5

χ(−q)
+ 2q + 4q2

χ(−q)
χ(−q5)5

, (2.10)

χ(−q5)5

χ(−q)
+ q =

E(q2)4E(q5)2

E(q)2E(q10)4
(2.11)

and

1 − 4q
χ(−q)

χ(−q5)5
=

E(q)4E(q10)2

E(q2)2E(q5)4
. (2.12)

Proof of (2.5). If we multiply (2.1) by (2.2) and divide by R(q)2R(q2), we find
that

R(q2)
R(q)2

− R(q)2

R(q2)
=

(R(q2) − R(q)2)(R(q2) + R(q)2)
R(q)2R(q2)
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=
2q

(
q, q, q9, q9

q3, q5, q5, q7
; q10

)

∞
· 2

(
q, q4, q6, q9

q2, q5, q5, q8
; q10

)

∞(
q, q, q4, q4, q6, q6, q9, q9, q2, q8

q2, q2, q3, q3, q7, q7, q8, q8, q4, q6
; q10

)

∞

= 4q

(
q, q3, q5, q7, q9

q5, q5, q5, q5, q5
; q10

)

∞

= 4q
(q; q2)∞

(q5; q10)5∞

= 4q
χ(−q)

χ(−q5)5
.

�
Proof of (2.6). If we divide (2.1) by (2.2), we obtain

R(q2) − R(q)2

R(q2) + R(q)2
= q

(
q, q, q9, q9

q3, q5, q5, q7
; q10

)

∞(
q, q4, q6, q9

q2, q5, q5, q8
; q10

)

∞

= q

(
q, q2, q8, q9

q3, q4, q6, q7
; q10

)

∞

= q

(
q, q4, q6, q9, q2, q2, q8, q8

q2, q3, q7, q8, q4, q4, q6, q6
; q10

)

∞
= qR(q)R(q2)2.

�
Proof of (2.7). If we multiply (2.3) by (2.4) and divide by R(q)R(q2)2, we find

1
R(q)R(q2)2

− q2R(q)R(q2)2 =
(1 − qR(q)R(q2)2)(1 + qR(q)R(q2)2)

R(q)R(q2)2

=

(
q, q4, q5, q5, q6, q9

q2, q3, q3, q7, q7, q8
; q10

)

∞

(
q2, q2, q5, q5, q8, q8

q, q4, q4, q6, q6, q9
; q10

)

∞(
q, q4, q6, q9

q2, q3, q7, q8
; q10

)

∞

(
q2, q2, q8, q8

q4, q4, q6, q6
; q10

)

∞

=
(

q5, q5, q5, q5, q5

q, q3, q5, q7, q9
; q10

)

∞

=
χ(−q5)5

χ(−q)
.

�
Proof of (2.8). If we divide (2.3) by (2.4), we obtain

1 − qR(q)R(q2)2

1 + qR(q)R(q2)2
=

(
q, q4, q5, q5, q6, q9

q2, q3, q3, q7, q7, q9
; q10

)

∞(
q2, q2, q5, q5, q8, q8

q, q4, q4, q6, q6, q9
; q10

)

∞
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=
(

q, q, q4, q4, q6, q6, q9, q9, q4, q6

q2, q2, q3, q3, q7, q7, q8, q8, q2, q8
; q10

)

∞

=
R(q)2

R(q2)
.

�

Proof of (2.9). Note that (2.6) is equivalent to (2.8), because they are both
equivalent to

R(q2) − R(q)2 = qR(q)3R(q2)2 + qR(q)R(q2)3. (2.13)

If we divide (2.13) by R(q)R(q2)3 and rearrange, we find that

R(q)
R(q2)3

=
1

R(q)R(q2)2
− q

R(q)2

R(q2)
− q, (2.14)

while if we divide (2.13) by R(q)2, rearrange and multiply by q, we obtain

q2
R(q2)3

R(q)
= −q2R(q)R(q2)2 + q

R(q2)
R(q)2

− q. (2.15)

If we add (2.14) and (2.15), we obtain

R(q)
R(q2)3

+ q2
R(q2)3

R(q)
=

(
1

R(q)R(q2)2
− q2R(q)R(q2)2

)
− 2q

+ q

(
R(q2)
R(q)2

− R(q)2

R(q2)

)

=
χ(−q5)5

χ(−q)
− 2q + 4q2

χ(−q)
χ(−q5)5

.

�

Proof of (2.10). If we multiply (2.5) by (2.7) and add (2.9), we find that
1

R(q)3R(q2)
+ q2R(q)3R(q2)

=
(

R(q2)
R(q)2

− R(q)2

R(q2)

)(
1

R(q)R(q2)2
− q2R(q)R(q2)2

)

+
(

R(q)
R(q2)3

+ q2
R(q2)3

R(q)

)

= 4q
χ(−q)

χ(−q5)5
· χ(−q5)5

χ(−q)
+

(
χ(−q5)5

χ(−q)
− 2q + 4q2

χ(−q)
χ(−q5)5

)

=
χ(−q5)5

χ(−q)
+ 2q + 4q2

χ(−q)
χ(−q5)5

.

�

Proof of (2.11).

χ(−q5)5

χ(−q)
+ q =

E(q2)E(q5)5

E(q)E(q10)5
+ q
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=
E(q5)2

E(q10)4

(
E(q2)E(q5)3

E(q)E(q10)
+ q

E(q10)4

E(q5)2

)

=
E(q5)2

E(q10)4
· E(q2)4

E(q)2
.

�

Proof of (2.12).

1 − 4q
χ(−q)

χ(−q5)5
= 1 − 4q

E(q)E(q10)5

E(q2)E(q5)5

=
E(q10)2

E(q5)4

(
E(q5)4

E(q10)2
− 4q

E(q)E(q10)3

E(q2)E(q5)

)

=
E(q10)2

E(q5)4
· E(q)4

E(q2)2
.

�

3. Proof of (1.1)

In this section, we effectively reproduce the proof of Baruah and Begum [1].
We have
∑

n≥0

pD(n)qn = (−q; q)∞ =
E(q2)
E(q)

=
E(q25)5

E(q5)6

(
1

R(q5)4
+

q

R(q5)3
+

2q2

R(q5)2
+

3q3

R(q5)
+ 5q4

−3q5R(q5) + 2q6R(q5)2 − q7R(q5)3 + q8R(q5)4
)

× E(q50)
(

1
R(q10)

− q2 − q4R(q10)
)

.

It follows that
∑

n≥0

pD(5n + 1)qn

=
E(q5)5E(q10)

E(q)6

×
((

1
R(q)3R(q2)

+ q2R(q)3R(q2)
)

− 5q − 2q

(
R(q2)
R(q)2

− R(q)2

R(q2)

))

=
E(q5)5E(q10)

E(q)6

×
((

χ(−q5)5

χ(−q)
+ 2q + 4q2

χ(−q)
χ(−q5)5

)
− 5q − 2q · 4q

χ(−q)
χ(−q5)5

)

=
E(q5)5E(q10)

E(q)6

(
χ(−q5)5

χ(−q)
− 3q − 4q2

χ(−q)
χ(−q5)5

)
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=
E(q5)5E(q10)

E(q)6

(
χ(−q5)5

χ(−q)
+ q

)(
1 − 4q

χ(−q)
χ(−q5)5

)

=
(

E(q5)5E(q10)
E(q)6

)(
E(q2)4E(q5)2

E(q)2E(q10)4

)(
E(q)4E(q10)2

E(q2)2E(q5)4

)

=
E(q2)2E(q5)3

E(q)4E(q10)
.

�
Note that (1.1) is the case α = 1 of (1.3).

4. The Modular Equation

We obtain the modular equation for ζ.
Let ζ(q5) = Z.

Theorem 4.1.

ζ5 − (205Z + 4300Z2 + 34000Z3 + 120000Z4 + 160000Z5)ζ4

− (215Z + 4475Z2 + 35000Z3 + 122000Z4 + 160000Z5)ζ3

− (85Z + 1750Z2 + 13525Z3 + 46500Z4 + 60000Z5)ζ2

− (15Z + 305Z2 + 2325Z3 + 7875Z4 + 10000Z5)ζ

− (Z + 20Z2 + 150Z3 + 500Z4 + 625Z5) = 0. (4.1)

Proof. Let H be the huffing operator, given by

H

(
∑

n

a(n)qn

)
=

∑

n

a(5n)q5n.

We can show, using extremely lengthy but elementary calculations (see
Sect. 9 “Appendix”), that

H(ζ) = 41Z + 860Z2 + 6800Z3 + 24000Z4 + 32000Z5, (4.2)

H(ζ2) = 86Z + 10195Z2 + 366600Z3 + 6534800Z4 + 68384000Z5

+ 450720000Z6 + 1907200000Z7 + 5056000000Z8

+ 7680000000Z9 + 5120000000Z10, (4.3)

H(ζ3) = 51Z + 27495Z2 + 2836265Z3 + 128688900Z4 + 3343692000Z5

+ 56283680000Z6 + 656205600000Z7 + 5502096000000Z8

+ 33821312000000Z9 + 153192960000000Z10

+ 506956800000000Z11 + 1195008000000000Z12

+ 1904640000000000Z13 + 1843200000000000Z14

+ 819200000000000Z15, (4.4)

H(ζ4) = 12Z + 32674Z2 + 8579260Z3 + 831492275Z4 + 42958434000Z5

+ 1396773180000Z6 + 31314949600000Z7 + 511802288800000Z8
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+ 6319880448000000Z9 + 60349364480000000Z10

+ 452174745600000000Z11 + 2679038592000000000Z12

+ 12574269440000000000Z13 + 46561935360000000000Z14

+ 134544588800000000000Z15 + 297365504000000000000Z16

+ 485949440000000000000Z17 + 553779200000000000000Z18

+ 393216000000000000000Z19 + 131072000000000000000Z20 (4.5)

and

H(ζ5) = Z + 21370Z2 + 13932050Z3 + 2684902125Z4 + 251131688125Z5

+ 14097638650000Z6 + 532547945100000Z7 + 14515766554000000Z8

+ 298883447380000000Z9 + 4797842366000000000Z10

+ 61395781800000000000Z11 + 636255683040000000000Z12

+ 5398601306880000000000Z13 + 37772239436800000000000Z14

+ 21875584000000000000000Z15 + 1049457704960000000000000Z16

+ 4160657715200000000000000Z17 + 13552680960000000000000000Z18

+ 35909189632000000000000000Z19 + 76195266560000000000000000Z20

+ 126438604800000000000000000Z21 + 158138368000000000000000000Z22

+ 140247040000000000000000000Z23 + 78643200000000000000000000Z24

+ 20971520000000000000000000Z25. (4.6)

Let η be a fifth root of unity other than 1, and for i = 0, 1, 2, 3, 4 define

ζi = ζ(ηiq).

Then the power sums π1, . . . , π5 of the ζi are given by

π1 = ζ0 + · · · + ζ4 = 5H(ζ),

π2 = ζ20 + · · · + ζ24 = 5H(ζ2),
· · ·
π5 = ζ50 + · · · + ζ54 = 5H(ζ5). (4.7)

From (4.7) we obtain the symmetric functions σ1, . . . , σ5 of the ζi,

σ1 =
∑

i

ζi = π1

= 205Z + 4300Z2 + 34000Z3 + 120000Z4 + 160000Z5,

σ2 =
∑

i<j

ζiζj =
1
2
(π1σ1 − π2)

= −215Z − 4475Z2 − 35000Z3 − 122000Z4 − 160000Z5,

σ3 =
∑

i<j<k

ζiζjζk =
1
3
(π1σ2 − π2σ1 + π3)
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= 85Z + 1750Z2 + 13525Z3 + 46000Z4 + 60000Z5,

σ4 =
∑

i<j<k<l

ζiζjζkζl =
1
4
(π1σ3 − π2σ2 + π3σ1 − π4)

= −15Z − 305Z2 − 2325Z3 − 7875Z4 − 10000Z5,

σ5 = ζ0ζ1 · · · ζ4 =
1
5
(π1σ4 − π2σ3 + π3σ2 − π4σ1 + π5)

= Z + 20Z2 + 150Z3 + 500Z4 + 625Z5.

Now, ζ0, . . . , ζ4 are the roots of

(X − ζ0)(X − ζ1)(X − ζ2)(X − ζ3)(X − ζ4)

= X5 − σ1X
4 + σ2X

3 − σ3X
2 + σ4X − σ5 = 0,

or,

X5 − (205Z + 4300Z2 + 34000Z3 + 120000Z4 + 160000Z5)X4

− (215Z + 4475Z2 + 35000Z3 + 122000Z4 + 160000Z5)X3

− (85Z + 1750Z2 + 13525Z3 + 46500Z4 + 60000Z5)X2

− (15Z + 305Z2 + 2325Z3 + 7875Z4 + 10000Z5)X

− (Z + 20Z2 + 150Z3 + 500Z4 + 625Z5) = 0.

In particular, ζ is a root, and we obtain (4.1). �

Remark 4.2. It is truly remarkable, amazing even, that although π1, . . . , π5

are polynomials of degree up to 25, σ1, . . . , σ5 are of degree 5.

5. Some Important Recurrences and Generating Functions

Let U be the unitizing operator, given by

U

(
∑

n

a(n)qn

)
=

∑

n

a(5n)qn.

It follows from (4.1) that for i ≥ 6, ui = U(ζi) satisfies the recurrence

ui = (205ζ + 4300ζ2 + 34000ζ3 + 120000ζ4 + 160000ζ5)ui−1

+ (215ζ + 4475ζ2 + 35000ζ3 + 122000ζ4 + 160000ζ5)ui−2

+ (85ζ + 1750ζ2 + 13525ζ3 + 46500ζ4 + 60000ζ5)ui−3

+ (15ζ + 305ζ2 + 2325ζ3 + 7875ζ4 + 10000ζ5)ui−4

+ (ζ + 20ζ2 + 150ζ3 + 500ζ4 + 625ζ5)ui−5. (5.1)

The recurrence (5.1), together with the five initial values u1, u2, . . . , u5,
which can be read off from (4.2)–(4.6) by replacing Z by ζ, gives

∑

i≥1

uix
i =

N

D
, (5.2)
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where

N = (41ζ + 860ζ2 + 6800ζ3 + 24000ζ4 + 32000ζ5)x

+ (86ζ + 1790ζ2 + 14000ζ3 + 48800ζ4 + 64000ζ5)x2

+ (51ζ + 1050ζ2 + 8115ζ3 + 27900ζ4 + 36000ζ5)x3

+ (12ζ + 244ζ2 + 1869ζ3 + 6300ζ4 + 8000ζ5)x4

+ (ζ + 20ζ2 + 150ζ3 + 500ζ4 + 625ζ5)x5 (5.3)

and

D = 1 − (205ζ + 4300ζ2 + 34000ζ3 + 120000ζ4 + 160000ζ5)x

− (215ζ + 4475ζ2 + 35000ζ3 + 122000ζ4 + 160000ζ5)x2

− (85ζ + 1750ζ2 + 13525ζ3 + 46500ζ4 + 60000ζ5)x3

− (15ζ + 305ζ2 + 2325ζ3 + 7875ζ4 + 10000ζ5)x4

− (ζ + 20ζ2 + 150ζ3 + 500ζ4 + 625ζ5)x5. (5.4)

From (5.2)–(5.4), we deduce that for i ≥ 1,

U(ζi) = ui =
5i∑

j=1

μi,jζ
j ,

where the μi,j are given by

∞∑

i=1

5i∑

j=1

μi,jx
iyj =

N ′

D′ ,

where

N ′ = (41y + 860y2 + 6800y3 + 24000y4 + 32000y5)x

+ (86y + 1790y2 + 14000y3 + 48800y4 + 64000y5)x2

+ (51y + 1050y2 + 8115y3 + 27900y4 + 36000y5)x3

+ (12y + 244y2 + 1869y3 + 6300y4 + 8000y5)x4

+ (y + 20y2 + 150y3 + 500y4 + 625y5)x5

and

D′ = 1 − (205y + 4300y2 + 34000y3 + 120000y4 + 160000y5)x

− (215y + 4475y2 + 35000y3 + 122000y4 + 160000y5)x2

− (85y + 1750y2 + 13525y3 + 46500y4 + 60000y5)x3

− (15y + 305y2 + 2325y3 + 7875y4 + 10000y5)x4

− (y + 20y2 + 150y3 + 500y4 + 625y5)x5. (5.5)

More importantly, if we multiply (4.1) by γ and apply the operator U ,
we see that vi = U(γζi−1) satisfy the recurrence (5.1) (with v for u).
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Also, using the same sort of calculations as in Sect. 4 (see Sect. 9 “Ap-
pendix”),

v1 = U(γ) = δ(1 + 160ζ + 2800ζ2 + 16000ζ3 + 32000ζ4), (5.6)

v2 = U(γζ) = δ(385ζ + 40100ζ2 + 1312800ζ3 + 20912000ζ4 + 189920000ζ5

+ 1043200000ζ6 + 3456000000ζ7 + 6400000000ζ8 + 5120000000ζ9),
(5.7)

v3 = U(γζ2) = δ(290ζ + 119015ζ2 + 11235600ζ3 + 476348000ζ4

+ 11537760000ζ5 + 179434400000ζ6 + 1908992000000ζ7

+ 14377472000000ζ8 + 77783040000000ζ9 + 301644800000000ζ10

+ 821248000000000ζ11 + 1495040000000000ζ12

+ 1638400000000000ζ13 + 819200000000000ζ14), (5.8)

v4 = U(γζ3) = δ(99ζ + 157795ζ2 + 36522125ζ3 + 3308569500ζ4

+ 161943150000ζ5 + 4995603800000ζ6 + 105933588800000ζ7

+ 1628976896000000ζ8 + 18797435520000000ζ9

+ 166360908800000000ζ10 + 1143762304000000000ζ11

+ 6142300160000000000ζ12 + 25729781760000000000ζ13

+ 83330457600000000000ζ14 + 204857344000000000000ζ15

+ 370032640000000000000ζ16 + 463667200000000000000ζ17

+ 360448000000000000000ζ18 + 131072000000000000000ζ19) (5.9)

and

v5 = U(γζ4) = δ(16ζ + 118090ζ2 + 63835100ζ3 + 11315760375ζ4

+ 1002222145000ζ5 + 53778439200000ζ6 + 1946392973200000ζ7

+ 50789296612000000ζ8 + 998696483520000000ζ9

+ 15256932894400000000ζ10 + 185007570368000000000ζ11

+ 1807671489280000000000ζ12 + 14376293539840000000000ζ13

+ 93630345523200000000000ζ14 + 500636522496000000000000ζ15

+ 2195582095360000000000000ζ16 + 7860788428800000000000000ζ17

+ 22768123904000000000000000ζ18 + 52564656128000000000000000ζ19

+ 94522572800000000000000000ζ20 + 127664128000000000000000000ζ21

+ 121896960000000000000000000ζ22 + 73400320000000000000000000ζ23

+ 209715200000000000000000000ζ24). (5.10)

It follows that for i ≥ 1,

U(γζi−1) = δ

5i∑

j=1

αi,jζ
j−1, (5.11)
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where

∞∑

i=1

5i∑

j=1

αi,jx
iyj =

Nα

D′ ,

and where

Nα = (y + 160y2 + 2800y3 + 16000y4 + 32000y5)x

+ (180y2 + 3000y3 + 16800y4 + 32000y5)x2

+ (75y2 + 1215y3 + 6600y4 + 12000y5)x3

+ (14y2 + 220y3 + 1150y4 + 2000y5)x4

+ (y2 + 15y3 + 75y4 + 125y5)x5

and D′ is given in (5.5).
Similarly, if we multiply (4.1) by q−1δ and apply the operator U , we see

that wi = U(q−1δζi−1) satisfy (5.1) (with w for u).
Also,

w1 = U(q−1δ) = γ(5 + 660ζ + 14400ζ2 + 120000ζ3 + 448000ζ4 + 640000ζ5),
(5.12)

w2 = U(q−1δζ) = γ(1 + 1705ζ + 171700ζ2 + 6083200ζ3 + 110016000ζ4

+ 178080000ζ5 + 797120000ζ6 + 34688000000ζ7 + 94720000000ζ8

+ 148480000000ζ9 + 1024000000000ζ10), (5.13)

w3 = U(q−1δζ2) = γ(1545ζ + 523885ζ2 + 48836000ζ3 + 2157580000ζ4

+ 55972480000ζ5 + 950485600000ζ6 + 11233328000000ζ7

+ 95713408000000ζ8 + 598718720000000ζ9 + 2762265600000000ζ10

+ 9317888000000000ζ11 + 22405120000000000ζ12

+ 36454400000000000ζ13 + 36044800000000000ζ14

+ 16384000000000000ζ15), (5.14)

w4 = U(q−1δζ3) = γ(686ζ + 753625ζ2 + 161075075ζ3 + 14497246500ζ4

+ 727863490000ζ5 + 23458401400000ζ6 + 526452595200000ζ7

+ 8658501792000000ζ8 + 107918950400000000ζ9

+ 1042082905600000000ζ10 + 7904596864000000000ζ11

+ 47450048000000000000ζ12 + 225774243840000000000ζ13

+ 847926476800000000000ζ14 + 2486042624000000000000ζ15

+ 5577277440000000000000ζ16 + 9255321600000000000000ζ17

+ 107151360000000000000000ζ18 + 7733248000000000000000ζ19

+ 2621440000000000000000ζ20) (5.15)
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and

w5 = U(q−1δζ4) = γ(163ζ + 630970ζ2 + 295013300ζ3

+ 50030923625ζ4 + 4413689785000ζ5 + 240963519250000ζ6

+ 8992052284600000ζ7 + 244243690752000000ζ8 + 5037514186320000000ζ9

+ 81262009334400000000ζ10 + 1047144506208000000000ζ11

+ 10942698476160000000000ζ12 + 93715045227520000000000ζ13

+ 662259232256000000000000ζ14 + 387577451008000000000000ζ15

+ 18796453150720000000000000ζ16 + 75357109452800000000000000ζ17

+ 248290942976000000000000000ζ18 + 665623035904000000000000000ζ19

+ 1429384069120000000000000000ζ20 + 2401107968000000000000000000ζ21

+ 3040870400000000000000000000ζ22 + 2731540480000000000000000000ζ23

+ 1551892480000000000000000000ζ24 + 419430400000000000000000000ζ25).
(5.16)

It follows that for i ≥ 1,

U(q−1δζi−1) = γ

5i+1∑

j=1

βi,jζ
j−1, (5.17)

where
∞∑

i=1

5i+1∑

j=1

βi,jx
iyj =

Nβ

D′ ,

and where

Nβ = (5y + 660y2 + 14400y3 + 120000y4 + 448000y5 + 640000y6)x

+ (y + 680y2 + 14900y3 + 123200y4 + 456000y5 + 640000y6)x2

+ (265y2 + 5785y3 + 47500y4 + 174000y5 + 240000y6)x3

+ (46y2 + 1000y3 + 8150y4 + 29500y5 + 40000y6)x4

+ (3y2 + 65y3 + 525y4 + 1875y5 + 2500y6)x5

and D′ is given in (5.5).

6. Proof of the First Part of Theorem 1.1

The first part of Theorem 1.1 follows by a simple induction from (1.1), (5.11)
and (5.17), as we now demonstrate.

We know that (1.3) is true for α = 1. Suppose (1.3) is true for some
α ≥ 1. Then

∑

n≥0

pD

(
52α−1n +

52α − 1
24

)
qn = γ

(52α−1)/24∑

i=1

x2α−1,iζ
i−1. (6.1)
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If we apply the operator U to (6.1) and use (5.11), we find

∑

n≥0

pD

(
52α−1(5n) +

52α − 1
24

)
qn

=
(52α−1)/24∑

i=1

x2α−1,iU(γζi−1)

=
(52α−1)/24∑

i=1

x2α−1,iδ
5i∑

j=1

αi,jζ
j−1

= δ

(52α+1−5)/24∑

j=1

⎛

⎝
(52α−1)/24∑

i=1

x2α−1,iαi,j

⎞

⎠ ζj−1

= δ

(52α+1−5)/24∑

j=1

x2α,jζ
j−1,

or,

∑

n≥0

pD

(
52αn +

52α − 1
24

)
qn = δ

(52α+1−5)/24∑

j=1

x2α,jζ
j−1,

which is (1.4).
Now suppose (1.4) is true for some α ≥ 1. Then

∑

n≥0

pD

(
52αn +

52α − 1
24

)
qn−1 = q−1δ

(52α+1−5)/24∑

i=1

x2α,iζ
i−1. (6.2)

If we apply the operator U to (6.2) and use (5.17), we find

∑

n≥0

pD

(
52α(5n + 1) +

52α − 1
24

)
qn

=
(52α+1−5)/24∑

i=1

x2α,iU(q−1δζi−1)

=
(52α+1−5)/24∑

i=1

x2α,iγ

5i+1∑

j=1

βi,jζ
j−1

= γ

(52α+2−1)/24∑

j=1

⎛

⎝
(52α+1−5)/24∑

i=1

x2α,iβi,j

⎞

⎠ ζj−1

= γ

(52α+2−1)/24∑

j=1

x2α+1,jζ
j−1,
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or,

∑

n≥0

pD

(
52α+1n +

52α+2 − 1
24

)
qn = γ

(52α+2−1)/24∑

j=1

x2α+1,jζ
j−1,

which is (1.3) with α + 1 for α. �

7. Proof of the Second Part of Theorem 1.1

Let ν(n) denote the (highest) power of 5 that divides n.
We prove the following theorem.

Theorem 7.1.

ν(αi,j) ≥
⌊

5j − i − 1
6

⌋
, (7.1)

ν(βi,j) ≥
⌊

5j − i − 1
6

⌋
. (7.2)

Proof. Let λi,j = ν(αi,j), ρi,j =
⌊

5j − i − 1
6

⌋
.

Observe that from the recurrence (5.1), for i, j ≥ 6,

λi,j ≥ min(λi−1,j−1 + 1, λi−1,j−2 + 2, λi−1,j−3 + 3, λi−1,j−4 + 4,

λi−1,j−5 + 4, λi−2,j−1 + 1, λi−2,j−2 + 2, λi−2,j−3 + 4,

λi−2,j−4 + 3, λi−2,j−5 + 4, λi−3,j−1 + 1, λi−3,j−2 + 3,

λi−3,j−3 + 2, λi−3,j−4 + 3, λi−3,j−5 + 4, λi−4,j−1 + 1,

λi−4,j−2 + 1, λi−4,j−3 + 2, λi−4,j−4 + 3, λi−4,j−5 + 4,

λi−5,j−1 + 0, λi−5,j−2 + 1, λi−5,j−3 + 2, λi−5,j−4 + 3,

λi−5,j−5 + 4). (7.3)

On the other hand,

ρi,j = min(ρi−1,j−1 + 1, ρi−1,j−2 + 2, ρi−1,j−3 + 3, ρi−1,j−4 + 4,

ρi−1,j−5 + 4, ρi−2,j−1 + 1, ρi−2,j−2 + 2, ρi−2,j−3 + 4,

ρi−2,j−4 + 3, ρi−2,j−5 + 4, ρi−3,j−1 + 1, ρi−3,j−2 + 3,

ρi−3,j−3 + 2, ρi−3,j−4 + 3, ρi−3,j−5 + 4, ρi−4,j−1 + 1,

ρi−4,j−2 + 1, ρi−4,j−3 + 2, ρi−4,j−4 + 3, ρi−4,j−5 + 4,

ρi−5,j−1 + 0, ρi−5,j−2 + 1, ρi−5,j−3 + 2, ρi−5,j−4 + 3,

ρi−5,j−5 + 4). (7.4)

The right side of (7.4)
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= min

(⌊
5j − i + 1

6

⌋
,

⌊
5j − i + 2

6

⌋
,

⌊
5u − i + 3

6

⌋
,

⌊
5j − i + 4

6

⌋
,

⌊
5j − i − 1

6

⌋
,

⌊
5j − i + 2

6

⌋
,

⌊
5j − i + 3

6

⌋
,

⌊
5j − i + 10

6

⌋
,

⌊
5j − i − 1

6

⌋
,

⌊
5j − i

6

⌋
,

⌊
5j − i + 3

6

⌋
,

⌊
5j − i + 10

6

⌋
,

⌊
5j − i − 1

6

⌋
,

⌊
5j − i

6

⌋
,

⌊
5j − i + 1

6

⌋
,

⌊
5j − i + 4

6

⌋
,

⌊
5j − i − 1

6

⌋
,

⌊
5j − i

6

⌋
,

⌊
5j − i + 1

6

⌋
,

⌊
5j − i + 3

6

⌋
,

⌊
5j − i − 1

6

⌋
,

⌊
5j − i

6

⌋
,

⌊
5j − i + 1

6

⌋
,

⌊
5j − i + 2

6

⌋
,

⌊
5j − i + 3

6

⌋)

=

⌊
5j − i − 1

6

⌋
= ρi,j .

The values of λi,j − ρi,j for 1 ≤ i ≤ 5 and for 1 ≤ j ≤ 5 are given in the
following tables. Note that they are all non-negative. (We use • for ∞.)

j
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

i 1 0 0 0 0 0 • · · ·
2 • 0 0 0 0 0 0 0 1 0 • · · ·
3 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • · · ·
4 • 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • · · ·
5 • 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 • · · ·

(7.5)

i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

j 1 0 • · · ·
2 0 0 0 0 0 0 • · · ·
3 0 0 0 0 0 0 0 1 0 0 0 • · · ·
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 • · · ·
5 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 • · · ·

(7.6)

We see that (7.1) follows from (7.3)–(7.6) by induction.
The proof of (7.2) is essentially the same as that of (7.1). The boundary

values are given by the following tables.

j
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

i 1 1 0 0 1 0 0 • · · ·
2 0 0 0 0 0 0 0 0 0 0 0 • · · ·
3 • 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 • · · ·
4 • 0 2 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 • · · ·
5 • 0 0 0 0 0 2 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 2 0 0 0 • · · ·

321



676 S. Chern and M.D. Hirschhorn

i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

j 1 1 0 • · · ·
2 0 0 0 0 0 1 0 • · · ·
3 0 0 0 2 0 0 0 0 0 0 1 0 • · · ·
4 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 • · · ·
5 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 • · · ·

�

Theorem 7.2. For α ≥ 0,

ν(x2α+1,1) ≥ α, ν(x2α+1,i) ≥ α +
⌊

5i − 8
6

⌋
for i ≥ 2,

ν(x2α+2,i) ≥ α +
⌊

5i − 2
6

⌋
.

Proof. If we replace ν(A) by
(⌊

5j − i − 1
6

⌋)

i,j≥1

and ν(B) by
(⌊

5j − i − 1
6

⌋)

i,j≥1

with the exception ν(b1,1) = 1, and we start with ν(x1) = (0, ∞, . . .), the
results follow by induction. �

This completes the proof of Theorem 1.1. �

8. Calculations

We find that

x1 = (1, 0, . . . ),

x2 = (1, 160, 2800, 16000, 32000, 0, . . . ),

x3 = (5 ∗ 33, 22 ∗ 5 ∗ 1039573, 24 ∗ 52 ∗ 84358511, 26 ∗ 53 ∗ 1519417629,

28 ∗ 53 ∗ 57468885219, 210 ∗ 54 ∗ 239126250621, 220 ∗ 56 ∗ 493702983,

216 ∗ 57 ∗ 57851635449, 217 ∗ 58 ∗ 155363323153, 222 ∗ 58 ∗ 99443868167,

220 ∗ 59 ∗ 1277863945093, 223 ∗ 511 ∗ 82117001559, 224 ∗ 512 ∗ 85675198911,

229 ∗ 514 ∗ 916288433, 229 ∗ 513 ∗ 32357578059, 233 ∗ 514 ∗ 2366343709,

236 ∗ 516 ∗ 57370733, 237 ∗ 517 ∗ 22998577, 236 ∗ 518 ∗ 30309607,

238 ∗ 518 ∗ 20313321, 240 ∗ 519 ∗ 2181069, 243 ∗ 521 ∗ 18319,

248 ∗ 523 ∗ 29, 246 ∗ 522 ∗ 521, 249 ∗ 522 ∗ 37, 250 ∗ 523, 0, . . . ),
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in agreement with Baruah and Begum and

ν(x1) = (0, ∞, . . . ),

ν(x2) = (0, 1, 2, 3, 3, ∞, . . . ),

ν(x3) = (1, 1, 2, 3, 3, 4, 6, 7, 8, 8, 9, 11, 12, 14, 13, 14, 16, 17, 18, 18, 19, 21,

23, 22, 22, 23, ∞, . . . ).

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

9. Appendix

We provide a proof of (4.2). The proofs of (4.3)–(4.6), (5.6)–(5.10) and (5.12)–
(5.16) are similar but lengthier.

We require the following results.

Lemma 9.1. Let

K =
χ(−q5)5

χ(−q)
.

Then
R(q2)
R(q)2

− R(q)2

R(q2)
=

4q

K
, (9.1)

1
R(q)R(q2)2

− q2R(q)R(q2)2 = K, (9.2)

R(q)
R(q2)3

+ q2
R(q2)3

R(q)
= K − 2q +

4q2

K
, (9.3)

1
R(q)3R(q2)

+ q2R(q)3R(q2) = K + 2q +
4q2

K
, (9.4)

1
R(q)5

− q2R(q)5 = K + 4q +
8q2

K
+

16q3

K2
, (9.5)

R(q2)
R(q)7

+ q2
R(q)7

R(q2)
= K + 6q +

20q2

K
+

32q3

K2
+

64q4

K3
, (9.6)

1
R(q)10

+ q4R(q)10 = K2 + 8qK + 34q2 +
96q3

K

+
192q4

K2
+

2546q5

K3
+

256q6

K4
, (9.7)

1
R(q)8R(q2)

− q4R(q)8R(q2) = K2 + 6qK + 20q2 +
44q3

K
+

64q4

K2
+

64q5

K3
,

(9.8)
R(q2)
R(q)12

− q4
R(q)12

R(q2)
= K2 + 10qK + 52q2 +

180q3

K
+

448q4

K2

+
832q5

K3
+

1024q6

K4
+

1024q7

K5
, (9.9)
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K + q =
E(q2)4E(q5)2

E(q)2E(q10)4
, (9.10)

1 − 4q

K
=

E(q)4E(q10)2

E(q2)2E(q5)4
(9.11)

and
q

K − 4q
= ζ. (9.12)

Proofs of (9.1)–(9.4). We see that (9.1) is (2.5), (9.2) is (2.7), (9.3) is (2.9)
and (9.4) is (2.10). �

Proof of (9.5).

1
R(q)5

− q2R(q5) =
(

R(q2)
R(q)2

− R(q)2

R(q2)

) (
1

R(q)3R(q2)
+ q2R(q)3R(q2)

)

+
(

1
R(q)R(q2)2

− q2R(q)R(q2)2
)

=
4q

K

(
K + 2q +

4q2

K

)
+ K

= K + 4q +
8q2

K
+

16q3

K2
.

�

Proof of (9.6).

R(q2)
R(q)7

+ q2
R(q)7

R(q2)
=

(
R(q2)
R(q)2

− R(q)2

R(q2)

) (
1

R(q)5
− q2R(q)5

)

+
(

1
R(q)3R(q2)

+ q2R(q)3R(q2)
)

=
4q

K

(
K + 4q +

8q2

K
+

16q3

K2

)
+

(
K + 2q +

4q2

K

)

= K + 6q +
20q2

K
+

32q3

K2
+

64q4

K3
.

�

Proof of (9.7).

1
R(q)10

+ q4R(q)10 =
(

1
R(q)5

− q2R(q)5
)2

+ 2q2

=
(

K + 4q +
8q2

K
+

16q3

K2

)2

+ 2q2

= K2 + 8qK + 34q2 +
96q3

K
+

192q4

K2
+

256q5

K3
+

256q7

K4
.

�
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Proof of (9.8).

1
R(q)8R(q2)

− q4R(q)8R(q2)

=
(

1
R(q)5

− q2R(q)5
) (

1
R(q)3R(q2)

+ q2R(q)3R(q2)
)

− q2
(

R(q2)
R(q)2

− R(q)2

R(q2)

)

=
(

K + 4q +
8q2

K
+

16q3

K2

)(
K + 2q +

4q2

K

)
− q2

(
4q

K

)

= K2 + 6qK + 20q2 +
44q3

K
+

64q4

K2
+

64q5

K3
.

�

Proof of (9.9).

R(q2)
R(q)12

− q4
R(q)12

R(q2)

=
(

R(q2)
R(q)2

− R(q)2

R(q2)

) (
1

R(q)10
+ q4R(q)10

)

+
(

1
R(q)8R(q2)

− q4R(q)8R(q2)
)

=
4q

K

(
K2 + 8qK + 34q2 +

96q3

K
+

192q4

K2
+

256q5

K3
+

256q5

K3

)

+
(

K2 + 6qK + 20q2 +
44q3

K
+

64q4

K2
+

64q5

K3

)

= K2 + 10qK + 52q2 +
180q3

K
+

448q4

K2
+

832q5

K3
+

1024q6

K4
+

1024q7

K5
.

�

Proofs of (9.10) and (9.11). We see that (9.10) is (2.11) and (9.11) is (2.12).
�

Proof of (9.12).

K − 4q = K

(
1 − 4q

K

)
=

E(q2)E(q5)5

E(q)E(q10)5
· E(q)4E(q10)2

E(q2)2E(q5)4
=

E(q)3E(q5)
E(q2)E(q10)3

=
q

ζ
,

from which the result follows. �

Proof of (4.2). We start by noting that (4.2) is equivalent to

U(ζ) = 41ζ + 860ζ2 + 6800ζ3 + 24000ζ4 + 32000ζ5.

We have
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U(ζ) = U

(
q
E(q2)E(q10)3

E(q)3E(q5)

)

=
E(q2)3

E(q)
U

(
q
E(q2)
E(q)3

)

=
E(q2)3

E(q)
U

(
qE(q50)

(
1

R(q10)
− q2 − q4R(q10)

)

×
(

E(q25)5

E(q5)6

)3 (
1

R(q5)4
+

q

R(q5)3
+

2q2

R(q5)2
+

3q3

R(q5)
+ 5q4

−3q5R(q5) + 2q6R(q5)2 − q7R(q5)3 + q8R(q5)4
)3)

=
E(q2)3E(q5)15E(q10)

E(q)19

(
51q

(
1

R(q)8R(q2)
− q4R(q)8R(q2)

)

−9q

(
1

R(q)10
+ q4R(q)10

)
− q

(
R(q2)
R(q)12

− q4
R(q)12

R(q2)

)

+153q2
(

1
R(q)3R(q2)

+ q2R(q)3R(q2)
)

− 177q2
(

1
R(q)5

− q2R(q)5
)

−78q2
(

R(q2)
R(q)7

+ q2
R(q)7

R(q2)

)
− 219q3

(
R(q2)
R(q)2

− R(q)2

R(q2)

)
− 71q3

)

=
E(q2)3E(q5)15E(q10)

E(q)19

×
(

51q

(
K2 + 6qK + 20q2 +

44q3

K
+

64q4

K2
+

64q5

K3

)

−9q

(
K2 + 8qK + 34q2 +

96q3

K
+

192q4

K2
+

256q5

K3
+

256q6

K4

)

−q

(
K2 + 10qK + 52q2 +

180q3

K
+

448q4

K2
+

832q5

K3
+

1024q6

K4
+

1024q7

K5

)

+153q2
(

K + 2q +
4q2

K

)
− 177q2

(
K + 4q +

8q2

K
+

16q3

K2

)

−78q2
(

K + 6q +
20q2

K
+

32q3

K2
+

64q4

K3

)
− 219q3

(
4q

K

)
− 71q3

)

=
E(q2)3E(q5)15E(q10)

E(q)19

× (K + q)2(K − 4q)
K5

(41qK4 + 204q2K3 + 416q3K2 + 384q4K + 256q5)

=
E(q2)3E(q5)15E(q10)

E(q)19
· (K + q)2(K − 4q)

K5

× (41q(K − 4q)4 + 860q2(K − 4q)3 + 6800q3(K − 4q)2

+ 24000q4(K − 4q) + 32000q5)
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=
E(q2)3E(q5)15E(q10)

E(q)19
· (K + q)2(K − 4q)6

K5

×
(

41q

K − 4q
+

860q2

(K − 4q)2
+

6800q3

(K − 4q)3
+

24000q4

(K − 4q)4
+

32000q5

(K − 4q)5

)

=
(

E(q2)3E(q5)15E(q10)
E(q)19

)(
E(q2)4E(q5)2

E(q)2E(q10)4

)2 (
E(q)3E(q5)

E(q2)E(q10)3

)6

×
(

E(q)E(q10)5

E(q2)E(q5)5

)5

(41ζ + 860ζ2 + 6800ζ3 + 24000ζ4 + 32000ζ5)

= 41ζ + 860ζ2 + 6800ζ3 + 24000ζ4 + 32000ζ5.

�

In proceeding in the same manner with proofs of (4.3)–(4.6), (5.6)–(5.10)
and (5.12)–(5.16), we encounter terms of the form

P (α, β) =
1

R(q)α+2βR(q2)2α−β
+ (−1)α+βq2αR(q)α+2βR(q2)2α−β

with α ≥ 0.
These terms can be expressed in terms of q, K and K−1 by making use

of the recurrence relations

P (α, β + 1) =
4q

K
P (α, β) + P (α, β − 1), (9.13)

P (α + 2, 0) = KP (α + 1, 0) + q2P (α, 0) (9.14)

and

P (α + 2,−1) =
(

K − 2q +
4q2

K

)
P (α + 1, 0) − q2P (α, 1), (9.15)

together with the initial values

P (0, 0) = 2, (9.16)

P (0, 1) =
R(q2)
R(q)2

− R(q)2

R(q2)
=

4q

K
, (9.17)

P (1, 0) =
1

R(q)R(q2)2
− q2R(q)R(q2)2 = K (9.18)

and

P (1,−1) =
R(q)

R(q2)3
+ q2

R(q2)3

R(q)
= K − 2q +

4q2

K
. (9.19)

We see that (9.17) is (9.1), (9.18) is (9.2) and (9.19) is (9.3).
Proofs of (9.13)–(9.15) were given by Chern and Tang [2].
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Abstract. In this note, we show how to use cylindric partitions to rederive
the four A2 Rogers–Ramanujan identities originally proven by Andrews,
Schilling and Warnaar, and provide a proof of a similar fifth identity.
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1. Introduction

The Rogers–Ramanujan identities were first proved in 1894 by Rogers and
rediscovered in the 1910s by Ramanujan [14]. They are

∑

n≥0

qn(n+i)

(q; q)n
=

1
(q1+i; q5)∞(q4−i; q5)∞

(1.1)

with i = 0, 1, where (a, q)∞ =
∏

i≥0(1 − aqi) and (a; q)n = (a; q)∞/(aqn; q)∞.
There have been many attempts to give combinatorial proofs of these

identities and the first one is due to Garsia and Milne [11]. Unfortunately, it
is not simple, and no simple combinatorial proof is known. Recently in [6], the
first author presented a new bijective approach to the proofs of the Rogers–
Ramanujan identities via the Robinson–Schensted–Knuth correspondence as
presented in [13]. The bijection does not give the Rogers–Ramanujan identities
but the Rogers–Ramanujan identities divided by (q; q)∞, namely

1
(q; q)∞

∑

n≥0

qn(n+1)

(q; q)n
=

1
(q, q2, q2, q3, q3, q4, q5; q5)∞

(1.2)
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684 S. Corteel and T. Welsh

where (a1, . . . , ak; q)∞ =
∏k

i=1(ai; q)∞. This proof uses the combinatorics of
cylindric partitions [10]. We interpret both sides as the generating function of
cylindric partitions of profile (3,0) and the bijection is a polynomial algorithm
in the size of the cylindric partition. The idea to use cylindric partitions is
due to Foda and the second author [12] in the more general setting of the
Andrews–Gordon identities [2]. For k > 0 and 0 ≤ i ≤ k, these identities
divided by (q; q)∞ are

1
(q; q)∞

∑

n1,...,nk

q
∑k

j=1 n2
j+

∑k
j=i nj

(q)n1−n2 · · · (q)nk−1−nk
(q)nk

=
(qi, q2k+3−i, q2k+3; q2k+3)∞

(q; q)2∞
.

In [12], the sum side is interpreted as a generating function for (what the
authors call) decorated Bressoud paths, and the product side is interpreted as
the generating function of cylindric partitions of profile (2k + 1 − i, i), and a
bijection between these two objects is provided. See [12] for more details.

In this note, we take the idea of applying cylindric partitions to Rogers–
Ramanujan type identities a step further, using them to give an alternative
proof of the A2 Rogers–Ramanujan identities due to Andrews et al. [3].

Theorem 1.1. We have
∞∑

n1=0

2n1∑

n2=0

qn
2
1+n2

2−n1n2+n1+n2

(q; q)n1

[
2n1

n2

]
=

1
(q2, q3, q3, q4, q4, q5; q7)∞

,

∞∑

n1=0

2n1∑

n2=0

qn
2
1+n2

2−n1n2+n2

(q; q)n1

[
2n1

n2

]
=

1
(q, q2, q3, q4, q5, q6; q7)∞

,

∞∑

n1=0

2n1+1∑

n2=0

qn
2
1+n2

2−n1n2+n1

(q; q)n1

[
2n1 + 1

n2

]
=

1
(q, q2, q3, q4, q5, q6; q7)∞

,

∞∑

n1=0

2n1+1∑

n2=0

qn
2
1+n2

2−n1n2+n2

(q; q)n1

[
2n1 + 1

n2

]
=

1
(q, q2, q2, q5, q5, q6; q7)∞

,

∞∑

n1=0

2n1∑

n2=0

qn
2
1+n2

2−n1n2

(q; q)n1

[
2n1

n2

]
=

1
(q, q, q3, q4, q6, q6; q7)∞

,

where the Gaussian polynomial
[
n
k

]
is defined by

[
n

k

]
=

(q; q)n
(q; q)k(q; q)n−k

.

Note that the second and third expressions are equal. All but the fourth
of these identities were obtained in Theorem 5.2 of [3], while the fourth was
conjectured in Section 2.4 of [8] (and proved here for the first time). In [16],
Warnaar gave another approach to proving these identities, making use of
Hall–Littlewood functions.

In this note, we prove the following theorem, giving the generating func-
tions Fc,n(q) of cylindric partitions indexed by compositions c of 4 into 3 parts,
with largest entry at most n:
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Theorem 1.2.

F(4,0,0),n(q) =
n∑

n1=0

2n1∑

n2=0

qn
2
1+n2

2−n1n2+n1+n2

(q; q)n−n1(q; q)n1

[
2n1

n2

]
,

F(3,1,0),n(q) =
n∑

n1=0

2n1∑

n2=0

qn
2
1+n2

2−n1n2+n2

(q; q)n−n1(q; q)n1

[
2n1

n2

]
,

F(3,0,1),n(q) =
n∑

n1=0

2n1∑

n2=0

qn
2
1+n2

2−n1n2

(q; q)n−n1

qn1

(q; q)n1

[
2n1

n2

]

+
n∑

n1=1

2n1−2∑

n2=0

qn
2
1+n2

2−n1n2

(q; q)n−n1

q2n2

(q; q)n1−1

[
2n1 − 2

n2

]
,

F(2,2,0),n(q) =
n∑

n1=0

2n1∑

n2=0

qn
2
1+n2

2−n1n2

(q; q)n−n1

qn1

(q; q)n1

[
2n1

n2

]

+
n∑

n1=1

2n1−2∑

n2=0

qn
2
1+n2

2−n1n2

(q; q)n−n1

qn2(1 + qn1+n2)
(q; q)n1−1

[
2n1 − 2

n2

]
,

F(2,1,1),n(q) =
n∑

n1=0

2n1∑

n2=0

qn
2
1+n2

2−n1n2

(q; q)n−n1(q; q)n1

[
2n1

n2

]
.

This result gives finite versions of the sum sides of the A2 Rogers–
Ramanujan identities.

In the n → ∞ limit, we recover the sum sides of the identities of Theo-
rem 1.1 divided by (q; q)∞. On the other hand, the product sides are obtained
using a result of Borodin [4] on the generating functions of cylindric partitions.
In Sect. 2, we start by defining cylindric partitions and then obtain the prod-
uct sides of particular cylindric partitions. These yield the right-hand sides of
the expressions in Theorem 1.1. The sum expressions on the left-hand sides
are computed in Sect. 3.

2. Cylindric Partitions and the Product Side

Cylindric partitions were introduced by Gessel and Krattenthaler [10] and
appeared naturally in different contexts [4,5,7,9,12,15]. Let � and k be two
positive integers. In this note, we choose to index cylindric partitions by com-
positions of � into k non-negative parts.

Definition 2.1. Given a composition c = (c1, . . . , ck), a cylindric partition of
profile c is a sequence of k partitions Λ = (λ(1), . . . λ(k)) such that

• λ
(i)
j ≥ λ

(i+1)
j+ci+1

,

• λ
(k)
j ≥ λ

(1)
j+c1

.
for all i and j.
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686 S. Corteel and T. Welsh

For example, the sequence Λ = ((3, 2, 1, 1), (4, 3, 3, 1), (4, 1, 1)) is a cylin-
dric partition of profile (2, 2, 0). One can check that for all j, λ

(1)
j ≥ λ

(2)
j+2,

λ
(2)
j ≥ λ

(3)
j and λ

(3)
j ≥ λ

(1)
j+2 for all j. Note that this definition implies that

cylindric partitions of profile (c1, . . . , ck) are in bijection with cylindric parti-
tions of profile (ck, c1, . . . , ck−1).

Our goal is to compute generating functions of cylindric partitions of a
given profile c according to two statistics. Given a Λ = (λ(1), . . . , λ(k)), let

• |Λ| =
∑k

i=1

∑
j≥1 λ

(i)
j , the sum of the entries of the cylindric plane par-

tition, and
• max(Λ) = max(λ(1)

1 , . . . λ
(k)
1 ), the largest entry of the cylindric plane

partition.

Going back to our example, we have |Λ| = 24, and max(Λ) = 4.
Let Cc be the set of cylindric partitions of profile c and let Cc,n be the set

of cylindric partitions of profile c and such that the largest entry is at most n.
We are interested in the following generating functions:

Fc(q) =
∑

Λ∈Cc

q|Λ|, (2.1)

Fc(y, q) =
∑

Λ∈Cc

q|Λ|ymax(Λ), (2.2)

Fc,n(q) =
∑

Λ∈Cc,n

q|Λ|. (2.3)

A surprising and beautiful result is that for any c, the generating function
Fc(q) can be written as a product. Namely, with t = k + �,

Theorem 2.2. [4] The generating function Fc(q) is equal to

1
(qt; qt)

k∏

i=1

k∏

j=i+1

ci∏

m=1

1
(qm+di+1,j+j−i; qt)∞

k∏

i=2

i−1∏

j=2

ci∏

m=1

1
(qt−(m+dj,i−1+i−j); qt)∞

where di,j = ci + ci+1 + · · · + cj.

The original result is written in a different but equivalent form.
For what follows, we restrict attention to the case � = 4 and k = 3.

As cylindric partitions of profile (c1, . . . , ck) are in bijection with partitions
of profile (ck, c1, . . . , ck−1), we need only compute the generating functions
for the compositions (4, 0, 0), (3, 1, 0), (3, 0, 1), (2, 2, 0), and (2, 1, 1). We now
apply the previous theorem:
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Corollary 2.3.

F(4,0,0)(q) =
1

(q; q)∞(q2, q3, q3, q4, q4, q5; q7)∞
,

F(3,1,0)(q) =
1

(q; q)∞(q, q2, q3, q4, q5, q6; q7)∞
,

F(3,0,1)(q) =
1

(q; q)∞(q, q2, q3, q4, q5, q6; q7)∞
,

F(2,2,0)(q) =
1

(q; q)∞(q, q2, q2, q5, q5, q6; q7)∞
,

F(2,1,1)(q) =
1

(q; q)∞(q, q, q3, q4, q6, q6; q7)∞
.

Note that these five products are precisely those in Theorem 1.1 divided by
(q; q)∞.

3. The Sum Side

We first prove a general functional equation for Fc(y, q) for any profile c.
Suppose that k > 1 and c = (c1, . . . , ck). Let Ic be the subset of {1, . . . , k} such
that i ∈ Ic if and only if ci > 0. For example if c = (2, 2, 0) then Ic = {1, 2}.
Given a subset J of Ic, we define the composition c(J) = (c1(J), . . . , ck(J))
by

ci(J) =

⎧
⎨

⎩

ci − 1 if i ∈ J and (i − 1) �∈ J,
ci + 1 if i /∈ J and (i − 1) ∈ J,
ci otherwise.

Here, we set c0 = ck.

Proposition 3.1. For any composition c = (c1, . . . , ck),

Fc(y, q) =
∑

∅⊂J⊆Ic

(−1)|J|−1 Fc(J)(yq|J|, q)
1 − yq|J| . (3.1)

with the conditions Fc(0, q) = 1 and Fc(y, 0) = 1.

Proof. The proof makes use of an inclusion–exclusion argument.
First, for fixed J such that ∅ ⊂ J ⊆ Ic, we require the generating function

of cylindric partitions Λ of profile c such that λ
(j)
1 = max(Λ) for all j ∈ J .

Let M = (μ(1), . . . , μ(k)) be a cylindric partition of profile c(J), and set
n = max(M). Then, for a fixed integer m ≥ 0, create a cylindric partition
Λ = (λ(1), . . . , λ(k)) using the following recipe:

λ(j) =

{
(m + n, μ

(j)
1 , μ

(j)
2 , . . .) if j ∈ J,

μ(j) if j /∈ J.
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688 S. Corteel and T. Welsh

It is easily checked that Λ is a cylindric partition of profile c and that max(Λ) =
m + n. Moreover, λ

(j)
1 = max(Λ) for all j ∈ J . The generating function for all

cylindric partitions Λ obtained from M in this way is

∞∑

m=0

ym+nq|J|(m+n)q|M | = ynq|J|n+|M |
∞∑

m=0

(yq|J|)m =
ynq|J|n+|M |

1 − yq|J| . (3.2)

Then, the generating function for all cylindric partitions Λ obtained in this
way from any cylindric partition M of profile c(J) is

∑

M∈Cc(J)

ymax(M)q|J|max(M)+|M |

1 − yq|J| =
Fc(J)(yq|J|, q)

1 − yq|J| , (3.3)

making use of the definition (2.2).

Let Λ = (λ(1), . . . , λ(k)) be an arbitrary cylindric partition of profile c,
and let p = max(Λ). Because λ

(i−1)
1 ≥ λ

(i)
1 whenever i /∈ Ic, it must be the case

that p = λ
(j)
1 for some j ∈ Ic. Then, if J �= ∅ is such that p = λ

(j)
1 for each j ∈ J

(this J might not be unique), we see that Λ is one of the cylindric partitions
enumerated by (3.3). However, because Λ can arise from various different J ,
the generating function for cylindric partitions of profile c is obtained via the
inclusion–exclusion process. This immediately gives (3.1). �

Now, for each composition c, define

Gc(y, q) = (yq; q)∞ Fc(y, q). (3.4)

In terms of this, the previous result translates to

Gc(y, q) =
∑

∅⊂J⊆I

(−1)|J|−1(yq; q)|J|−1Gc(J)(yq|J|, q) (3.5)

with Gc(0, q) = Gc(y, 0) = 1.
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Theorem 3.2.

G(4,0,0)(y, q) =
∞∑

n1=0

2n1∑

n2=0

yn1
qn

2
1+n2

2−n1n2+n1+n2

(q; q)n1

[
2n1

n2

]
,

G(3,1,0)(y, q) =
∞∑

n1=0

2n1∑

n2=0

yn1
qn

2
1+n2

2−n1n2+n2

(q; q)n1

[
2n1

n2

]
,

G(3,0,1)(y, q) =
∞∑

n1=0

2n1∑

n2=0

yn1qn
2
1+n2

2−n1n2
qn1

(q; q)n1

[
2n1

n2

]

+
∞∑

n1=1

2n1−2∑

n2=0

yn1qn
2
1+n2

2−n1n2
q2n2

(q; q)n1−1

[
2n1 − 2

n2

]
,

G(2,2,0)(y, q) =
∞∑

n1=0

2n1∑

n2=0

yn1qn
2
1+n2

2−n1n2
qn1

(q; q)n1

[
2n1

n2

]

+
∞∑

n1=1

2n1−2∑

n2=0

yn1qn
2
1+n2

2−n1n2
qn2(1 + qn1+n2)

(q; q)n1−1

[
2n1 − 2

n2

]
,

G(2,1,1)(y, q) =
∞∑

n1=0

2n1∑

n2=0

yn1
qn

2
1+n2

2−n1n2

(q; q)n1

[
2n1

n2

]
.

Proof. In this proof, we abbreviate Gc(y, q) to Gc(y) for convenience. Applying
the form (3.5) of Proposition 3.1 to the case � = 4 and k = 3 yields

G(4,0,0)(y) = G(3,1,0)(yq),

G(3,1,0)(y) = G(3,0,1)(yq) + G(2,2,0)(yq) − (1 − yq)G(2,1,1)(yq2),

G(3,0,1)(y) = G(4,0,0)(yq) + G(2,1,1)(yq) − (1 − yq)G(3,1,0)(yq2),

G(2,2,0)(y) = G(3,0,1)(yq) + G(2,1,1)(yq) − (1 − yq)G(2,1,1)(yq2),

G(2,1,1)(y) = G(2,1,1)(yq) + G(2,2,0)(yq) + G(3,1,0)(yq)

− (1 − yq)(G(2,2,0)(yq2) + G(2,1,1)(yq2) + G(3,0,1)(yq2))

+ (1 − yq)(1 − yq2)G(2,1,1)(yq3).

By manipulating these equations, we obtain

G(4,0,0)(y) = G(3,1,0)(yq),

G(3,1,0)(y) = G(2,2,0)(yq) + yq2G(3,1,0)(yq3) + yqG(2,1,1)(yq2),

G(3,0,1)(y) = G(2,1,1)(yq) + yqG(3,1,0)(yq2),

G(2,2,0)(y) = G(2,1,1)(yq) + yqG(2,1,1)(yq2) + yq2G(3,1,0)(yq3),

G(2,1,1)(y) = G(2,1,1)(yq) + yqG(2,2,0)(yq) + yqG(2,2,0)(yq2)

+ yq3G(3,1,0)(yq4) + yq2G(2,1,1)(yq3).

(3.6)

We claim that this system of Eq. (3.6) together with the boundary conditions
Gc(0, q) = Gc(y, 0) = 1 for each composition c is uniquely solved by the
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expressions stated in the theorem. This is proved using an induction argument
involving all five expressions.

We use induction on the exponents of y. For each composition c, let gc(n)
denote the coefficient of yn in the solution Gc(y) of (3.6). The boundary condi-
tions Gc(0, q) = 1 imply that each gc(0) = 1. This holds for the expressions of
the theorem. So now, for n > 0, assume that gc(n1) agrees with the coefficient
of yn1 in the statement of the theorem for each n1 < n and each composition
c. We must check that gc(n), as determined by the expressions (3.6), is equal
to the coefficient of yn in the statement of the theorem for each c.

The fifth expression in (3.6) implies that

(1 − qn)g(2,1,1)(n) = (qn + q2n−1)g(2,2,0)(n − 1)

+ q4n−1g(3,1,0)(n − 1) + q3n−1g(2,1,1)(n − 1).

Using the expressions for gc(n) implied by the induction hypothesis then yields

g(2,1,1)(n) =
2n∑

n2=0

qn
2+n2

2−nn2

(q; q)n

[
2n
n2

]
.

This expression, along with the other expressions for gc(n) implied by (3.6),
enables us to compute, in turn, g(2,2,0)(n), g(3,0,1)(n), g(3,1,0)(n) and finally
g(4,0,0)(n). Because the expressions that result agree with the corresponding
coefficients of yn in the statement of the theorem, the induction argument is
complete. �

Proof of Theorem 1.2. Comparing (2.2) and (2.3) leads to

Fc,n(q) = [y0]Fc(y, q) + [y1]Fc(y, q) + · · · + [yn]Fc(y, q)

= [yn]
Fc(y, q)
1 − y

= [yn]
Gc(y, q)
(y; q)n

using (3.4). By the q-binomial theorem [1], we have

1
(y, q)n

=
n∑

i=0

yi

(q; q)i
,

and, therefore, it follows that

Fc,n(q) =
n∑

n1=0

1
(q; q)n−n1

[yn1 ]Gc(y, q).

Applying this to the expressions of Theorem 3.2 then yields those of Theo-
rem 1.2. �

Proof of Theorem 1.1. The product sides of the five identities result from mul-
tiplying each of the expressions in Corollary 2.3 by (q; q)∞. Because Fc(q) =
limn→∞ Fc,n(q), the sum sides of the identities arise by, for each expression in
Theorem 1.2, taking the n → ∞ limit and then multiplying by (q; q)∞. We
get the sum side of the first, second and fifth identities directly in this way.

336



The A2 Rogers–Ramanujan Identities Revisited 691

The other two identities require a bit more effort. They will require use of the
Gaussian polynomial recurrence relations [1]:

[
n

k

]
=

[
n − 1

k

]
+ qn−k

[
n − 1
k − 1

]
= qk

[
n − 1

k

]
+

[
n − 1
k − 1

]
. (3.7)

For convenience, for j, n ≥ 0 define

U (j)(n) =
∑

m≥0

qn
2+m2−nm+jm

[
2n

m

]

and

V (j)(n) =
∑

m≥0

qn
2+m2−nm+jm

[
2n + 1

m

]
.

Using the first identity in (3.7) gives

V (j)(n) =
∑

m≥0

qn
2+m2−nm+jm

[
2n

m

]
+

∑

m≥0

qn
2+m2−nm+2n+1+jm−m

[
2n

m − 1

]

= U (j)(n) +
∑

m≥0

qn
2+(m−1)2−n(m−1)+n+(j+1)(m−1)+j+1

[
2n

m − 1

]
.

After replacing m by m + 1 in the second term (and noting that the original
m = 0 summand is zero), we thus obtain

V (j)(n) = U (j)(n) + qn+j+1U (j+1)(n). (3.8)

The sum side of the third identity in Theorem 1.1 is, via Theorem 1.2,
given by

(q; q)∞ lim
n→∞ F(3,0,1),n(q)

=
∑

n1,n2

qn
2
1+n2

2−n1n2+n1

(q; q)n1

[
2n1

n2

]
+

∑

n1,n2

qn
2
1+n2

2−n1n2+2n2

(q; q)n1−1

[
2n1 − 2

n2

]

=
∑

n1

qn1

(q; q)n1

U (0)(n1) +
∑

n1,n2

q(n1−1)2+n2
2−(n1−1)n2+2n1+n2−1

(q; q)n1−1

[
2n1 − 2

n2

]

=
∑

n1

qn1

(q; q)n1

U (0)(n1) +
∑

n1

q2n1+1

(q; q)n1

U (1)(n1)

after replacing n1 by n1 + 1 in the second term. Via the j = 0 case of (3.8),
this gives the sum side of the third identity in Theorem 1.1, as required.

Before proving the fourth identity, we apply the final expression in (3.7)
to V (j)(n) to give

V (j)(n) =
∑

m≥0

qn
2+m2−nm+(j+1)m

[
2n

m

]
+

∑

m≥0

qn
2+m2−nm+jm

[
2n

m − 1

]

= U (j+1)(n) +
∑

m≥0

qn
2+(m−1)2−n(m−1)−n+(j+2)(m−1)+j+1

[
2n

m − 1

]
.
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Then, replacing m by m + 1 in the second term gives

V (j)(n) = U (j+1)(n) + q−n+j+1U (j+2)(n). (3.9)

The sum side of the fourth identity in Theorem 1.1 is, via Theorem 1.2,
given by

(q; q)∞ lim
n→∞ F(2,2,0),n(q)

=
∑

n1,n2

qn
2
1+n2

2−n1n2+n1

(q; q)n1

[
2n1

n2

]

+
∑

n1,n2

qn
2
1+n2

2−n1n2+n2(1 + qn1+n2)
(q; q)n1−1

[
2n1 − 2

n2

]

=
∑

n1

qn1

(q; q)n1

U (0)(n1)

+
∑

n1,n2

q(n1−1)2+n2
2−(n1−1)n2+2n1−1(1 + qn1+n2)

(q; q)n1−1

[
2n1 − 2

n2

]

=
∑

n1

qn1

(q; q)n1

U (0)(n1) +
∑

n1

q2n1+1

(q; q)n1

U (0)(n1) +
∑

n1

q3n1+2

(q; q)n1

U (1)(n1)

=
∑

n1

1
(q; q)n1

(
qn1(1 + qn1+1)U (0)(n1) + q3n1+2U (1)(n1)

)

where the third equality results from replacing n1 by n1+1 in the second term.
Using first the j = 0 case of (3.8), then the j = 0 case of (3.9), then the j = 1
case of (3.8) shows that

qn1(1 + qn1+1)U (0)(n1) + q3n1+2U (1)(n1)

= qn1(1 + qn1+1)
(
V (0)(n1) − qn1+1U (1)(n1)

)
+ q3n1+2U (1)(n1)

= qn1(1 + qn1+1)V (0)(n1) − q2n1+1U (1)(n1)

= qn1(1 + qn1+1)V (0)(n1) − q2n1+1V (0)(n1) + qn1+2U (2)(n1)

= qn1V (0)(n1) + V (1)(n1) − U (1)(n1).

Therefore

(q; q)∞ lim
n→∞ F(2,2,0),n(q)

=
∑

n1

qn1

(q; q)n1

V (0)(n1) +
∑

n1

1
(q; q)n1

V (1)(n1) −
∑

n1

1
(q; q)n1

U (1)(n1).

The first and third terms here cancel by virtue of the equality of the second
and third identities in Theorem 1.1. This leaves the sum side of the fourth
expression and, thus, the Proof of Theorem 1.1 is complete. �
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Abstract. Given an integer base b ≥ 2, we investigate a multivariate
b-ary polynomial analogue of Stern’s diatomic sequence which arose in
the study of hyper b-ary representations of integers. We derive various
properties of these polynomials, including a generating function and iden-
tities that lead to factorizations of the polynomials. We use some of these
results to extend an identity of Courtright and Sellers on the b-ary Stern
numbers sb(n). We also extend a result of Defant and a result of Coons
and Spiegelhofer on the maximal values of sb(n) within certain intervals.
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Keywords. Stern sequence, Stern polynomials, Generating functions.

1. Introduction

One of the most interesting integer sequences is the Stern (diatomic) sequence
which can be defined by s(0) = 0, s(1) = 1, and for n ≥ 1:

s(2n) = s(n), s(2n + 1) = s(n) + s(n + 1); (1.1)

see entry A002487 in [9] for numerous properties and references.
It has been known for some time that this sequence is closely related to

hyperbinary representations; see [10, Theorem 5.2], where it is proved that the
number of hyperbinary representations of an integer n ≥ 1 is given by the Stern
number s(n+1). More recently, this connection was refined by several authors
through the introduction of various concepts of Stern polynomials, all extend-
ing the sequence (1.1); see [5] for references. These different Stern polynomials

Research supported in part by the Natural Sciences and Engineering Research Council of
Canada, Grant # 145628481.
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696 K. Dilcher and L. Ericksen

were subsequently unified by the present authors [5,6] through the introduc-
tion of the following sequence of bivariate Stern polynomials, where s and t
are positive integer parameters and y and z are variables: set ωs,t(0; y, z) = 0,
ωs,t(1; y, z) = 1, and for n ≥ 1, let

ωs,t(2n; y, z) = y ωs,t(n; ys, zt), (1.2)

ωs,t(2n + 1; y, z) = z ωs,t(n; ys, zt) + ωs,t(n + 1; ys, zt). (1.3)

Various properties, including an explicit formula, a generating function, and
some special cases, can be found in [5, Section 4]. By comparing (1.2), (1.3)
with (1.1), we immediately see that for all n ≥ 0 we have ωs,t(n; 1, 1) = s(n),
where s and t are arbitrary.

The purpose of this paper is to study the following sequence of polyno-
mials, which was used in the recent paper [7] to characterize all hyper b-ary
representations of a positive integer, just as the polynomials ωs,t(n; y, z) served
to characterize all hyperbinary expansions of a given positive integer.

Definition 1.1. Let T = (t1, . . . , tb) be a b-tuple of fixed positive integer param-
eters. We define the polynomial sequence ωT (n; z1, . . . , zb) in the b variables
z1, . . . , zb by ωT (0; z1, . . . , zb) = 0, ωT (1; z1, . . . , zb) = 1, and for n ≥ 1 by

ωT (b(n − 1) + j + 1; z1, . . . , zb) = zj ωT (n; zt1
1 , . . . , ztb

b ) (1 ≤ j ≤ b − 1),
(1.4)

ωT (bn + 1; z1, . . . , zb) = zb ωT (n; zt1
1 , . . . , ztb

b ) + ωT (n + 1; zt1
1 , . . . , ztb

b ). (1.5)

We immediately see that for b = 2 the identities (1.4), (1.5) reduce to
(1.2) and (1.3), respectively. This sequence can also be seen as a polynomial
analogue of a b-ary generalized Stern sequence that was earlier introduced and
studied [2,3]. We will consider this integer sequence also here, in Sects. 2, 5
and 6.

As a special case that will provide us with examples later in this paper,
we consider the ternary case, i.e., b = 3 in Definition 1.1.

Definition 1.2. Let T = (r, s, t) be a triple of fixed positive integer parame-
ters. We define the polynomial sequence ωT (n;x, y, z) by ωT (0;x, y, z) = 0,
ωT (1;x, y, z) = 1, and for n ≥ 1 by

ωT (3n − 1;x, y, z) = xωT (n;xr, ys, zt), (1.6)

ωT (3n;x, y, z) = y ωT (n;xr, ys, zt), (1.7)

ωT (3n + 1;x, y, z) = z ωT (n;xr, ys, zt) + ωT (n + 1;xr, ys, zt). (1.8)

The first 27 of the polynomials ωT (n;x, y, z) are listed in Table 1.
This paper is structured as follows. In Sect. 2, we derive some basic prop-

erties of the polynomials ωT (n; z1, . . . , zb) that will be used later. In Sect. 3, we
obtain a generating function for these polynomials, and in Sect. 4, we develop
polynomial identities and describe factorizations of these b-variate polynomi-
als. Finally, in Sects. 5 and 6, we derive some properties of the integer sequence
ωT (n; 1, . . . , 1).
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2. Some Basic Properties

From Definition 1.1, we obtain the following easy properties, instances of which
can be observed in Table 1.

Lemma 2.1. With b and T as in Definition 1.1, we have

ωT (j; z1, . . . , zb) = zj−1 (2 ≤ j ≤ b), (2.1)

ωT (b + 1; z1, . . . , zb) = zb + zt1
1 , (2.2)

ωT (b�; z1, . . . , zb) = z
1+tb−1+···+t�−1

b−1
b−1 (� ≥ 1). (2.3)

Proof. The identity (2.1) follows immediately from (1.4) with n = 1. We obtain
(2.2) from (1.5) with n = 1, followed by (2.1) with j = 2. Finally, (2.3)
is obtained by an easy induction, where (2.1) with j = b is the induction
beginning, and (1.4) with j = b − 1 provides the induction step. �

For the next result, and also for Sects. 5 and 6, we require an integer
sequence analogue of Definition 1.1. The following definition and notation are
specified in [3].

Definition 2.2. For a fixed integer b ≥ 2, we define the generalized Stern se-
quence by sb(0) = 0, sb(1) = 1, and for n ≥ 1 by

sb(bn − j) = sb(n) (j = 0, 1, . . . , b − 2), (2.4)

sb(bn + 1) = sb(n) + sb(n + 1). (2.5)

It is clear that the case b = 2 is the original Stern sequence (1.1). The se-
quence for b = 3 is listed as A054390 in [9], where various properties are given,
including a close connection with hyperternary representations. Furthermore,
by comparing Definition 1.1 with Definition 2.2, we see that for any b ≥ 2 and
n ≥ 0, we have

ωT (n; 1, . . . , 1) = sb(n), (2.6)

where the b-tuple T is arbitrary.
For the proof of the generating function in the next section, we need an

estimate for the size of the polynomial ωT (n; z1, . . . , zb) when the variables are
kept reasonably small.

Lemma 2.3. Let b ≥ 2 and suppose that |zj | ≤ 1 for all j = 1, 2, . . . , b. Then,
there is a positive constant cb, such that for all n ≥ 1, we have

|ωT (n; z1, . . . , zb)| < cb · nlogb φ, (2.7)

where φ = 1
2 (1 +

√
5) is the golden ratio.

Proof. By (1.4) and (1.5), it is clear that the monomials in each of the polyno-
mials ωT (n; z1, . . . , zb) have positive coefficients. Therefore, whenever |zj | ≤ 1
for j = 1, . . . , b, by (2.6), we have

|ωT (n; z1, . . . , zb)| ≤ ωT (n; 1, . . . , 1) = sb(n). (2.8)
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In [3], Defant proved that

lim sup
n→∞

sb(n)
nlogb φ

=
(b2 − 1)logb φ

√
5

; (2.9)

see also [1] for a different proof. The identity (2.9) now implies that for some
constant cb > 0, we have

sb(n) < cb · nlogb φ,

which, together with (2.8), proves (2.7). �

Table 1 indicates that the polynomials ωT (n;x, y, z) have a special struc-
ture. This is in fact true for all bases b ≥ 2, as shown in the following result.

Theorem 2.4. Let b ≥ 2, n ≥ 1, and T = (t1, . . . , tb) be such that tj ≥ 2 for
1 ≤ j ≤ b. Then

(i) The coefficients of all monomials of ωT (n; z1, . . . , zb) are either 0 or 1.
(ii) In each monomial of ωT (n; z1, . . . , zb), and for each j with 1 ≤ j ≤ b,

the exponent of zj is a polynomial in tj with only 0 or 1 as coefficients.

Proof. We set n = mb + �, 1 ≤ � ≤ b, and proceed by induction on m. When
m = 0, both statements of the theorem are true for 1 ≤ � ≤ b, by (2.1) and by
ωT (1; z1, . . . , zb) = 1.

Now, suppose that the statements (i) and (ii) are true up to some m − 1
(m ≥ 1) and for all �, 1 ≤ � ≤ b. Then, by (1.4), we see that for 2 ≤ � ≤ b, we
have

ωT (bm + �; z1, . . . , zb) = z�−1 ωT (m; zt1
1 , . . . , ztb

b ).

Since b ≥ 2, we have m < bm, so the induction hypothesis applies to the
polynomial ωT (m; zt1

1 , . . . , ztb

b ), which means that all monomials in this last
polynomial are of the required form. This does not change if we multiply them
all by z�−1.

Next, for � = 1 we use (1.5), namely

ωT (bm + 1; z1, . . . , zb) = zb ωT (m; zt1
1 , . . . , ztb

b ) + ωT (m + 1; zt1
1 , . . . , ztb

b ).
(2.10)

As before, we have m < bm, and m + 1 < bm also holds for all m ≥ 1 when
b ≥ 3, and for m ≥ 2 when b = 2. The remaining case m = 1, b = 2 is
easily verified by (1.2) and (1.3). Therefore, the induction hypothesis applies
to the right of (2.10), which means that all monomials in both summands are
of the required form. Furthermore, since each monomial in the first summand
is multiplied by zb and tj ≥ 2 for 1 ≤ j ≤ b, all monomials on the right of
(2.10) are distinct. Hence, the coefficients of the monomials remain 1, and the
proof is complete. �
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3. Generating Functions

A generating function for the numerical sequence (sb(n)) is given in [2]. It is
rewritten here in our notation as

∞∑

n=1

sb(n)qn = q

∞∏

j=0

(
1 + qbj

+ q2·bj

+ · · · + qb·bj
)

. (3.1)

In this section we are going to extend the generating function (3.1) to the
sequence of polynomials ωT (n; z1, . . . , zb). The case b = 2 was earlier obtained
in [5], where we showed that

∞∑

n=1

ωs,t(n; y, z)qn = q

∞∏

j=0

(
1 + ysj

q2
j

+ ztj

q2·2j
)

. (3.2)

The following result is now easily seen as a natural extension of both (3.1) and
(3.2).

Theorem 3.1. Let b ≥ 2, and let T = (t1, . . . , tb) be a b-tuple of positive integer
parameters. Then, we have

∞∑

n=1

ωT (n; z1, . . . , zb)qn = q

∞∏

j=0

(
1 + z

tj
1
1 qbj

+ z
tj
2
2 q2·bj

+ · · · + z
tj
b

b qb·bj
)

.

(3.3)

Proof. To simplify notation, we set

Z = (z1, . . . , zb); ZT j

= (ztj
1
1 , . . . , z

tj
b

b ), where T = (t1, . . . , tb). (3.4)

We follow the general idea of the proof of a special case in Proposition 5.1 of
[4] and further denote

F (Z, q) =
∞∑

n=1

ωT (n;Z)qn−1. (3.5)

By Lemma 2.3, this power series has a positive radius of convergence, so the
following operations are allowable. If we rewrite the series in (3.5) and use
(1.4) and (1.5), then F (Z, q) becomes

1 +
∞∑

n=1

⎛

⎝
b−1∑

j=1

ωT (b(n − 1) + j + 1;Z)qb(n−1)+j + ωT (bn + 1;Z)qbn

⎞

⎠

= 1 +
∞∑

n=1

⎛

⎝
b−1∑

j=1

zjωT (n;ZT )qj(qb)n−1 + zbωT (n;ZT )qb(qb)n−1

⎞

⎠

+
∞∑

n=1

ωT (n + 1;ZT )(qb)n

= 1 +

⎛

⎝
b∑

j=1

zjq
j

⎞

⎠
∞∑

n=1

ωT (n;ZT )(qb)n−1 +
∞∑

n=1

ωT (n + 1;ZT )(qb)n.
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If we add the initial 1 to the second summation and shift the summation index,
we see that

F (Z, q) = (1 + z1q + z2q
2 + · · · + zbq

b)F (ZT , qb). (3.6)

Upon iterating the functional equation (3.6), we get

F (Z, q) = (1 + z1q + · · · + zbq
b)(1 + zt1

1 qb + · · · + ztb

b qb·b)F (ZT 2
, qb2)

...

=
N∏

j=0

(
1 + z

tj
1
1 qbj

+ z
tj
2
2 q2·bj

+ · · · + z
tj
b

b qb·bj
)

F (ZT N+1
, qbN+1

). (3.7)

We are done if we can show, for sufficiently small z1, . . . , zb and q, that we
have

F (ZT N+1
, qbN+1

) → 1 as N → ∞; (3.8)

then (3.7) becomes the desired identity (3.3) as N → ∞. To prove (3.8), we
rewrite F (Z, q) in (3.5) as

F (Z, q) = 1 + q

∞∑

n=2

ωT (n;Z)qn−2. (3.9)

Then, we see that for any Z and q satisfying |zj | ≤ 1, j = 1, . . . , b and |q| ≤ 1−ε
for some ε > 0, the infinite series on the right of (3.9) remains bounded because
of Lemma 2.3. But then, since qbN+1 → 0 as N → ∞, we immediately get (3.8),
which completes the proof of Theorem 3.1. �

4. Some General Polynomial Identities

The purpose of this section is to obtain a class of identities for the polynomial
sequences ωT (n; z1, . . . , zb). We begin with the following observation from Ta-
ble 1: The entries for n = 14, . . . , 18 are exactly the entries for n = 5, . . . , 9
multiplied by xr2

. Similarly, the entries for n = 23, . . . , 27 are again those for
n = 5, . . . , 9, but this time multiplied by ys2

. These are special instances of
the following lemma, which will be needed as an auxiliary result later in this
section.

Lemma 4.1. Let b ≥ 2 be an integer and let T = (t1, . . . , tb) be a b-tuple of
positive integers. Then, for any � ≥ 1 and 1 ≤ k ≤ b − 1, we have

ωT (k · b� + j; z1, . . . , zb) = z
t�
k

k ωT (j; z1, . . . , zb),
b� − 1
b − 1

< j ≤ b�. (4.1)

Example 1. Let b = 3, � ≥ 1 and T = (r, s, t). Then, for all j with 1
2 (3� − 1) <

j ≤ 3�, the identity (4.1) reduces to

ωT (3� + j;x, y, z) = xr�

ωT (j;x, y, z),

ωT (2 · 3� + j;x, y, z) = ys�

ωT (j;x, y, z).
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For instance, if we take � = 2 and 5 ≤ j ≤ 9, we obtain the first example
mentioned at the beginning of this section.

For the remainder of this section, we adopt the notation (3.4), which was
already used in the proof of Theorem 3.1.

Proof of Lemma 4.1. We proceed by induction on �. For � = 1, (4.1) reduces
to

ωT (k · b + j;Z) = ztk

k · ωT (j;Z) = zj−1ωT (k + 1;ZT ), 2 ≤ j ≤ b,

where in the second equation, we have used (2.1) twice. But this is just (1.4)
with n = k + 1 and j replaced by j − 1.

Now assume that (4.1) is true up to some � ≥ 1. We wish to show that it
also holds for � replaced by � + 1, for all j with (b�+1 − 1)/(b − 1) < j ≤ b�+1.
But this interval for j can be rewritten as

b� − 1
b − 1

· b + 2 ≤ j ≤ b� · b,

or divided into subintervals as
b� − 1
b − 1

· b + 2 ≤ j ≤
(

b� − 1
b − 1

+ 1
)

· b, (4.2)

r · b + 1 ≤ j ≤ (r + 1) · b, with
b� − 1
b − 1

+ 1 ≤ r ≤ b� − 1. (4.3)

We now distinguish between two cases.
(a) We consider (4.2), combined with the interval (4.3) for j, without the

left endpoints. In other words, we write

j = rb + i,
b� − 1
b − 1

≤ r ≤ b� − 1, 2 ≤ i ≤ b.

Now, we compute

ωT (k · b�+1 + j;Z) = ωT ((k · b� + r)b + i;Z)

= zi−1ωT (k · b� + r + 1;ZT ) by (1.4)

= ωT (i;Z) · z
t�+1
k

k · ωT (r + 1;ZT ) by (2.1), (4.1)

= z
t�+1
k

k · ωT (rb + i;Z) by (2.1), (1.4).

Since rb + i = j, we have, therefore, proved (4.1) for � + 1 in place of �, which
proves the first case by induction.

(b) We consider the left endpoints in the intervals (4.3) for j; that is, we
write

j = rb + 1,
b� − 1
b − 1

+ 1 ≤ r ≤ b� − 1.

We compute

ωT (k · b�+1 + j;Z) = ωT ((k · b� + r)b + 1;Z)

= zbωT (k · b� + r;ZT ) + ωT (k · b� + r + 1;ZT ) by (1.5)
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=
(
zbωT (r;ZT ) + ωT (r + 1;ZT )

)
z

t�+1
k

k by (4.1)

= ωT (rb + 1;Z)zt�+1
k

k by (1.5).

Since rb + 1 = j, this proves (4.1) for � + 1 in place of �. The proof of the
lemma is now complete. �

Independently of this work, and with different notations, Ulas [11] proved
the following identity, where we set 1 = (1, 1, . . . , 1). For integers b ≥ 2, � ≥ 1,
k ≥ 1 and 0 ≤ j ≤ b�, we have

ω1(k · b� + j;Z) = ω1(k + 1;Z) · ω1(j;Z)

+ ω1(k;Z) · (ω1(b� + j;Z) − z1ω1(j;Z)
)
. (4.4)

The main result of this section is the following extension of (4.4) to arbitrary
b-tuples T .

Theorem 4.2. Let b ≥ 2, � ≥ 1, and k ≥ 1 be integers. Then, for all 0 ≤ j ≤ b�,
we have

ωT (k · b� + j;Z) = ωT (k + 1;ZT �

) · ωT (j;Z)

+ ωT (k;ZT �

) ·
(
ωT (b� + j;Z) − z

t�
1
1 ωT (j;Z)

)
. (4.5)

Before proving this result, we derive an interesting consequence and give
a few examples.

Corollary 4.3. Let b ≥ 2, � ≥ 1 and k ≥ 1 be integers. Then

ωT (k · b� + j;Z) = ωT (k + 1;ZT �

) · ωT (j;Z),
b� − 1
b − 1

< j ≤ b�. (4.6)

This follows immediately from Lemma 4.1. Indeed, if j is restricted as in
(4.6), then by (4.1), the expression in large parentheses in (4.5) vanishes and
we obtain the identity (4.6). We next note that by (2.1), we have

ωT (k + 1;ZT �

) = z
t�
k

k , 1 ≤ k ≤ b − 1,

and so (4.6) is an extension of (4.1). We also note that for b = 2, we get from
(4.6) a single identity with j = 2�, namely

ωs,t((k + 1) · 2�; y, z) = ωs,t(k + 1; ys�

, zt�

) · ωs,t(2�; y, z).

However, this identity is an immediate consequence of (1.2) and provides noth-
ing new. Corollary 4.3 is, therefore, meaningful only for bases b ≥ 3.

It is also clear that (4.6) gives large numbers of polynomials ωT (n;Z)
that are obviously reducible.

Example 2. (a) Let b = 3, � = 2, k = 3, and j = 7. Then

ωT (34;Z) = ωT (4;ZT 2
) · ωT (7;Z),

xr3
ys + xr+r3

z + yszt2 + xrz1+t2 = (xr3
+ zt2)(xrz + ys),

see also Table 1. For b = 3, this is the example with smallest index, where
both factors have more than one term.
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(b) Similarly, by iterating (4.6), we get

ωT (304;Z) = ωT (3 · 34 + 61;Z) = ωT (4;ZT 4
) · ωT (61;Z)

= ωT (4;ZT 4
) · ωT (6 · 32 + 7;Z)

= ωT (4;ZT 4
) · ωT (7;ZT 2

) · ωT (7;Z)

= (xr5
+ zt4)(xr3

zt2 + ys3
)(xrz + ys).

For b = 3, this is the smallest index polynomial with three factors, each of
which has more than one term.

(c) The representation n = k · b� + j, with j in the allowable range of
Corollary 4.3, may not be unique if it exists. For instance, the representations
26 = 8 · 31 + 2 = 2 · 32 + 8 both satisfy the hypothesis of Corollary 4.3, and
accordingly, we have

ωT (26;Z) = ωT (9;ZT ) · ωT (2;Z) = ωT (3;ZT 2
) · ωT (8;Z)

= ys+s2 · x = ys2 · xys.

The two factorizations are in fact the same, as they ought to be.
(d) The indices b < n < 100 that do not lead to factorizations according

to Corollary 4.3 are as follows:

b = 3: n = 4, 7, 10, 13, 19, 22, 28, 31, 37, 40, 55, 58, 64, 67, 82, 85, 91, 94;
b = 4: n = 5, 9, 13, 17, 21, 33, 37, 49, 53, 65, 69, 81, 85;
b = 5: n = 6, 11, 16, 21, 26, 31, 51, 56, 76, 81.

In particular, no n of the form n = b� + 1 satisfies the condition in (4.6).

Proof of Theorem 4.2. We first note that for j = 0 the identity (4.5) reduces
to

ωT (k · b�;Z) = ωT (k;ZT �

) · ωT (b�;Z),

which follows from (2.3) and by iterating (1.4). Now, we assume that j ≥ 1,
and we proceed by induction on �. To simplify notation, we drop the subscript
T . For � = 1 and 0 ≤ j ≤ b, the identity (4.5) becomes

ω(k · b + j;Z) = ω(k + 1;ZT )ω(j;Z) + ω(k;ZT )
[
ω(b + j;Z) − zt1

1 ω(j;Z)
]
.

(4.7)

When j = 1, the identity (2.2) shows that the term in large brackets on the
right of (4.7) reduces to zb, and therefore, (4.7) becomes the same as (1.5),
with k in place of n. Finally, when 2 ≤ j ≤ b, the bracket expression on the
right of (4.7) vanishes by (4.1), and so (4.7) reduces to (1.4). This establishes
the induction beginning.

We now assume that (4.5) is true for some � ≥ 1; we wish to show that
it also holds for � + 1 and for all 1 ≤ j ≤ b�+1. In analogy to the proof of
Lemma 4.1, we set

j = rb + i, 0 ≤ r ≤ b� − 1, 0 < i ≤ b,

and distinguish between two cases.
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(a) If 2 ≤ i ≤ b, then

ω(k · b�+1 + j;Z)

= ω(b(k · b� + r) + i;Z) = zi−1ω(k · b� + r + 1;ZT )

= ω(k + 1;ZT �+1
)zi−1ω(r + 1;ZT )

+ ω(k;ZT �+1
)
(
zi−1ω(b� + r + 1;ZT ) − z

t�+1
1
1 zi−1ω(r + 1;ZT )

)

= ω(k + 1;ZT �+1
)ω(br + i;Z)

+ ω(k;ZT �+1
)
(
ω(b(b� + r) + i;Z) − z

t�+1
1
1 ω(br + i;Z)

)
,

where we have used (1.4), with i − 1 in place of j, in the second equation, and
then again three times in the last equation. Since br + i = j, this completes
the proof by induction in the case 2 ≤ i ≤ b.

(b) If i = 1, then by (1.5), we have

ω(k · b�+1 + 1;Z) = ω(b(k · b� + r) + 1;Z)

= zbω(k · b� + r;ZT ) + ω(k · b� + r + 1;ZT ).

Now, we proceed as in part (a), this time applying the induction hypothesis
to both terms on the right-hand side of the last identity, then collecting ap-
propriate terms, and finally applying (1.5) again (three times). This will once
again give (4.5) with �+1 in place of �, and the proof by induction is complete.

�

To conclude this section, we give an example of Theorem 4.2 that is not
covered by Corollary 4.3.

Example 3. Let b = 3, � = 2, k = 4, and j = 1 in Theorem 4.2. Then, by (4.5),
we have

ωT (37;x, y, z) = ωT (5;xr2
, ys2

, zt2) · ωT (1;x, y, z)

+ ωT (4;xr2
, ys2

, zt2) ·
(
ωT (10;x, y, z) − xr2

ωT (1;x, y, z)
)

,

and using the entries in Table 1, we get

ωT (37;x, y, z) = xr2+r3
+

(
xr3

+ zt2
) (

ysz + zt
)
.

On the other hand, the linear recurrence (1.8) gives

ωT (37;x, y, z) = z ωT (12;xr, ys, zt) + ωT (13;xr, ys, zt)

= zys
(
xr3

+ zt2
)

+ xr2+r3
+ xr3

zt + zt+t2 ,

where we have used Table 1 again. It is easy to verify that the two forms of
ωT (37;x, y, z) are identical.
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5. Identities for the Integer Sequence sb(n)

In their study of arithmetic properties of the number of hyper b-ary repre-
sentations, Courtright and Sellers [2] proved the following identity which we
rewrite in our notation: For integers b ≥ 3, k ≥ 0, � ≥ 1, and 2 ≤ ν ≤ b − 1,
we have

sb(k · b� + ν · b�−1 + 1) = � · sb(k + 1). (5.1)

In this section, we show that (5.1) follows from Lemma 4.1 and that other sim-
ilar identities can also be obtained, see also Corollary 6.5 for another analogue
of (5.1).

Considering (4.6) and (2.6), it is clear that we need to evaluate sb(j) for
the desired values of j. This is done in the following lemma.

Lemma 5.1. For integers b ≥ 2, 1 ≤ k ≤ b − 1, and � ≥ 2 we have

sb(k · b� + λ · b + μ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

� + 1, if λ = 0, μ = 1,

�, if λ = 0, 2 ≤ μ ≤ b,

2� − 1, if λ = 1, μ = 1,

2� − 2, if 2 ≤ λ ≤ b − 1, μ = 1,

� − 1, if 1 ≤ λ ≤ b − 1, 2 ≤ μ ≤ b,

(5.2)

where the first part also holds for � ∈ {0, 1} and the second part also holds for
� = 1.

Proof. Throughout this proof, we will use the facts that for � ≥ 1, we have

sb(k) = 1 and sb(k · b�) = 1, 1 ≤ k ≤ b. (5.3)

This follows from (2.1) and (2.6), and from iterating (2.4) with j = 1.
We first prove the case λ = 0, μ = 1 by induction on �. For � = 0 we have

sb(k · 1 + 1) = 1 by (5.3), and for � = 1 we see with (2.5) and (5.3) that

sb(k · b + 1) = sb(k) + sb(k + 1) = 1 + 1 = 2.

Now, we assume that the first part of (5.2) holds for some � ≥ 1. Using (2.5)
again, we have

sb(k · b�+1 + 1) = sb(k · b�) + sb(k · b� + 1) = 1 + (� + 1),

where we have used (5.3) and the induction hypothesis. This proves the first
part of (5.2).

Suppose now that 2 ≤ μ ≤ b, while still λ = 0. Then, with (2.4) and the
first part of (5.2), we have

sb(k · b� + μ) = sb((k · b�−1 + 1)b − (b − μ)) = sb(k · b�−1 + 1) = �,

which proves the second part of (5.2) for � ≥ 1.
Next, we let 1 ≤ λ ≤ b − 1 and μ = 1. Then, again, with (2.5) and the

previous results, we find that for � ≥ 2,
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sb(k · b� + λ · b + 1) = sb(k · b�−1 + λ) + sb(k · b�−1 + λ + 1)

=

{
� + (� − 1) = 2� − 1, when λ = 1,

(� − 1) + (� − 1) = 2� − 2, when 2 ≤ λ ≤ b − 1,

which proves the third and fourth parts of (5.2).
Finally, we consider 1 ≤ λ ≤ b − 1 and 2 ≤ μ ≤ b. Then, with (2.4) and

previous parts, we find
sb(k · b� + λb+ μ) = sb((k · b�−1 + λ+ 1)b − (b − μ)) = sb(k · b�−1 + λ+ 1) = � − 1.

This proves the fifth part of (5.2), and the proof of the lemma is complete.
�

The method of proof of this lemma could be used to obtain other identities
of the type (5.2), beyond the ranges 0 ≤ λ ≤ b − 1 and 1 ≤ μ ≤ b.

We now use Corollary 4.3 with z1 = · · · = zb = 1 and apply Lemma 4.4
with k = ν. With ν satisfying 2 ≤ ν ≤ b − 1, it is easy to verify that νb� +
λb + μ lies in the interval required by (4.6), with � shifted by 1. Therefore,
Corollary 4.3 does indeed apply, and we immediately get the following result.

Corollary 5.2. Let b ≥ 2, k ≥ 0, � ≥ 2, and 2 ≤ ν ≤ b − 1 be integers. Then,
for integers 0 ≤ λ ≤ b − 1 and 1 ≤ μ ≤ b, we have

sb(k · b�+1 + ν · b� + λb + μ) = fλ,μ(�) · sb(k + 1), (5.4)

where fλ,μ(�) is given by the right-hand side of (5.2).

With λ = 0 and μ = 1, the identity (5.4) reduces to (5.1), with � shifted
by 1.

6. Maximum Values

One of the well-known properties of Stern’s diatomic sequence (1.1) is the fact
that the maximum of s(m), with 2n−2 ≤ m < 2n−1, is always the Fibonacci
number Fn. Furthermore, when n ≥ 4, this maximum is attained exactly twice
in the given interval, at specific known values of m. This was apparently first
proved by Lehmer [8]; see also [10].

More recently, Defant [3] and Coons and Spiegelhofer [1] proved the anal-
ogous result for an arbitrary base b ≥ 2, namely

max
bn−2≤m<bn−1

sb(m) = Fn, (6.1)

and they showed that the smallest m at which the maximum occurs is

αb
n =

bn − 1
b2 − 1

+
(

1 − (−1)n

2

)
b

b + 1
. (6.2)

Coons and Spiegelhofer also expressed this αb
n value by the base-b expansion:

αb
n =

{
((10)�−11)b, when n = 2�,

((10)�−111)b, when n = 2� + 1.
(6.3)
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Here, the notation (10)�−1 indicates that the pair “10” of b-ary digits is re-
peated � − 1 times.

It is the purpose of this section to extend the results (6.2), (6.3) and show
that for n ≥ 4, the maximum (6.1) is attained at 2(b − 1) distinct values of
m in each relevant interval. To establish this fact, we introduce two classes of
integer sequences.

Definition 6.1. For a fixed integer j with 1 ≤ j ≤ b−1, we define the following
two recursive sequences. (1) Let αb

2,j = j, and for n ≥ 2 set

αb
n+1,j =

{
bαb

n,j + 1, if n is even,

bαb
n,j + 1 − b, if n is odd.

(6.4)

(2) Let βb
2,j = j + 1, and for n ≥ 2 set

βb
n+1,j =

{
bβb

n,j + 1 − b, if n is even,

bβb
n,j + 1, if n is odd.

(6.5)

For n ≥ 4, and in analogy to (6.3), the terms αb
n,j and βb

n,j can be written
in terms of base-b expansions.

Lemma 6.2. Let b ≥ 2, n ≥ 4, and 1 ≤ j ≤ b − 1. Then

αb
n,j =

{
(j0(10)�−21)b, when n = 2�,

(j0(10)�−211)b, when n = 2� + 1,
(6.6)

and

βb
n,j =

{
(j(10)�−211)b, when n = 2�,

(j(10)�−11)b, when n = 2� + 1.
(6.7)

Proof. By (6.6), we have αb
4,j = (j01)b = jb2 + 1, which is consistent with

(6.4). Similarly, we have βb
4,j = (j11)b = jb2 + b + 1, consistent with (6.5).

Finally, it is easy to verify that the base-b expansions (6.6) and (6.7) satisfy
the recurrence relations (6.4) and (6.5), respectively. This completes the proof
of the lemma. �

Explicit formulas for αb
n,j and βb

n,j , analogous to and extending (6.2) can
easily be obtained from Lemma 6.2 for n ≥ 4, and from Definition 6.1 for
n = 2, 3. We, therefore, state the following identities without proofs.

Corollary 6.3. Let b ≥ 2 and n ≥ 2 be integers. Then, for 1 ≤ j ≤ b − 1, we
have

αb
n,j =

⎧
⎪⎨

⎪⎩

(j − 1)bn−2 +
bn − 1
b2 − 1

, if n is even,

(j − 1)bn−2 +
bn + b2 − b − 1

b2 − 1
, if n is odd;

βb
n,j =

⎧
⎪⎨

⎪⎩

(j − 1)bn−2 +
(b2 + b − 1) · bn−2 + b2 − b − 1

b2 − 1
, if n is even,

(j − 1)bn−2 +
(b2 + b − 1) · bn−2 − 1

b2 − 1
, if n is odd.
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We are now ready to state and prove the main result of this section.

Theorem 6.4. Let b ≥ 2 and n ≥ 4. Then, the 2(b − 1) distinct values

m ∈ {αb
n,1, β

b
n,1, . . . , α

b
n,b−1, β

b
n,b−1} (6.8)

give the maximum value in (6.1), that is, they satisfy

bn−2 ≤ m < bn−1 and sb(m) = Fn. (6.9)

Proof. First, we note that all four base-b representations in (6.6) and (6.7) have
exactly n − 1 b-ary digits, which means that they lie in the required interval
bn−2 ≤ m < bn−1.

Now, we fix a j, 1 ≤ j < b − 1, and use induction on n to show that

sb(αb
n,j) = Fn, n ≥ 2. (6.10)

By (2.4), we have

sb(αb
2,j) = sb(j) = 1 = F2,

and with (6.4), (2.5), and again (2.4), we get

sb(αb
3,j) = sb(jb + 1) = sb(j) + sb(j + 1) = 1 + 1 = F3.

Now, suppose that (6.10) is true up to some n ≥ 3. First, if n is even, then by
(6.4) and (2.5), we have

sb(αb
n+1,j) = sb(bαb

n,j + 1) = sb(αb
n,j) + sb(αb

n,j + 1). (6.11)

Now, by the second part of (6.4) and by (2.4), we have

sb(αb
n,j + 1) = sb(bαb

n−1,j − (b − 2)) = sb(αb
n−1,j),

and with (6.11), we get the Fibonacci recursion

sb(αb
n+1,j) = sb(αb

n,j) + sb(αb
n−1,j). (6.12)

Second, if n is odd, then again by (6.4) and (2.5), we have

sb(αb
n+1,j) = sb(b(αb

n,j − 1) + 1) = sb(αb
n,j − 1) + sb(αb

n,j). (6.13)

Using now the first part of (6.4), followed by (2.4), we get

sb(αb
n,j − 1) = sb(bαb

n−1,j) = sb(αb
n−1,j),

and with (6.13), we get again the Fibonacci recursion (6.12). This completes
the proof of (6.10) by induction. The analogue of (6.10), with α replaced by
β, can be proved in essentially the same way. �

Remark 6.5.

(1) When n = 3, we have αb
3,j = βb

3,j = jb + 1 for 1 ≤ j ≤ b − 1; hence in
the interval b ≤ m < b2 we have only b − 1 maximum values F3 = 2.
Furthermore, when n = 2, we have αb

2,j = j and βb
2,j = j + 1, while

sb(j) = 1 = F2 for 1 ≤ j ≤ b.
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(2) The base-b expansions (6.6) and (6.7) show that for all n ≥ 4 and
1 ≤ j ≤ b − 2, we have the order relations:

αb
n,j < βb

n,j < αb
n,j+1 < βb

n,j+1.

This is illustrated by Example 4.

Example 4. Let b = 3. Then, we have

α3
4,1 = (101)3 = 10, α3

4,2 = (201)3 = 19,

β3
4,1 = (111)3 = 13, β3

4,2 = (211)3 = 22.

By Theorem 6.4, the maximum value F4 = 3 is attained at these four val-
ues. This is consistent with Table 1 if we note that s3(m) is the number of
monomials in the mth entry.

Furthermore, we have α3
3,j = β3

3,j = 3j+1, so the maximum value F3 = 2
between 3 and 9 is attained at m = 4 and m = 7, which is again consistent
with Table 1.

We conclude this paper with an analogue of the identity (5.1) of Cour-
tright and Sellers.

Corollary 6.6. Let b ≥ 3, k ≥ 0, and � ≥ 2 be integers. Then, for all 2 ≤ j ≤
b − 1, we have

sb(k · b� + αb
�+1,j) = F�+1 · sb(k + 1),

sb(k · b� + βb
�+1,j) = F�+1 · sb(k + 1).

Proof. By (2.6), Corollary 4.3 with Z = (1, . . . , 1) gives

sb(k · b� + m) = sb(m) · sb(k + 1),
b� − 1
b − 1

< m ≤ b�. (6.14)

We now use Theorem 6.4 with n = � + 1, and note that by (6.6) and (6.7),
the integers αb

�+1,j and βb
�+1,j , for 2 ≤ j ≤ b − 1, satisfy the inequality on

the right of (6.14). Finally, the case � = 2 follows from Remark (1) preceding
Example 4. �

If we leave Z as a b-tuple of variables, then Corollary 4.3 will provide us
with a polynomial analogue of Corollary 6.5.
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Dedicated to Professor George E. Andrews on the occasion of his 80th
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Abstract. We give a simple and a more explicit proof of a mod 4 congru-
ence for a series involving the little q-Jacobi polynomials which arose in
a recent study of a certain restricted overpartition function.
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1. Introduction

In [3], Andrews, Schultz, Yee and the author studied the overpartition function
pω(n), namely, the number of overpartitions of n such that all odd parts are less
than twice the smallest part, and in which the smallest part is always overlined.
In the same paper, they obtained a representation for the generating function
of pω(n) in terms of a 3φ2 basic hypergeometric series and an infinite series
involving the little q-Jacobi polynomials. The latter are given by [2, Equation
(3.1)]

pn(x;α, β : q) := 2φ1

(
q−n, αβqn+1

αq
; qx

)
, (1.1)

where the basic hypergeometric series r+1φr is defined by

r+1φr

(
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

)
:=

∞∑

n=0

(a1; q)n(a2; q)n · · · (ar+1; q)n

(q; q)n(b1; q)n · · · (br; q)n
zn,

and where we use the notation

(A; q)0 = 1; (A; q)n = (1 − A)(1 − Aq) · · · (1 − Aqn−1), n ≥ 1,

(A; q)ı = lim
n→ı

(A; q)n (|q| < 1).
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The precise representation for the generating function of pω(n) obtained in [3]
is as follows.

Theorem 1.1. The following identity holds for |q| < 1:

Pω(q) :=
∞∑

n=1

pω(n)qn

= −1
2

(q; q)∞(q; q2)∞
(−q; q)∞(−q; q2)∞

3φ2

( −1, iq1/2, −iq1/2

q1/2, −q1/2 ; q, q
)

+
(−q; q)∞
(q; q)∞

∞∑

n=0

(q; q2)n(−q)n

(−q; q2)n(1 + q2n)
p2n(−1; q−2n−1,−1 : q). (1.2)

Later, Bringmann, Jennings-Shaffer and Mahlburg [4, Theorem 1.1]
showed that

Pω(q) +
1
4

− η(4τ)
2η(2τ)2

,

where q = e2πiτ and η(τ) is the Dedekind eta function, can be completed to
a function P̂ω(τ), which transforms like a weight 1 modular form. They called
the function

Pω(q) +
1
4

− η(4τ)
2η(2τ)2

a higher depth mock modular form.
While the series involving the little q-Jacobi polynomials in Theorem 1.1

itself looks formidable, it was shown in [3, Theorem 1.3] that it is a simple
q-product modulo 4. The mod 4 congruence proved in there is given below.

Theorem 1.2. The following congruence holds:
∞∑

n=0

(q; q2)n(−q)n

(−q; q2)n(1 + q2n)
p2n(−1; q−2n−1,−1 : q) ≡ 1

2
(q; q2)∞

(−q; q2)∞
(mod 4).

(1.3)

The proof of this congruence in [3] is beautiful but somewhat involved.
The objective of this short note is to give a very simple proof of it. In fact, we
derive it as a corollary of the following result.

Theorem 1.3. For |q| < 1, we have
∞∑

n=0

(q; q2)n(−q)n

(−q; q2)n(1 + q2n)
p2n(−1; q−2n−1,−1 : q)

=
1
2

(q; q2)∞
(−q; q2)∞

+
4q2

(1 + q)

∞∑

n=0

(q3; q2)n(−q)n

(−q3; q2)n(1 + q2n+2)

n∑

j=0

(−q; q)2jq
2j

(q2; q)2j
.

(1.4)

The presence of 4 in front of the series on the right-hand side in the above
equation immediately implies that Theorem 1.2 holds.
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2. Proof of Theorem 1.3

Observe that from (1.1),
∞∑

n=0

(q; q2)n(−q)n

(−q; q2)n(1 + q2n)
p2n(−1; q−2n−1,−1 : q)

=
∞∑

n=0

(q; q2)n(−q)n

(−q; q2)n(1 + q2n)

2n∑

j=0

(−1; q)j

(q; q)j
(−q)j . (2.1)

However, let us first consider

A(q) :=
∞∑

n=0

(q; q2)n(−q)n

(−q; q2)n(1 + q2n)

2n∑

j=0

(−1; q)j

(q; q)j
qj . (2.2)

The only difference in the series on the right-hand side of (2.1) and the series
in (2.2) is the presence of (−1)j inside the finite sum in the former.

To simplify A(q), we start with a result of Alladi [1, p. 215, Equation
(2.6)]:

(abq; q)n

(bq; q)n
= 1 + b(1 − a)

n∑

j=1

(abq; q)j−1q
j

(bq; q)j
. (2.3)

Let a = −1, b = 1 and replace n by 2n so that
2n∑

j=0

(−1; q)jq
j

(q; q)j
=

(−q; q)2n

(q; q)2n
. (2.4)

Substitute (2.4) in (2.2) to see that

A(q) =
∞∑

n=0

(q; q2)n(−q)n

(−q; q2)n(1 + q2n)
(−q; q)2n

(q; q)2n

=
1
2

+
∞∑

n=1

(−q2; q2)n−1

(q2; q2)n
(−q)n

=
1
2

(q; q2)∞
(−q; q2)∞

, (2.5)

where in the last step we used the q-binomial theorem
∞∑

n=0

(a; q)n

(q; q)n
zn =

(az; q)∞
(z; q)∞

,

valid for |z| < 1 and |q| < 1.
From (2.1) and (2.2),

∞∑

n=0

(q; q2)n(−q)n

(−q; q2)n(1 + q2n)
p2n(−1; q−2n−1,−1 : q) − A(q)

=
∞∑

n=0

(q; q2)n(−q)n

(−q; q2)n(1 + q2n)

2n∑

j=0

((−1)j − 1)
(−1; q)jq

j

(q; q)j
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= −2
∞∑

n=0

(q; q2)n(−q)n

(−q; q2)n(1 + q2n)

n∑

j=1

(−1; q)2j−1q
2j−1

(q; q)2j−1

=
4q2

(1 + q)

∞∑

n=0

(q3; q2)n(−q)n

(−q3; q2)n(1 + q2n+2)

n∑

j=0

(−q; q)2jq
2j

(q2; q)2j
. (2.6)

Invoking (2.5), we see that the proof of Theorem 1.3 is complete.
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Dedicated to George Andrews on his 80th birthday.
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Abstract. We use George Andrews’ “reverse-engineering” method to re-
prove, using experimental mathematics, a conjecture of D.H. Lehmer.
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1. Lehmer’s Theorem and Its Finite Form

Define, with Lehmer [2, p. 54], M(n) = M(n)(X, q), to be the following tridi-
agonal n × n matrix (we changed a to

√
X and r to q):

M(n)i,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if i − j = 0;√
Xq(i−1)/2, if i − j = −1;√
Xq(i−2)/2, if i − j = 1;

0, otherwise.

Theorem 1.1. (Lehmer [2])

lim
n→∞ det M(n)(X, q) =

∞∑

a=0

(−1)aXaqa(a−1)

(1 − q)(1 − q2) · · · (1 − qa)
.

(As noted by Lehmer, when X = −q and X = −1, one gets the sum sides
of the famous Rogers–Ramanujan identities.)

Our new result is an explicit expression for the finite form, that imme-
diately implies Lehmer’s theorem, by taking the limit n → ∞, and gives it a
new (and shorter!) proof.
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Theorem 1.2.

det M(n)(X, q)

=
�n/2�∑

a=0

(−1)aXaqa(a−1)(1 − qn−a)(1 − qn−a−1) · · · (1 − qn−2a+1)
(1 − q)(1 − q2) · · · (1 − qa)

.

Proof. As noted by Lehmer [2, Eq. (3)], by expanding with respect to the last
row, we have:

det M(n)(X, q) = det M(n − 1)(X, q) − Xqn−2 det M(n − 2)(X, q).
(LehmerRecurrence)

Using the q-Zeilberger algorithm1([4,7], see also [3] for a nice Mathematica
version), we see that the right side of Theorem 1.2 also satisfies the very same
recurrence. Since it holds for the initial conditions n = 1 and n = 2 (check!),
the theorem follows by induction. �

2. Secrets from the Kitchen

Our paper could have ended here. We have increased human knowledge by
extending a result of a famous number theorist, and proved it rigorously.
However, at least as interesting as the statement of the theorem (and far
more interesting than the proof) is the way it was discovered, and the rest of
this paper will consist in describing two ways of doing it. The first way is a
direct adaptation of George Andrews’ “reverse-engineering” approach beauti-
fully illustrated in the last chapter of his delightful booklet [1] (based on ten
amazing lectures, given at Arizona State University, May 1985 that we were
fortunate to attend). In that masterpiece (Section 10.2), he described how he
used the computer algebra system SCRATCHPAD to prove a deep conjec-
ture by three notable mathematicians: George Lusztig, Ian Macdonald, and
C.T.C. Wall. In Andrews’s approach, it is assumed that the discoverer knows
about Gaussian polynomials, and knows how to spot them. In other words,
the ‘atoms’ are Gaussian polynomials. In the second, more basic, approach,
the only pre-requisite is the notion of polynomials, and Gaussian polynomials
pop-up naturally in the act of discovery.

We will start completely from scratch, pretending that we did not read
Lehmer’s paper. In fact, we did not have to ‘pretend’. We had no clue that
Lehmer’s paper existed until way after we discovered (and proved) Theo-
rem 1.2, (and hence reproved Lehmer’s Theorem 1.1). This is the time for
a short “commercial break”, since this paper (like so many other ones!) owes
it existence to the OEIS.

[Start of commercial break.]

1Typing qzeil((-1)**a*X**a*q**(a*(a-1))*qbin(n-a,a),S,a,n,[]); in qEKHAD gives Xqn − S +
S2, Xqn that is the recurrence operator annihilating the sum (S is the forward shift operator
in n) followed by the ‘certificate’ (i.e., the proof, see [4])).
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3. Serendipity and the OEIS

We learned about Lehmer’s Theorem 1 via serendipity, thanks to that amaz-
ing tool that we are so lucky to have, the On-Line Encyclopedia of Integer
Sequences [5] (OEIS).

Recall that a composition of n is an array of positive integers (p1, . . . , pk),
such that p1 + · · · + pk = n, and they are very easy to count (there are 2n−1

of them). A partition of n is a composition with the additional property that
it is weakly decreasing, that is

pi − pi+1 ≥ 0 (1 ≤ i < k),

(and they are much harder to count).
My current Ph.D. student, Mingjia Yang [6], is investigating relaxed parti-

tions, that she calls r-partitions, that are compositions of n with the condition:

pi − pi+1 ≥ r.

When r = 1, we get the familiar partitions into distinct parts, and when r = 2,
we get one of the actors in the Rogers Ramanujan identities. However, what
about negative r? In particular what about (−1)-partitions? After generating
the first 20 terms:

1, 2, 4, 7, 13, 23, 41, 72, 127, 222, 388, 677, 1179,
2052, 3569, 6203, 10778, 18722, 32513, 56455,

we copied-and-pasted it to the OEIS, and sure enough, we were scooped! It is
sequence A003116, whose (former) description was ‘reciprocal of an expansion
of a determinant’, that pointed to sequence A039924, mentioning Lehmer’s
Theorem 1.1 (in fact, the special case X = q). As a reference, it cited ‘personal
communication’ by Herman P. Robinson, a friend and disciple of Lehmer. The
OEIS entry for A039924 also referenced Lehmer’s “lecture notes on number
theory”, but we could not find it either on-line or off-line.

Since Lehmer’s proof seemed to have been lost, we tried to prove it our-
selves and succeeded. Our approach, inspired by Andrews’ [1], was to first find
an explicit expression for the finite form, and then take the limit as n goes to
infinity (like Andrews did for the L–M–W conjecture). Only after we had the
proof, we searched MathSciNet for
“Lehmer AND determinant AND tridiagonal”,
and discovered [2]. To our relief, Lehmer’s proof was longer than ours, and did
not go via the finite form, Theorem 1.2. As far as we know, Theorem 1.2 is new.
Once we discovered the reference [2], we notified Neil Sloane, and he added
that reference to the relevant sequences A003116 and A039924. Therefore, the
present paper is yet another paper that owes its existence to the OEIS!

[End of commercial break.]
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4. How the Statement of Theorem 1.2 Would Have Been
(Easily!) Discovered by George Andrews

In Andrews’s proof of the L–M–W conjecture, he used the Gaussian poly-
nomials (aka q-binomial coefficients) as building blocks. With his approach,
Theorem 1.2 could have been found by him fairly quickly. Let Qn(X, q) :=
detM(n)(X, q).

Recall that the Gaussian polynomials GP (m,n)(q) are defined by:

GP (m,n)(q) :=
(1 − qm+1)(1 − qm+2) · · · (1 − qm+n)

(1 − q) · · · (1 − qn)

(in spite of their appearance, they are polynomials!).
The way George Andrews would have discovered Theorem 1.2 is as fol-

lows.
Initially, crank out the first, say, 20 terms of the sequence of polynomi-

als Qn(X, q), either by evaluating the determinants, or, more efficiently, via
(LehmerRecurrence).

You do not need a computer to realize that the coefficient of X0, i.e., the
constant term, is always 1.

The coefficients of X = X1 in Qn(X, q) for n from 1 to 8 are:

[0,−1,−1 − q,−1 − q − q2,−1 − q − q2 − q3,−1 − q − q2 − q3 − q4,

− 1 − q − q2 − q3 − q4 − q5,−1 − q − q2 − q3 − q4 − q5 − q6].

A quick glance by George Andrews would have made him conjecture that it
is:

−GP (n − 2, 1)(q).

Moving right along, here are the coefficients of X2 for 1 ≤ n :≤ 10:

[0, 0, 0, q2, q2 + q3 + q4, q2 + q3 + 2q4 + q5 + q6,

q2 + q3 + 2q4 + 2q5 + 2q6 + q7 + q8,

q2 + q3 + 2q4 + 2q5 + 3q6 + 2q7 + 2q8 + q10 + q9,

q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 3q8 + q11 + 2q10 + 2q9 + q12,

q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 4q8 + 2q11 + 3q10 + 3q9+2q12+q13+q14].

Dividing by q2 and checking against the Gaussian polynomials ‘data base’
suggests that the coefficient of X2 is always:

q2GP (n − 4, 2)(q).

Similarly, the coefficient of X3 would have emerged as:

−q6GP (n − 6, 3)(q).

The coefficient of X4 would have emerged as:

q12GP (n − 8, 4)(q).

The coefficient of X5 would have emerged as:

−q20GP (n − 10, 5)(q).
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And bingo, it requires no great leap of an Andrews’s imagination to con-
jecture that:

Qn(X, q) =
�n/2�∑

a=0

(−1)aXaqa(a−1)GP (n − 2a, a)(q),

that is identical to the statement of Theorem 1.2.

5. How the Statement of Theorem 1.2 Could Have Been
Discovered by Someone Who is Not George Andrews?

Suppose that you have never heard of the Gaussian polynomials. You still
could have conjectured the statement of Theorem 1.2. Even if you have never
heard of Gaussian polynomials, you probably did hear of polynomials. There-
fore, assuming the ansatz that, for each a, the coefficient of Xa is a certain
polynomial in qn, try and fit it with a ‘generic’ polynomial with undetermined
coefficients.2

Setting N = qn, your computer would have guessed the following poly-
nomial expressions (in N = qn) for the first five coefficients of X in Qn(X).

• The coefficient of X in Qn(X, q) is:

N − q

q (1 − q)
.

• The coefficient of X2 in Qn(X, q) is:
(
N − q2

) (
N − q3

)

q3 (1 + q) (1 − q)2
.

• The coefficient of X3 in Qn(X, q) is:

−
(
N − q3

) (
N − q4

) (
N − q5

)

q6 (1 + q) (q2 + q + 1) (q − 1)3
.

• The coefficient of X4 in Qn(X, q) is:
(
N − q4

) (
N − q5

) (
N − q6

) (
N − q7

)

q10 (q2 + 1) (q − 1)4 (1 + q)2 (q2 + q + 1)
.

• The coefficient of X5 in Qn(X, q) is:

−
(
N − q5

) (
N − q6

) (
N − q7

) (
N − q8

) (
N − q9

)

q15 (q − 1)5 (q4 + q3 + q2 + q + 1) (1 + q)2 (q2 + q + 1) (q2 + 1)
.

This immediately leads one to guess that the numerator is always:

(−1)a (N − qa)(N − qa+1) · · · (N − q2a−1).

2You start out with a generic polynomial of degree 0, and keep raising the degree until
success (or failure).
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On the other hand, the sequence of denominators, let us then call them d(a),
for 1 ≤ a ≤ 5, happens to be:

[ − q (q − 1) , q3 (1 + q) (q − 1)2 ,−q6 (1 + q)
(
q2 + q + 1

)
(q − 1)3 ,

q10
(
q2 + 1

)
(q − 1)4 (1 + q)2

(
q2 + q + 1

)
,

− q15 (q − 1)5
(
q4 + q3 + q2 + q + 1

)
(1 + q)2

(
q2 + q + 1

) (
q2 + 1

)
].

This looks a bit complicated, but let us form the sequence of ratios d(a)/d(a−1)
for a = 2, 3, 4, 5 and expand, getting

[q2 − q4, q3 − q6,−q8 + q4, q5 − q10],

that is clearly qa(1 − qa). Hence, the coefficient of Xa in Qn(X, q) is guessed
to be:

(−1)a(N − qa)(N − qa+1) · · · (N − q2a−1)
qa(a+1)/2(1 − q) · · · (1 − qa)

.

By putting N = qn, we get the statement of Theorem 1.2.
Therefore, with this second approach, we discovered the Gaussian poly-

nomials ab initio, our only gamble was that the coefficients of X in Qn(X, q)
are always polynomials in qn.

6. Concluding Words

Let us quote the last sentence of Section 10.2 of [1], where Andrews described
his pioneering (experimental mathematics!) approach illustrated by his discov-
ery process of the proof of the L–M–W conjecture.

“From here the battle with the L–M–W conjecture is 90% won. Standard
techniques allow one to establish the [finite form] of the conjecture, and a
simple argument leads to the original conjecture.”

Today, the 90 % may be replaced by 99.999 %, since the final verification
can be done automatically using the so-called q-Zeilberger algorithm [3,4,7]. In
the much more difficult L–M–N case, this would have saved George Andrews
a few hours, and would have made it accessible to anyone else. In the present
case, you can still use the q-Zeilberger algorithm, if you are feeling lazy, but it
is not too hard to do it purely humanly. Can you do it?

Added March 12, 2019: While the point of this article is methodologi-
cal and pedagogical, we have to mention that our main result appears, in an
equivalent form, in

K. Garrett, M. E. H. Ismail, and D. Stanton, Variants of the Rogers–
Ramanujan identities, Adv. in Appl. Math. 23 (1999), 274–299.
See also

Mourad E. H. Ismail, Helmut Prodinger, Dennis Stanton, Schur’s Deter-
minants and Partition Theorems , Séminaire Lotharingien de Combinatoire,
B44a (2000), 10 pp. https://www.mat.univie.ac.at/∼slc/wpapers/s44ismail.
html.
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Gaussian Binomial Coefficients with
Negative Arguments

Dedicated to Professor George Andrews on the occasion of his eightieth
birthday

Sam Formichella and Armin Straub

Abstract. Loeb showed that a natural extension of the usual binomial
coefficient to negative (integer) entries continues to satisfy many of the
fundamental properties. In particular, he gave a uniform binomial theo-
rem as well as a combinatorial interpretation in terms of choosing subsets
of sets with a negative number of elements. We show that all of this can
be extended to the case of Gaussian binomial coefficients. Moreover, we
demonstrate that several of the well-known arithmetic properties of bi-
nomial coefficients also hold in the case of negative entries. In particular,
we show that Lucas’ theorem on binomial coefficients modulo p not only
extends naturally to the case of negative entries, but even to the Gaussian
case.

Mathematics Subject Classification. 05A10, 05A30, 11B65, 11A07.

Keywords. q-Binomial coefficients, q-Binomial theorem,
Lucas congruences.

1. Introduction

Occasionally, the binomial coefficient
(
n
k

)
, with integer entries n and k, is con-

sidered to be zero when k < 0 (see Remark 1.9, where it is further indicated
that the common extension, via the gamma function, of binomial coefficients
to complex n and k does not immediately lend itself to the case of negative
integers k). However, as demonstrated by Loeb [14], an alternative extension
of the binomial coefficients to negative arguments is arguably more natural
for many combinatorial or number theoretic applications. The q-binomial co-
efficients

(
n
k

)
q

(often also referred to as Gaussian polynomials) are a polyno-
mial generalization of the binomial coefficients that occur naturally in varied
contexts, including combinatorics, number theory, representation theory and
mathematical physics. For instance, if q is a prime power, then they count the
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number of k-dimensional subspaces of an n-dimensional vector space over the
finite field Fq. We refer to the book [11] for a very pleasant introduction to the
q-calculus. Yet, surprisingly, q-binomial coefficients with general integer entries
have, to the best of our knowledge, not been studied in the literature (Gasper
and Rahman define q-binomial coefficients with complex entries in [9, Ex. 1.2
and (I.40)], see Remark 1.8, but do not pursue the case of integer entries;
Loeb [14] does briefly discuss such q-binomial coefficients but only in the case
k ≥ 0). The goal of this paper is to fill this gap, and to demonstrate that these
generalized q-binomial coefficients are natural, by showing that they satisfy
many of the fundamental combinatorial and arithmetic properties of the usual
binomial coefficients. In particular, we extend Loeb’s interesting combinatorial
interpretation [14] in terms of sets with negative numbers of elements. On the
arithmetic side, we prove that Lucas’ theorem can be uniformly generalized to
both binomial coefficients and q-binomial coefficients with negative entries.

In the context of q-series, it is common to introduce the q-binomial coef-
ficient, for n, k ≥ 0, as the quotient

(
n

k

)

q

=
(q; q)n

(q; q)k(q; q)n−k
, (1.1)

where (a; q)n denotes the q-Pochhammer symbol

(a; q)n =
n−1∏

j=0

(1 − aqj), n ≥ 0. (1.2)

In particular, (a; q)0 = 1. It is not difficult to see that (1.1) reduces to the
usual binomial coefficient in the limit q → 1. In order to extend (1.1) to the
case of negative integers n and k, we employ the natural convention that, for
all integers r and s,

s−1∏

j=r

aj =
r−1∏

j=s

a−1
j .

Applied to (1.2), we, therefore, define, as is common, that

(a; q)−n =
n∏

j=1

1
1 − aq−j

, n ≥ 0. (1.3)

With the above convention in place, both product formulas in (1.2) and (1.3)
for the q-Pochhammer symbol are equivalent and hold for all integers n.

Note that (q; q)n = ∞ whenever n < 0, so that (1.1) does not immediately
extend to the case when n or k is negative. We, therefore, make the following
definition, which clearly reduces to (1.1) when n, k ≥ 0:

Definition 1.1. For all integers n and k,
(

n

k

)

q

= lim
a→q

(a; q)n

(a; q)k(a; q)n−k
. (1.4)
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Though not immediately obvious from (1.4) when n or k is negative, these
generalized q-binomial coefficients are Laurent polynomials in q with integer
coefficients. In particular, upon setting q = 1, we always obtain integers.

Example 1.2.
(−3

−5

)

q

= lim
a→q

(a; q)−3

(a; q)−5(a; q)2

= lim
a→q

(
1 − a

q4

) (
1 − a

q5

)

(1 − a)(1 − aq)

=
(1 + q2)(1 + q + q2)

q7
.

In Sect. 2, we observe that, for integers n and k, the q-binomial coefficients
are also characterized by the Pascal relation:

(
n

k

)

q

=
(

n − 1
k − 1

)

q

+ qk

(
n − 1

k

)

q

, (1.5)

provided that (n, k) �= (0, 0) (this exceptional case excludes itself naturally in
the proof of Lemma 2.1), together with the initial conditions

(
n

0

)

q

=
(

n

n

)

q

= 1.

In the case q = 1, this extension of Pascal’s rule to negative parameters was
observed by Loeb [14, Proposition 4.4].

Among the other basic properties of the generalized q-binomial coeffi-
cients are the following: All of these are well known in the classical case k ≥ 0
(see, for instance, [9, Appendix I]). That they extend uniformly to all integers
n and k (though, as illustrated by (1.5) and item (c), some care has to be
applied when generalizing certain properties) serves as a first indication that
the generalized q-binomial coefficients are natural objects. For (c), the sign
function sgn(k) is defined to be 1 if k ≥ 0, and −1 if k < 0.

Lemma 1.3. For all integers n and k,
(a)

(
n
k

)
q

= qk(n−k)
(
n
k

)
q−1 ,

(b)
(
n
k

)
q

=
(

n
n−k

)
q
,

(c)
(
n
k

)
q

= (−1)k sgn(k)q
1
2k(2n−k+1)

(
k−n−1

k

)
q
,

(d)
(
n
k

)
q

= 1−qn

1−qk

(
n−1
k−1

)
q
, if k �= 0.

Properties (b) and (d) follow directly from the definition (1.4), while
property (a) is readily deduced from (1.5) combined with (b). In the classical
case n, k ≥ 0, property (a) reflects the fact that the q-binomial coefficient is
a self-reciprocal polynomial in q of degree k(n − k). In contrast to that and
as illustrated in Example 1.2, the q-binomial coefficients with negative entries
are Laurent polynomials, whose degrees are recorded in Corollary 3.3.
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The reflection rule (c) is the subject of Sect. 3 and is proved in Theo-
rem 3.1. Rule (c) reduced to the case q = 1 is the main object in [19], where
Sprugnoli observed the necessity of including the sign function when extending
the binomial coefficient to negative entries. Sprugnoli further realized that the
basic symmetry (b) and the negation rule (c) act on binomial coefficients as a
group of transformations isomorphic to the symmetric group on three letters.
In Sect. 3, we observe that the same is true for q-binomial coefficients.

Note that property (d), when combined with (b), implies that, for n �= k,
(

n

k

)

q

=
1 − qn

1 − qn−k

(
n − 1

k

)

q

.

In particular, the q-binomial coefficient is a q-hypergeometric term.

Example 1.4. It follows from Lemma 1.3(c) that, for all integers k,
(−1

k

)

q

= (−1)k sgn(k)
1

qk(k+1)/2
.

In Sect. 4, we review the remarkable and beautiful observation of Loeb
[14] that the combinatorial interpretation of binomial coefficients as counting
subsets can be naturally extended to the case of negative entries. We then
prove that this interpretation can be generalized to q-binomial coefficients.
Theorem 4.5, our main result of that section, is a precise version of the follow-
ing:

Theorem 1.5. For all integers n and k,
(

n

k

)

q

= ±
∑

Y

qσ(Y )−k(k−1)/2,

where the sum is over all k-element subsets Y of the n-element set Xn.

The notion of sets (and subsets) with a negative number of elements,
as well as the definitions of σ and Xn, are deferred to Sect. 4. In the pre-
viously known classical case n, k ≥ 0, the sign in that formula is positive,
Xn = {0, 1, 2, . . . , n − 1}, and σ(Y ) is the sum of the elements of Y . As an ap-
plication of Theorem 1.5, we demonstrate at the end of Sect. 4 how to deduce
from it generalized versions of the Chu–Vandermonde identity as well as the
(commutative) q-binomial theorem.

In Sect. 5, we discuss the binomial theorem, which interprets the binomial
coefficients as coefficients in the expansion of (x + y)n. Loeb showed that,
by also considering expansions in inverse powers of x, one can extend this
interpretation to the case of binomial coefficients with negative entries. Once
more, we are able to show that the generalized q-binomial coefficients share
this property in a uniform fashion.

Theorem 1.6. Suppose that yx = qxy. Then, for all integers n, k,
(

n

k

)

q

= {xkyn−k}(x + y)n.
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Here, the operator {xkyn−k}, which is defined in Sect. 5, extracts the
coefficient of xkyn−k in the appropriate expansion of what follows.

A famous theorem of Lucas [15] states that, if p is a prime, then
(

n

k

)
≡

(
n0

k0

)(
n1

k1

)
· · ·

(
nd

kd

)
(mod p),

where ni and ki are the p-adic digits of the nonnegative integers n and k,
respectively. In Sect. 6, we show that this congruence in fact holds for all
integers n and k. In Sect. 7, we prove that generalized Lucas congruences
uniformly hold for q-binomial coefficients.

Theorem 1.7. Let m ≥ 2 be an integer. Then, for all integers n and k,
(

n

k

)

q

≡
(

n0

k0

)

q

(
n′

k′

)
(mod Φm(q)),

where n = n0 + n′m and k = k0 + k′m with n0, k0 ∈ {0, 1, . . . ,m − 1}.
Here, Φm(q) is the m-th cyclotomic polynomial. The classical special case

n, k ≥ 0 of this result has been obtained by Olive [16] and Désarménien [7].
We conclude this introduction with some comments on alternative ap-

proaches to and conventions for binomial coefficients with negative entries. In
particular, we remark on the current state of computer algebra systems and
on how it could benefit from the generalized q-binomial coefficients introduced
in this paper.

Remark 1.8. Using the gamma function, binomial coefficients are commonly
introduced as (

n

k

)
=

Γ(n + 1)
Γ(k + 1)Γ(n − k + 1)

(1.6)

for all complex n and k such that n, k �∈ {−1,−2, . . .}. This definition, however,
does not immediately lend itself to the case of negative integers; though the
structure of poles (and lack of zeros) of the underlying gamma function is well
understood, the binomial function (1.6) has a subtle structure when viewed as
a function of two variables. For a study of this function, as well as a historical
account on binomials, we refer to [8]. For instance, let us note that, employing
(1.6) as the definition of the binomial coefficients, we have

lim
ε→0

( −3 + ε

−5 + rε

)
=

1
2

lim
ε→0

Γ(−2 + ε)
Γ(−4 + rε)

= 6r,

where the final equality follows because, for integers n ≥ 0,

Γ(−n + ε) =
(−1)n

n!
1
ε

+ O(1)

as ε → 0. This illustrates that the values of the binomial coefficients at negative
integers cannot be defined by simply appealing to (1.6) and continuity. A
natural way to extend (1.6) to negative integers is to set

(
n

k

)
= lim

ε→0

Γ(n + 1 + ε)
Γ(k + 1 + ε)Γ(n − k + 1 + ε)

, (1.7)
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where n and k are now allowed to take any complex values. This is in fact
the definition that Loeb [14] and Sprugnoli [19] adopt. (That the q-binomial
coefficients we introduce in (1.4) reduce to (1.7) when q = 1 can be seen, for
instance, from observing that the q-Pascal relation (1.5) reduces to the Pascal
relation established by Loeb for (1.7).)

Similarly, Gasper and Rahman [9, Appendix I] define the q-binomial co-
efficient for complex arguments n and k (and |q| < 1) using the q-gamma
function as

(
n

k

)

q

=
Γq(n + 1)

Γq(k + 1)Γq(n − k + 1)
=

(qk+1; q)∞(qn−k+1; q)∞
(q; q)∞(qn+1; q)∞

, (1.8)

where (a; q)∞ = limn→∞(a; q)n. We note that definition (1.8) is equivalent to
extending (1.1) by defining

(a; q)n =
(a; q)∞

(aqn; q)∞
(1.9)

for complex values of n (for negative integers n, formula (1.9) is compatible
with (1.3)). When n or k is a negative integer, however, the right-hand side
of (1.8) must be interpreted appropriately by cancelling matching zeros in
the infinite products. Interpreting (1.8) in this way, it follows from (1.9) that
definition (1.8) is necessarily equivalent to (1.4).

Remark 1.9. Other conventions for binomial coefficients with negative integer
entries exist and have their merit. Most prominently, if, for instance, one insists
that Pascal’s relation (1.5) should hold for all integers n and k, then the
resulting version of the binomial coefficients is zero when k < 0 (see, for
instance, [12, Section 1.2.6 (3)]). On the other hand, as illustrated by the results
in [14] and this paper, it is reasonable and preferable for many purposes to
extend the classical binomial coefficients (as well as its polynomial counterpart)
to negative arguments as done here.

As an unfortunate consequence, both conventions are implemented in
current computer algebra systems, which can be a source of confusion. For
instance, SageMath currently (as of Version 8.0) uses the convention that all
binomial coefficients with k < 0 are evaluated as zero. On the other hand,
recent versions of Mathematica (at least Version 9 and higher) and Maple
(at least Version 18 and higher) evaluate binomial coefficients with negative
entries in the way advertised in [14] and here.

In Version 7, Mathematica introduced the QBinomial[n,k,q] function;
however, as of Version 11, this function evaluates the q-binomial coefficient
as zero whenever k < 0. Similarly, Maple implements these coefficients as
QBinomial(n,k,q), but, as of Version 18, choosing k < 0 results in a division-
by-zero error. We hope that this paper helps to adjust these inconsistencies
with the classical case q = 1 by offering a natural extension of the q-binomial
coefficient for negative entries.
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2. Characterization via a q-Pascal Relation

The generalization of the binomial coefficients to negative entries by Loeb
satisfies Pascal’s rule

(
n

k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
(2.1)

for all integers n and k that are not both zero [14, Proposition 4.4]. In this
brief section, we show that the q-binomial coefficients (with arbitrary integer
entries), defined in (1.4), are also characterized by a q-analog of the Pascal
rule. It is well known that this is true for the familiar q-binomial coefficients
when n, k ≥ 0 (see, for instance, [11, Proposition 6.1]).

Lemma 2.1. For integers n and k, the q-binomial coefficients are characterized
by

(
n

k

)

q

=
(

n − 1
k − 1

)

q

+ qk

(
n − 1

k

)

q

, (2.2)

provided that (n, k) �= (0, 0), together with the initial conditions
(

n

0

)

q

=
(

n

n

)

q

= 1.

Observe that
(
0
0

)
q

= 1, while the corresponding right-hand side of (2.2)

is
(−1
−1

)
q

+ q0
(−1

0

)
q

= 2 �= 1, illustrating the need to exclude the case (n, k) =
(0, 0). It should also be noted that the initial conditions are natural but not
minimal: the case

(
n
0

)
q

with n ≤ −2 is redundant (but consistent).

Proof of Lemma 2.1. We note that the relation (2.2) and the initial conditions
indeed suffice to deduce values for each q-binomial coefficient. It, therefore,
only remains to show that (2.2) holds for the q-binomial coefficient as defined
in (1.4). For the purpose of this proof, let us write

(
n

k

)

a,q

=
(a; q)n

(a; q)k(a; q)n−k
,

and observe that, for all integers n and k,
(

n − 1
k

)

a,q

=
1 − aqn−k−1

1 − aqn−1

(
n

k

)

a,q

as well as
(

n − 1
k − 1

)

a,q

=
1 − aqk−1

1 − aqn−1

(
n

k

)

a,q

.

It then follows that
(

n

k

)

a,q

=
(

n − 1
k − 1

)

a,q

+ aqk−1 1 − qn−k

1 − aqn−k−1

(
n − 1

k

)

a,q

(2.3)
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for all integers n and k. If n �= k, then

lim
a→q

[
aqk−1 1 − qn−k

1 − aqn−k−1

]
= qk,

so that (2.2) follows for these cases. On the other hand, if n = k, then
(
n−1

k

)
q

=
0, provided that (n, k) �= (0, 0), so that (2.2) also holds in the remaining
cases. �

Remark 2.2. Applying Pascal’s relation (2.2) to the right-hand side of
Lemma 1.3(b), followed by applying the symmetry Lemma 1.3(b) to each q-
binomial coefficient, we find that Pascal’s relation (2.2) is equivalent to the
alternative form

(
n

k

)

q

= qn−k

(
n − 1
k − 1

)

q

+
(

n − 1
k

)

q

. (2.4)

3. Reflection Formulas

In [19], Sprugnoli, likely unaware of the earlier work of Loeb [14], introduces
binomial coefficients with negative entries via the gamma function (see Re-
mark 1.8). Sprugnoli then observes that the familiar negation rule

(
n

k

)
= (−1)k

(
k − n − 1

k

)
,

as stated, for instance, in [12, Section 1.2.6], does not continue to hold when
k is allowed to be negative. Instead, he shows that, for all integers n and k,

(
n

k

)
= (−1)k sgn(k)

(
k − n − 1

k

)
, (3.1)

where sgn(k) = 1 for k ≥ 0 and sgn(k) = −1 for k < 0. We generalize this
result to the q-binomial coefficients. Observe that the result of Sprugnoli [19]
is immediately obtained as the special case q = 1.

Theorem 3.1. For all integers n and k,
(

n

k

)

q

= (−1)k sgn(k)q
1
2k(2n−k+1)

(
k − n − 1

k

)

q

. (3.2)

Proof. Let us begin by observing that, for all integers n and k,

(a; q)n(aqn; q)k = (a; q)n+k. (3.3)

Further, for all integers n,

(a; q)n = (−a)nqn(n−1)/2(q−n+1/a; q)n. (3.4)

Applying (3.3) and then (3.4), we find that

(a; q)n

(a; q)n−k
=

1
(aqn; q)−k

=
(−a)kq

1
2k(2n−k−1)

(qk−n+1/a; q)−k
. (3.5)
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By another application of (3.3),

1
(qk−n+1/a; q)−k

=
(1/a; q)k−n+1

(1/a; q)−n+1
=

(q2/a; q)k−n−1

(q2/a; q)−n−1
, (3.6)

where, for the second equality, we used the basic relation (a; q)n = (1 −
a)(aq; q)n−1 twice for each Pochhammer symbol. Combining (3.5) and (3.6),
we thus have

(a; q)n

(a; q)n−k
= (−a)kq

1
2k(2n−k−1) (q

2/a; q)k−n−1

(q2/a; q)−n−1

for all integers n and k. Suppose we have already shown that, for any integer
n,

lim
a→q

(q2/a; q)n

(a; q)n
= sgn(n). (3.7)

Then,
(

n

k

)

q

= lim
a→q

(a; q)n

(a; q)k(a; q)n−k

= lim
a→q

(−a)kq
1
2k(2n−k−1) (q2/a; q)k−n−1

(a; q)k(q2/a; q)−n−1

= sgn(k − n − 1) sgn(−n − 1)

× lim
a→q

(−a)kq
1
2k(2n−k−1) (a; q)k−n−1

(a; q)k(a; q)−n−1

= (−1)k sgn(k)q
1
2k(2n−k+1)

(
k − n − 1

k

)

q

.

For the final equality, we used that

sgn(k − n − 1) sgn(−n − 1) = sgn(k),

whenever the involved q-binomial coefficients are different from zero (for more
details on this argument, see [19, Theorem 2.2]).

It remains to prove (3.7). The limit clearly is 1 if n ≥ 0. On the other
hand, if n < 0, then

lim
a→q

(q2/a; q)n

(a; q)n
= lim

a→q

(
1 − a

q

)(
1 − a

q2

)
· · ·

(
1 − a

qn

)

(
1 − q

a

)(
1 − 1

a

)
· · ·

(
1 − 1

aqn−2

)

= lim
a→q

(
1 − a

q

)

(
1 − q

a

) = −1,

as claimed. �

It was observed in [19, Theorem 3.2] that the basic symmetry (Lemma
1.3(b)) and the negation rule (3.2) act on (formal) binomial coefficients as a
group of transformations isomorphic to the symmetric group on three letters.
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The same is true for q-binomial coefficients. Since the argument is identical,
we only record the resulting six forms for the q-binomial coefficients.

Corollary 3.2. For all integers n and k,
(

n

k

)

q

=
(

n

n − k

)

q

= (−1)n−k sgn(n − k)q
1
2 (n(n+1)−k(k+1))

(−k − 1
n − k

)

q

= (−1)n−k sgn(n − k)q
1
2 (n(n+1)−k(k+1))

(−k − 1
−n − 1

)

q

= (−1)k sgn(k)q
1
2k(2n−k+1)

(
k − n − 1
−n − 1

)

q

= (−1)k sgn(k)q
1
2k(2n−k+1)

(
k − n − 1

k

)

q

.

Proof. These equalities follow from alternately applying the basic symmetry
from Lemma 1.3(b) and the negation rule (3.2). Moreover, for the fourth equal-
ity, we use that

− sgn(n − k) sgn(−n − 1) = sgn(k)

whenever the involved q-binomial coefficients are different from zero (again,
see [19, Theorem 2.2] for more details on this argument). �

It follows directly from the definition (1.4) that the q-binomial coefficient(
n
k

)
q

is zero if k > n ≥ 0 or if n ≥ 0 > k. The third equality in Corollary 3.2
then makes it plainly visible that the q-binomial coefficient also vanishes if
0 > k > n. Moreover, we can read off from Corollary 3.2 that the q-binomial
coefficient is nonzero otherwise, that is, it is nonzero precisely in the three
regions 0 ≤ k ≤ n (the classical case), n < 0 ≤ k and k ≤ n < 0. More
precisely, we have the following, of which the first statement is, of course, well
known (see, for instance, [11, Corollary 6.1]).

Corollary 3.3. (a) If 0 ≤ k ≤ n, then
(
n
k

)
q

is a polynomial of degree k(n−k).

(b) If n < 0 ≤ k, then
(
n
k

)
q

is q
1
2k(2n−k+1) times a polynomial of degree

k(−n − 1).
(c) If k ≤ n < 0, then

(
n
k

)
q

is q
1
2 (n(n+1)−k(k+1)) times a polynomial of degree

(−n − 1)(n − k).
In each case, the polynomials are self-reciprocal and have integer coeffi-

cients.

Observe that Corollary 3.2 together with the defining product (1.1),
spelled out as

(
n

k

)

q

=
(1 − qk+1)(1 − qk+2) · · · (1 − qn)

(1 − q)(1 − q2) · · · (1 − qn−k)
,
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and valid when 0 ≤ k ≤ n, provides explicit product formulas for all choices
of n and k. Indeed, the three regions in which the binomial coefficients are
nonzero are 0 ≤ k ≤ n, n < 0 ≤ k and k ≤ n < 0, and these three are
permuted by the transformations in Corollary 3.2.

4. Combinatorial Interpretation

For integers n, k ≥ 0, the binomial coefficient
(
n
k

)
counts the number of k-

element subsets of a set with n elements. It is a remarkable and beautiful
observation of Loeb [14] that this interpretation (up to an overall sign) can be
extended to all integers n and k by a natural notion of sets with a negative
number of elements. In this section, after briefly reviewing Loeb’s result, we
generalize this combinatorial interpretation to the case of q-binomial coeffi-
cients.

Let U be a collection of elements (the “universe”). A set X with elements
from U can be thought of as a map MX : U → {0, 1} with the understanding
that u ∈ X if and only if MX(u) = 1. Similarly, a multiset X can be thought
of as a map

MX : U → {0, 1, 2, . . .},

in which case MX(u) is the multiplicity of an element u. In this spirit, Loeb
introduces a hybrid set X as a map MX : U → Z. We will denote hybrid sets
in the form {. . . | . . .}, where elements with a positive multiplicity are listed
before the bar, and elements with a negative multiplicity after the bar.

Example 4.1. The hybrid set {1, 1, 4|2, 3, 3} contains the elements 1, 2, 3, 4 with
multiplicities 2,−1,−2, 1, respectively.

A hybrid set Y is a subset of a hybrid set X, if one can repeatedly remove
elements from X (here, removing means decreasing by one the multiplicity of
an element with nonzero multiplicity) and thus obtain Y or have removed Y .
We refer to [14] for a more formal definition and further discussion, including a
proof that this notion of being a subset is a well-defined partial order (but not
a lattice). The interested reader will find there also connections to symmetric
functions and, in particular, the involutive relation between elementary and
complete symmetric functions.

Example 4.2. From the hybrid set {1, 1, 4|2, 3, 3} we can remove the element 4
to obtain {1, 1|2, 3, 3} (at which point, we cannot remove 4 again). We can
further remove 2 twice to obtain {1, 1|2, 2, 2, 3, 3}. Consequently, {4|} and
{1, 1|2, 3, 3} as well as {2, 2, 4|} and {1, 1|2, 2, 2, 3, 3} are subsets of {1, 1, 4|2,
3, 3}.

Following [14], a new set is a hybrid set such that either all multiplicities
are 0 or 1 (a “positive set”) or all multiplicities are 0 or −1 (a “negative set”).

Theorem 4.3 [14]. For all integers n and k, the number of k-element subsets
of an n-element new set is

∣∣(n
k

)∣∣.
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Example 4.4. Consider the new set {|− 1,−2,−3} with −3 elements (the rea-
son for choosing the elements to be negative numbers will become apparent
when we revisit this example in Example 4.7). Its 2-element subsets are

{−1,−1|}, {−1,−2|}, {−1,−3|}, {−2,−2|}, {−2,−3|}, {−3,−3|},

so that
∣∣(−3

2

)∣∣ = 6. On the other hand, its −4-element subsets are

{| − 1,−1,−2,−3}, {| − 1,−2,−2,−3}, {| − 1,−2,−3,−3},

so that
∣∣∣
(−3
−4

)∣∣∣ = 3.

Let Xn denote the standard new set with n elements, by which we mean
Xn = {0, 1, . . . , n − 1|}, if n ≥ 0, and Xn = {| − 1,−2, . . . , n}, if n < 0. For a
hybrid set Y ⊆ Xn with multiplicity function MY , we write

σ(Y ) =
∑

y∈Y

MY (y)y.

Note that, if Y is a classic set, then σ(Y ) is just the sum of its elements.
With this setup, we prove the following uniform generalization of [14, Theo-
rem 5.2], which is well known in the case that n, k ≥ 0 (see, for instance, [11,
Theorem 6.1]):

Theorem 4.5. For all integers n and k,

(
n

k

)

q

= ε
∑

Y

qσ(Y )−k(k−1)/2, ε = ±1, (4.1)

where the sum is over all k-element subsets Y of the n-element set Xn. If
0 ≤ k ≤ n, then ε = 1. If n < 0 ≤ k, then ε = (−1)k. If k ≤ n < 0, then
ε = (−1)n−k.

Proof. The case n, k ≥ 0 is well known. A proof can be found, for instance, in
[11, Theorem 6.1]. On the other hand, if n ≥ 0 > k, then both sides vanish.

Let us consider the case n < 0 ≤ k. It follows from the reflection formula
(3.2) that (4.1) is equivalent to the (arguably cleaner, but less uniform because
restricted to n < 0 ≤ k) identity

(
k − n − 1

k

)

q

=
∑

Y ∈C(n,k)

qσ(Y ), (4.2)

where C(n, k) is the collection of k-element subsets of the n-element set X+
n =

{|0, 1, 2, . . . , |n| − 1} (note that a natural bijection Xn → X+
n is given by

x 
→ |n| + x).
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Fix n, k and suppose that (4.2) holds whenever n and k are replaced with
n′ and k′ such that n < n′ < 0 or n = n′ < 0 ≤ k′ < k. Then,

∑

Y ∈C(n,k)

qσ(Y ) =
∑

Y ∈C(n,k)
−n−1 �∈Y

qσ(Y ) +
∑

Y ∈C(n,k)
−n−1∈Y

qσ(Y )

=
∑

Y ∈C(n+1,k)

qσ(Y ) +
∑

Y ∈C(n,k−1)

qσ(Y )−n−1

=
(

k − n − 2
k

)

q

+ q−n−1

(
k − n − 2

k − 1

)

q

=
(

k − n − 1
k

)

q

,

where the last equality follows from Pascal’s relation in the form (2.4). Since
(4.2) holds trivially if n = −1 or if k = 0, it, therefore, follows by induction
that (4.2) is true whenever n < 0 ≤ k.

Finally, consider the case n, k < 0. It is clear that both sides vanish unless
k ≤ n < 0. By the third equality in Corollary 3.2,

(
n

k

)

q

= (−1)n−kq
1
2 (n(n+1)−k(k+1))

(−k − 1
−n − 1

)

q

,

so that (4.1) becomes equivalent to
(−k − 1

−n − 1

)

q

=
∑

Y ∈D(n,k)

qσ(Y )+k−n(n+1)/2, (4.3)

where D(n, k) is the collection of k-element subsets Y of the n-element set
Xn = {|−1,−2, . . . , n}. If n = −1, then (4.3) holds because the only contribu-
tion comes from Y = {|− 1,−1, . . . ,−1}, with MY (−1) = |k| and σ(Y ) = −k.
If, on the other hand, k = −1, then (4.3) holds as well because a contributing
Y only exists if n = −1. Fix n, k < −1 and suppose that (4.3) holds whenever
n and k are replaced with n′ and k′ such that k < k′ < 0 and n ≤ n′ < 0.
Then the right-hand side of (4.3) equals

∑

Y ∈D(n,k)
MY (n)=−1

qσ(Y )+k−n(n+1)/2 +
∑

Y ∈D(n,k)
MY (n)<−1

qσ(Y )+k−n(n+1)/2.

We now remove the element n from Y (once) and, to make up for that, replace
σ(Y ) with σ(Y ) − n. Proceeding this way, we see that the right-hand side of
(4.3) equals

∑

Y ∈D(n+1,k+1)

qσ(Y )+k+1−(n+1)(n+2)/2 + q−n−1
∑

Y ∈D(n,k+1)

qσ(Y )+k+1−n(n+1)/2

=
(−k − 2

−n − 2

)

q

+ q−n−1

(−k − 2
−n − 1

)

q

=
(−k − 1

−n − 1

)

q

,
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with the final equality following from Pascal’s relation (2.2). We conclude, by
induction, that (4.3) is true for all n, k < 0. �
Remark 4.6. The number of possibilities to choose k elements from a set of n
elements with replacement is

(
k + n − 1

k

)
=

(
k + n − 1

n − 1

)
.

The usual “trick” to arrive at this count is to encode each choice of k elements
by lining them up in some order with elements of the same kind separated by
dividers (since there are n kinds of elements, we need n−1 dividers). The n−1
positions of the dividers among all k + n − 1 positions then encode a choice of
k elements. Formula (4.2) is a q-analog of this combinatorial fact.

Example 4.7. Let us revisit and refine Example 4.4, which concerns subsets of
X−3 = {|−1,−2,−3}. Letting k = 2, the 2-element subsets have element-sums

σ({−1,−1|}) = −2, σ({−1,−2|}) = −3,

σ({−1,−3|}) = −4, σ({−2,−2|}) = −4,

σ({−2,−3|}) = −5, σ({−3,−3|}) = −6.

Subtracting k(k − 1)/2 = 1 from these sums to obtain the weight, we find
(−3

2

)

q

= q−3 + q−4 + 2q−5 + q−6 + q−7.

Next, let us consider the case k = −4. The −4-element subsets have element-
sums

σ({| − 1,−1,−2,−3}) = 7, σ({| − 1,−2,−2,−3}) = 8,
σ({| − 1,−2,−3,−3}) = 9.

Subtracting k(k − 1)/2 = 10 from these sums and noting that (−1)n−k = −1,
we conclude that (−3

−4

)

q

= −(q−3 + q−2 + q−1).

In the remainder of this section, we consider two applications of The-
orem 4.5. The first of these is the following extension of the classical Chu–
Vandermonde identity:

Lemma 4.8. For all integers n,m and k, with k ≥ 0,
k∑

j=0

q(k−j)(n−j)

(
n

j

)

q

(
m

k − j

)

q

=
(

n + m

k

)

q

. (4.4)

Proof. Throughout this proof, if Y is a k-element set, write τ(Y ) = σ(Y ) −
k(k − 1)/2.

Suppose n,m ≥ 0. Let Y1 be a j-element subset of Xn, and Y2 a (k − j)-
element subset of Xm. Let Y ′

2 = {y + n : y ∈ Y2}, so that Y = Y1 ∪ Y ′
2 is a

k-element subset of Xn+m. Then, since

σ(Y ) = σ(Y1) + σ(Y ′
2) = σ(Y1) + σ(Y2) + (k − j)n,
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we have

τ(Y ) = τ(Y1) + τ(Y2) + (k − j)(n − j).

Then this follows from Theorem 4.5 because(
j

2

)
+

(
k − j

2

)
−

(
k

2

)
+ (k − j)n = (k − j)(n − j).

�

Similarly, one can deduce from Theorem 4.5 the following version for the
case when k is a negative integer. It also holds if n,m ≥ 0, but the identity
does not generally hold in the case when n and m have mixed signs.

Lemma 4.9. For all negative integers n,m and k,
∑

j∈{−1,−2,...,k+1}
q(k−j)(n−j)

(
n

j

)

q

(
m

k − j

)

q

=
(

n + m

k

)

q

.

As another application of the combinatorial characterization in Theo-
rem 4.5, we readily obtain the following identity. In the case n ≥ 0, this iden-
tity is well known and often referred to as the (commutative version of the)
q-binomial theorem (in which case the sum only extends over k = 0, 1, . . . , n).
We will discuss the noncommutative q-binomial theorem in the next section.

Theorem 4.10. For all integers n,

(−x; q)n =
∑

k≥0

qk(k−1)/2

(
n

k

)

q

xk.

Proof. Suppose that n ≥ 0, so that

(−x; q)n = (1 + x)(1 + xq) · · · (1 + xqn−1). (4.5)

Let, as before, Xn = {0, 1, . . . , n − 1|}. To each subset Y ⊆ Xn we associate
the product of the terms xqy with y ∈ Y in the expansion of (4.5). This results
in

(−x; q)n =
∑

Y ⊆Xn

qσ(Y )x|Y |,

which, by Theorem 4.5, reduces to the claimed sum.
Next, let us consider the case n < 0. Then, Xn = {| − 1,−2, . . . , n} and

(x; q)n =
|n|∏

j=1

1
1 − xq−j

=
|n|∏

j=1

∑

m≥0

xmq−jm.

Similar to the previous case, terms of the expansion of this product are in
natural correspondence with (hybrid) subsets Y ⊆ Xn with |Y | ≥ 0. Namely, to
Y we associate the product of the terms xmqym where y ∈ Y and m = MY (y)
is the multiplicity of y. Therefore,

(−x; q)n =
∑

Y ⊆Xn

|Y |≥0

(−1)|Y |qσ(Y )x|Y |,
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and the claim again follows directly from Theorem 4.5 (note that ε = (−1)k

in the present case). �

5. The Binomial Theorem

When introducing binomial coefficients with negative entries, Loeb [14] also
provided an extension of the binomial theorem

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k,

the namesake of the binomial coefficients, to the case when n and k may be
negative integers. In this section, we show that this extension can also be
generalized to the case of q-binomial coefficients.

Suppose that f(x) is a function with Laurent expansions

f(x) =
∑

k≥−N

akxk, f(x) =
∑

k≥−N

b−kx−k, (5.1)

around x = 0 and x = ∞, respectively. Let us extract coefficients of these
expansions by writing

{xk}f(x) =
{

ak, if k ≥ 0,
bk, if k < 0.

Loosely speaking, {xk}f(x) is the coefficient of xk in the appropriate Laurent
expansion of f(x).

Theorem 5.1 [14]. For all integers n and k,
(

n

k

)
= {xk}(1 + x)n.

Example 5.2. As x → ∞,

(1 + x)−3 = x−3 − 3x−4 + 6x−5 + O
(
x−6

)
,

so that, for instance,
(−3

−5

)
= 6.

It is well known (see, for instance, [11, Theorem 5.1]) that, if x and y are
noncommuting variables such that yx = qxy, then the q-binomial coefficients
arise from the expansion of (x + y)n.

Theorem 5.3. Let n ≥ 0. If yx = qxy, then

(x + y)n =
n∑

k=0

(
n

k

)

q

xkyn−k. (5.2)
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Our next result shows that the restriction to n ≥ 0 is not necessary. In
fact, we prove the following result, which extends both the noncommutative
q-binomial Theorem 5.3 and Loeb’s Theorem 5.1. In analogy with the classical
case, we consider expansions of fn(x, y) = (x + y)n in the two q-commuting
variables x, y. As before, we can expand fn(x, y) in two different ways, that
is,

fn(x, y) =
∑

k≥0

akxkyn−k, fn(x, y) =
∑

k≥n

b−kx−kyn+k.

Again, we extract coefficients of these expansions by writing

{xkyn−k}fn(x, y) =
{

ak, if k ≥ 0,
bk, if k < 0.

Theorem 5.4. Suppose that yx = qxy. Then, for all integers n and k,
(

n

k

)

q

= {xkyn−k}(x + y)n.

Proof. Using the geometric series,

(x + y)−1 = y−1(xy−1 + 1)−1 = y−1
∑

k≥0

(−1)k(xy−1)k,

and, applying the q-commutativity,

(x + y)−1 =
∑

k≥0

(−1)kq−k(k+1)/2xky−k−1 =
∑

k≥0

(−1
k

)

q

xky−1−k.

(Consequently, the claim holds when n = −1 and k ≥ 0.) More generally, we
wish to show that, for all n ≥ 1,

(x + y)−n =
∑

k≥0

(−n

k

)

q

xky−n−k. (5.3)

We just found that (5.3) holds for n = 1. On the other hand, assume that (5.3)
holds for some n. Then,

(x + y)−n−1 = (x + y)−n(x + y)−1

=

⎛

⎝
∑

k≥0

(−n

k

)

q

xky−n−k

⎞

⎠

⎛

⎝
∑

k≥0

(−1
k

)

q

xky−1−k

⎞

⎠

=
∑

k≥0

k∑

j=0

(−n

j

)

q

( −1
k − j

)

q

q(k−j)(−n−j)xky−n−1−k

=
∑

k≥0

(−n − 1
k

)

q

xky−n−1−k,

where the last step is an application of the generalized Chu–Vandermonde
identity (4.4) with m = −1. By induction, (5.3), therefore, is true for all
n ≥ 1.
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We have, therefore, shown that (5.2) holds for all integers n. This implies
the present claim in the case k ≥ 0. The case when k < 0 can also be deduced
from (5.3). Indeed, observe that xy = q−1yx, so that, for any integer n, by
(5.2) and (5.3),

(x + y)n =
∑

k≥0

(
n

k

)

q−1

ykxn−k

=
∑

k≤n

qk(n−k)

(
n

k

)

q−1

xkyn−k

=
∑

k≤n

(
n

k

)

q

xkyn−k.

When n ≥ 0, this is just a version of (5.2). However, when k < 0, we deduce
that

{xkyn−k}(x + y)n =
(

n

k

)

q

,

as claimed. �

6. Lucas’ Theorem

Lucas’ famous theorem [15] states that, if p is a prime, then
(

n

k

)
≡

(
n0

k0

)(
n1

k1

)
· · ·

(
nd

kd

)
(mod p),

where ni and ki are the p-adic digits of the nonnegative integers n and k,
respectively. Our first goal is to prove that this congruence in fact holds for all
integers n and k. The next section is then concerned with further extending
these congruences to the polynomial setting.

Example 6.1. The base p expansion of a negative integer is infinite. However,
only finitely many digits are different from p − 1. For instance, in base 7,

−11 = 3 + 5 · 7 + 6 · 72 + 6 · 73 + · · · ,

which we will abbreviate as

−11 = (3, 5, 6, 6, . . .)7.

Similarly,

−19 = (2, 4, 6, 6, . . .)7.

The extension of the Lucas congruences that is proved below shows that
(−11

−19

)
≡

(
3
2

)(
5
4

)(
6
6

)(
6
6

)
· · · = 3 · 5 ≡ 1 (mod 7),

without computing that the left-hand side is 43, 758.
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The main result of this section, Theorem 6.2, can also be deduced from
the polynomial generalization in the next section. However, we give a direct
and uniform proof here to make the ingredients more transparent. A crucial
ingredient in the usual proofs of Lucas’ classical theorem is the simple congru-
ence

(1 + x)p ≡ 1 + xp (mod p), (6.1)

sometimes jokingly called a freshman’s dream, which encodes the observation
that

(
p
k

)
is divisible by the prime p, except in the boundary cases k = 0 and

k = p.

Theorem 6.2. Let p be a prime. Then, for any integers n and k,
(

n

k

)
≡

(
n0

k0

)(
n′

k′

)
(mod p),

where n = n0 + n′p and k = k0 + k′p with n0, k0 ∈ {0, 1, . . . , p − 1}.
Proof. It is a consequence of (6.1) (and the algebra of Laurent series) that, for
any prime p,

(1 + x)−p ≡ (1 + xp)−1 (mod p), (6.2)

where it is understood that both sides are expanded, as in (5.1), either around
0 or ∞. Hence, in the same sense,

(1 + x)np ≡ (1 + xp)n (mod p), (6.3)

for any integer n.
With the notation from the previous section, we observe that

{xk}(1 + x)n = {xk}(1 + x)n0(1 + x)n′p

≡ {xk}(1 + x)n0(1 + xp)n′
(mod p),

where the congruence is a consequence of (6.3). Since

n0 ∈ {0, 1, . . . , p − 1},

we conclude that

{xk}(1 + x)n ≡ ({xk0}(1 + x)n0)({xk′p}(1 + xp)n′
) (mod p).

This is obvious if k ≥ 0, but remains true for negative k as well (because
(1 + x)n0 is a polynomial, in which case the expansions (5.1) around 0 and ∞
agree). Thus,

{xk}(1 + x)n ≡ ({xk0}(1 + x)n0
) (

{xk′}(1 + x)n′)
(mod p).

Applying Theorem 5.1 to each term, it follows that
(

n

k

)
≡

(
n0

k0

)(
n′

k′

)
(mod p),

as claimed. �
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7. A q-Analog of Lucas’ Theorem

Let Φm(q) be the m-th cyclotomic polynomial. In this section, we prove con-
gruences of the type A(q) ≡ B(q) modulo Φm(q), where A(q) and B(q) are
Laurent polynomials. The congruence is to be interpreted in the natural sense
that the difference A(q) − B(q) is divisible by Φm(q).

Example 7.1. Following the notation in Theorem 6.2, in the case (n, k) =
(−4,−8), we have (n0, k0) = (2, 1) and (n′, k′) = (−2,−3). We reduce modulo
Φ3(q) = 1 + q + q2. The result we prove below shows that

(−4
−8

)

q

≡
(

2
1

)

q

(−2
−3

)
(mod Φ3(q)).

Here,
(−4

−8

)

q

=
1

q22
Φ5(q)Φ6(q)Φ7(q)

=
1

q22
(1 − q + q2)(1 + q + q2 + q3 + q4)(1 + q + q2 + · · · + q6)

as well as (
2
1

)

q

(−2
−3

)
= −2(1 + q),

and the meaning of the congruence is that
(−4

−8

)

q

−
(

2
1

)

q

(−2
−3

)
= Φ3(q) · p21(q)

q22
,

where

p21(q) = 1 + q2 + 2q3 + q4 + · · · − 2q19 + 2q21

is a polynomial of degree 21. Observe how, upon setting q = 1, we obtain the
Lucas congruence

(−4
−8

)
≡

(
2
1

)(−2
−3

)
(mod 3),

provided by Theorem 6.2 (the two sides of the congruence are equal to 35 and
−4, respectively).

In the case n, k ≥ 0, the following q-analog of Lucas’ classical binomial
congruence has been obtained by Olive [16] and Désarménien [7]. A nice proof
based on a group action is given by Sagan [17], who attributes the combina-
torial idea to Strehl. We show that these congruences extend uniformly to all
integers n and k. A minor difference to keep in mind is that the q-binomial
coefficients in this extended setting are Laurent polynomials (see Example 7.1).

Theorem 7.2. Let m ≥ 2 be an integer. For any integers n and k,
(

n

k

)

q

≡
(

n0

k0

)

q

(
n′

k′

)
(mod Φm(q)),

where n = n0 + n′m and k = k0 + k′m with n0, k0 ∈ {0, 1, . . . ,m − 1}.
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Proof. Suppose throughout that x and y satisfy yx = qxy. It follows from the
(noncommutative) q-binomial Theorem 5.3 that, for nonnegative integers m,

(x + y)m ≡ xm + ym (mod Φm(q)).

As in the proof of Theorem 6.2 (and in the analogous sense), we conclude that

(x + y)nm ≡ (xm + ym)n (mod Φm(q)), (7.1)

for any integer n.
With the notation from Sect. 5, we observe that, by (7.1),

{
xkyn−k

}
(x + y)n ≡ {

xkyn−k
}

(x + y)n0 (xm + ym)n′
(mod Φm(q)).

Since n0 ∈ {0, 1, . . . , p − 1}, the right-hand side equals

q(n0−k0)k
′m ({xk0yn0−k0}(x + y)n0

) (
{xk′my(n′−k′)m}(xm + ym)n′)

.

As qm ≡ 1 modulo Φm(q), we conclude that {xkyn−k}(x + y)n is congruent
to

({xk0yn0−k0}(x + y)n0
) (

{xk′my(n′−k′)m}(xm + ym)n′)

modulo Φm(q). Observe that the variables X = xm and Y = ym satisfy the
commutation relation Y X = qm2

XY . Hence, applying Theorem 5.4 to each
term, we conclude that

(
n

k

)

q

≡
(

n0

k0

)

q

(
n′

k′

)

qm2
(mod Φm(q)).

Since qm2 ≡ 1 modulo Φm(q), the claim follows. �

In [2], Adamczewski, Bell, Delaygue and Jouhet consider congruences
modulo cyclotomic polynomials for multidimensional q-factorial ratios and are
thus able to generalize many Lucas-type congruences. In particular, specializ-
ing [2, Proposition 1.4] (the case q = 1 of which had previously been proved
in [1]) to d = 2, u = 1, v = 2, e1 = (1; 0), f1 = (1;−1) and f2 = (0; 1), we
obtain the classical case n, k ≥ 0 of Theorem 7.2. As pointed out by Adam-
czewski, Bell, Delaygue and Jouhet in private communication, an alternative,
a little more tricky, proof of the general case of Theorem 7.2 can be obtained
by reducing it, via Corollary 3.2, to the nonnegative case.

8. Conclusion

We believe (and hope that the results of this paper provide some evidence
to that effect) that the binomial and q-binomial coefficients with negative
entries are natural and beautiful objects. On the other hand, let us indicate
an application, taken from [21], of binomial coefficients with negative entries.
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Example 8.1. A crucial ingredient in Apéry’s proof [4] of the irrationality of
ζ(3) is played by the Apéry numbers

A(n) =
n∑

k=0

(
n

k

)2(
n + k

k

)2

. (8.1)

These numbers have many interesting properties. For instance, they satisfy
remarkably strong congruences, including

A(prm − 1) ≡ A(pr−1m − 1) (mod p3r), (8.2)

established by Beukers [5], and

A(prm) ≡ A(pr−1m) (mod p3r), (8.3)

proved by Coster [6]. Both congruences hold for all primes p ≥ 5 and positive
integers m, r. The definition of the Apéry numbers A(n) can be extended to
all integers n by setting

A(n) =
∑

k∈Z

(
n

k

)2(
n + k

k

)2

, (8.4)

where the binomial coefficients are now allowed to have negative entries. Ap-
plying the reflection rule (3.1)–(8.4), we obtain

A(−n) = A(n − 1). (8.5)

In particular, we find that the congruence (8.2) is equivalent to (8.3) with m
replaced with −m. By working with binomial coefficients with negative entries,
the second author gave a uniform proof of both sets of congruences in [21]. In
addition, the symmetry (8.5), which becomes visible when allowing negative
indices, explains why other Apéry-like numbers satisfy (8.3) but not (8.2).

We illustrated that the Gaussian binomial coefficients can be usefully ex-
tended to the case of negative arguments. More general binomial coefficients,
formed from an arbitrary sequence of integers, are considered, for instance,
in [13] and it is shown by Hu and Sun [10] that Lucas’ theorem can be gen-
eralized to these. It would be interesting to investigate the extent to which
these coefficients and their properties can be extended to the case of nega-
tive arguments. Similarly, an elliptic analog of the binomial coefficients has
recently been introduced by Schlosser [18], who further obtains a general non-
commutative binomial theorem of which Theorem 5.3 is a special case. It is
natural to wonder whether these binomial coefficients have a natural extension
to negative arguments as well.

In the last section, we showed that the generalized q-binomial coefficients
satisfy Lucas congruences in a uniform fashion. It would be of interest to de-
termine whether other well-known congruences for the q-binomial coefficients,
such as those considered in [3] or [20], have similarly uniform extensions.
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[5] Beukers, F.: Some congruences for the Apéry numbers. J. Number Theory 21(2),
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A Lecture Hall Theorem for m-Falling
Partitions
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Shishuo Fu, Dazhao Tang and Ae Ja Yee

Abstract. For an integer m ≥ 2, a partition λ = (λ1, λ2, . . .) is called
m-falling, a notion introduced by Keith, if the least non-negative residues
mod m of λi’s form a nonincreasing sequence. We extend a bijection
originally due to the third author to deduce a lecture hall theorem for
such m-falling partitions. A special case of this result gives rise to a finite
version of Pak–Postnikov’s (m, c)-generalization of Euler’s theorem. Our
work is partially motivated by a recent extension of Euler’s theorem for
all moduli, due to Xiong and Keith. We note that their result actually
can be refined with one more parameter.

Mathematics Subject Classification. Primary 05A17; Secondary 11P83.

Keywords. Partitions, Stockhofe–Keith map, Lecture hall partitions,
m-Falling partitions.

1. Introduction

A partition λ of a positive integer n is a nonincreasing sequence of positive
integers (λ1, λ2, . . . , λr), such that

∑r
i=1 λi = n. The λi’s are called the parts

of λ, and n is called the weight of λ, usually denoted as |λ|. For convenience,
we often allow parts of size zero and append as many zeros as needed.

Being widely perceived as the genesis of the theory of partitions, Euler’s
theorem asserts that the set of partitions of n into odd parts and the set of
partitions of n into distinct parts are equinumerous. Equivalently

The first and second authors were supported by the Fundamental Research Funds for the
Central Universities (No. 2018CDXYST0024) and the National Natural Science Foundation
of China (No. 11501061). The third author was partially supported by a grant (#280903)
from the Simons Foundation.
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∞∏

i=1

(1 + qi) =
∞∏

i=1

1
1 − q2i−1

.

Among numerous generalizations and refinements of Euler’s theorem [1,
2,5–10,12,14–19,21,23], the one that arguably attracted the most attention
is the following finite version, called the Lecture Hall Theorem, discovered by
Bousquet-Mélou and Eriksson [5]. Andrews [4] gave a proof using the method
of partition analysis.

If λ = (λ1, . . . , λn) is a partition of length n with some parts possibly
zero, such that

λ1

n
≥ λ2

n − 1
≥ · · · ≥ λn

1
≥ 0, (1.1)

then λ is called a lecture hall partition of length n. Let Ln be the set of lecture
hall partitions of length n.

Theorem 1.1. ([5, Theorem 1.1]) For n ≥ 1

∑

λ∈Ln

q|λ| =
n∏

i=1

1
1 − q2i−1

. (1.2)

It can be easily checked that any partition λ into distinct parts less than
or equal to n satisfies the inequality condition in (1.1). That is, λ ∈ Ln as long
as n ≥ λ1, which shows that (1.2) indeed yields Euler’s theorem when n → ∞.

Glaisher [11] found a purely bijective proof of Euler’s theorem and was
able to extend it to the equinumerous relationship between partitions with
parts repeated less than m times and partitions into non-multiples of m for
any m ≥ 2. That is

∞∏

i=1

(
1 + qi + · · · + q(m−1)i

)
=

∞∏

i=1
i�≡0 (mod m)

1
(1 − qi)

.

Recently, Xiong and Keith [24] obtained a substantial refinement of
Glaisher’s result with respect to certain partition statistics, which we define
next.

Throughout this paper, we will assume that m ≥ 2. For any partition
λ = (λ1, λ2, . . .), let

si(λ) = λi − λi+1 + λm+i − λm+i+1 + λ2m+i − λ2m+i+1 + · · · , 1 ≤ i ≤ m.

We define its m-alternating sum type to be the (m−1)-tuple s(λ) := (s1(λ), . . . ,
sm−1(λ)) and its m-alternating sum

s(λ) :=
m−1∑

i=1

si(λ).

We note that the m-alternating sum type of λ does not put any restriction on
sm.

Similarly, let

�i(λ) = #{j : λj ≡ i (mod m)}, 1 ≤ i ≤ m.
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We define its m-length type to be the (m − 1)-tuple l(λ) := (�1(λ), �2(λ), . . . ,
�m−1(λ)) and its m-length �(λ) =

∑m−1
i=1 �i(λ). Note that the m-length type

of λ is independent of the parts in λ that are multiples of m.
Let us define the following two subsets of partitions:

• Dm: the set of partitions in which each non-zero part can be repeated at
most m − 1 times;

• Om: the set of partitions in which each non-zero part is not divisible by
m, called m-regular partitions.

Theorem 1.2. ([24, Theorem 2.1]) For m ≥ 2,
∑

μ∈Dm

z
s1(μ)
1 · · · zsm−1(μ)

m−1 q|μ| =
∑

λ∈Om

z
�1(λ)
1 · · · z�m−1(λ)

m−1 q|λ|.

The natural desire to find certain “lecture hall version” for the result of
Xiong and Keith motivated us to take on this investigation. While the version
with full generality matching their result is yet to be found, we do obtain a
lecture hall theorem for m-falling partitions.

A partition λ = (λ1, λ2, . . .) is called m-falling, which was introduced by
Keith [13], if the least non-negative residues mod m of λi’s form a nonincreasing
sequence. We denote the set of m-falling and m-regular partitions (m-falling
regular partitions for short) as Om↘. For n ≥ 1, let

On
m↘ := {λ ∈ Om↘ : λ1 < nm}

and Ln
m↘ be a subset of Dm with certain ratio conditions between parts. Due

to the complexity of the conditions, the definition of Ln
m↘ is postponed to

Sect. 3. A partition in Ln
m↘ is called an m-falling lecture hall partition of

order n.
We now state the main result of this paper.

Theorem 1.3. (m-falling lecture hall theorem) For m ≥ 2 and n ≥ 1,
∑

μ∈Ln
m↘

z
s1(μ)
1 · · · zsm−1(μ)

m−1 q|μ| =
∑

λ∈On
m↘

z
�1(λ)
1 · · · z�m−1(λ)

m−1 q|λ|. (1.3)

Moreover, we obtain the following generating function of m-falling regular
partitions with the largest part less than nm. We shall adopt the common
notation (q; q)n = (1 − q)(1 − q2) · · · (1 − qn) for n ≥ 1 with (q; q)0 = 1. As
usual, the Gaussian coefficients are given by

[
m + n

m

]

q

=
(q; q)m+n

(q; q)m(q; q)n
.

Theorem 1.4. We have

∑

λ∈On
m↘

z�(λ)q|λ| =
∞∑

i=0

[
m − 2 + i

i

]

q

[
n − 1 + i

i

]

qm

ziqi.
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The final result of this paper is a refinement of Theorem 1.2. Let us
consider the residue sequence of a partition. Namely, for λ = (λ1, λ2, . . .),
we take for each part the least non-negative residue mod m and denote the
resulting sequence as v(λ) = v1v2 · · · . Recall the permutation statistic ascent:

asc(w) = #{i : 1 ≤ i < n, wi < wi+1},

for any word w = w1 · · · wn, which consists of totally ordered letters. We
extend this statistic to partitions via their residue sequences and let asc(λ) =
asc(v(λ)).

We have the following refinement of Theorem 1.2.

Theorem 1.5. For m ≥ 2,
∑

μ∈Dm

z
s1(μ)
1 · · · zsm−1(μ)

m−1 zsm(μ)
m q|μ| =

∑

λ∈Om

z
�1(λ)
1 · · · z�m−1(λ)

m−1 z
�λ1

m 	−asc(λ)
m q|λ|.

(1.4)

To make this paper self-contained, in the next section we first recall the
Stockhofe–Keith map and then prove Theorem 1.5. In Sect. 3, we define m-
falling lecture hall partitions and prove Theorem 1.3, one special case of which
gives rise to a lecture hall theorem (see Theorem 3.1) for Pak–Postnikov’s
(m, c)-generalization [17] of Euler’s theorem. In the end, we sketch a proof of
Theorem 1.4.

2. Preliminaries and a Proof of Theorem 1.5

In this section, we first recall further definitions and notions involving parti-
tions for later use. After that, we will review the Stockhofe–Keith map and
prove Theorem 1.5.

Given two (infinite) sequences λ = (λ1, λ2, . . .) and μ = (μ1, μ2, . . .), we
define the usual linear combination kλ + lμ as

kλ + lμ = (kλ1 + lμ1, kλ2 + lμ2, . . .)

for any two non-negative integers k and l.
For a partition λ = (λ1, . . . , λr), its conjugate partition λ′ = (λ′

1, . . . , λ
′
s)

is a partition resulting from choosing λ′
i as the number of parts of λ that are

not less than i [3, Definition 1.8].
The following lemma (see for instance [24, Lemma 1]) follows via the

conjugation of partitions.

Lemma 2.1. The conjugation map λ 
→ λ′ is a weight-preserving bijection,
such that

1. s(λ) = l(λ′),
2. λ1 − s(λ) = �m(λ′).

Proof. 1. This immediately follows via the conjugation of partitions, so we
omit the details.
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2. Again, by conjugation, we see that sm(λ) = �m(λ′). In addition, by the
definition

λ1 = s1(λ) + · · · + sm(λ) = s(λ) + sm(λ).

Thus λ1 − s(λ) = �m(λ′).
�

Using conjugation, we can derive an interesting set of partitions that are
equinumerous to Dm, namely, m-flat partitions:

• Fm: the set of partitions in which the differences between consecutive
parts are at most m − 1 and the smallest positive part must also be less
than m, called m-flat partitions.

Remark 2.2. The two sets Dm and Fm are clearly in one-to-one correspondence
via conjugation.

2.1. Stockhofe–Keith Map φ : Om → Dm

Given any partition λ, we define its base m-flat partition, denoted as β(λ), as
follows. Whenever there are two consecutive parts λi and λi+1 with λi−λi+1 ≥
m, we subtract m from each of the parts λ1, λ2, . . . , λi. We repeat this until
we reach a partition in Fm, which is taken to be β(λ).

Suppose we are given a partition λ ∈ Om. We now describe step-by-step
how to get a partition φ(λ) = μ ∈ Dm via the aforementioned Stockhofe–Keith
map φ.
Step 1: Decompose λ = mσ + β(λ).
Step 2: Insert each part in mσ′, from the largest one to the smallest one, into

β(λ) according to the following insertion method. Note that after each
insertion, we always arrive at a new m-flat partition. In particular, the
final partition we get, say τ , is in Fm as well.

Step 3: Conjugate τ to get μ = τ ′ ∈ Dm.

Insertion method to get τ ∈ Fm

Initiate τ = (τ1, τ2, . . .) = β(λ). Note that parts in mσ′ are necessarily
multiples of m. Suppose we currently want to insert a part km into τ .

If km − τ1 ≥ m, then find the unique integer i, 1 ≤ i ≤ k, such that

(τ1 + m, τ2 + m, . . . , τi + m, (k − i)m, τi+1, . . .)

is still a partition in Fm. Replace τ with this new partition.
Otherwise, we simply insert km into β(λ) as a new part and replace

τ with this new partition.

For example, let us take m = 3 and λ = (19, 17, 14, 13, 13, 8, 1) ∈ O3. We
use 3-modular Ferrers graphs [3] to illustrate the process of deriving μ, see
Fig. 1, where the inserted entries are displayed in boldface in Step 2.

We should remark that the original description of the Stockhofe–Keith
map [13,22] consists of only Steps 1 and 2. Thus, the map [13,22] accounts for
the following theorem.
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Theorem 2.3. ([24, Theorem 3.1]) m-Regular partitions of any given m-length
type are in bijection with m-flat partitions of the same m-length type.

Theorem 2.3 with Remark 2.2 proves Theorem 1.2, so we will adopt the
modified definition of the Stockhofe–Keith map which consists of the above
three steps.

2.2. Proof of Theorem 1.5

In view of the proof of Theorem 1.2 in [24], all it remains is to examine the map
φ with respect to the extra parameter zm. Suppose λ ∈ Om, and the largest

part of β(λ) is b1, then we have
⌊

b1
m

⌋
= asc(λ), according to the definition of

m-flat partitions. Next, during Step 2, we insert columns of mσ into τ , and
each insertion will give rise to a new part in τ that is divisible by m; therefore,

we see that
λ1 − b1

m
= sm(μ). The above discussion gives

sm(μ) =
λ1 − b1

m
=

⌊
λ1

m

⌋
−

⌊
b1
m

⌋
=

⌊
λ1

m

⌋
− asc(λ),

as desired. �
Remark 2.4. For λ ∈ Om, let φ(λ) = μ. Then, the extra parameter tracked by
zm gives

μ1 = s(μ) + sm(μ) = s(μ) +
⌊

λ1

m

⌋
− asc(λ) = �(λ) +

⌊
λ1

m

⌋
− asc(λ),

which has previously been derived by Keith [13, Theorem 6] as well (he used
fλ instead of asc(λ)). Moreover, this refinement is reminiscent of Sylvester’s
bijection for proving Euler’s theorem, in which case m = 2 and we always have
asc(λ) = 0, see, for example, Theorem 1 (item 4) in [26].

3. A Lecture Hall Theorem for m-Falling Partitions

We will first handle the case with a single residue class. Let us fix c, 1 ≤ c ≤
m − 1. For n ≥ 1, let

Oc,m := {λ ∈ Om : λi ≡ c (mod m), for all i},

On
c,m := {λ ∈ Oc,m : λ1 < nm},

Dc,m :=

⎧
⎨

⎩λ ∈ Dm : s(λ) = (

c−1︷ ︸︸ ︷
0, . . . , 0, a, 0 . . . , 0) for some a > 0, or |λ| = 0

⎫
⎬

⎭ ,

Ln
c,m :=

{
λ ∈ Dc,m : l(λ) ≤

⌊
n + 1

2

⌋
(m − 2) + n and

λkm+c

n − 2k
≥ λkm+m

n − 2k − 1
≥ λ(k+1)m+c

n − 2k − 2
for 0 ≤ k <

⌈n

2

⌉}
,

where l(λ) is the number of non-zero parts in λ, and we make the convention
that for a fraction

p

q
, if q = 0 we replace the relevant fraction with 0.
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Figure 1. Three steps to get φ(λ) = μ
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Theorem 3.1. For any n ≥ 1
∑

λ∈On
c,m

z�(λ)q|λ| =
∑

μ∈Ln
c,m

zs(μ)q|μ|

=
1

(1 − zqc)(1 − zqm+c) · · · (1 − zq(n−1)m+c)
. (3.1)

The above result can be viewed as a finite (or “lecture hall”) version of
the following Pak–Postnikov’s (m, c)-generalization [17, Theorem 1] of Euler’s
partition theorem since limn→∞ On

c,m → Oc,m and limn→∞ Ln
c,m → Dc,m.

Theorem 3.2. For n ≥ 1,m ≥ 2 and 1 ≤ c ≤ m − 1, the number of partitions
of n into parts congruent to c mod m equals the number of partitions of n with
exactly c parts of maximal size, m − c (if any) second by size parts, c (if any)
third by size parts, etc.

Proof of Theorem 3.1. Since a partition λ ∈ On
c,m has all its parts congruent

to c mod m, with the largest part λ1 < nm, we see that �(λ) = �c(λ) = l(λ)
and we have

∑

λ∈On
c,m

z�(λ)q|λ| =
1

(1 − zqc)(1 − zqm+c) · · · (1 − zq(n−1)m+c)
.

It remains to prove the first equality. We achieve this by constructing a
weight-preserving bijection ϕn from On

c,m to Ln
c,m, such that �(λ) = s(ϕn(λ)).

We extend the bijection from On to Ln constructed in [25] to deal with the
m-falling partitions considered here.

Define the maps ϕn : On
c,m −→ Ln

c,m as follows. For λ ∈ On
c,m, let μ be

the sequence obtained from the empty sequence (0, 0, . . .) by recursively insert-
ing the parts of λ in nonincreasing order according to the following insertion
procedure. We define ϕn(λ) = μ.

Insertion procedure

Let (μ1, μ2, . . .) ∈ Ln
c,m. To insert km + c into (μ1, μ2, . . .), set j = 0.

If j < k and
μmj+c + 1

n − 2j
≥ μmj+m + 1

n − 2j − 1
, (Test I)

then increase j by 1 and go to (Test I);
otherwise stop testing and return

(μ1, μ2, . . .) + (

jm︷ ︸︸ ︷
1, . . . , 1,

c︷ ︸︸ ︷
k − j + 1, . . . , k − j + 1,

m−c︷ ︸︸ ︷
k − j, . . . , k − j, 0, 0, . . .).

The effect of this insertion is that we use up a complete part km + c, so
the weight of the sequence (μ1, μ2, . . .) and its m-alternating sum are increased
by km + c and 1, respectively. In addition, it can be checked easily that the
returned sequence satisfies the condition for Ln

c,m. We omit the details.
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The map ϕn is indeed invertible, since the parts of λ were inserted in
nonincreasing order, i.e., from the largest to the smallest. If the parts are
not inserted in this order, ϕn is not necessarily invertible. The inverse of ϕn,
namely, ψn, can be described similarly in this algorithmic fashion. For a given
partition μ ∈ Ln

c,m with s(μ) = k, define ψn(μ) to be the sequence λ =
(λ1, . . . , λk, 0, 0, . . .) obtained from the empty sequence (0, 0, . . .) by adding
nondecreasing parts one at a time that are derived from peeling off partially
or entirely certain parts of μ according to the following deletion procedure.

Deletion procedure

Let (μ1, μ2, . . .) �= (0, 0, . . .) be in Ln
c,m. Set k = 0 and j = 0.

If (μ1, μ2, . . .) − (

jm︷ ︸︸ ︷
1, . . . , 1,

c︷ ︸︸ ︷
k − j + 1, . . . , k − j + 1,

m−c︷ ︸︸ ︷
k − j, . . . , k − j,

0, 0, . . .) ∈ Ln
c,m,

(Test D)
then stop testing and return km + c with

μ = (μ1, μ2, . . .) − (

jm︷ ︸︸ ︷
1, . . . , 1,

c︷ ︸︸ ︷
k − j + 1, . . . , k − j + 1,

m−c︷ ︸︸ ︷
k − j, . . . , k − j, 0, 0, . . .);

otherwise, if j < k, then increase j by 1 and go to (Test D);
otherwise increase k by 1, set j = 0 and go to (Test D).

The effect of this deletion is that the weight of the sequence (μ1, μ2, . . .)
and its m-alternating sum are decreased by km + c and 1, respectively. In
addition, it should be noted that this deletion process must stop after a finite
number of steps. Since (μ1, μ2, . . .) �= (0, 0, . . .) belongs to Ln

c,m, there must be
i, such that

μim+c > μim+m.

Let j be the largest such i. Then, μl = 0 for any l > jm + m and

(μ1, μ2, . . .) − (

jm︷ ︸︸ ︷
1, . . . , 1,

c︷ ︸︸ ︷
k − j + 1, . . . , k − j + 1,

m−c︷ ︸︸ ︷
k − j, . . . , k − j, 0, 0, . . .) ∈ Ln

c,m,

which shows such j must pass (Test D).
To finish the proof, we make the following claims about ϕn and ψn with-

out giving the proofs, since all of them are essentially the same as those found
in [25], which is the case when m = 2 and c = 1.

• Each insertion outputs a new μ ∈ Ln
c,m, and in particular, ϕn is well-

defined.
• Each deletion outputs a new λ ∈ On

c,m, and in particular, ψn is well-
defined.
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Figure 2. ϕ5((11, 11, 8, 8, 8, 5, 5)) = (13, 13, 10, 7, 7, 4, 1, 1)

• The deletion procedure reverses the insertion procedure, consequently ψn

is the inverse of ϕn.
�

Before we move on, we provide an example for the insertion procedure.

Example 3.3. Let m = 3, c = 2, n = 5, and μ = (3, 3, 2, 0, 0, . . .) ∈ L5
2,3. We

insert 8 into μ as follows. Note that
μ2 + 1

5
=

4
5

≥ μ3 + 1
4

=
3
4

but
μ5 + 1

3
=

1
3

�≥ μ6 + 1
2

=
1
2
.

Therefore, we get

(3, 3, 2, 0, 0, . . .) + (1, 1, 1, 2, 2, 1) = (4, 4, 3, 2, 2, 1).

In Fig. 2, we illustrate the process of getting μ by applying ϕ5 to λ =
(11, 11, 8, 8, 8, 5, 5) ∈ O5

2,3 using 3-modular Ferrers graphs. Newly inserted en-
tries after each step are displayed in boldface.

Remark 3.4. In general, our bijection ϕn works on m-modular Ferrers graphs.
For the special case when m = 2 and c = 1, ϕn actually reduces to the original
bijection constructed in [25]. Another notable generalization can be found in
[20].
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As we will see, the bijection ϕn plays a crucial role in our proof of The-
orem 1.3. We need a few more definitions.

Definition 3.5. For a partition λ ∈ Dm, we define two local statistics “first

bigger” and “last bigger”. For each i, 0 ≤ i ≤
⌊

l(λ) − 1
m

⌋
, where l(λ) is the

number of non-zero parts in λ, suppose

λim+1 = · · · = λim+j > λim+j+1 ≥ · · · ≥ λim+k > λim+k+1 = · · · = λim+m.

Then, we let fbi = j, lbi = k.

Note that since λ ∈ Dm, such j and k must exist and j ≤ k, so fbi and
lbi are well-defined.

Definition 3.6. Fix a positive integer n. For a partition λ ∈ Dm, we call it an

m-falling lecture hall partition of order n, if l(λ) ≤
⌊

n + 1
2

⌋
(m − 2) + n, and

the following two conditions hold.

1. For i, 0 ≤ i <

⌊
l(λ) − 1

m

⌋
, lbi ≤ fbi+1.

2.
λ1

n
≥ λm

n − 1
≥ λm+1

n − 2
≥ λ2m

n − 3
≥ · · · ≥ λ(k−1)m+1

2
≥ λkm

1
, if n = 2k,

λ1

n
≥ λm

n − 1
≥ λm+1

n − 2
≥ λ2m

n − 3
≥ · · · ≥ λkm+1

1
≥ λkm+m

0
, if n = 2k + 1.

We denote the set of all m-falling lecture hall partitions of order n as Ln
m↘.

Remark 3.7. Partitions in Dm satisfying the above condition (1) are said to
be of m-alternating type in [13].

Recall the definition of m-falling regular partitions. A partition is m-
falling regular if the parts are not multiples of m and their positive residues
are nonincreasing.

For a chosen vector v = (v1, v2, . . . , vm−1), let

Ov
m↘ :=

{
λ ∈ On

m↘ : l(λ) = v
}

,

Lv
m↘ :=

{
μ ∈ Ln

m↘ : s(μ) = v
}

.

Proof of Theorem 1.3. For any c, 1 ≤ c ≤ m − 1 and a given vector v =
(v1, v2, . . . , vm−1), we consider two embeddings:

fv : Ov
m↘ ↪→ On

c,m and gv : Lv
m↘ ↪→ Ln

c,m,

such that �(λ) = �(fv(λ)) and s(μ) = s(gv(μ)). To be precise, for a given
partition λ, both fv and gv change the residue of each part of λ mod m to
be uniformly the predetermined value c. In terms of the corresponding m-
modular Ferrers graph, the two maps keep all the cells labelled m, but relabel
all the remaining cells by c. Therefore, in general, neither of these two maps
preserves the weight of the partition, but they do keep the number of cells in
their m-modular Ferrers graphs unchange.
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Table 1. φ3 : O(3,2)
3↘ −→ L(3,2)

3↘

O(3,2)
3↘ L(3,2)

3↘

8, 8, 7, 7, 7 15, 12, 10
8, 8, 7, 7, 4 14, 11, 9
8, 8, 7, 7, 1 13, 10, 8
8, 8, 7, 4, 4 12, 9, 8, 1, 1
8, 8, 7, 4, 1 12, 9, 7
8, 8, 7, 1, 1 11, 8, 6
8, 8, 4, 4, 4 11, 8, 7, 1, 1
8, 8, 4, 4, 1 10, 7, 6, 1, 1
8, 8, 4, 1, 1 10, 7, 5
8, 8, 1, 1, 1 9, 6, 4
8, 5, 4, 4, 4 9, 6, 6, 2, 2
8, 5, 4, 4, 1 9, 6, 5, 1, 1
8, 5, 4, 1, 1 8, 5, 4, 1, 1
8, 5, 1, 1, 1 8, 5, 3
8, 2, 1, 1, 1 7, 4, 2
5, 5, 4, 4, 4 8, 5, 5, 2, 2
5, 5, 4, 4, 1 7, 4, 4, 2, 2
5, 5, 4, 1, 1 7, 4, 3, 1, 1
5, 5, 1, 1, 1 6, 3, 2, 1, 1
5, 2, 1, 1, 1 6, 3, 1
2, 2, 1, 1, 1 5, 2

Moreover, the given vector v and the m-falling condition uniquely de-
termine the preimage of any partition in fv(Ov

m↘). Similarly, the condition
(1) in Definition 3.6 together with v dictates the preimage of any partition in
gv(Lv

m↘). This enables us to define a bijection

φn = g−1
v ◦ ϕn ◦ fv : On

m↘ −→ Ln
m↘,

where v is the m-length type of the partition it acts on.
It has been proved in Theorem 3.1 that ϕn is a bijection satisfying �(λ) =

s(ϕn(λ)), and the discussion above shows that both fv and gv are invertible.
Consequently, we see that φn is indeed a bijection such that l(λ) = s(φn(λ))
for any λ ∈ On

m↘, and we complete the proof. �

Example 3.8. As an illustrative example, we take m = 3, n = 3 and fix the
vector v = (3, 2). In Table 1, we list out all the 21 partitions λ in O(3,2)

3↘ with

λ1 < nm = 9, as well as all the 21 partitions μ in L(3,2)
3↘ with l(μ) ≤ 5. They

are matched up via our map φ3. The derivation of one particular partition
(8, 5, 5, 2, 2) from (5, 5, 4, 4, 4) using 3-modular Ferrers graphs is detailed in
Fig. 3.

Now, we turn to the proof of Theorem 1.4.
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Figure 3. φ3((5, 5, 4, 4, 4)) = (8, 5, 5, 2, 2)
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Proof of Theorem 1.4. Based on the m-modular Ferrers graphs of m-regular
falling partitions, we obtain

∑

μ∈On
m↘

z
�1(μ)
1 · · · z�m−1(μ)

m−1 q|μ|

=
∞∑

i=0

hi(z1q, z2 q2, . . . , zm−1q
m−1)

[
n − 1 + i

i

]

qm

, (3.2)

where the ith homogeneous symmetric function hi(x1, . . . , xk) is defined by

hi(x1, . . . , xk) =
∑

1≤j1≤j2≤···≤ji≤k

xj1xj2 · · · xji
.

Setting z1 = · · · = zm−1 = z in (3.2), we get

∑

μ∈On
m↘

z�(μ)q|μ| =
∞∑

i=0

hi

(
q, q2, . . . , qm−1

) [
n − 1 + i

i

]

qm

zi. (3.3)

Since

hi(q, q2, . . . , qm−1) = qi

[
m − 2 + i

i

]

q

,

it follows from (3.3) that

∑

μ∈On
m↘

z�(μ)q|μ| =
∞∑

i=0

[
m − 2 + i

i

]

q

[
n − 1 + i

i

]

qm

ziqi,

as claimed. �
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Abstract. We give simple proofs of Hecke–Rogers indefinite binary theta
series identities for the two Ramanujan’s fifth order mock theta functions
χ0(q) and χ1(q) and all three of Ramanujan’s seventh order mock theta
functions. We find that the coefficients of the three mock theta functions
of order 7 are surprisingly related.
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1. Introduction

In his last letter to Hardy, Ramanujan described new functions that he called
mock theta functions and listed mock theta functions of order 3, 5, and 7.
Watson studied the behaviour of the third order functions under the modular
group, but was unable to find similar transformation properties for the fifth
and seventh order functions. The first substantial progress towards finding
such transformation properties was made by Andrews [1], who found double
sum representations for the fifth and seventh order functions. These double
sum representations were reminiscent of certain identities for modular forms
found by Hecke and Rogers. Andrews’ results for the fifth and seventh order
mock theta functions were crucial to Zwegers [14], who later showed how to
complete these functions to harmonic Maass forms. For more details on this
aspect, see Zagier’s survey [12].

The author was supported in part by a grant from the Simon’s Foundation (#318714).
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Throughout this paper, we use the following standard notation:

(a; q)∞ = (a)∞ =
∞∏

n=0

(1 − aqn),

(a; q)n = (a)n = (a; q)∞/(aqn; q)∞
(
= (1 − a)(1 − aq) · · · (1 − aqn−1) for n a nonnegative integer

)
.

Andrews [1] found Hecke–Rogers indefinite binary theta series identities
for all the fifth order mock theta functions except for the following two:

χ0(q) =
∞∑

n=0

qn

(qn+1; q)n
=

∞∑

n=0

qn (q)n
(q)2n

= 1 + q + q2 + 2 q3 + q4 + 3 q5 + 2 q6 + 3 q7 + · · · ,

and

χ1(q) =
∞∑

n=0

qn

(qn+1; q)n+1
=

∞∑

n=0

qn (q)n
(q)2n+1

= 1 + 2 q + 2 q2 + 3 q3 + 3 q4 + 4 q5 + 4 q6 + 6 q7 + · · · .

Zwegers [13] found triple sum identities for χ0(q) and χ1(q). Zagier [12] stated
indefinite binary theta series identities for these two functions but gave few
details. We find new Hecke–Rogers indefinite binary theta series identities for
these two functions. In Sect. 5, we compare our results with Zagier’s:

Theorem 1.1.

(q)∞(χ0(q) − 2)

=
∞∑

j=0

∑

−j≤3m≤j

sgn(m)(−1)m+j+1qj(3j+1)/2−m(15m+1)/2(1 − q2j+1)

+
∞∑

j=1

∑

−j−1≤3m≤j−1

sgn(m)(−1)m+j+1

× qj(3j+1)/2−m(15m+11)/2−1(1 − q2j+1), (1.1)

and

(q)∞χ1(q)

=
∞∑

j=1

∑

−j≤3m≤j−1

sgn(m)(−1)m+j+1qj(3j−1)/2−m(15m+7)/2−1(1 + qj)

+
∞∑

j=1

∑

−j−1≤3m≤j−2

sgn(m)(−1)m+j+1qj(3j−1)/2−m(15m+13)/2−2(1 + qj),

(1.2)

where

sgn(m) =

{
1, if m ≥ 0,

−1, if m < 0.
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Idea of Proof. We need the following conjugate Bailey pair (with a = q):

δn =
qn(q)n(q)∞

(1 − q)
,

γn =
∞∑

j=n+1

(−1)j+n+1qj(3j−1)/2−3n(n+1)/2−1(1 + qj).

The proof of this only uses Heine’s transformation [5, Eq. (III.I)] and an exer-
cise from Andrews’ book [2, Ex. 10, p. 29]. The rest of the proof of Theorem
1.1 uses this conjugate Bailey pair, the Bailey Transform, and Slater’s Bai-
ley pairs A(4) and A(2) (with a = q) [8, p. 463]. The necessary background
on conjugate Bailey pairs, Bailey pairs, and the Bailey Transform is given in
Sect. 2. In Sect. 3, the proof of Theorem 1.1 is completed.

Using the same conjugate Bailey pair and Slater’s A(7*), A(8), and A(6)
(with a = q) leads to new Hecke–Rogers indefinite binary theta series identities
for Ramanujan’s three seventh order mock theta functions. A(7*) is actually
a variant of A(7) adjusted to work with a = q instead of a = 1. The three
identities given below in Theorem 1.2 appear to be new. The following are
Ramanujan’s three seventh order mock theta functions:

F0(q) =
∞∑

n=0

qn
2

(qn+1; q)n

= 1 + q + q3 + q4 + q5 + 2 q7 + q8 + 2 q9 + · · · ,

F1(q) =
∞∑

n=1

qn
2

(qn; q)n

= q + q2 + q3 + 2 q4 + q5 + 2 q6 + 2 q7 + 2 q8 + · · · ,

F2(q) =
∞∑

n=0

qn
2+n

(qn+1; q)n+1

= 1 + q + 2 q2 + q3 + 2 q4 + 2 q5 + 3 q6 + 2 q7 + · · · .

We have the following theorem:

Theorem 1.2.

(q)∞F0(q)

=
∞∑

j=1

∑

−j≤3m≤j−1

sgn(m)(−1)m+j+1qj(3j−1)/2−m(21m+13)/2−1

× (1 + qj)(1 − q6m+1), (1.3)
(q)∞F1(q)

=

∞∑

j=1

∑

−j≤3m≤j−1

sgn(m)(−1)m+j+1qj(3j−1)/2−m(21m+5)/2(1 + qj)

+
∞∑

j=2

∑

−j−1≤3m≤j−2

sgn(m)(−1)m+j+1

× qj(3j−1)/2−m(21m+19)/2−2(1 + qj), (1.4)
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(q)∞F2(q)

=

∞∑

j=1

∑

−j≤3m≤j−1

sgn(m)(−1)m+j+1qj(3j−1)/2−m(21m+11)/2−1(1 + qj)

+
∞∑

j=2

∑

−j−1≤3m≤j−2

sgn(m)(−1)m+j+1

× qj(3j−1)/2−m(21m+17)/2−2(1 + qj). (1.5)

We prove this theorem in Sect. 4. In his last letter to Hardy, all that
Ramanujan said about the seventh order functions was that they were not
related to each other. Surprisingly, we show that the coefficients of the three
seventh order functions are indeed related, although this is probably not the
kind of relationship that Ramanujan had in mind. For example, we find for
n ≥ 0 that

f0(25n + 8) = f2(n), (1.6)

f1(25n + 1) = f0(n), (1.7)

f2(25n − 3) = −f1(n), (1.8)

where we define fj(n) by
∞∑

n=0

fj(n)qn = (q)∞ Fj(q),

for j = 0, 1, 2. This and more general results including analogous results for
the fifth order functions are proved in Sect. 5.

2. The Bailey Transform and Conjugate Bailey Pairs

Theorem 2.1. (The Bailey Transform). Subject to suitable convergence condi-
tions, if

βn =
n∑

r=0

αrun−rvn+r, and γn =
∞∑

r=n

δrur−nvr+n, (2.1)

then
∞∑

n=0

αnγn =
∞∑

n=0

βnδn. (2.2)

When applying his transform, Bailey [4] chose un = 1/(q)n and vn =
1/(aq; q)n. This motivates the following definitions:

Definition 2.2. A pair of sequences (αn, βn) is a Bailey pair relative to (a, q)
if

βn =
n∑

r=0

αr

(q)n−r(aq)n+r
, (2.3)

for n ≥ 0.
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Definition 2.3. A pair of sequences (γn, δn) is a conjugate Bailey pair relative
to (a, q) if

γn =
∞∑

r=n

δr
(q)r−n(aq)r+n

, (2.4)

for n ≥ 0.

The basic idea is to find a suitable conjugate Bailey pair and apply the
Bailey Transform using known Bailey pairs.

Theorem 2.4. The sequences

δn =
qn(q)n(q)∞

(1 − q)
, (2.5)

γn =
∞∑

j=n+1

(−1)j+n+1qj(3j−1)/2−3n(n+1)/2−1(1 + qj), (2.6)

form a conjugate Bailey pair relative to (q, q), i.e., a = q.

Remark 2.5. We note that this result can be deduced from a special case of a
result of Lovejoy [7, Thm 1.1(4), p. 53]. We give a simple proof that uses only
Heine’s transformation and a combinatorial result of Andrews [2, Ex. 10, p.
29].

Proof of Theorem 2.4. We let

δn = (q)n(q)∞
qn

(1 − q)
,

and

γn =
∞∑

r=n

δr
(q)r−n(q2; q)r+n

= (q)∞
∞∑

r=n

(q)rqr

(q)r−n(q; q)r+n+1
.

We must show that γn is given by (2.6). Note that
∞∑

r=n

(q)rqr

(q)r−n(q; q)r+n+1

=
∞∑

r=0

(q)r+nqr+n

(q)r(q)r+2n+1

= qn
(q)n

(q)2n+1

∞∑

r=0

(qn+1; q)rqr

(q)r(q2n+2; q)r

= qn
(q)n

(q)2n+1
2φ1

[
0, qn+1

q2n+2
; q, q

]

= qn
(q)n

(q)2n+1

(qn+1; q)∞
(q2n+2; q)∞(q)∞

2φ1

[
qn+1, q

0
; q, qn+1

]

= qn
1

(q)∞

∞∑

j=0

(qn+1; q)jq(n+1)j ,
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by Heine’s transformation [5, Eq. (III.I)], so that

γn = qn
∞∑

j=0

(qn+1; q)jq(n+1)j . (2.7)

From Andrews [2, Ex. 10, p. 29], we have:
∞∑

j=0

(xq)jxj+1qj+1 =
∞∑

m=1

(−1)m−1qm(3m−1)/2x3m−2(1 + xqm). (2.8)

Using (2.7) and (2.8) with x = qn, we have:

γn = qn
∞∑

j=0

(qn+1; q)jq(n+1)j

=
∞∑

m=1

(−1)m−1qm(3m−1)/2+n(3m−2)−1(1 + qm+n)

=
∞∑

m=n+1

(−1)m+n+1qm(3m−1)/2−3n(n+1)/2−1(1 + qm),

as required. We note that Subbarao [9] gave a combinatorial proof of (2.8)
using a variant of Franklin’s involution [2, pp. 10–11]. �

3. Proof of Theorem 1.1

To prove Theorem 1.1, we will apply the Bailey Transform, with un = 1/(q)n,
vn = 1/(q2; q)n, using the conjugate Bailey pair in Theorem 2.4, and Slater’s
Bailey pairs A(4) and A(2). By [8, p. 463], the following gives Slater’s A(4)
Bailey pair relative to (q, q):

βn =
qn

(q2; q)2n
, αn =

⎧
⎪⎪⎨

⎪⎪⎩

q6m
2−4m, if n = 3m − 1,

q6m
2+4m, if n = 3m,

−q6m
2+8m+2 − q6m

2+4m, if n = 3m + 1.

(3.1)

By [11, Eq. (A0), p. 278], we have:

χ0(q) =
∞∑

n=0

qn

(qn+1; q)n

= 1 +
∞∑

n=0

q2n+1

(qn+1; q)n+1

= 1 + q

∞∑

n=0

qn

(q2; q)2n
· qn(q)n
(1 − q)

= 1 +
q

(q)∞

∞∑

n=0

βnδn,
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where δn is given in (2.5). Thus, by the Bailey Transform and (3.1), we have:

(q)∞ (χ0(q) − 1)

= q

∞∑

n=0

βnδn

= q

∞∑

n=0

αnγn

=
∞∑

m=1

∞∑

j=3m

(−1)m+jqj(3j−1)/2−m(15m−1)/2(1 + qj)

+
∞∑

m=0

∞∑

j=3m+1

(−1)m+j+1qj(3j−1)/2−m(15m+1)/2(1 + qj)

+
∞∑

m=0

∞∑

j=3m+2

(−1)m+j+1
{

qj(3j−1)/2−m(15m+11)/2−1

+ qj(3j−1)/2−m(15m+19)/2−3
}

(1 + qj)

=
∞∑

j=1

∑

−j≤3m≤j−1

sgn(m)(−1)m+j+1qj(3j−1)/2−m(15m+1)/2(1 + qj)

+
∞∑

j=2

∑

−j−1≤3m≤j−2

sgn(m)(−1)m+j+1

× qj(3j−1)/2−m(15m+11)/2−1(1 + qj), (3.2)

by noting that

−(−m − 1)(15(−m − 1) + 19)/2 − 3 = −m(15m + 11)/2 − 1.

Now, from Euler’s Pentagonal Number Theorem [2, p. 11], we have:

(q)∞ =
∞∑

n=−∞
(−1)nqn(3n−1)/2 =

∞∑

m=−∞
q6m

2+m −
∞∑

m=−∞
q6m

2+5m+1. (3.3)

By (3.2) and (3.3), we have:

(q)∞ (χ0(q) − 2)

= (q)∞ (χ0(q) − 1) − (q)∞

=
∞∑

j=1

∑

−j≤3m≤j−1

sgn(m)(−1)m+j+1qj(3j−1)/2−m(15m+1)/2(1 + qj)

+
∞∑

j=1

∑

−j−1≤3m≤j−2

sgn(m)(−1)m+j+1qj(3j−1)/2−m(15m+11)/2−1(1 + qj)

−
∞∑

m=−∞
q6m

2+m +
∞∑

m=−∞
q6m

2+5m+1
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=
∞∑

j=1

∑

−j+1≤3m≤j−1

sgn(m)(−1)m+j+1qj(3j−1)/2−m(15m+1)/2

+
∞∑

j=0

∑

−j≤3m≤j

sgn(m)(−1)m+j+1qj(3j+1)/2−m(15m+1)/2

+
∞∑

j=2

∑

−j≤3m≤j−2

sgn(m)(−1)m+j+1qj(3j−1)/2−m(15m+11)/2−1

+
∞∑

j=1

∑

−j−1≤3m≤j−1

sgn(m)(−1)m+j+1qj(3j+1)/2−m(15m+11)/2−1.

On the right side of the last equation above, replace j by j +1 in the first and
third double sums to obtain:

(q)∞(χ0(q) − 2)

=
∞∑

j=0

∑

−j≤3m≤j

sgn(m)(−1)m+j+1qj(3j+1)/2−m(15m+1)/2(1 − q2j+1)

+
∞∑

j=1

∑

−j−1≤3m≤j−1

sgn(m)(−1)m+j+1

× qj(3j+1)/2−m(15m+11)/2−1(1 − q2j+1),

which is (1.1).
To prove (1.2), we need Slater’s [8, p. 463] A(2) Bailey pair relative to

(q, q):

βn =
1

(q2; q)2n
, αn =

⎧
⎪⎪⎨

⎪⎪⎩

q6m
2−m, if n = 3m − 1,

q6m
2+m, if n = 3m,

−q6m
2+5m+1 − q6m

2+7m+2, if n = 3m + 1.

(3.4)

We have:

χ1(q) =
∞∑

n=0

qn

(qn+1; q)n+1

=
∞∑

n=0

qn(q)n
(q)2n+1

=
∞∑

n=0

1
(q2; q)2n

· qn(q)n
(1 − q)

=
1

(q)∞

∞∑

n=0

βnδn.

By the Bailey Transform and (3.4), we have:
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(q)∞χ1(q)

=
∞∑

n=0

βnδn =
∞∑

n=0

αnγn

=
∞∑

m=1

∞∑

j=3m

(−1)m+jqj(3j−1)/2−m(15m−7)/2−1(1 + qj)

+
∞∑

m=0

∞∑

j=3m+1

(−1)m+j+1qj(3j−1)/2−m(15m+7)/2−1(1 + qj)

+
∞∑

m=0

∞∑

j=3m+2

(−1)m+j+1
{

qj(3j−1)/2−m(15m+17)/2−3

+ qj(3j−1)/2−m(15m+13)/2−2
}

(1 + qj)

=
∞∑

j=1

∑

−j≤3m≤j−1

sgn(m)(−1)m+j+1qj(3j−1)/2−m(15m+7)/2−1(1 + qj)

+
∞∑

j=1

∑

−j−1≤3m≤j−2

sgn(m)(−1)m+j+1qj(3j−1)/2−m(15m+13)/2−2(1 + qj),

(3.5)

by noting that

−(−m − 1)(15(−m − 1) + 17)/2 − 3 = −m(15m + 13)/2 − 2.

This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

To prove Theorem 1.2, we proceed as in Sect. 3. This time we need Slater’s
Bailey pairs A(6) and A(8), and a variant of her Bailey pair A(7).

From [8, Eq. (3.4), p. 464], we have:

qn
2−n

(q)2n
=

[n/3]∑

r=−[(n+1)/3]

(1 − q6r+1)q3r
2−2r

(q)n+3r+1(q)n−3r

=
[n/3]∑

r=0

(1 − q6r+1)q3r
2−2r

(q)n−3r(q)n+3r+1
+

[(n+1)/3]∑

r=1

(1 − q−6r+1)q3r
2+2r

(q)n+3r(q)n+1−3r

=
[(n+1)/3]∑

r=1

q3r
2+2r − q3r

2−4r+1

(q)n−(3r−1)(q)n+(3r−1)+1
+

[n/3]∑

r=0

q3r
2−2r − q3r

2+4r+1

(q)n−3r(q)n+3r+1
,

so that

(1 − q)qn
2−n

(q)2n
=

[(n+1)/3]∑

r=1

q3r
2+2r − q3r

2−4r+1

(q)n−(3r−1) (q2; q)n+(3r−1)

+
[n/3]∑

r=0

q3r
2−2r − q3r

2+4r+1

(q)n−3r (q2; q)n+3r

.
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This implies the following Bailey pair relative to (q, q):

βn =
(1 − q)qn

2−n

(q)2n
, αn =

⎧
⎪⎪⎨

⎪⎪⎩

q3m
2+2m − q3m

2−4m+1, if n = 3m − 1,

q3m
2−2m − q3m

2+4m+1, if n = 3m,

0, if n = 3m + 1.

(4.1)

We note that this Bailey pair was found by Warnaar [10, p. 375] using a
different method. We have:

F0(q) =
∞∑

n=0

qn
2

(qn+1; q)n

=
∞∑

n=0

(1 − q)qn
2−n

(q)2n
· qn(q)n
(1 − q)

=
1

(q)∞

∞∑

n=0

βnδn.

Thus, by the Bailey Transform and (4.1), we have:

(q)∞F0(q)

=
∞∑

n=0

βnδn =
∞∑

n=0

αnγn

=
∞∑

m=1

∞∑

j=3m

(−1)m+jqj(3j−1)/2−m(21m−13)/2−1(1 + qj)

+
∞∑

m=1

∞∑

j=3m

(−1)m+j+1qj(3j−1)/2−m(21m−1)/2(1 + qj)

+
∞∑

m=0

∞∑

j=3m+1

(−1)m+j+1qj(3j−1)/2−m(21m+13)/2−1(1 + qj)

+
∞∑

m=0

∞∑

j=3m+1

(−1)m+jqj(3j−1)/2−m(21m+1)/2(1 + qj)

=
∞∑

j=1

∑

−j≤3m≤j−1

sgn(m)(−1)m+j+1qj(3j−1)/2−m(21m+13)/2−1(1 + qj)

+
∞∑

j=1

∑

−j≤3m≤j−1

sgn(m)(−1)m+jqj(3j−1)/2−m(21m+1)/2(1 + qj)

=
∞∑

j=1

∑

−j≤3m≤j−1

sgn(m)(−1)m+j+1qj(3j−1)/2−m(21m+13)/2−1

× (1 + qj)(1 − q6m+1), (4.2)

which is (1.3).
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To prove (1.4), we need Slater’s [8, p. 463] A(8) Bailey pair relative to
(q, q):

βn =
qn

2+n

(q2; q)2n
, αn =

⎧
⎪⎪⎨

⎪⎪⎩

q3m
2−2m, if n = 3m − 1,

q3m
2+2m, if n = 3m,

−q3m
2+4m+1 − q3m

2+2m, if n = 3m + 1.

(4.3)

We have

F1(q) =
∞∑

n=1

qn
2

(qn; q)n

= q
∞∑

n=0

qn
2+2n

(qn+1; q)n+1

= q

∞∑

n=0

qn
2+n

(q2; q)2n
· qn(q)n
(1 − q)

=
q

(q)∞

∞∑

n=0

βnδn.

Thus, by the Bailey Transform and (4.3), we have:

(q)∞F1(q)

=
∞∑

n=0

βnδn =
∞∑

n=0

αnγn

=
∞∑

m=1

∞∑

j=3m

(−1)m+jqj(3j−1)/2−m(21m−5)/2(1 + qj)

+
∞∑

m=0

∞∑

j=3m+1

(−1)m+j+1qj(3j−1)/2−m(21m+5)/2(1 + qj)

+
∞∑

m=0

∞∑

j=3m+2

(−1)m+j+1
{

qj(3j−1)/2−m(21m+19)/2−2(1 + qj)

+ qj(3j−1)/2−m(21m+23)/2−3(1 + qj)
}

=
∞∑

j=1

∑

−j≤3m≤j−1

sgn(m)(−1)m+j+1qj(3j−1)/2−m(21m+5)/2(1 + qj)

+
∞∑

j=2

∑

−j−1≤3m≤j−2

sgn(m)(−1)m+j+1qj(3j−1)/2−m(21m+19)/2−2(1 + qj),

(4.4)

which is (1.4).
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To prove (1.5), we need Slater’s [8, p. 463] A(6) Bailey pair relative to
(q, q):

βn =
qn

2

(q2; q)2n
, αn =

⎧
⎪⎪⎨

⎪⎪⎩

q3m
2+m, if n = 3m − 1,

q3m
2−m, if n = 3m,

−q3m
2+m − q3m

2+5m+2, if n = 3m + 1.

(4.5)

We have

F2(q) =
∞∑

n=0

qn
2+n

(qn+1; q)n+1

=
∞∑

n=0

qn
2

(q2; q)2n
· qn(q)n
(1 − q)

=
1

(q)∞

∞∑

n=0

βnδn.

Thus, by the Bailey Transform and (4.5), we have:

(q)∞F2(q)

=
∞∑

n=0

βnδn =
∞∑

n=0

αnγn

=
∞∑

m=1

∞∑

j=3m

(−1)m+jqj(3j−1)/2−m(21m−11)/2−1(1 + qj)

+
∞∑

m=0

∞∑

j=3m+1

(−1)m+j+1qj(3j−1)/2−m(21m+11)/2−1(1 + qj)

+
∞∑

m=0

∞∑

j=3m+2

(−1)m+j+1
{

qj(3j−1)/2−m(21m+25)/2−4(1 + qj)

+qj(3j−1)/2−m(21m+17)/2−2(1 + qj)
}

=
∞∑

j=1

∑

−j≤3m≤j−1

sgn(m)(−1)m+j+1qj(3j−1)/2−m(21m+11)/2−1(1 + qj)

+
∞∑

j=2

∑

−j−1≤3m≤j−2

sgn(m)(−1)m+j+1qj(3j−1)/2−m(21m+17)/2−2(1 + qj),

(4.6)

which is (1.5). This completes the proof of Theorem 1.2.

5. Zagier’s Mock Theta Function Identities and Related Results

In this section, we write our double-series identities for the two fifth order
functions χ0(q) and χ1(q) and all three seventh order functions Fj(q) (j =
0, 1, 2) using Dirichlet characters. This leads naturally to relations between
the coefficients of these series as in Theorems 5.5 and 5.6.

As mentioned before, Andrews [1] obtained indefinite theta series identi-
ties for all of Ramanujan’s fifth order functions except χ0(q) and χ1(q). Using
Andrews’ results, Zwegers [14] showed how to complete all of Andrews’ fifth
order functions to weak harmonic Maass forms. As noted by Watson [11, pp.
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277–279], Ramanujan gave identities for χ0(q) and χ1(q) in terms of the other
fifth order functions. Zagier suggested that indefinite theta function identities
for χ0(q) and χ1(q) could be obtained from Ramanujan’s results and Zwegers’
transformation formulas, although he gave no details. We state Zagier’s results
in a modified form in the following:

Theorem 5.1.

(q)∞(2 − χ0(q)) =
∑

5|b|<|a|
a+b≡2 (mod 4)
a≡2 (mod 5)

(−1)asgn(a)
( −3

a2 − b2

)
q

1
120 (a

2−5b2)− 1
30 ,

and

(q)∞χ1(q) =
∑

5|b|<|a|
a+b≡2 (mod 4)
a≡4 (mod 5)

(−1)asgn(a)
( −3

a2 − b2

)
q

1
120 (a

2−5b2)− 19
30 .

Remark 5.2. Here,
(−3

·
)

is the Kronecker symbol, and is a Dirichlet character
mod 3.

Our Theorem 1.1 seems to differ from Zagier’s theorem. In contrast to
Zagier’s theorem which involves a character mod 3, our version involves the
Dirichlet character mod 60:

χ60(m) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if m ≡ 1, 11, 19, 29 (mod 60),

i, if m ≡ 7, 13, 17, 23 (mod 60),

−1, if m ≡ 31, 41, 49, 59 (mod 60),

−i, if m ≡ 37, 43, 47, 53 (mod 60) :

Theorem 5.3.

(q)∞(2 − χ0(q)) =
∑

3|b|<5|a|
a≡1 (mod 6)

b≡1,11 (mod 30)

sgn(b)
(

12
a

)
χ60(b)q

1
120 (5a

2−b2)− 1
30 , (5.1)

and

(q)∞χ1(q) = i
∑

3|b|<5|a|
a≡b≡1 (mod 6)
b≡±2 (mod 5)

sgn(b)
(

12
a

)
χ60(b)q

1
120 (5a

2−b2)− 19
30 . (5.2)

We find analogous identities for the seventh order functions. Also An-
drews [1] obtained indefinite theta series identities for these functions. Hicker-
son [6, Theorem 2.0, p. 666] found nice versions of Andrews’ identities, which
he used to prove his seventh order analogs of Ramanujan’s mock theta conjec-
tures [3] for the fifth order functions. Our identities differ from Andrews’ and
Hickerson’s and appear to be new:
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Theorem 5.4.

(q)∞F0(q) =
∑

3|b|<7|a|
a≡1 (mod 6)

b≡1,13 (mod 42)

sgn(b)
(

12
a

)(
12
b

)(
b

7

)
q

1
168 (7a

2−b2)− 1
28 , (5.3)

(q)∞F1(q) = −
∑

3|b|<7|a|
a≡1 (mod 6)

b≡5,19 (mod 42)

sgn(b)
(

12
a

)(
12
b

)(
b

7

)
q

1
168 (7a

2−b2)+ 3
28 , (5.4)

and

(q)∞F2(q) = −
∑

3|b|<7|a|
a≡1 (mod 6)

b≡11,17 (mod 42)

sgn(b)
(

12
a

)(
12
b

)(
b

7

)
q

1
168 (7a

2−b2)− 9
28 .(5.5)

We sketch the proof of (5.2). First, we observe that:
1
2j(3j ± 1) − 1

2m(15m + 7) − 1 = 1
120

(
5(6j ± 1)2 − (30m + 7)2

) − 19
30 ,

1
2j(3j ± 1) − 1

2m(15m + 13) − 2 = 1
120

(
5(6j ± 1)2 − (30m + 13)2

) − 19
30 .

In the summations in Eq. (5.2), we let a = 6(±j) + 1, and b = 30m + r, where
j ≥ 1, m ∈ Z, and r = 7, 13. We have:

(
12
a

)
=

(
12

6(±j) + 1

)
= (−1)j ,

iχ60(b) = iχ60(30m + r) = (−1)m+1,

sgn(b) = sgn(30m + r) = sgn(m).

Next, we consider the inequalities for the variables in the summations.

Case 1

m ≥ 0 and r = 7. Then, we see that

3|b| < 5|a| ⇔ 3m < j +
(±5 − 21

30

)
⇔ 3m ≤ j − 1.

Case 2

m < 0 and r = 7. Then, we see that

3|b| < 5|a| ⇔ −j < 3m +
(±5 + 21

30

)
⇔ −j ≤ 3m.

Case 3

m ≥ 0 and r = 13. Then, we see that

3|b| < 5|a| ⇔ 3m < j +
(±5 − 39

30

)
⇔ 3m ≤ j − 2.
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Case 4

m < 0 and r = 13. Then, we see that

3|b| < 5|a| ⇔ −j +
(−39 ± 5

30

)
< 3m ⇔ −j − 1 ≤ 3m.

It follows that
∞∑

j=1

∑

−j≤3m≤j−1

sgn(m)(−1)m+j+1qj(3j−1)/2−m(15m+7)/2−1(1 + qj)

= i
∑

3|b|<5|a|
a≡1 (mod 6)
b≡7 (mod 30)

sgn(b)
(

12
a

)
χ60(b)q

1
120 (5a

2−b2)− 19
30 ,

and
∞∑

j=1

∑

−j−1≤3m≤j−2

sgn(m)(−1)m+j+1qj(3j−1)/2−m(15m+13)/2−2(1 + qj)

= i
∑

3|b|<5|a|
a≡1 (mod 6)

b≡13 (mod 30)

sgn(b)
(

12
a

)
χ60(b)q

1
120 (5a

2−b2)− 19
30 .

Therefore, we see that Eq. (1.2) implies (5.2). The proofs of the remaining
parts of Theorems 5.3 and 5.4 are analogous.

Theorems 5.3 and 5.4 imply simple relations between the coefficients. We
define the coefficients C0(n) and C1(n) by:

∞∑

n=0

C0(n)qn = (q)∞ (2 − χ0(q)),

∞∑

n=0

C1(n)qn = (q)∞ χ1(q),

define

εp =

{
−1, if p ≡ 3 (mod 10),
1, if p ≡ 7 (mod 10),

(5.6)

and, for an integer n and a prime p, define νp(n) to be the exact power of p
dividing n.

Theorem 5.5. If p > 5 is any prime congruent to 3 or 7 modulo 10, then

C0(n) = 0, if νp(30n + 1) = 1, (5.7)

C0(p2n + 1
30 (19p2 − 1)) = −εp C1(n), for n ≥ 0, (5.8)

C1(n) = 0, if νp(30n + 19) = 1, (5.9)

C1(p2n + 1
30 (p2 − 19)) = εp C0(n), for n ≥ 0. (5.10)
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Proof. Suppose p > 5 is any prime congruent to 3 or 7 mod 10. Then, 5 is
a quadratic nonresidue mod p. Therefore 5a2 − b2 ≡ 0 (mod p) implies that
a ≡ b ≡ 0 (mod p) and (5.7) clearly follows from (5.1). Similarly, (5.9) follows
from (5.2).

We suppose a ≡ 1 (mod 6), b ≡ 1, 11 (mod 30), 3|b| < 5|a|, and a ≡ b ≡
0 (mod p). Letting a = pa′, b = pb′, we have the following table:

p (mod 30) a′ (mod 6) b′ (mod 30)
7 1 13,−7
13 1 7,−13
17 −1 −7, 13
23 −1 −13, 7

By considering the table and noting that the summation term:

sgn(b)
(

12
a

)
χ60(b)q

1
120 (5a

2−b2)− 1
30

is invariant under both a �→ −a and b �→ −b, we see that
∞∑

n=0

C0(p2n + 1
30 (19p2 − 1)) qp

2n+
1
30 (19p

2−1)

=
∑

3|b′|<5|a′|
a′≡1 (mod 6)

b′≡7,13 (mod 30)

sgn(pb′)
(

12
pa′

)
χ60(pb′)q

1
120 (p

2(5(a′)2−(b′)2))− 1
30

=
(

12
p

)
χ60(p)

∑

3|b|<5|a|
a≡1 (mod 6)

b≡7,13 (mod 30)

sgn(b)
(

12
a

)
χ60(b)q

1
120 (p

2(5a2−b2))− 1
30

and
∞∑

n=0

C0(p2n + 1
30 (19p2 − 1)) qn

= −i εp
∑

3|b|<5|a|
a≡1 (mod 6)

b≡7,13 (mod 30)

sgn(b)
(

12
a

)
χ60(b)q

1
120 (5a

2−b2)− 19
30

= −εp(q)∞ χ1(q) = −εp

∞∑

n=0

C1(n)qn,

and (5.8) follows. The proof of (5.10) is analogous. �
In a similar fashion, Theorem 5.4 implies relations between the coefficients

of the seventh order mock theta functions. For j = 0, 1, and 2, we define fj(n)
by:

∞∑

n=0

fj(n)qn = (q)∞ Fj(q).
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Theorem 5.6. Let p be any prime for which 7 is a quadratic nonresidue modulo
p, i.e., p ≡ ±5,±11 or ±13 (mod 28).

1. Then

f0(n) = 0, if νp(28n + 1) = 1,

f1(n) = 0, if νp(28n − 3) = 1,

f2(n) = 0, if νp(28n + 9) = 1.

2. If p ≡ ±5 (mod 28), then

f0(p2n + 1
28 (9p2 − 1)) = ±f2(n),

f1(p2n + 1
28 (p2 + 3)) = ±f0(n),

f2(p2n + 1
28 (25p2 − 9)) = ∓f1(n + 1).

3. If p ≡ ±11 (mod 28), then

f0(p2n + 1
28 (25p2 − 1)) = ∓f1(n + 1),

f1(p2n + 1
28 (9p2 + 3)) = ±f2(n),

f2(p2n + 1
28 (p2 − 9)) = ∓f0(n).

4. If p ≡ ±13 (mod 28), then

f0(p2n + 1
28 (p2 − 1)) = ∓f0(n),

f1(p2n + 1
28 (25p2 + 3)) = ∓f1(n + 1),

f2(p2n + 1
28 (9p2 − 9)) = ∓f2(n).

We omit the proof of Theorem 5.6. The proof is analogous to that of
Theorem 5.5.

6. Concluding Remarks

In Theorems 5.3 and 5.4, we found new identities for the fifth order mock
theta functions χ0(q), χ1(q) and all three seventh order mock theta functions
F0(q), F1(q), F2(q), in terms of Hecke–Rogers indefinite binary theta series.
This suggests the problem of relating these theorems directly to the results
of Zagier (Theorem 5.1) for the fifth order functions, and to the results of
Andrews [1, Theorem 13, p. 132–133] and Hickerson [6, Theorem 2.0, p. 666]
for the seventh order functions.
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Abstract. The class of permutations that avoid the bivincular pattern
(231, {1}, {1}) is known to be enumerated by the Fishburn numbers. In
this paper, we call them Fishburn permutations and study their pattern
avoidance. For classical patterns of size 3, we give a complete enumera-
tive picture for regular and indecomposable Fishburn permutations. For
patterns of size 4, we focus on a Wilf equivalence class of Fishburn permu-
tations that are enumerated by the Catalan numbers. In addition, we also
discuss a class enumerated by the binomial transform of the Catalan num-
bers and give conjectures for other equivalence classes of pattern-avoiding
Fishburn permutations.
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1. Introduction

Motivated by a recent paper by Andrews and Sellers [1], we became interested
in the Fishburn numbers ξ(n), defined by the formal power series

∞∑

n=0

ξ(n)qn = 1 +
∞∑

n=1

n∏

j=1

(1 − (1 − q)j).

They are listed as Sequence A022493 in [7] and have several combinatorial
interpretations. For example, ξ(n) gives the:

� number of linearized chord diagrams of degree n,
� number of unlabeled (2 + 2)-free posets on n elements,
� number of ascent sequences of length n,

431
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Table 1. σ-avoiding Fishburn permutations

Pattern σ |Fn(σ)| OEIS

123, 132, 213, 312 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, . . . A000079
231 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . . A000108
321 1, 2, 4, 9, 22, 57, 154, 429, 1223, 3550, . . . A105633

� number of permutations in Sn that avoid a certain bivincular pattern. 1

For more information on these interpretations, we refer the reader to [2] and
the references therein.

In this note, we are primarily concerned with the aforementioned class of
permutations. That they are enumerated by the Fishburn numbers was proved
in [2] by Bousquet-Mélou, Claesson, Dukes, and Kitaev, where the authors
introduced bivincular patterns (permutations with restrictions on the adja-
cency of positions and values) and gave a bijection to ascent sequences. More
specifically, a permutation π ∈ Sn is said to contain the bivincular pattern
(231, {1}, {1}) if there are positions i < k with π(i) > 1, π(k) = π(i) − 1, such
that the subsequence π(i)π(i + 1)π(k) forms a 231 pattern. Such a bivincular
pattern may be visualized by the plot

where bold lines indicate adjacent entries and gray lines indicate an elastic
distance between the entries.

We let Fn denote the class of permutations in Sn that avoid the pattern

, and since |Fn| = ξ(n) (see [2]), we call the elements of F =
⋃

n Fn

Fishburn permutations. Further, we let Fn(σ) denote the class of Fishburn
permutations in Fn that avoid the pattern σ.

Our goal is to study Fn(σ) = |Fn(σ)| for classical patterns of size 3
or 4. In Sect. 2, we give a complete picture for regular and indecomposable
Fishburn permutations that avoid a classical pattern of size 3. Table 1 and
Table 2 provide a summary of our findings. In Sect. 3, we discuss patterns
of size 4, focusing on a Wilf equivalence class of Fishburn permutations that
are enumerated by the Catalan numbers Cn (see Table 4). We also prove the
formula Fn(1342) =

∑n
k=1

(
n−1
k−1

)
Cn−k, and conjecture two other equivalence

classes (see Table 3). Finally, in Sect. 4, we briefly discuss indecomposable
Fishburn permutations that avoid a pattern of size 4. In Table 5, we make
some conjectures based on preliminary computations.

1Sn denotes the set of permutations on [n] = {1, . . . , n}.
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Table 2. σ-avoiding indecomposable Fishburn permutations

Pattern σ |F ind
n (σ)| OEIS

123 1, 1, 2, 5, 12, 27, 58, 121, 248, 503, . . . A000325
132, 213 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, . . . A000079
231 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . . A000108
312 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . A000012
321 1, 1, 1, 2, 5, 13, 35, 97, 275, 794, . . . A082582

Table 3. Equivalence classes with a single pattern

Pattern σ |Fn(σ)| OEIS

1342 1, 2, 5, 15, 51, 188, 731, 2950, . . . A007317
1432 1, 2, 5, 14, 43, 142, 495, 1796, . . .
2314 1, 2, 5, 15, 52, 200, 827, 3601, . . .
2341 1, 2, 5, 15, 52, 202, 858, 3910, . . .
3412 1, 2, 5, 15, 52, 201, 843, 3764, . . . A202062(?)
3421 1, 2, 5, 15, 52, 203, 874, 4076, . . .
4123 1, 2, 5, 14, 42, 133, 442, 1535, . . .
4231 1, 2, 5, 15, 52, 201, 843, 3765, . . .
4312 1, 2, 5, 14, 43, 143, 508, 1905, . . .
4321 1, 2, 5, 14, 45, 162, 639, 2713, . . .

Table 4. Catalan equivalent class

Pattern σ |Fn(σ)| OEIS

1234, 1243, 1324, 1423,
2134, 2143, 3124, 3142

1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . . A000108

Basic notation. Permutations will be written in one-line notation. Given two
permutations σ and τ of sizes k and �, respectively, their direct sum σ ⊕ τ is
the permutation of size k + � consisting of σ followed by a shifted copy of τ .
Similarly, their skew sum σ � τ is the permutation consisting of τ preceded by
a shifted copy of σ. For example, 312 ⊕ 21 = 31254 and 312 � 21 = 53421.

A permutation is said to be indecomposable if it cannot be written as a
direct sum of two nonempty permutations.

Avn(σ) denotes the class of permutations in Sn that avoid the pattern σ.
It is well known that if σ ∈ S3 then |Avn(σ)| = Cn, where Cn is the Catalan
number 1

n+1

(
2n
n

)
, see e.g. [4].
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Table 5. Some σ-avoiding indecomposable classes

Pattern σ |F ind
n (σ)| OEIS

1234 1, 1, 2, 6, 22, 85, 324, 1204, . . .
1243, 2134 1, 1, 2, 6, 21, 75, 266, 938, . . . A289597(?)
1324 1, 1, 2, 6, 22, 84, 317, 1174, . . .
1342 1, 1, 2, 6, 22, 88, 367, 1568, . . . A165538
1423, 3124 1, 1, 2, 6, 20, 68, 233, 805, . . . A279557
1432 1, 1, 2, 6, 20, 71, 263, 1002, . . .
2143 1, 1, 2, 6, 19, 62, 207, 704, . . . A026012
2314 1, 1, 2, 6, 23, 99, 450, 2109, . . .
2341 1, 1, 2, 6, 22, 91, 409, 1955, . . .
2413, 2431, 3241 1, 1, 2, 6, 22, 90, 395, 1823, . . . A165546(?)
3142 1, 1, 2, 5, 14, 42, 132, 429, . . . A000108
3214 1, 1, 2, 6, 20, 72, 275, 1096, . . .
3412 1, 1, 2, 6, 22, 90, 396, 1840, . . .
3421 1, 1, 2, 6, 22, 92, 423, 2088, . . .
4123 1, 1, 2, 5, 14, 43, 143, 507, . . .
4132, 4213 1, 1, 2, 5, 15, 51, 188, 732, . . .
4231 1, 1, 2, 6, 22, 90, 396, 1841, . . .
4312 1, 1, 2, 5, 15, 51, 188, 733, . . .
4321 1, 1, 2, 5, 17, 66, 279, 1256, . . .

2. Avoiding Patterns of Size 3

Clearly, Avn(231) ⊂ Fn. Now, since every Fishburn permutation that avoids
the classical pattern 231 is contained in the set of 231-avoiding permutations,
we get

Fn(231) = Avn(231), and so Fn(231) = Cn. (2.1)

Enumeration of the Fishburn permutations that avoid the other five classical
patterns of size 3 is less obvious.

Theorem 2.1. For σ ∈ {123, 132, 213, 312}, we have Fn(σ) = 2n−1.

Proof. First of all, note that for every σ of size 3, we have F1(σ) = 1 and
F2(σ) = 2.

Case σ = 132: If π ∈ Fn−1(132), the permutations 1�π and π⊕1 are both in
Fn(132). On the other hand, if τ is a permutation in Avn(132) with τ(i) = n
for some 1 < i < n, then we must have τ(j) > τ(k) for every j ∈ {1, . . . , i− 1}
and k ∈ {i+1, . . . , n}. Thus, n− i = τ(k′) for some k′ > i and n− i+1 = τ(j′)
for some j′ < i. But this violates the Fishburn condition since n − i + 1 is
the smallest value to the left of n and must, therefore, be part of an ascent
in τ(1) · · · τ(i − 1)n. In other words, Fn(132) is the disjoint union of the sets
{1 � π : π ∈ Fn−1(132)} and {π ⊕ 1 : π ∈ Fn−1(132)}. Thus

Fn(132) = 2Fn−1(132)
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for n > 1,which implies Fn(132) = 2n−1.

Case σ = 123: For n > 2, the permutation (n − 1)(n − 2) · · · 21n is the
only permutation in Fn(123) that ends with n, and if π ∈ Fn−1(123), then
1 � π ∈ Fn(123).

Assume τ ∈ Fn(123) is such that τ(i) = n for some 1 < i < n. Since τ
avoids the pattern 123, we must have τ(1) > τ(2) > · · · > τ(i − 1). Moreover,
the Fishburn condition forces τ(i− 1) = 1, which implies τ(i+1) > τ(i+2) >
· · · > τ(n). In other words, τ may be any permutation with τ(i − 1) = 1,
τ(i) = n for which the entries to the left of 1 and to the right of n form two
decreasing sequences. There are

(
n−2
i−2

)
such permutations.

In conclusion, we have the recurrence

Fn(123) = Fn−1(123) + 1 +
n−1∑

i=2

(
n − 2
i − 2

)
= Fn−1(123) + 2n−2,

which implies Fn(123) = 2n−1.

Case σ = 213: For n > 2, the permutation 12 · · · n is the only permutation in
Fn(213) that ends with n, and if π ∈ Fn−1(213), then 1 � π ∈ Fn(213).

Assume τ ∈ Fn(213) is such that τ(i) = n for some 1 < i < n. Since τ
avoids the pattern 213, we must have τ(1) < τ(2) < · · · < τ(i − 1) and the
Fishburn condition forces τ(j) = j for every j ∈ {1, . . . , i−1}. Thus τ must be
of the form τ = 1 · · · (i − 1)nπR, where πR may be any element of Fn−i(213).
This implies

Fn(213) = 1 +
n−1∑

i=1

Fn−i(213),

and we conclude Fn(213) = 2n−1.

Case σ = 312: If π ∈ Fn−1(312), the permutation 1 ⊕ π is in Fn(312). On
the other hand, if τ is a permutation in Avn(312) with τ(i) = 1 for some
1 < i ≤ n, then we must have τ(j) < τ(k) for every j ∈ {1, . . . , i − 1} and
k ∈ {i + 1, . . . , n}. Moreover, the Fishburn condition forces τ(j) = i + 1 − j
for every j ∈ {1, . . . , i − 1}. Thus, τ must be of the form τ = i · · · 21πR, where
πR = ∅ if i = n, or πR ∈ Fn−i(312) if i < n. This implies

Fn(312) = 1 +
n−1∑

i=1

Fn−i(312),

hence Fn(312) = 2n−1. �
For our next result, we use a bijection between Avn(321) and the set of

Dyck paths of semilength n, via the left-to-right maxima.2 Here, a Dyck path
of semilength n is a simple lattice path from (0, 0) to (n, n) that stays weakly
above the diagonal y = x (with vertical unit steps U and horizontal unit steps
D). On the other hand, a left-to-right maximum of a permutation π is an
element πi such that πj < πi for every j < i.

2This is a slightly different version of a bijection given by Krattenthaler [5].
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The bijective map between Avn(321) and the set of Dyck paths of
semilength n is defined as follows: Given π ∈ Avn(321), write

π = m1w1m2w2 · · · msws,

where m1, . . . ,ms are the left-to-right maxima of π, and each wi is a subword
of π. Let |wi| denote the length of wi. Reading the decomposition of π from left
to right, we construct a path starting with m1 U -steps, |w1| + 1 D-steps, and
for every other subword miwi, we add mi − mi−1 U -steps followed by |wi| + 1
D-steps. In short, identify the left-to-right maxima in the plot of π and draw
your path over them. For example, for π = 351264 ∈ Av6(321) we get:

Note that π = 351264 �∈ F6.

Theorem 2.2. The set Fn(321) is in bijection with the set of Dyck paths of
semilength n that avoid the subpath UUDU . By [6, Proposition 5] we then
have

Fn(321) =
�(n−1)/2�∑

j=0

(−1)j

n − j

(
n − j

j

)(
2n − 3j

n − j + 1

)
.

This is Sequence [7, A105633].

Proof. Under the above bijection, an ascent πi < πi+1 in π ∈ Avn(321) with
k = πi+1 − πi generates the subpath UDUk in the corresponding Dyck path
Pπ, and if πi −1 = πj for some j > i+1, then Pπ must necessarily contain the

subpath UUDUk. Thus, we have that π avoids the pattern if and only if
Pπ avoids UUDU . �

2.1. Indecomposable Permutations

Let F ind
n (σ) be the set of indecomposable Fishburn permutations that avoid the

pattern σ, and let IFn(σ) denote the number of elements in F ind
n (σ). Observe

that for every σ of size ≥ 3, we have IF1(σ) = 1 and IF2(σ) = 1.
We start with a fundamental known lemma, see e.g. [3, Lemma 3.1].

Lemma 2.3. If a pattern σ is indecomposable, then the sequence |Avn(σ)| is
the invert transform of the sequence |Avindn (σ)|. That is, if Aσ(x) and Aσ

I (x)
are the corresponding generating functions, then

1 + Aσ(x) =
1

1 − Aσ
I (x)

, and so Aσ
I (x) =

Aσ(x)
1 + Aσ(x)

.
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In particular, since 231 is indecomposable, these identities are also valid for
Fishburn permutations. The sequence (IFn)n∈N that enumerates indecompos-
able Fishburn permutations of size n starts with

1, 1, 2, 6, 23, 104, 534, 3051, 19155, 130997, . . . .

Theorem 2.4. For n > 1, we have IFn(123) = 2n−1 − (n − 1).

Proof. As discussed in the proof of Theorem 2.1, for n > 2 the set Fn(123)
consists of elements of the form 1�π with π ∈ Fn−1(123), and elements of the
form τ = (i − 1) · · · 1nπR for some 1 < i ≤ n and πR ∈ Fn−i(123). This forces
πR = ∅ if i = n, and πR = (n − 1) · · · i if i < n. Thus the only decomposable
elements of Fn(123) are the n − 1 permutations

1n(n − 1) · · · 32,
21n(n − 1) · · · 3,

...
(n − 1) · · · 321n.

In conclusion, IFn(123) = Fn(123) − (n − 1) = 2n−1 − (n − 1). �

Theorem 2.5. For n > 1 and σ ∈ {132, 213}, we have IFn(σ) = 2n−2.

Proof. From the proof of Theorem 2.1, we know that for n > 1 every element
of Fn(132) must be of the form 1 � π or π ⊕ 1 with π ∈ Fn−1(132). Since
π ⊕ 1 is decomposable and 1 � π is indecomposable, we have

F ind
n (132) = {1 � π : π ∈ Fn−1(132)}.

We also know that Fn(213) consists of elements of the form 1 � π with
π ∈ Fn−1(213), and elements of the form τ = (1 · · · (i−1))⊕(1�πR) for some
1 < i ≤ n (with πR = ∅ when i = n). Thus

F ind
n (213) = {1 � π : π ∈ Fn−1(213)}.

In conclusion, if σ ∈ {132, 213}, we have IFn(σ) = Fn−1(σ) = 2n−2. �

Let F σ(x) and IFσ(x) be the generating functions associated with the
sequences (Fn(σ))n∈N and (IFn(σ))n∈N, respectively.

Theorem 2.6. For σ ∈ {231, 312, 321}, we have

IFσ(x) =
F σ(x)

1 + F σ(x)
.

In particular, IFn(231) = Cn−1 and IFn(312) = 1.

Proof. This follows from (2.1), Theorem 2.1, and Lemma 2.3. �

Theorem 2.7. The sequence an = IFn(321) satisfies the recurrence relation

an = an−1 +
n−2∑

j=2

ajan−j

for n ≥ 4, with a1 = a2 = a3 = 1. This is Sequence [7, A082582].
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Proof. We use the same Dyck path approach as in the proof of Theorem 2.2.
Under this bijection, indecomposable permutations correspond to Dyck paths
that do not touch the line y = x except at the end points.

Let An be the set of Dyck paths corresponding to F ind
n (321). We will

prove that an = |An| satisfies the claimed recurrence relation. Clearly, for
n = 1, 2, 3, the only indecomposable Fishburn permutations are 1, 21, and
312, which correspond to the Dyck paths UD, U2D2, and U3D3, respectively.
Thus, a1 = a2 = a3 = 1.

Note that indecomposable permutations may not start with 1 or end with
n. Moreover, every element of π ∈ F ind

n (321) must be of the form m1π(3) · · ·
π(n) with m ≥ 3. Therefore, the elements of An have no peaks at the points
(0, 1), (0, 2), or (n − 1, n), and for n > 3 their first return to the line y = x + 1
happens at a lattice point (x, x + 1) with x ∈ [2, n − 1].

Dyck paths in An having (n−1, n) as their first return to y = x+1, are in
one-to-one correspondence with the elements of An−1 (just remove the first U
and the last D of the longer path). Now, for j ∈ {2, . . . , n−2}, the set of paths
P ∈ An having first return to y = x + 1 at the point (j, j + 1) corresponds
uniquely to the set of all pairs (Pj , Pn−j) with Pj ∈ Aj and Pj ∈ An−j . For
example,

, .

This implies that there are ajan−j paths in An having the point (j, j + 1)
as their first return to the line y = x + 1. Finally, summing over j gives the
claimed identity. �

Here is a summary of our enumeration results for patterns of size 3:

3. Avoiding Patterns of Size 4

In this section, we discuss the enumeration of Fishburn permutations that
avoid a pattern of size 4. There are at least 13 Wilf equivalence classes that
we break down into three categories: 10 classes with a single pattern, 2 classes
with (conjecturally) three patterns each, and a larger class with eight patterns
enumerated by the Catalan numbers.

We will provide a proof for the enumeration of the class Fn(1342), but
our main focus in this paper will be on the enumeration of the equivalence
class given in Table 4.

For the remaining patterns we have the following conjectures.

Conjecture 3.1. Fn(2413) ∼ Fn(2431) ∼ Fn(3241).

Conjecture 3.2. Fn(3214) ∼ Fn(4132) ∼ Fn(4213).
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Our first result of this section involves the binomial transform of the
Catalan numbers, namely the sequence [7, A007317].

Theorem 3.3.

Fn(1342) =
n∑

k=1

(
n − 1
k − 1

)
Cn−k.

Proof. Let An,k be the set of all permutations π ∈ Sn such that

◦ π(k) = 1 and π(1) > π(2) > · · · > π(k − 1),
◦ π(k + 1) · · · π(n) ∈ Avn−k(231),

and let An =
⋃n

k=1 An,k. Clearly,

|An| =
n∑

k=1

|An,k| =
n∑

k=1

(
n − 1
k − 1

)
Cn−k.

We will prove the theorem by showing that An = Fn(1342).
First of all, since An,k ⊂ Avn(1342) and Avn−k(231) = Fn−k(231) for

every n and k, we have An ⊂ Fn(1342).
Going in the other direction, let π ∈ Fn(1342) and let k be such that

π(k) = 1. Thus, π is of the form π = π(1) · · · π(k −1) 1π(k +1) · · · π(n), which
implies π(k + 1) · · · π(n) ∈ Avn−k(231). Now, if there is a j ∈ {1, . . . , k − 2}
such that

π(1) > · · · > π(j) < π(j + 1),

then π(j) − 1 = π(�) for some � > j + 1, and the pattern π(j)π(j + 1)π(�)
would violate the Fishburn condition. In other words, the entries to the left
of π(k) = 1 must form a decreasing sequence, which implies π ∈ An,k ⊂ An.
Thus Fn(1342) ⊂ An, and we conclude that An = Fn(1342). �

3.1. Catalan Equivalence Class

The remaining part of this section is devoted to prove that |Fn(σ)| = Cn for
every σ ∈ {1234, 1243, 1324, 1423, 2134, 2143, 3124, 3142}.

Theorem 3.4. We have Fn(3142) = Fn(231), hence Fn(3142) = Cn.

Proof. Since 3142 contains the pattern 231, we have Fn(231) ⊆ Fn(3142).
To prove the reverse inclusion, suppose that there exists π ∈ Fn(3142)

such that π contains the pattern 231. Let i < j < k be the positions of the
231 pattern such that

◦ π(k) < π(i) < π(j),
◦ π(i) is the left-most entry of π involved in a 231 pattern,
◦ π(j) is the first entry with j > i such that π(i) < π(j),
◦ π(k) is the largest entry with k > j such that π(k) < π(i).

In other words, assume the plot of π is of the form
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where no elements of π may occur in the shaded regions. It follows that, if
� is the position of π(k) + 1, then i ≤ � < j. But this is not possible since,
π(�) < π(� + 1) violates the Fishburn condition, and π(�) > π(� + 1) implies
π(k) > π(� + 1) which forces the existence of a 3142 pattern. In conclusion,
no permutation π ∈ Fn(3142) is allowed to contain a 231 pattern. Therefore,
Fn(3142) ⊆ Fn(231) and we obtain the claimed equality. �

Theorem 3.5. Fn(1234) ∼ Fn(1243) and Fn(2134) ∼ Fn(2143).

Proof. To prove both Wilf equivalence relations, we use a bijection

φ : Avn(τ ⊕ 12) → Avn(τ ⊕ 21)

given by West in [8], which we proceed to describe.
For π ∈ Sn and σ ∈ Sk, k < n, let Bπ(σ) be the set of maximal values of

all instances of the pattern σ in the permutation π. For example, Bπ(σ) = ∅
if π avoids σ, and for π = 531968274 we have Bπ(123) = {4, 7, 8} (Fig. 1).

For π ∈ Avn(τ ⊕ 12), let � be the number of elements in Bπ(τ ⊕ 1). If
� = 0, we define φ(π) = π. If � > 0, we let i1 < · · · < i� be the positions in π
of the elements of Bπ(τ ⊕ 1) and define

π̃(j) = π(j) if j �∈ {i1, . . . , i�}.

Note that π ∈ Avn(τ ⊕ 12) implies π(i1) > · · · > π(i�).
Let b1 be the smallest element of Bπ(τ ⊕ 1) such that π̃(1) · · · π̃(i1 − 1)b1

contains the pattern τ ⊕ 1. Define

π̃(i1) = b1.

Iteratively, for k = 2, . . . , �, we let bk be the smallest element of Bπ(τ ⊕
1)\{b1, . . . , bk−1} such that π̃(1) · · · π̃(ik − 1)bk contains the pattern τ ⊕ 1. We

Figure 1. π = 531968274 and Bπ(123) = {4, 7, 8}
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Figure 2. π̃ = φ(531968274) = 531967248

then define

π̃(ik) = bk for k = 2, . . . , �,

to complete the definition of π̃ = φ(π).
For example, for π = 531968274 and τ = 12, we have � = 3 π̃ =

531967248 (Fig. 2).
It is easy to check that the map φ induces a bijection

φ : Fn(τ ⊕ 12) → Fn(τ ⊕ 21).

Indeed, if π(ik) ∈ Bπ(τ ⊕ 1) is such that π(ik − 1) < π(ik), then π̃(ik − 1) =

π(ik − 1) and the pair π̃(ik − 1), π̃(ik) does not create a pattern .
On the other hand, if π(i1) > · · · > π(ik) is a maximal descent of elements

from Bπ(τ ⊕ 1), and if π(ij) − 1 > 0 (for j ∈ {1, . . . , k}) is not part of that
descent, then π(ij) − 1 must be to the left of π(i1) and so any ascent in

π̃(i1) · · · π̃(ik) cannot create the pattern .
Thus, if π ∈ Avn(τ ⊕ 12) is Fishburn, so is π̃ = φ(π) ∈ Avn(τ ⊕ 21). �

Theorem 3.6. Fn(1423) ∼ Fn(1243) ∼ Fn(1234) ∼ Fn(1324).

Proof. Let α : Fn(1423) → Fn(1243) be the map defined through the follow-
ing algorithm.
Algorithm α: Let π ∈ Fn(1423) and set π̃ = π.
Step 1: If π̃ �∈ Avn(1243), let i < j < k < � be the positions of the left-most

1243 pattern contained in π̃. Redefine π̃ by moving π̃(k) to position
j, shifting the entries at positions j through k − 1 one step to the
right.

Step 2: If π̃ ∈ Avn(1243), then return α(π) = π̃; otherwise go to Step 1.
For example, for π = 2135476 ∈ F (1423), the above algorithm yields

2135476 −→ 2153476 �∈ Av(1243)
↙

2153476 −→ 2175346 ∈ Av(1243)

and so α(π) = 2175346 ∈ F (1243).
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Observe that the map α changes every 1243 pattern into a 1423 pattern.
To see that it preserves the Fishburn condition, let π ∈ Fn(1423) be such that
π(i), π(j), π(k), π(�) form a left-most 1243 pattern. Thus, at first, π must be
of the form

where no elements of π may occur in the shaded regions. In particular, we
must have

π(j − 1) < π(j) and π(k − 1) < π(k). (3.1)

Hence the step of moving π(k) to position j does not create a new ascent and,

therefore, it cannot create a pattern . After one iteration, π̃ takes the form

and if the left-most 1243 pattern π̃(i), π̃(j), π̃(k), π̃(�) contained in π̃ has its
second entry at a position different from j′, then π̃ must satisfy (3.1) and no

pattern will be created.
Otherwise, if j = j′, then either k = �′ or � = �′. In the first case, we

have π̃(k − 1) < π̃(k) and π̃(k) < π̃(j − 1), so moving π̃(k) to position j does
not create a new ascent. On the other hand, if � = �′, then π̃(k) > π̃(j −1) but
π̃(j − 1) − 1 must be to the left of π̃(i). Therefore, also in this case, applying
an iteration of α will preserve the Fishburn condition.

We conclude that, if π is Fishburn, so is α(π).
The reverse map β : Fn(1243) → Fn(1423) is given by the following

algorithm.
Algorithm β: Let τ ∈ Fn(1243) and set τ̃ = τ .

Step 1: If τ̃ �∈ Avn(1423), let i < j < k < � be the positions of the right-most
1423 pattern contained in τ̃ . Redefine τ̃ by moving τ̃(j) to position k,
shifting the entries at positions j + 1 through k one step to the left.

Step 2: If τ̃ ∈ Avn(1423), then return β(τ) = τ̃ ; otherwise go to Step 1.

In conclusion, the map α gives a bijection Fn(1423) → Fn(1243).
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With a similar argument, it can be verified that α also maps Fn(1324) →
Fn(1234) bijectively. Finally, the equivalence Fn(1243) ∼ Fn(1234) was shown
in Theorem 3.5. �
Theorem 3.7. Fn(3142) ∼ Fn(3124) ∼ Fn(1324).

Proof. We will define two maps

Fn(3142) α1−→ Fn(3124) and Fn(3124) α2−→ Fn(1324)

through algorithms similar to the one introduced in the proof of Theorem 3.6.
Algorithm α1: Let π ∈ Fn(3142) and set π̃ = π.
Step 1: If π̃ �∈ Avn(3124), let i < j < k < � be the positions of the left-most

3124 pattern contained in π̃. Redefine π̃ by moving π̃(�) to position k,
shifting the entries at positions k through � − 1 one step to the right.

Step 2: If π̃ ∈ Avn(3124), then return α1(π) = π̃; otherwise go to Step 1.
As α in Theorem 3.6, the map α1 is reversible and preserves the Fish-

burn condition. For an illustration of the latter claim, here is a sketch of a
permutation π ∈ Fn(3142) having a left-most 3124 pattern, together with the
sketch of π̃ after one iteration of α1:

where no elements of the permutation π may occur in the shaded regions.
Since π(k − 1) < π(k) and π(� − 1) < π(�), the Fishburn condition of π

is preserved after the first iteration of α1. Further, if π̃ has a left-most 3124
pattern with the third entry at position k′, then we must have � > �′ and
π̃(�) > π̃(i). If π̃(�) < π̃(k′ − 1), no new ascent can be created when moving
π̃(�) to position k′. Otherwise, if π̃(�) > π̃(k′ − 1), then either π has ascents
at the positions of these two entries or every entry between π̃(�′) and π̃(�)
must be smaller than π̃(j). Since π ∈ Avn(3142), the latter would imply that

π̃(k′ − 1) − 1 is to the left of π̃(j). In any case, no pattern will be created
in the next iteration of α1.

Since any later iteration of α1 may essentially be reduced to one of the
above cases, we conclude that α1 preserves the Fishburn condition.
Algorithm α2: Let π ∈ Fn(3124) and set π̃ = π.
Step 1: If π̃ �∈ Avn(1324), let i < j < k < � be the positions of the left-most

1324 pattern contained in π̃. Redefine π̃ by moving π̃(j) to position i,
shifting the entries at positions i through j − 1 one step to the right.

Step 2: If π̃ ∈ Avn(1324), then return α2(π) = π̃; otherwise go to Step 1.
This map is reversible and preserves the Fishburn condition. As before,

we will illustrate the Fishburn property by sketching the plot of a permutation
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π ∈ Fn(3124) that contains a left-most 1324 pattern π(i), π(j), π(k), π(�),
together with the sketch of the permutation π̃ obtained after one iteration of
α2:

Since no elements of the permutation π may occur in the shaded regions,
we must have either i = 1 or π(i − 1) > π(j). Consequently, moving π(j)
to position i will not create a new ascent and the Fishburn condition will be
preserved.

Similarly, if π̃ has a left-most 1324 pattern with first entry at a position
different from i′, or if π̃(i) = π̃(i′) and π̃(j) < π̃(i′ − 1), then no new ascent
will be created and the next π̃ will be Fishburn. It is not possible to have
π̃(i) = π̃(i′) and π̃(j) > π̃(i′ − 1).

In summary, α1 and α2 are both bijective maps. �
The following theorem completes the enumeration of the Catalan class

(see Table 4).

Theorem 3.8. Fn(3142) ∼ Fn(2143).

Proof. Let γ : Fn(3142) → Fn(2143) be the map defined through the following
algorithm.
Algorithm γ: Let π ∈ Fn(3142) and set π̃ = π.
Step 1: If π̃ �∈ Avn(2143), let i < j < k be the positions of the left-most 213

pattern contained in π̃ such that π̃(i), π̃(j), π̃(k), π̃(�) form a 2143
pattern for some � > k. Let �m be the position of the smallest such
π̃(�), and let

Q = {q ∈ [n] : π̃(i) ≤ π̃(q) < π̃(�m)}.

Redefine π̃ by replacing π̃(�m) with π̃(i), adding 1 to π̃(q) for every
q ∈ Q.

Step 2: If π̃ ∈ Avn(2143), then return γ(π) = π̃; otherwise go to Step 1.
For example, if π = 4312576, then γ(π) = 5412673 (after 2 iterations, see

Fig. 3).
The map γ is reversible. Moreover,

(a) since π̃(�m) is the smallest entry such that π̃(i) < π̃(�m) < π̃(k), replacing
π̃(�m) with π̃(i) (which is equivalent to moving the plot of π̃(�m) down
to height π̃(i)) will not create any new ascent at position �m;

(b) since π̃(i) is chosen to be the first entry of a left-most 2143 pattern,
π̃(i) − 1 must be to the right of π̃(i). Hence, replacing π̃(i) by π̃(i) + 1

cannot create a new pattern .
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Figure 3. Algorithm γ: 4312576 → 5312674 → 5412673

In conclusion, γ preserves the Fishburn condition and gives the claimed
bijection. �

4. Further Remarks

In this paper, we have discussed the enumeration of Fishburn permutations
that avoid a pattern of size 3 or a pattern of size 4. In Sect. 2, we offer the
complete picture for patterns of size 3, including the enumeration of indecom-
posable permutations.

Regarding patterns of size 4, we have proved the Wilf equivalence of eight
permutation families counted by the Catalan numbers. We have also shown
that Fn(1342) is enumerated by the binomial transform of the Catalan num-
bers. In general, there seems to be 13 Wilf equivalence classes of permutations
that avoid a pattern of size 4, some of which appear to be in bijection with
certain pattern avoiding ascent sequences ([7, A202061, A202062]). At this
point in time, we do not know how the pattern avoidance of a Fishburn per-
mutation is related to the pattern avoidance of an ascent sequence. It would
be interesting to pursue this line of investigation.

Concerning indecomposable permutations, we leave the field open for
future research. Note that Theorem 3.4 and Lemma 2.3 imply

|F ind
n (3142)| = Cn−1.

The study of other patterns is unexplored territory, and our preliminary data
suggests the existence of 19 Wilf equivalence classes listed in Table 5.

We are particularly curious about the class F ind
n (2413) as it appears

(based on limited data) to be equinumerous with the set Avn−1(2413, 3412),
cf. [7, A165546].

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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A q-Analogue for Euler’s ζ(6) = π6/945
In honour of Prof. George Andrews on his 80th birthday

Ankush Goswami

Abstract. Recently, Sun (Two q-analogues of Euler’s formula ζ(2) = π2/6.
arXiv:1802.01473, 2018) obtained q-analogues of Euler’s formula for ζ(2)
and ζ(4). Sun’s formulas were based on identities satisfied by triangular
numbers and properties of Euler’s q-Gamma function. In this paper, we
obtain a q-analogue of ζ(6) = π6/945. Our main results are stated in
Theorems 2.1 and 2.2 below.

Mathematics Subject Classification. 11N25, 11N37, 11N60.

Keywords. q-Analogue, Triangular numbers.

1. Introduction

Recently, Sun [3] obtained a very nice q-analogue of Euler’s formula ζ(2) =
π2/6.

Theorem 1.1. (Sun [3]) For a complex q with |q| < 1, we have:
∞∑

k=0

qk(1 + q2k+1)
(1 − q2k+1)2

=
∞∏

n=1

(1 − q2n)4

(1 − q2n−1)4
. (1.1)

Motivated by Theorem 1.1, the present author obtained the q-analogue of
ζ(4) = π4/90 and noted that it was simultaneously and independently obtained
by Sun in his subsequent revised paper.

Theorem 1.2. (Sun [3]) For a complex q with |q| < 1, we have:
∞∑

k=0

q2k(1 + 4q2k+1 + q4k+2)
(1 − q2k+1)4

=
∞∏

n=1

(1 − q2n)8

(1 − q2n−1)8
. (1.2)

Furthermore, Sun commented that one does not know how to find q-
analogues of Euler’s formula for ζ(6) and beyond, similar to Theorems 1.1 and
1.2. This further motivated the author to consider the problem, and indeed,
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we obtained the q-analogue of ζ(6). As we shall see shortly, the q-analogue
formulation of ζ(6) is more difficult as compared to ζ(2) and ζ(4) due to an
extra term that shows up in the identity; however, in the limit as q ↑ 1 (where
q ↑ 1 means q is approaching 1 from inside the unit disk), this term vanishes.
We also state the q-analogue of ζ(4) = π4/90, since we found it independently
of Sun’s result; however, we skip the proof of this, since it essentially uses the
same idea as Sun.

We emphasize here that the q-analogue of ζ(6) = π6/945 is the first
non-trivial case where we notice the occurrence of an interesting extra term
which essentially is the twelfth power of a well-known function of Euler (see
Theorem 2.2). After obtaining this result, we obtained q-analogues of Euler’s
general formula for ζ(2k), k = 4, 5, . . . (see [1]). Each of these q-analogues has
an extra term that arises from the general theory of modular forms all of
which approach zero in the limit q ↑ 1. The case k = 3 or the q-analogue of
ζ(6) is special, since the extra term that we obtain in this case has a beautiful
product representation, and has connections to well-known identities of Euler
(see below).

2. Main Theorems

Theorem 2.1. For a complex q with |q| < 1, we have:
∞∑

k=0

q2k P2(q2k+1)
(1 − q2k+1)4

=
∞∏

n=1

(1 − q2n)8

(1 − q2n−1)8
, (2.1)

where P2(x) = x2 + 4x + 1. In other words, (2.1) gives a q-analogue of ζ(4) =
π4/90.

Theorem 2.2. For a complex q with |q| < 1, we have:
∞∑

k=0

qk(1 + q2k+1) P4(q2k+1)
(1 − q2k+1)6

− φ12(q) = 256q
∞∏

n=1

(1 − q2n)12

(1 − q2n−1)12
, (2.2)

where P4(x) = x4 + 236x3 + 1446x2 + 236x + 1 and φ(q) =
∏∞

n=1
(1 − qn) is

Euler’s function. In other words, (2.2) gives a q-analogue of ζ(6) = π6/945.

Remark 2.3. We note that φ12(q) has a beautiful product representation and
is uniquely determined by:

φ12(q) =
∞∑

k=0

qk(1 + q2k+1) P4(q2k+1)
(1 − q2k+1)6

− 256q

∞∏

n=1

(1 − q2n)12

(1 − q2n−1)12
. (2.3)

In the general q-analogue formulation (see [1]), we do not have very elegant
representations of these functions, although we obtain expressions for them
similar to (2.3).

448



A q-Analogue for Euler’s ζ(6) = π6/945 803

Remark 2.4. Since the coefficients in the q-series expansion of φ12(q) are
related to the pentagonal numbers by Euler’s pentagonal number theorem,
and the coefficients of the product in the right-hand side of (2.2) are related to
the triangular numbers, it will be worthwhile to understand the relationships
of these coefficients via identity (2.2).

3. Some Useful Lemmas

Let q = e2πiτ , τ ∈ H where H = {τ ∈ C : Im(τ) > 0}. Then, the Dedekind
η-function defined by:

η(τ) = q1/24
∞∏

n=1

(1 − qn), (3.1)

is a modular form of weight 1/2. Also, let us denote by ψ(q) the following
sum:

ψ(q) =
∞∑

n=0

qTn , (3.2)

where Tn =
n(n + 1)

2
(for n = 0, 1, 2, . . .) are triangular numbers. Then, we

have the following well-known result due to Gauss:

Lemma 3.1.

ψ(q) =
∞∏

n=1

(1 − q2n)
(1 − q2n−1)

. (3.3)

Thus, we have from Lemma 3.1 that:
∞∏

n=1

(1 − q2n)12

(1 − q2n−1)12
= ψ12(q) =

∞∑

n=1

t12(n)qn, (3.4)

where t12(n) is the number of ways of representing a positive integer n as a
sum of 12 triangular numbers. Next, we have the following well-known result
of Ono, Robins and Wahl [2].

Theorem 3.2. Let η12(2τ) =
∑∞

k=0 a(2k+1)q2k+1. Then, for a positive integer
n, we have:

t12(n) =
σ5(2n + 3) − a(2n + 3)

256
, (3.5)

where

σ5(n) =
∑

d|n
d5. (3.6)
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4. Proof of Theorem 2.2

Since ζ(6) =
π6

945
has the following equivalent form:

∞∑

k=0

1
(2k + 1)6

=
63
64

ζ(6) =
π6

960
, (4.1)

it will be sufficient to get the q-analogue of (4.1). Now, from q-analogue of
Euler’s Gamma function, we know that:

lim
q↑1

(1 − q)
∞∏

n=1

(1 − q2n)2

(1 − q2n−1)2
=

π

2
, (4.2)

so that from (4.2), we have:

lim
q↑1

(1 − q)6
∞∏

n=1

(1 − q2n)12

(1 − q2n−1)12
=

π6

64
. (4.3)

Next, we consider the following infinite series

S6(q) :=
∞∑

k=0

qk(1 + q2k+1) P4(q2k+1)
(1 − q2k+1)6

, (4.4)

where P4(x) = x4 + 236x3 + 1446x2 + 236x + 1.
By partial fractions, we have:

S6(q) =
∞∑

k=0

qk

{
3840

(1 − q2k+1)6
− 9600

(1 − q2k+1)5
+

8160
(1 − q2k+1)4

− 2640
(1 − q2k+1)3

+
242

(1 − q2k+1)2
− 1

(1 − q2k+1)

}
. (4.5)

Lemma 4.1. With S6(q) represented by (4.5), we have:

S6(q) = 256q
∞∑

n=0

t12(n)qn + φ12(q). (4.6)

Proof. From (4.5), we have:

S6(q) =
∞∑

k=0

∞∑

j=0

qk

{
3840

(−6
j

)
− 9600

(−5
j

)
+ 8160

(−4
j

)

−2640
(−3

j

)
+ 242

(−2
j

)
−

(−1
j

)}
(−q)j(2k+1)

=
∞∑

k=0

∞∑

j=0

{32(j + 1)(j + 2)(j + 3)(j + 4)(j + 5)

−400(j + 1)(j + 2)(j + 3)(j + 4) + 1360(j + 1)(j + 2)(j + 3)

−1320(j + 1)(j + 2) + 242(j + 1) − 1} qk+j(2k+1)
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=
∞∑

k=0

∞∑

j=0

(2j + 1)5q
(2j+1)(2k+1)−1

2

=
∞∑

n=0

σ5(2n + 1)qn

= 1 +
∞∑

n=1

σ5(2n + 1)qn

= 1 + q

∞∑

n=0

σ5(2n + 3)qn.

Also from (3.1), we have:

φ12(q) =
η12(τ)

q
1
2

=
∞∑

n=0

a(2n + 1)qn

= 1 +
∞∑

n=1

a(2n + 1)qn

= 1 + q
∞∑

n=0

a(2n + 3)qn.

Thus, from above, we have:

S6(q) − φ12(q) = q

∞∑

n=0

{σ5(2n + 3) − a(2n + 3)} qn

= 256 q

∞∑

n=0

t12(n)qn,

where the last step follows from Theorem 3.2. This completes the proof of
Theorem 2.2. �

We also note that

lim
q↑1

(1 − q)6(S6(q) − φ12(q)) = lim
q↑1

(1 − q)6S6(q) − lim
q↑1

(1 − q)6φ12(q)

=
∞∑

k=0

3840
(2k + 1)6

, (4.7)

where limq↑1 (1−q)6φ12(q) = 0 and q ↑ 1 indicates q → 1 from within the unit
disk. Hence, combining Eqs. (4.1), (4.3), (4.7), and Lemma 4.1, Theorem 2.2
follows.
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A Variant of IdentityFinder and Some
New Identities of Rogers–Ramanujan–
MacMahon Type

To George E. Andrews, with great respect and gratitude

Shashank Kanade, Debajyoti Nandi and Matthew C. Russell

Abstract. We report on findings of a variant of IdentityFinder—a Maple
program that was used by two of the authors to conjecture several new
identities of Rogers–Ramanujan kind. In the present search, we modify the
parametrization of the search space by taking into consideration several
aspects of Lepowsky and Wilson’s Z-algebraic mechanism and its variant
by Meurman and Primc. We search for identities based on forbidding the
appearance of “flat” partitions as sub-partitions. Several new identities
of Rogers–Ramanujan–MacMahon type are found and proved.

Mathematics Subject Classification. 05A15, 05A17, 11P84, 17B69.

Keywords. MacMahon identity, Rogers–Ramanujan identities, Sylvester’s
bijection.

1. Introduction and Motivation

The aim of this paper is to report on several new integer partition identities
of Rogers–Ramanujan–MacMahon type. This paper should be viewed largely
as a continuation of [18] with a search space that is broader and differently
parametrized than the one in [18]. For the general background on experi-
mentally finding new partition identities and the importance thereof we re-
fer the reader to a small, but by no means, exhaustive selection of articles:
[3,4,18,23,28]. We ask the reader to recall the relevant terminology (sum-sides,
product-sides, difference conditions, initial conditions etc.) from [18].

Several important considerations motivated the present search for iden-
tities.

S.K. is presently supported by a start-up grant provided by University of Denver.
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First, in [25], the second author was able to deduce conjectures of Rogers–
Ramanujan-type by analyzing the standard modules for the affine Lie algebra
A

(2)
2 at level 4. These were found using Meurman and Primc’s variant [24] of

Lepowsky and Wilson’s Z-algebraic mechanism [20,21] for finding and proving
new identities using standard modules for affine Lie algebras. The remarkably
striking feature of these identities is the appearance of an infinite list of condi-
tions on the sum-sides. It remains a worthy (and perhaps a difficult) goal to au-
thor an automated search targeted towards such kinds of identities that vastly
generalizes IdentityFinder. Therefore, understanding how the Z-algebraic
mechanism (or the variant in [24]) works is an important first step.

In Lepowsky–Wilson’s Z-algebraic interpretation [20,21] of the sum-sides
in Rogers–Ramanujan identities, sub-partitions are eliminated (equivalently,
forbidden to appear) based on their lexicographical ordering (see also [24]).
In other words, they treat the “difference-2-at-distance-1” condition in the
Rogers–Ramanujan identities as forbidding the appearance of “flattest” length
2-partitions as sub-partitions. The flattest length 2 partition of 2n is n + n,
while that of 2n+1 is (n+1)+n. A large subset of conditions on the identities
in [25] could be interpreted this way.

We are specifically motivated by the following “affine rank 2”-type, that
is, similar to the affine Lie algebras A

(1)
1 (also known as ŝl2) and A

(2)
2 situations.

Roughly speaking, a relation with leading term being a “square” of a certain
vertex operator (as in ŝl2 level 3) corresponds to the flattest 2-partitions being
forbidden (for example, in the case of Rogers–Ramanujan identities). If one
has several such “generic” relations with leading term being a quadratic, then
one can eliminate as many first flattest 2-partitions. Sometimes, one has “non-
generic” quadratic relations, meaning that the relevant matrices formed by the
leading terms are sometimes singular, which leads to conditional elimination
of the flattest partitions (for example, in the case of Capparelli’s identities).
At higher levels, higher powers (as opposed to quadratics) of vertex opera-
tors are present as the leading terms in the relations, thereby engendering
the “difference-at-a-distance”-type conditions. Our aim was to capture such
phenomena. Genuinely higher rank situations give rise to various families of
Z-operators and, therefore, to multi-color partition identities. Note that many
seemingly higher rank algebras at low levels also yield “affine rank 2”-type con-
ditions. Also observe that this is a very crude guideline to the inner mechanics
of Z-algebras; particular situations often involve many quirks.

Second, it was a question of Drew Sills if IdentityFinder (possibly with
some modifications) is able to capture identities like the following identity of
MacMahon:

Partitions of n with no appearance of consecutive integers as parts
and all parts at least 2 are equinumerous with partitions of n in
which each part is divisible by either 2 or 3.

and a generalization due to Andrews:
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Partitions of n with no appearance of consecutive integers as parts,
no part being repeated thrice and all parts are greater than 1 are
equinumerous with partitions of n in which each part is ≡ 2, 3, 4 (mod 6).

Sum-sides in both of these identities could be easily recast into the “forbidding-
flattest-partitions” language. For instance, in the case of MacMahon’s identity,
forbidding the appearance of consecutive integers as parts is equivalent to
forbidding the appearance, as sub-partitions, of the flattest 2-partitions of any
odd integer. For other examples of such reinterpretations of various known
identities, see Sect. 2. Sequence avoiding partitions as the ones appearing in
MacMahon’s identity are also of an independent interest, see for instance,
[5,6,8,16] etc.

It should now be clear to the reader that a framework built on forbidding
flattest partitions can unlock a treasure of many new such identities (and it
indeed does, as we report in this paper).

One further observation proved quite useful in searching for these iden-
tities. In many well-known identities, the initial conditions are implied by the
difference conditions if one appends one or more fictitious 0 parts to the parti-
tions (for example, MacMahon’s identity and its generalization due to Andrews
recalled above, the second of the Rogers–Ramanujan identities and so on). This
phenomenon is quite well-known (as was pointed out to us by Drew Sills); see
the description of identities in [2] for instance.

We present several new families of identities. Many of the identities re-
ported here have the “sequence avoiding” feature as in the MacMahon identity
above, and many identities are direct generalizations of MacMahon’s iden-
tity. Hence, we loosely chose to call these identities as identities of Rogers–
Ramanujan–MacMahon type. Quite contrary to our expectations, to the best
of our knowledge, none of the identities presented here are principally special-
ized characters of standard modules for affine Lie algebras at positive integral
levels. Some such identities may lie much deeper in the search space, or per-
haps even more innovative searching parameters are required. As a testimony
to the former, several ideas of this article along with [17] helped us identify
conjectures related to certain level 2 modules for A

(2)
9 which we presented in

our article [19]. As will be clear from our discussion below, these identities lie
quite deep in our current search space and hence had to be found by com-
pletely different methods. Many of the conjectures reported in [19] now stand
proved thanks to the efforts of Bringmann et al. [7]. Last, we mention that the
present search has a rather broad search space; hence many times an ad-hoc
zooming into the search space was required.

A majority of the identities presented below are proved bijectively, using
the works of Xiong and Keith [32], Pak and Postnikov [27], Stockhofe [29] and
Sylvester [31]. One family of identities is proved using Appell’s theorem.

Future Work and Work in Progress

Extending the proof technique in Family 1 is work in progress.
In our search, we worked with a specific ordering on the partitions (ex-

plained below). It would be very interesting to search with different orderings.
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Several of the identities reported in this article quickly generalize to
“multi-color” identities. We are in the process of significantly generalizing our
current search to include these multi-color generalizations.

It will be very interesting to search for identities solely based on the
recurrences for sum-side conditions. One advantage is that such a search is
fast. This is an ongoing project.

2. Some Known Identities

Let us first standardize the conventions used in this paper. Let μ = m1 + · · ·+
mr and π = p1 + · · · + ps be partitions of n. If π is a partition of n, we say
that the weight of π is n. Partitions will always be in non-increasing order
(however, we shall present the identities in a manner independent of order).

By a k-partition of n, we mean a partition of length k of n.
We say that μ < π (or that μ is flatter than π) if either of the following

holds:

• r > s (this will not really be needed; we will only compare partitions of
same length.)

• r = s and m1 = p1,m2 = p2, . . . ,mi−1 = pi−1 but mi < pi for some i
with 1 ≤ i ≤ r.

Example 2.1. Here are the 4-partitions of 10 arranged from flattest to steep,
i.e., from lexicographically smallest to largest:

(3, 3, 2, 2) < (3, 3, 3, 1) < (4, 2, 2, 2) < (4, 3, 2, 1) < (4, 4, 1, 1)

< (5, 2, 2, 1) < (5, 3, 1, 1) < (6, 2, 1, 1) < (7, 1, 1, 1).

We say that a partition

π = p1 + p2 + · · · + ps

is forbidden as a sub-partition (or simply, forbidden) in another partition

μ = m1 + m2 + · · · + mr

if for all indices i with 1 ≤ i ≤ r − s + 1, we have

(p1, p2, . . . , ps) �= (mi,mi+1, . . . ,mi+s−1).

In other words, π does not appear as a contiguous sub-partition of μ. As an
example, if μ is a partition in which consecutive parts differ by at least 2, then
all partitions of the form π = n + n and π′ = (n + 1) + n with n ≥ 1 are
forbidden from appearing as sub-partitions of μ. Following is a (highly non-
exhaustive) list of difference conditions in some well-known partition identities
recast in terms of forbidden sub-partitions.

We ignore initial conditions, focusing only on the global difference con-
ditions.

1. Rogers–Ramanujan: the flattest 2-partitions are forbidden.
2. Gordon–Andrews (modulo 2k+1): the flattest k-partitions are forbidden.
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3. Andrews–Bressoud (modulo 2k): the flattest k-partitions are forbidden,
the flattest (k − 1)-partition of n′ is forbidden if n′ satisfies a specific
parity condition.

4. Capparelli: the flattest 2-partitions are forbidden and for all n′ �≡ 0
(mod 3), the second flattest 2-partition of n′ is forbidden.

5. Schur: the flattest 2-partitions are forbidden, the second flattest 2-
partitions of even numbers are forbidden, the second flattest 2-partitions
of numbers divisible by 3 are forbidden. The last two conditions can be
combined to give: the second flattest 2 partitions of numbers �≡ ±1 (mod 6)
are forbidden.

6. Göllnitz-Gordon: the flattest 2-partitions are forbidden, the second flat-
test 2-partitions of numbers ≡ 2 (mod 4) are forbidden.

7. MacMahon: the flattest 2-partitions of odd numbers are forbidden.
8. Andrews: recall that this identity states that the number of partitions

of n into parts congruent to 2, 3 or 4, modulo 6 equals the number of
partitions of n into parts greater than 1 where no two consecutive integers
may appear as parts and a given part may be repeated, but not more than
twice. Recast: the flattest 2-partitions of odd numbers are forbidden, the
flattest 3-partitions of numbers divisible by 3 are forbidden.

9. Symmetric Mod−9s [18, I1, I2, I3]: the flattest 2-partition of n′ if n′ �≡
0 (mod 3) is forbidden, the first two flattest 3-partitions for all n′ are
forbidden.

10. Identities 1, 2, 3 from [19]: the flattest 2-partitions of odd numbers are
forbidden, the flattest 2-partition of n′ with n′ ≡ 2 (mod 4) is forbid-
den, the second flattest 3-partitions of any n′ with n′ ≡ ±2 (mod 6) are
forbidden, the third and fourth flattest 3-partitions of n′ with n′ ≡ 3
(mod 6) are forbidden. As one can see, these identities lie deep in our
current search space.

3. The Method

For n ≥ 0, let C(n) be a certain subset of partitions of n. We prescribe C
by imposing flattest-partition conditions on the partitions. Let Cj(n) be those
partitions in C(n) with the largest part at most j.

Let

P (q) = 1 +
∑

m≥1

|C(m)| qm, Pj(q) = 1 +
∑

m≥1

|Cj(m)| qm

be the corresponding generating functions. We calculate several coefficients of
P (say, up to order q25) then employ Euler’s algorithm [4] to see if P has
a chance to factor as an interesting (periodic) infinite product of the form∏

m≥1(1 − qm)am . If so, we have a potential candidate for an identity. We use
Euler’s algorithm as implemented in Garvan’s q-series maple package [14].

To verify a given potential candidate to a high degree of certainty, we
proceed as in [18]. We first find recursions satisfied by Pj . We utilize these
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recursions to calculate PN up to the order qN for a large value of N . Finally,
we check if PN also factorizes similarly. Note that

P − PN ∈ qN+1
N[[q]].

Seldom, these recursions will lead to easy proofs, for example, in the case of
Identity 5.10.

4. Search Space

The natural search space here is a collection of conditions:
Parameters: N,Ai, Bi, Ci,Di, Booli

For each i = 1, . . . , N :
The Aith flattest length Bi partition of any n′ is forbidden

to appear as a sub-partition if n′ ≡ Ci (mod Di). The boolean bit
Booli toggles between ≡ and �≡.
Many well-known identities have the following property of initial condi-

tions:
A partition π satisfies the difference conditions and the initial con-
ditions if and only if π +0, i.e., π adjoined with a “fictitious 0” part
satisfies the difference conditions.
We utilize this criterion to impose natural initial conditions. Sometimes,

adding more than one fictitious zeros could lead to interesting identities.

Remark 4.1. Many identities come in pairs or sets (like Rogers–Ramanujan),
and in such cases, at least one identity in the set seems to satisfy this criterion.
For the second Capparelli identity, the initial condition that 2 does not appear
could be replaced by assuming a fictitious −1 as a part.

Remark 4.2. Six new conjectural identities were found in [18]. It can be checked
that the initial conditions in the identities I2–I6 in [18] are all given by one or
more fictitious zeros. I1 does not have an initial condition.

In [28] three more identities, called I4a, I5a, I6a, were found as compan-
ions to the corresponding identities in [18]. These identities involved initial
conditions which at first sight seem very mysterious. However, again, it can
be checked that the initial conditions in I4a, I5a, I6a can be substituted with
fictitious zero(s). There is a tiny bit of adjustment needed for I6a which we
leave to the reader.

One may find more examples of this phenomenon in [19], for example,
initial conditions in Identity 3 could be replaced by two fictitious zeros.

5. Results

We will express the identities in the following way:
Product : Condition “P”
Sum: Condition “S”
Conjugate: Condition “C”
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Flat form: Condition “F”
This corresponds to the statement that for any n, partitions satisfying

Condition “P” are equinumerous with partitions satisfying Condition “S”, and
moreover, the generating function for the former class of partitions can be
expressed as a periodic infinite product.

In Condition “C”, we will describe the conditions obtained when the
sum-side partitions are replaced by their conjugates (transposing the Ferrer’s
diagram). We will omit the proof of equivalence of Condition “S” and Condi-
tion “C”.

In Condition “F”, we will encode the difference conditions on the sum-
sides in the “forbidding flattest partitions” format using the following conven-
tion:

[A,B; ≡ C (D)] corresponds to forbidding the appearance, as a sub-
partition, of the Ath flattest length B partition of any number that
is ≡ C (mod D). We may also use �≡ as necessary.

The first few families of identities are either direct generalizations of
MacMahon’s identity recalled in the Introduction or resemble it closely. We
shall provide bijective proofs of these identities.

Generalizations of MacMahon’s partition identity were provided by An-
drews [1], and later by Subbarao [30]. Then, Andrews, Eriksson, Petrov, and
Romik provided a bijective proof of MacMahon’s partition identity [6]. A dif-
ferent bijective proof of MacMahon’s partition identity was provided by Fu and
Sellers [13], who also extended this new bijection to cover the generalizations
of Andrews and of Subbarao, along with a new extension of their own.

� Family 1

This family is composed of three infinite sub-families:
Fix k ≥ 1.

Family 1.1

Product : Parts are either multiples of 3 or congruent to ±2 (mod 3k + 3).
Sum:

– Difference between adjacent parts is not 1.
– If the difference between adjacent parts is in {2, 5, . . . , 3k − 4}, then the

smaller of these parts must be �≡ 2 (mod 3).
– If the difference between adjacent parts is in {4, 7, . . . , 3k − 2}, then the

smaller of these parts must be ≡ 1 (mod 3).
– Initial conditions are given by a fictitious zero, i.e., no parts are equal to

1, 4, . . . , 3k − 2.

Conjugate:

– No part appears exactly once.
– If the frequency of a part belongs to {2, 5, 8, . . . , 3k−4}, then the number

of parts that are strictly greater than it must be �≡ 2 (mod 3).
– If the frequency of a part belongs to {4, 7, 10, . . . , 3k−2}, then the number

of parts that are strictly greater than it must be ≡ 1 (mod 3).
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Family 1.2

Product : Parts are either multiples of 3 or ≡ −4,−2 (mod 3k + 3).
Sum:

– Difference between adjacent parts is not 1.
– If the difference between adjacent parts is in {2, 5, . . . , 3k − 4}, then the

smaller of these parts must be �≡ 0 (mod 3).
– If the difference between adjacent parts is in {4, 7, . . . , 3k − 2}, then the

smaller of these parts must be ≡ 2 (mod 3).
– Initial conditions are given by a fictitious zero, i.e., no parts are equal to

1, 4, . . . , 3k − 2 or 2, 5, . . . , 3k − 4.

Conjugate:

– No part appears exactly once.
– If the frequency of a part belongs to {2, 5, 8, . . . , 3k−4}, then the number

of parts that are strictly greater than it must be �≡ 0 (mod 3).
– If the frequency of a part belongs to {4, 7, 10, . . . , 3k−2}, then the number

of parts that are strictly greater than it must be ≡ 2 (mod 3).

Family 1.3

Product : Parts are either multiples of 3 or ≡ 2, 4 (mod 3k + 3).
Sum:

– Difference between adjacent parts is not 1.
– If the difference between adjacent parts is in {2, 5, . . . , 3k − 4}, then the

smaller of these parts must be �≡ 1 (mod 3).
– If the difference between adjacent parts is in {4, 7, . . . , 3k − 2}, then the

smaller of these parts must be ≡ 0 (mod 3).
– Initial conditions are given by a fictitious zero, i.e., no part is equal to 1.

Conjugate:

– No part appears exactly once.
– If the frequency of a part belongs to {2, 5, 8, . . . , 3k−4}, then the number

of parts that are strictly greater than it must be �≡ 1 (mod 3).
– If the frequency of a part belongs to {4, 7, 10, . . . , 3k−2}, then the number

of parts that are strictly greater than it must be ≡ 0 (mod 3).

We now recall the necessary tools required to prove this family of identi-
ties.

Glaisher’s Theorem (due to Glaisher [15]), a generalization of Euler’s
Identity, states that, for fixed modulus m ≥ 2 and all nonnegative integers n,
the number of partitions of n with no parts congruent to 0 (mod m) equals the
number of partitions of n with no part occurring m or more times. A natural
question to ask is whether or not there is a bijective proof of Glaisher’s Theo-
rem that “acts” similarly to Sylvester’s bijection. As it turns out, a bijection
originally due to Stockhofe [29] does the trick. Accordingly, Xiong and Keith
[32] provided a refinement of Glaisher’s Theorem using a small extension of
Stockhofe’s bijection. We will give this refinement immediately after defining
a few new bits of terminology.
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Let the length type of a partition with no parts congruent to m be the
(m − 1)-tuple (α1, α2, . . . , αm−1), where there are αi parts congruent to i
(mod m). Let the alternating sum type of a partition in which no part occurs
m or more times be the (m−1)-tuple (M1 − M2,M2 − M3, . . . ,Mm−1 − Mm),
where Mi is the sum of all parts in the partition whose index is congruent to
i (mod m).

Theorem 5.1 [32]. Consider a modulus m and a nonnegative integer n. The
number of partitions of n with no parts congruent to 0 (mod m) and with
length type (α1, α2, . . . , αm−1) equals the number of partitions of n with no
part occurring m or more times with alternating sum type (α1, α2, . . . , αm−1) .

We will not give the details of the bijection here, but direct the reader
to the works of Xiong and Keith [32] and Stockhofe [29] for more information.
The reader is invited to verify for herself that, in the case m = 2, this reduces
to the properties of Sylvester’s bijection to be used for the identities below.
For our purposes, we will use the case m = 3 to provide a proof of Family
1 which gives a new generalization of MacMahon’s identity.

Proof of Family 1. We shall only prove Family 1.1, the other two families being
similar.

Consider a partition of n counted in product side. For the parts that are
congruent to 0 (mod 3), replace all parts 3j with three copies of the part j.
Set these parts aside for the time being.

Now, consider the parts that are congruent to ±2 (mod 3k + 3). Let the
number of parts congruent to 2 (mod 3k + 3) be α1, and the number of parts
congruent to −2 (mod 3k + 3) be α2. These parts can be written as either
(3k + 3) mj − (3k − 1) or (3k + 3) mj − 2, respectively. Map these parts to
3mj − 2 and 3mj − 1, respectively. This now provides a partition in which
no part is a multiple of 3. At this stage, use Stockhofe’s bijection to obtain a
partition μ1 + μ2 + μ3 + · · · in which each part appears at most twice which
has length type (α1, α2).

Let

M1 = μ1 + μ4 + μ7 + · · · ,

M2 = μ2 + μ5 + μ8 + · · · ,

M3 = μ3 + μ6 + μ9 + · · · ,

so the alternating sum type is (M1 − M2,M2 − M3) .

Now:

• Replace each part μ1, μ4, μ7, . . . with two copies of that part.
• Replace each part μ2, μ5, μ8, . . . with (3k − 1) copies of that part.
• Replace each part μ3, μ6, μ9, . . . with two copies of that part.
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We need to verify that all of these operations restore the partition to its original
weight. We just added back in a sum of M1 +(3k − 2)M2 +M3. But, we know

M1 − M2 = α1,

M2 − M3 = α2,

M1 + M2 + M3 = 3
∑

mj − 2α1 − α2.

Now,

M1 + (3k − 2)M2 + M3

= k (M1 + M2 + M3) − (k − 1) (M1 − M2) + (k − 1) (M2 − M3)

= K
(
3
∑

mj − 2α1 − α2

)
− (k − 1) α1 + (k − 1) α2

=
∑

3kmj − (3k − 1) α1 − α2,

so we are adding
∑

3kmj − (3k − 1) α1 − α2 back into our partition.
Restoring the “set aside” parts that come in triples from the very start

of the proof, we have obtained a partition that satisfies the conditions as in
the Conjugate formulation.

Now we produce a candidate for the inverse map. Consider a partition π
satisfying the conditions of the conjugate formulation. Break π into five pieces:

1. In π1 collect those parts of π whose frequency is divisible by 3.
2. In π2 collect those parts that have frequency ≡ 2 (mod 3) such that the

number of strictly larger parts is �≡ 2 (mod 3). Note that parts of π with
frequency belonging to {2, 5, . . . , 3k − 4} are exactly the parts accounted
in π2.

3. In π3 collect those parts that have frequency ≡ 2 (mod 3) such that
the number of strictly larger parts is ≡ 2 (mod 3). Clearly, any part
appearing in π3 has frequency at least 3k − 1.

4. In π4 collect those parts that have frequency ≡ 1 (mod 3) such that the
number of strictly larger parts is ≡ 1 (mod 3). Parts of π with frequency
belonging to {4, 7, . . . , 3k − 2} are exactly the parts accounted in π4.

5. In π5 collect those parts that have frequency ≡ 1 (mod 3) such that the
number of strictly larger parts is �≡ 1 (mod 3). Any part appearing in π5

has frequency at least 3k + 1.

Retain 2 copies of each part appearing in π2 and move the rest of the
copies to π1. Retain 3k − 1 copies of each part appearing in π3 and move the
rest of the copies to π1. Retain 4 copies of each part appearing in π3 and move
the rest of the copies to π1. Retain 3k + 1 copies of each part appearing in
π3 and move the rest of the copies to π1. Denote the new π1 by π′

1. After
this, keep only 1 copy of each part appearing in π2 and π3, discard the rest of
the copies, and call the new partitions π′

2 and π′
3. Similarly get π′

4 and π′
5 by

retaining 2 copies of each part in π4 and π5, respectively.
Coalesce every tuple of 3 copies of a part j from π′

1 into a new part 3j,
and call the new partition π′′

1 and keep this aside.
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Consider μ = π′
2 + π′

3 + π′
4 + π′

5 and map this via inverse of Stockhofe’s
bijection we used above to obtain a new partition μ′ in which no part is a
multiple of 3. In μ′, send every part 3mj −1 to the part (3k + 3) mj − (3k −1)
and every part 3mj − 2 to (3k + 3) mj − 2. Call this new partition μ′′.

Finally, merge π′′
1 and μ′′.

We leave it to the reader to convince that this is indeed the inverse map.
�

Example 5.2. Letting k = 1 in Family 1.1 recovers MacMahon’s identity (the
second and third conditions on the sum-side are vacuous).

Now we present identities obtained with k = 2 which were the ones found
by our computer program:

Example 5.3. Take k = 2 in Family 1.1.
Product : Parts are ≡ 0, 2, 3, 6, 7 (mod 9).
Sum:

– Difference between adjacent parts is not 1.
– If the difference between adjacent parts is 2 then their sum is �≡ 0 (mod 6).
– If the difference between adjacent parts is 4 then their sum is

�≡ 2, 4 (mod 6).
– Initial conditions are given by a fictitious zero, i.e., the smallest part is

not 1 or 4.
Conjugate:

– Difference between adjacent parts is not 1.
– If a part appears exactly twice, then the number of parts bigger than it

is �≡ 2 (mod 3).
– If a part appears exactly four times, then the number of parts bigger than

it is ≡ 1 (mod 3).
Flat form: Forbid [1, 2; ≡ 1 (2)], [2, 2; ≡ 0 (6)], [3, 2; ≡ 2 (6)], and [3, 2; ≡ 4 (6)].
Recursions: Even though we have provided a proof above, we also provide the
following recursions as they will lead to a nice pattern:

P1 = 1, P2 =
1

1 − q2
, P3 =

1
1 − q3

+
1

1 − q2
− 1,

P3k = P3k−1 +
q3k

1 − q3k
(P3k−2 − P3k−4 + P3k−5) ,

P3k+1 = P3k +
q3k+1

1 − q3k+1
(P3k−2 − P3k−3 + P3k−4) ,

P3k+2 = P3k+1 +
q3k+2

1 − q3k+2
P3k.

�

Example 5.4. Take k = 2 in Family 1.2.
Product : Parts are ≡ 0, 3, 5, 6, 7 (mod 9).
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Sum:

– Difference between adjacent parts is not 1.
– If the difference between adjacent parts is 2 then their sum is �≡ 2 (mod 6).
– If the difference between adjacent parts is 4 then their sum is �≡ 0, 4 (mod 6).
– Initial conditions are given by a fictitious zero, i.e., the smallest part is

not 1, 2 or 4.

Conjugate:

– Difference between adjacent parts is not 1.
– If a part appears exactly twice then the number of parts bigger than it

is �≡ 0 (mod 3).
– If a part appears exactly four times then the number of parts bigger than

it is ≡ 2 (mod 3).

Flat form: Forbid [1, 2; ≡ 1 (2)], [2, 2; ≡ 2 (6)], [3, 2; ≡ 0 (6)], and [3, 2; ≡ 4 (6)].

Recurrences:

P1 = P2 = 1, P3 = P4 =
1

1 − q3
, P5 =

1
1 − q5

+
1

1 − q3
− 1,

P3k = P3k−1 +
q3k

1 − q3k
P3k−2,

P3k+1 = P3k +
q3k+1

1 − q3k+1
(P3k−1 − P3k−3 + P3k−4) ,

P3k+2 = P3k+1 +
q3k+2

1 − q3k+2
(P3k−1 − P3k−2 + P3k−3) .

�

Example 5.5. Take k = 2 in Family 1.3.

Product : Parts are ≡ 0, 2, 3, 4, 6 (mod 9).

Sum:

– Difference between adjacent parts is not 1.
– If the difference between adjacent parts is 2, then their sum is

�≡ 4 (mod 6).
– If the difference between adjacent parts is 4, then their sum is

�≡ 0, 2 (mod 6).
– Initial conditions are given by a fictitious zero, i.e., the smallest part is

not 1.

Conjugate:

– Difference between adjacent parts is not 1.
– If a part appears exactly twice, then the number of parts bigger than it

is �≡ 1 (mod 3).
– If a part appears exactly four times, then the number of parts bigger than

it is ≡ 0 (mod 3).

Flat form: Forbid [1, 2; ≡ 1 (2)], [2, 2; ≡ 4 (6)], [3, 2; ≡ 0 (6)], and [3, 2; ≡ 2 (6)].
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Recurrences: We have the following recursions:

P1 = 1, P2 =
1

1 − q2
, P3 =

1 − q5

(1 − q3)(1 − q2)
,

P4 = P3 +
q4

(1 − q4)(1 − q2)
, P5 = P4 +

q5

1 − q5
P3,

P3k = P3k−1 +
q3k

1 − q3k
(P3k−3 − P3k−4 + P3k−5) ,

P3k+1 = P3k +
q3k+1

1 − q3k+1
P3k−1,

P3k+2 = P3k+1 +
q3k+2

1 − q3k+2
(P3k − P3k−2 + P3k−3) .

�

Remark 5.6. Note how the recursions in the previous three identities are re-
lated by a cyclic shift.

� Family 2
This is an infinite family, with one identity for every even modulus ≥ 4.

Fix an even k ≥ 1.
Product : Each part is either even or ≡ −1 (mod 2k + 2).
Sum:

– An odd part 2j + 1 is not immediately adjacent to any of the 2j, 2j −
2, . . . , 2j − 2k + 2 (its previous k even numbers).

– Initial conditions are implied by adding a fictitious zero. That is, the
smallest part is not equal to 1, 3, . . . , 2k − 1.

Conjugate: If a part appears exactly 1, or 3, . . ., or 2k − 1 times, then there
are an odd number of parts strictly greater than it.

Euler’s celebrated partition identity states that, for any nonnegative in-
teger n, the number of partitions of n into odd parts equals the number of
partitions of n into distinct parts. A key ingredient in our work is the bijective
proof of this identity given by Sylvester in his classic, colorfully-named treatise
on partitions [31]. This may not be the “simplest” proof—or even the easiest
bijective proof—but it possesses some properties that will be important for
us later. (See the work of Zeilberger [33] for a recursive formulation of the
bijection; for more information on partition bijections, see Pak’s lucid survey
article [26]).

Proof. This and the following few families will be proved using Pak and Post-
nikov’s bijection [27]:

Consider a partition of n counted in the product side, i.e., a partition in
which each part is either even or ≡ −1 (mod 2k +2). First, we break all even
parts in halves, that is, for the parts that are congruent to 0 (mod 2), replace
all parts 2j with two copies of the part j.

The remaining parts are all of the form (2k + 2)mj − 1 for some positive
integers mj . Replace each of these parts with 2mj − 1; we are now considering
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a partition into odd parts. We send this to a partition into distinct parts [27].
For this new partition μ1 + μ2 + μ3 + μ4 + · · · we replace each odd-indexed
part with 2k + 1 copies of that part.

The proof that this procedure gives a partition of correct weight and that
this map is a bijection between partitions counted in the product side and the
ones counted in the conjugate formulation is exactly as in the proof of Family
1 given above.

Now we produce a candidate for the inverse map. Consider a partition π
of weight n satisfying the conditions of the conjugate formulation. Break π into
three classes. Collect in π1 those parts that appear with an even frequency,
collect in π2 those parts that appear with an odd frequency such that the
number of parts that are strictly larger is also odd, and collect in π3 those
parts that appear with an odd frequency such that the number of parts that
are strictly larger is even. Note that π2 necessarily contains all those parts of
π that appear with an odd frequency ≤ 2k − 1, and any part appearing in π3

has an frequency at least 2k + 1.
Now, retain one copy of each part appearing in π2, and move the rest of

the copies to π1. Retain 2k + 1 copies of each part appearing in π3 and move
the rest of the copies (of which there are an even number) to π1. After this,
only retain a single copy of each part appearing in π3 and discard the rest of
the copies. Call the new partitions π′

1, π′
2 and π′

3.
For π′

1, merge two copies of each part j into a new part 2j, call the new
partition π′′

1 and keep it aside.
Consider μ = π′

2 + π′
3. It is not hard to see that in μ the distinct parts

and parts of odd index are precisely the parts coming from π′
3. Now map μ to a

partition with odd parts μ′. In μ′ map every odd part 2mj −1 to (2k+2)mj −1
to obtain a new partition μ′′. Finally, merge π′′

1 and μ′′.
We leave it to the reader to convince herself that this is indeed the inverse

map. �

Let us give a specific example. Consider the theorem in the case that
k = 2. The product side allows parts congruent to 0 (mod 2) and 5 (mod 6);
for example, consider

40 + 23 + 14 + 14 + 12 + 11 + 6 + 6 + 6 + 5 + 5.

First, we replace all of the even parts 2j with two copies of j, obtaining

40 + 14 + 14 + 12 + 6 + 6 + 6 �→ 20 + 20 + 7 + 7 + 7 + 7
+6 + 6 + 3 + 3 + 3 + 3 + 3 + 3.

Now consider the remaining odd parts, which are all congruent to 5 (mod 6):

23 + 11 + 5 + 5.

Sending each part of the form 6mj − 1 to 2mj − 1 produces

7 + 3 + 1 + 1.
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This maps to the following partition with distinct parts:

7 + 4 + 1.

We now replace each odd-indexed part with 5 copies of itself, producing

7 + 7 + 7 + 7 + 7 + 4 + 1 + 1 + 1 + 1 + 1.

Now, combining this with the previously obtained parts, we finally get

20 + 20 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 6 + 6 + 4
+3 + 3 + 3 + 3 + 3 + 3 + 1 + 1 + 1 + 1 + 1.

For the inverse map, check that

π1 = 20 + 20 + 6 + 6 + 3 + 3 + 3 + 3 + 3 + 3,
π2 = 4,

π3 = 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 1 + 1 + 1 + 1 + 1.

We get

π′
1 = 20 + 20 + 7 + 7 + 7 + 7 + 6 + 6 + 3 + 3 + 3 + 3 + 3 + 3,

π′
2 = 4,

π′
3 = 7 + 1.

We have

π′′
2 = 40 + 14 + 14 + 12 + 6 + 6 + 6.

We also have

μ = 7 + 4 + 1,
μ′ = 7 + 3 + 1 + 1

and

μ′′ = 23 + 11 + 5 + 5.

Finally, we have

π′′ + μ′′ = 40 + 23 + 14 + 14 + 12 + 11 + 6 + 6 + 6 + 5 + 5.

Remark 5.7. All of the families from here until Family 7 will use a very similar
procedure to obtain the bijections. We shall only indicate how the proofs differ,
leaving the details to the reader.

Example 5.8. Product : Parts are ≡ 0, 2, 3 (mod 4).

Sum:

– An odd part 2j + 1 is not immediately adjacent to 2j.
– The smallest part is not 1.

Flat form: Forbid [1, 2; ≡ 1 (4)].
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Proof. This particular identity can be proved quickly using recursions.

P1 = 1,

P2j+1 =
q2j+1

1 − q2j+1
P2j−1 +

1
1 − q2j

P2j−1 =
1 − q4j+1

(1 − q2j)(1 − q2j+1)
P2j−1.

Now take the limit as j → ∞. �

Example 5.9. Product : Parts are ≡ 0, 2, 4, 5 (mod 6).
Sum:

– An odd part 2j + 1 is not immediately adjacent to either of 2j or 2j − 2.
– Initial conditions are implied by a fictitious zero, i.e., the smallest part is

not equal to 1 or 3.

Flat-form: Forbid [1, 2; ≡ 1 (4)], and [2, 2; ≡ 3 (4)].

� Family 3
This is an infinite family with one identity for each even modulus ≥ 4.

Fix k ≥ 1.
Product : Each part is either even or ≡ 1 (mod 2k + 2).
Sum: An even part 2j is forbidden to be adjacent to either of 2j − 1, 2j −
3, . . . , 2j − 2k + 1 (its previous k odd numbers).
Conjugate: If a part appears exactly 1, or 3, . . . , or 2k − 1 times, then there
are an even number of parts strictly greater than it.

Proof. Consider a partition of n counted in the product side. Then, break all
even parts in halves. Now, the remaining parts are all of the form (2k+2)mj+1
for some positive integers mj . Replace each of these parts with 2mj + 1; we
are now considering a partition into odd parts. Now, send this to a partition
into distinct parts. For this new partition μ1 + μ2 + μ3 + μ4 + · · · replace each
even-indexed part with 2k + 1 copies of that part. �

Example 5.10. Product : Parts are ≡ 0, 1, 2 (mod 4).
Sum: An even part 2j is forbidden to be immediately adjacent to 2j − 1.
Flat form: Forbid [1, 2; ≡ 3 (4)].

Proof. Let Pj be the generating function of sum sides, with added restriction
that the largest part is ≤ j. Then,

P2j =
1

1 − q2j
P2j−2 − P2j−2 + P2j−1, P2j−1 =

1
1 − q2j−1

P2j−2.

So, we get

P2j = P2j−2

(
1

1 − q2j
+

1
1 − q2j−1

− 1
)

= P2j−2

(
1 − q4j−1

(1 − q2j)(1 − q2j−1)

)
.

Now use P2 =
1 − q3

(1 − q)(1 − q2)
and induct. �

Example 5.11. Product : Parts are �≡ 0, 1, 2, 4 (mod 6).
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Sum:

– An even part 2j is forbidden to be immediately adjacent to 2j − 1 or
2j − 3.

Flat form: Forbid [1, 2; ≡ 3 (4)], and [2, 2; ≡ 1 (4)].

� Family 4
This is an infinite family, with one identity for every even modulus greater
than or 8. For modulus 6, one of the conditions becomes redundant and one
gets MacMahon’s identity recalled in the Introduction.

Fix k ≥ 1.

Product : Parts are either even or ≡ 3 (mod 2k + 6).

Sum:

– Difference between adjacent parts is not 1.
– An even part 2j is not immediately adjacent to any of 2j − 3, . . . , 2j −

2k − 1.
– The initial condition is implied by a fictitious zero. That is, the smallest

part is not 1.

Conjugate:

– No part appears exactly once.
– If a part appears exactly 3, or 5, . . ., or 2k + 1 times then there are an

even number of parts strictly greater than it.

Proof. Consider a partition of n counted in the product side. Then, break all
even parts in halves. Now, the remaining parts are all of the form (2k+6)mj+3
for some positive integers mj . Replace each of these parts with 2mj + 1; we
are now considering a partition into odd parts. Now, send this to a partition
into distinct parts. For this new partition μ1 + μ2 + μ3 + μ4 + · · · replace each
odd-indexed part with 3 copies of that part and each even-indexed part with
2k + 3 copies of that part. �

Example 5.12. Product : Parts are ≡ 0, 2, 3, 4, 6 (mod 8).

Sum:

– Difference between adjacent parts is not 1.
– An even part 2j is not immediately adjacent to 2j − 3.
– The initial condition is implied by a fictitious zero. That is, the smallest

part is not 1.

Flat form: Forbid [1, 2; ≡ 1 (2)], and [2, 2; ≡ 1 (4)].

� Family 5
This is again an infinite family, with one identity for every even modulus ≥ 8.
Again, for modulus 6, one of the conditions becomes redundant and we get
MacMahon’s identity.

Fix k ≥ 1.

Product : Parts are either even or ≡ −3 (mod 2k + 6).
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Sum:
– Difference between adjacent parts is not 1.
– An odd part 2j + 1 is not allowed to be immediately adjacent to 2j −

2, . . . , 2j − 2k.
– Initial conditions are implied by a fictitious zero, i.e., the smallest part is

not equal to 1, 3, . . . , 2k + 1.
Conjugate:

– No part appears exactly once.
– If a part appears exactly 3, or 5, . . ., or 2k + 1 times then there are an

odd number of parts strictly greater than it.

Proof. Consider a partition of n counted in the product side. Then, break all
even parts in halves. Now, the remaining parts are all of the form (2k+6)mj−3
for some positive integers mj . Replace each of these parts with 2mj − 1; we
are now considering a partition into odd parts. Now, send this to a partition
into distinct parts. For this new partition μ1 + μ2 + μ3 + μ4 + · · · replace each
even-indexed part with 3 copies of that part and each odd-indexed part with
2k + 3 copies of that part. �
Example 5.13. Product : Parts are ≡ 0, 2, 4, 5, 6 (mod 8).
Sum:

– Difference between adjacent parts is not 1.
– An odd part 2j + 1 is not allowed to be immediately adjacent to 2j − 2.
– The smallest part is not equal to 1 or 3.

Flat form: Forbid [1, 2; ≡ 1 (2)], and [2, 2; ≡ 3 (4)].

� Family 6
An infinite family with one identity for every modulus divisible by 4 and ≥ 12.

Fix k ≥ 1.
Product : Parts are even or ≡ 2k + 5 (mod 4k + 8).
Sum:

– Difference between consecutive parts cannot be 1, 3, . . . , 2k + 1.
– An odd part 2j + 1 cannot be immediately adjacent to 2j − 2k − 2.
– Initial conditions are implied by a fictitious zero, that is, the smallest

part cannot be either of 1, 3, . . . , 2k + 3.
Conjugate:

– No part appears exactly 1, 3, . . . , 2k + 1 times.
– If a part appears exactly 2k + 3 times then there are an odd number of

parts strictly greater than it.

Proof. Consider a partition of n counted in the product side. Then, break
all even parts in halves. Now, the remaining parts are all of the form (4k +
8)mj +(2k+5) for some positive integers mj . Replace each of these parts with
2mj + 1; we are now considering a partition into odd parts. Now, send this to
a partition into distinct parts. For this new partition μ1 + μ2 + μ3 + μ4 + · · ·
replace each odd-indexed part with 2k +5 copies of that part and replace each
even-indexed part with 2k + 3 copies of that part. �
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Example 5.14. Product : Parts are ≡ 0, 2, 4, 6, 7, 8, 10 (mod 12).
Sum:

– Difference between consecutive parts cannot be 1 or 3.
– An odd part 2j + 1 cannot be immediately adjacent to 2j − 4.
– Initial conditions are implied by a fictitious zero, that is, the smallest

part cannot be either of 1, 3, 5.
Flat form: Forbid [1, 2; ≡ 1 (2)], [2, 2; ≡ 1 (2)], and [3, 2; ≡ 1 (4)].

� Family 7
An infinite family, with one identity for every modulus divisible by 4 that is
≥ 12.

Fix k ≥ 1.
Product : Each part is either even or ≡ 2k + 3 (mod 4k + 8).
Sum:

– Difference between consecutive parts cannot be 1, 3, . . . , 2k + 1.
– An even part 2j cannot be immediately adjacent to 2j − 2k − 3.
– Initial conditions are given by a fictitious zero, that is, the smallest part

is not amongst 1, 3, . . . , 2k + 1.
Conjugate:

– No part appears exactly 1, 3, . . ., 2k + 1 times.
– If a part appears exactly 2k + 3 times then there are an even number of

parts strictly greater than it.

Proof. Consider a partition of n counted in the product side. Then, break
all even parts in halves. Now, the remaining parts are all of the form (4k +
8)mj +(2k+3) for some positive integers mj . Replace each of these parts with
2mj + 1; we are now considering a partition into odd parts. Now, send this to
a partition into distinct parts. For this new partition μ1 + μ2 + μ3 + μ4 + · · ·
replace each even-indexed part with 2k+5 copies of that part and replace each
odd-indexed part with 2k + 3 copies of that part. �

Example 5.15. Product : Each part is either even or ≡ 5 (mod 12).
Sum:

– Difference between consecutive parts cannot be 1 or 3.
– An even part 2j cannot be immediately adjacent to 2j − 5.
– The smallest part is not 1 or 3.

Flat form: Forbid [1, 2; ≡ 1 (2)], [2, 2; ≡ 1 (2)], and [3, 2; ≡ 3 (4)].

Remark 5.16. Families 2–7 are of a very similar nature. It seems very likely
that they can all be incorporated into a grand family and proved together. We
leave this to an interested reader.

� Family 8
Let k ≥ 2.1

1This family is incorporated from the article http://arxiv.org/abs/1703.04715 [math.CO].
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Product : Each part is either even but �≡ 2 (mod 4k) or odd and ≡ 1, 2k +
1 (mod 4k).
Sum:

– If an odd part 2j + 1 is present, then none of the other parts are equal
to any of 2j + 1, 2j + 2, . . . , 2j + 2k − 1.
Actually, this family is in a sense dual to the following family of identities

due to Andrews, some special cases of which were found by our computer
program:

Theorem 5.17 (Theorem 3, [2]). Let k ≥ 2. Product: Each part is either even
but �≡ 4k − 2 (mod 4k) or odd and ≡ 2k − 1, 4k − 1 (mod 4k).
Sum:

– If an odd part 2j + 1 is present, then none of the other parts are equal to
any of 2j + 1, 2j, . . . , 2j − 2k + 3.

– The smallest part is not equal to any of 1, 3, . . . , 2k − 3.

Over the past decade or so, there has been a lot of interest in exploring
overpartition analogues of classical partition identities (as a small and by no
means exhaustive sample, see papers by Chen et al. [9], Lovejoy [22], Corteel
and Lovejoy [10] and Dousse [12]). Overpartitions are partitions in which the
last occurrence of any part may appear overlined.

The fact that odd parts are not allowed to be repeated (though even parts
may be repeated arbitrarily many times) in the identities above suggests that
both are actually special cases of an overpartition theorem. We now present
an overpartition generalization that can be used to recover Family 8 and
Theorem 5.17 upon appropriate specializations.

Theorem 5.18. For k ≥ 2, let Ak(m,n) be the number of overpartitions of n
with exactly m overlined parts, subject to the following conditions:

• If an overlined part b appears then all of the non-overlined parts b, b +
1, . . . , b + k − 2 are forbidden to appear.

• If an overlined part b appears then all of the overlined parts b + 1, b + 2,
. . . , b + k − 1 are forbidden to appear.

Then,
∑

m,n≥0

Ak(m,n)amqn =

(−aq; qk
)
∞

(q; q)∞
.

Proof. Fix k ≥ 2. Let pj(m,n) be the number of overpartitions of n with m
overlined parts that satisfy the conditions in Theorem 5.18, with the further
restriction that all parts are ≤ j. Let rj(m,n) be the number of overpartitions
of n counted by pj(m,n) where j, j − 1, . . . , j − k + 2 do not appear (that is,
the largest possible overlined part is j − k + 1). Then, let

Pj(a, q) =
∑

m,n≥0

pj(m,n)amqn,

Rj(a, q) =
∑

m,n≥0

rj(m,n)amqn,
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and let P0 = R0 = 1. It is clear that

R∞(a, q) = P∞(a, q) =
∑

m,n≥0

Dk(m,n)amqn.

Let

F (a, x, q) =
∑

j≥0

Rj(a, q)xj .

Observe that the following recursion and initial conditions are satisfied:

Rj(a, q) =
1

1 − qj
Rj−1(a, q) +

aqj−k+1

1 − qj
Rj−k(a, q), j ≥ k,

Rj(a, q) =
1

(q; q)j
, 0 ≤ j < k.

Note the following alternate way to write the recursion and the initial condi-
tions:

Rj(a, q) =
1

1 − qj
Rj−1(a, q) +

aqj−k+1

1 − qj
Rj−k(a, q), j ≥ 1,

R0(a, q) = 1, Rj(a, q) = 0 for − k < j < 0,

which immediately gives

(1 − x)F (a, x, q) = F (a, xq, q) + axkqF (a, xq, q) = (1 + axkq)F (a, xq, q).

Noting that

lim
n→∞ F (a, xqn, q) = R0(a, q) = 1,

we obtain

F (a, x, q) =
∏

j≥0

1 + axkqjk+1

1 − xqj
.

Finally, by Appell’s comparison theorem [11, p. 101] we have:

R∞(a, q) = lim
x→1

((1 − x)F (a, x, q)) = lim
x→1

⎛

⎝
∏

j≥0

1 + axkqjk+1

1 − xqj+1

⎞

⎠ =

(−aq; qk
)
∞

(q; q)∞
.

�

Now, Family 8 and Theorem 5.17 can be recovered by appropriate spe-
cializations. Letting (a, q) �→ (

q−1, q2
)

(that is, we map every nonoverlined
part j �→ 2j and every overlined part j �→ 2j − 1) gives Family 8, while
using (a, q) �→ (

q2k−3, q2
)

(now mapping j �→ 2j and every overlined part
j �→ 2j + 2k − 3) provides us with Theorem 5.17.

However, many more corollaries can be found. For k ≥ 2, by choosing
i ∈ {0, . . . , k − 1} and letting (a, q) �→ (

q2i−1, q2
)
, we get:
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Corollary 5.19. Let B(n) be the number of partitions of a non-negative integer
n in which each part is either even but �≡ 4i + 2 (mod 4k) or odd and ≡
2i + 1, 2k + 2i + 1 (mod 4k). Also, let C(n) be the number of partitions of n in
which if an odd part 2j + 1 is present, then none of the other even parts are
equal to any of

2j − 2i + 2, 2j − 2i + 4, . . . , 2j + 2k − 2i − 2,

none of the other odd parts are equal to any of

2j + 1, 2j + 3, . . . , 2j + 2k − 1,

and the smallest odd part is at least 2i + 1. Then, B(n) = C(n) for all n.

We leave it to the reader to work out identities related to the specializa-
tions q �→ qt for t > 2.

� Family 9
This is perhaps the easiest of the families that we came across, but it is inter-
esting nonetheless. The proofs of all of the identities in this family follow the
same pattern as in Family 9.2 below.

For every modulus, we have k identities that avoid exactly one congruence
class in their product. This can be greatly generalized. We first start with the
“base” case.

Fix k ≥ 4 and let 1 ≤ j ≤ k.

Product : Parts are �≡ j (mod k).
Sum:

– If difference at distance 
k/2� − 1 is strictly less than 2, then the sum of
these 
k/2� parts is �≡ j (mod k).

– Initial conditions are implied by adding 
k/2� − 1 fictitious zeros.

Flat form: Forbid [1, 
k/2� ; ≡ j (k)].

� Family 9.1 Here we present the full set of identities for k = 5.

1. Product : Parts are �≡ 1 (mod 5).
Sum:

– If difference at distance 2 is 0 or 1, then the sum of these three parts
is �≡ 1 (mod 5)

– The smallest part is at least 2.

Flat form: Forbid [1, 3; ≡ 1 (5)].
2. Product : Parts are �≡ 2 (mod 5).

Sum:
– If difference at distance 2 is 0 or 1, then the sum of these three parts

is �≡ 2 (mod 5)
– 1 appears at most once.

Flat form: Forbid [1, 3; ≡ 2 (5)].
3. Product : Parts are �≡ 3 (mod 5).
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Sum:
– If difference at distance 2 is 0 or 1, then the sum of these three parts

is �≡ 3 (mod 5)

Flat form: Forbid [1, 3; ≡ 3 (5)].
5. Product : Parts are �≡ 4 (mod 5).

Sum:

– If difference at distance 2 is 0 or 1, then the sum of these three parts
is �≡ 4 (mod 5)

Flat form: Forbid [1, 3; ≡ 4 (5)].
6. Product : Parts are �≡ 5 (mod 5).

Sum:

– If difference at distance 2 is 0 or 1, then the sum of these three parts
is �≡ 5 (mod 5)

Flat form: Forbid [1, 3; ≡ 5 (5)].

Avoiding More Number of Congruence Classes

This can be generalized to avoiding two or more congruence classes. The main
idea for that is as follows. Let N be the intended modulus, and let S be a set
of congruence classes we wish to avoid on the product. Suppose that we are
looking for an identity with the following form:
Product : Parts are �≡ S (mod N).
Sum:

– If difference at distance 2 is strictly less than 2, i.e., λi−λi+2 ≤ 1, then the
sum of these parts is �≡ S (mod N), i.e., λi + λi+1 + λi+2 �≡ S (mod N).

– Possibly add fictitious zeros as appropriate.

Then, it appears to us that this can always be done as long as elements of
S are sufficiently spread out. Below, we show how to do this for a few moduli
N and a corresponding set S.

Avoiding 2 Congruence Classes. We wish to let S = {i, j} be a pair of integers
which will be forbidden residues and let N be a modulus.

We sketch a proof of some mod−9s; the proofs of others are similar.

� Family 9.2 A family of Mod−9s, N = 9.
The set S can be taken to be one of

{0, 3}, {0, 4}, {0, 5}, {0, 6}, {1, 6}, {2, 6}, {3, 6}, {3, 7}, {3, 8},

with no fictitious zeros added.

Proof. We show how this works for a few pairs. The pairs {0, 3}, {0, 6}, {3, 6}
yield very easy identities. The rest are very mildly challenging. The proofs are
similar to Identity 5.10.
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For {0, 4}, observe that

P3n+3

=
(
1 + q3n+3 + q3n+3q3n+3

) (
q3n+2

1 − q3n+2
(1 + q3n+1) +

1
1 − q3n+1

)
P3n

=
(1 − q9n+9)(1 − q9n+4)

(1 − q3n+3)(1 − q3n+2)(1 − q3n+1)
P3n.

Substituting P0 = 1 and letting n → ∞, we get the result.
For {0, 5}, the recursion changes to

P3n+3

=
(
1 + q3n+3 + q3n+3q3n+3

) (
q3n+2q3n+2

1 − q3n+2
+

1
1 − q3n+1

(1 + q3n+2)
)

P3n.

For {3, 7}, the recursion changes to

P3n+4

=
(
1 + q3n+4 + q3n+4q3n+4

)(
q3n+3

1 − q3n+3
(1 + q3n+2) +

1
1 − q3n+2

)
P3n+1.

For {3, 8}, the recursion changes to

P3n+4

=
(
1 + q3n+4 + q3n+4q3n+4

) (
q3n+3q3n+3

1 − q3n+3
+

1
1 − q3n+2

(1 + q3n+3)
)

P3n+1.

For {3, 7} and {3, 8}, we let P1 = (1 − q3)/(1 − q). Note the similarity of
recursions of {0, 4} with {3, 7} and {0, 5} with {3, 8}. �

� Family 9.3 A family of Mod−10s, N = 10. The set S takes the values:

{0, 5}, {3, 8}, {3, 9}, {4, 9}, {5, 9},

with no fictitious zeros added.
Note that {0, 5}, {3, 8}, {4, 9} are from an already discovered family of

Mod−5s.

� Family 9.4 A family of Mod−11s, N = 11. The set S takes values:

With no fictitious zeros: {0, 4}, {0, 5}, {0, 6}, {3, 7}, {3, 8}, {3, 9},

{4, 9}, {4, 10}, {5, 10}, {6, 10}.

With 1 fictitious zero: {2, 7}, {2, 8}, {2, 9}.

With 2 fictitious zeros: {1, 6}, {1, 7}.

Avoiding 3 Congruence Classes. We exhibit this with an example.

� Identity 9.5. We continue working with difference at distance 2 and no ficti-
tious zeros. The set S = {0, 9, 16} of three elements modulo 23 works.

One may find other pairs N,S.
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Beyond Difference-at-Distance 2

This idea naturally generalizes to conditions with higher distances, as we show
with an example.

� Identity 9.6 Let S = {0, 7}, N = 17.
Product : Parts are �≡ S (mod N).
Sum:

– If difference at distance 3 is strictly less than 2, that is λi−λi+3 ≤ 1, then
the sum of these parts, that is, λi + λi+1 + λi+2 + λi+3 �≡ S (mod N).
And so on for other pairs N,S and with conditions at larger distances. . . .

Remark 5.20. We leave to the interested reader to work out a precise theorem
that covers all of these examples.
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Göllnitz-Gordon identities. Ramanujan J. 45(3), 873–893 (2018)

[18] Kanade, S., Russell, M.C.: IdentityFinder and some new identities of Rogers-
Ramanujan type. Exp. Math. 24(4), 419–423 (2015)

[19] Kanade, S., Russell, M.C.: Staircases to analytic sum-sides for many new inte-
ger partition identities of Rogers-Ramanujan type. Electron. J. Combin. 26(1),
#P1.6 (2019)

[20] Lepowsky, J., Wilson, R.L.: The structure of standard modules. I. Universal
algebras and the Rogers-Ramanujan identities. Invent. Math. 77(2), 199–290
(1984)

[21] Lepowsky, J., Wilson, R.L.: The structure of standard modules. II. The case

A
(1)
1 , principal gradation. Invent. Math. 79(3), 417–442 (1985)

[22] Lovejoy, J.: Overpartition theorems of the Rogers-Ramanujan type. J. London
Math. Soc. (2) 69(3), 562–574 (2004)

[23] Mc Laughlin, J., Sills, A.V., Zimmer, P.: Rogers-Ramanujan computer searches.
J. Symbolic Comput. 44(8), 1068–1078 (2009)

[24] Meurman, A., Primc, M.: Annihilating ideals of standard modules of sl(2,C)∼

and combinatorial identities. Adv. Math. 64(3), 177–240 (1987)

478

http://arxiv.org/abs/1809.06089
http://www.qseries.org/fgarvan/qmaple/qseries
http://www.qseries.org/fgarvan/qmaple/qseries


New Identities of Rogers–Ramanujan–MacMahon Type 833

[25] Nandi, D.: Partition identities arising from the standard A
(2)
2 -modules of level

4. Ph.D. Thesis. Rutgers, The State University of New Jersey, New Brunswick
(2014)

[26] Pak, I.: Partition bijections, a survey. Ramanujan J. 12(1), 5–75 (2006)

[27] Pak, I., Postnikov, A.: A generalization of Sylvester’s identity. Discrete Math.
178(1-3), 277–281 (1998)

[28] Russell, M.C.: Using experimental mathematics to conjecture and prove the-
orems in the theory of partitions and commutative and non-commutative re-
currences. Ph.D. Thesis. Rutgers, The State University of New Jersey, New
Brunswick (2016)

[29] Stockhofe, D.: Bijektive Abbildungen auf der Menge der Partitionen einer
natürlichen Zahl. Bayreuth. Math. Schr. (10), 1–59 (1982)

[30] Subbarao, M.V.: On a partition theorem of MacMahon-Andrews. Proc. Amer.
Math. Soc. 27, 449–450 (1971)

[31] Sylvester, J.J., Franklin, F.: A constructive theory of partitions, arranged in
three acts, an interact and an exodion. Amer. J. Math. 5, 251–330 (1882)

[32] Xiong, X., Keith, W.J.: Euler’s partition theorem for all moduli and new com-
panions to Rogers-Ramanujan-Andrews-Gordon identities, Ramanujan J. 49(3),
555–565 (2019)

[33] Zeilberger, D.: A recursive formulation of Sylvester’s bijection between
odd and distinct partitions. http://sites.math.rutgers.edu/∼zeilberg/mamarim/
mamarimhtml/syl84.html (2011)

Shashank Kanade
Department of Mathematics
University of Denver
2390 S York St
Denver
CO 80208
USA

e-mail: shashank.kanade@du.edu

Debajyoti Nandi
Chennai Mathematical Institute H1
Sipcot IT Park
Siruseri
Tamil Nadu 603103
India

e-mail: debajyoti.nandi@gmail.com

479

http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/syl84.html
http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/syl84.html


834 S. Kanade et al.

Matthew C. Russell
Department of Mathematics
Rutgers, The State University of New Jersey
110 Frelinghuysen Road
Piscataway
NJ 08854
USA
e-mail: russell2@math.rutgers.edu

Received: 31 January 2019.

Accepted: 1 April 2019.

480



Ann. Comb. 23 (2019) 835–888
c© 2019 Springer Nature Switzerland AG
Published online November 20, 2019
https://doi.org/10.1007/s00026-019-00470-7 Annals of Combinatorics

Andrews–Gordon Type Series
for Kanade–Russell Conjectures

Dedicated to George E. Andrews for his 80th birthday

Kağan Kurşungöz

Abstract. We construct Andrews–Gordon type positive series as generat-
ing functions of partitions satisfying certain difference conditions in six
conjectures by Kanade and Russell. Thus, we obtain q-series conjectures
as companions to Kanade and Russell’s combinatorial conjectures. We
construct generating functions for missing partition enumerants as well,
without claiming new partition identities.

Mathematics Subject Classification. 05A17, 05A15, 11P84.

Keywords. Partition generating function, Andrews–Gordon identities,
Kanade–Russell conjectures.

1. Introduction

In November 2014, Kanade and Russell announced six new partition identi-
ties using some computer help [6]. The difference conditions on partitions are
inspired by Capparelli’s identities [1,5].

The first of the conjectures is given below.

Conjecture 1.1 (The Kanade–Russell conjecture I1). The number of partitions
of a non-negative integer into parts ≡ ±1,±3 (mod 9) is the same as the
number of partitions with difference at least three at distance two such that if
two successive parts differ by at most one, then their sum is divisible by three.

Here, difference at distance two means the difference between the ith
and (i + 2)th parts. The former condition in the conjecture is a congruence
condition, and the latter is a difference condition. For example, n = 9 has
seven partitions satisfying the first constraint:

1 + 1 + · · · + 1, 1 + 1 + · · · + 1 + 3, 1 + 1 + 1 + 3 + 3,
1 + 1 + 1 + 6, 1 + 8, 3 + 3 + 3, 3 + 6,

as well as seven partitions satisfying the second constraint:
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9, 1 + 8, 2 + 7, 3 + 6, 1 + 3 + 5, 4 + 5, 1 + 2 + 6.

A quote attributed to the late A.O.L. Atkin asserts that it is often easier
to prove identities in the theory of q-series than to discover them. Kanade and
Russell’s conjectures have been counterexamples, since they evaded proof for
more than three years so far. This paper, unfortunately, is no attempt to prove
them.

After the preprint of this paper appeared, Bringmann, Jennings-Shaffer
and Mahlburg [4] announced proofs of the fifth and sixth conjectures in [6]
and more conjectures from [7].

The goal of this paper is to construct Andrews–Gordon type series as gen-
erating functions of the partitions in the conjectures. In particular, generating
functions for partitions satisfying the difference conditions will be constructed.
The Gordon marking of a partition and clusters will be utilized [9].

The next section lists the definitions and a small result that will be used
throughout the paper. Section 3 deals with the first four or the “(mod 9)” con-
jectures and some missing cases. Section 4 treats the last two or the
“(mod 12)” conjectures and some missing cases. Section 5 lists alternative
generating functions of Sect. 4. We do not assert any partition identities for
the missing cases in Sects. 3, 4 and 5. In Sect. 6, we collect some of the con-
structed series thus far and state q-series conjectures as analytic companions
to the Kanade–Russell’s combinatorial conjectures. Thanks to [4], some of the
formulas will be theorems in Sect. 6. We conclude with some commentary, a
few open problems, and some directions for further research in Sect. 7. The
appendix by Emre Erol contains a metaphor and explanation for parts of a
construction in Sect. 4 and related terminology.

2. Definitions and Preliminary Results

An integer partition λ of a natural number n is a non-decreasing sequence of
positive integers that sum up to n:

n = λ1 + λ2 + · · · + λm,

0 < λ1 ≤ λ2 ≤ · · · ≤ λm.

The λi’s are called parts. The number of parts m is called the length of the
partition λ, denoted by l(λ). The number being partitioned is the weight of the
partition λ, denoted by |λ|. One could also reverse the weak inequalities and
take non-decreasing sequences, but we will stick to this definition for purposes
of this note. The point is that reordering the same parts will not give us a new
partition. For example, the five partitions of n = 4 are

4, 1 + 3, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1.

We sometimes allow zeros to appear in the partition. Clearly, they have
no contribution to the weight of the partition, but the length changes as we
add or take out zeros.
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Given a partition λ, if there exists positive integers d and k such that
λj+d −λj ≥ k for all j = 1, 2, . . . , l(λ)−d, we say that λ has difference at least
k at distance d.

Many partition identities have the form “the number of partitions of n
satisfying condition A = the number of partitions of n satisfying condition
B” [3]. We can abbreviate this as p(n| cond. A) = p(n| cond. B). Any form of
the series

F (q) =
∑

n≥0

p(n| cond. A)qn

is called a partition generating function, or F (q) is said to generate
p(n| cond. A).

The definitions below are taken from [9]. Although they are lengthy, they
are included here for self-containment.

Definition 2.1. The Gordon marking of a partition λ is an assignment of pos-
itive integers (marks) to λ such that parts equal to any given integer a are
assigned distinct marks from the set

Z>0\{r| ∃ r-marked λj = a − 1}
such that the smallest possible marks are used first. We can represent the
Gordon marking by a two-dimensional array, where the row index counted
from bottom to top indicates the mark.

Example 2.2. For the partition

λ = 2 + 2 + 3 + 4 + 5 + 6 + 6 + 7 + 9 + 11
+ 13 + 13 + 15 + 15 + 16 + 17 + 18,

the Gordon marking is

λ = 21 + 22 + 33 + 41 + 52 + 61 + 63 + 72 + 91 + 111
+ 131 + 132 + 151 + 152 + 163 + 171 + 182,

or ⎧
⎨

⎩

3
2
2

6
5 7

4 6 9 11
13
13

16
15
15

18
17

⎫
⎬

⎭ .

This last representation of partitions will be used throughout the note.

Definition 2.3. Given a partition λ, let λj be an r-marked part such that
(a) there are no r + 1 or higher marked parts = λj or = λj + 1;

(b1) either there is an r0 marked part λj0 = λj − 1, r0 < r such that there
are no r0-marked parts = λj + 1, and no r0 + 1 or higher marked parts
equal to λj − 1;

(b2) or there are 1, 2, . . . , (r − 1)-marked parts = λj or = λj + 1, and no
r-marked parts = λj + 2.

A forward move of the rth kind is replacing the r0-marked λj0 with an r0
marked λj0 + 1 if (a) and (b1) hold; and replacing the r-marked λj with an
r-marked λj + 1 if (a) and (b2) hold, but (b1) fails.
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Example 2.4. A forward move of the third kind on the 3-marked 16 (in bold-
face) of the partition in the above example makes the partition

⎧
⎨

⎩

3
2
2

6
5 7

4 6 9 11
13
13

16
16

15
18

17

⎫
⎬

⎭ .

Definition 2.5. For a partition λ, let λj �= 1 be an r-marked part such that
(c) there are no (r + 1) or greater marked parts that are = λj or = λj + 1;
(d) there is an r0 ≤ r such that there is an r0-marked λj0 = λj , but no

r0-marked parts = λj − 2.
Choose the smallest r0 described in (d). A backward move of the rth kind on
λj is replacing the r0-marked λj0 with an r0-marked λj0 − 1.

Example 2.6. A backward move of the third kind on the 3-marked 6 of the
last displayed partition makes it

⎧
⎨

⎩

3
2
2

5
5 7

4 6 9 11
13
13

16
16

15
18

17

⎫
⎬

⎭ .

The 6 becomes 5 (in boldface).

Definition 2.7. An r-cluster in λ = λ1 + λ2 + · · · + λm is a sub-partition λi1 ≤
λi2 ≤ · · · ≤ λir such that λij is j-marked for j = 1, 2, . . . , r, λij+1 − λij = 0
or 1 for j = 1, 2, . . . , r − 1, and there are no (r + 1)-marked parts = λir or
= λir + 1.

Example 2.8.
⎧
⎨

⎩

3
2
2

6
5 7

4 6 9 11
13
13

16
15
15

18
17

⎫
⎬

⎭

has the following clusters:
⎧
⎨

⎩

3
2
2
︸︷︷︸

a 3-cluster

6
5

4
︸ ︷︷ ︸

a 3-cluster

7
6
︸︷︷︸

a 2-cluster

9
︸︷︷︸

a 1-cluster

11
︸︷︷︸

a 1-cluster

13
13

︸︷︷︸
a 2-cluster

16
15
15
︸ ︷︷ ︸

a 3-cluster

18
17
︸ ︷︷ ︸

a 2-cluster

⎫
⎬

⎭

When we compare two clusters, not necessarily having the same number
of parts, we compare the 1-marked parts in them. The largest 2-cluster means
the 2-cluster having the largest 1-marked part, etc.

We will also need the following result in Sect. 4.
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Proposition 2.9. The partitions into at most n parts, in which all odd parts

are distinct, is generated by
(−q; q2)n

(q2; q2)n
.

Proof. By the q-binomial theorem [3],

(−qt; q2)∞
(t; q2)∞

=
∑

n≥0

(−q; q2)n

(q2; q2)n
tn.

The right-hand side obviously generates partitions in which no odd part
repeats, and the exponent of t accounts for the number of parts, zeros
allowed. �

Here, and throughout,

(a; q)n =
n∏

j=0

(1 − aqj−1),

(a1, a2, . . . , ak; q)n =(a1; q)n(a2; q)n · · · (ak; q)n

for n ∈ N ∪ {∞} and |q| < 1.

3. Kanade and Russell’s First Four Conjectures and Some
Missing Cases

Theorem 3.1 (cf. The Kanade–Russell conjecture I1). For n,m ∈ N, let kr1
(n,m) be the number of partitions of n into m parts with difference at least
three at distance two such that if two successive parts differ by at most one,
then their sum is divisible by 3. Then

∑

n,m≥0

kr1(n,m)qnxm =
∑

n1,n2≥0

q3n2
2+n2

1+3n1n2x2n2+n1

(q; q)n1(q3; q3)n2

. (3.1)

Proof. For any λ enumerated by kr1(n,m), we will construct a unique triple
(β, μ, η) meeting the following criteria:

• β is the base partition into m = 2n2 + n1 parts having n2 2-clusters and
n1 1-clusters. β satisfies the difference conditions set forth by kr1(n,m).

• μ is a partition with n1 parts (counting zeros).
• η is a partition into multiples of three with n2 parts (counting zeros).
• |λ| = |β| + |μ| + |η|.

Conversely, given a triple (β, μ, η) as described above, we will construct a
unique λ counted by kr1(n,m), where m = 2n2 + n1. We will arrange con-
structions so that they are inverses of each other at each step. This will give a
one-to-one correspondence between the said λ and (β, μ, η), yielding

∑

n,m≥0

kr1(n,m)qnxm =
∑

n1,n2≥0

q|β|xl(β)
∑

μ,η

q|μ|+|η|, (3.2)

where β is the partition with n2 2-clusters, n1 1-clusters, and having the
smallest possible weight. Notice that λ cannot have r-clusters for r ≥ 3, since
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the existence of an r-cluster requires the existence of an r-marked part; hence,
λ has difference at most one at distance r − 1.

In building β, we will place the 1- and 2-clusters, which are as small as
possible, one after the other without violating the difference conditions. The
2-clusters may look like

{

(parts ≤ 3k − 3)
3k
3k (parts ≥ 3k + 3)

}

,

or {

(parts ≤ 3k − 1)
3k + 2

3k + 1 (parts ≥ 3k + 4)

}

,

but not
3k + 1
3k + 1,

3k + 2
3k + 2,

3k + 1
3k , or

3k + 3
3k + 2 .

In the first two cases, the sum of two successive displayed parts is divisible by
3. In the last four, it is not.

One can check that the minimal weight of β is attained when all 2-clusters
are smaller than the 1-clusters, and all clusters are as small as possible. We
will give indications of this fact in the course of the proof. Thus, β is

{
2

1
5

4 · · ·
3n2 − 1

3n2 − 2 3n2 + 1 3n2 + 3

· · · 3n2 + 2n1 − 1

}

.
(3.3)

Here, n1, n2 ≥ 0. The weight of β is

|β| = [(1 + 2) + (4 + 5) + · · · + ((3n2 − 2) + (3n2 − 1))]

+ [(3n2 + 1) + (3n2 + 3) + · · · + (3n2 + 2n1 − 1)]

= [3 + 9 + · · · + 3(2n2 − 1)] + 3n2n1 + n2
1

= 3n2
2 + n2

1 + 3n2n1.

Clearly, μ is generated by 1/(q; q)n1 , and η by 1/(q3; q3)n2 , so that

∑

n1,n2≥0

q|β|xl(β)
∑

μ,η

q|μ|+|η| =
∑

n1,n2≥0

q3n2
2+n2

1+3n1n2x2n2+n1

(q; q)n1(q3; q3)n2

. (3.4)

Combining (3.2) and (3.4) leads to a proof of the theorem.
Given a triple (β, μ, η), we will first move the ith largest 1-cluster the ith

largest part of μ times forward, for i = 1, 2, . . . , n1, in this order. Then, we
move the ith largest 2-cluster 1

3×(the ith largest part of η) times forward, for
i = 1, 2, . . . , n2, in this order. This will give us λ. The forward and backward
moves on the 2-clusters are not exactly the forward or backward moves of the
second kind in Definitions 2.3 and 2.5.

Conversely, given λ, we first determine the number of 2- and 1-clusters,
n2, and n1, respectively. We first move the ith smallest 2-cluster backward
as many times as possible for i = 1, 2, . . . , n2, in this order, and record the
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number of moves as 1
3η1, 1

3η2, . . . , 1
3ηn2 . Then, we move the ith smallest 1-

cluster backward as many times as possible for i = 1, 2, . . . , n1, in this order,
and record the number of moves as μ1, μ2, . . . , μn1 . Not only will we have
obtained μ and η, but also β in the end.

Notice that we perform the forward and backward moves in the exact
reverse order.

Starting with (β, μ, η), we simply add the ith largest part of μ to the
ith largest 1-cluster in β. This preserves the difference condition because the
1-clusters were at least two apart to start with, and larger parts are added to
larger 1-clusters, keeping or increasing the gaps. We now have the intermediate
partition

{
2

1
5

4 · · ·
3n2 − 1

3n2 − 2

(parts ≥ 3n2 + 1, all 1-clusters )

}
.

(3.5)

This also adds the weight of μ to the weight of β.
We now describe the forward moves on the 2-clusters. There are several

cases. {

(parts ≤ 3k − 1)
3k + 2

3k + 1 (parts ≥ 3k + 6)

}

⏐� one forward move on the displayed 2-cluster{

(parts ≤ 3k − 1)
3k + 3
3k + 3 (parts ≥ 3k + 6)

} (3.6)

Here and elsewhere, we highlight the cluster we move.
{

(parts ≤ 3k − 3)
3k
3k (parts ≥ 3k + 4)

}

⏐� one forward move on the displayed 2-cluster{

(parts ≤ 3k − 3)
3k + 2

3k + 1 (parts ≥ 3k + 4)

} (3.7)

Observe that one forward move adds three to the weight of the intermediate
partition. This is why we require parts of η to be multiples of three.

{

(parts ≤ 3k − 1)
3k + 2

3k + 1 3k + 4 (parts ≥ 3k + 7)

}

⏐� one forward move on the displayed 2-cluster{

(parts ≤ 3k − 1)
3k + 2
3k + 2 3k + 4
︸ ︷︷ ︸

!

(parts ≥ 3k + 7)

}
(temporarily)

⏐� adjustment{

(parts ≤ 3k − 1) 3k + 1
3k + 5

3k + 4 (parts ≥ 3k + 7)

}

Notice that the adjustment does not change the weight, and the terminal con-
figuration satisfies the difference condition if the initial one does. The adjust-
ment here is simply subtracting three from the obstacle, namely, the displayed
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1-cluster, and move the 2-cluster one more time forward as in (3.6) or (3.7),
as if there are no obstacles.

There are four more cases in which a forward move on a 2-cluster is
followed by one or more adjustments. The idea is the same, so we skip the
details.{

(parts ≤ 3k − 1)
3k+ 2

3k+ 1 3k + 4 3k + 6 (parts ≥ 3k + 9)

}

⏐� one forward move on the displayed 2-cluster, followed by two adjustments{

(parts ≤ 3k − 1) 3k + 1 3k + 3
3k+ 6
3k+ 6 (parts ≥ 3k + 9)

}
,

{

(parts ≤ 3k − 1)
3k+ 2

3k+ 1 3k + 4 3k + 6 3k + 8 (parts ≥ 3k + 10)

}

⏐� one forward move on the displayed 2-cluster, followed by three adjustments{

(parts ≤ 3k − 1) 3k + 1 3k + 3 3k + 5
3k+ 8

3k+ 7 (parts ≥ 3k + 10)

}
,

{

(parts ≤ 3k − 3)
3k
3k 3k + 3 (parts ≥ 3k + 6)

}

⏐� one forward move on the displayed 2-cluster, followed by an adjustment{

(parts ≤ 3k − 3) 3k
3k+ 2
3k+ 2 (parts ≥ 3k + 6)

}
,

{

(parts ≤ 3k − 3)
3k
3k 3k + 3 3k + 5 (parts ≥ 3k + 7)

}

⏐� one forward move on the displayed 2-cluster, followed by two adjustments{

(parts ≤ 3k − 3) 3k 3k + 2
3k+ 5

3k+ 4 (parts ≥ 3k + 7)

}
.

The above cases are exclusive, there are no others. One can easily verify that
one forward move on the displayed 2-cluster allows at least one forward move
on the preceding 2-cluster. Therefore, all parts of η can be realized as forward
moves on the 2-clusters, registering the weight of η on the weight of the inter-
mediate partition. In all the above cases, the terminal configurations conform
to the difference condition provided that the respective initial configurations
do. This is due to the fact that the difference conditions can be checked locally
as the differences between successive parts, and as differences at distance two.

The final partition is the λ we have been aiming at. It is enumerated by
kr1(n,m).

Now, given λ counted by kr1(n,m), having n2 2-clusters and n1 1-clusters,
so that m = 2n2+n1, we will decompose it into the triple (β, μ, η) as described
at the beginning of the proof.

We start by moving the smallest 2-cluster backward as many times as
necessary to stow it as

{
2

1 (parts ≥ 4)

}

.

We record the number of moves as 1
3η1, which gives us the first part of η. If

the smallest 2-cluster is already
2

1 , we set η1 = 0.
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We need to describe the backward moves on the 2-clusters. Again, there
are several cases.

{

(parts ≤ 3k − 4)
3k
3k (parts ≥ 3k + 3)

}

⏐� one backward move on the displayed 2-cluster
(3.8)

{

(parts ≤ 3k − 4)
3k − 1

3k − 2 (parts ≥ 3k + 3)

}

,{

(parts ≤ 3k − 3)
3k + 2

3k + 1 (parts ≥ 3k + 4)

}

⏐� one backward move on the displayed 2-cluster{

(parts ≤ 3k − 3)
3k
3k (parts ≥ 3k + 4)

}

.

(3.9)

Clearly, one backward move on a 2-cluster decreases the weight of λ by three,
which is registered in parts of η. Thus, the parts of η are evidently multiples
of 3.

{

(parts ≤ 3k − 4) 3k − 2
3k + 2

3k + 1 (parts ≥ 3k + 4)

}

⏐� one backward move on the displayed 2-cluster{

(parts ≤ 3k − 4) 3k − 2
3k
3k

︸ ︷︷ ︸
!

(parts ≥ 3k + 4)

}
(temporarily)

⏐� adjustment{

(parts ≤ 3k − 4)
3k − 1

3k − 2 3k + 1 (parts ≥ 3k + 4)

}

Again, the adjustment does not alter the weight of the partition. It only re-
solves the violation of the difference condition by moving the temporarily
problematic 1-cluster three times forward, and the temporarily problematic
2-cluster one time backward as in (3.8) or (3.9) as if there are no obstacles.
The terminal partition satisfies the difference conditions if the initial one does.
Recall that we assume that the initial partitions always satisfy the respective
difference conditions.

There are four more cases. We omit the intermediate steps, since they
are completely analogous to the above case.

{

(parts ≤ 3k − 7) 3k − 5 3k − 3
3k
3k (parts ≥ 3k + 3)

}

⏐� one backward move on the displayed 2-cluster, followed by two adjustments
{

(parts ≤ 3k − 7)
3k − 4

3k − 5 3k − 2 3k (parts ≥ 3k + 3)

}

,
{

(parts ≤ 3k − 7) 3k − 5 3k − 3 3k − 1
3k+ 2

3k+ 1 (parts ≥ 3k + 4)

}

⏐� one backward move on the displayed 2-cluster, followed by three adjustments
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{

(parts ≤ 3k − 7)
3k − 4

3k − 5 3k − 2 3k 3k + 2 (parts ≥ 3k + 4)

}

,
{

(parts ≤ 3k − 6) 3k − 3
3k
3k (parts ≥ 3k + 3)

}

⏐� one backward move on the displayed 2-cluster, followed by an adjustment
{

(parts ≤ 3k − 6)
3k − 3
3k − 3 3k (parts ≥ 3k + 3)

}

,
{

(parts ≤ 3k − 6) 3k − 3 3k − 1
3k+ 2

3k+ 1 (parts ≥ 3k + 4)

}

⏐� one backward move on the displayed 2-cluster, followed by two adjustments
{

(parts ≤ 3k − 6)
3k − 3
3k − 3 3k 3k + 2 (parts ≥ 3k + 4)

}

.

The above cases exhaust all possibilities. One can verify that the 2-cluster
succeeding the displayed one may be moved at least once backward after the

described backward move. Once the smallest 2-cluster is stowed as
2

1 , we

continue with the next smallest 2-cluster. We move it backward as many times

as possible and place it as
5

4 , recording the number of moves as 1
3η2. Then,

continue with the next smallest 2-cluster, etc., obtaining η. The above discus-
sion ensures that η1 ≤ η2 ≤ · · · ≤ ηn2 .

The careful reader will have noticed that the respective cases for the
backward moves and the forward moves on the 2-clusters have swapped initial
and terminal configurations. The forward and backward moves are inverses of
each other in this sense.

Once the 2-clusters are lined up as in (3.5) and we have η, we subtract μ1

from the smallest 1-cluster to make it 3n2+1, μ2 from the next smallest to make
it 3n2 + 3, etc. This way, we will have constructed μ. Because the successive
1-clusters are at least two apart by the Gordon marking, μ1 ≤ μ2 ≤ · · · ≤ μn1

Subtracting μi from the ith smallest 1-cluster is nothing but performing μi

backward moves on it. The forward and backward moves on the 1-clusters are
obviously inverses of each other.

The remaining partition is (3.3), namely, the base partition β.
This justifies (3.2) and, therefore, concludes the proof. �

As in other similar proofs, one can make the forward and backward moves
on the 1- or 2-clusters exact opposites of each other, together with the tem-
porary rule breaking in the middle. However, we find the descriptions in the
proofs more appealing.

Example 3.2. Using the notation in the above proof, we will work in the for-
ward direction, and construct the partition λ having n1 = 3 1-clusters, n2 = 2
2-clusters, with μ = 0+1+1, and η = 3+6. We start with β is in the form (3.3):

β =
{

2
1

5
4 7 9 11

}
.
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Applying μ first, we obtain
{

2
1

5
4 7 10 12

}

.

Then, we continue with incorporating η, first 1
3× its largest part as forward

moves on the largest 2-cluster:
⏐� the first forward move on the larger 2-cluster{

2
1

6
6 7
︸︷︷︸

!

10 12

}

⏐� adjustment{
2

1 4
8

7 10 12

}

⏐� one more forward move on the larger 2-cluster{
2

1 4
9
9 10
︸ ︷︷ ︸

!

12

}

⏐� adjustment{
2

1 4 7
11

10 12
︸ ︷︷ ︸

!

}

⏐� adjustment{
2

1 4 7 9
12
12

}

This finishes the 1
3η2 = 2 forward moves on the larger 2-cluster. We continue

with 1
3η1 = 1 forward move on the smaller 2-cluster.

{
3
3 4
︸︷︷︸

!

7 9
12
12

}

⏐� adjustment

λ =
{

1
5

4 7 9
12
12

}

As expected,

|β| + |μ| + |η| = 39 + 2 + 9 = 50 = |λ|.
Theorem 3.3 (cf. The Kanade–Russell conjecture I2). For n,m ∈ N, let kr2
(n,m) be the number of partitions of n into m parts with smallest part at least
two, and difference at least three at distance two such that if two successive
parts differ by at most one, then their sum is divisible by three. Then

∑

n,m≥0

kr2(n,m)qnxm =
∑

n1,n2≥0

q3n2
2+3n2+n2

1+n1+3n1n2x2n2+n1

(q; q)n1(q3; q3)n2

. (3.10)
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Proof. The proof is completely analogous to that of Theorem 3.1, except that
we have to use two different base partitions β for the cases n1 = 0 and n1 > 0.
When n1 = 0, the base partition is clearly

{
3
3

6
6 · · ·

3n2

3n2

}

,
(3.11)

with weight 3n2
2 + 3n2. If, however, n1 > 0, that is, there is at least one

1-cluster, the seemingly obvious choice
{

3
3

6
6 · · ·

3n2

3n2 3n2 + 3 3n2 + 5 · · · 3n2 + 2n1 + 1

}
(3.12)

does not have minimal weight. Moreover, one can never obtain a partition
counted by kr2(n,m) containing the part 2 this way. The correct base partition
in this case is

{

2
5

4
8

7 · · ·
3n2 + 2

3n2 + 1 3n2 + 4 3n2 + 6 · · · 3n2 + 2n1

}

,
(3.13)

for n1 > 0. One can check that (3.13) has smaller weight than (3.12), and that
any other lineup of 2- and 1-clusters results in a greater weight. (3.13) has
weight 3n2

2 +3n2 +n2
1 +n1 +3n2n1, the n1 = 0 case of which yields the weight

of (3.11).
There is one more twist before we leave the rest of the proof to the reader.

We need to discuss how the smallest 1-cluster can move forward. Recall that
in the proof of Theorem 3.1, in order for the smallest one cluster to move
forward, each of the other 1-clusters must have moved forward at least once.
It is the same here, so we assume that all but the smallest 1-clusters, if any,
have moved in (3.13). This yields the configuration below.

{

2
5

4
8

7 · · ·
3n2 + 2

3n2 + 1 3n2 + 5 3n2 + 7 · · · 3n2 + 2n1 + 1

}

Now we want to move the smallest 1-cluster forward once. This will entail
prestidigitation of the smallest 1-cluster through the 2-clusters (please see
Sect. 7 and the Appendix).

{

3
5

4
︸ ︷︷ ︸

!

8
7 · · ·

3n2 + 2
3n2 + 1 3n2 + 5 3n2 + 7 · · · 3n2 + 2n1 + 1

}

⏐� adjustment{
3
3 6

8
7

︸ ︷︷ ︸
!

· · ·
3n2 + 2

3n2 + 1 3n2 + 5 3n2 + 7 · · · 3n2 + 2n1 + 1

}

⏐�n2 − 1 more adjustments in a similar fashion{
3
3

6
6 · · ·

3n2

3n2 3n2 + 3 3n2 + 5 3n2 + 7 · · · 3n2 + 2n1 + 1

}

,

incidentally arriving at (3.12), the weight of which is exactly n1 more than
that of (3.13), for this reason.
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As in the proof of Theorem 3.1, the backward moves on the 2-clusters
make the intermediate partition

{
3
3

6
6 · · ·

3n2

3n2 (parts ≥ 3n2 + 3, all 1-clusters )

}

.

We first move the smallest 1-cluster so as to bring it back to 3n2+3, recording
the number of moves as μ1 − 1. Now the intermediate partition looks like

{
3
3

6
6 · · ·

3n2

3n2 3n2 + 3 (parts ≥ 3n2 + 5, all 1-clusters )

}

.

The final backward move on the smallest 1-cluster will again entail prestidigi-
tation of the smallest 1-cluster through the 2-clusters.

{
3
3

6
6 · · ·

3n2

3n2 3n2 + 2
︸ ︷︷ ︸

!

(parts ≥ 3n2 + 5)

}

⏐� adjustment{
3
3

6
6 · · ·

3n2 − 3
3n2 − 3 3n2 − 1
︸ ︷︷ ︸

!

3n2 + 2
3n2 + 1 (parts ≥ 3n2 + 5)

}

⏐� after n2 − 1 more adjustments of similar sort{

2
5

4
8

7 · · ·
3n2 + 2

3n2 + 1 (parts ≥ 3n2 + 5)

}

.

As far as the lineup of the smallest 1-cluster and all the 2-clusters is con-
cerned, the initial and terminal partitions are swapped in the forward and the
backward moves. Also, notice that this extra move on the smallest 1-cluster
opens room for the larger 1-clusters to move backward at least once more. The
remaining parts of the proof are completely analogous to those parts of the
proof of Theorem 3.1. �

Theorem 3.4 (cf. The Kanade–Russell conjecture I3). For n,m ∈ N, let kr3
(n,m) be the number of partitions of n into m parts with smallest part at least
three, and difference at least three at distance two such that if two successive
parts differ by at most one, then their sum is divisible by three. Then

∑

n,m≥0

kr3(n,m)qnxm =
∑

n1,n2≥0

q3n2
2+3n2+n2

1+2n1+3n1n2x2n2+n1

(q; q)n1(q3; q3)n2

. (3.14)

Proof. The proof of Theorem 3.1 applies mutatis mutandis. The only difference
being the base partition β:

{
3
3

6
6 · · ·

3n2

3n2 3n2 + 3 3n2 + 5 · · · 3n2 + 2n1 + 1

}

.

It is (3.12) and has weight 3n2
2+3n2+n2

1+2n1+3n1n2. This weight is minimal
among all partitions having n2 2-clusters, n1 1-clusters, and satisfying the
difference conditions imposed by kr3(n,m). �
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Theorem 3.5 (cf. The Kanade–Russell conjecture I4). For n,m ∈ N, let kr4
(n,m) be the number of partitions of n into m parts with smallest part at least
two, and difference at least three at distance two such that if two successive
parts differ by at most one, then their sum is ≡ 2 (mod 3). Then

∑

n,m≥0

kr4(n,m)qnxm =
∑

n1,n2≥0

q3n2
2+2n2+n2

1+n1+3n1n2x2n2+n1

(q; q)n1(q3; q3)n2

. (3.15)

Proof. We observe that if we take a partition counted by kr1(n,m) and add 1
to all parts, the smallest parts becomes at least two. Also, the 2-clusters, the
only pair of parts whose pairwise difference is at most one, become

{

(parts ≤ 3k − 2)
3k + 1
3k + 1 (parts ≥ 3k + 4)

}

and {

(parts ≤ 3k)
3k + 3

3k + 2 (parts ≥ 3k + 5)

}

,

instead of {

(parts ≤ 3k − 3)
3k
3k (parts ≥ 3k + 3)

}

and {

(parts ≤ 3k − 1)
3k + 2

3k + 1 (parts ≥ 3k + 4)

}

,

respectively. Therefore, the sum of parts of the displayed 2-clusters becomes
≡ 2 (mod 3), conforming to the definition of kr4(n,m).

Conversely, a partition enumerated by kr4(n,m) can only have 1- or 2-
marked parts in its Gordon marking. Therefore, such a partition can have
r-clusters for r = 1, 2, but not for r ≥ 3. Because the 2-clusters consist of a
pair of parts with difference zero or one, they can be

3k
3k ,

3k + 1
3k + 1 ,

3k + 2
3k + 2 ,

3k + 1
3k ,

3k + 2
3k + 1 , or

3k + 3
3k + 2 .

Only the second and the sixth ones have sums ≡ 2 (mod 3); therefore, only
such 2-clusters can occur in the said partition. Because all parts are at least
two we will not lose any parts, nor do we need to redo the Gordon marking
when we subtract one from all parts. This operation makes the partition satisfy
the conditions of kr1(n,m). Therefore, we have kr4(n,m) = kr1(n + m,m),
yielding the theorem. �

We can now turn our attention to the missing cases of partitions de-
fined similarly to kr1(n,m)–kr4(n,m). It turns out that only two such cases
need justification like the proofs of Theorems 3.1, 3.3, and 3.4, and the re-
maining ones can be obtained via shifts as in the proof of Theorem 3.5. Al-
though Kanade and Russell’s machinery in [6] does not give nice single infinite
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products, hence nice partition identities for these missing cases, it is possible to
write generating functions for them such as the Andrews–Gordon identities [2].

Theorem 3.6. For n,m ∈ N, let kr3−1(n,m) be the number of partitions of n
into m parts with smallest part at least two, and difference at least three at
distance two such that if two successive parts differ by at most one, then their
sum is ≡ 2 (mod 3). Then

∑

n,m≥0

kr3−1(n,m)qnxm =
∑

n1,n2≥1

q3n2
2+6n2+n2

1+3n1+3n1n2−1x2n2+n1

(q; q)n1(q3; q3)n2

+
∑

n2≥0

q3n2
2+6n2x2n2

(q3; q3)n2

+
∑

n1≥1

qn2
1+2n1xn1

(q; q)n1

.

Proof. The idea of the proof is a direct extension of the proof of Theorem 3.3
based on the proof of Theorem 3.1. The necessity of separate sums is in fact
the necessity of different types of base partitions β for various constellations
of the 2- and 1-clusters. Observe that the ranges of the three sums (n1, n2 ≥ 1;
n1 = 0, n2 ≥ 0; n1 ≥ 1, n2 = 0) form a set partition of the expected natural
range n1, n2 ≥ 0. Recall that nr is the number of the r-clusters of the partition
at hand for r = 1, 2.

The base partition for the case n1, n2 ≥ 1 is
{

3
6
6

9
9 · · ·

3n3 + 3
3n3 + 3 3n3 + 6 3n3 + 8 · · · 3n3 + 2n1 + 4

}

,

with weight 3n2
2 + 6n2 + n2

1 + 3n1 + 3n1n2 − 1. Clearly, there are no 1-clusters
greater than the 2-clusters if n1 = 1.

When n1 = 0 and n2 ≥ 0, the base partition β is
{

5
4

8
7 · · ·

3n3 + 2
3n3 + 1

}

,

with weight 3n2
2 + 6n2. It is the empty partition if n2 = 0.

Finally, if n2 = 0 and n1 ≥ 1, the base partition β is
{

3 5 · · · 2n1 + 1
}

,

with weight n2
1 + 2n1. We do not want to double count the empty partition

here, hence n1 ≥ 1.
Without much difficulty, one can verify that the above βs are parti-

tions with minimal weight having specified numbers of 1- and 2-clusters (n1

and n2, respectively), while satisfying the difference conditions set forth by
kr3−1(n,m). �

One can play with the (mod 3) condition on sums and adjust the lower
limit for the smallest part to populate the list. Theorems 3.1, 3.3, 3.4, 3.5
and 3.6 are exclusive to obtain the respective series as generating functions by
means of shifts on parts. We present two more examples.
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Theorem 3.7. For n,m ∈ N, let us define the partition enumerants below.
krb

1(n,m) is the number of partitions of n into m parts with difference at
least three at distance two such that if two successive parts differ by at most
one, then their sum is ≡ 1 (mod 3).

krb
4−2(n,m) is the number of partitions of n into m parts with at most one

occurrence of the part 1, and difference at least three at distance two such that
if two successive parts differ by at most one, then their sum is ≡ 2 (mod 3).

Then
∑

n,m≥0

krb
1(n,m)qnxm =

∑

n1,n2≥0

q3n2
2+n2+n2

1+3n1n2x2n2+n1

(q; q)n1(q3; q3)n2

,

and
∑

n,m≥0

krb
4−2(n,m)qnxm =

∑

n1,n2≥1

q3n2
2+2n2+n2

1+n1+3n1n2−1x2n2+n1

(q; q)n1(q3; q3)n2

+
∑

n2≥0

q3n2
2+2n2x2n2

(q3; q3)n2

+
∑

n1≥1

qn2
1xn1

(q; q)n1

.

Proof. It suffices to see that krb
1(n + m,m) = kr2(n,m), and that krb

4−2(n +
2m,m) = kr3−1(n,m). Then, the results become corollaries of Theorems 3.3
and 3.6, respectively. �

We conclude this section with one last example.

Theorem 3.8. For n,m ∈ N, let krb
1−1(n,m) be the number of partitions of n

into m parts with at most one occurrence of the part 2, and with difference at
least three at distance two such that if two successive parts differ by at most
one, then their sum is ≡ 1 (mod 3). Then

∑

n,m≥0

krb
1−1(n,m)qnxm =

∑

n1≥0
n2≥1

q3n2
2+4n2+n2

1+n1+3n1n2x2n2+n1

(q; q)n1(q3; q3)n2

+
∑

n1≥0
n2≥1

q3n2
2+4n2+(n1+1)2+3n1n2x2n2+n1+1

(q; q)n1(q3; q3)n2

+
∑

n1≥0

qn2
1xn1

(q; q)n1

.

The enumerant krb
1−1(n,m) is brought to our attention by Alexander

Berkovich. It is unusual in the sense that the number of occurrences is not
restricted for the smallest admissible part, but for a larger one. We include it
here to demonstrate the fact that the method may treat extra conditions on
the parts ≤ M for any fixed positive integer M on top of the general difference
conditions.

Proof. The proof is reminiscent of that of Theorem 3.6. We need base parti-
tions β for several cases. Below, λ is a partition enumerated by krb

1−1(n,m),
and nr is the number of r-clusters for r = 1, 2.
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(i) λ has no 2-clusters, i.e. n2 = 0,
(ii) λ has at least one 2-cluster, but no 1’s,
(iii) λ has at least one 2-cluster, and a 1.

In case (i), the base partition β obviously is
{

1 3 · · · 2n1 − 1
}

,

with weight n2
1.

In case (ii), the base partitions β are
{

4
3

7
6 · · ·

3n2 + 1
3n2

}

when n1 = 0,
{

2
5
5

8
8 · · ·

3n2 + 2
3n2 + 2

}
(3.16)

when n1 = 1,
{

2 4
7

6
10

9 · · ·
3n2 + 4

3n2 + 3 3n2 + 6 3n2 + 8 · · · 3n2 + 2n1

}
(3.17)

when n1 ≥ 2. The weights of all three partitions above are 3n2
2 + 4n2 + n2

1 +
n1 + 3n2n1. In (3.16), the initial forward move on the smallest 1-cluster, and
in (3.17), the initial forward moves on the two smallest 1-clusters involve pres-
tidigitating the said 1-clusters through the 2-clusters, if any.

In case (iii), the base partition is
{

1
4

3
7

6 · · ·
3n2 + 1

3n2 3n2 + 3 3n2 + 5 · · · 3n2 + 2n1 + 1

}

.
(3.18)

Here, we leave the part 1 where it is, and set n1 = the number of 1-clusters
except the part 1. In other words, we do not perform any forward moves on
the part 1. �

Remark 3.9. An anonymous referee commented that an equivalent formula to
Theorem 3.8 is that

∑

n,m≥0

krb
1−1(n,m)qnxm =

∑

m,n≥0

qQ(m,n)+2m+4n(1 + xq)
(q; q)m(q3; q3)n

x2n+m

+
∑

m,n≥0

qQ(m,n)+2+3m+7nx1+2n+m

(q; q)m(q3; q3)n
, (3.19)

where Q(m,n) = m2 + 3mn + 3n2.
One can verify it by considering partitions with

(a) smallest part > 2,
(b) smallest part = 1,
(c) smallest part = 2.

Yet a third way to obtain another alternative is to exclude the partitions

counted by krb
1(n,m) which have the 2-cluster

2
2 using kr3−1(n,m). However,

we do not favor inclusion–exclusion in this note.
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Example 3.10. Following the notation in the section so far, we will decode the
partition λ enumerated by krb

1−1(62, 7) below into (β, μ, η):
{

1
7

6 9 11
14
14

}
.

Obviously, we are in the case (iii) of the above proof. λ has n2 = 2 2-clusters,
n1 = 2 1-clusters, and a 1. We stow the smaller 2-cluster first and record η1
as three times the performed number of moves:

⏐� one backward move on the smaller 2-cluster{

1
5
5 9 11

14
14

}

⏐� one more backward move on the smaller 2-cluster{

1
4

3 9 11
14
14

}

At this point, we have η1 = 6.
⏐� one backward move on the larger 2-cluster{

1
4

3 9 11
13

12
︸ ︷︷ ︸

!

}

⏐� adjustment{

1
4

3 9
11
11

︸ ︷︷ ︸
!

14

}

⏐� adjustment{

1
4

3
10

9 12 14

}

⏐� two more backward moves on the larger 2-cluster{

1
4

3
7

6 12 14

}

Now we have η = 6 + 9. Decoding the backward moves on the 1-clusters is
easier. It is obvious that μ = 3 + 3 and once we perform that many backward
moves on the respective 1-clusters, we arrive at (3.18).

{

1
4

3
7

6 9 11

}

The sums of weights also check

|λ| = 62 = 41 + 6 + 15 = |β| + |μ| + |η|.
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4. Kanade and Russell’s Conjectures I5 and I6 and Some
Missing Cases

Theorem 4.1 (cf. The Kanade–Russell Conjecture I5). For m,n ∈ N, let kr5
(m,n) be the number of partitions of n into m parts, with at most one occur-
rence of the part 1, and difference at least three at distance three such that
is parts at distance two differ by at most 1, then their sum, together with the
intermediate part, is ≡ 1 (mod 3). Then

∑

m,n≥0

kr5(n,m)qnxm

=
∑

n1,n2,n3≥0

q(9n2
3+5n3)/2+2n2

2+n2+n2
1(−q; q2)n2

(q; q)n1(q2; q2)n2(q3; q3)n3

× q6n3n2+3n3n1+2n2n1x3n3+2n2+n1 . (4.1)

Proof. Throughout the proof, nr will denote the number of r-clusters for r =
1, 2, 3. λ will denote a partition enumerated by kr5(n,m). We will follow the
idea of proof in Theorem 3.1, but there are more intricacies. Construction of
the base partition is a major part.

The base partition when n1 > 0 is
⎧
⎨

⎩ 2
1

4
3 · · ·

2n2

2n2 − 1 2n2 + 1

2n2 + 4
2n2 + 3
2n2 + 3

2n2 + 7
2n2 + 6
2n2 + 6 · · ·

2n2 + 3n3 + 1
2n2 + 3n3

2n2 + 3n3

2n2 + 3n3 + 3 2n2 + 3n3 + 5 · · · 2n2 + 3n3 + 2n1 − 1

⎫
⎬

⎭ , (4.2)

and when n1 = 0 it is
⎧
⎨

⎩ 2
1

4
3 · · ·

2n2

2n2 − 1

2n2 + 3
2n2 + 2
2n2 + 2

2n2 + 6
2n2 + 5
2n2 + 5 · · ·

2n2 + 3n3

2n2 + 3n3 − 1
2n2 + 3n3 − 1

2n2 + 3n3 + 2 2n2 + 3n3 + 4 · · · 2n2 + 3n3 + 2n1 − 2

⎫
⎬

⎭ . (4.3)

The weight of both of them is (9n2
3 +5n3)/2+2n2

2 +n2 +n2
1 +6n3n2 +3n3n1 +

2n2n1.
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We have to argue that this is indeed the partition counted by kr5(n,m)
having nr r-clusters for r = 1, 2, 3 and minimal weight.

If λ has a 3-marked part k, then there is a 2-marked part k or k − 1,
and a 1-marked part k or k − 1. There can be no other parts equal to k or
k − 1 because of the difference at least three at distance three condition. For
the same reason, the succeeding smallest part can be at least k + 2, and the
preceding smallest part can be at most k − 2. Among the three possibilities
for the 3-clusters,

k
k − 1
k − 1 ,

k
k

k − 1 and

k
k
k ,

which all have difference at most 1 at distance two, the only one satisfying the
sum condition, i.e. the sum of the parts, together with the middle part ≡ 1
(mod 3) is

⎧
⎨

⎩ (parts ≤ k − 3)

k
k − 1
k − 1 (parts ≥ k + 2)

⎫
⎬

⎭ .

Therefore, all 3-clusters are of this form. The preceding cluster can be at most
k − 3

k − 4
k − 4

, and the succeeding cluster can be at least
k + 3

k + 2
k + 2

. Also, a

3-cluster in λ can be
3

2
2

, but not
2

1
1

, because at most one occurrence of the

part 1 is allowed. This shows that if a base partition consists of 3-clusters only,
it will be ⎧

⎨

⎩

3
2
2

6
5
5 · · ·

3n3

3n3 − 1
3n3 − 1

⎫
⎬

⎭ .

For a moment, suppose that there are no 3-clusters in λ. Equivalently,

there are no 3-marked parts. The 2-clusters will look like
k

k − 1 or
k
k

. Two

successive 2-clusters may look like
{

· · ·
k

k − 1
k + 2

k + 1 · · ·
}

or
{

· · ·
k
k

k + 3
k + 2 · · ·

}

,

but not
{

· · ·
k
k

k + 2
k + 2 · · ·

}

.
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In the last instance, the difference at least three at distance three condition is
violated.

1-clusters preceding or succeeding a 2-cluster may look like
{

· · · k − 5 k − 3
k

k − 1 k + 1 k + 3 · · ·
}

or
{

· · · k − 4 k − 2
k
k k + 2 k + 4 · · ·

}

.

Recall that if 1-clusters have pairwise difference 1, they become 2-clusters. Or
an instance such as

{

· · · k − 2
k

k − 1 · · ·
}

requires redefinition of the Gordon marking, hence the clusters as
{

· · ·
k − 1

k − 2 k · · ·
}

,

or even create a 3-cluster.
Therefore, a base partition consisting only of 1- and 2-clusters looks like

{
2

1
4

3 · · ·
2n2

2n2 − 1 2n2 + 1 2n2 + 3 · · · 2n2 + 2n1 − 1

}

.

Having 2-clusters greater than 1-clusters will only increase the weight. One way
to see this is that the 1-marked parts can be 1, 3, . . . , 2k−1 for the least weight.
The introduction of the 2-marked parts will form 2-clusters. 2, 4, . . . , 2l is the
least addendum to the weight. We recall once again that a second occurrence
of 1 is not allowed. This covers the cases n1 = 0 or n2 = 0 as well.

The remaining cases are the coexistence of 3-clusters, and 1- and 2-
clusters. We will examine the cases n1 = 0, n2, n3 > 0, and n1, n3 > 0, n2 ≥ 0
separately, for reasons that will become clear in the course.

It is clear that each cluster should have as small parts as possible in a
base partition to ensure minimum weight. Therefore, we will only focus on the
relative placement of the clusters. The naive guess is to place 3-clusters first,
followed by 2-clusters, and then the 1-clusters. For example,

⎧
⎨

⎩

3
2
2

6
5
5

8
8

11
10 12 14

⎫
⎬

⎭

has weight 86. However
⎧
⎨

⎩ 2
1

4
3

7
6
6

10
9
9 12 14

⎫
⎬

⎭
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has weight 83, while
⎧
⎨

⎩ 2
1

4
3 5

8
7
7

11
10
10 12

⎫
⎬

⎭

has weight 80. Having been experienced, one tries
⎧
⎨

⎩ 2
1

4
3 5 7

10
9
9

13
12
12

⎫
⎬

⎭
,

but the weight becomes 87. The naive guess has another problem, we will come
back to it during the implementation of the forward moves.

The general case is similarly treated. One should keep in mind that the
2-clusters should precede the 1-clusters in the base partition as discussed above,
so the relative places of the 3-clusters are to be decided. One can also verify
that placing 1- or 2-clusters between two 3-clusters increases the weight. In
summary, depending on the existence of 1-clusters, the base partition will be
(4.3) or (4.2).

Next, we argue that any λ enumerated by kr5(n,m) having nr r-clusters
for r = 1, 2, 3 corresponds to a quadruple (β, μ, η, ν) such that

• β is one of the base partitions (4.3) or (4.2), depending on n1 = 0 or
n1 > 0, respectively,

• μ is a partition with n1 parts (counting zeros),
• η is a partition with n2 parts (counting zeros) where no odd part repeats,
• ν is a partition into multiples of three with n3 parts (counting zeros),
• |λ| = |β| + |μ| + |η| + |ν|.

If, say, μ has less than n1 positive parts, we simply write μ1 = μ2 = · · · = μs =
0. That is, the first so many parts of μ are declared zero. Recall that we agreed
to write the smaller parts first in a partition. If μ is the empty partition, then
all parts of it are zero. η and ν are treated likewise. This will give us

∑

m,n≥0

kr5(n,m)qnxm

=
∑

n1,n2,n3≥0

q|β|xl(β)
∑

β,μ,η,ν

q|μ|+|η|+|ν|

=
∑

n1,n2,n3≥0

q(9n2
3+5n3)/2+2n2

2+n2+n2
1+6n3n2+3n3n1+2n2n1x3n3+2n2+n1

︸ ︷︷ ︸
generating β

· · ·

× 1
(q; q)n1︸ ︷︷ ︸

generating μ

(−q; q2)n2

(q2; q2)n2︸ ︷︷ ︸
generating η

1
(q3; q3)n3︸ ︷︷ ︸
generating ν

, (4.4)

proving the theorem. We used Proposition 2.9 in the generation of η.
Given a quadruple (β, μ, η, ν) as described above, we will obtain λ in a

series of forward moves.
(a) The ith largest 1-cluster in β is moved forward the ith largest part of μ

times for i = 1, 2, . . . , n1, in this order.
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(b) The ith largest 2-cluster in the obtained intermediate partition is moved
forward the ith largest part of η times for i = 1, 2, . . . , n2, in this order.

(c) The ith largest 3-cluster in the obtained intermediate partition is moved
forward 1

3×(the ith largest part of ν) times for i = 1, 2, . . . , n3, in this
order.

Conversely, given λ, we will obtain the quadruple (β, μ, η, ν) by performing
backward moves on the 3-, 2-, and 1-, clusters in the exact reverse order.
Finally, we will argue that the forward moves and the backward moves on the
r-clusters are inverses of each other for r = 1, 2, 3, and that the moves honor
the difference conditions defining kr5(n,m).

The forward and backward moves on the 3-clusters are not exactly for-
ward and backward moves of the third kind in the sense of Definitions 2.3 and
2.5. However, the forward and backward moves on the 2-clusters are forward
or backward moves of the second kind, with one exception. The exception is
described in due course.

We start with the forward moves. When β has at least one 1-cluster,
i.e. n1 > 0, the smallest 1-cluster is smaller than the 3-clusters For i =
1, 2, . . . , n1 − 1, we simply add the ith largest part of μ to the ith largest
1-cluster. This only increases the pairwise difference of the 1-clusters, so the
difference conditions are retained. If μ1 > 0, observe that the (n1 − 1)th 1-
cluster, if it exists, is moved forward μ2 times. Therefore, it is now equal to
2n2+3n3+3+μ2 ≥ 2n2+3n3+3+μ1. The first forward move on the smallest
1-cluster 2n2 + 1 entails a prestidigitation through the 3-clusters as described
below.

⎧
⎨

⎩ · · ·
2n2

2n2 − 1 2n2 + 1

2n2 + 4
2n2 + 3
2n2 + 3

2n2 + 7
2n2 + 6
2n2 + 6 · · ·

2n2 + 3n3 + 1
2n2 + 3n3

2n2 + 3n3 ( 1-clusters ≥ 2n2 + 3n3 + 3 + μ1)

⎫
⎬

⎭
⏐� 1 forward move on the 1-cluster 2n2 + 1⎧

⎨

⎩ · · ·
2n2

2n2 − 1 2n2 + 2

2n2 + 4
2n2 + 3
2n2 + 3

︸ ︷︷ ︸
!

2n2 + 7
2n2 + 6
2n2 + 6 · · ·

2n2 + 3n3 + 1
2n2 + 3n3

2n2 + 3n3

( 1-clusters ≥ 2n2 + 3n3 + 3 + μ1)

⎫
⎬

⎭ (temporarily)

Here, the ! symbol signifies the violation of the difference condition at the
indicated place. As usual, we highlight the cluster(s) that is (are) being moved.
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⏐� adjustment⎧
⎨

⎩ · · ·
2n2

2n2 − 1

2n2 + 3
2n2 + 2
2n2 + 2

2n2 + 5

2n2 + 7
2n2 + 6
2n2 + 6

︸ ︷︷ ︸
!

· · ·

2n2 + 3n3 + 1
2n2 + 3n3

2n2 + 3n3

( 1-clusters ≥ 2n2 + 3n3 + 3 + μ1)

⎫
⎬

⎭ (temporarily)

⏐� after a total of n3 similar adjustments⎧
⎨

⎩ · · ·
2n2

2n2 − 1

2n2 + 3
2n2 + 2
2n2 + 2

2n2 + 6
2n2 + 5
2n2 + 5 · · ·

2n2 + 3n3

2n2 + 3n3 − 1
2n2 + 3n3 − 1 2n2 + 3n3 + 2

( 1-clusters ≥ 2n2 + 3n3 + 3 + μ1)

⎫
⎬

⎭

Notice that the adjustments do not alter the weight. When the 1-cluster
encounters a 3-cluster, temporarily violating the difference condition, they
switch places like in a puss-in-the-corner game. Three is added to the 1-cluster,
and each part in the 3-cluster is decreased by one, therefore preserving the total
weight. The process is repeated if there is another 3-cluster ahead.

We still need to add μ1 − 1 to the 1-cluster 2n2 + 3n2 + 2, making it
2n2 + 3n3 + μ1 + 1, respecting the difference condition in the configuration

⎧
⎨

⎩ · · ·
2n2

2n2 − 1

2n2 + 3
2n2 + 2
2n2 + 2

2n2 + 6
2n2 + 5
2n2 + 5 · · ·

2n2 + 3n3

2n2 + 3n3 − 1
2n2 + 3n3 − 1 ( 1-clusters ≥ 2n2 + 3n3 + 1 + μ1)

⎫
⎬

⎭

for μ1 > 0. In case μ1 = 0, i.e. μ has less than n1 positive parts, the smallest
1-cluster stays in its original place at this stage.

Next, the forward moves on the 2-clusters are implemented. The ith
largest 2-cluster is moved the ith largest part of η times forward. For each
positive part of η, we will prestidigitate the 2-clusters through the 3-clusters
as follows:
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⎧
⎨

⎩ · · ·
2n2 − 2

2n2 − 3
2n2

2n2−1

2n2 + 3
2n2 + 2
2n2 + 2

2n2 + 6
2n2 + 5
2n2 + 5 · · ·

2n2 + 3n3

2n2 + 3n3 − 1
2n2 + 3n3 − 1

(parts ≥ 2n2 + 3n3 + 2)

⎫
⎬

⎭
⏐� 1 forward move on the 2-cluster

2n2

2n2 − 1⎧
⎨

⎩ · · ·
2n2 − 2

2n2 − 3
2n2

2n2

2n2 + 3
2n2 + 2
2n2 + 2

︸ ︷︷ ︸
!

2n2 + 6
2n2 + 5
2n2 + 5 · · ·

2n2 + 3n3

2n2 + 3n3 − 1
2n2 + 3n3 − 1

(parts ≥ 2n2 + 3n3 + 2)

⎫
⎬

⎭ (temporarily)

⏐� adjustment⎧
⎨

⎩ · · ·
2n2 − 2

2n2 − 3

2n2 + 1
2n2

2n2

2n2+3

2n2+3

2n2 + 6
2n2 + 5
2n2 + 5

︸ ︷︷ ︸
!

· · ·

2n2 + 3n3

2n2 + 3n3 − 1
2n2 + 3n3 − 1

(parts ≥ 2n2 + 3n3 + 2)

⎫
⎬

⎭ (temporarily)

⏐� after n3 − 1 adjustments of the same kind⎧
⎨

⎩ · · ·
2n2 − 2

2n2 − 3

2n2 + 1
2n2

2n2

2n2 + 4
2n2 + 3
2n2 + 3 · · ·

2n2 + 3n3 − 2
2n2 + 3n3 − 3
2n2 + 3n3 − 3

2n2 + 3n3

2n2 + 3n3 (parts ≥ 2n2 + 3n3 + 2)

⎫
⎬

⎭

At this point, the parts ≥ 2n2 + 3n3 + 2 are all 1-clusters, so the difference
conditions are met. The initial move on each of the so many largest 2-clusters
for each nonzero part of η is this prestidigitation of the 2-clusters through the
3-clusters. After this initial move, the remaining moves are performed as in
the construction of the series side of Andrews–Gordon identities [8].
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There is one more condition on the collective forward moves on the 2-
clusters. η cannot have repeated odd parts. In other words, two successive
2-clusters cannot be moved the same odd number of times forward. Let us see
why this violates the difference condition.

Assume, on the contrary, that each of the two consecutive 2-clusters is to
be moved 2r + 1 times forward. After the initial prestidigitation through the
3-clusters, the 2-clusters will be⎧

⎨

⎩ · · ·

k − 2
k − 3
k − 3

k
k
k + 2
k + 2

︸ ︷︷ ︸
!

(parts ≥ k + 4, all 1- or 2-clusters )

⎫
⎬

⎭
.

Then, the 2-clusters violating the difference at least three at distance three
condition will be double moved forward r times each, each pair of double
moves retaining the violation as{

· · ·
k
k
k + 2
k + 2

︸ ︷︷ ︸
!

· · ·
}

−→
{

· · ·
k + 1
k + 1

k + 3
k + 3

︸ ︷︷ ︸
!

· · ·
}

,

or {

· · ·
k
k
k + 2
k + 2

︸ ︷︷ ︸
!

k + 4 · · ·
}

−→
{

· · · k
k + 2
k + 2

k + 4
k + 4

︸ ︷︷ ︸
!

· · ·
}

.

In the latter possibility, the 2-clusters encountered a 1-cluster on the way.
However, the same even number of forward moves will leave the clusters

as {

· · ·
k + 1

k
k + 3

k + 2 · · ·
}

,

conforming to the difference condition. Or, one extra move on the larger cluster
will yield {

· · ·
k
k

k + 3
k + 2 · · ·

}

,

again honoring the difference condition.
Thus, after the implementation of μ and η as forward moves on the 1-

and 2-clusters, the intermediate partition looks like⎧
⎨

⎩ 2
1

4
3 · · ·

2s2
2s2 − 1

2s2 + 3
2s2 + 2
2s2 + 2

2s2 + 6
2s2 + 5
2s2 + 5 · · ·

2s2 + 3n3

2s2 + 3n3−1

2s2 + 3n3 − 1

(parts ≥ 2s2 + 3n3 + 2, all 1- or 2-clusters)

⎫
⎬

⎭
,

for s2 ≥ 0, or
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⎧
⎨

⎩ 2
1

4
3 · · ·

2s2
2s2 − 1 2s2 + 1

2s2 + 4
2s2 + 3
2s2 + 3

2s2 + 7
2s2 + 6
2s2 + 6 · · ·

2s2 + 3n3+1

2s2 + 3n3

2s2 + 3n3

(parts ≥ 2s2 + 3n3 + 3, all 1- or 2-clusters)

⎫
⎬

⎭
,

again, for s2 ≥ 0. Both of the above satisfy the difference conditions. The
former possibly has a sediment, i.e. unmoved 2-clusters if s2 > 0. The latter
has a sediment consisting of a 1-cluster, and if s2 > 0, some 2-clusters as well.
The presence of unmoved 1- or 2-clusters, namely, sediments, indicates that μ
or η, respectively, have some zeros.

It remains to move the ith largest 3-cluster 1
3×(the ith largest part of ν)

times forward. Recall that ν consists of multiples of three. The forward moves
on the 3-clusters can be visualized in the following exclusive cases, each adding
three to the weight of the partition. In each case, we assume that the initial
configuration satisfies the necessary difference conditions.⎧

⎨

⎩ (parts ≤ k − 2)

k + 1
k
k (parts ≥ k + 4)

⎫
⎬

⎭
⏐� 1 forward move on the displayed 3-cluster⎧

⎨

⎩ (parts ≤ k − 2)

k + 2
k + 1
k + 1 (parts ≥ k + 4)

⎫
⎬

⎭

Above, the part k − 2 cannot repeat if it occurs, since we assumed that the
initial configuration satisfies the difference conditions. k + 4 may occur up to
twice, but not thrice.⎧

⎨

⎩ (parts ≤ k − 2)

k + 1
k
k k + 3 (parts ≥ k + 5)

⎫
⎬

⎭
⏐� 1 forward move on the displayed 3-cluster⎧

⎨

⎩ (parts ≤ k − 2)

k + 2
k + 1
k + 1 k + 3
︸ ︷︷ ︸

!

(parts ≥ k + 5)

⎫
⎬

⎭ (temporarily)

⏐� adjustment⎧
⎨

⎩ (parts ≤ k − 2) k

k + 3
k + 2
k + 2 (parts ≥ k + 5)

⎫
⎬

⎭
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Above, again, the part k − 2 can occur only once. k + 5 may occur twice, but
not thrice.

⎧
⎨

⎩ (parts ≤ k − 2)

k + 1
k
k

k + 4
k + 3

k + 6
k + 5

· · ·
k + 2s + 2

k + 2s + 1 (parts ≥ k + 2s + 4)

⎫
⎬

⎭
⏐� 1 forward move on the displayed 3-cluster⎧

⎨

⎩ (parts ≤ k − 2)

k + 2
k + 1
k + 1

k + 4
k + 3

︸ ︷︷ ︸
!

k + 6
k + 5

· · ·
k + 2s + 2

k + 2s + 1 (parts ≥ k + 2s + 4)

⎫
⎬

⎭ (temporarily)

⏐� adjustment⎧
⎨

⎩ (parts ≤ k − 2)
k + 1

k

k + 4
k + 3
k + 3

k + 6
k + 5

︸ ︷︷ ︸
!

· · ·

k + 2s + 2
k + 2s + 1 (parts ≥ k + 2s + 4)

⎫
⎬

⎭ (temporarily)

⏐� after s − 1 similar adjustments
⎧
⎨

⎩ (parts ≤ k − 2)
k + 1

k
k + 3

k + 2 · · ·

k + 2s − 1
k + 2s − 2

k + 2s + 2
k + 2s + 1
k + 2s + 1

(parts ≥ k + 2s + 4)

⎫
⎬

⎭

for s ≥ 1. Again, if k − 2 occurs in the above configuration, it cannot repeat.
k + 2s − 4 may repeat up to twice. The adjustments do not alter the weight.
The adjustments are switching places of the 3- and 2-clusters when they are
too close together. There are three other cases summarized below. They are
very similar to the ones already explained, so we omit the details.
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⎧
⎨

⎩ (parts ≤ k − 2)

k + 1
k
k

k + 4
k + 3

k + 6
k + 5

· · ·
k + 2s + 2

k + 2s + 1 k + 2s + 3 (parts ≥ k + 2s + 5)

⎫
⎬

⎭
⏐� 1 forward move on the displayed 3-cluster, followed by adjustments⎧

⎨

⎩ (parts ≤ k − 2)
k + 1

k
k + 3

k + 2 · · ·

k + 2s − 1
k + 2s − 2 k + 2s

k + 2s + 3
k + 2s + 2
k + 2s + 2

(parts ≥ k + 2s + 5)

⎫
⎬

⎭

for s ≥ 0.

⎧
⎨

⎩ (parts ≤ k − 2)

k + 1
k
k

k + 3
k + 3

k + 6
k + 5

k + 8
k + 7

· · ·
k + 2s + 2

k + 2s + 1 (parts ≥ k + 2s + 4)

⎫
⎬

⎭
⏐� 1 forward move on the displayed 3-cluster, followed by adjustments⎧

⎨

⎩ (parts ≤ k − 2)
k
k

k + 3
k + 2

k + 5
k + 4 · · ·

k + 2s − 1
k + 2s − 2

k + 2s + 2
k + 2s + 1
k + 2s + 1

(parts ≥ k + 2s + 4)

⎫
⎬

⎭

for s ≥ 1, the case s = 1 giving an empty streak after the smallest displayed
2-cluster.
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⎧
⎨

⎩ (parts ≤ k − 2)

k + 1
k
k

k + 3
k + 3

k + 6
k + 5

k + 8
k + 7

· · ·
k + 2s + 2

k + 2s + 1 k + 2s + 3 (parts ≥ k + 2s + 5)

⎫
⎬

⎭
⏐� 1 forward move on the displayed 3-cluster, followed by adjustments⎧

⎨

⎩ (parts ≤ k − 2)
k
k

k + 3
k + 2

k + 5
k + 4 · · ·

k + 2s − 1
k + 2s − 2 k + 2s

k + 2s + 3
k + 2s + 2
k + 2s + 2

(parts ≥ k + 2s + 5)

⎫
⎬

⎭

for s ≥ 1. In the above three respective cases, k + 2s + 4 or k + 2s + 5 may
repeat up to twice. None of the cases may k − 2 repeat without violating the
difference conditions in the initial configuration.

It is routine to check that in all of the above forward moves on the 3-
cluster, the preceding cluster, if any, may also move forward at least once. This
concludes the construction of λ enumerated by kr5(n,m), given (β, μ, η, ν).

The reverse part of the construction is the decomposition of λ into the
quadruple (β, μ, η, ν) as described above. First, we determine the number or
r-clusters nr for r = 1, 2, 3 in λ.

We will first move the smallest 3-cluster, if any, backward so many times,
and call the number of required moves 1

3 × ν1, where ν1 is the smallest part of
ν. ν1 will clearly be a multiple of three. Each backward move on this cluster
will deduct three from the weight of λ, and the same amount will be registered
as the weight of ν.

λ may start with either of the following sediments.
{

2
1

3
4 · · ·

2s
2s − 1 (parts ≥ 2s + 2)

}

,

or
{

2
1

3
4 · · ·

2s
2s − 1 2s + 1 (parts ≥ 2s + 3)

}

,

for s ≥ 0, the case s = 0 corresponding to having no 2-clusters in the sedi-
ments. In the above two events, the backward moves on the smallest 3-cluster
will stow it as

⎧
⎨

⎩ 2
1

3
4 · · ·

2s
2s − 1

2s + 3
2s + 2
2s + 2 (parts ≥ 2s + 5)

⎫
⎬

⎭
,
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or

⎧
⎨

⎩ 2
1

3
4 · · ·

2s
2s − 1 2s + 1

2s + 4
2s + 3
2s + 3 (parts ≥ 2s + 6)

⎫
⎬

⎭
,

respectively. If the smallest 3-cluster is already one of the displayed ones above,
we declare ν1 = 0.

Let us describe the backward moves and adjustments in the exclusive
cases below. Then, we will argue that the 3-cluster cannot go further back.

⎧
⎨

⎩ (parts ≤ k − 3)

k + 1
k
k (parts ≥ k + 3)

⎫
⎬

⎭
⏐� 1 backward move on the displayed 3-cluster
⎧
⎨

⎩ (parts ≤ k − 3)

k
k − 1
k − 1 (parts ≥ k + 3)

⎫
⎬

⎭

Above, k − 3 will be assumed to not repeat, so that the difference conditions
are met in the terminal configuration. However, k − 3 may very well repeat
without violating the difference conditions in the initial configuration. That
case will be treated below. k + 3 may repeat up to twice.

⎧
⎨

⎩ (parts ≤ k − 4) k − 2

k + 1
k
k (parts ≥ k + 3)

⎫
⎬

⎭
⏐� 1 forward move on the displayed 3-cluster⎧

⎨

⎩ (parts ≤ k − 4) k − 2

k
k − 1
k − 1

︸ ︷︷ ︸
!

(parts ≥ k + 3)

⎫
⎬

⎭ (temporarily)

⏐� adjustment
⎧
⎨

⎩ (parts ≤ k − 4)

k − 1
k − 2
k − 2 k + 1 (parts ≥ k + 3)

⎫
⎬

⎭

Observe that the adjustment does not change the weight of the partition.
Again, we assume that k − 4 is not repeated, so that the difference condition
is not violated in the terminal configuration. The case of repeating (k − 4)’s
will be treated below. k + 3 may repeat up to twice, but not thrice.
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⎧
⎨

⎩ (parts ≤ k − 2s − 3)
k − 2s

k − 2s − 1
k − 2s + 2

k − 2s + 1

· · ·
k − 2

k − 3

k + 1
k
k (parts ≥ k + 3)

⎫
⎬

⎭
⏐� 1 backward move on the displayed 3-cluster⎧

⎨

⎩ (parts ≤ k − 2s − 3)
k − 2s

k − 2s − 1
k − 2s + 2

k − 2s + 1

· · ·
k − 2

k − 3

k
k − 1
k − 1

︸ ︷︷ ︸
!

(parts ≥ k + 3)

⎫
⎬

⎭ (temporarily)

⏐� adjustment⎧
⎨

⎩ (parts ≤ k − 2s − 3)
k − 2s

k − 2s − 1
k − 2s + 2

k − 2s + 1

· · ·
k − 4

k − 5

k − 2
k − 3
k − 3

︸ ︷︷ ︸
!

k + 1
k

(parts ≥ k + 3)

⎫
⎬

⎭ (temporarily)

⏐� after s − 1 similar adjustments
⎧
⎨

⎩ (parts ≤ k − 2s − 3)

k − 2s
k − 2s − 1
k − 2s − 1

k − 2s + 3
k − 2s + 2

k − 2s + 5
k + 2s + 4 · · ·

k + 1
k (parts ≥ k + 3)

⎫
⎬

⎭

for s ≥ 1. Here, again, we will assume that k − 2s − 3 does not repeat, so that
the terminal configuration conforms to the difference conditions set forth by
kr5(n,m). k + 3 may repeat up to twice. As before, the adjustments do not
alter the weight. The three cases below are very similar to the last one. They
cover the cases of repeated smaller parts as well. We leave the details to the
reader.
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⎧
⎨

⎩ (parts ≤ k − 2s − 4)
k − 2s − 1

k − 2s − 2
k − 2s + 1

k − 2s

· · ·
k − 3

k − 4 k − 2

k + 1
k
k (parts ≥ k + 3)

⎫
⎬

⎭
⏐� 1 backward move on the displayed 3-cluster, followed by adjustments⎧

⎨

⎩ (parts ≤ k − 2s − 4)

k − 2s − 1
k − 2s − 2
k − 2s − 2

k − 2s + 2
k − 2s + 1

k − 2s + 4
k − 2s + 3 · · ·

k
k − 1 k + 1 (parts ≥ k + 3)

⎫
⎬

⎭

for s ≥ 1.

⎧
⎨

⎩ (parts ≤ k − 2s − 4)
k − 2s − 1
k − 2s − 1

k − 2s + 2
k − 2s + 1

k − 2s + 4
k − 2s + 3 · · ·

k − 3
k − 2

k + 1
k
k

(parts ≥ k + 3)

⎫
⎬

⎭
⏐� 1 backward move on the displayed 3-cluster, followed by adjustments⎧

⎨

⎩ (parts ≤ k − 2s − 4)

k − 2s
k − 2s − 1
k − 2s − 1

k − 2s + 2
k − 2s + 2

k − 2s + 5
k − 2s + 4

k − 2s + 7
k − 2s + 6 · · ·

k + 1
k

(parts ≥ k + 3)

⎫
⎬

⎭

for s ≥ 1, the case s = 1 giving an empty streak after the smallest displayed
2-cluster.
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⎧
⎨

⎩ (parts ≤ k − 2s − 4)
k − 2s − 2
k − 2s − 2

k − 2s + 1
k − 2s

k − 2s + 3
k − 2s + 2 · · ·

k − 3
k − 4 k − 2

k + 1
k
k

(parts ≥ k + 3)

⎫
⎬

⎭
⏐� 1 backward move on the displayed 3-cluster, followed by adjustments⎧

⎨

⎩ (parts ≤ k − 2s − 4)

k − 2s − 1
k − 2s − 2
k − 2s − 2

k − 2s + 1
k − 2s + 1

k − 2s + 4
k − 2s + 3

k − 2s + 6
k − 2s + 5 · · ·

k
k − 1

k + 1 (parts ≥ k + 3)

⎫
⎬

⎭

for s ≥ 1. Above, k+3 may repeat twice, but not thrice. In none of the respec-
tive three cases above, do k − 2s− 4 or k − 2s− 3 repeat, if they occur. Notice
that the omitted cases of repetition are taken care of by the last two cases.

Again, it is routine to verify that one backward move on a 3-cluster allows
at least one move on the succeeding 3-cluster.

Once we complete the backward moves on the smallest 3-cluster, we re-
peat the same process for the next smallest, and move it backward as far as it
can go, recording the number of moves as 1

3 ×ν2, 1
3 ×ν3, . . . , 1

3 ×νn3 . This will
give us the partition ν with n3 parts (counting zeros) into multiples of three.
The intermediate partition looks like

⎧
⎨

⎩ 2
1

4
3 · · ·

2s
2s − 1

2s + 3
2s + 2
2s + 2

2s + 6
2s + 5
2s + 5 · · ·

2s + 3n3

2s + 3n3 − 1
2s + 3n3 − 1

(parts ≥ 2s + 3n3 + 2, all 1- or 2-clusters )

⎫
⎬

⎭ (4.5)

for s ≥ 0, s = 0 being the case of no 2-clusters smaller than the 3-clusters, or
⎧
⎨

⎩ 2
1

4
3 · · ·

2s
2s − 1 2s + 1

2s + 4
2s + 3
2s + 3
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2s + 7
2s + 6
2s + 6 · · ·

2s + 3n3 + 1
2s + 3n3

2s + 3n3

(parts ≥ 2s + 3n3 + 3, all 1- or 2-clusters )

⎫
⎬

⎭ (4.6)

for s ≥ 0. If one or more 3-clusters were in the indicated places, we would have
set η1 = 0, η2 = 0, . . . , as many as necessary.

Notice that the cases for the backward moves on the 3-clusters are in-
verses of the cases for the forward moves on the 3-clusters, in their respective
order, after necessary shifts of all parts. The rulebreaking in the middle tempo-
rary cases are slightly different; however, the initial cases become the terminal
cases and vice versa. We find the given descriptions more intuitive.

For a moment, suppose we wanted to move the smallest 3-cluster back-
ward one more time, and do some adjustments so as to retain the difference
conditions imposed by kr5(n,m), in the intermediate partition (4.5).

⎧
⎨

⎩ 2
1

4
3 · · ·

2s
2s − 1

2s + 3
2s + 2
2s + 2 (parts ≥ 2s + 5)

⎫
⎬

⎭
⏐� 1 backward move on the displayed 3-cluster, followed by adjustments⎧

⎨

⎩

2
1
1

5
4

7
6 · · ·

2s
2s − 1 (parts ≥ 2s + 5)

⎫
⎬

⎭

This creates two occurrences of 1’s, which is forbidden by the conditions of
kr5(n,m), and shows us that the 3-clusters are indeed as small as they can be.

Now, in either (4.5) or (4.6), we continue with implementing the backward
moves on the 2-clusters. In either configuration, if s > 0, we set η1 = η2 = · · ·
= ηs = 0. This is because the smallest s 2-clusters are already minimal. They
cannot be moved further back. We then move the (s + 1)th smallest 2-cluster
using the backward moves of the second kind (Definition 2.5), bringing it to

⎧
⎨

⎩ 2
1

4
3 · · ·

2s
2s − 1

2s + 3
2s + 2
2s + 2

2s + 6
2s + 5
2s + 5 · · ·

2s + 3n3

2s + 3n3 − 1
2s + 3n3 − 1

2s + 3n3 + 2
2s + 3n3 + 2

(parts ≥ 2s + 3n3 + 4, all 1- or 2-clusters )

⎫
⎬

⎭
,

or
⎧
⎨

⎩ 2
1

4
3 · · ·

2s
2s − 1 2s + 1

2s + 4
2s + 3
2s + 3
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2s + 7
2s + 6
2s + 6 · · ·

2s + 3n3 + 1
2s + 3n3

2s + 3n3

2s + 3n3 + 3
2s + 3n3 + 3

(parts ≥ 2s + 3n3 + 5, all 1- or 2-clusters )

⎫
⎬

⎭
.

We record the number of required moves as ηs+1 − 1. If n3 > 0, the final
backward move involves prestidigitating the 2-cluster through the 3-clusters
as follows. After one more backward move of the second kind on the (s + 1)th
smallest 2-cluster, say, in the former configuration,

⎧
⎨

⎩ 2
1

4
3 · · ·

2s
2s − 1

2s + 3
2s + 2
2s + 2

2s + 6
2s + 5
2s + 5 · · ·

2s + 3n3

2s + 3n3 − 1
2s + 3n3 − 1

2s + 3n3 + 2
2s + 3n3 + 1

︸ ︷︷ ︸
!

(parts ≥ 2s + 3n3 + 4, all 1- or 2-clusters )

⎫
⎬

⎭ (temporarily)

⏐� adjustment
⎧
⎨

⎩ 2
1

4
3 · · ·

2s
2s − 1

2s + 3
2s + 2
2s + 2

2s + 6
2s + 5
2s + 5 · · ·

2s + 3n3 − 3
2s + 3n3 − 4
2s + 3n3 − 4

2s + 3n3 − 1
2s + 3n3 − 2

︸ ︷︷ ︸
!

2s + 3n3 + 2
2s + 3n3 + 1
2s + 3n3 + 1 (parts ≥ 2s + 3n3 + 4)

⎫
⎬

⎭ (temporarily)

⏐� after n3 − 1 similar adjustments⎧
⎨

⎩ 2
1

4
3 · · ·

2s + 2
2s + 1

2s + 5
2s + 4
2s + 4

2s + 8
2s + 7
2s + 7 · · ·

2s + 3n3 + 2
2s + 3n3 + 1
2s + 3n3 + 1

(parts ≥ 2s + 3n3 + 4, all 1- or 2-clusters )

⎫
⎬

⎭
,

and the (s + 1)st 2-cluster is stowed in its proper place. This determines ηs+1,
which is positive. The second case is almost the same except that the Gordon
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marking has to be updated after the final adjustment. We repeat the process
and record ηs+2, ηs+3, . . . , ηn2 . We note that the total weight of λ and η re-
mains constant, because any drop in the weight of λ is registered in η in the
same amount, thanks to the definition of the backward move of the second
kind, namely, Definition 2.5.

At this point, we should justify the fact that η cannot have repeated odd
parts. Initially, and after any moves followed by a streak of adjustments, λ has
satisfied the difference conditions given by kr5(n,m). Also, the moves on the
2- and 3-clusters are performed in the exact reverse order. As we showed in
the forward moves on the 2-clusters, any repeated odd part in η will result in
a violation of the said difference conditions. Moreover, the violation precisely
occurs when η has repeated odd parts. Thus, η as constructed above cannot
have repeated odd parts.

So far, the intermediate partition looks like
⎧
⎨

⎩ 2
1

4
3 · · ·

2n2

2n2 − 1

2n2 + 3
2n2 + 2
2n2 + 2

2n2 + 6
2n2 + 5
2n2 + 5 · · ·

2n2 + 3n3

2n2 + 3n3 − 1
2n2 + 3n3 − 1

(parts ≥ 2n2 + 3n3 + 2, all 1-clusters )

⎫
⎬

⎭
,

(4.7)

or

⎧
⎨

⎩ 2
1

4
3 · · ·

2n2

2n2 − 1 2n2 + 1

2n2 + 4
2n2 + 3
2n2 + 3

2n2 + 7
2n2 + 6
2n2 + 6 · · ·

2n2 + 3n3 + 1
2n2 + 3n3

2n2 + 3n3

(parts ≥ 2n2 + 3n3 + 3, all 1-clusters )

⎫
⎬

⎭
,

(4.8)

where n2, n3, or both, are possibly zero.
In (4.8), we simply start by setting μ1 = 0, because the smallest 1-cluster

is already as small as it can be. It cannot be moved further back without van-
ishing or messing up the Gordon marking, therefore changing at least one of
n1, n2 or n3.

In (4.7), we first subtract the necessary amount from the smallest 1-
cluster and record the necessary number of moves as μ1 − 1. The partition
becomes
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⎧
⎨

⎩ 2
1

4
3 · · ·

2n2

2n2 − 1

2n2 + 3
2n2 + 2
2n2 + 2

2n2 + 6
2n2 + 5
2n2 + 5 · · ·

2n2 + 3n3

2n2 + 3n3 − 1
2n2 + 3n3 − 1 2n2 + 3n3 + 2

(parts ≥ 2n2 + 3n3 + 4, all 1-clusters )

⎫
⎬

⎭
.

We then perform one more deduction on the smallest 1-cluster, followed by
prestidigitating that 1-cluster through the 3-clusters, hence obtaining μ1.

⎧
⎨

⎩ 2
1

4
3 · · ·

2n2

2n2 − 1

2n2 + 3
2n2 + 2
2n2 + 2

2n2 + 6
2n2 + 5
2n2 + 5 · · ·

2n2 + 3n3

2n2 + 3n3 − 1
2n2 + 3n3 − 1 2n2 + 3n3 + 1
︸ ︷︷ ︸

!

(parts ≥ 2n2 + 3n3 + 4, all 1-clusters )

⎫
⎬

⎭
⏐� adjustment

⎧
⎨

⎩ 2
1

4
3 · · ·

2n2

2n2 − 1

2n2 + 3
2n2 + 2
2n2 + 2

2n2 + 6
2n2 + 5
2n2 + 5 · · ·

2n2 + 3n3 − 3
2n2 + 3n3 − 4
2n2 + 3n3 − 4 2n2 + 3n3 − 2
︸ ︷︷ ︸

!

2n2 + 3n3 + 1
2n2 + 3n3

2n2 + 3n3 (parts ≥ 2n2 + 3n3 + 4, all 1-clusters )

⎫
⎬

⎭
⏐� after n3 − 1 similar adjustments⎧

⎨

⎩ 2
1

4
3 · · ·

2n2

2n2 − 1 2n2 + 1

2n2 + 4
2n2 + 3
2n2 + 3

2n2 + 7
2n2 + 6
2n2 + 6 · · ·

2n2 + 3n3 + 1
2n2 + 3n3

2n2 + 3n3

(parts ≥ 2n2 + 3n3 + 4 all 1-clusters )

⎫
⎬

⎭
,
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arriving at (4.8) with μ1 > 0.
We continue with subtracting μi from the ith smallest 1-cluster for i =

2, 3, . . . , n1 in the given order, to obtain the base partition β as (4.2). Be-
cause the pairwise difference of 1-clusters are at least two, we immediately get
μ2 ≤ μ3 ≤ · · · ≤ μn1 . To see that μ1 ≤ μ2, simply notice that without the final
backward move involving the prestidigitation of the smallest 1-cluster through
the 3-clusters, we would have μ1 − 1 ≤ μ2 − 1 ≤ · · · ≤ μn1 − 1. If there were
no 1-clusters, we would have stopped at (4.7), which incidentally would have
been the base partition β, and declare μ the empty partition. This yields the
quadruple (β, μ, η, ν) we have been looking for, given λ counted by kr5(n,m),
and concludes the proof. �

Example 4.2. Following the notation in the proof of Theorem 4.1, let us take
the base partition β having n1 = 3 1-clusters, n2 = 2 2-clusters, and n3 = 2
3-clusters. Assume that μ = 1 + 1 + 1, η = 0 + 5, and ν = 3 + 9.

β =

⎧
⎨

⎩ 2
1

4
3 5

8
7
7

11
10
10 13 15

⎫
⎬

⎭

The weight of β is 96.
We first incorporate μ3 and μ2 on the two largest 1-clusters, which are

simple additions.

⎧
⎨

⎩ 2
1

4
3 5

8
7
7

11
10
10 14 16

⎫
⎬

⎭

We then perform the μ1 = 1 forward move on the smallest 1-cluster, and watch
it being prestidigitated through the 3-clusters.

⎧
⎨

⎩ 2
1

4
3 6

8
7
7

︸ ︷︷ ︸
!

11
10
10 14 16

⎫
⎬

⎭

⏐� adjustment⎧
⎨

⎩ 2
1

4
3

7
6
6 9

11
10
10

︸ ︷︷ ︸
!

14 16

⎫
⎬

⎭

⏐� adjustment⎧
⎨

⎩ 2
1

4
3

7
6
6

10
9
9 12 14 16

⎫
⎬

⎭
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This completes the incorporation of μ as forward moves on the 1-clusters. Next,
we turn to η = 0 + 5. The larger 2-cluster will be moved 5 times forward. The
first of those moves will involve prestidigitation through the 3-clusters. The
smaller 2-cluster will stay put, thanks to η1 being zero.

⏐� the first move forward on the larger 2-cluster⎧
⎨

⎩ 2
1

4
4

7
6
6

︸ ︷︷ ︸
!

10
9
9 12 14 16

⎫
⎬

⎭

⏐� adjustment⎧
⎨

⎩ 2
1

5
4
4

7
7

10
9
9

︸ ︷︷ ︸
!

12 14 16

⎫
⎬

⎭

⏐� adjustment⎧
⎨

⎩ 2
1

5
4
4

8
7
7

10
10 12 14 16

⎫
⎬

⎭
⏐� four more moves on the larger 2-cluster⎧

⎨

⎩ 2
1

5
4
4

8
7
7 10 12

14
14 16

⎫
⎬

⎭

Finally, we use ν = 3 + 9 to move the larger 3-cluster 1
3ν2 = 3 times forward,

and then the smaller 3-cluster 1
3ν1 = 1 times forward.
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⏐� the first forward move on the larger 3-cluster⎧
⎨

⎩ 2
1

5
4
4

9
8
8 10
︸ ︷︷ ︸

!

12
14
14 16

⎫
⎬

⎭

⏐� adjustment⎧
⎨

⎩ 2
1

5
4
4 7

10
9
9 12

14
14 16

⎫
⎬

⎭
⏐� the second forward move on the larger 3-cluster⎧

⎨

⎩ 2
1

5
4
4 7

11
10
10 12
︸ ︷︷ ︸

!

14
14 16

⎫
⎬

⎭

⏐� adjustment⎧
⎨

⎩ 2
1

5
4
4 7 9

12
11
11

14
14 16

⎫
⎬

⎭
⏐� the third, and the last, forward move on the larger 3-cluster⎧

⎨

⎩ 2
1

5
4
4 7 9

13
12
12

14
14

︸ ︷︷ ︸
!

16

⎫
⎬

⎭

⏐� adjustment⎧
⎨

⎩ 2
1

5
4
4 7 9

11
11

15
14
14 16
︸ ︷︷ ︸

!

}

⏐� adjustment⎧
⎨

⎩ 2
1

5
4
4 7 9

11
11 13

16
15
15

⎫
⎬

⎭
⏐� one forward move on the smaller 3-cluster⎧

⎨

⎩ 2
1

6
5
5 7
︸ ︷︷ ︸

!

9
11
11 13

16
15
15

⎫
⎬

⎭

⏐� adjustment

λ =

⎧
⎨

⎩ 2
1 4

7
6
6 9

11
11 13

16
15
15

⎫
⎬

⎭
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The weight of λ, as expected is 116. λ has the sediment
2

1 , for the sole

unmoved 2-clusters:

|λ| = 116 = 96 + 3 + 5 + 12 = |β| + |μ| + |η| + |ν|.
Theorem 4.3 (cf. The Kanade–Russell conjecture I6). For n,m ∈ N, let kr6
(n,m) be the number of partitions of n into m parts with smallest part at least
2, at most one appearance of the part 2, and difference at least three at distance
three such that if parts at distance two differ by at most one, then their sum,
together with the intermediate part, is ≡ 2 (mod 3). Then

∑

m,n≥0

kr6(n,m)qnxm =
∑

n1,n2,n3≥0

q(9n2
3+7n3)/2+2n2

2+3n2+n2
1+n1

(q; q)n1(q2; q2)n2(q3; q3)n3

× (−q; q2)n2q
6n3n2+3n3n1+2n2n1x3n3+2n2+n1 . (4.9)

Proof. The proof is a simpler version of the proof of Theorem 4.1. There is
only one type of base partition β.

⎧
⎨

⎩

3
3

2

6
6

5 · · ·

3n3

3n3

3n3 − 1
3n3 + 3

3n3 + 2

3n3 + 5
3n3 + 4 · · ·

3n3 + 2n2 + 1
3n3 + 2n2

3n3 + 2n2 + 2 3n3 + 2n2 + 4 · · · 3n3 + 2n2 + 2n1

⎫
⎬

⎭

This partition has the minimum weight among all enumerated by kr6(n,m),
having nr r-clusters for r = 1, 2, 3. Here, any nr may be zero. Clearly, the only
possible 3-clusters are

⎧
⎨

⎩ (parts ≤ k − 2)

k + 1
k + 1

k (parts ≥ k + 3)

⎫
⎬

⎭
.

The rest of the proof is the same as that of Theorem 4.1. One does not even
need to prestidigitate the 1- or 2- clusters through the 3-clusters. �

We now write the generating functions for some similarly described enu-
merants, which are not listed in [6] because they did not yield nice infinite
products, hence partition identities. In their proofs, we indicate the extra de-
tails only.

Theorem 4.4. For n,m ∈ N, let krc
1−2(n,m) be the number of partitions of

n into m parts with difference at least three at distance three such that if
parts at distance two differ by at most one, then their sum, together with the
intermediate part, is ≡ 1 (mod 3). Then
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∑

m,n≥0

krc
1−2(n,m)qnxm

=
∑

n1,n3≥0
n2>0

q(9n2
3−n3)/2+2n2

2+n2+n2
1

(q; q)n1(q2; q2)n2(q3; q3)n3

(1 + q)(−q; q2)n2−1

× q6n3n2+3n3n1+2n2n1−1 x3n3+2n2+n1

+
∑

n1,n3≥0

q(9n2
3−n3)/2+n2

1+3n3n1x3n3+n1

(q; q)n1(q3; q3)n3

(4.10)

=
∑

n1,n2,n3≥0

q(9n2
3−n3)/2+2n2

2+n2+n2
1

(q; q)n1(q2; q2)n2 (q3; q3)n3

(−1/q; q2)n2

× q6n3n2+3n3n1+2n2n1 x3n3+2n2+n1 . (4.11)

Remark 4.5. Notice that no λ enumerated by krc
1−2(n,m) can have three oc-

currences of 1.

Proof of Theorem 4.4. We will show (4.10) only. (4.11) follows by standard
algebraic manipulations.

The proof is similar to the proof of Theorem 4.1. Two separate series
are for two separate base partitions for the cases n1, n3 ≥ 0, n2 > 0, and
n1, n3 ≥ 0, n2 = 0. Here, again, nr is the number of r-clusters for r = 1, 2, 3 of
the partition at hand.

In case n2 > 0, the base partition β is
⎧
⎨

⎩

2
1
1

5
4
4 · · ·

3n3 − 1
3n3 − 2
3n3 − 2

3n3 + 1
3n3 + 1

3n3 + 4
3n3 + 3

3n3 + 6
3n3 + 5 · · ·

3n3 + 2n2

3n3 + 2n2 − 1

3n3 + 2n2 + 1 3n3 + 2n2 + 3 · · · 3n3 + 2n2 + 2n1 − 1

⎫
⎬

⎭
,

(4.12)

with weight (9n2
3 − n3)/2 + 2n2

2 + n2 + n2
1 + 6n3n2 + 3n3n1 + 2n2n1 − 1.

When n2 = 0, the base partition is
⎧
⎨

⎩

2
1
1

5
4
4 · · ·

3n3 − 1
3n3 − 2
3n3 − 2 3n3 + 1 3n3 + 3 · · · 3n3 + 2n1 − 1

⎫
⎬

⎭
,

(4.13)

with weight (9n2
3 − n3)/2 + n2

1 + 3n3n1. This is not the n2 = 0 case of (4.12).

The novelty in (4.12) is that the smallest 2-cluster
3n3 + 1
3n3 + 1 has an extra

move forward. If that extra move is made, then the 2-clusters in the resulting
partition can be treated as in the proof of Theorem 4.1. Without this extra
move, we only have n2 − 1 2-clusters to move forward.
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In a partition λ enumerated by krc
1−2(n,m), we check if there is a sedi-

ment of the form⎧
⎨

⎩

2
1
1

5
4
4 · · ·

3s − 1
3s − 2
3s − 2

3s + 1
3s + 1 (parts ≥ 3s + 3)

⎫
⎬

⎭

for s ≥ 0 to tell the cases apart.
The partition accounting for the forward or backward moves on the 2-

clusters is generated by

(−q; q2)n2−1

(q2; q2)n2−1
+ q

(−q; q2)n2

(q2; q2)n2

=
(1 + q)(−q; q2)n2−1

(q2; q2)n2

for n2 ≥ 1. The factor q in the second term is for the extra move. For n2 = 0,
it is simply 1, the empty partition.

The rest of the proof is the same as the proof of Theorem 4.1, except that
prestidigitating 1- or 2-clusters through the 3-clusters is not necessary. �

Example 4.6. Following the notation of the proof of the above theorem, let

λ =

⎧
⎨

⎩ 2
1 4

7
6
6 9

11
11 13

16
15
15

⎫
⎬

⎭ .

This is one of the partitions we encountered before. We will examine it once
more as a partition satisfying the conditions of krc

1−2(116, 13). λ as such has
no sediments; therefore, the initial forward move was applied to the smallest
2-cluster, and η has two parts.

We begin by decoding ν through the backward moves on the 3-clusters,
the smallest first.⏐� one backward move on the smallest 3-cluster⎧

⎨

⎩ 2
1 4

6
5
5

︸ ︷︷ ︸
!

9
11
11 13

16
15
15

⎫
⎬

⎭

⏐� adjustment⎧
⎨

⎩ 2
1

5
4
4 7 9

11
11 13

16
15
15

⎫
⎬

⎭
⏐� one more backward move on the smallest 3-cluster⎧

⎨

⎩ 2
1

4
3
3

︸ ︷︷ ︸
!

7 9
11
11 13

16
15
15

⎫
⎬

⎭

⏐� adjustment⎧
⎨

⎩

2
1
1

5
4 7 9

11
11 13

16
15
15

⎫
⎬

⎭
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The smallest 3-cluster has been stowed after two backward moves on it, thus,
ν1 = 3 · 2 = 6.

⏐� one backward move on the larger 3-cluster⎧
⎨

⎩

2
1
1

5
4 7 9

11
11 13

15
14
14

︸ ︷︷ ︸
!

}

⏐� adjustment⎧
⎨

⎩

2
1
1

5
4 7 9

11
11

14
13
13

︸ ︷︷ ︸
!

16

⎫
⎬

⎭

⏐� adjustment⎧
⎨

⎩

2
1
1

5
4 7 9

12
11
11

14
14 16

⎫
⎬

⎭
⏐� one more backward move on the larger 3-cluster⎧

⎨

⎩

2
1
1

5
4 7 9

11
10
10

︸ ︷︷ ︸
!

14
14 16

⎫
⎬

⎭

⏐� adjustment⎧
⎨

⎩

2
1
1

5
4 7

10
9
9 12

14
14 16

⎫
⎬

⎭
⏐� one more backward move on the larger 3-cluster⎧

⎨

⎩

2
1
1

5
4 7

9
8
8

︸ ︷︷ ︸
!

12
14
14 16

⎫
⎬

⎭

⏐� adjustment⎧
⎨

⎩

2
1
1

5
4

8
7
7 10 12

14
14 16

⎫
⎬

⎭
⏐� one more backward move on the larger 3-cluster⎧

⎨

⎩

2
1
1

5
4

7
6
6

︸ ︷︷ ︸
!

10 12
14
14 16

⎫
⎬

⎭

⏐� adjustment⎧
⎨

⎩

2
1
1

5
4
4

8
7 10 12

14
14 16

⎫
⎬

⎭
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At this point, we deduce that ν2 = 3 · 4 = 12. Also, looking at the smallest
2-cluster, η1 = 0 can be seen. Because with one more backward move on the
smallest 2-cluster, the intermediate partition becomes

⎧
⎨

⎩

2
1
1

5
4
4

7
7 10 12

14
14 16

⎫
⎬

⎭
.

This must be the extra move.
⏐� five backward moves on the larger 2-cluster⎧

⎨

⎩

2
1
1

5
4
4

7
7

10
9 12 14 16

⎫
⎬

⎭

This yields η2 = 5. Finally, it is clear that μ = 1 + 1 + 1, so that the partition
becomes (4.12).

⎧
⎨

⎩

2
1
1

5
4
4

7
7

10
9 11 13 15

⎫
⎬

⎭

In other words, the base partition for n2 > 0. The weight of λ is indeed

|λ| = 116 = 89 + 3 + (1 + 5) + 18 = |β| + |μ| + (extra move + |η|) + |ν|.
Theorem 4.7. For n,m ∈ N, let krc

2−2(n,m) be the number of partitions of
n into m parts with difference at least three at distance three such that if
parts at distance two differ by at most one, then their sum, together with the
intermediate part, is ≡ 2 (mod 3). Then

∑

m,n≥0

krc
2−2(n,m)qnxm

=
∑

n1,n3≥0
n2>0

q(9n2
3+n3)/2+2n2

2+n2+n2
1

(q; q)n1(q2; q2)n2(q3; q3)n3

(1 + q)(−q; q2)n2−1

× q6n3n2+3n3n1+2n2n1−1 x3n3+2n2+n1

+
∑

n1,n3≥0

q(9n2
3+n3)/2+n2

1+3n3n1x3n3+n1

(q; q)n1(q3; q3)n3

(4.14)

=
∑

n1,n2,n3≥0

q(9n2
3+n3)/2+2n2

2+n2+n2
1

(q; q)n1 (q2; q2)n2(q3; q3)n3

× q6n3n2+3n3n1+2n2n1 x3n3+2n2+n1 . (4.15)

Remark 4.8. A partition enumerated by krc
2−2(n,m) may contain the 2-cluster

1
1 , but not the 3-clusters

2
1
1

or
1
1
1
, so it can have up to two occurrences of 1.
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Proof of Theorem 4.7. (4.15) follows from (4.14) by standard algebraic ma-
nipulations, so we demonstrate (4.14) only.

The proof is very similar to the proof of Theorem 4.4. The two base
partitions are the following:

⎧
⎨

⎩1
1

4
4

3

7
7

6 · · ·

3n3 + 1
3n3 + 1

3n3

3n3 + 4
3n3 + 3

3n3 + 6
3n3 + 5 · · ·

3n3 + 2n2

3n3 + 2n2 − 1

3n3 + 2n2 + 1 3n3 + 2n2 + 3 · · · 3n3 + 2n2 + 2n1 − 1

⎫
⎬

⎭
,

(4.16)

whose weight is (9n2
3 + n3)/2 + 2n2

2 + n2 + n2
1 + 6n3n2 + 3n3n1 + 2n2n1 − 1,

for n1, n3 ≥ 0, n2 > 0.
⎧
⎨

⎩

2
2

1

5
5

4 · · ·

3n3 − 1
3n3 − 1

3n3 − 2 3n3 + 1 3n3 + 3 · · · 3n3 + 2n1 − 1

⎫
⎬

⎭
,

whose weight is (9n2
3 +n3)/2+n2

1 +3n3n1, for n1, n3 ≥ 0. This is not the case
n2 = 0 of (4.16).

The smallest 2-cluster in (4.16) has one extra move forward to enter
the game, which entails a prestidigitation through the 3-clusters, and making
(4.16) into

⎧
⎨

⎩

2
2

1

5
5

4 · · ·

3n3 − 1
3n3 − 1

3n3 − 2
3n3 + 2

3n3 + 1

3n3 + 4
3n3 + 3 · · ·

3n3 + 2n2

3n3 + 2n2 − 1 3n3 + 2n2 + 1

3n3 + 2n2 + 3 · · · 3n3 + 2n2 + 2n1 − 1

⎫
⎬

⎭
.

To tell the cases in which this extra move is made or not apart, we simply

check if λ contains the 2-cluster
1
1 as a sediment or not. �

Theorem 4.9. For n,m ∈ N, let krc
2−1(n,m) be the number of partitions of n

into m parts with at most one occurrence of the part 1, and difference at least
three at distance three such that if parts at distance two differ by at most one,
then their sum, together with the intermediate part, is ≡ 2 (mod 3). Then

∑

m,n≥0

krc
2−1(n,m)qnxm
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=
∑

n1,n2,n3≥0

q(9n2
3+n3)/2+2n2

2+n2+n2
1

(q; q)n1(q2; q2)n2(q3; q3)n3

× (−q; q2)n2 q6n3n2+3n3n1+2n2n1 x3n3+2n2+n1 . (4.17)

Proof. It suffices to observe that krc
2−1(n + m,m) = kr6(n,m). Then, the

result becomes a corollary of Theorem 4.3. �

By means of shifts of all parts of a partition, one can put restrictions on
the size of the smallest part and its number of occurrences. Then, the gener-
ating functions of such partitions may be obtained as corollaries of Theorems
4.1, 4.3, 4.4, 4.7 and 4.9.

5. Alternative Series for Kanade and Russell’s Conjectures I5
and I6

In [10], it has been shown that

∑

n≥0

qn2
(−q; q2)nxn

(q2; q2)n
=

∑

n1,n2≥0

q4n2
2+(3n2

1−n1)/2+4n2n1x2n2+n1

(q; q)n1(q4; q4)n2

. (5.1)

Using this formula in (4.1), (4.9), (4.10), (4.14) and (4.17), and a little
q-series algebra will yield the following:

∑

m,n≥0

kr5(n,m)qnxm =
∑

n1,n2,n3≥0

q(9n2
3+5n3)/2+2n2

2+n2+n2
1

(q; q)n1(q2; q2)n2(q3; q3)n3

× (−q; q2)n2 q6n3n2+3n3n1+2n2n1 x3n3+2n2+n1

=
∑

n1,m2,n3,m4≥0

q8m2
4+2m4+(9n2

3+5n3)/2+(5m2+m2)/2+n2
1

(q; q)n1(q; q)m2(q3; q3)n3(q4; q4)m4

(5.2)

× q12m4n3+8m4m2+4m4n1+6n3m2+3n3n1+2m2n1 x4m4+3n3+2m2+n1 ,

∑

m,n≥0

kr6(n,m)qnxm =
∑

n1,n2,n3≥0

q(9n2
3+7n3)/2+2n2

2+3n2+n2
1+n1

(q; q)n1(q2; q2)n2(q3; q3)n3

× (−q; q2)n2 q6n3n2+3n3n1+2n2n1 x3n3+2n2+n1

=
∑

n1,m2,n3,m4≥0

q8m2
4+6m4+(9n2

3+7n3)/2+(5m2
2+5m2)/2+n2

1+n1

(q; q)n1(q; q)m2(q3; q3)n3(q4; q4)m4

(5.3)

× q12m4n3+8m4m2+4m4n1+6n3m2+3n3n1+2m2n1 x4m4+3n3+2m2+n1 ,

∑

m,n≥0

krc
1−2(n,m)qnxm =

∑

n1,n2,n3≥0

q(9n2
3−n3)/2+2n2

2+n2+n2
1

(q; q)n1(q2; q2)n2(q3; q3)n3

× (−1/q; q2)n2 q6n3n2+3n3n1+2n2n1 x3n3+2n2+n1

=
∑

n1,m2,n3,m4≥0

q8m2
4+2m4+(9n2

3−n3)/2+(5m2
2+m2)/2+n2

1

(q; q)n1(q; q)m2(q3; q3)n3(q4; q4)m4

(5.4)
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× (1 + x2q8m4+6n3+4m2+2n1+2)

× q12m4n3+8m4m2+4m4n1+6n3m2+3n3n1+2m2n1 x4m4+3n3+2m2+n1 ,

∑

m,n≥0

krc
2−2(n,m)qnxm =

∑

n1,n2,n3≥0

q(9n2
3+n3)/2+2n2

2+n2+n2
1

(q; q)n1(q2; q2)n2(q3; q3)n3

× (−1/q; q2)n2 q6n3n2+3n3n1+2n2n1 x3n3+2n2+n1

=
∑

n1,m2,n3,m4≥0

q8m2
4+2m4+(9n2

3+n3)/2+(5m2
2+m2)/2+n2

1

(q; q)n1(q; q)m2(q3; q3)n3(q4; q4)m4

(5.5)

× (1 + x2q8m4+6n3+4m2+2n1+2)

× q12m4n3+8m4m2+4m4n1+6n3m2+3n3n1+2m2n1 x4m4+3n3+2m2+n1 ,

∑

m,n≥0

krc
2−1(n,m)qnxm =

∑

n1,n2,n3≥0

q(9n2
3+n3)/2+2n2

2+n2+n2
1

(q; q)n1(q2; q2)n2(q3; q3)n3

× (−q; q2)n2 q6n3n2+3n3n1+2n2n1 x3n3+2n2+n1

=
∑

n1,m2,n3,m4≥0

q8m2
4+2m4+(9n2

3+n3)/2+(5m2+m2)/2+n2
1

(q; q)n1(q; q)m2(q3; q3)n3(q4; q4)m4

(5.6)

× q12m4n3+8m4m2+4m4n1+6n3m2+3n3n1+2m2n1 x4m4+3n3+2m2+n1 .

The combinatorics of the new formulas is as follows. We focus on the
2-clusters only, as the incorporation of the 1- and 3-clusters in the discussion
is routine. The 2-clusters are lined up as

{
2

1
4

3 · · ·
2n2

2n2 − 1

}

.

Then, we set n2 = 2m4+m2 for m2,m4 ∈ N and move the ith largest 2-cluster
m2 − i times forward for i = 1, 2, . . . ,m2.
{

2
1

4
3 · · ·

4m4

4m4 − 1
4m4 + 2

4m4 + 1
4m4 + 4
4m4 + 4

4m4 + 7
4m4 + 6 · · ·

}

Next, we declare the consecutive 2-clusters

2
1

4
3 ,

6
5

8
7 , · · · ,

4m4 − 2
4m4 − 3

4m4

4m4 − 1

2-cluster pairs, and the others individual 2-clusters. One forward move on an
individual 2-cluster still adds one to the total weight, but one forward move
on a 2-cluster pair adds four.

The procession of 2-cluster pairs through individual 2-clusters is defined
similar to movement of pairs in [10, Sect. 3]. The procession of 2-cluster pairs
through 1-clusters or prestidigitation of 2-cluster pairs through the 3-clusters
is defined in the obvious way.
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6. q-Series Versions of Kanade–Russell Conjectures

Given a partition counter, say kr1(n,m) in Theorem 3.1, we define

KR1(n) =
∑

m≥0

kr1(m,n).

Then, we have the following relation between the generating functions:

∑

n≥0

KR1(n)qn =
∑

n,m≥0

kr1(m,n)xmqn

∣∣∣∣∣∣
x=1

.

In other words, substituting x = 1 renders the track of number of parts inef-
fective.

Using this idea in the respective theorems above gives the following con-
jectured q-series identities, in conjunction with [6].

Conjecture 6.1.

1
(q, q3, q6, q8; q9)∞

?=
∑

n1,n2≥0

q3n2
2+n2

1+3n1n2

(q; q)n1(q3; q3)n2

, (6.1)

1
(q2, q3, q6, q7; q9)∞

?=
∑

n1,n2≥0

q3n2
2+3n2+n2

1+n1+3n1n2

(q; q)n1(q3; q3)n2

, (6.2)

1
(q3, q4, q5, q6; q9)∞

?=
∑

n1,n2≥0

q3n2
2+3n2+n2

1+2n1+3n1n2

(q; q)n1(q3; q3)n2

, (6.3)

1
(q2, q3, q5, q8; q9)∞

?=
∑

n1,n2≥0

q3n2
2+2n2+n2

1+n1+3n1n2

(q; q)n1(q3; q3)n2

, (6.4)

1
(q, q4, q6, q7; q9)∞

?=
∑

m,n≥0

qQ(m,n)+2m+4n(1 + q)
(q; q)m(q3; q3)n

+
∑

m,n≥0

qQ(m,n)+2+3m+7n

(q; q)m(q3; q3)n
. (6.5)

The relation (6.1) is a combination of (3.1) and [6, I1], (6.2) of (3.10)
and [6, I2], (6.3) of (3.14) and [6, I3], (6.4) of (3.15) and [6, I4]. (6.5) is the
x = 1 case of (3.19), and added here upon the request of the anonymous
referee. Thanks to [4], the conjectures became theorems for the fifth and the
sixth conjectures in [6].

Theorem 6.2.

1
(q, q3, q4, q6, q7, q10, q11; q12)∞

=
∑

n1,n2,n3≥0

q(9n2
3+5n3)/2+2n2

2+n2+n2
1+6n3n2+3n3n1+2n2n1(−q; q2)n2

(q; q)n1(q2; q2)n2(q3; q3)n3
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=
∑

n1,m2,n3,m4≥0

q8m2
4+2m4+(9n2

3+5n3)/2+(5m2
2+m2)/2+n2

1

(q; q)n1(q; q)m2(q3; q3)n3(q4; q4)m4

× q12m4n3+8m4m2+4m4n1+6n3m2+3n3n1+2m2n1 , (6.6)
1

(q2, q3, q5, q6, q7, q8, q11; q12)∞

=
∑

n1,n2,n3≥0

q(9n2
3+7n3)/2+2n2

2+3n2+n2
1+n1+6n3n2+3n3n1+2n2n1(−q; q2)n2

(q; q)n1(q2; q2)n2(q3; q3)n3

=
∑

n1,m2,n3,m4≥0

q8m2
4+6m4+(9n2

3+7n3)/2+(5m2
2+5m2)/2+n2

1+n1

(q; q)n1(q; q)m2(q3; q3)n3(q4; q4)m4

× q12m4n3+8m4m2+4m4n1+6n3m2+3n3n1+2m2n1 . (6.7)

The relation (6.6) is a combination of (4.1), (5.2), [6, I5], and [4, Sect.
4.9] and (6.7) of (4.9), (5.4), [6, I6], and [4, Sect. 4.10].

7. Comments and Further Work

The series constructed in this paper are different from the series constructed
in [7]. The approach is different, as well.

The usage of Gordon marking in the proof of Theorem 3.1, or other
theorems in Sect. 3 does not make them immensely easier. One can simply
declare, say, in Theorem 3.1, [3k, 3k] or [3k + 1, 3k + 2] admissible pairs, other
parts singletons, and imitate the proofs in [10].

However, Gordon marking is vital in the proof of Theorem 4.1, or other
theorems in Sects. 4 and 5; and it is prudent to have all Kanade–Russell con-
jectures together. Without Gordon marking, the proof of Theorem 4.1 becomes
more tedious than it already is.

Normally, an r-cluster cannot go through an s-cluster if s ≥ r [8]. The
prestidigitation is an exception without which the proofs are longer and less
elegant, if not impossible (please see the Appendix).

Unfortunately, in Sects. 4 and 5, one cannot make the sum condition on
the 3-clusters ≡ 0 (mod 3) instead of ≡ 1 (mod 3) or ≡ 2 (mod 3). It is not
possible to define forward or backward moves compatible with both Gordon
marking and the given difference conditions.

For instance, let krc
3−3(n,m) be the number of partitions of n into m

parts with difference at least three at distance three such that if the difference
at distance two is at most one, then the sum of those parts, together with
the intermediate part, is divisible by three. The 3-clusters in a partition λ
enumerated by krc

3−3(n,m) must be of the form
⎧
⎨

⎩ (parts ≤ k − 3)

k
k
k (parts ≥ k + 3)

⎫
⎬

⎭
.
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One simply cannot make a forward move on the 3-cluster in the partition
below.

⎧
⎨

⎩

1
1
1 4

⎫
⎬

⎭
move−→

{ 2
2
2 4
︸︷︷︸

!

}
adjustment−→

{

1

3
3
3

︸︷︷︸
!

}

The violation of the difference condition persists after the adjustment. To
resolve it, we should either compromise the invariance of the number of r-
clusters for fixed r, or define some other kind of moves. In short, the ≡ 0
(mod 3) case cannot be treated with the machinery developed in this paper.

It should be possible to incorporate differences at distance four, so that
4-clusters enter the stage. However, such a venture is not advisable before we
have partition identities, or conjectures, pertaining to difference at distance
four as natural extensions of Kanade–Russell conjectures [6].

A windfall would be the construction of evidently positive multiple series
using similar ideas for the new classes of partitions described in [7]. Not all
series in [7] are evidently positive.

Of course, the biggest open problem is the proof of Kanade–Russell con-
jectures. Using the series constructed here or in [7], and Bailey pairs, will it be
possible to give at least an analytic proof of the conjectures? A good starting
point might be [11].
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Appendix

Now, let us try to visualize this process with a metaphor.
Imagine a person walking into a fancy cupcake store to taste the delicacies

that he heard so much about from his colleagues at work. The cupcakes are
neatly arranged in a large display case with one shelf over another. Each shelf
has different kinds of cupcakes put into boxes of different sizes. There is certain
logic to the way the boxes are displayed. The shelves have boxes with three
cupcakes at the first two rows followed by a box with a single cupcake or two
cupcakes at the back of the shelves.
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The hypothetical cupcake enthusiast starts gazing colorful cupcakes of
various types until his eyes are fixated towards a single box with a single
cupcake in it. The box is located behind two bigger boxes with three cupcakes
in each at a middle shelve as per the logic of display and there is hardly any
space for one to grab the box with the single cupcake from the back of the shelf.
The cupcake enthusiast is certain of his choice and makes a move towards the
box in the back to grab it. The shop owner at the register sees the customer’s
move and immediately interrupts him: ‘I am afraid you can’t move the box
at the back of the self without my help sir! It’s impossible for you to squeeze
your hand through the narrow space between the shelves without ruining the
cupcakes.

The cupcake enthusiast stops for a brief moment, listens to the shop
owner’s warning and then he confidently keeps moving towards the box with
the single cupcake behind the two larger boxes with three cupcakes in each.
He thrusts his hand towards the narrow middle shelf and magic happens in
the blink of an eye. The customer is able bring both the single-size box and
the single cupcake of his choice to the front of the shelf albeit separately.
The customer turned out to be a prestidigitator and performed some masterly
sleight-of-hand. He retrieved the single cupcake of his choice by relocating it
through the two other boxes with three cupcakes. The cupcake was swiftly put
in an out of these larger boxes and united at the very front of the shelf with
its original box in the end. The impossible became possible under this rare
circumstance that allowed different cake to be put in and out of the boxes of
three.

The shop owner was awed. He asked if the same trick could be done with
another middle shelf that had a box with two cupcakes at the back as well.
The cupcake enthusiast tried his trick there too and it worked again! The box
of two and the cupcakes are separately delivered to the front while the to
cupcakes got in an out of the boxes of three. Not only that, he was able to
put back all the boxes that he retrieved from the back of the middle shelf to
their original places reversing his trick. The shopkeeper, now amused, decided
to offer his cupcakes free of charge to the customer.

Needless to say, each cupcake represents individual numbers and each
box represents a free cluster of a particular size in this metaphor. I can only
hope that the ‘prestidigitator cupcake enthusiast’s proof of his ‘sleight-of-hand’
would also prove to be as ‘amusing’ for his fellow mathematicians in real life
as it does in the metaphor.
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[8] Kurşungöz, K.: Parity considerations in Andrews-Gordon identities. European
J. Combin. 31(3), 976–1000 (2010)
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Faculty of Engineering and Natural Sciences
Sabancı University
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Abstract. We prove a generalization of Schröter’s formula to a product
of an arbitrary number of Jacobi triple products. It is then shown that
many of the well-known identities involving Jacobi triple products (for
example the Quintuple Product Identity, the Septuple Product Identity,
and Winquist’s Identity) all then follow as special cases of this general
identity. Various other general identities, for example certain expansions
of (q; q)∞ and (q; q)k∞, k ≥ 3, as combinations of Jacobi triple products,
are also proved.
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1. Foreword

I was happy to receive the email sent by the organizers of the Combinatory
Analysis 2018 conference, reminding attendees that there would be a “Special
Issue of the Annals of Combinatorics to honor George Andrews at the occa-
sion of passing the milestone age of 80”, and soliciting papers with “new or
unpublished work relating to the mathematical interests of George Andrews”.

I had previously done some work on extending Schröter’s identity for a
product of two Jacobi triple products to a product of arbitrarily many such
products. When this email sent to conference attendees arrived from the or-
ganizers, it spurred me to complete the proof of the identity that I had found.
The topic, Jacobi triple products, is certainly one that is frequently found in

This work was partially supported by a Grant from the Simons Foundation (#209175 to
James Mc Laughlin). The author would like to thank the anonymous referees for their many
useful suggestions and helpful criticisms, which the author believes have improved the paper.
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the papers of Professor Andrews, so I was happy to submit this paper to the
conference proceedings.

2. Introduction

The Jacobi triple product identity, first proved by Jacobi [8], is one of the
fundamental identities in q-series. It may be written (see, for example, [5,
Equation (II.28), p. 357]) as

∞∑

n=−∞
qn

2
zn =

(
−qz,

−q

z
, q2; q2

)

∞
. (2.1)

For space saving reasons, we will occasionally use the notation

〈a; q2j〉∞

to denote the triple product (a, q2j/a, q2j ; q2j)∞.
This paper is concerned with identities in which products of Jacobi triple

products are expanded into sums and products of other triple products. A
well-known example of such an identity is the quintuple product identity (see
Cooper’s excellent paper [3] for the history of this identity and a survey of its
various proofs). This identity may be written as

(z, q2/z, q2; q2)∞(q2z2, q2/z2; q4)∞

= (−q2z3,−q4/z3, q6; q6)∞ − z(−q4z3,−q2/z3, q6; q6)∞. (2.2)

Remark 2.1. Strictly speaking, the factor (q2z2, q2/z2; q4)∞ is not a triple
product, but becomes so if we multiply on the left side by (q4; q4)∞, while
the right side remains a sum/product combination of triple products if we
multiply on the right side by the equivalent (q4, q8, q12; q12)∞. A similar situ-
ation will hold for other identities in the paper.

A second example is given by the Septuple Product Identity, first found by
Hirschhorn [6] [in fact, Hirschhorn found a two-parameter extension from which
the Septuple Product Identity follows upon setting a = −z/q and b = −z2/q
in Eq. (2.1) on page 32], and re-discovered by Farkas and Kra [4]:

(
z,

q2

z
, q2; q2

)

∞

(
−z,

−q2

z
, q2; q2

)

∞

(
z,

q4

z
, q4; q4

)

∞
= (q2, q2, q4; q4)∞(q8, q12, q20; q20)∞

×
{ (

q4z5,
q16

z5
, q20; q20

)

∞
+ z3

(
q16z5,

q4

z5
, q20; q20

)

∞

}

− (q2, q2, q4; q4)∞(q4, q16, q20; q20)∞

×
{

z

(
q8z5,

q12

z5
, q20; q20

)

∞
+ z2

(
q12z5,

q8

z5
, q20; q20

)

∞

}
.
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A third example is contained in Winquist’s Identity (Winquist [9]):
(

a,
q2

a
, b,

q2

b
, ab,

q2

ab
,
a

b
,
q2b

a
, q2, q2, q2, q2; q2

)

∞
= (q2, q2; q2)∞

×
[ (

a3,
q6

a3
, q6; q6

)

∞

{(
b3q2,

q4

b3
, q6; q6

)

∞
− b

(
b3q4,

q2

b3
, q6; q6

)

∞

}

− a

b

(
b3,

q6

b3
, q6; q6

)

∞

{(
a3q2,

q4

a3
, q6; q6

)

∞
− a

(
a3q4,

q2

a3
, q6; q6

)

∞

}]
.

In the present paper, we prove an expansion for a product of k (k ≥ 3)
Jacobi triple products in terms of sums of products of other Jacobi triple
products (Theorem 2.2 below), and then show that all of the identities above,
and also various other identities, follow as special cases. The main theorem of
the paper is the following.

Theorem 2.2. Let k ≥ 1 be a positive integer and let n1, n2, . . . , nk, N be
positive integers, such that N = lcm(n1, n2, . . . , nk), or a multiple thereof. For
ease of notation, for 1 ≤ i ≤ k, set ui := N/ni, vi := u1 + u2 + · · · + ui, and
wi := vi+1. Let z, a, a1, a2, . . ., ak be non-zero complex numbers and suppose
|q| < 1. Then

〈−qNaz; q2N
〉

∞

k∏

i=1

〈−qniaiz; q2ni
〉

∞

=
v1∑

j1=0

v2∑

j2=0

· · ·
vk∑

jk=0

zjkqn1j
2
1+n2(j2−j1)

2+n3(j3−j2)
2+···+nk(jk−jk−1)

2

× aj1
1 aj2−j1

2 aj3−j2
3 · · · ajk−jk−1

k

〈
−qn1+N+2n1j1

a1

a
; q2(n1+N)

〉

∞

×
k∏

i=2

〈
− qni(wiwi−1+2wiji−1−2wi−1ji)

a au1
1 au2

2 · · · aui−1
i−1

a
wi−1
i

; q2niwiwi−1

〉

∞

× 〈−qNwk+2Njkau1
1 au2

2 · · · auk

k azwk ; q2Nwk
〉

∞ . (2.3)

Observe that the expansion (2.3) provides a wk-dissection of the left side
into powers of z that lie in arithmetic progressions modulo wk.

The quintuple product identity, the septuple product identity and Win-
quist’s identity, and others all follow as special cases of the above identity.
Other applications include expansions of Ramanujan theta functions, or pow-
ers of these, as sums and products of Jacobi triple products. As an example of
one of these latter identities, we have that, for an arbitrary integer k ≥ 3:

(q; q)k∞

=
1∑

j1=0

· · ·
k−1∑

jk−1=0

(−1)jk−1q3(j
2
1+j22+···+j2k−2)+jk−1(3jk−1+1)/2−3(j1j2+···+jk−2jk−1)
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× 〈−q3+3j1 ; q6
〉

∞
〈
(−1)k+1q2k+3jk−1 ; q3k

〉
∞

×
k−1∏

i=2

〈
−q3i(i+1)/2+3(i+1)ji−1−3iji ; q3i(i+1)

〉

∞
.

Remark 2.3. Cao [2] proves a quite general theorem (Theorem 1.4) which also
exhibits a product of arbitrarily many Jacobi triple products as a sum contain-
ing other Jacobi triple products. Cao’s theorem is more general in the sense
that it allows for a greater variety of expansions, but, in full generality, appears
more restrictive in the sense that for such an identity, it must also be shown
that the entries of a certain associated matrix satisfy certain conditions. We
had initially thought that the result in the present paper was independent of
Cao’s result. However, it was pointed out by one of the referees that the key
induction step in the proof of our Theorem 2.2, namely, Corollary 3.10, is actu-
ally a special case of Corollary 2.2 in Cao’s paper [2], and thus, that our result
in Theorem 2.2 could have been derived from the results in Cao’s paper [2],
by following the appropriate path and making the appropriate specializations.

3. Extensions of Schröter’s Identity

Before coming to the main theorem and its consequences, we first consider
Schröter’s identity, and also state some elementary extensions. The methods
of proof will also preview the methods used to prove the main theorem in the
next section.

Schröter’s identity (see [1, p. 111])
〈−qn1a; q2n1

〉
∞

〈−qn2b; q2n2
〉

∞

=
n1+n2−1∑

j=0

qn1j
2
aj

〈−qn1+n2+2n1ja

b
; q2(n1+n2)

〉

∞

×
〈
−q(n1+n2+2j)n1n2an2bn1 ; q2(n1+n2)n1n2

〉

∞
, (3.1)

first appeared in Schröter’s 1854 dissertation.
In Lemma 3.3, we introduce a variable z as a “book-keeping” device by

replacing a with az and b with bz, and also give a proof of a slight extension of
Schröter’s identity by introducing an integer variable m into the summation
range (Schröter’s original identity is the case m = 1 of the identity in Lemma
3.3), and then use this result in conjunction with Lemma 3.1 to derive a more
general extension.

We begin by recalling the following well-known elementary identity.

Lemma 3.1. Let p be a positive integer and let q and z be complex numbers
with z �= 0 and |q| < 1. Then

〈−qz; q2
〉

∞ =
p−1∑

j=0

qj
2
zj

〈
−qp

2+2pjzp; q2p
2
〉

∞
. (3.2)
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Proof. The proof follows directly from (2.1), upon breaking the sum on the
left side into p sums, in each of which the exponents n all lie in the same
arithmetic progression modulo p, and then applying (2.1) to each sum. �

Before coming to the extension of Schröter’s identity, we also need a
preliminary lemma.

Lemma 3.2. If c is a non-zero complex number, n is any positive integer, j is
any integer, and |q| < 1, then

(cqn+2jn, qn−2jn/c; q2n)∞ = (cqn, qn/c; q2n)∞

(−1
c

)j 1
qnj2

. (3.3)

Proof. The statement is clearly true if j = 0. If j > 0, then

(cqn+2jn, qn−2jn/c; q2n)∞ = (cqn, qn/c; q2n)∞
(qn−2jn/c; q2n)j

(cqn; q2n)j
,

and the result follows for j > 0 upon applying the identity (see [5, Identity
(I.8), p. 351]):

(aq−j ; q)j = (q/a; q)j

(−a

q

)j

q−j(j−1)/2

to (qn−2jn/c; q2n)j (with a = qn/c and q replaced with q2n). The result
for j < 0 follows from the j > 0 case, after replacing j with −j and c
with 1/c. �

Lemma 3.3. (An extension of Schröter’s Identity) Let a, b, and z be non-zero
complex numbers, let q be a complex number with |q| < 1, and let m ≥ 1 be an
integer. Then

〈−qn1az; q2n1
〉

∞
〈−qn2bz; q2n2

〉
∞

=
m(n1+n2)−1∑

j=0

qn1j
2
(az)j

〈−qn1+n2+2n1ja

b
; q2(n1+n2)

〉

∞

×
〈
−q(m(n1+n2)+2j)n1n2mamn2bmn1zm(n1+n2); q2(n1+n2)n1n2m

2
〉

∞
.

(3.4)

Proof. After two applications of the Jacobi triple product identity

F1(z) :=
〈−qn1az; q2n1

〉
∞

〈−qn2bz; q2n2
〉

∞

=
∑

m1,m2∈Z

qn1m
2
1(az)m1

qn2m
2
2

(bz)m2

=
∑

t,m2∈Z

(az)tqn1(t
2+2tm2+m2

2)
qn2m

2
2am2

bm2
(t = m1 − m2)

=
∑

t,m2∈Z

(az)tqn1t
2
q(n1+n2)m

2
2

(
aq2n1t

b

)m2
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=
∑

t∈Z

(az)tqn1t
2
〈−qn1+n2+2n1ta

b
; q2(n1+n2)

〉

∞
.

Now, set t = m(n1 + n2)r + j, r ∈ Z, 0 ≤ j ≤ m(n1 + n2) − 1, and
apply Lemma 3.2 (with n1 + n2, n1mr and −ab−1q2n1j instead of n, j and c,
respectively) to the triple products to get

F1(z) =
m(n1+n2)−1∑

j=0

qn1j
2
(az)j

〈−qn1+n2+2n1ja

b
; q2(n1+n2)

〉

∞

×
∑

r∈Z

qm
2(n1+n2)n1n2r

2
(an2bn1zn1+n2q2n1n2j)mr.

The result follows after one further application of the Jacobi triple product
identity. �

Theorem 3.4. (A second extension of Schröter’s Identity) Let a, b and z be
non-zero complex numbers, let q be a complex number with |q| < 1, and let
m ≥ 1, n1 ≥ 1, n2 ≥ 1 and p ≥ 1 be integers. Then

〈−qn1az; q2n1
〉

∞
〈−qn2bz; q2n2

〉
∞

=
m(n1+p2n2)−1∑

j1=0

p−1∑

j2=0

qn1j
2
1+j22n2aj1bj2zj1+j2

×
〈

−qn1+p2n2+2n1j1−2pj2n2a

bpzp−1
; q2(n1+p2n2)

〉

∞

×
〈

− amp2n2bmn1pzmp(n1+pn2)qmn1pn2(2j1p+2j2+mp(n1+p2n2));

q2m
2n1p

2n2(n1+p2n2)
〉

∞
. (3.5)

Proof. Apply Lemma 3.1 to the product
(−qn2bz,−qn2/bz, q2n2 ; q2n2

)
∞, and

then apply Lemma 3.3 to each pair of triple products in the resulting expres-
sion. �

Remark 3.5. In Lemma 3.3 and Theorem 3.4, the presence of the z variable
is not actually necessary, as it could be absorbed into the a and b variables,
without affecting the generality of the result. However, its usefulness derives
from the fact that the right side of (3.4) provides a m(n1 + n2)-dissection of
the left side into m(n1 + n2) functions in each of which the powers of z all
lie in the same arithmetic progression modulo m(n1 + n2). For this reason, we
retain the variable z in Theorem 3.4, and elsewhere throughout the paper (see,
for example, the proof of Corollary 4.9, where this dissection proves useful).

We note that in the case where n1|n2, there exists a second family of
expansions that do not come directly from Theorem 3.4.
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Corollary 3.6. Let a, b z, q, m, p, n1, and n2 be as in Theorem 3.4, with the
additional requirement that n1|n2. Then

〈−qn1az; q2n1
〉

∞
〈−qn2bz; q2n2

〉
∞ (3.6)

=
m(1+p2n2/n1)−1∑

j1=0

p−1∑

j2=0

qn1j
2
1+n2j

2
2aj1bj2zj1+j2

×
〈

−qn1+p2n2+2n1j1−2pj2n2a

bpzp−1
; q2(n1+p2n2)

〉

∞

×
〈

− amp2n2/n1bmpzmp(1+pn2/n1)qmpn2(2j1p+2j2+mp(1+p2n2/n1));

q2m
2p2n2(1+p2n2/n1)

〉

∞
. (3.7)

Proof. Write
〈−qn2bz; q2n2

〉
∞ =

〈
−(qn1)n2/n1bz; (qn1)2n2/n1

〉

∞
,

and then apply Theorem 3.4, with n1 replaced with 1, n2 replaced with n2/n1

and q replaced with qn1 . �

Theorem 3.4 is more general in the sense that it holds also when n1 | n2.
However, when n1|n2, Corollary 3.6 is actually the stronger result as it implies
Theorem 3.4 in this case (replace m with mn1 in Corollary 3.6).

Remark 3.7. (1) Cao ([2, Theorem 2.3, Equation (2.50)]), using a different
approach, has given a generalized Schröter’s formula for a product of two
Jacobi triple products, a formula which implies our identity (3.4), but
not (3.5) (or at least not without additional transformations).

(2) Even though no applications of (3.4), (3.5) and (3.6) are given in the
present paper with m > 1 or p > 1, they are included for the sake of
completeness.

We note that the quintuple product identity also follows from Schröter’s
Theorem. The quintuple product identity is usually written in the form:

(−z,−q/z, q; q)∞(qz2, q/z2; q2)∞ =
∞∑

n=−∞
(−1)nqn(3n−1)/2z3n(1 + zqn).

Upon replacing q with q2, z with −z, using the Jacobi triple product identity
to sum the resulting series on the right side, this identity may be restated in
the form given in (2.2), and we show that it follows from Corollary 3.6.

Corollary 3.8. Let z be a non-zero complex number, and suppose |q| < 1. Then,
(2.2) holds.

Proof. In (3.4), set m = 1, n2 = 2, a = −1/q3, b = −1/z3, and (2.2) follows
after some simple manipulations and using the fact that (q4, q8, q12; q12)∞ =
(q4; q4)∞. �
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Schröter’s theorem and its various extensions for a product of two Jacobi
triple products naturally lead to the following question. Given a product of k
(k ≥ 3, k an integer) Jacobi triple products:

F (z) :=
k∏

i=1

〈−qniaiz; q2ni
〉

∞ ,

and we M -dissect F (z) by writing

F (z) =
M−1∑

j=0

zjFj(zM ),

for some integer M ; can an explicit representation of each Fj(zM ) be given?
We gave an affirmative answer to this question in Theorem 2.2, and prove
this theorem in the next section, in the case where each ni|N (with M =
N/n1 + · · · + N/nk + 1).

To this end, an identity which follows from a special case of the next
identity, due to Cao [2], is needed. We state this result of Cao in terms of
q-products, rather than using Ramanujan’s theta function f(a, b), as Cao did.

Proposition 3.9. (Cao, Corollary 2.2, [2]) If |ab| < 1 and (cd) = (ab)k1k2 ,
where both k1 and k2 are positive integers, then

(−a,−b, ab; ab)∞(−c,−d, cd; cd)∞ =
k1+k2−1∑

r=0

(ab)r
2/2

(a

b

)r/2

×
(

(ab)k
2
1/2+k1r

(a

b

)k1/2

c, (ab)k
2
1/2−k1r

(
b

a

)k1/2

d, (ab)k
2
1cd; (ab)k

2
1cd

)

∞

×
(

(ab)k
2
2/2+k2r

(a

b

)k2/2

d, (ab)k
2
2/2−k2r

(
b

a

)k2/2

c, (ab)k
2
2cd; (ab)k

2
2cd

)

∞
.

(3.8)

The special case that is needed may be stated as follows.

Corollary 3.10. Let j′ be an integer, and let n, N , and w′ be positive integers
such that n|N . Let a, e, z and q be non-zero complex numbers with |q| < 1.
Define

u :=
N

n
, w := u + w′, v := w − 1.

Then
〈−ezqn; q2n

〉
∞

〈
−azw

′
qNw′+2j′N ; q2Nw′〉

∞

=
v∑

j=0

ej−j′qn(j−j′)2zj−j′ ×
〈−a

ew′ q
nw′w+2n(j′w−jw′); q2nw

′w
〉

∞

× 〈−aeuzwq2jN+Nw; q2Nw
〉

∞ . (3.9)
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Proof. In Proposition 3.9, set a = ezqn, b = qn/(ez), c = qN(w′−2j′)/(azw
′
),

d = azw
′
qN(w′+2j′), k1 = u, and k2 = w′. Then, it can be seen that (cd) =

(ab)k1k2 , and that the left side of (3.8) becomes the left side of (3.9). The right
side of (3.8) becomes

v∑

r=0

qnr
2
(ez)r〈−aeuzwqN(w+2r+2j′); q2Nw〉∞

×
〈

− ew
′

a
qnww′+2n(w′r−j′w)+2nj′w′

; q2nww′
〉

∞
.

The result follows upon, in turn, replacing r with r − j′ (so that the interval
of summation is also changed to one of another w consecutive integers), using
the division algorithm (with r and w) to write each of the resulting new r
values in the form r = mw + j for some integers j and m with 0 ≤ j ≤ w − 1,
and finally applying (3.3) to each of the terms in the resulting sum. �

4. Main Result and Its Implications

We now come to the proof of the main result of the paper. The proof is
essentially a simple induction argument using identities (3.6) and (3.9).

Remark 4.1. It should be pointed out that attempting to iterate Schröter’s
original identity (the case m = 1 of the identity in Lemma 3.3) does not
appear to easily lead to any result similar to that in Theorem 2.2.

Proof of Theorem 2.2. The proof is by induction on k. If k = 1, then (2.3)
becomes

〈−qNaz; q2N
〉

∞
〈−qn1a1z; q2n1

〉
∞

=
v1∑

j1=0

zj1qn1j
2
1aj1

1

〈
−qn1+N+2n1j1

a1

a
; q2(n1+N)

〉

∞

× 〈−qNw1+2Nj1au1
1 azw1 ; q2Nw1

〉
∞ .

However, this is simply identity (3.6), with n2 = N , b = a, m = p = 1, upon
recalling that v1 = u1 = N/n1 and w1 = v1 + 1.

Suppose (2.3) holds for k = 1, 2, . . . , r. Now, consider the left side of (2.3)
with k = r +1. Employing the k = r case on the first r Jacobi triple products,
we have

〈−qNaz; q2N
〉

∞

r+1∏

i=1

〈−qniaiz; q2ni
〉

∞

=
v1∑

j1=0

v2∑

j2=0

· · ·
vr∑

jr=0

zjrqn1j
2
1+n2(j2−j1)

2+n3(j3−j2)
2+···+nr(jr−jr−1)

2

× aj1
1 aj2−j1

2 aj3−j2
3 · · · ajr−jr−1

r

〈
−qn1+N+2n1j1

a1

a
; q2(n1+N)

〉

∞
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×
r∏

i=2

〈
− qni(wiwi−1+2wiji−1−2wi−1ji)

a au1
1 au2

2 · · · aui−1
i−1

a
wi−1
i

; q2niwiwi−1

〉

∞

× 〈−qNwr+2Njrau1
1 au2

2 · · · aur
r azwr ; q2Nwr

〉
∞

〈−qnr+1ar+1z; q2nr+1
〉

∞ .
(4.1)

Identity (3.9) is now applied to the final two triple products on the right
side of (4.1) above. In this identity, n is replaced with nr+1, j′ with jr, j
with jr+1, e with ar+1, a with aau1

1 au2
2 · · · aur

r and w′ with wr. Hence, in the
notation of Theorem 2.2, u takes the value N/nr+1 = ur+1, w takes the value
u + w′ = ur+1 + wr = wr+1, and v takes the value w − 1 = wr+1 − 1 = vr+1.
After these substitutions are made, then (3.9) gives that

〈−qnr+1ar+1z; q2nr+1
〉

∞
〈−qNwr+2Njrau1

1 au2
2 · · · aur

r azwr ; q2Nwr
〉

∞

=
vr+1∑

jr+1=0

a
jr+1−jr
r+1 qnr+1(jr+1−jr)

2
zjr+1−jr

×
〈

− qnr+1(wr+1wr+2wr+1jr−2wrjr+1)
a au1

1 au2
2 · · · aur

r

awr
r+1

; q2nr+1wr+1wr

〉

∞
× 〈−qNwr+1+2Njr+1au1

1 au2
2 · · · aur

r a
ur+1
r+1 azwr+1 ; q2Nwr+1

〉
∞ . (4.2)

The substitution of the right side of (4.2) into (4.1) to replace the left side of
(4.2) gives that (2.3) holds for k = r + 1, and thus by induction that it is true
for all integers k ≥ 1. This concludes the proof of Theorem 2.2. �

Corollary 4.2. Let z, a1, a2, . . ., and ak be non-zero complex numbers and
suppose |q| < 1. Then

k∏

i=1

〈−qaiz; q2
〉

∞

=
1∑

j1=0

2∑

j2=0

· · ·
k−1∑

jk−1=0

zjk−1qj
2
1+(j2−j1)

2+···+(jk−1−jk−2)
2

× aj1
1 aj2−j1

2 · · · ajk−1−jk−2
k−1

〈
−q2+2j1

a1

ak
; q4

〉

∞
× 〈−qk+2jk−1a1a2 · · · akz

k; q2k
〉

∞

×
k−1∏

i=2

〈
−qi(i+1)+2(i+1)ji−1−2iji

aka1a2 · · · ai−1

ai
i

; q2i(i+1)

〉

∞
. (4.3)

Proof. Replace k with k − 1 in Theorem 2.2, and then set a = ak, n1 = n2 =
· · · = nk−1 = N = 1, so that each ui = 1, vi = i and wi = i + 1. �

Remark 4.3. (1) Note that the sum (4.3) contains k! terms, each with k Ja-
cobi triple products.

(2) Since the left side of (4.3) is invariant under any permutation of the
numbers a1, . . . , ak, so is the right side.
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(3) The appearance of z in (4.3) is essentially a “book-keeping” device, as
without loss of generality, each ai could be replaced with ai/z (or, equiv-
alently, set z = 1).

(4) Upon setting each ai = 1, we get an expression for (−qz,−q/z, q2; q2)k∞
(k ≥ 3):
〈−qz; q2

〉k
∞

=
1∑

j1=0

2∑

j2=0

· · ·
k−1∑

jk−1=0

zjk−1qj
2
1+(j2−j1)

2+···+(jk−1−jk−2)
2 〈−q2+2j1 ; q4

〉
∞

× 〈−qk+2jk−1zk; q2k
〉

∞

k−1∏

i=2

〈
−qi(i+1)+2(i+1)ji−1−2iji ; q2i(i+1)

〉

∞
.

(4.4)

This identity provides expansions in terms of triple products for Ra-
manujan’s theta functions, f(−q) = 〈q; q3〉∞ = (q; q)∞, φ(q) = 〈−q; q2〉∞ and
ψ(q) = 〈−q; q4〉∞. We give one example:

Corollary 4.4. If |q| < 1, then

f(−q)k = (q; q)k∞

=

1∑

j1=0

· · ·
k−1∑

jk−1=0

(−1)jk−1q3(j
2
1+j22+···+j2k−2)+jk−1(3jk−1+1)/2−3(j1j2+j2j3+···+jk−2jk−1)

×
〈
−q3+3j1 ; q6

〉

∞

〈
(−1)k+1q2k+3jk−1 ; q3k

〉

∞

×
k−1∏

i=2

〈
−q3i(i+1)/2+3(i+1)ji−1−3iji ; q3i(i+1)

〉

∞
. (4.5)

Proof. In (4.4), replace q with q3/2, and let z = −q1/2. �

Remark 4.5. The squares in the exponent of q that precede the infinite prod-
ucts in (4.4) have been multiplied out and the terms rearranged, to make it
more explicit that, after the replacement of q with q3/2, the new exponent is,
indeed, integral.

As a second illustration of (2.3), we exhibit the k = 3 case of the identity
explicitly, and show that it implies the quintuple product identity. This identity
was also stated [2, Equation (3.2)] by Cao.

Corollary 4.6. (Extended Quintuple Product Identity) If a, b, c, z �= 0 and
|q| < 1, then

〈−qaz; q2
〉

∞
〈−qbz; q2

〉
∞

〈−qcz; q2
〉

∞ =
〈

−q2a

c
; q4

〉

∞{ 〈
−q6ac

b2
; q12

〉

∞

〈−q3abcz3; q6
〉

∞ + qbz

〈
−q2ac

b2
; q12

〉

∞

〈−q5abcz3; q6
〉

∞
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+ q4b2z2
〈

− ac

q2b2
; q12

〉

∞

〈−q7abcz3; q6
〉

∞

}
+

q2a

b

〈
−q4a

c
; q4

〉

∞{ 〈
−q12ac

b2
; q12

〉

∞

〈−q3abcz3; q6
〉

∞ +
bz

q

〈
−q8ac

b2
; q12

〉

∞

〈−q5abcz3; q6
〉

∞

+ b2z2
〈

−q4ac

b2
; q12

〉

∞

〈−q7abcz3; q6
〉

∞

}
. (4.6)

Proof. This follows after some slight rearrangement of terms in (4.3), after
substituting k = 3 and letting a1 = a, a2 = b, and a3 = c. �

Recall from (2.2) that the quintuple product identity may be written as:

(z, q2/z, qz, q/z,−qz,−q/z, q2, q2, q2; q2)∞

= (q2; q2)2∞{(−q2z3,−q4/z3, q6; q6)∞ − z(−q4z3,−q2/z3, q6; q6)∞}.

However, this follows from (4.6) upon setting a = −1, b = −1/q and c = 1,
after some elementary infinite product manipulations.

The septuple product identity also follows from Theorem 2.2, but the
proof is less direct, as it also needs Schröter’s identity. We will prove the
septuple product identity in the following form.

Corollary 4.7. (Septuple Product Identity) Let z and q be complex numbers,
with z �= 0 and |q| < 1. Then

〈
z; q2

〉
∞

〈−z; q2
〉

∞
〈
z; q4

〉
∞

=
〈
q2; q4

〉
∞

〈
q8; q20

〉
∞

{ 〈
q4z5; q20

〉
∞ + z3

〈
q16z5; q20

〉
∞

}

− 〈
q2; q4

〉
∞

〈
q4; q20

〉
∞

{
z

〈
q8z5; q20

〉
∞ + z2

〈
q12z5; q20

〉
∞

}
. (4.7)

Proof. In (2.3), set k = 2, n1 = n2 = 1, and N = 2 (so that u1 = u2 = 2,
u3 = 1, v1 = 2, v2 = 4, w1 = 3, and w2 = 5), z = 1, a1 = −z/q, a2 = z/q, and
a3 = −z/q2. Then, the left side of (2.3) becomes the left side of (4.7), and the
right side of (2.3) becomes

4∑

j2=0

qj
2
2−j2zj2〈q4+4j2z5; q20〉∞

×
2∑

j1=0

q2j
2
1−2j1j2(−1)j1〈−q4+2j1 ; q6〉〈∞q14−6j2+10j1 ; q30〉∞.

It is easy to show that the inner sum is zero in the case j2 = 4 and that proving
(4.7) then comes down to proving the pair of identities:

〈q2; q4〉∞〈q8; q20〉∞ =〈−q4; q6〉∞〈q14; q30〉∞

− q2〈−1; q6〉∞〈q24; q30〉∞ − q2〈−q2; q6〉∞〈q4; q30〉∞,
(4.8)

〈q2; q4〉∞〈q4; q20〉∞ =〈−1; q6〉∞〈q18; q30〉∞
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− 〈−q2; q6〉∞〈q8; q30〉∞ − q2〈−q2; q6〉∞〈q28; q30〉∞.
(4.9)

Let g(m,n) := q2n
2+10m2+2m(−1)m+n. We use the Jacobi triple product iden-

tity to write the infinite product on the left side of identity (4.8) as an infinite
series. We next use a method similar to that of Hirschhorn [7] to first sum di-
agonally, and then divide the diagonal sums into six congruence classes. This
gives

〈q2; q4〉∞〈q8; q20〉∞ =
∞∑

m=−∞

∞∑

n=−∞
g(m,n) (4.10)

=
∞∑

k=−∞

∑

m+n=k

g(m,n)

=
5∑

j=0

∞∑

r=−∞

∞∑

s=−∞
g(s − r, 5s + r + j)

=
5∑

j=0

(−1)6s+jq2j
2

∞∑

r=−∞

∞∑

s=−∞
q12r

2+(4j−2)r+60s2+(20j+2)s.

(4.11)

We similarly expand the right side of identity (4.8) to get
∞∑

u,v=−∞
q3u

2+u+15v2+v(−1)v − q2
∞∑

u,v=−∞
q3u

2+3u+15v2+9v(−1)v

− q2
∞∑

u,v=−∞
q3u

2+u+15v2+11v(−1)v.

We next expand each the three sums into four sums by setting u = 2r and
2r + 1 and v = 2s and 2s + 1. By comparing the resulting 12 sums with the
expression (4.10) (after possibly replacing r with r ± 1 and/or s with s ± 1 in
some cases), it can be seen that proving identity (4.8) now depends on proving
that

q6〈−q10; q24〉∞〈−q22; q120〉∞ − q4〈−q2; q24〉∞〈−q38; q120〉∞

+ q8〈−q6; q24〉∞〈−q18; q120〉∞ − q2〈−q6; q24〉∞〈−q42; q120〉∞

− q14〈−q10; q24〉∞〈−q2; q120〉∞ + q2〈−q2; q24〉∞〈−q58; q120〉∞ = 0.

However, this follows from Schröter’s identity (3.1), by setting n1 = 1, n2 = 5,
a = −1/q, and b = −q4, and then replacing q with q2.

The proof of the second identity (4.9) proceeds similarly, except at the
end, it depends on proving the identity:

− 〈−q10; q24〉∞〈−q46; q120〉∞ − q12〈−q6; q24〉∞〈−q6; q120〉∞

+ q10〈−q2; q24〉∞〈−q24; q120〉∞ + q4〈−q10; q24〉∞〈−q26; q120〉∞

+ 〈−q6; q24〉∞〈−q54; q120〉∞ − q4〈−q2; q24〉∞〈−q34; q120〉∞ = 0.
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This also follows from Schröter’s identity (3.1), the only difference being that
this time we set b = −q2, before replacing q with q2. �

Winquist’s identity may also be derived from Theorem 2.2. As with the
proof of the septuple product identity, our proof needs several applications of
Schröter’s identity (3.1), rather than following directly from the theorem. We
prove Winquist’s identity in the following form.

Corollary 4.8. (Winquist’s Identity) Let a and b be non-zero complex numbers
and q a complex number with |q| < 1. Then

〈
a; q2

〉
∞

〈
b; q2

〉
∞

〈
ab; q2

〉
∞

〈a

b
; q2

〉

∞

= (q2, q2; q2)∞

[ 〈
a3; q6

〉
∞

{〈
b3q2; q6

〉
∞ − b

〈
b3q4; q6

〉
∞

}

− a

b

〈
b3; q6

〉
∞

{〈
a3q2; q6

〉
∞ − a

〈
a3q4; q6

〉
∞

} ]
. (4.12)

Proof. In (2.3), set k = 3, n1 = n2 = 1 = n3 = N = 1 (so that u1 = u2 =
u3 = 1, v1 = 1, v2 = 2, v3 = 3, w1 = 2, w2 = 3 and w3 = 4), z = 1, a1 = −a/q,
a2 = −ab/q, a3 = −b/q, and a = −a/(bq). Then, the left side of (2.3) becomes
the left side of (4.12), and the right side of (2.3) becomes, after some slight
manipulation:

1∑

j1=0

2∑

j2=0

q2j
2
1+2j22−2j1j2

(
1
b

)j1

aj2
〈−bq2+2j1 ; q4

〉
∞

〈−q6+6j1−4j2

b3
; q12

〉

∞

×
3∑

j3=0

( −b

q2j2+1

)j3

qj
2
3

〈
−q12+6j3

b3

q8j2a3
; q24

〉

∞

〈−q2j3a3b; q8
〉

∞ .

Next, we apply Schröter’s identity (3.1), with n1 = 1, n2 = 3, a replaced
with −b/q2j2+1 and b with −q3−2j2/a3 to get that the inner sum over j3 is〈
b/q2j2 ; q2

〉
∞

〈
q6−2j2/a3; q6

〉
∞. Thus, the sum above is equal to

1∑

j1=0

2∑

j2=0

q2j
2
1+2j22−2j1j2

(
1
b

)j1

aj2
〈−bq2+2j1 ; q4

〉
∞

〈−q6+6j1−4j2

b3
; q12

〉

∞

× 〈
q2j2a3; q6

〉
∞

〈
bq−2j2 ; q2

〉
∞ .

By comparison with the right side of (4.12), the result will follow if the fol-
lowing three identities hold:

(q2, q2; q2)∞{〈
b3q2; q6

〉
∞ − b

〈
b3q4; q6

〉
∞}

=
〈
b; q2

〉
∞

{〈−bq2; q4
〉

∞
〈−b3q6; q12

〉
∞ +

q2

b

〈−bq4; q4
〉

∞
〈−b3; q12

〉
∞

}
,

(q2, q2; q2)∞
〈
b3; q6

〉
∞

=
〈
b; q2

〉
∞

{
b2

〈−bq2; q4
〉

∞
〈−b3q10; q12

〉
∞ + b

〈−bq4; q4
〉

∞
〈−b3q4; q12

〉
∞

}

=
〈
b; q2

〉
∞

{〈−bq2; q4
〉

∞
〈−b3q2; q12

〉
∞ + b2

〈−bq4; q4
〉

∞
〈−b3q8; q12

〉
∞

}
.

(4.13)
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We apply Schröter’s identity (3.1) again, with n1 = 1, n2 = 2, a replaced with
−b/q and, respectively, b kept as b and replaced with bq2, to get that

〈
b; q2

〉
∞

〈−bq2; q4
〉

∞ = (q2; q2)∞
{〈−b3q4; q12

〉
∞ − b

〈−b3q8; q12
〉

∞
}

,
〈
b; q2

〉
∞

〈−bq4; q4
〉

∞ = (q2; q2)∞
{
b−1

〈−b3q2; q12
〉

∞ − b
〈−b3q10; q12

〉
∞

}
.

After inserting the expressions on the right above in Eq. (4.12), the proof
of Winquist’s identity will follow if it can be shown that the following three
identities hold:

(q2; q2)∞
〈
b3; q6

〉
∞

=
〈−b3q4; q12

〉
∞

〈−b3q2; q12
〉

∞ − b3
〈−b3q8; q12

〉
∞

〈−b3q10; q12
〉

∞ ,
(4.14)

(q2; q2)∞
〈
b3q2; q6

〉
∞

=
〈−b3q4; q12

〉
∞

〈−b3q6; q12
〉

∞ − q2
〈 −b3q10; q12

〉
∞

〈−b3; q12
〉

∞ , (4.15)

(q2; q2)∞
〈
b3q4; q6

〉
∞

=
〈−b3q8; q12

〉
∞

〈−b3q6; q12
〉

∞ − q2

b3
〈−b3q2; q12

〉
∞

〈−b3; q12
〉

∞ . (4.16)

Once again appealing to Schröter’s identity (3.1), with n1 = 1, n2 = 1, and q
replaced with q3, we get that

〈−aq3; q6
〉

∞
〈−bq3; q6

〉
∞

=
〈
−a

b
q6; q12

〉

∞

〈−abq6; q12
〉

∞ + aq3
〈
−a

b
q12; q12

〉

∞

〈−abq12; q12
〉

∞ .

(4.17)

Identities (4.14), (4.15), and (4.16) follow upon replacing (a, b) in identity
(4.17) by, respectively, (−b3/q3,−q), (−1/q,−b3/q) and (−1/(b3q),−q). This
completes the proof of Winquist’s identity. �

It is also possible to use identity (2.3) to derive an expression for (q; q)k∞
that is different from that given in Corollary 4.4.

Corollary 4.9. Let k ≥ 3 be an integer, let ω = exp(2πi/k), and suppose |q| <
1. Then

(q; q)k∞

=
(
qk; qk

)
∞

1∑

j1=0

2∑

j2=0

· · ·
k−2∑

jk−2=0

q(j
2
1+j22+···+j2k−2)−(j1j2+j2j3+···+jk−3jk−2)

× ω−j1−j2−j3−···−jk−2
〈−q1+j1ω; q2

〉
∞

〈
(−1)kqk(k−1)/2+kjk−2 ; qk(k−1)

〉

∞

×
k−2∏

i=2

〈
−qi(i+1)/2+(i+1)ji−1−ijiω−i(i+1)/2; qi(i+1)

〉

∞
. (4.18)

Proof. In (4.3), replace z with −z and set ai = ωi, 1 ≤ i ≤ k, so that the left
side becomes (qkzk, qk/zk; q2k)∞

(
q2; q2

)k
∞. Since all the powers of z on the
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left side have exponent ≡ 0 (mod k), each of the multiple sums on the right
side with jk−1 fixed, 1 ≤ jk−1 ≤ k − 1, is identically zero, so that the only
non-zero sum is the one with jk−1 = 0. With the given values for the ai, it is
clear that a1/ak = ω, each ai/ai+1 = 1/ω, a1a2 · · · ak = (−1)k−1 and

aka1a2 · · · ai−1

ai
i

= ω−i(i+1)/2.

The result follows after canceling the (qkzk, qk/zk; q2k)∞ factor on each side,
separating off the k − 1 term in the sum on the right side of the equation that
follows from (4.3), and finally replacing q2 with q. �

It is also possible to derive expressions for (q; q)∞ as combinations of
Jacobi triple products from (2.3).

Corollary 4.10. Let k ≥ 3 be an integer; suppose |q| < 1. Then

(q; q)∞ =
1

(q2k+1; q2k+1)k−1
∞

1∑

j1=0

2∑

j2=0

· · ·
k−1∑

jk−1=0

(−1)jk−1

× q(2k+1)(j21+(j2−j1)
2+···+(jk−1−jk−2)

2)/2−j1−j2−···−jk−2+(k−3/2)jk−1

×
〈
−q(2k+1)(1+j1)−k+1; q2(2k+1)

〉

∞

×
〈
(−1)k+1qk(3k+1)/2+(2k+1)jk−1 ; q(2k+1)k

〉

∞

×
k−1∏

i=2

〈
−qk(i(i+1)+1)+(2k+1)((i+1)ji−1−iji); q(2k+1)i(i+1)

〉

∞
. (4.19)

Proof. In (4.3), replace q with q(2k+1)/2 and set z = −1, a1 = q1/2, a2 =
q3/2, . . ., ak = qk−1/2. The left side of the identity then becomes (q; q)∞
(q2k+1; q2k+1)k−1

∞ , and after some simple algebra on the resulting right side
of (4.3), the result follows after dividing both sides of this new expression by
the factor (q2k+1; q2k+1)k−1

∞ . �
In a similar vein, the following identity holds.

Corollary 4.11. Let k ≥ 3 be an integer, and suppose |q| < 1. Then

(q; q)∞ =
1

(qk; qk)∞ (q2k; q2k)k−2
∞

1∑

j1=0

2∑

j2=0

· · ·
k−1∑

jk−1=0

(−1)jk−1

× qk(j
2
1+(j2−j1)

2+···+(jk−1−jk−2)
2)−j1−j2−···−jk−2+(k−1)jk−1

×
〈
−q2k(1+j1)+1; q4k

〉

∞

〈
(−1)k+1qk(3k−1)/2+2kjk−1 ; q2k

2
〉

∞

×
k−1∏

i=2

〈
−q(2k−1)i(i+1)/2+2k((i+1)ji−1−iji); q2ki(i+1)

〉

∞
. (4.20)

Proof. This time in (4.3), replace q with qk and set z = −1, a1 = q, a2 = q2,
. . ., ak−1 = qk−1, ak = 1. The left side of the identity then becomes (q; q)∞
(qk; qk)∞ (q2k; q2k)k−2

∞ , and the result follows after dividing both sides by
(qk; qk)∞(q2k; q2k)k−2

∞ . �
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5. Concluding Remarks

Theorem 2.2 has the restriction that each ni satisfies ni|N . Using Theorem 2.1
in Cao’s paper [2], it is possible to drop this restriction and derive an expansion
of a product of an arbitrary number of Jacobi triple products in terms of sums
of products of other Jacobi triple products. However, it would be hard to find
a general formula such as (2.3) above.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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1. Introduction

An overpartition of a positive integer n is a partition of n in which the first
occurrence of a part of each size may be overlined [10]. For example, there are
8 overpartitions of 3:

3, 3̄, 2 + 1, 2̄ + 1, 2 + 1̄, 2̄ + 1̄, 1 + 1 + 1 and 1̄ + 1 + 1.

Let p(n) be the number of overpartitions of n. Then the generating function
of p(n) is

∞∑

n=0

p(n)qn =
(−q; q)∞
(q; q)∞

.
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Here and throughout this paper, we use the following customary q-series no-
tation:

(a; q)n =

{
1, for n = 0,

(1 − a)(1 − aq) · · · (1 − aqn−1), for n > 0;

(a; q)∞ = lim
n→∞(a; q)n;

[
n
k

]
=

⎧
⎨

⎩

(q; q)n

(q; q)k(q; q)n−k
, if 0 ≤ k ≤ n,

0, otherwise.

Andrews and Merca [2] considered Euler’s pentagonal number theorem
and proved a truncated theorem on partitions. Subsequently, Guo and Zeng
[12] considered the following identity of Gauss

1 + 2
∞∑

n=1

(−1)nqn2
=

(q; q)∞
(−q; q)∞

, (1.1)

and they proved a new truncated theorem on overpartitions. Namely, for k ≥ 1,

(−q; q)∞
(q; q)∞

⎛

⎝1 + 2
k∑

j=1

(−1)jqj2

⎞

⎠

= 1 + (−1)k
∞∑

n=k+1

(−q; q)k(−1; q)n−kq(k+1)n

(q; q)n

[
n − 1
k − 1

]
. (1.2)

As a consequence of this result, they derived the following inequality for p(n):

(−1)k

⎛

⎝p(n) + 2
k∑

j=1

(−1)jp(n − j2)

⎞

⎠ ≥ 0, (1.3)

with strict inequality if n ≥ (k + 1)2. Very recently, Andrews and Merca [3]
provided the following revision of (1.2):

(−q; q)∞
(q; q)∞

⎛

⎝1 + 2
k∑

j=1

(−1)jqj2

⎞

⎠

= 1 + 2(−1)k (−q; q)k

(q; q)k

∞∑

j=0

q(k+1)(k+j+1)(−qk+j+2; q)∞
(1 − qk+j+1)(qk+j+2; q)∞

. (1.4)

From this identity, they immediately deduced an interpretation of the sum in
the inequality (1.3) considering Mk(n), the number of overpartitions of n in
which the first part larger than k appears at least k + 1 times:

(−1)k

⎛

⎝p(n) + 2
k∑

j=1

(−1)jp(n − j2)

⎞

⎠ = Mk(n), (1.5)

for n, k ≥ 1. Shortly after that, Ballantine et al. [4] gave a combinatorial proof
of this interpretation.
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A Truncated Theta Identity 909

Other recent investigations on the truncated theta series can be found
in several papers by Chan et al. [7], Chern [9], He et al. [13], Kolitsch [15],
Kolitsch and Burnette [16], Mao [18,19], Merca [20], Wang and Yee [22–24],
and Yee [25].

In this paper, we consider overpartitions into odd parts and shall prove
similar results. Let po(n) be the number of overpartitions into odd parts. Then
its generating function is

∞∑

n=0

po(n)qn =
(−q; q2)∞
(q; q2)∞

. (1.6)

This expression first appeared in the following series-product identity
∞∑

n=0

(−1; q)nqn(n+1)/2

(q; q)n
=

(−q; q2)∞
(q; q2)∞

,

which was given by Lebesgue [17] in 1840. More recently, the generating func-
tion of po(n) appeared in the works of Bessenrodt [5], Santos and Sills [21].
Various arithmetic properties of po(n) have been investigated later by Chen
[8], Hirschhorn and Sellers [14].

In analogy with the truncated identities in (1.2) and (1.4), we have two
symmetrical results on po(n).

Theorem 1.1. For a positive integer k,

(−q; q2)∞
(q; q2)∞

⎛

⎝1 + 2
k∑

j=1

(−1)jqj2

⎞

⎠

= 1 + 2
∞∑

j=1

(−1)jq2j2
+ 2(−1)kq(k+1)2(−q; q2)∞

∞∑

j=0

q(2k+2j+3)j

(q2; q2)j(q; q2)k+j+1

and

(−q; q2)∞
(q; q2)∞

⎛

⎝1 + 2
k∑

j=1

(−1)jq2j2

⎞

⎠

= 1 + 2
∞∑

j=1

qj2
+ 2(−1)kq2(k+1)2(−q; q2)2∞

∞∑

j=0

q2(2k+2j+3)j

(q4; q4)j(q2; q4)k+j+1
.

We can deduce the following results where δi,j is the Kronecker delta
function.

Corollary 1.2. Let k and n be positive integers.
(a) For n ≥ (k + 1)2,

(−1)k

(
po(n) + 2

k∑
j=1

(−1)jpo(n − j2) − (−1)
⌊√

n/2
⌋

· 2δ
n,2

⌊√
n/2

⌋2

)
≥ 2.

(b) For n < (k + 1)2,

po(n) + 2
k∑

j=1

(−1)jpo(n − j2) = (−1)
⌊√

n/2
⌋

· 2δ
n,2

⌊√
n/2

⌋2 .
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(c) For n ≥ 2(k + 1)2,

(−1)k

(
po(n) + 2

k∑
j=1

(−1)jpo(n − 2j2) − 2δ
n,�√

n�2

)
≥ 2.

(d) For n < 2(k + 1)2,

po(n) + 2
k∑

j=1

(−1)jpo(n − 2j2) = 2δ
n,�√

n�2 .

We remark that the last relation of this corollary provides an efficient
algorithm for computing the function po(n).

The rest of this paper is organized as follows. We will first prove Theo-
rem 1.1 in Sect. 2. In Sect. 3, we will provide a combinatorial interpretation
of the right-hand side of each identity in Theorem 1.1.

2. Proof of Theorem 1.1

To prove the theorem, we consider the Gauss hypergeometric series

2φ1

(
a, b
c

; q, z
)

=
∞∑

n=0

(a; q)n(b; q)n

(q; q)n(c; q)n
zn

and the second identity by Heine’s transformation of 2φ1 series [11, (III.2)],
namely

2φ1

(
a, b
c

; q, z
)

=
(c/b; q)∞(bz; q)∞

(c; q)∞(z; q)∞
2φ1

(
abz/c, b

bz
; q, c/b

)
. (2.1)

We first prove the first identity in Theorem 1.1. By Gauss’ identity (1.1),
we can write the left-hand side as follows:

(−q; q2)∞
(q; q2)∞

⎛

⎝1 + 2
k∑

j=1

(−1)jqj2

⎞

⎠

=
(q2; q2)∞

(−q2; q2)∞
− 2

(−q; q2)∞
(q; q2)∞

∞∑

j=k+1

(−1)jqj2

= 1 + 2
∞∑

j=1

(−1)jq2j2
+ 2(−1)kq(k+1)2 (−q; q2)∞

(q; q2)∞

∞∑

j=0

(−1)jqj2+2j(k+1)

= 1 + 2
∞∑

j=1

(−1)jq2j2
+ 2(−1)kq(k+1)2 (−q; q2)∞

(q; q2)∞
lim
τ→0

2φ1

(
q2, q2k+3

τ
0

; q2, τ
)

= 1 + 2
∞∑

j=1

(−1)jq2j2

+ 2(−1)kq(k+1)2 (−q; q2)∞
(q; q2)∞

lim
τ→0

(q2k+3; q2)∞
(τ ; q2)∞

∞∑

j=0

(−1)jτ jqj2+j( q2k+3

τ ; q2)j

(q2; q2)j(q2k+3; q2)j
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= 1 + 2
∞∑

j=1

(−1)jq2j2
+ 2(−1)kq(k+1)2 (−q; q2)∞

(q; q2)k+1

∞∑

j=0

q2j2+(2k+3)j

(q2; q2)j(q2k+3; q2)j

= 1 + 2
∞∑

j=1

(−1)jq2j2
+ 2(−1)kq(k+1)2(−q; q2)∞

∞∑

j=0

q(2k+2j+3)j

(q2; q2)j(q; q2)k+j+1
,

where the fourth equality follows from (2.1).
The proof of the second identity is similar to the proof of the first one.

With q replaced by q2, the Gauss identity (1.1) becomes

1 + 2
k∑

n=1

(−1)nq2n2
=

(q2; q2)∞
(−q2; q2)∞

− 2
∞∑

n=k+1

(−1)nq2n2
.

Multiplying both sides of this identity by the generating function of po(n), we
get

(−q; q2)∞
(q; q2)∞

⎛

⎝1 + 2
k∑

j=1

(−1)jq2j2

⎞

⎠

=
(−q;−q)∞
(q;−q)∞

− 2
(−q; q2)∞
(q; q2)∞

∞∑

j=k+1

(−1)jq2j2

= 1 + 2
∞∑

j=1

qj2
+ 2(−1)kq2(k+1)2 (−q; q2)∞

(q; q2)∞

∞∑

j=0

(−1)jq2j2+4j(k+1)

= 1 + 2
∞∑

j=1

qj2
+ 2(−1)kq2(k+1)2 (−q; q2)∞(q4k+6; q4)∞

(q; q2)∞

×
∞∑

j=0

q4j2+2(2k+3)j

(q4; q4)j(q4k+6; q4)j
by (2.1)

= 1 + 2
∞∑

j=1

qj2
+ 2(−1)kq2(k+1)2 (−q; q2)∞(−q2k+3; q2)∞

(q; q2)k+1

×
∞∑

j=0

q4j2+2(2k+3)j

(q4; q4)j(q4k+6; q4)j

= 1 + 2
∞∑

j=1

qj2
+ 2(−1)kq2(k+1)2(−q; q2)∞

×
∞∑

j=0

q4j2+2(2k+3)j(−q2k+2j+3; q2)∞
(q4; q4)j(q; q2)k+j+1

= 1 + 2
∞∑

j=1

qj2
+ 2(−1)kq2(k+1)2(−q; q2)2∞

∞∑

j=0

q2(2k+2j+3)j

(q4; q4)j(q2; q4)k+j+1
.
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Figure 1. The 2-modular Ferrers graph of 9 + 7 + 3 + 3

3. Partitions Arising from Theorem 1.1

In this section, we will explain what partitions are generated by the right-
hand sides of the identities in Theorem 1.1. We first recall some necessary
definitions.

For a partition λ, we denote the sum of all parts of λ by |λ|. The Ferrers
graph of a partition λ is a graphical representation of λ whose ith row has as
many boxes as the ith part λi. Such a graph is called a Ferrers graph of shape
λ.

For a positive integer k, any positive integer n can be uniquely written as
ka + s with a ≥ 0 and 1 � s � k. The k-modular partitions are a modification
of the Ferrers graph so that n is represented by a row of a boxes with k in
each of them and one box with s in it. This notion was first introduced by
MacMahon [1, p. 13]. For instance, Fig. 1 shows the 2-modular Ferrers graph
of the partition 9+7+3+3 with shape 5+4+2+2. Here, we put boxes with
1 in the first column for convenience.

Another combinatorial notion needed is m-Durfee rectangles. For a non-
negative integer m, define an m-rectangle to be a rectangle whose width minus
its height is m. For a Ferrers graph of shape λ, define the m-Durfee rectangle
to be the largest m-rectangle which fits in the graph [6]. When m = 0, the
m-Durfee rectangle becomes the Durfee square of a partition. In Fig. 1, the
2-Durfee rectangle of the partition is the rectangle of size 2 × 4.

For a fixed k ≥ 1 and any n ≥ 0, define Mo,k(n) to be the number of
partitions of n into odd parts such that all odd numbers less than or equal to
2k +1 occur as parts at least once and the parts below the (k +2)-Durfee rec-
tangle in the 2-modular graph are strictly less than the width of the rectangle.
For instance, let k = 2. Then the partition 11+11+7+7+5+3+1 is counted
by Mo,2(45). However, the partition 11+11+11+5+3+3+1 is not counted
by Mo,2(41), because its 4-Durfee rectangle is of size 2 × 6 and the third part
of length 11 that goes below the Durfee rectangle forms a row of length 6.

Theorem 3.1. For a fixed k ≥ 1,
∞∑

n=0

Mo,k(n)qn = q(k+1)2
∞∑

j=0

q(2k+2j+3)j

(q2; q2)j(q; q2)k+j+1
.

Proof. For a partition counted by Mo,k(n), assume that its (k + 2)-Durfee
rectangle is of size j × (k + 2 + j). By the Durfee rectangle, the 2-modular
Ferrers graph can be divided into three parts, namely the Durfee rectangle,
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the parts below the rectangle and the parts to the right of the rectangle. Then,
the weight of the Durfee rectangle is j(2(k + j + 2) − 1). Also, it follows from
the definition of Mo,k(n), the parts below the rectangle and the parts to the
right of the rectangle are generated by q(k+1)2/(q; q2)k+j+1 and 1/(q2; q2)j ,
respectively. Here, q(k+1)2 accounts for all the odd numbers between 1 and
2k + 1. Therefore, we can see that the summand on the right-hand side in
the statement generates partitions counted by Mo,k(n) whose (k + 2)-Durfee
rectangle is of size j × (k + 2 + j). �

Corollary 3.2. For k ≥ 1 and n ≥ (k + 1)2,

(−1)k

⎛

⎝po(n) + 2
k∑

j=1

(−1)jpo(n − j2) − (−1)
⌊√

n/2
⌋

· 2δ
n,2

⌊√
n/2

⌋2

⎞

⎠

= 2Mo,k(n),

where Mo,k(n) counts overpartitions of n into odd parts in which the non-
overlined parts form a partition counted by Mo,k(n − a), a is the sum of over-
lined parts, and

(−1)k

⎛

⎝po(n) + 2
k∑

j=1

(−1)jpo(n − 2j2) − 2δ
n,�√

n�2

⎞

⎠ = 2No,k(n),

where No,k(n) counts triples (λ, μ, ν) such that λ and μ are partitions into
distinct odd parts and ν is a partition counted by Mo,k

(
(n − |λ| − |μ|)/2

)
.

Proof. The statements easily follow from Theorems 1.1 and 3.1, so we omit
the details. �
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Abstract.We consider certain classes of compositions of numbers based on
the recently introduced extension of conjugation to higher orders. We use
generating functions and combinatorial identities to provide enumeration
results for compositions possessing conjugates of a given order. Work-
ing under some popular themes in the theory, we show that results for
these compositions specialize to standard results in a natural way. We
also give a generalization of MacMahon’s identities for inverse-conjugate
compositions and discuss inverse-reciprocal compositions.
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Keywords. Composition, Conjugate, Generating function, Inverse-conjugate,
Reciprocal.

1. Introduction

The classical development of the theory of compositions by MacMahon [8] has
recently been extended to compositions with conjugates of higher orders (see
Munagi [10]). The latter provides a new classification of the set of compositions
of a positive integer n by extension of standard conjugation.

In this sequel, we will highlight certain classes of compositions possessing
conjugates of a prescribed order with an emphasis on their enumeration and
some identities which they satisfy. As in [10], this presentation will be largely
expository and self-contained.

The subject of compositions has engaged the attention of George E. An-
drews on several occasions. Early in his career, Andrews edited the huge col-
lected works of MacMahon, clarifying several proofs while providing leading
commentaries on open-ended problems [7]. Andrews subsequently published
some interesting articles on compositions (e.g., [2–5]) besides a concise treat-
ment of the subject in his book [1].
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2. Preliminaries

A composition of a positive integer n is an ordered partition of n; that is, any
sequence of positive integers (n1, . . . , nk), such that n1 + · · · + nk = n.

The number of compositions of n is known to be c(n) = 2n−1. Our
textbook references for this study consist of Andrews [1], MacMahon [7], and
Heubach-Mansour [6]. More information on methods of obtaining the conjugate
of a composition may be found in [9,11].

Compositions will also be expressed in the symbolic notation by replac-
ing every maximal string of 1s of length x by 1x, where two adjacent big
parts (i.e., parts > 1)are assumed to be separated by 10. Thus, for example,
(5, 1, 1, 8, 2, 1, 7, 1, 1, 1, 1) = (5, 12, 8, 10, 2, 1, 7, 14) has 8 symbolic parts and 11
(actual) parts.

Without loss of generality, consider a composition of n of the form:

C = (1a1 , b1, 1a2 , b2, . . . , 1av , bv), a1 > 0, ai ≥ 0, i > 1, bi > 1, ∀ i. (2.1)

The classical definition of the conjugate, denoted by C ′, is as follows:

C ′ = (a1 + 1, 1b1−2, a2 + 2, 1b2−2, . . . , av + 2, 1bv−1). (2.2)

This is now the conjugate of order 1 of C. Thus, for instance, the conjugate
of (5, 12, 8, 10, 2, 1, 7, 14) is (14, 4, 16, 2, 10, 3, 15, 5).

Given an integer t > 0, the conjugate of order t is given by

C(t) = (a1 + t, 1b1−2t, a2 + 2t, 1b2−2t, . . . , av + 2t, 1bv−t). (2.3)

A composition C is said to be t-conjugable if and only if C(t) �= ∅. This non-
void condition of course implies that no purported big part is less than 2t and
no string of 1s has negative length. Thus, to be t-conjugable, the composition
in (2.1) also requires bi ≥ 2t, 1 ≤ i < v and bv > t.

The permissible sets of parts are depicted in the sketch below for non-
trivial compositions of n, that is, compositions C �= (n), (1n). These two com-
positions are m-conjugable for all integers m > 0:

−BOUNDARY−︸ ︷︷ ︸
part∈{1,t+1,t+2,...}

| − − INTERIOR − −︸ ︷︷ ︸
parts∈{1,2t,2t+1,...}

| −BOUNDARY−︸ ︷︷ ︸
part∈{1,t+1,t+2,...}

The higher order conjugates are denoted successively, for t = 1, 2, 3, . . .,
by C ′, C ′′, C ′′′, . . . , C(m), . . . .

For example, if C = (13, 8, 1, 6, 12, 5), then C ′′′ = (3+3, 18−6, 1+6, 16−6,
2 + 6, 15−3) = (6, 12, 7, 10, 8, 12).

If C is t-conjugable, then (C(t))(t) = C. Therefore, t-conjugation is an
involution.

We briefly summarize the essential consequences from [10] that are most
relevant to this study and uncover a few new items.

The line graph LG(C) of C consists of n equal line segments separated
by n − 1 gaps in which two adjacent parts a, b are demarcated by placing a
dot after a segments. For example, when C = (3, 1, 1, 2, 4, 1), the LG(C) is
− − − · − · − · − − · − − − − · −.

The line graph of C(t) is obtained from LG(C) with the following rule:
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Combinatory Classes of Compositions 919

Place a dot in any gap that previously had no dot except the first
t − 1 gaps immediately before or after a previous dot.

If the length or the number of parts �(C) of C is k, then it may be deduced
from LG(C) that

�(C ′) = n − k + 1. (2.4)

The reciprocal of C = (. . . , 1au , bv, 1au+1 , bv+1, . . . ), denoted by r(C), is
the composition obtained by replacing each string 1ai with ai and each part
bi > 1 with 1bi , i.e., r(C) = (. . . , au, 1bv , au+1, 1bv+1 , . . . ). If r(C) �= ∅, we call
C a reciprocal composition. The definition simply demands that ai, bi ≥ 2 for
all i. The reciprocal composition may be viewed as a “zero-conjugate”, since
it corresponds to C(0) in (2.3).

There is a recursive conjugation rule [10, p. 10]:

C(t) = r(C(t−u))(u), 0 ≤ u ≤ t. (2.5)

What is the length of r(C)? When C is changed to r(C) each symbolic
part of C is ‘flipped’ independently. If C has b symbolic parts with �(C) = k,
then both LG(C) and LG(r(C)) have b − 1 fixed dots in between symbolic
parts. It follows that LG(r(C)) may be obtained by inserting b − 1 extra dots
into LG(C ′) to give a total of n − k + b − 1 dots. Hence

�(r(C)) = n − k + b. (2.6)

Proposition 2.1. Let C be a composition of n with k parts, 1 < k < n. Then

�(C(t)) = n − k − (t − 1)b + t,

where b is the number of symbolic parts of C.

Proof. The proof is by induction on t based on (2.4) and (2.6).
Assume that the proposition holds for some t > 0, and consider C(t+1).

Since C(t+1) �= ∅, we have, by (2.5), that r(C(t)) �= ∅. Let mt = �(C(t)). Then,
using (2.6), we obtain

�(r(C(t))) = n − mt + b.

Therefore

�(C(t+1)) = �(r(C(t))′) = n − (n − mt + b) + 1 = mt − b + 1;

that is:

�(C(t+1)) = (n − k − (t − 1)b + t) − b + 1 = n − k − tb + t + 1.

Hence, the result holds for t + 1. The proof is complete. �

Finally, we recall the generating function for the number ct(n, k) of t-
conjugable compositions into k parts with

ct(n) = ct(n, 1) + · · · + ct(n, n).
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920 A. O. Munagi

The construct is

(x + xt+1 + xt+2 + · · · )(x + x2t + x2t+1 + · · · )k−2(x + xt+1 + xt+2 + · · · ) :
∞∑

n=k

ct(n, k)xn =
(x − x2 + xt+1)2(x − x2 + x2t)k−2

(1 − x)k
, k > 1.

Hence
∞∑

n=1

ct(n)xn =
x(1 + x − xt)

1 − x − xt
.

Explicitly

ct(n) = 2
� n−2

t �∑

i=0

(
n − 2 − (t − 1)i

i

)
, (2.7)

where ct(1) = 1, ct(n) = 2, t ≥ n − 1.

3. Special Classes of Compositions

The four basic shapes are given by 1c1, 1c2, 2c1, and 2c2, where 1c1 represents
compositions with first part 1 and last part 1, 1c2 represents compositions
with first part 1 and last part > 1, and so forth.

Let ct(n, k | P ) be the number of t-conjugable k-compositions of n that
satisfy condition P , and ct(n | P ) =

∑
k ct(n, k | P ).

The lower case letter c in each enumeration function will be replaced with
the upper case C to denote the corresponding enumerated set.

It is proved in [11] that

c1(n | 1c1) = c1(n | 1c2) = c1(n | 2c1) = c1(n | 2c2). (3.1)

By applying t-conjugation, for any t > 0, we still have

ct(n | 1c1) = ct(n | 2c2),

ct(n | 1c2) = ct(n | 2c1).

However, we find that

ct(n | 1c1) �= ct(n | 1c2), t > 1.

This inequality arises, mainly because t + 2 < 3t − 1 ⇐⇒ t > 1.

Lemma 3.1. The set Ct(N | 1c2) of t-conjugable 1c2-compositions of n admits
the following decomposition:

Ct(N | last part = t + 1 or ≥ 3t)
⋃

Ct(N | t + 2 ≤ last part ≤ 3t − 1).

Note that if t = 1, then Ct(N | t+2 ≤ last part ≤ 3t−1) = ∅. Hence, the
following result extends the first equality in (3.1) to t-conjugable compositions
for all t > 0.

Theorem 3.2. Let t > 0 be an integer.

ct(n | 1c1) = ct(n − t + 1 | 1c2, last part = t + 1 or ≥ 3t).
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Proof. Let

C = (1, c2, . . . , ck−1, 1) ∈ Ct(n | 1c1).

Then, apply the map

C 
−→ (1, c2, . . . , ck−1 + t) ∈ Ct(n − t + 1 | 1c2, last part = t + 1 or ≥ 3t).

Conversely, if

E = (1, e2, . . . , ek) ∈ Ct(n − t + 1 | 1c2, last part = t + 1 or ≥ 3t),

then

E 
−→
{

(1, e2, . . . , ek−1, 12), ek = t + 1,
(1, e2, . . . , ek−1, ek − t, 1), ek ≥ 3t.

�

The following reduction identities hold.

Theorem 3.3. Let r, t be positive integers with t > 1. Then, we have
1. ct(n | 1c1, rparts > 1) = ct−1(n − 2r | 1c1, rparts > 1);
2. ct(n | 1c2, rparts > 1) = ct−1(n − 2r + 1 | 1c2, rparts > 1);
3. ct(n | 2c2, rparts > 1) = ct−1(n − 2r + 2 | 2c2, rparts > 1).

Proof. The proof follows from the respective observations:
1. (1a1 , b1, 1a2 , . . . , br, 1ar+1) ∈ Ct(n)

⇐⇒ (1a1 , b1 − 2, 1a2 , . . . , br − 2, 1ar+1) ∈ Ct−1(n − 2r);
2. (1a1 , b1, 1a2 , . . . , 1ar , br) ∈ Ct(n)

⇐⇒ (1a1 , b1 − 2, 1a2 , . . . , 1ar , br − 1) ∈ Ct−1(n − 2r + 1).
3. (b1, 1a1 , b2, . . . , 1ar−1 , br) ∈ Ct(n)

⇐⇒ (b1 − 1, 1a1 , b2 − 2, . . . , 1ar−1 , br − 1) ∈ Ct−1(n − 2r + 2). �

The following assertion is an extension of Theorem 3.3 (put v = t + 1).
It may be proved by subtracting v − t and 2(v − t) from each boundary big
part and from each interior big part, respectively.

Corollary 3.4. Let r, t, v be positive integers, v ≥ t. Then, we have
1. cv(n | 1c1, rparts > 1) = ct(n − 2r(v − t) | 1c1, rparts > 1);
2. cv(n | 1c2, rparts > 1) = ct(n − (2r − 1)(v − t) | 1c2, rparts > 1);
3. cv(n | 2c2, rparts > 1) = ct(n − (2r − 2)(v − t) | 2c2, rparts > 1).

We remark that the four basic shapes admit substantial refinements that
may lead to the discovery of further combinatorial identities. Given integers
1 < x ≤ y, let [x, y] represent any boundary part b of a composition with
x ≤ b ≤ y, and write [x] for [x, x]. Then, the shape 1c2, for instance, assumes
the following further variants (besides those obtained by reversals of the orders
of parts of compositions):

1c[t + 1], 1c[t + 1, 2t − 1], 1c[t + 1, n], 1c[2t], 1c[2t, n], t > 1. (3.2)

Similarly, the shape 2c2 assumes at least 15 additional forms I1cI2, where I1
and I2 represent any two of the intervals appearing in (3.2).

567



922 A. O. Munagi

4. Compositions with Bounded Part-Sizes

We first consider compositions in which every part-size is at least an integer
v. Obviously, ct(n | parts ≥ 1) = ct(n). Therefore, we assume t + 1 ≤ v ≤ 2t.
Then

∞∑

n=1

ct(n, k | parts ≥ v)xn

is given by

(xv + xv+1 + · · · )(x2t + x2t+1 + · · · )k−2(xv + xv+1 + · · · ) =
x2v+2t(k−2)

(1 − x)k

=⇒
∞∑

n=1

ct(n | parts ≥ v)xn =
xv

1 − x
+

x2v

(1 − x)2
∑

k≥2

x2t(k−2)

(1 − x)k−2

=
xv − xv+1 − x2t+v + x2v

(1 − x)(1 − x − x2t)
.

Therefore

ct(n | parts ≥ v) =
∑

k

(
n − 2v − (2t − 1)(k − 2) + 1

k − 1

)
.

Note that this formula is not valid for t = 1 if v < 2t.
When the part-sizes are bounded from above, we consider two cases of

ct(n, k | parts ≤ u).
Case I: u ≥ 2t. Then

ht(x, n, u, k) :=
∞∑

n=2

ct(n, k | parts ≤ u)xn

is given by

ht(x, n, u, k) = (x+ xt+1 + · · ·+ xu)(x+ x2t + · · ·+ xu)k−2(x+ xt+1 + · · ·+ xu)

=
(x− x2 + xt+1 − xu+1)2

(1− x)2
· (x− x2 + x2t − xu+1)k−2

(1− x)k−2
.

Since one-part compositions are conjugable,

ht(x, n, u) :=
∞∑

n=1

ct(n | parts ≤ u)xn

becomes

ht(x, n, u) =
x(1 − xu)

1 − x
+

∑

k≥2

ht(x, n, u, k)

=
x(1 − xu)(1 − 2x + x2 − x2t + xu+1) + x2(1 − x + xt − xu)2

(1 − x)(1 − 2x + x2 − x2t + xu+1)
.
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In particular, since h1(x, n, 2) counts compositions into 1s and 2s, it
should be equivalent to the Fibonacci sequence, Fn = Fn−1 + Fn−2, n > 2,
where F1 = F2 = 1 (see [9, p. 4]):

h1(x, n, 2) =
x(1 + x)

1 − x − x2
= 1 +

∞∑

n=2

Fn+1x
n.

Case II: t + 1 ≤ u ≤ 2t − 1. This class concerns compositions with no interior
big parts. We have

ht(x, n, u, k) = (x + xt+1 + · · · + xu)(x)k−2(x + xt+1 + · · · + xu)

=
(x − x2 + xt+1 − xu+1)2xk−2

(1 − x)2
, k > 1.

Hence

ht(x, n, u) =
x(1 − x)2(1 − xu) + x2(1 − x + xt − xu)2

(1 − x)3
, t > 1.

When u = 2t − 1, the following formula may be verified by direct enu-
meration:

ct(n | parts ≤ 2t − 1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, n ≥ 1;
2, 2 ≤ n ≤ t + 1;
2(n − t), t + 2 ≤ n ≤ 2t − 1;
2t − 1, 2t ≤ n ≤ 2t + 1;
2t − 1 +

(
n−2t

2

)
, 2t + 2 ≤ n ≤ 3t;

t2 − (
4t−1−n

2

)
, 3t + 1 ≤ n ≤ 4t − 3;

t2, n ≥ 4t − 2.

The material in this section may be enlarged by bounding only interior
or only boundary part-sizes. The numerous composition types encountered in
Sect. 3 may also be studied under the same constraints. Analogous recommen-
dations apply to Sects. 5 and 6, as well.

5. Compositions Avoiding a Part-Size

The enumerator here is ct(n, k | parts �= v), the number of compositions with
k parts that do not contain v as a part. Then, ct(n, k | parts �= 1) = ct(n, k |
parts ≥ t + 1) (cf. Sect. 4). This leaves two intervals to consider.
Case I: v ≥ 2t. Then

gt(x, n, v, k) :=
∞∑

n=2

ct(n, k | parts �= v)xn

is given by

gt(x, n, v, k) = (x+ xt+1 + · · · − xv)(x+ x2t + · · · − xv)k−2(x+ xt+1 + · · · − xv)

=
((1− x)(x− xv) + xt+1)2((1− x)(x− xv) + x2t)k−2

(1− x)k
.
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Thus

gt(x, n, v) :=
∞∑

n=1

ct(n | parts �= v)xn

is given by

gt(x, n, v) = gt(x, n, v, 1) +
∑

k≥2

gt(x, n, v, k)

=
x − xv + xv+1

1 − x
+

(x − x2 − xv + xv+1 + xt+1)2

(1 − x)(1 − 2x + x2 + xv − xv+1 − x2t)
.

In particular, we recover the generating function for “compositions of n with
no occurrence of k” [6]:

g1(x, n, v) =
x − xv + xv+1

1 − 2x + xv − xv+1
, v > 0.

Case II: t + 1 < v ≤ 2t − 1. This time, the interior parts remain unrestricted.
We have:

gt(x, n, v, k) = (x + xt+1 + · · · − xv)(x + x2t + · · · )k−2(x + xt+1 + · · · − xv)

=
((1 − x)(x − xv) + xt+1)2(x − x2 + x2t)k−2

(1 − x)k
.

Therefore, in the usual manner, we see that gt(x, n, v) is given by:

(x − xv + xv+1)(1 − 2x + x2 − x2t) + (x − x2 − xv + xv+1 + xt+1)2

(1 − x)(1 − 2x + x2 − x2t)
.

The simplest case v = t + 1 is noteworthy:

gt(x, n, t + 1) =
(x − xt+1 + xt+2)(1 − x − x2t + xt+2)

(1 − x)(1 − 2x + x2 − x2t)
, t > 1.

6. Compositions with Parts in a Residue Class

We first consider compositions into odd parts. Knowledge of the parity of t is
required.

Theorem 6.1. Let t ≡ r (mod 2), r = 1, 2. Then

ct(x, r) =
∞∑

n=1

ct(n | odd parts)xn

is given by

ct(x, r) =
x(1 − x − x2 + x3 − x2t+1) + (x − x3 + xt−r+3)2

(1 − x2)(1 − x − x2 + x3 − x2t+1)
. (6.1)

Proof. Denote the generating function of ct(n, k | odd parts) by ct(x, r, k).
Since

t ≡ r (mod 2) =⇒ t − r + 3 ≡ 1 (mod 2)
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and t − r + 3 > t, we have:

ct(x, r, k) = (x + xt−r+3 + xt−r+5 + · · · )(x + x2t+1 + x2t+3 + · · · )k−2

× (x + xt−r+3 + xt−r+5 + · · · )

=
(x − x3 + xt−r+3)2(x − x3 + x2t+1)k−2

(1 − x2)k
, k > 1.

Hence

ct(x, r) =
∑

k≥1

ct(x, r, k) =
x

1 − x2
+

(x − x3 + xt−r+3)2

(1 − x2)(1 − x − x2 + x3 − x2t+1)
,

which simplifies to (6.1). �

Therefore, the generating function for the number of t-conjugable com-
positions into odd parts, when t is odd, is given by:

ct(x, 1) =
x(1 − x − x2 + x3 − x2t+1) + (x − x3 + xt+2)2

(1 − x2)(1 − x − x2 + x3 − x2t+1)
. (6.2)

Expectedly, the case t = 1 affirms that standard compositions into odd parts
are enumerated by the Fibonacci numbers:

c1(x, 1) =
x

1 − x − x2
=

∞∑

n=1

Fnxn.

When t is even, we have:

ct(x, 2) =
x − x4 + 2xt+2

1 − x − x2 + x3 − x2t+1
. (6.3)

However, now, the case t = 1 gives

c1(x, 2) =
x(1 + 2x2 − x3)

1 − x − x2
.

The explicit form is given by

[xn]c1(x, 2) = 4Fn−2, n > 3.

6.1. Higher Moduli

Consider the more general enumerator ct(n, k | parts ≡ 1 (mod m)) with
generating function denoted by ct(x, r,m, k), where t ≡ r (mod m), 1 ≤ r ≤
m, m > 1.

(1) For boundary parts, the parity of t implies that t − r + 1 + m ≡ 1
(mod m). This gives

(x + xt−r+1+m + xt−r+1+2m + · · · ).
(2a) For interior parts, first assume that 1 ≤ r ≤ m+1

2 �. Then

2t ≡ 2r (mod m) =⇒ 2t − 2r + m + 1 ≡ 1 (mod m),

where 2t − 2r + m + 1 ≥ 2t is minimal. Thus, the interior segment is

(x + x2t−2r+1+m + x2t−2r+1+2m + x2t−2r+1+3m + · · · ).
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(2b) If m+3
2 � ≤ r ≤ m, then

2t ≡ 2r (mod m) =⇒ 2t − 2r + 2m + 1 ≡ 1 (mod m),

where 2t − 2r + 2m + 1 > 2t is minimal. Thus, the interior segment is

(x + x2t−2r+1+2m + x2t−2r+1+3m + x2t−2r+1+4m + · · · ).
Using parts (1) and (2a), we obtain, for k > 1:

ct(x, r,m, k) = (x + xt−r+1+m + xt−r+1+2m + · · · )2
× (x + x2t−2r+1+m + x2t−2r+1+2m + x2t−2r+1+3m + · · · )k−2

=
(x − xm+1 + xt−r+1+m)2

(1 − xm)2

(
x − xm+1 + x2t−2r+1+m

1 − xm

)k−2

.

Similarly, parts (1) and (2b) give:

ct(x, r,m, k) =
(x − xm+1 + xt−r+1+m)2

(1 − xm)2

(
x − xm+1 + x2t−2r+1+2m

1 − xm

)k−2

.

It is now a routine matter to compute
∞∑

n=0

c(n | parts ≡ 1 (mod m))xn =
x

(1 − xm)
+

∑

k≥2

ct(x, r,m, k)

in each case and establish the following theorem.

Theorem 6.2. Let t ≡ r (mod m), 1 ≤ r ≤ m. Then

ct(x, r,m) =
∞∑

n=0

c(n | parts ≡ 1 (mod m))xn

is given by

ct(x, r,m)

=
x(1 − x − xm + xm+1 − x2t−2r+1+m) + (x − xm+1 + xt−r+1+m)2

(1 − xm)(1 − x − xm + xm+1 − x2t−2r+1+m)
,

(6.4)

where 1 ≤ r ≤ m+1
2 �, and

ct(x, r,m)

=
x(1 − x − xm + xm+1) + (x − xm+1)(x − xm+1 + 2xt−r+1+m)

(1 − xm)(1 − x − xm + xm+1 − x2t−2r+1+2m)
, (6.5)

where
⌊
m+3
2

⌋ ≤ r ≤ m.

We illustrate Theorem 6.2 with few examples. The case t = 1 = r gives
the familiar generating function for compositions with parts ≡ 1 (mod m):

c1(x, 1,m) =
x

1 − x − xm
.

When m = 2, the two parts of the theorem reduce to Eqs. (6.2) and (6.3)
respectively.
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When m = 3, Eq. (6.4) gives

ct(x, r, 3) =
x(1 − x − x3 + x4 − x2t−2r+4) + (x − x4 + xt−r+4)2

(1 − x3)(1 − x − x3 + x4 − x2t−2r+4)
, 1 ≤ r ≤ 2,

while Eq. (6.5) implies that

ct(x, 3, 3) =
x − x5 + 2xt+2

1 − x − x3 + x4 − x2t+1
.

We remark that the structure of these generating functions suggests the
existence of interesting recurrence relations requiring challenging combinato-
rial proofs. We leave such explorations to the interested reader.

7. Inverse-t-Conjugate Compositions

The inverse of a composition C, denoted by C, is the composition obtained
by reversing the order of the parts of C. It is called self-inverse if C = C.

It is clear that C
(t)

= C(t) for any t > 0.
A t-conjugable composition C is said to be inverse-t-conjugate if C =

C(t).
For example, let t = 3 with C = (12, 9, 1, 7, 13, 5). Then

C ′′′ = (5, 13, 7, 1, 9, 12) = C.

Since the conjugation operation turns strings of 1s into big parts and vice
versa, it is clear that an inverse-t-conjugate composition is necessarily of type
1c2 or 2c1, that is, of the following form up to inversion:

C = (1a1 , b1, . . . , 1ar , br), bi ≥ 2t, 1 ≤ i < r, br > t. (7.1)

Therefore, the number b of symbolic parts of C is exactly twice the number of
big parts, b = 2r. Thus, with �(C) = k, Proposition 2.1 gives:

k = n − k − (t − 1)(2r) + t,

that is,

n = 2k + 2r(t − 1) − t ≡ t (mod 2).

Therefore, inverse-t-conjugate compositions are defined only for weights
with the same parity as t. In other words, there is no inverse-t-conjugate com-
position of even weight if t is odd and vice versa. For example, it is well known
that inverse-1-conjugate compositions exist only for odd weights, see [8,11].

Note that (1s, t + s) and (t + s, 1s) are both inverse-t-conjugate compo-
sitions of n = 2s + t, s > 0. These two forms may be extended (modulo 2t) to
the following distinct long forms, up to inversion:

C = (1t, 2t, . . . , 2t, 2t); (7.2)

C = (1u, 2t, . . . , 2t, t + u), 1 ≤ u < t. (7.3)

Indeed with n = t + 2s, if t divides s, then n = t + (2t)r, r > 0, which has a
composition of the type (7.2). Otherwise, n = t+(2t)(r −1)+2u, r > 0, u < t,
which has a composition of the type (7.3).
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The conjugate of the composition C in (7.1) is

C(t) = (a1 + t, 1b1−2t, a2 + 2t, 1b2−2t, . . . , ar + 2t, 1br−t).

Thus, the conditions for C to be inverse-t-conjugate are

br = a1 + t, br−1 = a2 + 2t, br−2 = a3 + 2t, . . . , b1 = ar + 2t.

Hence, we have proved:

Lemma 7.1. An inverse-t-conjugate composition C (or its inverse) has the
form:

C = (1br−t, b1, 1br−1−2t, b2, . . . , 1b2−2t, br−1, 1b1−2t, br), bi ≥ 2t. (7.4)

Direct summation of the parts of C in (7.4) gives:

n = 2(b1 + · · · + br) − (r − 1) · 2t − t ≡ t (mod 2),

as expected.

7.1. A Structure Theorem

In this subsection, we obtain a structure theorem that will reveal the inherent
self-complementary property of inverse-t-conjugate compositions. We will need
the following algebraic operations.

Let A = (a1, . . . , ai) and B = (b1, . . . , bj) be compositions.
1. Define the concatenation of A and B by A|B = (a1, . . . , ai, b1, . . . , bj). In

particular, for a nonnegative integer c, we have A|(c) = (A, c), (c)|A =
(c,A) and A|(1c) = (A, 1c), (1c)|A = (1c, A) with (A, 0) = (0, A) = A.

2. Define the join of A and B by A � B = (a1, . . . , ai−1, ai + b1, b2, . . . , bj).
3. Define a unary operation # to change t copies of 1 at the boundary

into a part of size t: (. . . , a, 1u)# = (. . . , a, 1u−t, t) and #(1u, b . . . ) =
(t, 1u−t, b . . . ) for u ≥ t.
If v < t, then (. . . , b, 1v)# = ∅, and if b > 1, then (. . . , 1v, b)# =
(. . . , 1v, b).

The following rules are easily verified:
R1. (A|B)′ = A′ � B′ and A′|B′ = (A � B)′.
R2. A|B = B|A and A � B = B � A.
R3. A# = #A and A

#
= #A.

Now, observe the following relation between the left-most and right-most
segments of (7.4):

(1br−t, b1, . . . , bj , 1br−j−2t) = (br−j − t, 1bj−2t, br−j+1, . . . , 1b1−2t, br)(t), (7.5)

with br−j > 2t, 0 ≤ j ≤ u, u ∈ {⌊
r
2

⌋
,
⌊
r+1
2

⌋}
.

Therefore, if |C| = 2s + t, it is possible for the weight of either side of
(7.5) to be exactly s. Then

C = (1br−t, b1, . . . , bj , 1br−j−2t) | (t) � (br−j − t, 1bj−2t, br−j+1, . . . , 1b1−2t, br)

= (1br−t, b1, . . . , bj , 1br−j−2t) | (t) � (1br−t, b1, . . . , bj , 1br−j−2t)
(t)

,

where the last equality is obtained by conjugating (7.5).
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When br−j = 2t, the right-hand side of (7.5) is not t-conjugable if t > 1.
This is remedied with the # operation, since

(t, 1bj−2t, br−j+1, . . . ) = #(1bj−t, br−j+1, . . . ).

Thus, we obtain

C = (1br−t, b1, . . . , bj , 10) | (t) � #(1bj−t, br−j+1, . . . , 1b1−2t, br)

= (1br−t, b1, . . . , bj) | (t) � #(1br−t, b1, . . . , bj)
(t)

.

Hence, we deduce that C has the form:

C = A | (t) � #A
(t)

.

The gist of the foregoing discussion is summarized in the following theorem.

Theorem 7.2. Let C = (c1, . . . , ck) be an inverse-t-conjugate composition of
n = 2s+ t, s > 0, or its inverse. Then, there is an index j, such that c1 + · · ·+
cj = s and cj+1 + · · · + ck = s + t, where

(c1, . . . , cj) =

{
(cj+1 − t, cj+2, . . . , ck)

(t)
, cj = 1, cj+1 > 2t,

#(1t, cj+2, . . . , ck)
(t)

, cj > 1, cj+1 = 2t.
(7.6)

Thus, C can be written in the form:

C = A | (t) � #A
(t)

, (7.7)

where A is a t-conjugable composition.

Remark 7.3. Theorem 7.2 implies that the sequence of partial sums of an
inverse-t-conjugate composition of 2s + t contains either s or s + t, but not
both. One may use rules R2 and R3 to obtain the corresponding dissection
when t + s is encountered:

C = A | (t) � #A
(t)

= (t) � #A
(t) | A = #A

(t) � (t) | A = (A(t))# � (t) | A.

Thus, on replacing A with A(t), we have, generally:

C = A# � (t) | A
(t)

. (7.8)

For example, consider the following inverse-3-conjugate compositions of 27:

• (12, 9, 1, 7, 13, 5) = (12, 9, 1) | (3) � (4, 13, 5) = (12, 9, 1) | (3) � (12, 9, 1)
′′′

.
• (13, 9, 6, 13, 6) = (13, 9) | (3) � (3, 13, 6) = (13, 9) | (3) � #(13, 9)

′′′
.

The inverses of these compositions may be dissected using (7.8):

• (5, 13, 7, 1, 9, 12) = (5, 13, 4) � (3) | (1, 9, 12) = (5, 13, 4) � (3) | (5, 13, 4)
′′′

.
• (6, 13, 6, 9, 13) = (6, 16)# � (3) | (9, 13) = (6, 16)# � (3) | (6, 16)′′′.

Corollary 7.4. Let C be an inverse-t-conjugate composition of 2s + t given by
(7.4). Then, exactly one of the following assertions is true:

(i) There is a unique composition A of s, such that C = A | (A, 1t)
(t)
.
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(ii) There is a unique composition B = (c1, . . . , cj) of s+ t with cj ≥ 2t, such
that

C = (c1, . . . , cj−1, 2t) | (c1, . . . , cj−1, 1t)
(t)

or

C = (c1, . . . , cj) | (c1, . . . , cj − t)
(t)

, cj > 2t.

Proof. Part (i) is obtained by eliminating the operations � and # from Eq.
(7.7), or by noting that Eq. (7.5) implies an expression of C as the concatena-
tion of two compositions:

C = (1br−t, b1, . . . , bj , 1br−j−2t) | (br−j , 1bj−2t, br−j+1, . . . , 1b1−2t, br). Thus

C = (1br−t, b1, . . . , bj , 1br−j−2t) | (1br−t, b1, . . . , bj , 1br−j−t)
(t)

which gives (i).
The form (ii) follows easily from Eq. (7.8). �

7.2. Extending MacMahon’s Bijections

In Section IV, Chapter 1 of [8], MacMahon gives a combinatorial proof of the
following theorem in which “inversely conjugate” means inverse-1-conjugate.

Theorem 7.5 (MacMahon).

(i) The self-inverse compositions of the number 2n − 1 are enumerated by
c(n) = 2n−1.

(ii) There is a one-to-one correspondence between inversely conjugate com-
positions of the number 2n − 1 and those which are self-inverse.

We will extend this theorem in the following way:

Theorem 7.6. The following sets of compositions are equinumerous:

(I) Inverse-t-conjugate compositions of 2(m − 1) + t.
(II) Self-inverse t-conjugable compositions of 2m − 1.

(III) t-conjugable compositions of m.

Proof. Let the corresponding sets be denoted by:

(I) : ICt(2(m − 1) + t) (II) : SIt(2m − 1) (III) : Ct(m).

The proof will be given in the order: (I) ⇒ (II) ⇒ (III) ⇒ (I).
(I) ⇒ (II): Let

C = (c1, . . . , ck) ∈ ICt(2m + t − 2).

Then, by Theorem 7.2, the partial sums of C contain exactly one of m−1 and
m + t − 1.

In the first case, C is of the type (7.7) with (i) in Corollary 7.4. Thus, we
set

C 
→ A|(A, 1) = A|(1)|A ∈ SIt(2m − 1).
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In the second case, C belongs to the type (7.8) with (ii) in Corollary 7.4.
Let

C = (c1, . . . , ck) = (c1, . . . , cj−1, cj − t) � (t)|(cj+1, . . . , ck).

Then, we set

C 
→ (c1, . . . , cj−1)|(2(cj − t) + 1)|(c1, . . . , cj−1) ∈ SIt(2m − 1).

Note that 2(cj − t) + 1 ≥ 2t + 1, since cj ≥ 2t.

(II) ⇒ (III): Let C ∈ SIt(2m − 1). Then, C has the form (i):

C = (b1, · · · , br)|(1)|(b1, . . . , br)
or (ii)

C = B|(d)|B,

where d ≥ 2t + 1 is odd.
For (i), we set

C 
→ (b1, . . . , br, 1) ∈ Ct(m).

Note that if r > 1, then br ≥ 2t, and this (interior) size is preserved in the
image of C.

For (ii), we set

C 
→
(
B,

d + 1
2

)
∈ Ct(m).

This image is t-conjugable, since d+1
2 ≥ t + 1.

(III) ⇒ (I): Let E = (e1, . . . , er) ∈ Ct(m). We invoke Corollary 7.4 in the
assignments below.

If er = 1, then

E 
→ (e1, . . . , er−1)|(e1, . . . , er−1, 1t)
(t) ∈ ICt(2m + t − 2).

If er > t + 1, then

E 
→ (e1, . . . , er + t − 1)|(e1, . . . , er − 1)
(t) ∈ ICt(2m + t − 2).

If er = t + 1, then

E = (e1, . . . , er−1, t + 1) 
→ (e1 . . . , er−1, 2t)|(e1, . . . , er−1, 1t)
(t)

.

�

As an illustration of the three maps in the proof of Theorem 7.6, consider
m = 14 and t = 4. Then, we have IC4(30) = 52 = SI4(27) = C4(14). Some of
the correspondences are given in Table 1.
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Table 1. The maps in the proof of Theorem 7.6 when m = 14
and t = 4

IC4(30) → SI4(27) → C4(14)

(15, 8, 8, 9) 
→ (15, 8, 1, 8, 15) 
→ (15, 8, 1)
(12, 11, 8, 13, 6) 
→ (12, 11, 1, 11, 12) 
→ (12, 11, 1)
(1, 8, 14, 12, 5) 
→ (1, 8, 19, 8, 1) 
→ (1, 8, 15)
(1, 9, 13, 11, 1, 5) 
→ (1, 9, 17, 9, 1) 
→ (1, 9, 14)
(5, 1, 11, 13, 9, 1) 
→ (5, 1, 15, 1, 5) 
→ (5, 1, 8)
(5, 12, 14, 8, 1) 
→ (5, 17, 5) 
→ (5, 9)
(6, 13, 8, 11, 12) 
→ (6, 13, 9, 13, 6) 
→ (6, 13, 5)
(9, 8, 8, 15) 
→ (9, 9, 9) 
→ (9, 5)
· · · · · · 
→ · · · · · · 
→ · · · · · ·

8. Inverse-Reciprocal Compositions

If C = (1a1 , b1, . . . , 1av , bv) with r(C) �= ∅, then since a1+1 > 2 and ai+2 ≥ 4,
it follows that C ′ = (a1 + 1, 1b1−2, . . . , av + 2, 1bv−1) ∈ C2(n). We have the
following.

Proposition 8.1 (Munagi [10]). The number of reciprocal compositions of n >
1 is equal to the number of 2-conjugable compositions of n. This number is
2Fn−1.

A composition C is inverse-reciprocal if and only if r(C) = C. For ex-
ample, inverse-reciprocal compositions of 14 include (17, 7), (15, 2, 12, 5) and
(12, 2, 13, 3, 12, 2).

Using the foregoing results on inverse-t-conjugates, we obtain a 6-way
identity.

Corollary 8.2. The following sets are equinumerous for any integer n > 1:
(i) Reciprocal compositions of n.
(ii) 2-conjugable compositions of n.
(iii) Inverse-2-conjugate compositions of 2n.
(iv) Self-inverse 2-conjugable compositions of 2n − 1.
(v) Inverse-reciprocal compositions of 2n.
(vi) Inverse-1-conjugate compositions of 2n + 1 without 2s.

The common number of compositions in each set is 2Fn−1.

Proof. (i)⇔(ii) is a restatement of Proposition 8.1.
(ii)⇔ (iii) ⇔(iv) is proved as the t = 2 case of Theorem 7.6.
(iii)⇔(v): The 1-conjugate of an inverse-reciprocal composition is inverse-

2-conjugate. To see this, note that an inverse-reciprocal composition C (or its
inverse) has the form:

C = (1bv , b1, 1bv−1 , b2, . . . , 1b2 , bv−1, 1b1 , bv).

Then

C ′ = (bv + 1, 1b1−2, bv−1 + 2, . . . , b2 + 2, 1bv−1−2, b1 + 2, 1bv−1).
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However

(C ′)′′ = (1bv−1, b1 + 2, 1bv−1−2, . . . , 1b2−2, bv−1 + 2, 1b1−2, bv + 1) = C ′.

(v)⇔(vi): Let C be an inverse-1-conjugate composition of 2n + 1 without 2s.
Then, by (7.4), we have:

C = (1br−1, b1, 1br−1−2, b2, . . . , 1b1−2, br), bi > 2.

Consider a composition E obtained from C by subtracting 1 from each
bi and adding 1 to the length of each interior string of 1s; that is:

E = (1br−1, b1 − 1, 1br−1−1, b2 − 1, . . . , 1b1−1, br − 1).

Note that r(E) �= ∅, since each bi > 2, and r(E) = E. Since the weight of E
is given by wt(E) = wt(C) − 1 = 2n, it is an inverse-reciprocal composition of
2n. The transition from C to E is clearly reversible. �
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Marking and Shifting a Part in Partitions

Kathleen O’Hara and Dennis Stanton

Abstract. Refined versions, analytic and combinatorial, are given for clas-
sical integer partition theorems. The examples include the Rogers–
Ramanujan identities, the Göllnitz–Gordon identities, Euler’s odd = dis-
tinct theorem, and the Andrews–Gordon identities. Generalizations of
each of these theorems are given where a single part is “marked” or
weighted. This allows a single part to be replaced by a new larger part,
“shifting” a part, and analogous combinatorial results are given in each
case. Versions are also given for marking a sum of parts.

Mathematics Subject Classification. Primary 05A17; Secondary 11P84.

Keywords. Partition, Rogers–Ramanujan identities.

1. Introduction

Many integer partition theorems can be restated as an analytic identity, as
a sum equal to a product. One such example is the first Rogers–Ramanujan
identity

1∏∞
k=0(1 − q5k+1)(1 − q5k+4)

= 1 +
∞∑

k=1

qk2 1
(1 − q)(1 − q2) · · · (1 − qk)

.

(1.1)

MacMahon’s combinatorial version of (1.1) uses integer partitions. The
left side is the generating function for all partitions whose parts are congruent
to 1 or 4 mod 5. The factor 1/(1 − q9) on the left side allows an arbitrary
number of 9’s in an integer partition. If we “mark” or weight the 9 by a w, the
factor 1/(1 − q9) is replaced by

1
1 − wq9

.

One may ask how the right side is modified upon marking a part, and
whether a refined combinatorial interpretation exists.
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The result is known [9, (2.2)], and there is a refined combinatorial version.
The key to the combinatorial result is that the terms in the sum side are
positive as power series in q and w.

Theorem 1.1. Let M ≥ 1 be any integer congruent to 1 or 4 mod 5. Then

1 − qM

1 − wqM

1∏∞
k=0(1 − q5k+1)(1 − q5k+4)

= 1 + q
1 + q + · · · + qM−2 + wqM−1

1 − wqM

+
∞∑

k=2

qk2 1 + q + · · · + qM−1

1 − wqM

1
(1 − q2)(1 − q3) · · · (1 − qk)

.

Here is a combinatorial version of Theorem 1.1.

Theorem 1.2. Let M be a positive integer which is congruent to 1 or 4 mod 5.
Then, the number of partitions of n into parts congruent to 1 or 4 mod 5 with
exactly k M ’s is equal to the number of partitions λ of n with difference at
least 2 and

1. if λ has one part, then �n/M� = k,
2. if λ has at least two parts, then �(λ1 − λ2 − 2)/M� = k.

The purpose of this paper is to give the analogous results for several
other classical partition theorems: the Göllnitz–Gordon identities, Euler’s odd
= distinct theorem, and the Andrews–Gordon identities. The main engine,
Proposition 3.1, may be applied to many other single sum identities. The
results obtained here by marking a part are refinements of the corresponding
classical results.

We shall also consider “shifting” a part, for example replacing all 9’s by
22’s in (1.1). This is replacing the factor

1
1 − q9

by
1

1 − q22
.

We shall see that the set of partitions enumerated by the sum side is an explicit
subset of the partitions in the original identity.

Finally in Sect. 6, we consider marking a sum of parts. We can extend
Theorem 1.2 to allow other values of M , for example M = 7, by marking the
partition 6 + 1. See Corollary 6.8.

We use the standard notation,

(A; q)k =
k−1∏

j=0

(1 − Aqj), [M ]q =
1 − qM

1 − q
.

If the base q is understood, we may write (A; q)k as (A)k.

2. The Rogers–Ramanujan Identities

In this section, we give prototypical examples for the Rogers–Ramanujan iden-
tities.

First, we state a marked version of the second Rogers–Ramanujan iden-
tity, which follows from Proposition 3.1.
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Theorem 2.1. Let M ≥ 2 be any integer congruent to 2 or 3 mod 5. Then

1 − qM

1 − wqM

1
(q2; q5)∞(q3; q5)∞

= 1 + q2
[M − 2]q + wqM−2 + qM−1

1 − wqM

+
∞∑

k=2

qk2+k [M ]q
1 − wqM

1
(q2; q)k−1

.

Here is a combinatorial version of Theorem 2.1.

Theorem 2.2. Let M be a positive integer which is congruent to 2 or 3 mod 5.
Then, the number of partitions of n into parts congruent to 2 or 3 mod 5 with
exactly k M ’s is equal to the number of partitions λ of n with difference at
least 2, no 1’s, and

1. if λ has one part, then n = Mk+j, 2 ≤ j ≤ M −1, or j = 0 or j = M +1,
2. if λ has at least two parts, then �(λ1 − λ2 − 2)/M� = k.

Proof. We simultaneously prove Theorems 1.2 and 2.2. We need to understand
the combinatorics of the replacement in the k-th term on the sum side

1
1 − q

→ [M ]q
1 − wqM

=
∞∑

p=0

qpw�p/M�. (2.1)

In the classical Rogers–Ramanujan identities, the factor 1/(1 − q) represents
the difference in the first two parts after the double staircase has been removed.
This is the second case of each theorem. �

Example 2.3. Let k = 2, M = 7, and n = 22. The equinumerous sets of
partitions for Theorem 2.2 are

{(8, 7, 7), (7, 7, 3, 3, 2), (7, 7, 2, 2, 2, 2)} ↔ {(22), (20, 2), (19, 3)}.

Equivalent combinatorial versions of Theorems 1.2 and 2.2 may be given
(see [9, Theorem 2, Theorem 3]). This time, the terms k ≥ M of the sum side
are considered, and the replacement considered is

1
1 − qM

→ 1
1 − wqM

,

namely, the part M is marked on the sum side. We need notation for when a
double staircase is removed from a partition with difference at least two.

Definition 2.4. For any partition λ with k parts whose difference of parts is
at least 2, let λ∗ denote the partition obtained upon removing the double
staircase (2k − 1, 2k − 3, . . . , 1) from λ, and reading the result by columns.

For any partition λ with k parts and no 1’s whose difference of parts is
at least 2, let λ∗∗ denote the partition obtained upon removing the double
staircase (2k, 2k − 2, . . . , 2) from λ, and reading the result by columns.

Theorem 2.5. Let M be a positive integer which is congruent to 1 or 4 mod 5.
Then, the number of partitions of n into parts congruent to 1 or 4 mod 5 with
exactly k M ’s is equal to the number of partitions λ of n with difference at
least 2 and
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1. if λ has one part, then �n/M� = k,
2. if λ has between two and M − 1 parts, then �(λ1 − λ2 − 2)/M� = k,
3. if λ has at least M parts, then λ∗ has exactly k M ’s.

Example 2.6. Let k = 2, M = 4, and n = 24. The equinumerous sets of
partitions for Theorem 2.5 are

{(16, 42), (14, 42, 12), (11, 42, 15), (9, 6, 42, 1), (9, 42, 17), (6, 6, 42, 14),

(6, 42, 110), (42, 116)} ↔
{(9, 7, 5, 3), (18, 5, 1), (17, 6, 1), (17, 5, 2), (16, 6, 2), (16, 5, 3), (17, 7), (18, 6)}.

Theorem 2.7. Let M be a positive integer which is congruent to 2 or 3 mod 5.
Then, the number of partitions of n into parts congruent to 2 or 3 mod 5 with
exactly k M ’s is equal to the number of partitions λ of n with difference at
least 2, no 1’s and

1. if λ has one part, then n = Mk + j, where 2 ≤ j ≤ M − 1, or j = 0 or
j = M + 1,

2. if λ has between two and M − 1 parts, then �(λ1 − λ2 − 2)/M� = k,
3. if λ has at least M parts, then λ∗∗ has exactly k M ’s.

3. A General Expansion

In this section, we give a general expansion, Proposition 3.1, for marking a
single part.

Many partition identities have a sum side of the form
∞∑

j=0

αj

(q; q)j
,

where αj has non-negative coefficients as a power series in q.
These include

1. the Rogers–Ramanujan identities, αj = qj2
or qj2+j ,

2. Euler’s odd=distinct theorem, αj = q(
j+1
2 ),

3. the Göllnitz–Gordon identities, q replaced by q2, αj = qj2
(−q; q2)j ,

4. all partitions by the largest part, αj = qj ,

5. all partitions by Durfee square, αj = qj2
/(q; q)j .

A part of size M may be marked in general using the next proposition.

Proposition 3.1. For any positive integer M , if α0 = 1,

1 − qM

1 − wqM

∞∑

j=0

αj

(q; q)j
= 1 +

α1[M ]q − qM + wqM

1 − wqM
+

∞∑

j=2

[M ]q
1 − wqM

αj

(q2; q)j−1
.

As long as α1 has the property that

α1[M ]q − qM

is a positive power series in q, the right side has a combinatorial interpretation.
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There are two possible elementary combinatorial interpretations. For any
j ≥ 2, the factor

[M ]q
1 − wqM

=
∞∑

p=0

qpw[p/M ]

replaces 1/(1 − q), which accounts for parts of size 1 in a partition. This is a
weighted form of the number of 1’s.

The second interpretation holds for terms with j ≥ M. Here
[M ]q

1 − wqM

1
(q2; q)j−1

=
1

(1 − q) · · · (1 − qM−1)(1 − wqM )(1 − qM+1) · · · (1 − qj)
.

In this case, the part of size M is marked by w.
For a particular combinatorial application of Proposition 3.1, one must

realize what the denominator factors (1 − q) and (1 − qM ) represent on the
sum side. For example, in the first Rogers–Ramanujan identity, these factors
account for 1’s and M ’s in λ∗. Since

(#1′s in λ∗) = λ1 − λ2 − 2,

the two interpretations are Theorems 1.2 and 2.5.

3.1. Distinct Parts

Choosing αj = q(
j+1
2 ) in Proposition 3.1 gives distinct partitions, which by

Euler’s theorem are equinumerous with partitions into odd parts. Here is the
marked version.

Corollary 3.2. For any odd positive integer M ,
1

(1 − q)(1 − q3) · · · (1 − qM−2)(1 − wqM )(1 − qM+2) · · ·

= 1 +
q + q2 + · · · + qM−1 + wqM

1 − wqM
+

∞∑

j=2

q(
j+1
2 )

(q2; q)j−1

[M ]q
1 − wqM

.

Definition 3.3. For any partition λ with j distinct parts, let λSt be the parti-
tion obtained upon removing a staircase (j, j − 1, . . . , 1) from λ, and reading
the result by columns.

Example 3.4. If λ = (8, 7, 3, 1), then λSt = (3, 2, 2, 2).

Here is the combinatorial version of Corollary 3.2, generalizing Euler’s
theorem.

Theorem 3.5. For any odd positive integer M , the number of partitions of n
into odd parts with exactly k parts of size M is equal to the number of partitions
λ of n into distinct parts such that

1. if λ has one part, then �n/M� = k,
2. if λ has at least two parts, then �(λ1 − λ2 − 1)/M� = k.
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Example 3.6. Let k = 2, M = 5, and n = 18. The equinumerous sets of
partitions for Theorem 3.5 are

{(7, 5, 5, 1), (5, 5, 3, 3, 1, 1), (5, 5, 3, 15), (5, 5, 18)}
↔ {(16, 2), (15, 3), (15, 2, 1), (14, 3, 1)}.

Proposition 3.7. There is an M -version of the Sylvester “fishhook” bijection
which proves Theorem 3.5.

Proof. Let FH be the fishhook bijection from partitions with distinct parts to
partitions with odd parts. If FH(λ) = μ, it is known that the number of 1’s in
μ is λ1 − λ2 − 1, except for FH(n) = 1n. This proves Theorem 3.5 if M = 1,
and FH is the bijection for M = 1.

For the M -version, M > 1, let λ have distinct parts. For λ = n a single
part, define the M -version by FHM (n) = (Mk, 1n−kM ), which has k parts of
size M . Otherwise, λ has at least two parts, and

kM ≤ λ1 − λ2 − 1 ≤ (k + 1)M − 1.

Let θ be the partition with distinct parts where λ1 has been reduced by kM,

0 ≤ θ1 − θ2 − 1 ≤ M − 1.

Finally put γ = FH(θ), and note that γ has at most M − 1 1’s.
There are two cases. If γ has no parts of size M , define FHM (λ) = γ∪Mk,

so that FHM (λ) is a partition with odd parts, exactly k parts of size M , and
at most M − 1 1’s.

If γ has r ≥ 1 parts of size M, change all of them to rM 1’s to obtain
γ′ with at least M 1’s. Then put FHM (λ) = γ′ ∪ Mk, so that FHM (λ) is a
partition with odd parts, exactly k parts of size M , and at least M 1’s. �

Theorem 3.8. For any odd positive integer M , the number of partitions of
n into odd parts with exactly k parts of size M , is equal to the number of
partitions λ of n into distinct parts such that

1. if λ has one part, then �n/M� = k,
2. if λ has between two and M − 1 parts, then �(λ1 − λ2 − 1)/M� = k,
3. if λ has at least M parts, then λSt has exactly k M ’s.

Example 3.9. Let k = 2, M = 3, and n = 18. The equinumerous sets of
partitions for Theorem 3.8 are

{(11, 32, 1), (9, 32, 13), (7, 5, 32), (7, 32, 15), (52, 32, 12), (5, 32, 17), (32, 112)}
↔ {(7, 6, 4, 1), (8, 5, 4, 1), (11, 4, 3), (10, 5, 3), (9, 6, 3), (8, 7, 3), (13, 5)}.

3.2. Göllnitz–Gordon Identities

The Göllnitz–Gordon identities are (see [1,5,6])
∞∑

n=0

qn2 (−q; q2)n

(q2; q2)n
=

1
(q; q8)∞(q4; q8)∞(q7; q8)∞

, (3.1)

∞∑

n=0

qn2+2n (−q; q2)n

(q2; q2)n
=

1
(q3; q8)∞(q4; q8)∞(q5; q8)∞

. (3.2)
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We apply Proposition 3.1 with q replaced by q2, M replaced by M/2,

and αj = qj2
(−q; q2)j to obtain the next result.

Corollary 3.10. Let M be a positive integer. Then

1 − qM

1 − wqM

1
(q; q8)∞(q4; q8)∞(q7; q8)∞

= 1 +
q[M − 1]q + wqM

1 − wqM
+

∞∑

j=2

qj2 [M ]q
1 − wqM

(−q3; q2)j−1

(q4; q2)j−1
.

We used

q(1 + q)[M/2]q2 − qM + wqM

1 − wqM
=

q[M − 1]q + wqM

1 − wqM

to simplify the second term in the sum in Corollary 3.10. Note that the numer-
ator has positive coefficients, and thus a simple combinatorial interpretation.

Here is the combinatorial restatement [6, Theorem 2] of the first Göllnitz–
Gordon identity.

Theorem 3.11. The number of partitions of n into parts congruent to 1, 4, or
7 mod 8 is equal to the number of partitions of n into parts whose difference
is at least 2, and greater than 2 for consecutive even parts.

For the combinatorial version of Corollary 3.10, we need to recall why the
sum side of (3.1) is the generating function for the restricted partitions with
difference at least 2. In particular, we must identify what the denominator
factor 1 − q represents in the sum side.

Suppose λ is such a partition with j parts. This is equivalent to showing
that the generating function for λ∗ is

(−q; q2)j

(q2; q2)j
=

1 + q

1 − q2
(−q3; q2)j−1

(q4; q2)j−1
. (3.3)

The partition μ = λ − (2j − 1, 2j − 3, . . . , 1) has at most j parts, and the
odd parts of μ are distinct. The column read version λ∗ = μt can be built
in the following way. Take arbitrary parts from sizes j, j − 1, . . . , 1 with even
multiplicity, whose generating function is 1/(q2; q2)j . The rows now have even
length. Then, choose a subset of the odd integers 1 + 0, 2 + 1, . . . , j + (j − 1).
For each such odd part k + (k − 1) add columns of length k and k − 1. This
keeps all rows even, except the k-th row which is odd, and distinct.

We see that the factor (1 + q)/(1 − q2) = 1/(1 − q) in (3.3) accounts for
1’s in λ∗. In Corollary 3.10, this quotient is replaced by

1 + q

1 − q2
→ [M ]q

1 − wqM
=

∞∑

p=0

qpw[p/M ].

There is one final opportunity for a 1 to appear in λ∗: when 3 = 2+1 is chosen
as an odd part. This occurs only when the second part of λ is even.
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Theorem 3.12. Let M be a positive integer which is congruent to 1, 4 or 7
mod 8. The number of partitions of n ≥ 1 into parts congruent to 1, 4 or 7
mod 8 with exactly k M ’s, is equal to the number of partitions λ of n into
parts whose difference is at least 2, and greater than 2 for consecutive even
parts such that

1. if λ has a single part, then [n/M ] = k,
2. if λ has at least two parts and the second part of λ is even, then

�(λ1 − λ2 − 3)/M� = k,

3. if λ has at least two parts and the second part of λ is odd, then

�(λ1 − λ2 − 2)/M� = k.

Example 3.13. Let k = 3, M = 7, and n = 31. The equinumerous sets of
partitions for Theorem 3.12 are

{(9, 7, 7, 7, 1), (7, 7, 7, 4, 4, 1, 1), (7, 7, 7, 4, 16), (7, 7, 7, 110)}
↔ {(30, 1), (29, 2), (28, 3), (27, 3, 1)}.

Note that λ = (27, 4) is not allowed because the second part of λ is even.

For the second Göllnitz–Gordon identity, the version of Corollary 3.10 is

1 − qM

1 − wqM

1
(q3; q8)∞(q4; q8)∞(q5; q8)∞

= 1 +
q3 + · · · + qM−1 + wqM + qM+1 + qM+2

1 − wqM

+
∞∑

j=2

qj2+2j [M ]q
1 − wqM

(−q3; q2)j−1

(q4; q2)j−1
.

(3.4)

Here is the combinatorial refinement of [6, Theorem 3].

Theorem 3.14. Let M be a positive integer which is congruent to 3, 4 or 5
mod 8. The number of partitions of n ≥ 1 into parts congruent to 3, 4 or 5
mod 8 with exactly k M ’s, is equal to the number of partitions λ of n into
parts whose difference is at least 2, greater than 2 for consecutive even parts,
smallest part at least 3, such that

1. if λ has a single part, then n = Mk, or n = Mk + j, 3 ≤ j ≤ M + 2,
j 	= M ,

2. if λ has at least two parts and the second part of λ is even, then

�(λ1 − λ2 − 3)/M� = k,

3. if λ has at least two parts and the second part of λ is odd, then

�(λ1 − λ2 − 2)/M� = k.
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4. An Andrews–Gordon Version

The Andrews–Gordon identities are

Theorem 4.1. If 0 ≤ a ≤ k, then

(qk+1−a, qk+2+a, q2k+3; q)∞
(q; q)∞

=
∑

n1≥n2≥···≥nk≥0

qn2
1+n2

2+···+n2
k+nk+1−a+···+nk

(q)n1−n2 · · · (q)nk−1−nk
(q)nk

.

The Rogers–Ramanujan identities are the cases k = 1, a = 0, 1.

Because Theorem 4.1 has a multisum instead of a single sum, we cannot
apply Proposition 3.1. Nonetheless, the same idea can be applied to obtain a
marked version of Theorem 4.1.

Let F a
k denote the right-side multisum of Theorem 4.1 for 0 ≤ a ≤ k, and

let F a
k = F 0

k for a < 0. So we have

F a
k = F a−1

k−1 +
∑

n1≥n2≥···≥nk≥1

qn2
1+n2

2+···+n2
k+nk+1−a+···+nk

(q)n1−n2 · · · (q)nk−1−nk
(q)nk

.

Multiplying by 1−qM

1−wqM yields

1 − qM

1 − wqM
F a

k =
1 − qM

1 − wqM
F a−1

k−1

+
∑

n1≥n2≥···≥nk≥1

qn2
1+n2

2+···+n2
k+nk+1−a+···+nk

(q)n1−n2 · · · (q)nk−1−nk
(q2; q)nk−1

[M ]q
1 − wqM

,

which, upon iterating, is the following weighted version of the Andrews–Gordon
identities.

Theorem 4.2. For 0 ≤ a ≤ k, let M be any positive integer not congruent to
0, ±(k + 1 − a) modulo 2k + 3. Then,

1 − qM

1 − wqM

(qk+1−a, qk+2+a, q2k+3; q)∞
(q; q)∞

= 1 + A +
∞∑

n1=2

qn2
1+B

(q2; q)n1−1

[M ]q
1 − wqM

+
k∑

r=2

∑

n1≥n2≥···≥nr≥1

qn2
1+n2

2+···+n2
r+nk+1−a+···+nr

(q)n1−n2 · · · (q)nr−1−nr
(q2; q)nr−1

[M ]q
1 − wqM

,

where

1. for 0 ≤ a < k, B = 0, A = q([M − 1]q + wqM−1)/(1 − wqM ),
2. for a = k, B = n1, A = q2([M − 2]q + wqM−2 + qM−1)/(1 − wqM ).

For a combinatorial version of Theorem 4.2, we use Andrews’ Durfee
dissections, and (k + 1, k + 1 − a)-admissible partitions, see [2].

Definition 4.3. Let k be a positive integer and 0 ≤ a ≤ k. A partition λ is
called (k + 1, k + 1 − a)-admissible if λ may be dissected by r ≤ k successive
Durfee rectangles, moving down, of sizes
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n1 × n1, . . . , nk−a × nk−a, (nk−a+1 + 1) × nk−a, . . . , (nr + 1) × nr

such that the (n1 + n2 + · · · + nk−a+i + i)-th part of λ is nk−a+i, for 1 ≤ i ≤
r − (k − a).

Note that r ≤ k − a is allowed, in which case all of the Durfee rectangles
are squares. Also, the parts of λ to the right of the Durfee rectangles are not
constrained, except at the last row of the non-square Durfee rectangle, where
it is empty.

Example 4.4. Suppose k = 3 and a = 2. Then λ = 91 is not (4, 2)-admissible:
the Durfee square has size n1 = 1, but the next Durfee rectangle of size 2 × 1
does not exist, so the second part cannot be covered if r ≥ 2.

Theorem 2 in [2] interprets Theorem 4.1.

Proposition 4.5. The generating function for all partitions which are (k+1, k+
1 − a)-admissible is given by the sum in Theorem 4.1.

We need to understand the replacement

1
(q)nr

=
1

(1 − q)(q2; q)nr−1
→ 1

(q2; q)nr−1

[M ]q
1 − wqM

in the factor (q)nr
to give a combinatorial version of Theorem 4.2.

First, we recall [2] that if the sizes of the Durfee rectangles are fixed by
n1, n2, . . . , nr, then the generating function for the partitions which have this
Durfee dissection is

1
(q)n1

r−1∏

j=1

[
nj

nj+1

]

q

=
1

(q)nr

r−1∏

j=1

1
(q)nj−nj+1

.

(A simple bijection for this fact is given in [7].) Upon multiplying by

1 − qM

1 − wqM
,

we have

[M ]q
1 − wqM

1
(q2; q)n1−1

r−1∏

j=1

[
nj

nj+1

]

q

=
[M ]q

1 − wqM

1
(q2; q)nr−1

r−1∏

j=1

1
(q)nj−nj+1

.

Consider the factor 1/(q)n1 , which accounts for the portion of the par-
tition to the right of the first Durfee rectangle of λ. In this factor, we are
replacing

1
1 − q

→ [M ]q
1 − wqM

.

As before, the M 1’s in the columns to the right of the first Durfee rectangle
are weighted by w. These 1’s are again a difference in the first two parts of λ.

Putting these pieces together, the following result is a combinatorial re-
statement of Theorem 4.2 (Table 1).
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Table 1. Theorem 4.6 when n = 10, a = 2, k = 3,M = 3

Partition without 2,7,9 # of 3’s (4,2)-Admissible partition Value of j

10 0 10 3
811 0 61,111 1
64 0 421,111 0
631 1 322,111 0
61,111 0 331,111 0
55 0 811 2
541 0 6211 1
5311 1 5311 0
511,111 0 5221 1
4411 0 22,222 0
433 2 4411 0
43,111 1 4321 0
4,111,111 0 82 2
3331 3 73 1
331,111 2 64 0
31,111,111 1 55 0
1,111,111,111 0 433 0

Theorem 4.6. Fix integers a, k,M satisfying 0 ≤ a ≤ k and M 	≡ 0,±(k+1−a)
mod 2k + 3. The number of partitions of n into parts not congruent to 0,
±(k+1−a) mod 2k+3 with exactly j M ’s, is equal to the number of partitions
λ of n which are (k + 1, k + 1 − a)-admissible with r ≤ k Durfee rectangles of
sizes

n1 × n1, . . . , nk−a × nk−a, (nk−a+1 + 1) × nk−a, . . . , (nr + 1) × nr

of the following form:
1. if r = n1 = 1, and 0 ≤ a < k, then λ is a single part of size Mj,

Mj + 1, . . . ,Mj + (M − 1),
2. if r = n1 = 1, and a = k, then λ = (λ1, 1) has size Mj, Mj+2, . . . ,Mj+

(M − 1), or Mj + (M + 1),
3. if n1 = 1 and r ≥ 2, then �(λ1 − n1)/M� = j,
4. if n1 ≥ 2, then �(λ1 − λ2)/M� = j.

5. Shifting a Part

The weighted versions allow one to shift a part. For example in the first Rogers–
Ramanujan identity, what happens if parts of size 11 are replaced by parts of
size 28? All we need to do is to choose M = 11 and x = q17 in Theorem 1.1.

Corollary 5.1. Let M be a positive integer which is congruent to 1 or 4 modulo
5. Let N > M be an integer not congruent to 1 or 4 modulo 5. The number of
partitions of n into parts congruent to 1 or 4 modulo 5, except M , or parts of
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946 K. O’Hara and D. Stanton

size N , is equal to the number of partitions λ of n with difference at least 2,
such that

1. λ has a single part, which is congruent to 0, 1, . . . , or M − 1 mod N,
2. λ has at least two parts, and λ1−λ2−2 is congruent to 0, 1, . . . , or M −1

mod N.

Example 5.2. Let N = 8, M = 4, and n = 9. The equinumerous sets of
partitions for Corollary 5.1 are

{(9), (6, 1, 1, 1), (8, 1), (19)} ↔ {(9), (6, 3), (7, 2), (5, 3, 1)}.

A related example occurs when two parts are shifted: 1 and 4 are replaced
by 2 and 3. The appropriate identity is

1
(1 − q2)(1 − q3)(q6; q5)∞(q9; q5)∞

= 1 +
q2(1 + q)
1 − q3

+
∞∑

k=2

qk2

(q2; q)k−1

1 + q2

1 − q3
.

(5.1)

Theorem 5.3. The number of partitions of n into parts from

{2, 3, 5k + 1, 5k + 4 : k ≥ 1}
is equal to the number of partitions λ of n with difference at least 2 and

1. if λ has a single part, then n 	≡ 1 mod 3,
2. if λ has at least two parts, then (λ1 − λ2 − 2) 	≡ 1 mod 3.

Example 5.4. Let n = 13. The two equinumerous sets of partitions in Theo-
rem 5.3 are

{(11, 2), (9, 2, 2), (6, 3, 2, 2), (3, 2, 2, 2, 2, 2), (3, 3, 3, 2, 2)}
↔ {(12, 1), (10, 3), (9, 4), (8, 4, 1), (7, 5, 1)}.

The possible partitions with difference at least 2

{(13), (11, 2), (8, 5), (9, 3, 1), (7, 4, 2)}
are disallowed.

Corollary 5.5. Let M be an odd positive integer. Let N > M be an even integer.
The number of partitions of n into odd parts except M , or parts of size N , is
equal to the number of partitions λ of n into distinct parts, such that

1. λ has a single part, which is congruent to 0, 1, . . . , or M − 1 mod N,
2. λ has at least two parts, and λ1−λ2−1 is congruent to 0, 1, . . . , or M −1

mod N.

Example 5.6. If N = 8, M = 3 and n = 9, the equinumerous sets in Corol-
lary 5.5 are

{(9), (8, 1), (7, 1, 1), (5, 14), (19)} ↔ {(9), (5, 4), (6, 3), (5, 3, 1), (4, 3, 2)}.
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6. Marking a Sum of Parts

One may ask if Theorems 1.1 and 2.1 have combinatorial interpretations with-
out the modular conditions on M . The sum sides retain the interpretations
given by Theorems 1.2 and 2.2 and are positive as a power series in q and w. It
remains to understand what the product side represents as a generating func-
tion of partitions. We give in Proposition 6.4 a general positive combinatorial
expansion for the product side. We call this “marking a sum of parts”.

As an example suppose that M = A + B is a sum of two parts, where
A and B are distinct integers congruent to 1 or 4 mod 5. The quotient in the
product side of Theorem 1.1

1 − qA+B

1 − wqA+B

1
(1 − qA)(1 − qB)

=
1

(1 − qB)(1 − wqA+B)
+

qA

(1 − qA)(1 − wqA+B)

is a generating function for partitions with parts A or B. The first term allows
the number of B’s to be at least as many as the number of A’s. The second
term allows the number of A’s to be greater than the number of B’s. The
exponent of w is the number of times a pair AB appears in a partition. For
example, if A = 6, B = 4, the partition (6, 6, 4, 4, 4, 4) contains 64 twice, along
with two 4’s. We have found a prototypical result.

Proposition 6.1. Let M = A + B for some A,B ≡ 1, 4 mod 5, A 	= B. Then

1 − qM

1 − wqM

1
(q; q5)∞(q4; q5)∞

is the generating function for all partitions μ with parts ≡ 1, 4 mod 5 by the
number of occurrences of the pair AB.

A more general statement holds for partitions other than M = A + B.
To state this result, we need to define an analog of the multiplicity of a single
part to a multiplicity of a partition. We again use the multiplicity notation for
a partition, for example (73, 41, 23) denotes the partition (7, 7, 7, 4, 2, 2, 2).

Definition 6.2. Let λ = (Am1
1 , . . . , Amk

k ) be a partition. We say λ is inside μ k
times, k = Eλ(μ), if

k = max{j : j ≥ 0, μ contains at least jms parts of size As for all s}.

Example 6.3. Let λ = (61, 42, 11), μ = (91, 67, 45, 18). Then Eλ(μ) = 2 but not
3 because μ contains only five 4’s.

With this definition, Proposition 6.1 holds for any partition. We let ||λ||
denote the sum of the parts of λ.

Proposition 6.4. Let λ � M be a fixed partition into parts congruent to 1 or 4
mod 5. Then

1 − qM

1 − wqM

1
(q; q5)∞(q4; q5)∞
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is the generating function for all partitions μ into parts congruent to 1 or 4
mod 5,

∑

μ

q||μ||wEλ(μ),

where Eλ(μ) is the number of times λ appears in μ.

The modular condition on the parts in Proposition 6.4 is irrelevant.

Proposition 6.5. Let A = {A1, A2, . . .} be any set of positive integers. Suppose
that λ = (Bm1

1 , . . . , Bmk

k ) is a partition whose parts come from A and M =∑k
i=1 miBi. Then

1 − qM

1 − wqM

∞∏

i=1

(1 − qAi)−1

is the generating function for all partitions μ with parts from A

∑

μ

q||μ||wEλ(μ).

Proof. We start with the telescoping sum

1 − qM = 1 − qm1B1 + qm1B1(1 − qm2B2) + · · · + q
∑k−1

i=1 miBi(1 − qmkBk),

which implies

(1 − qM )
k∏

i=1

(1 − qBi)−1

=
k∑

i=1

qm1B1+···+mi−1Bi−1

i−1∏

j=1

(1 − qBj )−1 1 − qmiBi

1 − qBi

k∏

j=i+1

(1 − qBj )−1.

(6.1)

We see that (6.1) is the generating function for partitions μ with parts
from {B1, B2, . . . , Bk} such that Eλ(μ) = 0. The i-th term of the sum repre-
sents partitions μ = (Bn1

1 , Bn2
2 , . . . , Bnk

k ), where

n1 ≥ m1, n2 ≥ m2, . . . , ni−1 ≥ mi−1, ni < mi.

These disjoint sets cover all μ with Eλ(μ) = 0.
Adding back the multiples of λ by multiplying by (1 − wqM )−1, and also

the unused parts from A, gives the result. �

Definition 6.6. Let A be a set of parts. If λ has parts from A, let EA

λ (n, k) be
the number of partitions μ of n with parts from A such that Eλ(μ) = k.

Corollary 6.7. For any set of part sizes A, let λ1 and λ2 be two partitions of
M into parts from A. Then for all n, k ≥ 0

EA

λ1
(n, k) = EA

λ2
(n, k).

Here are the promised versions of Theorems 1.2 and 2.2 when M does
not satisfy the mod 5 condition.
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Corollary 6.8. Suppose that λ is a partition of M into parts congruent to 1
or 4 mod 5. Then, Theorem 1.2 holds if the number of partitions having M
of multiplicity k is replaced by EA

λ (n, k), A = {1, 4, 6, 9, . . .}. Also, if λ is a
partition of M into parts congruent to 2 or 3 mod 5, then Theorem 2.2 holds
if the number of partitions having M of multiplicity k is replaced by EB

λ(n, k),
B = {2, 3, 7, 8, . . .}.

Example 6.9. Let λ = (6, 1), M = 7, and n = 17. The equinumerous sets of
partitions for Corollary 6.8 are

{(9, 6, 1, 1), (6, 6, 4, 1), (6, 4, 4, 1, 1, 1), (6, 4, 17), (6, 111)}
↔ {(16, 1), (15, 2), (14, 3), (13, 4), (13, 3, 1)}.

One corollary of the Rogers–Ramanujan identities is that there are more
partitions of n into parts congruent to 1 or 4 mod 5 than into parts con-
gruent to 2 or 3 mod 5. Kadell [8] gave an injection which proves this, and
Berkovich–Garvan [3, Theorem 5.1] gave an injection for modulo 8. A general
injection for finite products was given by Berkovich–Grizzell [4]. We can use
Corollary 6.7, Theorems 1.1, and 2.1 to generalize this fact for the Rogers–
Ramanujan identities.

Theorem 6.10. Let

A = {5k + 1, 5k + 4 : k ≥ 0}, B = {5k + 2, 5k + 3 : k ≥ 0}.

Fix partitions λ � M and θ � M , M ≥ 3, with parts from A and B, respectively.
Then for all n, k ≥ 0

EB

θ (n, k) ≤ EA

λ (n, k).

Proof. By Corollary 6.7, Theorems 1.1, and 2.1 we have
∞∑

n=0

∞∑

k=0

qnwk(EA

λ (n, k) − EB

θ (n, k)) =
q − qM+1

1 − wqM
+

∞∑

k=2

qk2 [M ]q
1 − wqM

1
(q2; q)k−2

.

All terms are positive except for the first term. If we add the k = 2 term to
the first term, we have

q − qM+1 + q4[M ]q
1 − wqM

,

whose numerator is positive for M ≥ 3. �

One could also apply Theorems 1.2 and 2.2 to obtain this result combi-
natorially. The single part case would be considered separately.

7. Remarks

All of parts 1, 2, . . . may be simultaneously marked for all partitions by the
largest part. The corresponding identity is

1∏∞
k=1(1 − xkqk)

= 1 +
∞∑

j=1

xjq
j

∏j
k=1(1 − xkqk)

.
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A corresponding rational function identity for marking 1, 2, . . . , n is

1∏n
k=1(1 − xkqk)

⎛

⎝
n∑

j=0

qj

(q)j

⎞

⎠ =
1

(q)n

⎛

⎝1 +
n∑

j=1

xjq
j

∏j
k=1(1 − xkqk)

⎞

⎠ .

We do not have such general marked versions for the Rogers–Ramanujan
identities, which would be equivalent to bijections. There are partial results. In
Ref. [9] marked versions of the second Rogers–Ramanujan identity are given
for

1. a single part {M},
2. two parts {2,M},
3. four parts {2, 3, 7, 8}.

We do not have a general version of Proposition 3.1 which gives the last
marked version.

A q-analog of Euler’s odd=distinct theorem [10, Theorem 1] is the fol-
lowing. Let q be a positive integer. The number of partitions of N into q-odd
parts [2k + 1]q is equal to the the number of partitions of N into parts [m]q
whose multiplicity is ≤ qm. A generating function identity equivalent to this
result is

∞∏

n=0

1
1 − t[2n+1]q

= 1 +
∞∑

m=1

t[m]q
1 − tq

m[m]q

1 − t[m]q

m−1∏

k=1

1 − t(q
k+1)[k]q

1 − t[k]q
.

We do not know how to perturb this identity to mark a part.
Given λ and μ, Eλ(μ) is an integer which counts the number of λ’s in μ.

One could imagine defining instead a rational value for this “multiplicity”.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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On Witten’s Extremal Partition Functions
In celebration of George Andrews’ 80th birthday

Ken Ono and Larry Rolen

Abstract. In his famous 2007 paper on three-dimensional quantum gravity,
Witten defined candidates for the partition functions

Zk(q) =
∞∑

n=−k

wk(n)q
n

of potential extremal conformal field theories (CFTs) with central charges
of the form c = 24k. Although such CFTs remain elusive, he proved
that these modular functions are well defined. In this note, we point
out several explicit representations of these functions. These involve the
partition function p(n), Faber polynomials, traces of singular moduli, and
Rademacher sums. Furthermore, for each prime p ≤ 11, the p series Zk(q),
where k ∈ {1, . . . , p−1}∪{p+1}, possess a Ramanujan congruence. More
precisely, for every non-zero integer n we have that

wk(pn) ≡ 0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(mod 211) if p = 2,

(mod 35) if p = 3,

(mod 52) if p = 5,

(mod p) if p = 7, 11.

Mathematics Subject Classification. 05A17, 11Pxx, 11Fxx.

Keywords. Extremal partition function, Modular forms,
Faber polynomials.

1. Introduction and Statement of Results

In Ref. [11], Witten defined a sequence of functions which he proposed en-
code quantum states of three-dimensional gravity. Namely, he purported the
existence of an extremal conformal field theory (in the language of [9]) at any
central charge c = 24k with k ≥ 1. They should have partition functions equal
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to the unique weakly holomorphic1 modular functions on SL2(Z) with princi-
pal part (i.e., the negative powers of q together with the constant term at i∞)
determined by:

Zk(q) =
∞∑

n=−k

wk(n)qn = q−k
∏

n≥2

1
1 − qn

+ O(q). (1.1)

For positive integers k, these functions are Witten’s candidates for the gener-
ating functions that count the quantum states of three-dimensional gravity in
spacetime asymptotic to AdS3 (see Sect. 3.1 of [11]).

It is well known that the Hauptmodul for SL2(Z), given by (here σk(n) =∑
d|n dk and q = e2πiτ )

J(τ) = j(τ) − 744 =

(
1 + 240

∑
n≥1 σ3(n)qn

)3

q
∏

n≥1 (1 − qn)24
− 744 = q−1 + 196884q + · · · ,

generates the vector space of modular functions over C. In particular, since
there are no non-constant holomorphic modular functions, any polynomial in
J(τ) which matches the principal part of Zk(q) is identically equal to Zk(q).
For instance, we have

Z1(q) = J(τ),

Z2(q) = J2(τ) − 393767,

Z3(q) = J3(τ) − 590651J(τ) − 64481279.

Witten gave an elementary argument that proves that the Zk(q) are well
defined. We offer several formulas for the modular functions Zk(q) in different
guises. These formulas rely on expressions for the partition function p(n),
which counts the number of integer partitions of n, Faber polynomials, and
Rademacher expansions, which are all standard in number theory. The hope is
that these expressions might shed light on the search for these extremal CFTs.

Our first interpretation of the functions Zk(q) uses the following generat-
ing function, which encodes the classical Faber polynomials Fd(X), and where
each coefficient of qd is a monic degree n polynomial in X (see [2,12]):

Ω(X; τ) =
1 − 24

∑
n≥1 σ13(n)qn

q
∏

n≥1 (1 − qn)24
· 1
J(τ) − X

=
∑

d≥0

Fd(X)qd

= 1 + (X − 744)q + (X2 − 1488X + 159768)q2 + · · · .

(1.2)

The Faber polynomials can be used to build the unique weakly holomorphic
modular functions Jd(τ) satisfying Jd(τ) = q−d + O(q) (see [2,12]). More
precisely, they satisfy

Jd(τ) = Fd(j(τ)). (1.3)

1A modular form on SL2(Z) is said to be weakly holomorphic if its poles (if any) are sup-
ported at the cusp i∞.
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Our first result is then the following, where for any q-series

f(q) = a−mq−m + · · · + a−1q
−1 + a0 + a1q + · · · ,

we define the following “principal part” operator by:

PP(f)(q) = a−mXm + · · · + a−1X1 + a0X0.

Remark 1.1. The principal part operator PP can be thought of as the com-
plement of MacMahon’s Ω≥ operator. For instance, the reader is also referred
to [1].

Theorem 1.2. If k is a positive integer, then the following are true.

(i) In terms of the partition function p(n), we have

Zk(q) = p(k) + (Jk(q) − Jk−1(q)) +
k−1∑

n=1

p(n) (Jk−n(τ) − Jk−n−1(τ)) .

(ii) If we define Ωk(X0,X1, . . . ) by

Ωk(X0,X1, . . . ) = PP

⎛

⎝q−k
∏

n≥2

1
(1 − qn)

⎞

⎠ ,

then
Zk(q) = Ωk(J0(τ), J1(τ), J2(τ), . . . ).

The first formula relies only on the elementary properties of the partition
generating function, while, as we shall see, the second connects the function
Zk(q) to the world of the Monster and its moonshine.

Our second main result writes Zk(q) as a blend of values of a canonical
non-holomorphic modular function P(τ) at CM points corresponding to ele-
ments of class groups (see Sect. 2.2 for the definition of P(τ) and the sums
of values of P(τ) denoted by Tr(P;n)), and Rademacher sums Rk(τ) (see
Sect. 2.3 for the precise definitions). Specifically, we will express the partition
numbers as traces of singular moduli, that is, sums of values at CM points,
of the special non-holomorphic modular function P(τ). The definition of this
function, the exact notion of traces of singular moduli we require here, and
the Rademacher series in the following theorem will be given in Sect. 2.

Corollary 1.3. We have the following identity:

Zk(q) =
1

24k − 1
Tr(P; k) + (Rk(τ) − Rk−1(τ))

+
k−1∑

n=1

1
24n − 1

Tr(P;n) (Rk−n(τ) − Rk−n−1(τ)) .

Remark 1.4. The results in Ref. [6] indicate how to efficiently compute p(n)
as traces of singular moduli numerically, and may be useful to those wishing
to implement the identities presented here.
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Remark 1.5. Connections between class numbers (which count the number of
terms in the traces of singular moduli discussed here), their algebraic struc-
tures, and black holes were also described recently in Ref. [3]. It would be
interesting to see if the connections between the results discussed here and in
that paper have a deeper connection.

Remark 1.6. Although the partition numbers p(n) may also be written as
Rademacher sums, here we have chosen to highlight their alternative algebraic
representations. Specifically, a version of Rademacher’s famous exact formula
for p(n) is

p(n) =
2π

(24n − 1)
3
4

∞∑

k=1

Ak(n)
k

I 3
2

(
π
√

24n − 1
6k

)
,

where

Ak(n) =
1
2

√
k

12

∑

d (mod 24k)

d2≡−24n+1 (mod 24k)

(
12
d

)
e

πdi
6k

is a Kloosterman sum
((

12
d

)
denotes a Kronecker symbol

)
and I 3

2
is a modified

I-Bessel function.

It turns out that the coefficients of some of the

Zk(q) =
∞∑

n=−k

wk(n)qn

possess striking systematic congruences which are analogous to the celebrated
partition congruences of Ramanujan

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

If p ≤ 11 is prime, then the p series {Z1(q), . . . , Zp−1(q)} ∪ {Zp+1(q)} all
simultaneously satisfy Ramanujan congruences modulo fixed small powers of
p. Namely, we prove the following theorem.

Theorem 1.7. If p ≤ 11 is prime and k ∈ {1, . . . , p − 1} ∪ {p + 1}, then for
every non-zero integer n we have that

wk(pn) ≡ 0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(mod 211) if p = 2,

(mod 35) if p = 3,

(mod 52) if p = 5,

(mod p) if p = 7, 11.

Remark 1.8. We have made no attempt to completely classify all of the
Ramanujan-type congruences satisfied by the Zk(q). For each positive inte-
ger m and each k ≥ 1, it is well known that there are arithmetic progressions
an + b for which

wk(an + b) ≡ 0 (mod m).
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This follows easily from the theory of p-adic modular forms (for example, see
Chapter 2 of [10]). The unexpected phenomenon here is the uniformity of these
congruences among the low index q-series for the primes p ≤ 11.

2. Nuts and Bolts and the Proofs

In this section, we review the basic definitions and results needed for the
statements and proofs of the main theorems.

2.1. Faber Polynomials and the Connection to Monstrous Moonshine

Recall from above that for each d ≥ 0, we have a function Jd, which is the
unique weakly holomorphic modular function on SL2(Z) with principal part

Jd(τ) = q−d + O(q). (2.1)

In particular, J0 = 1 and for d ≥ 1, in terms of the normalized Hecke operators
Td (see [2,12]), we have

Jd(τ) = d (J1(τ)|Td) .

These functions are, of course, monic degree n polynomials in J(τ). These
polynomials are known as Faber polynomials and are closely related to the
denominator formula for the Monster Lie algebra (for details on moonshine
and related subjects, the reader is referred to the excellent exposition in Ref.
[8]). Specifically, the denominator formula states that

J(z) − J(τ) = e−2πiz
∏

m>0
n∈Z

(
1 − e2πimze2πinτ

)cmn
,

where

J(τ) =
∑

n≥−1

cnqn.

This formula plays a key role in the overall proof of moonshine, and in partic-
ular in connecting J with the natural infinite dimensional graded module of
the monster which is appears in moonshine. Equivalently, Asai, Kaneko, and
Ninomiya (cf. Theorem 3 of [2]) proved the following result for the logarithmic
derivative (with respect to τ) of the preceding generating function [see (1.2)]:

∞∑

n=0

Jn(τ)e2πinz = Ω(j(z); τ). (2.2)

2.2. An Algebraic Formula for p(n)
Here, we recall a finite, algebraic formula for the partition numbers obtained
in Ref. [5]. To state this, we first require the quasimodular Eisenstein series

E2(τ) = 1 − 24
∑

n≥1

σ1(n)qn

and the Dedekind eta function

η(τ) = q
1
24

∏

n≥1

(1 − qn) .
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Then we consider the weight −2, level 6 modular function

G(τ) =
1
2

E2(τ) − 2E2(2τ) − 3E2(3τ) + 6E2(6τ)
η(τ)2η(2τ)2η(3τ)2η(6τ)2

.

Our distinguished non-holomorphic modular function P is then obtained by
applying a Maass raising operator to G:

P(τ) =
i

2π

∂G

∂τ
− G(τ)

2π Im(τ)
.

We then require the distinguished collection of binary quadratic forms given
by

QD,6,1 =
{
Q = [a, b, c] : a, b, c ∈ Z, b2 − 4ac = −24D + 1,

6|a, a > 0, b ≡ 1 (mod 12)} .

For each quadratic form Q in this set, we define the corresponding CM
point τQ to be the point in the upper half plane satisfying aτ2

Q + bτQ + c = 0.
Finally, the trace of P at the relevant CM points is given by

Tr(P;n) =
∑

Q∈Qn,6,1

P (τQ) .

In terms of these notation, the main result of Ref. [5] is the following repre-
sentation for p(n) in terms of these traces.

Theorem 2.1. For any n ≥ 1, we have

p(n) =
1

24n − 1
Tr(P;n).

Moreover, (24n − 1)P (τQ) is always an algebraic integer.

2.3. Rademacher Series

In this section, we recall the required expressions for our Rademacher series.
These can be built out of well-known expressions for Poincaré series, for exam-
ple, the reader is referred to Section 6.3 of [4]. However, these formulas here
are very classical, and date back to the seminal work of Rademacher, Zuck-
erman, and others. From these classical results, we can write the following
Rademacher series representation for Jd(τ).

Proposition 2.2. If d is a positive integer, then

Jd(τ) = Rd(τ) = q−d +
∑

n≥1

rd,nqn,

where

rd,n = 2π

√
d

n
×

∑

c>0

K(n; c)
c

I1

(
4π

√
dn

c

)
,

and where

K(n; c) =
∑

r (mod c)×
exp

(
2πi

(−dr + nr

c

))
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is a Kloosterman sum (r̄ denotes the multiplicative inverse of r modulo c) and
I1 is a modified I-Bessel function.

2.4. Proofs of Theorem 1.2, Corollary 1.3 and Theorem 1.7

Here, we prove the main results of this paper.

Proof of Theorem 1.2. We begin with part (i). By (1.1) and (2.1), together
with the fact that weakly holomorphic modular functions are determined by
their principal parts, we have that

Zk(q) = (1 − q) ·
∑

n≥0

p(n)qn−k + O (q)

=
k∑

n=0

(p(n) − p(n − 1)) qn−k + O(q)

= p(0)
(
q−k − q1−k

)
+ p(1)

(
q1−k − q2−k

)

+ · · · + p(k − 1)
(
q−1 − q0

)
+ p(k) + O(q)

= p(k) + (Jk(τ) − Jk−1(τ)) +
k−1∑

n=1

p(n) (Jk−n(τ) − Jk−n−1(τ)) .

The claim in part (ii) follows from part (i) and (2.2). �

Proof of Corollary 1.3. Corollary 1.3 follows from Theorem 2.1 and Proposi-
tion 2.2. �

Proof of Theorem 1.7. Recall that the Atkin U(p)-operator is defined by
(

∑

n�−∞
a(n)qn

)
| U(p) =

∑

n�−∞
a(pn)qn.

Suppose that p ≤ 11 is prime. If F (X) is a monic polynomial with integer
coefficients, we let

F (j(τ)) =
∑

a(n)qn.

If p ≤ 11 is prime and deg(F (X)) < p, then Theorem 2.3 (2) of [7] implies
that

F (j(τ)) | U(p) ≡ a(0) (mod p).

Theorem 1.2 then implies the result for p = 7 and 11 and 1 ≤ k ≤ p − 1. For
the cases where (p, k) ∈ {(7, 8), (11, 12)}, one applies Theorem 2.3 (1) of [7].

For the remaining cases where p ≤ 5 and the modulus of the congruence
is a power of p, one may consider the weight 12kp holomorphic modular forms
Zk(q) · Δ(pτ)kp on Γ0(p), where Δ(τ) is the usual weight 12 normalized cusp
form on SL2(Z). It suffices to show that

(Zk(q) · Δ(pτ)kp) | U(p) ≡ 0

⎧
⎪⎨

⎪⎩

(mod 211) if p = 2,

(mod 35) if p = 3,

(mod 52) if p = 5.
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These congruences are easily confirmed using the well-known theorem of Sturm
(for example, see p. 40 of [10]) which reduces each claim to a finite computation.
In particular, one only needs to check the claimed congruences for the first
kp(p + 1) terms. �

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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A Proof of the Weierstraß Gap Theorem
not Using the Riemann–Roch Formula

Dedicated to our good friend George Andrews at the occasion of his 80th
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Abstract. Usually, the Weierstraß gap theorem is derived as a straightfor-
ward corollary of the Riemann–Roch theorem. Our main objective in this
article is to prove the Weierstraß gap theorem by following an alternative
approach based on “first principles”, which does not use the Riemann–
Roch formula. Having mostly applications in connection with modular
functions in mind, we describe our approach for the case when the given
compact Riemann surface is associated with the modular curve X0(N).

Mathematics Subject Classification. Primary 14H55, 11F03;
Secondary 11P83.

Keywords. Weierstraß gap theorem, Modular functions.

1. Main Objective

Various topical areas in the theory of partitions, such as congruences for parti-
tion numbers, are connected to modular functions for congruence subgroups of
SL2(Z) as, for instance, Γ0(N); see Sect. 15 for definitions. Such functions live
on compact Riemann surfaces, for instance, on X0(N) for Γ0(N). Number the-
oretic aspects then relate to properties of certain subalgebras formed by these
functions. In cases where the genus of such surfaces is zero like, for instance,
for X0(5) and X0(7), these algebras essentially have a relatively simple struc-
ture. For positive genus g, for example, in the case of X0(11), this changes.
One explanation is this: when considering sets of meromorphic functions with
poles only at one point p, the Weierstraß gap theorem says that one can obtain
functions with all possible pole orders at p with exactly g exceptions.

Theorem 1.1 (Weierstraß gap theorem; e.g., Sect. III.5.3 in [6]). Let X be a
compact Riemann surface having genus g ≥ 1. Then, for each p ∈ X, there
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964 P. Paule and C.-S. Radu

are precisely g integers nj = nj(p) with

1 = n1 < · · · < ng ≤ 2g − 1, (1.1)

such that there does not exist a meromorphic function on X which is holomor-
phic on X\{p} and which has a pole of pole order nj at p.

We want to stress that “precisely” in the theorem means that for any
positive integer n other than the g values nj , a meromorphic function with a
pole of order n at p exists.

Usually, as in [6, III. 5.3], this theorem is derived as a straightforward
corollary of the Riemann–Roch theorem. Our main objective in this article
is to prove the Weierstraß gap theorem by following an alternative approach
based on “first principles” which does not use the Riemann–Roch formula.
Having mostly applications in connection with modular functions in mind, we
describe our approach for the case when the given compact Riemann surface X
is associated with X0(N). Some ingredients of our setting are related to ideas
from the celebrated paper [3] by Dedekind and Weber; see [2] for an English
translation together with an excellent introduction by John Stillwell.

2. Introduction

To exemplify the usage of Weierstraß’s gap theorem, we choose an example
related to the classical Ramanujan congruences, which in further details are
discussed in [14]. Following the definition given in Sect. 15, let

M(N) := field of meromorphic modular functions for Γ0(N).

To keep this article as much self-contained as possible, we list basic definitions
and properties of modular functions in a separate Appendix Sect. 15.

One standard way to construct modular functions is by eta quotients,
i.e., products of the form:

∏

d|m
η(dτ)rd , τ ∈ H. (2.1)

Here, H denotes the upper half of the complex plane, m ∈ Z>0, rd are chosen
integers, and η denotes the Dedekind eta function defined as

η(τ) = q(τ/24)
∞∏

n=1

(1 − q(τ)n) where q(τ) = exp(2πiτ). (2.2)

Usually one writes q instead of q(τ).
The case m = �, � ≥ 5 a prime, gives rise to a simple but important class

of eta quotients:

z�(τ) :=
(

η(�τ)
η(τ)

) 24
gcd(�−1,24)

, (2.3)

which are modular functions in M(�) with (e.g., [9, Chap. 7, Theorem 1])

ord[∞]� z∗
� =

� − 1
gcd(� − 1, 12)

. (2.4)
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Weierstraß’s Gap Theorem Without the Riemann–Roch Formula 965

Here, the notation z∗
� is explained by the fact that, in general, every modular

function f ∈ M(N) gives rise to an induced meromorphic function f∗ : X0(N) →
Ĉ := C ∪ {∞} which for x = [τ ]N is defined as

f∗(x) = f∗([τ ]N ) := f(τ), τ ∈ Ĥ := H ∪ Q ∪ {∞};

see Sect. 15. There one also finds the definition of [τ ]N as the orbit of τ under
Γ0(N), as well as definitions of basic notions like of ord[a/c]N f∗, the order of
f∗ at a cusp [a/c]N , a/c ∈ Q ∪ {∞}. Note that [∞]N = [1/0]N .

Example 2.1 [9, Chap. 7, Theorem 1]. Consider

z5(τ) =
(

η(5τ)
η(τ)

)6

= q
∞∏

j=1

(
1 − q5j

1 − qj

)6

= q + 6q2 + 27q3 + 98q4 + · · · .

(2.5)

We have ord[∞]N f∗ := ordq f , confirming that

ord[∞]5 z∗
5 =

5 − 1
gcd(5 − 1, 12)

= 1 = ordq z5. (2.6)

Because of

z�

(
−1

τ

)
z�

(τ

�

)
= �

−
12

gcd(� − 1, 12) , � a prime ≥ 5, (2.7)

z5

(
−1

τ

)
=

5−3

z5(τ/5)
=

1
53

(
1

q1/5
− 6 + 9q1/5 + 10q2/5 − · · ·

)
, (2.8)

which owing to ord[0]N f∗ := ordq1/N f(−1/τ) confirms that

ord[0]5 z∗
5 = − 5 − 1

gcd(5 − 1, 12)
= −1 = ordq1/5 z5

(
−1

τ

)
. (2.9)

In general, for � a prime, X0(�) has exactly two cusps [∞]� and [0]� with
widths 1 and �, respectively; see [9, Chap. 2, Sect. 2], resp. Sect. 15 for the
definition of width. The q-series (2.5) and (2.8) are the local q-expansions of
z∗
5 at these cusps.

Being meromorphic, modular functions form fields. For example, a clas-
sical fact, e.g., [5, Proposition 7.5.1], is that M(N) = C(j(τ), j(Nτ)), where j
is the modular invariant (the Klein j function). The subset

M !(N) := {f ∈ M(N) : f∗ has poles only at (finitely many) points [τ ]N
with τ ∈ Q ∪ {∞}}

obviously is not a field but a C-algebra.1

Example 2.2. By definition (2.5) together with (2.6) and (2.9), z5 ∈ M !(5),
because z∗

5 has its only pole of pole order 1 at [0]5.

1A C-algebra is a commutative ring with 1 which is also a vector space over C.
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966 P. Paule and C.-S. Radu

An important C-subalgebra, in particular, with regard to algorithms, is

M∞(N) := {f ∈ M !(N) : f∗ has poles only at [∞]N}.

By [15, Lemma 20], M∞(N) for each N ≥ 1 contains an eta quotient μN

of the form as in (2.1), such that ord[a/c]N μ∗
N > 0 for all a/c ∈ Q with

[a/c]N �= [∞]N . Hence, one can multiply with a suitable power of μN to turn
any given f ∈ M !(N) into an element μα

Nf in M∞(N).

Example 2.3. Choose f(τ) := j(τ) ∈ M !(N), the Klein j function, and α, such
that μα

N j ∈ M∞(N). Let β := ord[∞]N μN , then ord[∞]N μα
N j = αβ − 1. In

particular

gcd(ord[∞]N μN , ord[∞]N μα
N j) = 1,

which will be needed later. A description of how to construct such μN is given
in [15].

Since we will prove the gap theorem in the version of Theorem 12.2, where
X = X0(N), and with p = [∞]N , a key issue in our approach concerns the
question of finding appropriate representations of M∞(N).

Example 2.4. Owing to (2.6) and (2.9), 1/z5 = 1
q − 6 + 9q + · · · ∈ M∞(5). Be-

cause of ord[∞]5(1/z5)∗ = −1, each f ∈ M∞(5) can be written as a polynomial
in 1/z5; in short:

M∞(5) = C

[ 1
z5

]
,

where C[x] denotes the ring of polynomials in x with complex coefficients. One
also has

M∞(7) = C

[ 1
z7

]
,

but already for � = 11, the situation is quite different. For example, in [14],
we proved (implicitly) that M∞(11) can be represented as a C[1/z11]-module
which is freely generated by modular functions F2, F3, F4, and F6 ∈ M∞(11).
More concretely

M∞(11) = 〈1, F2, F3, F4, F6〉C[ 1
z11

]

:=
{
p0(z11) + p2(z11)F2 + p3(z11)F3

+ p4(z11)F4 + p6(z11)F6 : pi(z11) ∈ C[1/z11]
}
, (2.10)

where the Fi are determined as follows [14, Sect. 9]: from the two functions
f2, f3 ∈ M !(22):

f2(τ) := q−2
∞∏

n=1

(1 − qn)(1 − q2n)3

(1 − q11n)3(1 − q22n)

and

f3(τ) := q−3
∞∏

n=1

(1 − qn)3(1 − q2n)
(1 − q11n)(1 − q22n)3

,
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one constructs the desired Fi ∈ M∞(11) by

F2(τ) := f2(τ) − (U2f3)(τ) = q−2 + 2q−1 − 12 + 5q + 8q2 + · · · ,

F3(τ) := f3(τ) − 4(U2f2)(τ) = q−3 − 3q−2 − 5q−1 + 24 − 13q − · · · ,

F4(τ) := f2(τ)2 +
1
2
(U2f

2
3 )(τ) = q−4 − 3

2
q−3 − 7

2
q−2 − 21

2
q−1 + 48 − · · · ,

F6(τ) := f3(τ)2 + 8(U2f
2
2 )(τ) = q−6 − 6q−5 + 7q−4 + 22q−3 − 41q−2 + · · · ,

where U2 is the special case � = 2 (“summing the even part”) of the standard
U -operator:

U�

∞∑

k=N

a(k)qk :=
∞∑

k=�N/��
a(�k)qk. (2.11)

In addition to ord[∞]11(1/z11)∗ = −5, one has

(ord[∞]11 F ∗
2 , ord[∞]11 F ∗

3 , ord[∞]11 F ∗
4 , ord[∞]11 F ∗

6 ) = (−2,−3,−4,−6).
(2.12)

Thus the minimal pole order of the functions which in the sense of (2.10)
generate M∞(11) is 2, not 1. Indeed, the gap at 1 is predicted by the Weierstraß
gap theorem, Theorem 1.1, owing to the fact that the compact Riemann surface
X := X0(11) has genus 1. A formula for the genus of X0(N), if N = � is a
prime, for instance, can be found in [5, Exercises 3.1.4(e)]; the genus for general
N is determined in [5, Sect. 3.9].

In Sect. 12, we prove Theorem 12.2, a version of the gap Theorem 1.1
for the case X = X0(N) and with the only pole put at ∞, utilizing only first
principles and avoiding the use of the Riemann–Roch formula. In particular,
we avoid the use of any differentials. In addition, our approach provides new
algebraic insight by consisting in a combination of module presentations of
modular function algebras, integral bases, Puiseux series, and discriminants.
For example, using our approach to prove the bound ≤ 2g − 1 stated in the
Weierstraß gap theorem is reduced to an elementary combinatorial argument,
see Sect. 12. Another by-product of our proof of the Weierstraß gap Theo-
rem 12.2 is a natural explanation of the genus g = 0 case as a consequence of
the reduction to an integral basis.

In view of various constructive aspects involved, we are planning to ex-
ploit the algorithmic content of our approach for computer algebra applica-
tions, for instance, for the effective computation of suitable module bases for
modular functions. As already mentioned, some ideas we used trace back to the
celebrated work [3] by Dedekind and Weber; see [2] for an English translation
together with an excellent introduction by John Stillwell.

Finally, we remark that the history of Weierstraß’s gap theorem and
related topics such as Weierstraß points somehow presents a challenge. The
historical account [4] by Andrea Del Centina describes the scientific evolution
of the gap theorem up to the 1970s. Concerning its beginnings Centina says,
“The history of Weierstraß points is not marked by a precise starting date
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968 P. Paule and C.-S. Radu

because it is not clear when Weierstraß stated and proved his Lückensatz (or
“gap” theorem), but one can argue that probably it was in the early 1860s.”

The rest of our article is structured as follows. In Sect. 3, we introduce
order-complete bases of modules over a polynomial ring C[t] to describe mod-
ular function algebras. In Sect. 4, we describe how such bases can be stepwise
modified to obtain an integral basis; i.e., an order-complete basis for the full
algebra M∞(N). Under particular circumstances, one can keep track of the
total number of such steps, which then gives a proof of the Weierstraß gap
Theorem 12.2. To do this bookkeeping, one can use “order-reduction” polyno-
mials discussed in Sect. 5. In Sect. 6, we explain how to obtain order-reduction
polynomials computationally; Sect. 7 deals with important special cases. In
Sects. 8 and 9, we derive important ingredients of our proof of Theorem 12.2;
for example, a factorization property of the discriminant polynomial in Propo-
sition 9.3. In Sects. 10 and 11, we relate discriminant polynomials to order-
reduction polynomials associated with integral bases. In Sect. 12, we use these
results to prove the Weierstraß gap theorem in the version of Theorem 12.2.
To prove the bound 2g − 1 for the size of the maximal gap, our approach
allows a purely combinatorial argument (a gap property of monoids) which
we describe in Sect. 13. At various places, we require functions to have the
separation property, as defined in Sect. 9. In Sect. 14, we prove the existence
of such functions by giving an explicit construction.

The first Appendix Sect. 15 gives a short account on basic modular func-
tion facts needed; the second Appendix Sect. 16 recollects some fundamental
facts about meromorphic functions on Riemann surfaces.

3. Modular Function Algebras as C[t]-Modules

We already used (implicitly) the convention that if a meromorphic function f
has a pole, then the pole order is defined as the negative order at this point,
that is

pordp f := − ordp f.

If f ∈ M∞(N), we simplify notation using the convention for the pole order
at infinity:

pord f := − ord[∞]N f∗.

Definition 3.1. A tuple (b0, b1, . . . , bn−1), n ≥ 1, of modular functions in M∞(N)
is called order-complete if

b0 = 1 and pord bi ≡ i (mod n) for i = 1, . . . , n − 1.

Slightly more generally, any tuple (1, β1, . . . , βn−1) which is a reordering of an
order-complete tuple (1, b1, . . . , bn−1), that is,

{β1, . . . , βn−1} = {b1, . . . , bn−1}, (3.1)

is also called order-complete.
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Example 3.2. The tuple (1, F6, F2, F3, F4) with Fj ∈ M∞(11) as in (2.10) is
order-complete.

Example 3.3. Let

f(τ) := q
1

z11

∞∏

k=1

(1 − q11k)
∞∑

n=0

p(11n + 6)qn.

The tuple (1, f, f2, f3, f4) is order-complete. Notice that pord f = 4. In [13],
it is shown that the subalgebra C[1/z11, f ] of M∞(11), which is generated by
all bivariate polynomials in 1/z11 and f , has a representation as a C[1/z11]-
module as follows:

C

[
1

z11
, f

]
= 〈1, f, f2, f3, f4〉

C[ 1
z11

].

In view of these examples, we note that in contrast to (2.10), C[1/z11, f ] �=
M∞(11). For instance, it is obvious that this subalgebra does not contain any
g ∈ M∞(11) with pord g = 3. Nevertheless, both function tuples

〈1, F6, F2, F3, F4〉C[t], and 〈1, f, f2, f3, f4〉C[t],
form a basis of the corresponding C[t]-module they generate, where t := 1/z11.
Namely, since the generators have different pole-order modulo pord t = 5,
each element contained in these modules can be represented as a unique linear
combination of the module generators with coefficients being polynomials in
t. This motivates the following definition.

Definition 3.4. For t ∈ M∞(N), let n := pord t ≥ 1. Let, M be the C[t]-
module generated by an order-complete tuple in M∞(N), that is,

M = 〈1, b1, b2, . . . , bn−1〉C[t]
:=

{
p0(t) + p1(t)b1 + · · · + pn−1(t)bn−1 : pi(x) ∈ C[x]

}
.

Then, we call (1, b1, . . . , bn−1) an order-complete basis for M over C[t]. Slightly
more generally, any tuple (1, β1, . . . , βn−1) which is a reordering, in the sense
of (3.1), of an order-complete basis (1, b1, . . . , bn−1) for M is also called an
order-complete basis for M .

Proposition 3.5. Let t, f ∈ M∞(N) with n := pord t ≥ 1 and gcd(n,pord f) =
1. Then

C[t, f ] = 〈1, f, f2, . . . , fn−1〉C[t],
where (1, f, f2, . . . , fn−1) is an order-complete module basis.

Proof. If pord f i ≡ pord f j (mod n), then n | (i − j) pord f . This implies

{1, 2, . . . , n − 1} = {pord f (mod n),pord f2 (mod n), . . . ,pord fn−1 (mod n)}.

In addition, as a consequence of Theorem 7.1 and Lemma 7.3 in [14], fn ∈
〈1, f, f2, . . . , fn−1〉C[t]. Hence, C[t, f ] ⊆ 〈1, f, f2, . . . , fn−1〉C[t]. The reverse di-
rection of this inclusion is trivial, which completes the proof. �
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4. Integral Bases

In Example 3.3, we saw that (1, f, . . . , f4) is an order-complete basis of
C[1/z11, f ] which is a proper subalgebra of M∞(11).2 In this section, we shall
see how such an order-complete basis can be step-wise modified to obtain an
order-complete basis for the full algebra M∞(11).

Definition 4.1. Let t ∈ M∞(N) with n := pord t ≥ 1. An order-complete tuple
(1, b1, . . . , bn−1), bj ∈ M∞(N) is called an integral basis for M∞(N) over C[t]
if

〈1, b1, . . . , bn−1〉C[t] = M∞(N).

The motivation for this terminology comes from

Lemma 4.2. Let f ∈ M(N) and t ∈ M∞(N) with pord t ≥ 1 and

gcd(pord f,pord t) = 1.

Then, f satisfies an algebraic relation

fn + p1(t)fn−1 + · · · + pn(t) = 0

with polynomials pj(x) ∈ C[x] (i.e., f is integral over C[t]) if and only if

f ∈ M∞(N).

Moreover, if f ∈ M∞(N), then there exists an algebraic relation with n =
pord t.

Proof. The statement with the assumption f ∈ M∞(N) follows immediately
from Proposition 3.5. For the other direction, assume that m := pordp f∗ > 0
for p �= [∞]N . Then pordp(fn)∗ = mn, a contradiction to

pordp(p1(t)f
n−1 + · · · + pn(t))∗ ≤ (n − 1)m.

�

A crucial observation for the process to obtain an integral basis for
M∞(N) from an order-complete basis is stated in the following.

Proposition 4.3. Let t ∈ M∞(N) with n := pord t ≥ 1. Let (1, b1, . . . , bn−1)
with bj ∈ M∞(N) be an order-complete basis of the C[t]-module:

M := 〈1, b1, . . . , bn−1〉C[t] ⊆ M∞(N).

Then, for any f ∈ M∞(N), there exist polynomials q(x) and pj(x) in C[x],
such that

f =
p0(t)
q(t)

+
p1(t)
q(t)

b1 + · · · +
pn−1(t)

q(t)
bn−1. (4.1)

2Notice that pord 1/z11 = 5.
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Proof. For j ∈ Z≥0, consider the sets

Gj := {tjf − h : h ∈ M}.

For each j ≥ 0, choose a non-zero gj ∈ Gj , such that pord gj is minimal
amongst all the elements in Gj . By construction, using the convention nZ≥0 :=
{nk : k ∈ Z≥0}, we have for all j ≥ 0:

pord gj �∈ S := (0 + nZ≥0) ∪ (pord b1 + nZ≥0) ∪ · · · ∪ (pord bn−1 + nZ≥0).

Obviously, S is an additive submonoid of (Z≥0,+). Moreover, Z≥0\S has only
finitely many elements; let k be the maximal element in this set. Then there
exist cj ∈ C, not all zero, such that

c0g0 + c1g1 + · · · + ck+1gk+1 = 0. (4.2)

This is owing to the fact that equating the coefficients of non-positive powers
in the q-expansions of both sides (which are functions in M∞(N)) gives k + 1
equations in k + 2 variables cj . Hence, the dimension of the C-vector space G,
which is generated by all the gj , j ≥ 0, is bounded by k+1. Using gj := tjf−hj

with hj ∈ M , (4.2) rewrites into the form:

c0(f − h0) + c1(tf − h1) + · · · + ck+1(tk+1f − hk+1)

= (c0 + c1t + · · · + ck+1t
k+1)f − (c0h0 + c1h1 + · · · + ck+1hk+1) = 0.

The linear combination of hj is in M ; hence, this gives the desired relation for
f with q(t) = c0 + c1t + · · · + ck+1t

k+1. �

Corollary 4.4. Let t ∈ M∞(N) with n := pord t ≥ 1. Let (1, b1, . . . , bn−1) with
bj ∈ M∞(N) be an order-complete basis of the C[t]-module:

M := 〈1, b1, . . . , bn−1〉C[t] ⊆ M∞(N).

If M �= M∞(N), then there exist cj ∈ C, not all zero, and α in C, such that

hα :=
c0 + c1b1 + · · · + cn−1bn−1

t − α
∈ M∞(N)\M. (4.3)

In particular, there exists a uniquely determined k ∈ {1, . . . , n − 1}, such that

pordhα = pord bk − n ≥ k and ck �= 0. (4.4)

Proof. By Proposition 4.3, there exists an f ∈ M∞(N)\M of the form (4.1),
such that q(x) � pi(x) for some i ∈ {0, . . . , n − 1}. Hence, there exists α ∈ C,
such that x−α | q(x), but x−α � pi(x). Consequently, q(t)/(t−α) ∈ M∞(N)
and thus

g := f
q(t)
t − α

=
p0(t) + p1(t)b1 + · · · + pn−1(t)bn−1

t − α
∈ M∞(N)\M.

By division with remainder, there are polynomials qj(x) ∈ C[x] and cj ∈ C,
such that pj(x) = (x − α)qj(x) + cj , j = 0, . . . , n − 1. Rewriting the represen-
tation of g and noting that ci �= 0 proves the first part of the statement on hα.
To prove (4.4), consider

(t − α)hα = c0 + c1b1 + · · · + cn−1bn−1,
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which implies

pord(thα) = n + pordhα = max
1≤j≤n−1,

cj �=0

{pord bj}.

Let k be the index for which pord bk becomes maximal with ck �= 0. Recalling
pord bj ≡ j (mod n), j = 1, . . . , n, proves pord bk ≥ k + n. Because otherwise
pord bk = k which owing to the choice of k would imply pord bj = j for
all j = 1, . . . , n, and the given order-complete basis would be integral. This
proves (4.4). �

Corollary 4.4 motivates the following.

Definition 4.5. Let M = 〈1, b1, . . . , bn−1〉C[t] and hα ∈ M∞(N) be as in Corol-
lary 4.4; i.e., M �= M∞(N) and pordhα = pord bk − n ≥ k. The replacement

(1, . . . , bk−1, bk, bk+1, . . .) → (1, . . . , bk−1, hα, bk+1, . . .)

of bk by hα is called a pole-order-reduction step associated with α ∈ C.

We summarize in the form of

Proposition 4.6. Let t ∈ M∞(N) with n := pord t ≥ 1. Let (1, b1, . . . , bn−1)
with bj ∈ M∞(N) be an order-complete basis of the C[t]-module:

M := 〈1, b1, . . . , bn−1〉C[t] ⊆ M∞(N).

If M �= M∞(N), then:

(i) By a finite sequence of pole-order-reduction steps the order-complete basis
(1, b1, . . . , bn−1) can be transformed into an integral basis (1, β1, . . . , βn−1),
such that

〈1, β1, . . . , βn−1〉C[t] = M∞(N).

(ii) If (1, β′
1, . . . , β

′
n−1) is any another integral basis, that is,

〈1, β′
1, . . . , β

′
n−1〉C[t] = M∞(N),

then

{pordβ1, . . . ,pordβn−1} = {pordβ′
1, . . . ,pordβ′

n−1}. (4.5)

Proof. The proof of part (i) is an immediate consequence of Corollary 4.4.
Namely, owing to (4.4), each step reduces the pole order of one of the basis
elements by n. This guarantees termination in finitely many steps. To prove
(ii), without loss of generality, we can assume that pordβj ≡ pordβ′

j ≡ j
(mod n) for all j. Suppose pordβj �= pordβ′

j for some j ∈ {1, . . . , n − 1},
i.e., pordβ′

j = pordβj + kn with k ≥ 1. However, this implies that βj �∈
〈1, β′

1, . . . , β
′
n−1〉C[t], because then, no element in this module can have the

same pole order as βj , a contradiction. �
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5. Order-Reduction Polynomials

It was shown in the previous section that by applying a procedure using finitely
many steps, any order-complete basis of a subalgebra of M∞(N) can be ex-
tended to an integral basis of M∞(N). Moreover, by (4.5), the pole orders of
the integral basis functions are uniquely determined. It turns out that under
particular circumstances, one can keep track of the number of order-reduction
steps, which then gives a proof of the Weierstraß gap Theorem 12.2. To do this
bookkeeping, one can use “order-reduction” polynomials. To our knowledge,
for the first time such polynomials have been used by Dedekind and Weber
[3], see [2] for Stillwell’s translation into English.

Throughout this section, t ∈ M∞(N) with n := pord t ≥ 1 and (1, b1, . . . ,
bn−1) with bj ∈ M∞(N) is an order-complete basis of the C[t]-module:

M := 〈1, b1, . . . , bn−1〉C[t] ⊆ M∞(N).

Owing to t(τ) = ∞ if and only if [τ ]N = [∞]N , t is a holomorphic function on
H. Moreover, the induced function t∗, which is meromorphic on the compact
Riemann surface X0(N), has a pole only at [∞]N .

Remark 5.1 (A basic notational convention). In general, every modular func-
tion f ∈ M(N) gives rise to an induced meromorphic function f∗ : X0(N) → Ĉ

which for x = [τ ]N is defined as

f∗(x) = f∗([τ ]N ) := f(τ), τ ∈ Ĥ; (5.1)

see Appendix Sect. 15. A central theme in what follows is to consider maps:

f∗ ◦ (t∗ | U)−1 : V → Ĉ,

where U ⊆ X0(N) and V ⊆ C are open sets, such that

t∗ : U → V is bi-holomorphic.

Hence, for v ∈ V , the evaluations

f∗ ◦ (t∗ | U)−1(v) = f∗((t∗ | U)−1(v))

have to be interpreted in the sense of (5.1), i.e., interpreting x = (t∗ | U)−1(v)
as x = [τ ]N for some τ ∈ Ĥ.

Depending on the context, we will freely move between considering t as
a function on H, resp. Ĥ, and its induced version t∗ : X0(N) → Ĉ.

Using the terminology explained in the Appendix Sect. 16, we assume
that v0 ∈ C is not a branch point of t∗; in short, v0 �∈ BranchPts(t∗). In this
case, there are n pairwise distinct points xj = [τj ]N ∈ X0(N) with τj ∈ H,
such that

t∗−1(v0) = {x1, . . . , xn}. (5.2)

In addition, there exists a neighborhood V of v0 and neighborhoods Uj of xj ,
such that

t∗−1(V ) = U1 ∪ · · · ∪ Un,
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as a disjoint union of open sets, and such that for j = 1, . . . , n, the restricted
functions

t∗|Uj : Uj → V,

are bi-holomorphic.
Let

Tj := (t∗|Uj)−1 : V → Uj , j = 1, . . . , n.

Define

Dt(1, b1, . . . , bn−1) : V → C (5.3)

by

Dt(1, b1, . . . , bn−1)(v) :=

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
(b∗

1 ◦ T1)(v) (b∗
1 ◦ T2)(v) · · · (b∗

1 ◦ Tn)(v)
...

...
. . .

...
(b∗

n−1 ◦ T1)(v) (b∗
n−1 ◦ T2)(v) · · · (b∗

n−1 ◦ Tn)(v)

∣∣∣∣∣∣∣∣∣

2

.

Taking the square of the determinant guarantees that the expression on the
right side is symmetric with respect to any permutation of T1, . . . , Tn. Con-
sequently, Dt(1, b1, . . . , bn−1) is a holomorphic function on V . Carrying out
the same construction on neighborhoods V for all v0 ∈ C\BranchPts(t∗), and
gluing the resulting functions Dt(1, b1, . . . , bn−1) : V → C together, gives a
global holomorphic function:

Dt(1, b1, . . . , bn−1) : C\BranchPts(t∗) → C.

Using the same arguments as in the proof of Theorem 8.2 in [7], this function
can be extended to a meromorphic function:

Dt(1, b1, . . . , bn−1) : Ĉ := C ∪ {∞} → Ĉ

with ∞ as its only pole. Classical complex analysis tells that M(Ĉ) = C(z), i.e.,
the field of meromorphic functions on Ĉ are rational functions with coefficients
in C. Hence, we have the following.

Lemma 5.2. The meromorphic function Dt(1, b1, . . . , bn−1)(v) constructed above
is a polynomial function in v.

Definition 5.3. The polynomial Dt(1, b1, . . . , bn−1)(x) ∈ C[x] is called order-
reduction polynomial for the order-complete basis (1, b1, . . . , bn−1), bj ∈ M∞

(N), of the C[t]-module

〈1, b1, . . . , bn−1〉C[t] ⊆ M∞(N),

where t ∈ M∞(N) with n := pord t ≥ 1.

Example 5.4. Taking

t :=
1

z11
=

1
q5

− 12
q4

+
54
q3

− 88
q2

− 99
q

+ 540 − 418q − · · · ∈ M∞(11)

and

(1, b1, . . . , b4) := (1, F2, F3, F4, F6),
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where Fj ∈ M∞(11) are as in Example 2.4, one obtains

D1/z11(1, F2, F3, F4, F6)(x) = x4(55116 − 2 · 32 · 439081x + 55x2). (5.4)

Example 5.5. Taking t and the bj as in Example 5.4, one obtains

D1/z11(1, F2, F
2
4 , F4, F6)(x) = (113 + x)2D1/z11(1, F2, F3, F4, F6)(x). (5.5)

Remark 5.6. How such polynomials are computed is explained in Sect. 6.

In Corollary 4.4, we proved that if M �= M∞(N), then there exist cj ∈ C,
not all zero, and v0 in C, such that

c0 + c1b1 + · · · + cn−1bn−1

t − v0
∈ M∞(N)\M. (5.6)

Recall that we denoted the n pairwise distinct preimages of v0 as follows:

t∗(x1) = t∗([τ1]N ) = t(τ1) = v0, . . . , t
∗(xn) = t∗([τn]N ) = t(τn) = v0.

Relation (5.6) implies

c0 + c1b1(τ1) + · · ·+ cn−1bn−1(τ1) = 0, . . . , c0 + c1b1(τn) + · · ·+ cn−1bn−1(τn) = 0.

As a necessary condition for the existence of cj ∈ C not all zero, the determi-
nant

∣∣∣∣∣∣∣∣∣

1 b1(τ1) · · · bn−1(τ1)
1 b1(τ2) · · · bn−1(τ2)
...

...
. . .

...
1 b1(τn) · · · bn−1(τn)

∣∣∣∣∣∣∣∣∣

of the corresponding linear system has to be zero. In view of

(b∗
i ◦ Tj)(v0) = b∗

i ((t
∗ | Uj)−1(v0)) = b∗

i (xj) = bi(τj),

the square of this determinant (taking the underlying matrix transposed) is
Dt(1, b1, . . . , bn−1)(v0). Above, we used the fact that the definition for

Dt(1, b1, . . . , bn−1) : C\BranchPts(t∗) → C

extends to the polynomial function

Dt(1, b1, . . . , bn−1) : Ĉ → Ĉ.

This means, the case when v0 ∈ C is a branch point of t∗ is also covered by
the same determinant condition:

Dt(1, b1, . . . , bn−1)(v0) = 0.

However, if v0 ∈ C is a branch point, this condition is automatically satisfied,
because then at least the two rows

(1, b1(τi), . . . , bn−1(τi)) and (1, b1(τj), . . . , bn−1(τj)),

are equal for i �= j. Summarizing, this gives
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Lemma 5.7. Let t ∈ M∞(N) with n := pord t ≥ 1. Let (1, b1, . . . , bn−1) with
bj ∈ M∞(N) be an order-complete basis of the C[t]-module

M := 〈1, b1, . . . , bn−1〉C[t] ⊆ M∞(N) and M �= M∞(N).

Let v0 ∈ C be such that3

c0 + c1b1 + · · · + cn−1bn−1

t − v0
∈ M∞(N)\M.

for cj ∈ C, not all zero. Then

Dt(1, b1, . . . , bn−1)(v0) = 0. (5.7)

If v0 is a branch point of t∗, the condition (5.7) is automatically satisfied.

6. How to Compute Order-Reduction Polynomials

Next, we explain how to compute the order-reduction polynomials in (5.4)
and (5.5).

To this end, it will be convenient to introduce the following notation:

Definition 6.1. If

f(τ) =
∞∑

n=−K

fnqn

is the q-expansion at infinity for some f ∈ M∞(N), we define

f̃(q) :=
∞∑

n=−K

fnqn,

that is,

f(τ) = f̃(q(τ)) = f̃(q) with q = q(τ) = e2πiτ for τ ∈ H.

Returning to the setting (5.2), we again assume that v0 ∈ C is not a
branch point of t∗. This means that there exists pairwise distinct xj = [τj ]N ∈
X0(N) with τj ∈ H ∪ Q such that [τj ]N �= [∞]N and4

t∗−1(v0) = {x1, . . . , xn},

together with neighborhoods Uj of the xj , such that for a suitable neighbor-
hood V of v0:

t∗−1(V ) = U1 ∪ · · · ∪ Un,

as a disjoint union of open sets, and such that the restricted functions

Tj = (t∗|Uj)−1 : V → Uj

are bi-holomorphic.

3The existence of such a v0 is owing to Corollary 4.4.
4Notice that, in particular, τ �= ∞.
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For each j = 1, . . . , n and v ∈ V our goal, achieved in Lemma 6.2(ii), is to
determine expressions for qj(v) := q2πiτ(j), where τ(j) is close to τj , such that

t∗([τ(j)]N ) = t(τ(j)) = t̃(qj(v)) = v.

For q = e2πiτ with τ ∈ H, we have

t̃(q) =
1
qn

(1 + ϕ(q)) :=
1
qn

(1 + ϕ1q + ϕ2q
2 + · · · ).

Here, we assume that the first coefficient in this q-expansion of t is 1. Now, if

1 + ψ(q) := 1 + ψ1q + ψ2q
2 + · · · :=

1
1 + ϕ(q)

,

and

(1 + ψ(q))1/n :=
∞∑

l=0

(
1/n

l

)
ψ(q)l, (6.1)

then

t̃(q) =
1

U(q)n
, where U(q) := q(1 + ψ(q))1/n. (6.2)

To fix a branch of the nth root, we choose the preimage τn and recall that

v0 = t∗([τn]N ) = t(τn) = t̃(e2πiτn).

Now, for each v ∈ C close to v0, there is for each j ∈ {1, . . . , n} a uniquely
determined τ(j) ∈ H close to τj , such that

v = t∗([τ(j)]N ) = t(τ(j)) = t̃(e2πiτ(j)). (6.3)

By choosing a neighborhood of τn, we fix a branch of the nth root of v ∈ C

close to v0:

n
√

v :=
1

U(q)
with q = e2πiτ(n), (6.4)

where τ(n) is close to τn and determined as in (6.3).
In addition, let W be such that U(W (q)) = W (U(q)) = q, and define

ζn := e
2πi
n .

After this preparation, in view of (6.4) we can put things together as follows.

Lemma 6.2. In the given setting, for j = 1, . . . , n and v ∈ C close to v0, let

qj(v) := W
(
ζj
n

1
n
√

v

)
,

where n
√

v is defined as in (6.4).
Then, for j = 1, . . . , n and v ∈ C close to v0:

qj(v) = e2πiτ(j), (i)

where [τ(j)]N = Tj(v) with τ(j) as in (6.3), and

t̃(qj(v)) = v, (ii)

where the values qj(v) are pairwise distinct for j = 1, . . . , n.
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Proof. The values qj(v), j = 1, . . . , n, are defined by power series in q =
q(τ(n)):

qj(v)=W (ζj
nU(q))=ζj

nq + O(q2) with q=e2πiτ(n) where τ(n) is close to τn.

For a fixed v close to v0, these values are pairwise different for j = 1, . . . , n,
because

qj(v) = W (ζj
nU(q)) = W (ζk

nU(q)) = qk(v) ⇒ ζj
nU(q) = ζk

nU(q).

By (6.2)

t̃(qj(v)) =
1

U(qj(v))n
= U

(
W

(
ζj
n

1
n
√

v

))−n

= v.

This implies (i) and (ii). �

Lemma 6.2 enables us to compute the polynomial Dt(1, b1, . . . , bn−1)(v),
because by part (i) with i = 1, . . . , n − 1 and j = 1, . . . , n:

(b∗
i ◦ Tj)(v) = b∗

i (Tj(v)) = b̃i(e2πiτ(j)) =
∑

�=− pord bi

β
(i)
� qj(v)�=b̃i

(
W

(
ζj
n

1
n
√

v

))
.

This means, each (b∗
i ◦ Tj)(v) can be represented as a Laurent series in powers

of 1/v1/n:

(b∗
i ◦ Tj)(v) = ζ−j pord bi

n v
pord bi

n + αi,jv
pord bi−1

n + · · · + βi,j
1

v1/n
+ · · · ,(6.5)

with coefficients αi,j , βi,j , etc., in C, and under the assumption that the first
Laurent series coefficient β

(i)
− pord bi

of each b̃i(qj(v)) is equal to 1. Owing to
Lemma 5.2, Dt(1, b1, . . . , bn−1)(v) as defined in (5.3) must be a polynomial in
v. Consequently, we can compute it by taking suitable truncated versions of
the expansions (6.5).

Remark 6.3. This is how we computed the order-reduction polynomials in (5.4)
and (5.5).

7. Discriminant Polynomials

Important special cases of order-reduction polynomials are produced by order-
complete module bases of C[t, f ] of the form as in Proposition 3.5.

Definition 7.1. Let t, f ∈ M∞(N) with n := pord t ≥ 1, and gcd(n,pord f) =
1. Then

Dt(f)(v) := Dt(1, f, f2, . . . , fn−1)(v)

is called the discriminant polynomial for the order-complete basis (1, f, . . . ,
fn−1) of the C[t]-module:

〈1, f, f2 . . . , fn−1〉C[t] = C[t, f ] ⊆ M∞(N).
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The discriminant polynomial

Dt(f)(v) =

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
f∗(T1(v)) f∗(T2(v)) · · · f∗(Tn(v))

...
...

. . .
...

f∗(T1(v))n−1 f∗(T2(v))n−1 · · · f(Tn(v))n−1

∣∣∣∣∣∣∣∣∣

2

=
∏

1≤i<j≤n

(
f∗(Ti(v)) − f∗(Tj(v))

)2

factors as the square of a Vandermonde determinant. Now, invoking (6.5) with
bi = f , and thus, pord bi = pord f , gives

f∗(Tj(v)) = ζ−j pord f
n v

pord f
n + αjv

pord f−1
n + · · · + βj

1
v1/n

+ · · · .

Hence

f∗(Ti(v)) − f∗(Tj(v)) = (ζ−i pord f
n − ζ−j pord f

n )v
pord f

n + · · ·
and thus

Dt(f)(v) = constant · v2(n
2) pord f

n + · · · .

Summarizing, we have the following.

Lemma 7.2. Let t, f ∈ M∞(N) with n := pord t ≥ 1, and gcd(n,pord f) = 1.
Then, the degree of the discriminant polynomial Dt(f)(x) ∈ C[x] is

degx Dt(f)(x) = (n − 1) pord f. (7.1)

8. Reduction Steps and Order-Reduction Polynomials

In Sect. 4, we described how order-complete bases can be transformed into
integral bases of M∞(N) by a finite sequence of pole-order-reduction steps.
In this section, we establish a link between pole-order-reduction steps and
order-reduction polynomials.

To this end, we consider again our standard situation: let t ∈ M∞(N)
with n := pord t ≥ 1, let (1, b1, . . . , bn−1) with bj ∈ M∞(N) be an order-
complete basis of the C[t]-module:

M := 〈1, b1, . . . , bn−1〉C[t] ⊆ M∞(N).

By Corollary 4.4, when M �= M∞(N), there exist cj ∈ C, not all zero, and α
in C, such that

hα :=
c0 + c1b1 + · · · + cn−1bn−1

t − α
∈ M∞(N)\M. (8.1)

In particular, there exists a k ∈ {1, . . . , n − 1}, such that

pordhα = pord bk − n ≥ k and ck �= 0. (8.2)
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Proposition 8.1. With regard to order-reduction polynomials, this setting is re-
flected by

Dt(1, b1, . . . , bk−1, hα, bk+1, . . . , bn−1)(v)

=
c2k

(v − α)2
Dt(1, b1, . . . , bk−1, bk, bk+1, . . . , bn−1)(v). (8.3)

Proof. After filling the right side of (8.1) into the determinant definition (5.3)
of Dt(1, b1, . . . , bk−1, hα, bk+1, . . . , bn−1)(v) and noticing that t∗(Tj(v)) = v,
j = 1, . . . , n, the proof is a straightforward consequence of determinant calcu-
lus. �

In other words, a pole-order-reduction step associated with α ∈ C:

(1, . . . , bk−1, bk, bk+1, . . .) → (1, . . . , bk−1, hα, bk+1, . . .),

from one order-complete basis to another corresponds to factoring the order-
reduction polynomial as

Dt(1, b1, . . . , bk−1, bk, bk+1, . . . , bn−1)(x)

= constant · (x − α)2Dt(1, b1, . . . , bk−1, hα, bk+1, . . . , bn−1)(x). (8.4)

Example 8.2. In the situation of Example 5.5

F3 + 12F2 + 112 = −161,051 + 15,972F2 + F 2
4 + 242F4 − 121/4F6

1/z11 + 113
.

9. Local Puiseux Expansions

By considering local expansions at finitely many points [τj ]N ∈ X0(N) for
τj ∈ Ĥ = H ∪ Q ∪ {∞}, in this section, we derive important ingredients for
our proof of Theorem 12.2. To this end, we consider charts ϕτ0 : U0 → C with
ϕτ0([τ ]N ) := φτ0(τ) defined in a standard way either by

φτ0(τ) := τ − τ0, (9.1)

if τ0 ∈ H is not an elliptic point, or by

φτ0(τ) :=
(τ − τ0

τ − τ0

)h(τ0)

, (9.2)

if τ0 ∈ H is an elliptic point (cf. (9.5)), or according to (15.3) by

φτ0(τ) := e2πiγ−1τ/wN (c), (9.3)

if τ0 = a
c = γ∞ ∈ Q ∪ {∞}.

Here, U0 ⊆ X0(N) is a neighborhood of [τ0]N ; furthermore, the periods h(τ0)
equal either 2 or 3. We note explicitly that all these charts are centered at 0,
that is,

φτ0(τ0) = 0. (9.4)
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Remark 9.1. The explanation why such charts have to be chosen can be found,
for instance, in [5, Sect. 2.2 and Sect. 2.3]. Charts, being homeomorphisms
between open subsets of Riemann surfaces and of C, are used to set up local
series expansions. Charts of the kind as in (9.2) have to be taken when [τ0]N
is an elliptic point, i.e., if

{γ ∈ Γ0(N) : γτ0 = τ0} �=
{(

1 0
0 1

)
,

(−1 0
0 −1

)}
. (9.5)

Throughout this section, again t ∈ M∞(N) with n := pord t ≥ 1. Now,
we reconsider the setting in Sect. 5 by dropping the assumption that v0 ∈ C is
not a branch point of t∗. This means, we allow � ≤ n pairwise distinct points
xj = [τj ]N ∈ X0(N) with τj ∈ H ∪ Q, such that [τj ]N �= [∞]N and5

t∗−1(v0) = {x1, . . . , x�}.

There exists a neighborhood V0 of v0 and neighborhoods Uj of the xj , such
that

t∗−1(V0) = U1 ∪ · · · ∪ U�,

as a disjoint union of open sets.
Now, if � < n, not all of the restricted functions

t∗|Uj : Uj → V0

are bi-holomorphic.
Summarizing this setting,

t∗(x) = v0 has � ≤ n solutions x1 = [τ1]N , . . . , x� = [τ�]N

with multiplicities k1, . . . , k�, respectively, i.e., k1 + · · · + k� = n.
Hence, if V is an open subset of V0 not containing v0, then for each

j = 1, . . . , �, there exist pairwise disjoint open subsets Uj,k ⊆ Uj , k = 1, . . . , kj ,
such that

t∗−1(V ) =
(
U1,1 ∪ · · · ∪ U1,k1

)
∪ · · · ∪

(
U�,1 ∪ · · · ∪ U�,k�

)
(9.6)

as a disjoint union, and for k = 1, . . . , kj , the restricted functions

t∗|Uj,k : Uj,k → V

are bi-holomorphic.
For all [τ ]N ∈ Uj , j = 1, . . . , �, one has expansions

t∗([τ ]N ) = v0 + aj,0φτj
(τ)kj + aj,1φτj

(τ)kj+1 + · · · with aj,0 �= 0. (9.7)

Again, using (6.1), one has

t(τ) − v0 = Bj(φτj
(τ))kj , (9.8)

where

Bj(z) := z
(
aj,0 + aj,1z + · · ·

)1/kj

.

5Note that, in particular, τj �= ∞.
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For j = 1, . . . , �, let

Aj(z) = Aj,1z + Aj,2z
2 + · · · such that Aj(Bj(z)) = Bj(Aj(z)) = z.

Now, by inverting the relation (9.8) and using the Puiseux series, the situation
of (9.6) is reflected as follows: for each v ∈ V , there is for fixed (j, k), j =
1, . . . , kj and k ∈ {1, . . . , kj}, a uniquely determined τ = τ(j, k) ∈ Uj,k, such
that

[τ ]N = [τ(j, k)]N = (t∗ | Uj,k)−1(v).

For such pairs τ = τ(j, k) and v, one has

φτj
(τ) = φτj

(τ(j, k)) = Aj

(
ζk
kj

(v − v0)1/kj

)

= Aj,1ζ
k
kj

(v − v0)1/kj + Aj,2ζ
2k
kj

(v − v0)2/kj + · · · .

(9.9)

As in Sect. 5, one works with a fixed branch of the kjth root; moreover, we note
that as a consequence of the definition of Aj(z), Aj,1 �= 0 for all j = 1, . . . , �.

To connect to discriminant polynomials, let f ∈ M∞(N) be such that
gcd(n,pord f) = 1. Moreover, without loss of generality, for j = 1, . . . , �, we
can assume that the neighborhoods Uj are chosen, such that the following
expansions exist for all [τ ]N ∈ Uj :

f∗([τ ]N ) = f(τ) = f(τj) +
∞∑

m=1

bj,mφτj
(τ)m. (9.10)

Invoking (9.9), one obtains

Lemma 9.2. For v0 ∈ C and j = 1, . . . , �, suppose that open neighborhoods
Uj,k, k = 1, . . . , kj and V are chosen as above. Then, there exist series expan-
sions with complex coefficients cj,p, such that for all v ∈ V :

f
(
(t∗ | Uj,k)−1(v)

)
= f(τj) +

∞∑

p=1

cj,pζ
pk
kj

(v − v0)p/kj . (9.11)

Proof. Setting [τ ]N := (t∗ | Uj,k)−1(v) ∈ Uj,k, the statement follows from
applying (9.9) to (9.10):

f(τ) = f(τj) +
∞∑

m=1

bj,m

(
Aj,1ζ

k
kj

(v − v0)1/kj + Aj,2ζ
2k
kj

(v − v0)2/kj + · · ·
)m

.

�

To adapt to the refined setting (9.6), we extend our Tj-notation to the
additional restricted functions:

Tj,k = (t∗|Uj,k)−1 : V → Uj,k.

Finally, we use the information we obtained in terms of the local holomorphic
Puiseux series expansion to represent the discriminant polynomial at v0 ∈ C.
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Namely, for all v ∈ V :

Dt(f)(v) = (−1)(
n
2)

∏

(j,k) 	=(j′,k′)

(f(Tj,k(v)) − f(Tj′,k′(v)))

= (−1)(
n
2)

∏

1≤j≤�
1≤k,k′≤kj,k �=k′

(f(Tj,k(v)) − f(Tj,k′(v)))

∏

1≤j,j′≤�,j �=j′
1≤k,k′≤kj

(f(Tj,k(v)) − f(Tj′,k′(v)))

= (−1)(
n
2)

∏

1≤j≤�
1≤k,k′≤kj,k �=k′

( ∞∑

p=1

cj,p(ζ
pk
kj

− ζpk′
kj

)(v − v0)p/kj

)

∏

1≤j,j′≤�,j �=j′
1≤k,k′≤kj

(f(τj) − f(τj′) + O((v − v0)1/kj ) − O((v − v0)1/kj′ )).

The last equality is by (9.11); it gives rise to the following.

Proposition 9.3. Let t ∈ M∞(N) with n = pord t ≥ 1, let f ∈ M∞(N) be such
that gcd(n,pord f) = 1. For v0 ∈ C, suppose that

t∗(x) = v0 has � ≤ n pairwise distinct solutions x1 = [τ1]N , . . . , x� = [τ�]N

with multiplicities k1, . . . , k�, respectively, i.e., k1 + · · · + k� = n.
If

the values f(τ1), . . . , f(τ�) are pairwise distinct, (9.12)

and

f ′(τ1) �= 0, . . . , f ′(τ�) �= 0, (9.13)

then there exists a polynomial p(x) ∈ C[x], such that for all v ∈ C :

Dt(f)(v) = (v − v0)n−�p(v) where p(v0) �= 0. (9.14)

Proof. The statement follows from the last equality of the derivation preceding
this proposition. Namely, under the condition (9.12), the second product on
the right side of this equality is non-zero for v = v0. Condition (9.13) means
that bj,1 �= 0 in (9.10), thus cj,1 �= 0 for j = 1, . . . , � in (9.11). Consequently,
from the first product in the expression under consideration, one can pull out
v − v0 as follows:

c1,1

∏

1≤k,k′≤k1,k �=k′
(ζk

k1 − ζk′
k1)(v − v0)

1/k1 · · · c�,1

∏

1≤k,k′≤k�,k �=k′
(ζk

k�
− ζk′

k�
)(v − v0)

1/k�

= constant · (v − v0)
2(k1

2 )
1

k1
+···+2(k�

2 )
1

k� .

Recalling that k1 + · · · + kl = n completes the proof for all v ∈ V , where V is
an open subset of a neighborhood V0 of v0, such that V does not contain v0.
However, invoking the identity theorem from complex analysis, the statement
extends to all v ∈ C. �
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Properties (9.12) and (9.13) are sufficiently important to deserve a

Definition 9.4 (separation property). Let t ∈ M∞(N) with n := pord t ≥ 1, let
f ∈ M∞(N) be such that gcd(n,pord f) = 1. For v0 ∈ C, suppose that

t∗(x) = v0 has � ≤ n pairwise distinct solutions x1 = [τ1]N , . . . , x� = [τ�]N .

We say that f has the separation property for (t, v0) if f satisfies (9.12)
and (9.13).

Remark 9.5. In Sect. 14, we describe how to construct such an f having the
separation property.

An immediate consequence of Proposition 9.3 is

Corollary 9.6. Let f have the separation property for (t, β) with β ∈ C. Then

Dt(f)(β) = 0 ⇐⇒ β ∈ BranchPts(t∗). (9.15)

Another consequence of our analysis above is

Proposition 9.7. Let t ∈ M∞(N) with n := pord t ≥ 1, and let f ∈ M∞(N)
be such that gcd(n,pord f) = 1. For v0 ∈ C, suppose that

t∗(x) = v0 has � ≤ n pairwise distinct solutions x1 = [τ1]N , . . . , x� = [τ�]N
with multiplicities k1, . . . , k�, respectively, i.e.,k1 + · · · + k� = n.

For complex numbers a0, . . . , an−1, not all zero, define a meromorphic function
on H by

F (τ) :=
a0 + a1f(τ) + · · · + an−1f(τ)n−1

t(τ) − v0
.

If f has the separation property for (t, v0), then6

F (τj) = ∞ for some j ∈ {1, . . . , �}. (9.16)

Proof. Suppose F ∗ is analytic on X0(N)\{[∞]N}. Then, assuming the setting
as above, by (9.7), one has for all τ ∈ U1, a series expansion

a0 + a1f(τ) + · · · + an−1f(τ)n−1 = (t(τ) − v0)F (τ)

= (a1,0φτ1(τ)k1 + a1,1φτ1(τ)k1+1 + · · · )(F0 + F1φτ1(τ) + · · · ) (9.17)

with a1,0 �= 0. Hence, owing to (9.4),

a0 + a1f(τ1) + · · · + an−1f(τ1)n−1 = 0,

which implies a factorization

a0 + a1f(τ) + · · · + an−1f(τ)n−1

= (f(τ) − f(τ1))(A0 + A1f(τ) + · · · + An−2f(τ)n−2)

= (b1,0φτ1(τ) + b1,1φτ1(τ)2 + · · · )(A0 + A1f(τ) + · · · + An−2f(τ)n−2),

6Note that τj ∈ H∪Q are such that [τj ]N �= [∞]N . Hence, (9.16) implies that F �∈ M∞(N).
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where the last equality is by (9.10) with b1,0 �= 0 owing to (9.13). As a conse-
quence of (9.17), if k1 > 1:

A0 + A1f(τ1) + · · · + An−2f(τ1)n−2 = 0,

and by iteration

a0 + a1f(τ) + · · · + an−1f(τ)n−1

= (f(τ) − f(τ1))k1(B0 + B1f(τ) + · · · + Bn−1−k1f(τ)n−1−k1).

Notice that if

B(x) := B0 + B1x + . . . + Bn−1−k1x
n−1−k1

is the zero polynomial (e.g., if k1 = n), the assumption that (1, f, . . . , fn−1)
is an order-complete basis would imply that all aj = 0, and the proof would
stop with this contradiction.

Using the same argument, one derives

a0 + a1f(τ) + · · · + an−1f(τ)n−1

= (f(τ) − f(τ2))k2(C0 + C1f(τ) + . . . + Cn−1−k2f(τ)n−1−k2),

etc., up to

a0 + a1f(τ) + . . . + an−1f(τ)n−1

= (f(τ) − f(τ�))k�(D0 + D1f(τ) + . . . + Dn−1−k�
f(τ)n−1−k�).

If one of the polynomial factors in the role of B(x) above would be the zero
polynomial, we are done. Otherwise, invoking condition (9.12) implies that

(f(τ) − f(τ1))k1 · · · (f(τ) − f(τ�))k� divides

a0 + a1f(τ) + · · · + an−1f(τ)n−1.

Recalling that not all the aj are zero and k1 + · · · + k� = n, we obtain a
contradiction to the assumption that F ∗ is analytic on X0(N)\{[∞]N}. �

Corollary 9.8. Let t ∈ M∞(N) with n := pord t ≥ 1, let f ∈ M∞(N) be such
that gcd(n,pord f) = 1. For v0 ∈ C, suppose that

t∗(x) = v0 has � ≤ n pairwise distinct solutions x1 = [τ1]N , . . . , x� = [τ�]N .

For complex numbers a0, . . . , an−1, define a meromorphic function on H by

F (τ) :=
a0 + a1f(τ) + · · · + an−1f(τ)n−1

t(τ) − v0
.

If f has the separation property for (t, v0), then

F ∈ M∞(N) =⇒ F = 0.

Proof. If one of the aj would be non-zero, Proposition 9.7 would imply a pole
of F ∗ at some [τj ]N �= [∞]N , τj ∈ H ∪ Q. �
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10. Order Reduction and Discriminant Polynomials

In this section, we relate discriminant polynomials to order-reduction polyno-
mials associated with integral bases. Throughout this section, let t ∈ M∞(N)
with n := pord t ≥ 1, let (1, b1, . . . , bn−1), bj ∈ M∞(N), be an order-complete
tuple forming an integral basis for M∞(N) over C[t], that is,

〈1, b1, . . . , bn−1〉C[t] = M∞(N). (10.1)

Moreover, let f ∈ M∞(N) again be chosen, such that gcd(n,pord f) = 1. By
Proposition 3.5, such an f gives rise to an order-complete basis (1, f, . . . , fn−1)
of the C[t]-module:

〈1, f, f2, . . . , fn−1〉C[t] = C[t, f ] ⊆ M∞(N).

By exemplifying the case for n = 3, we shall see how the discriminant
polynomial

Dt(f)(v) := Dt(1, f, f2, . . . , fn−1)(v)

is related to the order-reduction polynomial:

Dt(1, b1, . . . , bn−1)(v).

By the identity theorem from complex analysis, it is sufficient to consider the
situation for v from a neighborhood V of v0 ∈ V . With the setting as in (5.3),
one has⎛

⎜⎝
1 0 0

r
(1)
0 (v) r

(1)
1 (v) r

(1)
2 (v)

r
(2)
0 (v) r

(2)
1 (v) r

(2)
2 (v)

⎞

⎟⎠

⎛

⎝
1 1 1

(b1 ◦ T1)(v) (b1 ◦ T2)(v) (b1 ◦ T3)(v)
(b2 ◦ T1)(v) (b2 ◦ T2)(v) (b2 ◦ T3)(v)

⎞

⎠

=

⎛

⎝
1 1 1

f(T1(v)) f(T2(v)) f(T3(v))
f(T1(v))2 f(T2(v))2 f(T3(v))2

⎞

⎠ ,

because owing to (10.1), there exist polynomials r
(i)
j (x) ∈ C[x], such that

f(τ)i = r
(i)
0 (t(τ)) + r

(i)
1 (t(τ)) b1(τ) + r

(i)
2 (t(τ)) b2(τ), τ ∈ H.

This implies

f(Tj(v))i = r
(i)
0 (v) + r

(i)
1 (v)(b1 ◦ Tj)(v) + r

(i)
2 (v)(b2 ◦ Tj)(v)

using

t(Tj(v)) = t((t | Uj)−1(v)) = v.

Taking determinants of both sides of the matrix equation squared, this gives
for the general case:

as polynomials in v : Dt(1, b1, . . . , bn−1)(v) divides Dt(f)(v). (10.2)

Next, we consider the other direction. By Proposition 4.3, there exist polyno-
mials qj(x) and pi(x) in C[x], such that

bj =
p
(j)
0 (t)
qj(t)

+
p
(j)
1 (t)
qj(t)

f + · · · +
p
(j)
n−1(t)
qj(t)

fn−1, j = 1, . . . , n − 1, (10.3)
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where qj(t) is either a constant or such that

gcd(qj(x), p(j)0 (x), . . . , p(j)n−1(x)) = 1. (10.4)

As before, this can be expressed as a matrix equation. We display the case for
n = 3:

⎛

⎜⎝
1 0 0

s
(1)
0 (v) s

(1)
1 (v) s

(1)
2 (v)

s
(2)
0 (v) s

(2)
1 (v) s

(2)
2 (v)

⎞

⎟⎠

⎛

⎝
1 1 1

f(T1(v)) f(T2(v)) f(T3(v))
f(T1(v))2 f(T2(v))2 f(T3(v))2

⎞

⎠

=

⎛

⎝
1 1 1

(b1 ◦ T1)(v) (b1 ◦ T2)(v) (b1 ◦ T3)(v)
(b2 ◦ T1)(v) (b2 ◦ T2)(v) (b2 ◦ T3)(v)

⎞

⎠ ,

where

s
(j)
i (v) :=

p
(j)
i (v)
qj(v)

.

Again, taking determinants of both sides of the matrix equation squared, for
the general case, this gives another polynomial relation in v:

Dt(1, b1, . . . , bn−1)(v) =
s(v)2

q1(v)2 · · · qn−1(v)2
Dt(f)(v),

where s(x), q1(x), . . . , qn−1(x) are polynomials in C[x]. It will be convenient to
cancel out possible common factors and to write, as polynomials in C[x]:

Dt(1, b1, . . . , bn−1)(x) =
S(x)2

Q1(x)2 · · · Qn−1(x)2
Dt(f)(x), (10.5)

such that

S(x) and Q1(x) · · · Qn−1(x) are relatively prime polynomials, (10.6)

and

Qj(x) divides qj(x), j = 1, . . . , n − 1, (10.7)

where qj(x) are determined as in (10.3).

11. Order-Reduction Polynomials: Further Results

In this section, we continue the considerations made in the previous section.
Again, t ∈ M∞(N) with n := pord t ≥ 1, and (1, b1, . . . , bn−1) with bj ∈
M∞(N) is assumed to be an integral basis for M∞(N) over C[t].

Lemma 11.1. Let (1, β1, . . . , βn−1) with βj ∈ M∞(N) be an integral bases for
M∞(N) over C[t]. Then, there exists a c ∈ C such that

Dt(1, b1, . . . , bn−1)(x) = c · Dt(1, β1, . . . , βn−1)(x).
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Proof. Applying the same kind of argument as used to derive (10.2), we obtain
the polynomial relations:

Dt(1, b1, . . . , bn−1)(x) divides Dt(1, β1, . . . , βn−1)(x) (11.1)

and

Dt(1, β1, . . . , βn−1)(x) divides Dt(1, b1, . . . , bn−1)(x). (11.2)

This proves the statement. �

Another application of the argument we used to derive (10.2) is the ex-
istence of some polynomial R(x) ∈ C[x], such that

R(x)2 Dt(1, b1, . . . , bn−1)(x) = Dt(f)(x).

This, using (10.5), implies

R(x)S(x)
Q1(x) · · · Qn−1(x)

= 1 or − 1.

Finally, as a consequence of (10.6), we obtain

R(x) =
1
c

· Q1(x) · · · Qn−1(x) and S(x) = c for some non-zero c ∈ C.

(11.3)

We summarize the following.

Lemma 11.2. There is c ∈ C such that

Dt(f)(x) = c · Q1(x)2 · · · Qn−1(x)2 Dt(1, b1, . . . , bn−1)(x), (11.4)

where for j = 1, . . . , n − 1, the polynomials Qj(x) divide the polynomials qj(x)
which are determined as in (10.3).

Lemma 11.3. Let Qj(x) be the polynomials as in Lemma 11.2. Suppose f has
the separation property for (t, β) for some β ∈ C. Then

Qj(β) �= 0 for all j = 1, . . . , n − 1.

Proof. Suppose x − β | Qj(x) for some j ∈ {1, . . . , n − 1}. By Lemma 11.2,
Qj(x) | qj(x) with qj(x) as in relation (10.3). Hence, x − β divides qj(x),
and (10.3) can be rewritten as

qj(t)
t − β

bj =
p
(j)
0 (t)
t − β

+
p
(j)
1 (t)
t − β

f + · · · +
p
(j)
n−1(t)
t − β

fn−1.

As in the proof of Corollary 4.4, by division with remainder, there are poly-
nomials pl(x) ∈ C[x] and al ∈ C, such that p

(j)
l (x) = (x − β)pl(x) + al,

l = 0, . . . , n − 1. This means

qj(t)
t − β

bj =
a0 + a1f + · · · + an−1f

n−1

t − β

+ p0(t) + p1(t)f + · · · + pn−1(t)fn−1 ∈ M∞(N).
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Owing to the fact that f has the separation property for (t, β), one has by
Corollary 9.8:

a0 + a1f + · · · + an−1f
n−1

t − β
= 0.

Iterating this argument cancels out all powers of t − β and one arrives at a
representation of bj of the form:

Q(t) bj = P0(t) + P1(t)f + · · · + Pn−1(t)fn−1

with polynomials Pl(x) and Q(x), such that

x − β � Q(x). (11.5)

Comparing this to the representation (10.3), which rewrites as

qj(t) bj = p
(j)
0 (t) + p

(j)
1 (t)f + · · · + p

(j)
n−1(t)f

n−1,

produces a contradiction to the uniqueness of the basis representation since in
contrast to (11.5), x − β divides the denominator polynomial qj(x). �

Proposition 11.4. For any β ∈ C:

Dt(1, b1, . . . , bn−1)(β) = 0 ⇐⇒ β ∈ BranchPts(t∗). (11.6)

Proof. For the proof we choose f having the separation property for (t, β).7

For the “⇒” direction of the statement, suppose Dt(1, b1, . . . , bn−1)(β) = 0.
Then (11.4) implies Dt(f)(β) = 0 which, owing to Corollary 9.6, is true if and
only if β ∈ BranchPts(t). For the other direction, we use the reverse direction
of this “if and only if” relation: β ∈ BranchPts(t∗) implies x − β | Dt(f)(x).
Next, we apply Lemma 11.3 to the equation (10.5) and obtain

x − β | Dt(1, b1, . . . , bn−1)(x),

which completes the proof. �

From all this we obtain the complete factorization of order-reduction
polynomials of integral bases. To state it, it is convenient to define

BranchPtsC(t∗) := BranchPts(t∗) ∩ C,

in order to keep the point ∞ out, as the image of the only pole at [∞]N .

Proposition 11.5. Let t ∈ M∞(N) with n := pord t ≥ 1 and (1, b1, . . . , bn−1)
with bj ∈ M∞(N) be an integral basis for M∞(N) over C[t]. Then, there exists
a c ∈ C and positive integers mβ, such that

Dt(1, b1, . . . , bn−1)(x) = c ·
∏

β∈BranchPtsC(t∗)

(x − β)mβ . (11.7)

Moreover, for any β ∈ BranchPtsC(t∗), suppose that t∗(x) = β has

�(β) < n pairwise distinct solutions x
(β)
1 = [τ (β)

1 ]N , . . . , x
(β)
�(β) = [τ (β)

�(β)]N

with multiplicities k
(β)
1 , . . . , k

(β)
�(β), respectively, i.e., k

(β)
1 + · · · + k

(β)
�β

= n.

7How to construct such f is described in Sect. 14.
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Then

mβ = n − �(β). (11.8)

Proof. The factorization (11.7) is immediate from Proposition 11.4. To prove
(11.8), let β ∈ BranchPtsC(t∗) be a branch point of the kind as stated. Choose
f to have the separation property for (t, β). Then (9.14) implies the existence
of a polynomial p(x) ∈ C[x], such that

Dt(f)(x) = (x − β)n−�(β)p(x), where p(β) �= 0.

According to (11.4), there exist polynomials Qj(x), such that

Dt(f)(x) = c · Q1(x)2 · · · Qn−1(x)2 Dt(1, b1, . . . , bn−1)(x)

and owing to Lemma 11.3,

Qj(β) �= 0 for all j = 1, . . . , n − 1.

Hence, (x − β)n−�(β) divides Dt(1, b1, . . . , bn−1)(x) with the maximal power,
which proves (11.8). �

For the next consideration, we again have to use the charts as in (9.1),
(9.2), and (9.3). In the setting of Proposition 11.5, one has

Dt(1, b1, . . . , bn−1)(x) = c ·
∏

β∈BranchPtsC(t
∗)

(x − β)
k
(β)
1 +···+k

(β)
�(β)−�(β)

= c ·
∏

β∈BranchPtsC(t
∗)

(x − β)k
(β)
1 −1 · · · (x − β)

k
(β)
�(β)−1

= c ·
∏

β∈BranchPtsC(t
∗)

(x − t(τ
(β)
1 ))k

(β)
1 −1 · · · (x − t(τ

(β)
�(β)))

k
(β)
�(β)−1

= c ·
∏

β∈BranchPtsC(t
∗)

�(β)∏

j=1

(x − t(τ
(β)
j ))

−1+mult
[τ(β)

j ]N
(τ∗)

= c ·
∏

all orbits [τ0]N ∈X0(N),
[τ0]N �=[∞]N

(x − t(τ0))
−1+mult[τ0]N

(τ∗),

where the last line is by the fact that if t(τ0) �∈ BranchPts(t∗), then

−1 + mult[τ0]N (τ∗) = 0.

Here, we use the notion of multiplicity multx(f), also explained in Sect. 16,
which stands for the multiplicity at the point x ∈ X of a meromorphic function
f on a (compact) Riemann surface X. For x0 = [τ0]N ∈ X0(N), one has (e.g.,
[11, Lemma 4.7] and [5, Sect. 2.4]) with respect to our charts φτ0(τ) centered
at 0:8

multx0(t
∗) =

{
ordφτ0 (τ)

(t(τ) − t(τ0)), if [τ0]N is no pole of t∗,
− ordφτ0 (τ)

t(τ), if [τ0]N is a pole of t∗.
(11.9)

Hence, we obtain Proposition 11.5.

8I.e., φτ0 (τ0) = 0.
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Corollary 11.6. Let t ∈ M∞(N) with n := pord t ≥ 1 and (1, b1, . . . , bn−1)
with bj ∈ M∞(N) be an integral basis for M∞(N) over C[t]. Then

degx Dt(1, b1, . . . , bn−1)(x) =
∑

x0∈X0(N),
x0 �=[∞]N

(−1 + multx0(t
∗)).

Next, recall from Sect. 16 the definition of Deg(f), the degree of a mero-
morphic function f on a compact Riemann surface X:

Deg(f) :=
∑

x∈f−1(v)

multx(f) where v is any element in Ĉ.

Choosing v := ∞, we have Deg(t∗) = n. Let

g(X) := genus of a compact Riemann surface X.

Recall the Riemann–Hurwitz formula [11, Thmorem 4.16]9 for a non-constant
holomorphic map F : X → Y between compact Riemann surfaces:

2 g(X) − 2 = Deg(F )(2 g(Y ) − 2) +
∑

x∈X

(multx(F ) − 1). (11.10)

Now, we apply this to our setting where X := X0(N) and F := t∗ : X0(N) →
Ĉ. Owing to g(Ĉ) = 0, together with (11.9) and Corollary 11.6, this gives

2 g(X0(N)) − 2 = −2n +
∑

x∈X0(N)

(multx(F ) − 1)

= −2n +
∑

x0∈X0(N),
x0 �=[∞]N

(multx0(t
∗) − 1) + pord t − 1

= −n − 1 + degx Dt(1, b1, . . . , bn−1)(x).

We summarize in

Corollary 11.7. Let t ∈ M∞(N) with n := pord t ≥ 1 and (1, b1, . . . , bn−1)
with bj ∈ M∞(N) be an integral basis for M∞(N) over C[t]. Then

degx Dt(1, b1, . . . , bn−1)(x) = 2 g(X0(N)) + n − 1. (11.11)

12. Proof of the Weierstraß Gap Theorem

In this section, we prove the gap theorem for modular functions in M∞(N).

Definition 12.1. (Gaps in modular function algebras) Let M be a subalgebra
of M∞(N), the modular functions for Γ0(N) which are holomorphic in H and
with a pole at ∞. A positive integer n is called a gap in M if there is no f ∈ M
with pord f = n. We also define the gap number gM as the total number of
gaps in M , that is,

gM := #{n ∈ Z>0 : n is a gap of M}.

In this section, we prove the gap theorem in the following version.

9Actually the special case we need, Y = Ĉ, was given by Riemann; e.g., [2].
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Theorem 12.2. (Weierstraß gap theorem for X0(N)) Let g := g(X0(N)) be the
genus of X0(N). If g ≥ 1, then M∞(N) has exactly g gaps nj with

1 = n1 < · · · < ng ≤ 2g − 1. (12.1)

If g = 0, then M∞(N) has no gaps i.e., there exists an h ∈ M∞(N), such that
pordh = 1.10

To prepare for the proof, we determine the gap number gC[t,f ], where
t, f ∈ M∞(N) with n := pord t ≥ 2, l := pord f ≥ 2, and gcd(l, n) = 1. To
construct such functions with relatively prime pole orders is straightforward;
see, for instance, Example 2.3. By Proposition 3.5, we know that

C[t, f ] = 〈1, f, f2, . . . , fn−1〉C[t],
where (1, f, f2, . . . , fn−1) is an order-complete module basis. Hence, there are
lj ∈ Z≥0, j = 1, 2, . . . , n − 1, such that

{pord f,pord f2, . . . ,pord fn−1} = {l, 2l, . . . , (n − 1)l}
= {l1n + 1, l2n + 2, . . . , ln−1n + n − 1}.

Thus, inspecting each of the residue classes modulo n for j ∈ {1, . . . , n − 1}
makes clear that one cannot find any function of pole order

j, n + j, . . . , (lj − 1)n + j if lj > 0

in C[t, f ]. Hence, for fixed j, lj pole orders are missing; summing j from 1 to
n − 1 gives the total number of missing pole orders of functions in C[t, f ]:

l1 + l2 + · · · + ln−1 =
⌊ l1n + 1

n

⌋
+

⌊ l2n + 2
n

⌋
+ · · · +

⌊ ln−1n + n − 1
n

⌋

=
n−1∑

j=1

⌊jl

n

⌋
=

(l − 1)(n − 1)
2

,

where the last equality is by [8, (3.32)]. We summarize in

Lemma 12.3. Let t, f ∈ M∞(N) with n := pord t ≥ 1, l := pord f ≥ 1, and
gcd(l, n) = 1. Then, the total number of missing pole orders of functions in
C[t, f ] is

(l − 1)(n − 1)
2

.

Proof. If n = 1 or � = 1 then C[t, f ] = M∞(N); i.e., there is no gap. The case
both n and � greater or equal to 2 was treated above. �

Proof of Theorem 12.2.. Recalling Definition 4.5, each pole-order-
reduction step associated to some α ∈ C,

(1, . . . , βk−1, βk, βk+1, . . .) → (1, . . . , βk−1, hα, βk+1, . . .)

between order-complete bases
(i) by Corollary 4.4 (4.4) reduces the total number of gaps by exactly one.

10This means, in this case, one has M∞(N) = C[h].
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(ii) by Proposition 8.1 (8.3) reduces the degree of the order-reduction poly-
nomial by exactly two.

The gap theorem now will be proved by successively applying pole-order-
reduction steps to the order-complete basis (1, f, . . . , fn−1) of C[t, f ], where t
and f are chosen from M∞(N), such that n := pord t ≥ 2, l := pord f ≥ 2,
and gcd(l, n) = 1. Such a pair (t, f) can be easily constructed, see, for instance,
Example 2.3.

Suppose that after r reduction steps, we arrive at the integral basis
(1, b1, . . . , bn−1) of M∞(N). Defining

df := degx Dt(f)(x) and db := degx Dt(1, b1, . . . , bn−1)(x),

the reduction observation (ii) made above gives

db = df − 2r, (12.2)

furthermore, reduction observation (i) implies for the gap numbers:

gM∞(N) = gC[t,f ] − r. (12.3)

Combining (12.2) and (12.3) gives the desired Weierstraß estimate for the total
number of gaps in M∞(N) in terms of the genus g:

gM∞(N) = gC[t,f ] − 1
2
(df − db) (by (12.2), (12.3))

=
1
2
((n − 1)(l − 1) − df + db) (by Lemma 12.3)

=
1
2
(−(n − 1) + db) (by (7.1))

=
1
2
(−(n − 1) + n − 1 + 2g(X0(N))) (by (11.11))

= g(X0(N)) = g.

Hence, we proved that M∞(N) has exactly g gaps. If g = 0 there are no gaps;
i.e., in this case, after relabelling indices,

M∞(N) = 〈1, b1, . . . , bn−1〉C[t] with pord bj = j, j = 1, . . . , n − 1.

Hence, M∞(N) = C[h] for h := b1.
To prove the remaining part of the gap theorem, namely, the bound (12.1)

for the gaps {n1 = 1, n2, . . . , ng} where g ≥ 1, we will use a general combi-
natorial argument. Notice that n1 = 1, because otherwise there would be no
gap, which, as we proved, is only possible if g = 0.

To prepare for the combinatorial argument, recall that after choosing t
and f from M∞(N) as above, by applying pole-order-reduction steps, we ar-
rived, after relabelling indices, at an integral basis (1, b1, . . . , bn−1) for M∞(N)
where pord bj ≡ j (mod n), j = 1, . . . , n − 1. Defining

r1 := pord b1, . . . , rn−1 := pord bn−1,

this basis gives rise to the additive submonoid

S := (0 + nZ≥0) ∪ (r1 + nZ≥0) ∪ · · · ∪ (rn−1 + nZ≥0)
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of (Z≥0,+) which describes the gap set of M∞(N):

Z≥0\S = {n1 = 1, n2, . . . , ng}.

Let m + 1 be the smallest non-gap of M∞(N); m ≥ 1 owing to n1 = 1.
To prove the desired bound (12.1) for the gap sizes nj , we change the

representation of the monoid S with respect to m + 1. Namely, it is easy
to see that there exist positive integers s1, . . . , sm ∈ Z>0, such that sj ≡ j
(mod m + 1) for all j ∈ {1, . . . , m} and

S = (0 + (m + 1)Z≥0) ∪ (s1 + (m + 1)Z≥0) ∪ · · · ∪ (sm + (m + 1)Z≥0).

In Sect. 13, we denote the number of gaps in a monoid S by γ(S). Hence, in
the given context, g = γ(S). Recall that m+1 is chosen to be the smallest non-
gap of M∞(N). Therefore, we choose a monoid representation with respect to
m + 1. Concretely, in this case, there are kj ∈ Z>0, such that

sj = j + (m + 1)kj for j = 1, . . . , m.

Now, Lemma 13.1 implies

2γ(S) − 1 ≥ j + (m + 1)(kj − 1), j = 1, . . . ,m.

Since j +(m+1)(kj −1) are the largest non-gaps in each residue class modulo
m + 1, this proves the bound given in (12.1), and the proof of the Weierstraß
gap Theorem 12.2 is completed. �

13. A Gap Property of Monoids

Let m ∈ Z>0 and s1, . . . , sm ∈ Z>0, such that sj ≡ j (mod m + 1) for all
j ∈ {1, . . . , m}. We consider the additive submonoid:

S := (0 + (m + 1)Z≥0) ∪ (s1 + (m + 1)Z≥0) ∪ · · · ∪ (sm + (m + 1)Z≥0)

of (Z≥0,+). A positive integer � �∈ S is called a gap of S.11 Let γ(S) be the total
number of gaps of S. Relating to our proof setting in Sect. 12, we choose this
representation of S under the assumption that m + 1 is the smallest non-gap
of S. By the definition of S, there are positive integers kj , such that

sj = j + (m + 1)kj for j = 1, . . . ,m.

An easy count gives

γ(S) = k1 + · · · + km. (13.1)

Lemma 13.1 (Monoid gap lemma). Under these assumptions, one has for all
j = 1, . . . , m:

2γ(S) − 1 ≥ j + (m + 1)(kj − 1). (13.2)

In other words, the largest possible gap is bounded by 2γ(S) − 1. Before
proving this statement, we prove two elementary observations.

11The largest gap is called the Frobenius number of S.
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Lemma 13.2. If i and � in Z>0 are such that i + � = j for j ∈ {1, . . . , m},
then

ki + k� ≥ kj .

Proof.

si + s� = i + (m + 1)ki + � + (m + 1)k�

= j + (m + 1)(ki + k�) ≥ j + (m + 1)kj .

The inequality is by si + s� ∈ S with si + s� ≡ j (mod m + 1), and sj ∈ S is
minimal with this property. �

Lemma 13.3. If i and � in Z>0 are such that i+� = j+m+1 for j ∈ {1, . . . , m},
then ki + k� + 1 ≥ kj.

Proof.

si + s� = i + (m + 1)ki + � + (m + 1)k� = j + (m + 1)(ki + k� + 1) ≥ sj .

The inequality is by si + s� ∈ S with si + s� ≡ j (mod m + 1), and sj =
j + (m + 1)kj ∈ S is minimal with this property. �

Proof of Lemma 13.1. By (13.1), the statement to prove is equivalent to

2(k1 + · · · + km) ≥ j + (m + 1)kj − m. (13.3)

By Lemma 13.2,

kj ≤ k1 + kj−1, kj ≤ k2 + kj−2, . . . , kj ≤ kj−1 + k1.

Summing the left and right sides, respectively; of these, j−1 inequalities gives

(j − 1)kj ≤ 2(k1 + · · · + kj−1).

By Lemma 13.3,

kj ≤ kj+1 + km+1−1 + 1, kj ≤ kj+2 + km+1−2 + 1, . . . , kj ≤ km + kj+1 + 1.

Summing the left and right sides, respectively; of these, m − j inequalities
gives

(m − j)kj ≤ 2(kj+1 + · · · + km) + m − j.

Combining the two inequalities, we obtain that

(m − 1)kj ≤ 2(k1 + · · · + km) − 2kj + m − j,

which is (13.3). �
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14. Functions with Separation Property

The setting which we use throughout this section is: t ∈ M∞(N) with n :=
pord t ≥ 2 and (1, b1, . . . , bn−1) with bj ∈ M∞(N) is an integral basis for
M∞(N) over C[t]. Because of pord t = n, for any fixed α ∈ C, we have that12

t∗(x) = α has � ≤ n pairwise distinct solutions x1 = [τ1]N , . . . , x� = [τ�]N ,

with multiplicities k1, . . . , k�, respectively. (I.e., k1 + · · · + k� = n.) (14.1)

We note that, as above, owing to t ∈ M∞(N), xj = [τj ]N ∈ Γ0(N) with
τj ∈ H ∪ Q are such that [τj ]N �= [∞]N .

In Definition 9.4, we defined the separation property of f for (t, v0) with
v0 = α as in (14.1). At various places, we required f to have this property, for
instance, in Proposition 11.5. In this section, we prove the existence of such f .
In addition, here, we have to use the charts as in (9.1), (9.2), and (9.3).

Lemma 14.1. Given the setting of this section with � ≥ 2, let τ, τ ′ ∈ {τ1, . . . , τ�}
be such that τ �= τ ′. Then

bi(τ) �= bi(τ ′) for some i ∈ {1, . . . , n − 1}.

Proof. We are free to relabel the indices of the preimages of α. Hence, it is
sufficient to prove the statement for τ1 := τ and τ2 := τ ′. Suppose

bj(τ1) = bj(τ2) for all j ∈ {1, . . . , n − 1}. ()

As in (9.7), for j = 1, . . . , � and suitable neighborhoods Uj , one has local
expansions for τ ∈ Uj :

t(τ) − α = aj,0φτj
(τ)kj + aj,1φτj

(τ)kj+1 + · · · with aj,0 �= 0.

Moreover, as in (9.10), for j = 1, . . . , �, we can assume that the neighborhoods
Uj are chosen, such that the following expansions exist for all τ ∈ Uj :

b1(τ) = b1(τj) +
∞∑

l=1

d
(1,j)
l φτj

(τ)l,

...

bn−1(τ) = bn−1(τj) +
∞∑

l=1

d
(n−1,j)
l φτj

(τ)l.

Taking aj ∈ C the quotient

g :=
a0 + a1b1 + · · · + an−1bn−1

t − α
(14.2)

defines a modular function g ∈ M(N). Now, g ∈ M∞(N) if and only if all the
zeros τj of t(τj) − α = 0 cancel out. Indeed, assuming (), one can determine
aj ∈ C, not all zero, such that this cancellation happens. Namely, using the

12Recall that t∗([τ ]n) = t(τ).
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local expansions the cancellation condition translates into a system of linear
equations, where j runs form 1 to �:13

a0 + a1b1(τj) + · · · + an−1bn−1(τj) = 0,

a1d
(1,j)
1 + · · · + an−1d

(n−1,j)
1 = 0,

...

a1d
(1,j)
kj−1 + · · · + an−1d

(n−1,j)
kj−1 = 0.

This gives in total k1 + · · · + k� = n equations. However, owing to (), two of
these equations are the same. This means, we are left with n−1 equations in n
unknowns a0, . . . , an−1. This implies that there exists a solution to the system
with the aj not all 0 . This produces a contradiction: since g ∈ M∞(N), there
are polynomials pj(x) ∈ C[x], such that

g = p0(t) + p1(t)b1 + · · · + pn−1(t)bn−1.

Combining this with (14.2), the uniqueness of the basis representation gives

a0 = (t − α)p0(t), . . . , an−1 = (t − α)pn−1(t).

Consequently, all pj(x) and all aj must be zero. Hence, () leads to a contra-
diction and the lemma is proved. �

Lemma 14.2. Given the setting of this section with � ≥ 2, let

Sm := {[τi1 ]N , . . . , [τim
]N}

be a subset of m ∈ {2, . . . , �} pairwise distinct preimages of α. Then, there
exist αi ∈ C, such that for f = α1b1 + · · · + αn−1bn−1:

f(τi1), . . . , f(τim
) are pairwise distinct. (14.3)

Proof. We proceed by induction on m. If m = 2, then by the previous lemma,
there exists an i ∈ {1, . . . , n − 1}, such that bi(τi1) �= bi(τi2), and we choose
f := bi. Suppose m ≥ 2. Because of index relabeling, we can choose Sm :=
{τ1, . . . , τm}, and the induction hypothesis gives an F ∈ M∞(N) as a C-linear
combination of bj , such that the values F (τ1), . . . , F (τm) are pairwise distinct.
If F (τm+1) �= F (τi) for all i = 1, . . . ,m, the induction step is done. Otherwise,
F (τm+1) = F (τr) for some r ∈ {1, . . . , m}. By the previous lemma, there is
some k ∈ {1, . . . , n − 1}, such that bk(τm+1) �= bk(τr), and we can choose a
non-zero c ∈ C, such that

c �= F (τj) − F (τi)
bk(τi) − bk(τj)

for all 1 ≤ i < j ≤ m + 1 with bk(τi) �= bk(τj).

By inspection, one verifies for Fr := F + cbk that Fr(τm+1) �= Fr(τr) and also
that the values

Fr(τ1), . . . , Fr(τm) are pairwise distinct.

13Notice that the charts φτj (τ) are centered at 0; i.e., φτj (τj) = 0. Consequently, for fixed

j, the numerator in (14.2) has to be of the form: φτj (τ)
kj (c0 + c1φτj (τ) + · · · ).
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Suppose Fr(τm+1) = Fr(τs) for some s ∈ {1, . . . , m}\{r}. If there is no such s,
we are done with f := Fr. Otherwise, by the previous lemma, there is some
l ∈ {1, . . . , n − 1}, such that bl(τm+1) �= bl(τs), and we can choose a non-zero
d ∈ C, such that

d �= Fr(τj) − Fr(τi)
bl(τi) − bl(τj)

for all 1 ≤ i < j ≤ m + 1 with bl(τi) �= bl(τj).

Now, we set Fr,s := Fr + dbl, and see that,

Fr,s(τm+1) �= Fr,s(τr) and Fr,s(τm+1) �= Fr,s(τs)

together with pairwise distinct values Fr,s(τ1), . . . , Fr,s(τm). Iterating this ar-
gument exhausts all possibilities and the induction step is proved. �

Under the assumptions as in (14.1), to have the separation property for
(t, α), f additionally has to satisfy the conditions (9.13) which rewritten as
order conditions are

ordφτj
(τ)(f(τ) − α) = 1 for all j = 1, . . . , �. (14.4)

Remark 14.3. The order in (14.4) has to be interpreted in view of (9.10) and in
the sense of the φ-order defined in Definition 15.3. This deviates slightly from
the standard notation used in the theory of the Riemann surfaces, where (14.4)
would be stated in the format:

ordτj
(f − α) = 1 for all j = 1, . . . , �. (14.5)

This notation suppresses the explicit mentioning of the chart. We also use this
notation, for instance, in cases like (2.4), where the chart is clear from the
context, or in Lemma 16.1 when citing from Riemann surface theory.

Lemma 14.4. Given the setting of this section with � ≥ 1, assume that ki =
ordφτi

(τ)(t(τ) − α) > 1 for some i ∈ {1, . . . , n − 1}. Then

ordφτi
(τ)(bj(τ) − bj(τi)) = 1 for some j ∈ {1, . . . , n − 1}.

Proof. Let us assume that

ordφτi
(τ)(bk(τ) − bk(τi)) > 1 for all k ∈ {1, . . . , n − 1}. ()

As in (9.7), for j = 1, . . . , � and suitable neighborhoods Uj , one has local
expansions for τ ∈ Uj :

t(τ) − α = aj,0φτj
(τ)kj + aj,1φτj

(τ)kj+1 + · · · with aj,0 �= 0.

Now, we proceed with the proof exactly as above. Namely, as in (9.10), for
j = 1, . . . , �, we can assume that the neighborhoods Uj are chosen such that
the following expansions exist for all τ ∈ Uj and k ∈ {1, . . . , n − 1}:

bk(τ) = bk(τj) +
∞∑

l=1

d
(k,j)
l φτj

(τ)l.
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Now, we apply the same strategy as in the proof of Lemma 14.1 and determine
aj ∈ C, not all zero, such that

g :=
a0 + a1b1 + · · · + an−1bn−1

t − α
∈ M∞(N).

This leads us to consider the same system of k1+ · · ·+k� = n linear equations.
This time, owing to (), we have d

(k,i)
1 = 0 for all k = 1, . . . , n − 1, and the

equation containing the d
(k,i)
1 is always satisfied and can be removed. This

means, we are left with n − 1 equations in n unknowns a0, . . . , an−1.14 This
implies that there exists a solution to the system with the aj not all 0, which
produces a contradiction as in the proof of Lemma 14.2. �

Lemma 14.5. Again, we assume the setting of this section with � ≥ 1. Then,
there exist αi ∈ C, such that for f := α0t + α1b1 + · · · + αn−1bn−1:

f(τ1), . . . , f(τ�) are pairwise distinct, and (14.6)
ordφτj

(τ)(f(τ) − f(τj)) = 1, j = 1, . . . , �. (14.7)

Proof. For the proof, it is convenient to introduce an auxiliary function:

gi(τ) :=

{
t(τ), if ordφτi

(τ)(t(τ) − α) = 1,
bj(τ), if ordφτi

(τ)(t(τ) − α) > 1,
i = 1, . . . , �,

where j is chosen according to Lemma 14.4, namely, such that ordφτi
(τ)(bj(τ)−

bj(τi)) = 1. We will show: given F = a0t + a1b1 + · · · + an−1bn−1 with aj ∈ C,
such that

F (τ1), . . . , F (τ�) are pairwise distinct, and (14.8)
ordφτj

(τ)(F (τ) − F (τj)) = 1 for j = 1, . . . , k, (14.9)

then there is an f = α0t + α1b1 + · · · + αn−1bn−1 with αj ∈ C which satis-
fies (14.6) and

ordφτj
(τ)(f(τ) − f(τj)) = 1 for j = 1, . . . , k + 1. (14.10)

In other words, we prove Lemma 14.5 by induction on k.
The base case k = 1 corresponds to the induction step from k = 0 to

k = 1. The existence of F such that (14.8) holds is by Lemma 14.2. If, in
addition,

ordφτ1 (τ)
(F (τ) − F (τ1)) = 1,

we take f := F , and the base case k = 1 is done. If ordφτ1 (τ)
(F (τ)−F (τ1)) > 1,

define

f := F + cg1 with c ∈ C\{0} such that c �= F (τj) − F (τi)
g1(τi) − g1(τj)

,

14Notice that for this argument to work, we invoke ki > 1.
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where the quotient is taken for all i, j ∈ {1, . . . , �} for which the denomina-
tor is non-zero. Now, it is a straightforward verification that for this f the
condition (14.6) holds and also that

ordφτ1 (τ)
(f(τ) − f(τ1)) = 1.

This settles the base case k = 1.
For the induction step k → k + 1, we assume that we have F of required

form, such that (14.8) and (14.9) hold. If, in addition,

ordφτk+1 (τ)
(F (τ) − F (τk+1)) = 1,

we are done. Otherwise, define

f := F + cgk+1 with c ∈ C\{0} such that c �= F (τj) − F (τi)
gk+1(τi) − gk+1(τj)

,

where the quotient is taken for all i, j ∈ {1, . . . , �} for which the denominator
is non-zero. Now, we additionally require that

c �= a1,j

b1,j
for all j ∈ {1, . . . , �} when b1,j �= 0, (14.11)

for a1,j and b1,j coming from the expansions:

F (τ) = a0,j + a1,jφj(τ) + · · · and gk+1(τ) := b0,j + b1,jφj(τ) + · · · .

Again, it is straightforward to verify that for such a choice f has the proper-
ties (14.6) and (14.10). The extra requirement (14.11) is needed to guarantee
the first k instances of the latter condition. This completes the proof of the
induction step and also the proof of Lemma 14.5. �

Summarizing, using an integral basis (1, b1, . . . , bn−1) for M∞(N) over
C[t], we constructed an f which proves

Corollary 14.6. For every α ∈ C , there is an f ∈ M∞(N), such that f has
the separation property for (t, α).

15. Appendix: Modular Functions–Basic Notions

To make this article as much self-contained as possible, in this section, we
recall most of the facts we need about modular functions.

The modular group SL2(Z) = {( a b
c d

) ∈ Z
2×2 : ad − bc = 1} acts on the

upper half H of the complex plane by
(

a b
c d

)
τ := aτ+b

cτ+d ; this action is inherited
by the congruence subgroups:

Γ0(N) :=
{(

a b
c d

) ∈ SL2(Z) : N | c
}

,

where throughout this paper, N is a fixed positive integer. Note that Γ0(1) =
SL2(Z). These subgroups have a finite index in SL2(Z):

[SL2(Z) : Γ0(N)] = N
∏

prime p|N

(
1 +

1
p

)
, N ≥ 2; (15.1)

see the standard literature on modular forms like [1] or [5]. Particularly related
to our context are [9] and [12].
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The action of SL2(Z) on H extends to an action on meromorphic func-
tions f : H → Ĉ := C ∪ {∞}. A meromorphic function f : H → Ĉ is called a
meromorphic modular function for Γ0(N), if (i) for all

(
a b
c d

) ∈ Γ0(N):

f
(aτ + b

cτ + d

)
= f(τ), τ ∈ H,

and (ii) for any γ =
(

a b
c d

) ∈ SL2(Z), there exists an M = M(γ) ∈ Z together
with a Fourier expansion:

f(γτ) = f

(
aτ + b

cτ + d

)
=

∞∑

n=−M

fn(γ)qn/wN (c),

where q = q(τ) := e2πiτ and wN (c) := N/ gcd(c2, N). By M(N), we denote
the set of meromorphic modular functions for Γ0(N).

By (ii) with
(

a b
c d

)
= ( 1 0

0 1 ), any f ∈ M(N) admits a Laurent series
expansion in powers of q with finite principal part, that is

f(τ) =
∞∑

n=−M

fnqn. (15.2)

Hence, in view of limIm(τ)→∞ q(τ) = 0, one can extend f to H ∪ {∞} by
defining f(∞) := ∞, if M > 0, and f(∞) := f0, otherwise. Subsequently, a
Laurent expansion of f as in (15.2) will be also called q-expansion of f at
infinity.15

Given γ =
(

a b
c d

) ∈ SL2(Z) and f ∈ M(N), consider the Laurent series
expansion of f(γτ) in powers of q1/wN (c),

f(γτ) =
∞∑

n=−M

gnqn/wN (c). (15.3)

In view of γ∞ = limIm(τ)→∞ γτ = a/c, we say that (15.3) is a q-expansion
of f at a/c. Understanding that a/0 = ∞, this also covers the definition of
q-expansions at ∞. Concerning the uniqueness of such expansions, let γ′ ∈
SL2(Z) be such that γ′∞ = γ∞ = a/c, then the q-expansion of f(γ′τ) differs
from that of f(γτ) only by a root-of-unity factor in the coefficients, namely,
we have then γ′ = γ

( ±1 m
0 ±1

)
for some m ∈ Z, which implies

f(γ′τ) =
∞∑

n=−M

gn

(
e±2πim/wN (c)

)n

qn/wN (c).

As a consequence, one can extend f from H to Ĥ := H∪ {∞} ∪Q by defining
f(a/c) := limIm(τ)→∞ f(γτ), where γ ∈ SL2(Z) is chosen, such that γ∞ =
a/c. Another consequence is that the q-expansions of f at ∞ are uniquely
determined owing to

γ∞ = ∞ ⇔ γ =
( ±1 m

0 ±1

)
and w�(0) = 1. (15.4)

15This expansion and also those for f(γτ) are required to converge for all τ ∈ H with Im(τ)
sufficiently large.
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Next, notice that the action of SL2(Z), and thus of Γ0(N), extends in an
obvious way to an action on Ĥ. The orbits of the Γ0(N) action are denoted
by

[τ ]N := {γτ : γ ∈ Γ0(N)}, τ ∈ Ĥ.

In cases where N is clear from the context, one also writes [τ ] instead of [τ ]N .
The set of all such orbits is denoted by

X0(N) := {[τ ]N : τ ∈ Ĥ}.

The Γ0(N) action maps Q ∪ {∞} to itself, and owing to (15.1), each Γ0(N)
produces only finitely many orbits [τ ]N with τ ∈ Q ∪ {∞}; such orbits are
called cusps of X0(N). One has, for example,

Lemma 15.1. For any prime �

(1) X0(�) has two cusps : [∞]� and [0]�;
(2) X0(�2) has � + 1 cusps : [∞]�2 , [0]�2 , and [k/�]�2 , k = 1, . . . , � − 1.

Proof. This fact can be found in many sources; a detailed description of how
to construct a set of representatives for the cusps of Γ0(N), for instance, is
given in [16, Lemma 5.3]. �

Suppose that the domain of f ∈ M(N) is extended from H to Ĥ as
described above, i.e., f : H → Ĉ is extended to f : Ĥ → Ĉ, where we keep the
same name for the extended function. Then, using this extension gives rise to
a function f∗ : X0(N) → Ĉ, which is defined as follows:

f∗([τ ]N ) := f(τ), τ ∈ Ĥ.

The fact that f∗ is well-defined follows from our previous discussion. We say
that f∗ is induced by f .

As described in detail in [5], X0(N) can be equipped with the structure
of a compact Riemann surface. This analytic structure turns the induced func-
tions f∗ into meromorphic functions on X0(N). The following classical lemma
[11, Theorem 1.37], a Riemann surface version of Liouville’s theorem, is crucial
for zero recognition of modular functions.

Lemma 15.2. Let X be a compact Riemann surface. Suppose that g : X → C

is a holomorphic function on all of X. Then, g is a constant function.

Being meromorphic, modular functions form fields. A classic example
is that M(N) = C(j(τ), j(Nτ)), e.g., [5, Proposition 7.5.1], where j is the
modular invariant (the Klein j function). The subset

M !(N) := {f ∈ M(N) : f∗ has poles only at [τ ]N with τ ∈ Q ∪ {∞}},
which is important for our context and, obviously, is not a field but a C-
algebra. In this case, owing to the definition of induced functions f∗, all possible
poles of f∗ can be spotted by checking whether f∗([a/c]) = f(a/c) = ∞ for
a/c ∈ Q∪ {∞}. Because of (15.1), Q∪ {∞} splits only into a finite number of
cusps:

Q ∪ {∞} = [a1/c1]N ∪ · · · ∪ [ak/ck]N .

648



Weierstraß’s Gap Theorem Without the Riemann–Roch Formula 1003

Hence, knowing all the cusps [aj/cj ] reduces the task of finding all possible
poles to the inspection of q-expansions of f at aj/cj ; i.e., of q-expansions
of f(γjτ) as in (15.3) with γj ∈ SL2(Z) such that γj∞ = aj/cj . We call
these expansions also local q-expansions of f∗ at the cusps [aj/cj ]N ; wN (cj)
is called the width of the cusp [aj/cj ]N . It is straightforward to show that it
is independent of the choice of the representative aj/cj of the cusp [aj/cj ]N ,
and that wN (cj) = N/ gcd(c2j , N) for relatively prime aj and cj . Note that
[∞]N = [1/0]N .

Definition 15.3 (Order and φ-order). Let f =
∑∞

n=m anqn with m ∈ Z, such
that am �= 0. Then we define the order of f as

ord f := m.

More generally, if φ =
∑∞

n=1 bnqn/w for some fixed w ∈ Z>0, and F = f ◦φ :=∑∞
n=m anφn, then we define the φ-order of f as

ordφ f := m.

(e.g., if m = ord f = −1 and φ = q2, then ordφ F = −1, but ordF = −2;
if m = ord f = −2 and φ = q1/2, then ordφ F = −2, but ordF = −1.)
In addition, more generally, we extend this definition of φ-order to the case,
where φ := φτ0(τ) is one of the charts as in (9.1), (9.2), and (9.3).

The order ord[a/c]� f∗ of f∗ at a cusp [a/c]� is defined to be the q1/w�(c)-
order of a local q-expansion of f∗ at [a/c]N , that is,

ord[a/c]N f∗ := ordq1/wN (c) f(γτ) where γ =
(

a b
c d

) ∈ SL2(Z).

It is straightforward to verify that ord[a/c] f
∗ is well-defined. For a concrete

example, see Example 2.1.

16. Appendix: Meromorphic Functions on Riemann
Surfaces–Basic Notions

To make this article as much self-contained as possible, in this second appendix
section, we recall most of the facts that we need about meromorphic functions
on Riemann surfaces. For the terminology, we basically follow [7]; other classic
texts are [6] and [11].

Lemma 15.2 states the fundamental fact that any analytic function on a
compact Riemann surface is constant. In Example 2.1, we have seen that z∗

5

has its only zero of order 1 at [∞]5 and its only pole at [0]5 with multiplicity 1,
i.e., z∗

5 has order −1 at [∞]5.16 This is also in accordance with Lemma 16.1, a
corollary of another fundamental fact which says that meromorphic functions
on compact Riemann surfaces have exactly as many zeroes as poles (counting
multiplicities); see, for instance, [11, Proposition 4.12]:

16Notice that we also say that z∗5 has pole order 1 at [∞]5.
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Lemma 16.1. Let g be a non-constant meromorphic function on a compact
Riemann surface X. Then

∑

x∈X

ordx g = 0.

Here, ordx0 g is defined as follows. Suppose g(x) =
∑∞

n=m cn(ϕ(x) −
ϕ(x0))n, cm �= 0, is the local Laurent expansion of g at x0 using the local
coordinate chart ϕ : U0 → C which homeomorphically maps a neighborhood
U0 of x0 ∈ X to an open set V0 ⊆ C. Then, ordx0 g := m.

Let M(S) denote the field of meromorphic functions f : S → Ĉ on a Rie-
mann surface S.17 Let f ∈ M(S) be non-constant: then for every neighborhood
U of x ∈ S, there exist neighborhoods Ux ⊆ U of x and V of f(x), such that
the set f−1(v) ∩ Ux contains exactly k elements for every v ∈ V \{f(x)}. This
number k is called the multiplicity of f at x; notation: k = multx(f).18 If S

is compact, f ∈ M(S) is surjective and each v ∈ Ĉ has the same number of
preimages, say n, counting multiplicities; i.e., n =

∑
x∈f−1(v) multx(f), see,

e.g., [7, Theorem 4.24]. This number n is called the degree of f ; notation:
n = Deg(f). One of the consequences is that non-constant functions on com-
pact Riemann surfaces have as many (finitely many) zeros as poles counting
multiplicities; this is Lemma 16.1.

RamiPts(f) := {x ∈ S : multx(f) ≥ 2} denotes the set of ramification
points of f ; BranchPts(f) := f(RamiPts(f)) ⊆ Ĉ denotes the set of branch
points of f . Ramification points, and also branch points, of a function f form
sets having no accumulation point. Hence, for functions on compact Riemann
surfaces, these sets have finitely many elements.

17. Conclusion

In this article, we present the first proof of the Weierstraß gap theorem (for
modular functions) without using the Riemann–Roch theorem. The main in-
gredient in our proof is the concept of order-reduction polynomials which cor-
responds to the discriminant of a field extension of Q in the setting of algebraic
number theory, see, for instance, [10, III, §3]. In the field case, the structure
of this discriminant is related to the ramification index [10, III, §2, Proposi-
tion 8, and III, §3, Proposition 14]. Analogously, in Proposition 11.5, we give a
factorization of the order-reduction polynomial which in direct fashion relates
to the branch points of the modular function t. This relation allows us to con-
nect the degree of this polynomial to the genus of X0(N). This observation is
crucial for our proof of the Weierstraß gap theorem.

In addition, our approach gives new algebraic and algorithmic insight
based on module presentations of modular function algebras, in particular,
the usage of integral bases. For example, our proof also gives a method to

17In this context, Ĉ := C∪ {∞} is understood to be a compact Riemann surface isomorphic
to the Riemann sphere.
18If x is a pole of f : multx f = − ordx f ; otherwise, multx f = ordx(f − f(x)).
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compute the order-reduction polynomial by using the Puiseux series expan-
sions at infinity. Another new feature concerns the gap bound: the main task
of our proof is to show that there are exactly g gaps for any modular function
algebra. The proof that the corresponding pole orders are bounded by 2g − 1,
with the help of an elementary combinatorial argument turns out to be an im-
mediate consequence of our approach. Another by-product of our framework is
a natural explanation of the genus g = 0 case as a consequence of the reduction
to an integral basis.

Summarizing, our setting generalizes ideas from algebraic number theory,
but still stays close to “first principles.” Hence, we feel that our approach has
potential for further extensions and applications. For example, we are planning
to exploit the algorithmic content of our approach for computer algebra ap-
plications, for instance, for the effective computation of suitable module bases
for modular function algebras.
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Richaud–Degert Real Quadratic Fields
and Maass Waveforms

Dedicated to Professor George E. Andrews on the occasion of his 80th
birthday

Larry Rolen and Karen Taylor

Abstract. In this paper, we place the work of Andrews et al. (Invent Math
91(3):391–407, 1988) and Cohen (Invent Math 91(3):409–422, 1988), re-

lating arithmetic in Q(
√
6) to modularity of Ramanujan’s function σ(q),

in the context of the general family of Richaud–Degert real quadratic
fields Q(

√
2p). Moreover, we give the resulting generalizations of the func-

tion σ as indefinite theta functions and invoke Zwegers’ work, (Q J Math
63(3):753–770, 2012), to prove the modular properties of the completed
functions.

Mathematics Subject Classification. 11R11, 11F27, 11F37.

Keywords. Indefinite theta series, Real quadratic fields, Maass waveforms.

1. Introduction

In [3], Andrews, Dyson, and Hickerson (ADH) studied the Fourier coefficients
of the function:

σ(q) = 1 +
∞∑

n=1

q
n(n+1)

2

(1 + q)(1 + q2) · · · (1 + qn)
.

The function σ originally appeared in the “lost” notebook of Ramanujan. (See
[2] for a discussion of Ramanujan’s entries involving σ.) Using Bailey pairs,
ADH proved the q-identity:

σ(q) =
∑

n≥0
|j|≤n

(−1)n+jq
n(3n+1)

2 −j2
(1 − q2n+1). (1.1)

The Karen Taylor would like to thank the department of mathematics at Bryn Mawr College
for hosting her sabbatical year.
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1010 L. Rolen and K. Taylor

In particular, they used such identities to prove Andrews’ earlier speculation
[1] that the coefficients of σ(q) satisfy the unique property that the lim sup of
their absolute values is infinity, but they also vanish infinitely often.

Specifically, from this identity, they deduced that the kth Fourier coeffi-
cient of σ is determined by congruence conditions on solutions to the general-
ized Pell’s equation:

u2 − 6v2 = 24k + 1.

To describe these coefficients in a manner convenient for our purposes, we let
D = 2p, where p is a prime, m = 8pk + δ2l , δl = 2l − 1 with 1 ≤ l ≤ p−1

2 , and

XD(m) = {(u, v) ∈ Z × Z : u2 − Dv2 = m}.

As usual, we denote (u, v) ∼ (U, V ) if u +
√

Dv and U +
√

DV are associates
in Z[

√
D]. Let

T2p(m) =
∑

[(u,v)]∈(X2p(m)/∼)

(
4p

u + pv

)
,

where, as above, m ≡ δ2l (mod 8p). In the case studied by ADH, we write
T (m) = T6(m). Their identity (1.1) shows that σ(q) is the generating function
of T (m) for m > 0. The “companion” generating function, σ∗(q), of T (m), for
m < 0 is (see [3, Theorem 5]):

σ∗(q) =
∞∑

n=1

(−1)nqn2

(1 − q)(1 − q3) · · · (1 − q2n+1)
.

In the conclusion of their paper, ADH define a counting function V3(m)
for Q(

√
3), which can be expressed as the character sum:

V3(m) =
∑

[(u,v)]∈(X3(m)/∼)

(
24

u + 3v

)
.

There also is a counting function U2(m) for Q(
√

2). They state, without proof,
that

T (m) = V3(m) = U2(m).

(Hickerson gave an algebraic proof of these identities in a personal correspon-
dence to Andrews [7]).

Cohen [5] further shed light on the observations of ADH by placing them
in the context of Maass waveforms. To be more specific, he considered the
completed function:

φ(q) = q
1
24 σ(q) + q− 1

24 σ∗(q) =
∑

m≡1 (mod 24)

T (m)q
|m|
24 .

He employed the following dihedral lattice to derive connections between k1 =
Q(

√
6), k2 = Q(

√
2), and k3 = Q(

√
3).
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Q

k1 = Q(
√

6) k2 = Q(
√

2)k3 = Q(
√

3)

B = Q(
√

2,
√

3)

L = Q(
√

2,
√

3 +
√

3)

Here, Gal(L/Q) � D4 and Gal(L/k1) � V4. Since k1 has class number one,
χ1 is a ray class character on the ray class group CL((12)) = I(12)/P

(12)
1 . The

functional equation of the Hecke–Weber function, L(s, χ1), was then used, via
the Mellin transform, to prove that

φ0(τ) = y
1
2

∑

m≡1 (mod 24)

T (m)e
2πimx

24 K0

(
2π|m|y

24

)

is a Maass waveform. The Artin map, Art(12), gives the isomorphism

Art(12) : CL((12))/ ker Art(12)/P
(12)
1 � Gal(L/k1).

The conductor of χ1 is m = (4(3 +
√

6)); it is the smallest modulus (in this
case ideal), m, such that m|(12) and

Artm : CL(m) � Gal(L/k1).

In this case, the Hecke–Weber L-function L(s, χ1) for the ray class char-
acter χ1 is, by the Artin map isomorphism, identical to the Artin L func-
tion L(s, χ̃1) for the one-dimensional representation χ̃1 = χ1 ◦ (Artm)−1 of
Gal(L/k1). The representation χ̃1 induces a two-dimensional representation,
ρ, of Gal(L/Q). Artin’s induction theorem gives L(s, χ̃1) = L(s, ρ).

Cohen obtained the quadratic identities T (m) = V3(m) = U2(m), for
m ≡ 1 (mod 24), by showing that the characters χ2 and χ3 which define U2(m)
and V3(m), respectively, also induce the unique two-dimensional representation
ρ of Gal(L/Q).

Later, Zwegers [10] placed Cohen’s construction into a more general con-
text, generalizing the theory of mock modular forms to what he calls “mock
Maass theta functions”. The starting point for Zwegers is the fact that the
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1012 L. Rolen and K. Taylor

generating functions σ(q) and σ∗(q) can also be expressed as the following
indefinite theta functions:

q
1
24 σ(q) =

⎛

⎜⎜⎝
∑

n+j≥0
n−j≥0

+
∑

n+j<0
n−j<0

⎞

⎟⎟⎠ (−1)n+jq
3
2 (n+

1
6 )

2−j2
,

q− 1
24 σ∗(q) =

⎛

⎜⎜⎝
∑

2j+3n≥0
2j−3n>0

+
∑

2j+3n<0
2j−3n≤0

⎞

⎟⎟⎠ (−1)n+jq− 3
2 (n+

1
6 )

2+j2
.

Given the special nature of these functions and the interest which they
have generated in the literature, it is natural to consider whether the functions
of Andrews, Dyson, Hickerson, and Cohen fit into a broader framework. One
such generalization was explored by Bringmann, Lovejoy, and the first author
in [4]. This was developed in the context of Bailey pairs and indefinite theta
functions, with an eye towards quantum modular properties. However, these
examples did not explore the connection to real quadratic characters; indeed,
the authors of that paper were unable to identify explicit Hecke characters,
in general. Here, we search for a framework in the context of Cohen’s original
Hecke character observation. Specifically, in this paper, we consider the gen-
erating functions σp,l, σ∗

p,l for T2p(m) with m ≡ δ2l , m > 0, and m < 0. Using
Zwegers’ formalism for the modularity properties of indefinite theta functions
of this shape, we find the following general picture which naturally extends
the original example of σ and σ∗.

Theorem 1.1. Let

φ0,l(τ ; p) = y
1
2

∑

m≡δ2
l (mod 8p)

T2p(m)e
2πimx

8p K0

(
2π|m|y

8p

)
.

For primes p of the form p = 2M2 +1, where M is odd, the function φ0,l(τ ; p)
is a Maass waveform, with multiplier, on a congruence subgroup of SL(2,Z).

Remark 1.2. The primes p of the form p = 2M2 + 1 have the property that
the quadratic field Q(

√
2p) are of Richaud–Degert type and their fundamental

units, ε2p, are given explicitly by ε2p = 2p − 1 + 2M
√

2p (see [6, p. 50]).

Example 1.3. We list the first four primes of the form 2M2 + 1 with M odd,
along with the corresponding primes p and class numbers h of Q(

√
2p):

M p h

1 3 1
3 19 1
9 163 3
21 883 5
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The paper is organized as follows. In Sect. 2 we develop the multiplicative
properties of the function χ19,1 which is used to define a (finite) Hecke character
and to define T2p(m) as a character sum. In Sect. 3, we give an example for
p = 19 where, since Q(

√
38) has class number 1 and, thus, Cohen’s argument

applies. In Sect. 4, we prove our main theorem using Zwegers’ machinery. In
the final section, we gather questions for future study.

2. Arithmetic in Z[
√
2p] and Indefinite Theta Functions

In this section, we introduce the multiplicative function and character sums
that generalize the case p = 3 which occurs in ADH. We then determine their
generating functions as indefinite theta functions.

2.1. Character Sums

Let R2p = {u+v
√

2p : (u2−2pv2, 2p) = 1}. We define χp;1, on R2p, as follows:

χp;1(α) =

⎧
⎨

⎩

(
4p

u+pv

)
, if v is even,

(
4p

(p−1)u+pv

)
, if v is odd.

Let α = u+v
√

2p and N(α) = αα′, and then, (N(α), 2p) = 1 implies u ≡ 2l−1
(mod 2p), with 1 ≤ l ≤ p and l 	= p+1

2 . Since u2 ≡ (2p − u)2 (mod 8p),
it is enough to consider u ≡ ±(2l − 1) (mod 8p), for 1 ≤ l ≤ M2. Thus,
N(α) ≡ (2l − 1)2 (mod 8p) or N(α) ≡ (2l − 1)2 + 6p (mod 8p).

The function χp;1 enjoys the following properties.

Proposition 2.1. The following are true.
1. The function χp;1 is multiplicative on R2p.
2. We have the identity:

χp;1(α′) =

{
χp;1(α), if N(α) = (2l − 1)2 (mod 8p), 1 ≤ l ≤ M2,

−χp;1(α), if N(α) = (2l − 1)2 + 6p (mod 8p), 1 ≤ l ≤ M2.

Proof. Let α = u + v
√

2p and β = U + V
√

2p. Then

αβ = uU + 2pV v + (uV + Uv)
√

2p = (αβ)1 + (αβ)2
√

2p.

Since α and β are in R2p, u and U are both odd. There are three cases to
consider depending on the parities of v and V .
Case (i): If v and V are even, then

χp;1(α)χp;1(β) = χp;1(αβ),

since (αβ)1 + p(αβ)2 ≡ (u + pv)(U + pV ) (mod 4p).
Case (ii): When v and V are odd, we compute

(αβ)1 + p(αβ)2 − ((p − 1)u + pv)((p − 1)U + pV )

= (p − 2)p(u + v)(U + V ) = 0 (mod 4p).
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1014 L. Rolen and K. Taylor

Case (iii): Finally, if v even and V is odd, then we have

(p − 1)(αβ)1 + p(αβ)2 − (u + pv)((p − 1)U + pV )
= p(p − 2)v(V − U) = 0 (mod 4p).

�

2.2. Indefinite Theta Functions

To determine convenient formulas for the generating function of T2p(m), we
make repeated use of the following lemma, given in [3].

Lemma 2.2. Let (u0, v0) be the fundamental solution to U2 − DV 2 = 1. Each
equivalence class of solutions to U2 − DV 2 = m has a representative (u, v)
satisfying:
Case (i) m > 0, then u > 0 and

− v0
u0 + 1

u < v ≤ v0
u0 + 1

u;

Case (ii) m < 0, then v > 0 and

− Dv0
u0 + 1

v < u ≤ Dv0
u0 + 1

v.

In our case, we have D = 2p and, since ε2p = 2p − 1 + 2M
√

2p satisfies
Nk1/Q(ε2p) = 1, u0 = 2p − 1 and v0 = 2M . We also need

v0
u0 + 1

=
M

p
.

Set δl = 2l − 1. Then, u2 − 2pv2 = 8pk + δ2l implies that

u ≡ ±δl (mod 2p), and v is even.

Set u = 2pn + δ, δ ∈ {δl, 2p − δl}, n ≥ 0 and v = 2j. Then

u + pv = 2p(n + j) + δ ≡ ±δl (mod 4p)

implies that n + j is even and δ = δl and, by the lemma:

−M

p
(2pn + δl) < 2j ≤ M

p
(2pn + δl).

Thus

Mn + j > −δlM

2p
and Mn − j ≥ −δlM

2p
.

Indeed, n + j ≡ 1 (mod 2), δ = 2p − δl, and

−M

p
(2p(n + 1) − δl) < 2j ≤ M

p
(2p(n + 1) − δl)

implies

M(n + 1) + j >
δlM

2p
and M(n + 1) − j ≥ δlM

2p
.

Similarly, for

u + pv = 2p(n + j) + δ ≡ ±(2p − δl) (mod 4p),
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we have n + j ≡ 0 (mod 2), δ = 2p − δl, and

M(n + 1) + j >
δlM

2p
and M(n + 1) − j ≥ δlM

2p
,

or n + j ≡ 1 (mod 2), δ = δl, and

Mn + j > −δlM

2p
and Mn − j ≥ −δlM

2p
.

Recall that we have assumed that M is odd. Thus, p ≡ 3 (mod 4) and the
parity of n±j is equal to the parity of Mn+j. Therefore, for m = 8pk+δ2l , k ≥
0, we have:

T2p(m) =
∑

Mn+j>− δlM
2p

Mn−j≥− δlM
2p

(2pn+δl)
2−2p(2j)2=8pk+δ2l

(−1)Mn+j −
∑

M(n+1)+j>
δlM
2p

M(n+1)−j≥ δlM
2p

(2pn+2p−δl)
2−2p(2j)2=8pk+δ2l

(−1)Mn+j

=
∑

Mn+j>− δlM
2p

Mn−j≥− δlM
2p

(2pn+δl)
2−2p(2j)2=8pk+δ2l

(−1)Mn+j +
∑

Mn+j>
δlM
2p

Mn−j≥ δlM
2p

(2pn−δl)
2−2p(2j)2=8pk+δ2l

(−1)Mn+j

=
∑

Mn+j>− δlM
2p

Mn−j≥− δlM
2p

(2pn+δl)
2−2p(2j)2=8pk+δ2l

(−1)Mn+j +
∑

Mn+j≤− δlM
2p

Mn−j<− δlM
2p

(2pn+δl)
2−2p(2j)2=8pk+δ2l

(−1)Mn+j .

In the second term of the last line, we have made the substitution n �→ −n.
For m < 0, the lemma gives −2Mv < u ≤ 2Mv. Now, if n + j is even and
δ = δl, then we find

2Mj + pn > −δl

2
and 2Mj − pn ≥ δl

2
;

whereas if n + j odd and δ = 2p − δl, then

2Mj + p(n + 1) >
δl

2
and 2Mj − p(n + 1) ≥ −δl

2
.

Thus, we have

T2p(m) =
∑

2Mj+pn>− δl
2

2Mj−pn≥ δl
2

(2pn+δl)
2−2p(2j)2=8pk+δ2l

(−1)Mn+j −
∑

2Mj+p(n+1)>
δl
2

2Mj−p(n+1)≥− δl
2

(2p(n+1)−δl)
2−2p(2j)2=8pk+δ2l

(−1)Mn+j

=
∑

2Mj+pn>− δl
2

2Mj−pn≥ δl
2

(2pn+δl)
2−2p(2j)2=8pk+δ2l

(−1)Mn+j +
∑

2Mj+pn>
δl
2

2Mj−pn≥− δl
2

(2pn−δl)
2−2p(2j)2=8pk+δ2l

(−1)Mn+j .
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1016 L. Rolen and K. Taylor

Now, in the second term, make the changes of variables n �→ −n and j �→ −j,
to arrive at

T2p(m) =
∑

2Mj+pn>− δl
2

2Mj−pn≥ δl
2

(2pn+δl)
2−2p(2j)2=8pk+δ2l

(−1)Mn+j +
∑

2Mj+pn<− δl
2

2Mj−pn≤ δl
2

(2pn+δl)
2−2p(2j)2=8pk+δ2l

(−1)Mn+j .

For m = 8pk + δ2l , the generating functions, σ2p,l for m > 0 and σ∗
2p,l for

m < 0, for T2p(m), are

q
δ2l
8p σ2p,l(q) =

⎛

⎜⎜⎜⎜⎜⎜⎝

∑

Mn + j > − δlM
2p

Mn − j ≥ − δlM
2p

+
∑

Mn + j ≤ − δlM
2p

Mn − j < − δlM
2p

⎞

⎟⎟⎟⎟⎟⎟⎠
(−1)Mn+jq

p
2 (n+

δl
2p

)2−j2
,

q
− δ2l

8p σ∗
2p,l(q) =

⎛

⎜⎜⎜⎜⎜⎜⎝

∑

2Mj + pn > − δl
2

2Mj − pn ≥ δl
2

+
∑

2Mj + pn < − δl
2

2Mj − pn ≤ δl
2

⎞

⎟⎟⎟⎟⎟⎟⎠
(−1)Mn+jq

− p
2 (n+

δl
2p

)2+j2
.

Finally, for each l, we define

φl(q; p) = q
δ2l
8p σ2p,l(q) + q− δ2l

8p σ∗
2p,l(q) =

∑

m≡δ2
l (mod 8p)

T2p(m)q
|m|
8p .

3. Example: p = 19

In the case of p = 19, the class number of Q(
√

38) is 1. In this case, the proof
of modularity applies exactly as in Cohen’s argument. Specifically, we identify
χ19,1 with a character on I(76); it gives a ray class character on CL(m) with
conductor m = (4(19 + 3

√
38)). However, the ray class field is a degree 36

extension, L, of k1. To complete the Artin theory argument for the quadratic
identities, we need to identify L and show that the one-dimensional represen-
tations χ19,1 ◦ (Artm)−1, χ19,2 ◦ (Artm)−1, χ19,3 ◦ (Artm)−1 all induce the same
representation of Gal(L/Q).

We then have the theta series:

φ(q) =
∑

a⊂Z[
√
38]

χ19,1(a)q
Na
152 ,

and the Hecke L-series:

L(s, χ19,1) =
∑

a⊂Z[
√
38]

χ19,1(a)
N(a)s

.
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The completed L-function Λ19(s) = (27 ·192)
s
2 π−sΓ( s

2 )2L(s, χ19,1) satisfies the
functional equation:

Λ19(1 − s) = Λ19(s).

Following Cohen, set

φ0(τ ; 19) = y
1
2

∑

n≡δ2
l

1≤l≤9

T38(n)e
2πinx
152 K0

(
2π|n|y
152

)
.

This construction yields the following result.

Proposition 3.1. φ0(τ ; 19) is a Maass waveform on Γ(2) with eigenvalue λ = 1
4 .

Proof. By construction, φ0(τ ; 19) satisfies:
(

Δ − 1
4

)
φ0(τ ; 19) = 0.

Thus, it is determined by the values φ0(τ ; 19)|x=0 and ∂φ0(τ ;19)
∂x |x=0. Equiva-

lently, by the Maass Converse Theorem [8], it is determined by the functional
equations of the two Dirichlet series:

∑

n≡δ2
l

1≤l≤9

T38(n)
|n|s and

∑

n≡δ2
l

1≤l≤9

sgn(n)T38(n)
|n|s .

Consider the completed functions:

Λ19(s) = 2
s
2

(
152
π

)s

Γ
(s

2

)2

L(s, χ19,1),

Λ̃19(s) = 2
s+1
2

(
152
π

)s+1

Γ
(

s + 1
2

)2 ∑

n≡δ2
l

1≤l≤9

sgn(n)T38(n)
|n|s ,

where N(m)
2 = 152. Their functional equations are Λ19(1 − s) = Λ19(s) and

Λ̃19(1 − s) = −Λ̃19(s), [9]. We start with (see [8]):

K0(y) =
1

8πi

∫ σ+i∞

σ−i∞
Γ

(s

2

)2

2sy−sds,

where y > 0 and σ = Re(s) > 0. It follows that

y
1
2 K0

(
2π|n|
152

y

)
=

1
8πi

∫ σ+i∞

σ−i∞

(
152
π

)s+ 1
2 Γ

(
s+ 1

2
2

)2

y−sds

|n|s+ 1
2

,

for y > 0, σ > 1
2 . Thus:

φ0(iy; 19) =
2− 9

4

2πi

∫ σ+i∞

σ−i∞
y−s2− s

2 Λ19

(
s +

1
2
, χ19,1

)
ds.
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Moving the line of integration to the vertical line −σ + it and letting t �→ −t,
it gives:

φ0(iy; 19) =
2− 9

4

2πi

∫ σ+i∞

σ−i∞
ys2

s
2 Λ19

(
−s +

1
2
, χ19,1

)
ds

=
2− 9

4

2πi

∫ σ+i∞

σ−i∞

(
1
2y

)−s

2− s
2 Λ19

(
s +

1
2
, χ19,1

)
ds

= φ0

(−1
2iy

; 19
)

.

Set φ1(τ) = φ0(−1
2τ ; 19) and note that

∂φ1

∂x

∣∣∣∣
x=0

= − 1
2y2

∂φ0

∂x

(−1
2τ

; 19
) ∣∣∣∣

x=0

.

To evaluate ∂φ0
∂x (iy; 19), we consider, for y > 0, σ > 1

2 :

ny
1
2 K0

(
2π|n|
152

y

)
=

1
8πi

∫ σ+i∞

σ−i∞

(
152
π

)s+ 1
2 Γ

(
s+ 1

2
2

)2

sgn(n)y−sds

|n|s− 1
2

.

Hence
∂φ0

∂x
(iy; 19) =

(
2πi

152

)
1

8πi

∫ σ+i∞

σ−i∞
2−(

s+1
2

2 )Λ̃19

(
s − 1

2

)
y−sds.

Finally, shift the line of integration to the vertical line 2−σ+it and let t �→ −t,
to obtain

∂φ0

∂x
(iy; 19) =

(
2πi

152

)
1

8πi

∫ σ+i∞

σ−i∞
2−(

2−s+1
2

2 )Λ̃19

(
3
2

− s

)
ys−2ds

=
1

2y2

(
2πi

152

)
1

8πi

∫ σ+i∞

σ−i∞
2−(

s+1
2

2 )Λ̃19

(
3
2

− s

)(
1
2y

)−s

ds

= − 1
2y2

(
2πi

152

)
1

8πi

∫ σ+i∞

σ−i∞
2−(

s+1
2

2 )Λ̃19

(
s − 1

2

)(
1
2y

)−s

ds

= − 1
2y2

∂φ0

∂x

(−1
2yi

; 19
)

=
∂φ1

∂x

∣∣∣
x=0

.

�

4. Modularity of Indefinite Theta Series a la Zwegers

For each δl, our generalized σ functions fit into Zwegers’ formalism. In this
section, we briefly summarize Zwegers’ results. Let Q(ν1, ν2) = 1

2νtAν be an
indefinite binary quadratic form and B(ν, μ) = νtAμ the associated bilinear
form. We shall also denote the components of ν by ( ν1

ν2 ). It is assumed that
the binary quadratic form Q = [a, b, c] has a, c ∈ 1

2Z and b ∈ Z. The hyperbola
{( ν1

ν2 ) : Q(ν) = −1} is the disjoint union C+
Q ∪C−

Q , where C+
Q = {( ν1

ν2 ) : Q(ν) =
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−1 and ν2 > 0}. It then turns out that there is a change of basis matrix P ,
such that the following three properties hold.

1. We have Q(x, y) = (Q0 ◦ P )(x, y) for Q0(ν1, ν2) = ν1ν2.

2. The vector P−1

(
1

−1

)
lies in the component C+

Q .

3. All of C+
Q is parameterized by c : R −→ C+

Q given by c(t) = P−1
(

et

−e−t

)
.

Remark 4.1. In Zwegers’ normalization, 2Q = [2a, 2b, 2c] is a primitive indefi-

nite binary quadratic form with matrix A =
(

2a b
b 2c

)
. We assume a > 0. We

have

Q(x, y) = a(x − ηy)(x − η′y),

with η = −b+
√

D
2a , η′ its conjugate, and D = b2 − 4ac ∈ Z

+. If

c0 =
√

a

D

(− b
a

2

)
,

then Q(c0) = −1, and B(ν, c0) < 0 if and only if ν0 > 0. We have

P =
√

a

(
1 −η′

1 −η

)

is the change of basis matrix, such that

c0 = P−1

(
1

−1

)
.

The parameterization of C+
Q is then given by:

c(t) =

(
−b cosh(t)+

√
D sinh(t)

2a
cosh(t)

)
.

We will restrict the automorphisms of 2Q to SL(2,Z), and thus, we define

Aut+(2Q) = {γ ∈ SL(2,Z) : γtAγ = A}
= {γ ∈ SL(2,Z) : γη = η, γη′ = η′} = 〈γη〉,

where

γη =
(

u0 − bv0 −2cv0
2av0 u0 + bv0

)
.

Here, (u0, v0) is a fundamental solution to Pell’s equation u2 − Dv2 = 1, and
D is the discriminant of Q.

Zwegers defined the following family of lattice sums [10], which are con-
structed to be eigenfunctions of the hyperbolic Laplacian:

Δ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
,

but are only legitimate Maass waveforms in special cases.
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Definition 4.2. For c1, c2 ∈ C+
Q and a, b ∈ R

2, we consider the indefinite theta
function of Zwegers:

Φc1,c2
a,b (τ) = sgn(t2 − t1)y

1
2
1
2

×
⎛

⎝
∑

ν=a+Z2

(1 − sgnB(ν, c1)B(ν, c2))e2πiQ(ν)xe2πiB(ν,b)K0(2πQ(ν)y)

+
∑

ν=a+Z2

(1 − sgnB(ν, c⊥
1 )B(ν, c⊥

2 ))e2πiQ(ν)xe2πiB(ν,b)K0(2πQ(ν)y)

⎞

⎠ .

Here, tj , for j = 1, 2, is defined by cj = c(tj) and c⊥
j is defined by

c⊥
j = c⊥(tj), with

c⊥(t) = P−1

(
et

e−t

)
.

Note that the inclusion of the exponential and K-Bessel functions implies that
Φc1,c2

a,b (τ) satisfies

ΔΦc1,c2
a,b (τ) =

1
4
Φc1,c2

a,b (τ),

so that it turns the q-series indefinite theta functions into functions which have
a hope of (and sometimes are) Maass waveforms. In Zwegers’ language, we can
express the functions from our new family as follows.

Proposition 4.3. For A =
(

p 0
0 −2

)
, c1 = 1√

p

(−2M
p

)
, c2 = 1√

p

(
2M
p

)
, al =

(
δl

2p

0

)
and b =

(
M
2p
1
4

)
, we have

Φc1,c2
al,b

(τ) = ζM
4p,lφl,0(τ),

where ζ4p,l = e
2πiδl
4p .

Proof. From

(2pn + δl)2 − 2p(2j)2 = 8pk + δ2l ,

we have the following setup:

Q(ν1, ν2) =
p

2
ν2
1 − ν2

2 , A =
(

p 0
0 −2

)
, B(μ, ν) = pμ1ν1 − 2μ2ν2, al =

(
δl

2p

0

)
.

To find b =
(

b1
b2

)
, we want

e2πiB(ν,b) = λ(−1)Mn+j ,
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when ν =
(

n + δl

2p

j

)
. Thus, we have the condition:

2B

((
n + δl

2p

j

)
,

(
b1
b2

))
= (Mn ± j) + C.

This gives b =
(

M
2p
1
4

)
and

exp
(

2πiB

((
n + 1

2p

j

)
,

(
M
2p
1
4

)))
= ζM

4p,l(−1)Mn+j .

Next, we take c ∈ C+
Q of the form c = αb. Since

α2

(
p

2

(
M

2p

)2

−
(

1
4

)2
)

= −1,

this gives α = 4
√

p, and we set

c1 =
1√
p

(−2M
p

)
, and c2 =

1√
p

(
2M
p

)
.

Since

Q(x, y) =
p

2
x2 − y2 =

p

2

(
x −

√
2
p
y

)(
x +

√
2
p
y

)
,

by the remark at the start of this section, the change of basis matrix is:

P =
√

p

2

⎛

⎝
1

√
2
p

1 −
√

2
p

⎞

⎠ .

The generator of Aut+(2Q) is then given by:

γ√
2
p

=
(

2p − 1 4M
2Mp 2p − 1

)
,

since N(ε2p) = 1 and the fundamental solution to

x2 − 2py2 = 1

is (2p − 1, 2M). Note that c1 is the unique point in C+
Q satisfying

γ√
2
p

·
(

a
b

)
=

(−a
b

)
.

Employing the parameterization

c(t) =

(√
2
p sinh(t)
cosh(t)

)
,

we find

t1 = log(
√

p −
√

2 · M) and t2 = log(
√

p +
√

2 · M).

It follows that
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c1
⊥ = P−1

(√
p − √

2 · M√
p +

√
2 · M

)
=

( √
2

−√
2 · M

)
and c2

⊥ =
( √

2√
2 · M

)
.

Next, we determine the required cone conditions to obtain

sgn(B(ν, c1)) = −sgn
(

Mn + j +
δlM

2p

)
,

sgn(B(ν, c2)) = sgn
(

Mn − j +
δlM

2p

)
,

sgn(B(ν, c1
⊥)) = sgn

(
pn − 2Mj +

δl

2

)
,

sgn(B(ν, c2
⊥)) = sgn

(
pn + 2Mj +

δl

2

)
,

and

1 − sgn(B(ν, c1)B(ν, c2)) =

⎧
⎪⎨

⎪⎩

2, if Mn + j > − δlM
2p

and Mn − j > − δlM
2p

,

2, if Mn + j < − δlM
2p

and Mn − j < − δlM
2p

,

0, otherwise,

1 − sgn(B(ν, c1
⊥)B(ν, c2

⊥)) =

⎧
⎪⎨

⎪⎩

2, if 2Mj + pn < − δl
2

and 2Mj − pn < δl
2

,

2, if 2Mj + pn > − δl
2

and 2Mj − pn > δl
2

,

0, otherwise.

Plugging our data into Definition 4.2, we have

Φc1,c2
al,b

(τ) = ζM
4p,ly

1
2

∑

n≥0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

Mn+j>− δlM

2p

Mn−j>− δlM

2p

Q

(
n+ δl

2p

j

)
=k+

δ2l
8p

+
∑

Mn+j<− δlM

2p

Mn−j<− δlM

2p

Q

(
n+ δl

2p

j

)
=k+

δ2l
8p

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

× (−1)Mn+je
2πi

(
k+

δ2l
8p

)
x
K0

(
2π

(
k +

δ2l
8p

)
y

)

+ ζM
4p,ly

1
2

∑

n<0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

2Mj+pn>− δl
2

2Mj−pn>
δl
2

Q

(
n+ δl

2p

j

)
=k+

δ2l
8p

+
∑

2Mj+pn<− δl
2

2Mj−pn<
δl
2

Q

(
n+ δl

2p

j

)
=k+

δ2l
8p

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

× (−1)Mn+je
2πi

(
k+

δ2l
8p

)
x
K0

(
2π

∣∣∣∣k +
δ2l
8p

∣∣∣∣ y
)
,

as claimed. �
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Zwegers further constructed the “completed” function:

Φ̂c1,c2
a,b (τ) = y

1
2

∑

ν∈a+Z2

qQ(ν)e2πiB(ν,b)

∫ t2

t1

e−πyB(ν,c(t))2dt,

which naturally contains Φc1,c2
a,b (τ) as a piece and transforms as a modular form,

but may no longer be an eigenfunction of the hyperbolic Laplacian. However,
its image under Δ − 1/4 is a “simpler” function, and so, in analogy with the
theory of mock modular forms and harmonic Maass forms, Zwegers called
Φc1,c2

a,b a mock Maass theta function. In particular, he proved that Φ̂c1,c2
a,b (τ)

has the following properties which will be useful for us here:

1. We have the following relationships under transformations of the param-
eters of Φ̂c1,c2

a,b (τ) :
1.1. Φ̂c1,c2

a+λ,b+μ(τ) = e2πiB(a,μ)Φ̂c
a,b(τ), λ ∈ Z × Z, μ ∈ 1

pZ × 1
2Z,

1.2. Φ̂c1,c2
−a,−b(τ) = Φ̂c1,c2

a,b (τ),
1.3. Φ̂c1,c2( −a1

a2

)
,
( −b1

b2

)(τ) = Φ̂c1,c2

( a1
a2 ),

(
b1
b2

)(τ).

2. The modularity transformations of Φ̂c1,c2
a,b (τ) are given as follows. Under

translation, we have

Φ̂c1,c2
a,b (τ + 1) = e−2πiQ(a)−πiB(AA∗,a)Φ̂c1,c2

a,a+b+ 1
2AA∗(τ),

where A∗ denotes the vector of diagonal entries of A. Under inversion,
we have

Φ̂c1,c2
a,b

(
−1

τ

)
= e2πiB(a,μ) e2πiB(a,b)

√−det A

∑

μ∈A−1Z2 (mod Z2)

Φ̂−b+μ,a(τ).

3. We have that Φ̂c1,c2
a,b (τ) is related to Φc1,c2

a,b (τ) by

Φ̂c1,c2
a,b (τ) = Φc1,c2

a,b (τ) + φc1
a,b(τ) − φc2

a,b(τ),

where

φc0
a,b(τ) = y

1
2

∑

ν∈a+Z2

αt0(νy
1
2 )qQ(ν)e2πiB(ν,b),

and where

αt0(ν) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ ∞
t0

e−πyB(ν,c(t))2dt, if B(ν, c0)B(ν, c0
⊥) > 0,

− ∫ t0
−∞ e−πyB(ν,c(t))2dt, if B(ν, c0)B(ν, c0

⊥) < 0,

0, if B(ν, c0)B(ν, c0
⊥) = 0.

Moreover, the functions φc1
a,b satisfy the parameter identities 1.1–1.3 and

the functional equation

φγc
γa,γb(τ) = φc

a,b(τ) for any γ ∈ Aut+(2Q).

669



1024 L. Rolen and K. Taylor

4. Instead of being in the kernel of Δ − 1/4 as a typical Maass waveform
would be, in general:

(Δ − 1/4)(Φ̂c1,c2
a,b )

has an explicit representation in terms of “simpler” functions.
Property 3 is especially convenient for showing that special examples of Φc1,c2

a,b

are actually Maass waveforms, which happens precisely when φc1
a,b = φc2

a,b, and
hence, Φ̂c1,c2

a,b = Φc1,c2
a,b . In this situation, the function inherits both the eigen-

function under the Laplacian property of Φc1,c2
a,b as well as the full modularity

transformation properties of Φ̂c1,c2
a,b . We conclude this section by noting that

in our case, the modular transformations of the completed functions take the
form:

Φ̂a,b(τ + 1) = e−2πiQ(a)−πi(pa1−2a2)Φ̂
a,a+b+

⎛

⎝
1
2
1
2

⎞

⎠
(τ),

Φ̂a,b

(
−1

τ

)
=

e2πiB(a,b)

√
2p

∑

m1 (mod p)
m2 (mod 2)

Φ̂
−b+

⎛

⎝
m1
p

m2
2

⎞

⎠,a

(τ).
(4.1)

4.1. Proof of Theorem 1

By Proposition 4.3:

ζM
4p,lφ0,l(τ ; p) = Φc1,c2⎛

⎝
δl

2p

0

⎞

⎠,

⎛

⎝
M
2p
1
4

⎞

⎠
(τ).

Zwegers’ machinery gives that Φc1,c2⎛

⎝
δc

2p

0

⎞

⎠,

⎛

⎝
M
2p
1
4

⎞

⎠
(τ) is a component of a vector-

valued Maass waveform on SL(2,Z) whenever

φc1⎛

⎝
δl

2p

0

⎞

⎠,

⎛

⎝
M
2p
1
4

⎞

⎠
(τ) = φc2⎛

⎝
δl

2p

0

⎞

⎠,

⎛

⎝
M
2p
1
4

⎞

⎠
(τ).

Since γ√
2
p
c1 = c2, we have

φc1⎛

⎝
δl

2p

0

⎞

⎠,

⎛

⎝
M
2p
1
4

⎞

⎠
(τ) = φ

γ√ 2
p

c1

γ√ 2
p

⎛

⎝
δl

2p

0

⎞

⎠,γ√ 2
p

⎛

⎝
M
2p
1
4

⎞

⎠
(τ)

= φc2⎛

⎝
−δl

2p

0

⎞

⎠+

⎛

⎝ δl

Mδl

⎞

⎠,

⎛

⎝ −M
2p

− 1
4

⎞

⎠+

⎛

⎝ 2M
M2 + p

2

⎞

⎠
(τ)

= e−2πiδlMφc2⎛

⎝ − δl

2p

0

⎞

⎠,

⎛

⎝ −M
2p

− 1
4

⎞

⎠
(τ) = φc2⎛

⎝
δl

2p

0

⎞

⎠,

⎛

⎝
M
2p
1
4

⎞

⎠
(τ).

Thus, φ0,l(τ ; p) is a Maass waveform, with multiplier, on a congruence sub-
group of SL(2,Z).
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4.2. Vector-Valued Transformations

For 1 ≤ ν ≤ p+M
2 − 1, let

Φ̂ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ̂⎛

⎝ −M
2p + ν

p

0

⎞

⎠,

⎛

⎝
M
2p
1
4

⎞

⎠

Φ̂⎛

⎝ −M
2p + ν

p
1
4

⎞

⎠,

⎛

⎝
M
2p

0

⎞

⎠

Φ̂⎛

⎝ −M
2p + ν

p
1
4

⎞

⎠,

⎛

⎝
M
2p
1
4

⎞

⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Employing the modular transformations (4.1) and the parametric identities
1.1–1.3, we can determine matrices A,B,C,A1, B1, C1, each of size (p+M

2 −
1) × (p+M

2 − 1), such that

Φ̂
(−1

τ

)
=

⎛

⎝
0 A 0
B 0 0
0 0 C

⎞

⎠ Φ̂(τ)

and

Φ̂(τ + 1) =

⎛

⎝
A1 0 0
0 0 B1

0 C1 0

⎞

⎠ Φ̂(τ).

5. Questions

We conclude with several questions.

1. The construction of a Maass waveform attached to a real quadratic field
using Zwegers’ formalism depends only on knowing the fundamental unit
explicitly and the lemma from ADH. It would be interesting to construct
the forms attached to other families of real quadratic fields where the
fundamental unit is known.

2. Are there an infinite number of primes of the form p = qM2 + 1?
3. Can Cohen’s argument be extended when the class number of Q(

√
2p) is

greater than one?
4. Can the generating functions for V3(m) and U2(m) be used to prove the

identities T (m) = V3(m) = U2(m) using Bailey pairs?

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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(2011)

[10] Zwegers, S.: Mock Maass theta functions. Q. J. Math. 63(3), 753–770 (2012)

Larry Rolen
Department of Mathematics
Vanderbilt University
Nashville
TN37240
USA
e-mail: larry.rolen@vanderbilt.edu

Karen Taylor
Department of Mathematics and Computer Science
Bronx Community College, City University of New York
Bronx
NY10453
USA
e-mail: karen.taylor@bcc.cuny.edu

Received: 23 December 2018.

Accepted: 17 July 2019.

672



Ann. Comb. 23 (2019) 1027–1037
c© 2019 Springer Nature Switzerland AG

Published online October 17, 2019

https://doi.org/10.1007/s00026-019-00451-w Annals of Combinatorics

Sequentially Congruent Partitions and
Related Bijections

In honor of George E. Andrews on his 80th birthday

Maxwell Schneider and Robert Schneider

Abstract. We study a curious class of partitions, the parts of which obey
an exceedingly strict congruence condition we refer to as “sequential con-
gruence”: the mth part is congruent to the (m+1)th part modulo m, with
the smallest part congruent to zero modulo the length of the partition. It
turns out these obscure-seeming objects are embedded in a natural way
in the theory of partitions. We show that sequentially congruent parti-
tions with the largest part n are in bijection with the partitions of n.
Moreover, we show sequentially congruent partitions induce a bijection
between partitions of n and partitions of length n whose parts obey a
strict “frequency congruence” condition—the frequency (or multiplicity)
of each part is divisible by that part—and prove families of similar bijec-
tions, connecting with G. E. Andrews’ theory of partition ideals.

Mathematics Subject Classification. 05A17, 11P84.

Keywords. Partitions, q-Series, Generating function, Partition ideal.

1. Introduction

Here we consider a somewhat exotic subset of integer partitions, which turns
out to be naturally embedded in the theory of partitions.

Let P denote the set of partitions, with elements λ = (λ1, λ2, . . . , λr),
λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1, including the empty partition ∅. Alternatively,
following Andrews [4], Fine [8] and other authors, one sometimes writes λ =
(1m1 2m2 3m3 . . .) with mi = mi(λ) the frequency (or multiplicity) of i ∈ N as
a part of λ, setting mi(∅) = 0 for all i. Furthermore, for a given partition λ, let
|λ| denote its size (sum of the parts) and �(λ) := r denote its length (number
of parts), with the conventions |∅| := 0, �(∅) := 0.

We define the set S ⊂ P of sequentially congruent partitions as follows.
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1028 M. Schneider and R. Schneider

Definition 1.1. We define a partition λ to be sequentially congruent if the fol-
lowing congruences between the parts are all satisfied:

λ1 ≡ λ2 (mod 1), λ2 ≡ λ3 (mod 2), λ3 ≡ λ4 (mod 3), . . . ,

λr−1 ≡ λr (mod r − 1),

and for the smallest part, λr ≡ 0 (mod r).

For example, the partition (20, 17, 15, 9, 5) is sequentially congruent, be-
cause 20 ≡ 17 (mod 1) trivially, 17 ≡ 15 (mod 2), 15 ≡ 9 (mod 3), 9 ≡
5 (mod 4), and finally 5 ≡ 0 (mod 5). On the other hand, (21, 18, 16, 10, 6)
is not sequentially congruent, for while the first four congruences still hold,
clearly 6 �≡ 0 (mod 5). Note that increasing the largest part λ1 of any λ ∈ S
yields another partition in S, as does adding or subtracting a fixed integer
multiple of the length r to all its parts, so long as the resulting parts are still
positive.

No doubt, this strict congruence restriction on the parts hardly appears
natural. However, it turns out sequentially congruent partitions are in one-to-
one correspondence with the entire set P.

2. Bijections Between S and P
Let Pn denote the set of partitions of n, as usual let p(n) = #Pn, with #Q
standing for the cardinality of a set Q, and let Slg=n denote sequentially con-
gruent partitions λ′ whose the largest part λ′

1 equals n.

Theorem 2.1. There exists a bijection π between the set P and the set S such
that

π(Pn) = Slg=n.

Moreover, we have

#Slg=n = p(n).

Proof. We prove the theorem directly by construction.
For a partition λ = (λ1, λ2, . . . , λi, . . . , λr), one constructs a sequentially

congruent dual

λ′ = (λ′
1, λ

′
2, . . . , λ

′
i, . . . , λ

′
r)

by taking the parts equal to

λ′
i = iλi +

r∑

j=i+1

λj . (2.1)

Note that λ′
r ≡ 0 (mod r) as

∑r
j=r+1 is empty; the other congruences

between successive parts of λ′ are also immediate from Eq. (2.1).
Let us take

π : P → S
to be the map defined by this construction, with λ′ = π(λ). In fact, the above
argument establishes that π : Pn → Slg=n.
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Conversely, given a sequentially congruent partition λ′, one can recover
the dual partition λ by working from right-to-left. Begin by computing the
smallest part

λr =
λ′

r

r
, (2.2)

then compute λr−1, λr−2, . . . , λ1 in this order by taking

λi =
1
i

⎛

⎝λ′
i −

r∑

j=i+1

λj

⎞

⎠ . (2.3)

We define the inverse map π−1 from the algorithm in (2.2) and (2.3), i.e.,
π−1(λ′) = λ:

π−1 : S → P. (2.4)

Noting that the uniqueness of λ implies the uniqueness of λ′, and vice
versa, the bijection between S and P follows from this two-way construction.

Furthermore, since λ′
1 = |λ|, then every partition λ of n corresponds

to a sequentially congruent partition λ′ with the largest part n, and vice
versa. �

The sets P and S enjoy another interrelation that can be used to compute
the coefficients of infinite products. Now, it is a rewriting of Equation 22.16
in Fine [8] that for a function f : N → C and q ∈ C with f, q chosen such that
the product converges absolutely, we have

∞∏

n=1

(1 − f(n)qn)−1 =
∑

λ∈P
q|λ| ∏

i≥1

f(i)mi , (2.5)

where mi = mi(λ) is the frequency of i as a part of λ, and the sum on the
right is taken over all partitions λ. Of course the canonical case would be, for
|q| < 1, the identity

∞∏

n=1

(1 − xqn)−1 =
∑

λ∈P
x�(λ)q|λ|, (2.6)

which enjoys many beautiful q-series representations (see [4,6,8]).
It follows from an extension of (2.5) in [10] that the product on the

left side of (2.5) can also be expressed as a sum over sequentially congruent
partitions.

Let lg(λ) = λ1 denote the largest part of partition λ, and set λk = 0 if
k > �(λ).

Theorem 2.2. For f : N → C, q ∈ C such that the product converges absolutely,
we have

∞∏

n=1

(1 − f(n)qn)−1 =
∑

λ∈S
qlg(λ)

∏

i≥1

f(i)(λi−λi+1)/i.
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Proof. For j = 1, 2, 3, . . ., let PTj
denote partitions whose parts are all in some

subset Tj ⊆ N, with ∅ ∈ PTj
for all j, and define fj : Tj → C. To prove

Theorem 2.2, we begin by recalling Corollary 2.9 of [10] in the case that “±”
signs are set to minus:

n∏

j=1

∏

kj∈Tj

(
1 − fj(kj)qkj

)−1
=

∞∑

k=0

ckqk,

with the coefficients ck given by the somewhat unwieldy (n − 1)-tuple sum

ck =
k∑

k2=0

k2∑

k3=0

· · ·
kn−1∑

kn=0

⎛

⎜⎜⎝
∑

λ�kn
λ∈PTn

∏

λi∈λ

fn(λi)

⎞

⎟⎟⎠

⎛

⎜⎜⎜⎝
∑

λ�(kn−1−kn)
λ∈PTn−1

∏

λi∈λ

fn−1(λi)

⎞

⎟⎟⎟⎠

×

⎛

⎜⎜⎜⎝
∑

λ�(kn−2−kn−1)
λ∈PTn−2

∏

λi∈λ

fn−2(λi)

⎞

⎟⎟⎟⎠ . . .

⎛

⎜⎜⎝
∑

λ�(k−k2)
λ∈PT1

∏

λi∈λ

f1(λi)

⎞

⎟⎟⎠ ,

where “λ 
 r” indicates λ is a partition of r and the interior products are
taken over the parts λi of each λ, which can be proved from (2.5) by repeated
application of the Cauchy product formula.

Now, for every j ∈ N take Tj = {j} and fix fj = f . In this case, λ ∈ PTj

means if λ �= ∅ that λ = (j, j, . . . , j), so we must have j|(kj − kj+1) in any
nonempty partition sum on the right side above. Then every summand com-
prising ck vanishes unless all the ki ≤ k are parts of a sequentially congruent
partition having length ≤ n: each sum over partitions is empty (i.e., equal to
zero) if j does not divide kj −kj+1; is equal to 1 if kj −kj+1 = 0 as then λ = ∅
and

∏
λi∈∅ is an empty product; or else has one term f(j)mj = f(j)(kj−kj+1)/j

as there is exactly one λ = (j, j, . . . , j) with |λ| = mjj = kj − kj+1 > 0. Fi-
nally, let n → ∞ so this argument encompasses partitions in S of unrestricted
length. �

Remark 2.3. We note that setting f = 1, then comparing Eq. (2.5) to Theorem
2.2, gives another proof of Theorem 2.1: the sets Slg=n and Pn (and thus, the
sets S and P) have the same product generating function.

Remark 2.4. If we instead take every ± equal to plus in Corollary 2.9 of [10],
similar arguments reveal there is also a bijection between partitions into dis-
tinct parts and the subset of S containing partitions into parts with differences
λi − λi+1 = i exactly.

3. Cyclic Sequentially Congruent Maps

Comparing Theorem 2.2 with (2.5) above, we have two formally different-
looking decompositions of the coefficients of

∏
n≥1(1−f(n)qn)−1 as sums over

partitions of the form
∑

λ∈Pn
and

∑
λ∈Slg=n

, yet one observes the summands

676



Sequentially Congruent Partitions 1031

in each case consist of the same terms in different orders. Then one wonders:
precisely which partition γ ∈ Pn is such that

∏

i≥1

f(i)(φi−φi+1)/i =
∏

j≥1

f(j)mj(γ) (3.1)

for a given φ ∈ Slg=n? One observes that γ is generally not the same partition
λ = π−1(φ) as in (2.4).

Evidently, the set S enjoys a second map to P (apart from π−1). Let

σ : S → P
denote this map. We can write σ down by comparing the forms of the products
in (3.1):

σ(φ) := (1φ1−φ2 2(φ2−φ3)/2 3(φ3−φ4)/3 . . .) = γ ∈ Pn,

where φ ∈ Slg=n as above. For example, σ(5, 3, 3) = (15−3 2(3−3)/2 3(3−0)/3) =
(3, 1, 1).

Under this map, we have σ(Slg=n) = Pn, thus the composite map is

σ ◦ π : Pn → Pn,

and, similarly, we have the map π ◦ σ : Slg=n → Slg=n.
A natural question to ask is: what kind of permutation structure arises as

we alternately compose π, σ, that is, what if we apply σ ◦π ◦σ ◦π ◦ · · · ◦σ ◦π to
a partition of n? For a concrete example, let us check by repeatedly applying
σ ◦ π ◦ · · · ◦ σ ◦ π to the partitions of n = 4:

(4) π�−→ (4) σ�−→ (1, 1, 1, 1) π�−→ (4, 4, 4, 4) σ�−→ (4),

(3, 1) π�−→ (4, 2) σ�−→ (2, 1, 1) π�−→ (4, 3, 3) σ�−→ (3, 1),

(2, 2) π�−→ (4, 4) σ�−→ (2, 2),

(2, 1, 1) π�−→ (4, 3, 3) σ�−→ (3, 1) π�−→ (4, 2) σ�−→ (2, 1, 1),

(1, 1, 1, 1) π�−→ (4, 4, 4, 4) σ�−→ (4) π�−→ (4) σ�−→ (1, 1, 1, 1).

There appears to be a cyclic behavior of order 1 or 2; also evident is the
following fact.

Theorem 3.1. The composite map σ ◦ π : Pn → Pn takes partitions to their
conjugates.

Proof. If we write

λ = (ama1
1 a

ma2
2 a

ma3
3 · · · a

mar
r ), a1 > a2 > · · · > ar ≥ 1,

then we can compute the parts and frequencies of the conjugate partition

λ∗ = (bmb1
1 b

mb2
2 b

mb3
3 · · · b

mbs
s ), b1 > b2 > · · · > bs ≥ 1

directly from the parts and frequencies of λ by comparing the Ferrers–Young
diagrams of λ, λ∗. The conjugate partition λ∗ has the largest part b1 given by

b1 = �(λ) = ma1 + ma2 + · · · + mar
, with mb1(λ

∗) = ar, (3.2)

and for 1 < i ≤ s, the parts and their frequencies are given by

bi = ma1 + ma2 + · · · + mar−i+1 , mbi(λ
∗) = ar−i+1 − ar−i+2. (3.3)
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1032 M. Schneider and R. Schneider

Moreover, we have that s = r. The theorem results from using the defi-
nitions of the maps π and σ, keeping track of the parts in the transformation
λ �→ (σ ◦ π)(λ), then comparing the parts of (σ ◦ π)(λ) with the parts of λ∗ in
(3.2) and (3.3) above to see they are the same. �

The preceding considerations also make explicit our observation above
about cyclic orders.

Corollary 3.2. We have that (σ ◦ π)(λ) = λ when λ is self-conjugate, and
(σ ◦π)2(λ) = λ holds for all λ ∈ P. Likewise, for φ sequentially congruent it is
the case that (π ◦ σ)(φ) = φ when σ(φ) is self-conjugate, and (π ◦ σ)2(φ) = φ
holds for all φ ∈ S.
Remark 3.3. Interestingly, the map π ◦ σ : Slg=n → Slg=n defines a duality
analogous to conjugation in Pn that instead connects partitions φ and (π◦σ)(φ)
in Slg=n. For instance, from the above examples, it is the case in P4 that (2, 1, 1)
and (3, 1) = (σ ◦π)(2, 1, 1) are conjugates, while on the same row, (4, 3, 3) and
(4, 2) = (π ◦ σ)(4, 3, 3) are paired under this new, analogous duality in Slg=4.

4. Frequency Congruent Partitions and Infinite Families of
Bijections

The conjugates of sequentially congruent partitions are themselves interesting
combinatorial objects.

Theorem 4.1. A sequentially congruent partition φ is mapped by conjugation to
a partition φ∗ whose frequencies mi = mi(φ∗) obey the congruence condition

mi ≡ 0 (mod i).

Conversely, any partition with parts obeying this congruence condition has a
sequentially congruent partition as its conjugate.

Proof. The theorem is immediate by conjugation of the relevant Young dia-
grams. �

Let us codify the objects highlighted in the preceding theorem.

Definition 4.2. We define a partition to be frequency congruent if it has the
property that each part divides its frequency.1

Then Theorem 4.1 implies the following result.

Corollary 4.3. Frequency congruent partitions of length n are in bijection with
the partitions of n, viz.

#{λ ∈ P : �(λ) = n, i|mi(λ)} = p(n).

1As in Theorem 4.1.
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Proof. This statement follows from Theorem 4.1 together with Theorem 2.1.
For a combinatorial proof, take any partition λ = (1m12m23m3 · · · imi . . .)
of n, and multiply each mi by i to yield a frequency congruent partition
(1m122m233m3 · · · iimi . . .) with length m1 + 2m2 + 3m3 + · · · = |λ| = n. Con-
versely, by the same principle, divide the frequency of each part of a length-n
frequency congruent partition by the part itself for a partition of n.

Alternatively, we can prove the bijection using generating functions. For
|x| < 1, |q| < 1, consider the following identities in light of (2.5) and (2.6):

∞∏

n=1

1
1 − xnqn2

= (1 + x1q1 + x2q1+1 + x3q1+1+1 + · · · )
×(1 + x2q2+2 + x4q2+2+2+2 + x6q2+2+2+2+2+2 + · · · )
×(1 + x3q3+3+3 + x6q3+3+3+3+3+3 + x9q3+3+3+3+3+3+3+3+3 + · · · ) × · · ·

=
∑

λ∈P
i|mi(λ)

x�(λ)q|λ| =
∞∑

n=0

xn
∑

�(λ)=n
i|mi(λ)

q|λ|,

where the final two (absolutely convergent) sums are taken over frequency
congruent partitions.

To count the number of frequency congruent partitions of length n, let
q → 1 from within the unit circle in the right-most series above, noting in the
limit we still have convergence since |x| < 1. Then by comparison with the
product side of the generating function, the resulting coefficient of xn is equal
to p(n) by Euler’s identity (see [4]). �

Remark 4.4. We note that the generating function proof above provides (by
conjugation) another proof that #Slg=n = p(n).

Indeed, the steps of the preceding proof suggest a highly general frequency
congruence phenomenon yielding infinite families of partition bijections.

As before, let PT ⊆ P be the set of partitions (including ∅) with parts
from T = {t1, t2, t3, . . .} ⊆ N; we allow PT to also denote partitions with
parts from a sequence T of natural numbers if they are distinct. Let pT (n)
denote the number of partitions of n ≥ 0 in PT . Moreover, for a sequence
S = (s1, s2, s3, . . .) of natural numbers, define

PT (S) := {λ ∈ PT : si|mti},

and let PT (S, n) denote partitions in PT (S) of length n. Thus, PN((1, 1, 1, . . .))
= P and #PN((1, 1, 1, . . .), n) = p(n). Then we have the following.

Theorem 4.5. Let |x| < 1, |q| < 1. For a sequence A = (a1, a2, a3, . . .) of
natural numbers and subset B = {b1, b2, b3, . . .} ⊆ N, we have

∞∏

n=1

1
1 − xanqanbn

=
∑

λ∈PB(A)

x�(λ)q|λ| =
∞∑

n=0

xn
∑

λ∈PB(A,n)

q|λ|.
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1034 M. Schneider and R. Schneider

If the ai ∈ A are distinct then the sets PA and PB(A) are in bijection, and

#PB(A,n) = pA(n).

We note that Eq. (2.6) represents the case ai = 1, bi = i, and the gener-
ating function in the proof of Corollary 4.3 is the case ai = bi = i.

Proof. For the first identity, much as in the proof of Corollary 4.3, for |x| <
1, |q| < 1, rewrite the infinite product on the left side of Theorem 4.5 as a
product of geometric series:

∞∏

n=1

(
1 + xanqbn+bn+···+bn + x2anqbn+···+bn + x3anqbn+···+bn + · · · ) ,

where in each term xianqbn+···+bn there are ian repetitions of bn in the exponent
of q. Expanding the product immediately gives the first equality, and collecting
coefficients of xn gives the right-most equality.

To prove the second identity in the theorem, just as in the proof of Corol-
lary 4.3, let q → 1 from within the unit circle in the right-most summation of
the first identity. But if the ai are distinct the infinite product becomes

∞∏

n=1

1
1 − xan

=
∏

n∈A

1
1 − xn

=
∞∑

n=0

pA(n)xn.

Equating coefficients of xn completes the proof.
One can also prove the second identity by mapping every partition

(ama1
1 a

ma2
2 a

ma3
3 . . .) ∈ PA of size n (noting these ai are not necessarily in

increasing order) to partition (ba1ma1
1 b

a2ma2
2 b

a3ma3
3 . . .) ∈ PB(A,n) and, con-

versely, mapping each (ba1n1
1 ba2n2

2 ba3n3
3 . . .) ∈ PB(A,n) to (an1

1 an2
2

an3
3 . . .).2 �

Observe that in the above notation, frequency congruent partitions rep-
resent the set PN ((1, 2, 3, 4, . . .)). Recalling that the conjugates of frequency
congruent partitions are sequentially congruent, then the set SB(A) of conju-
gates of partitions in PB(A) is evidently an analog of the set S. For example,
for B = N and a sequence A, the conjugates of the set of partitions PN(A)
such that ai divides mi have a nice sequential congruence property:

SN(A) = {λ ∈ P : λi ≡ λi+1 (mod ai)}. (4.1)

We conjecture that there are bijective maps in this extended regime anal-
ogous to those in Sects. 2 and 3 above; however, they alternate between PA

and SB(A) under composition instead of between P and S.

Remark 4.6. For T ⊆ N and f, g : T → C, the two-variable generating func-
tions of the general form

∏
n∈T (1 − xf(n)qg(n))−1 used in this section are

analytic and combinatorial objects (see [4,8]). We note if 0 < x < e−1, |q| <

2There is a resemblance here to maps generating other classes of partitions with nontrivial
weightings on the frequencies, e.g. see [1,5,7] regarding identities of Capparelli and Primc.
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1, 1 �∈ T , taking f(n) = log n and letting q → 1 as we did above yields a class
of “partition zeta functions” studied in [9,10]:

lim
q→1

∏

n∈T

(1 − xlog nqg(n))−1 =
∏

n∈T

(1 − nlog x)−1 =
∑

λ∈PT

N(λ)−s,

where s := − log x, thus s > 1 for convergence, and N(λ) :=
∏

λi∈λ λi. (By the
same token, one may rewrite the Riemann zeta function as ζ(s) = ζ(− log x) =∑∞

n=1 xlog n.)

5. Further Thoughts: Partition Ideals

In a series of papers in the 1970s (e.g. see [2,3]), Andrews developed a theory of
partition ideals which uses ideas from lattice theory to unify and extend many
classical results on generating functions and partition bijections, summarized
in Chapter 8 of [4].

Definition 5.1. A partition ideal is a subset C ⊆ P with the property that if
any parts are deleted from a partition in C, the resulting partition is an element
of C as well.

Remark 5.2. We note Andrews’ definition is stated in terms of frequencies.

For example, partitions into distinct parts form a partition ideal. Andrews
identifies relations between partition ideals which break the set P into algebraic
subclasses.

Definition 5.3. We say two partition ideals C, C′ are equivalent and write C ∼ C′

if #{λ ∈ C : |λ| = n} = #{λ ∈ C′ : |λ| = n} for all n ≥ 1.

Andrews carries out the study of equivalences where one subset C is a
partition ideal of “order one” in great detail (see [4] for specifics). These are
“nice” subsets of P including many of interest classically, e.g., partitions into
distinct parts form a partition ideal of order one. Sets PA,PB as in Theorem 4.5
are also partition ideals of order one. Naturally, then, one wonders if Andrews’
theory extends in some way to sets like PB(A).

A moment’s thought convinces one that such sets are not generally par-
tition ideals. However, they do enjoy a tantalizing “quasi-ideal” property: If
ai copies (or a multiple thereof ) of any part bi are deleted from a partition in
PB(A), the resulting partition is an element of PB(A) as well.

This feels like a refinement of Definition 5.1. Furthermore, if the ai in
the sequence A of distinct terms are rearranged to form a new sequence A′

(the same terms in a different order), clearly pA′(n) = pA(n) even though
PB(A′) �= PB(A); thus, Theorem 4.5 gives

#PB(A,n) = #PB(A′, n). (5.1)

Similarly, noting B is arbitrary in Theorem 4.5 and could be replaced by
another subset B′ ⊆ N without changing the right side of the second identity,
then

#PB(A,n) = #PB′(A,n). (5.2)
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In light of the correspondence between length-n partitions in PB(A) and
size-n partitions in PA, Eqs. (5.1) and (5.2) feel similar to partition ideal
equivalence in Definition 5.3.

Moreover, the two-variable generating functions in Sect. 4 are of a similar
shape to Andrews’ formulas for “linked partition ideals” in Chapter 8.4 of
[4]. Are there maps between these schemes? If subsets of partitions such as
PB(A) are analogous to partition ideals, do there exist closely-related subsets
analogous to equivalent ideals in Andrews’ theory? Conversely, might cyclic
maps like those in Sect. 3 exist between equivalent partition ideals?
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Abstract. Singular overpartitions, which are Frobenius symbols with at
most one overlined entry in each row, were first introduced by Andrews
in 2015. In his paper, Andrews investigated an interesting subclass of
singular overpartitions, namely, (K, i)-singular overpartitions for integers
K, i with 1 ≤ i < K/2. The definition of such singular overpartitions
requires successive ranks, parity blocks and anchors. The concept of suc-
cessive ranks was extensively generalized to hook differences by Andrews,
Baxter, Bressoud, Burge, Forrester and Viennot in 1987. In this paper,
employing hook differences, we generalize parity blocks. Using this combi-
natorial concept, we define (K, i, α, β)-singular overpartitions for positive
integers α, β with α+β < K, and then we show some connections between
such singular overpartitions and ordinary partitions.
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1. Introduction

A partition of a positive integer n is a weakly decreasing sequence of positive
integers whose sum equals n [3]. The integers in the sequence are called parts.
An overpartition of n is a partition in which the first occurrence of a part may
be overlined [12].

A Frobenius symbol is a two-rowed array of nonnegative integers such
that entries in each row are strictly decreasing and the numbers of entries in
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the top and bottom rows are equal [4]. There is a natural one-to-one cor-
respondence between partitions and Frobenius symbols [4,15,18]. For self-
containedness, the definition of the Frobenius symbol of a partition is given
later in Definition 2.8. For an overpartition, one can define the corresponding
Frobenius symbol by allowing overlined entries in a similar way.

In [5], Andrews introduced singular overpartitions, which are Frobenius
symbols with at most one overlined entry in each row. For integers K, i with
1 ≤ i < K/2, Andrews defined a subclass of singular overpartitions with
some restrictions subject to K and i, namely (K, i)-singular overpartitions.
He then showed interesting combinatorial and arithmetic properties of (K, i)-
singular overpartitions. As seen in [5], (K, i)-singular overpartitions are closely
related to partitions counted by partition sieves, which were first employed
by Andrews [1,2] to discover Rogers–Ramanujan type partitions and later
generalized further by Bressoud [7].

Successive ranks are the differences between the top and bottom entries
of the columns in a Frobenius symbol. In the partition sieves, they are vital
combinatorial statistics and have led to a number of discoveries of Rogers–
Ramanujan type partitions [1,2,7,9–11]. The concept of successive ranks was
extensively generalized to hook differences by Andrews, Baxter, Bressoud,
Burge, Forrester and Viennot in [6], which concerns partitions with prescribed
hook differences. The work in [6] was further extended by Gessel and Kratten-
thaler [14].

The main purpose of this paper is to generalize (K, i)-singular overparti-
tions by utilizing the concept of hook differences. Throughout this paper, we
assume that K, i, α and β are positive integers with i < K/2 and α + β < K.
For a positive integer n, let QK,i,α,β(n) be the number of singular overpar-
titions of n with prescribed overlining constraints subject to K, i, α and β.
Such singular overpartitions will be called (K, i, α, β)-singular overpartitions.
Because of the complexity of the constraints, we defer the exact definition of
(K, i, α, β)-singular overpartitions to Sect. 2.

One of our results is given in the following theorem.

Theorem 1.1. We have
∞∑

n=0

QK,i,α,α(n)qn =
(−qiα; qKα)∞(−q(K−i)α; qKα)∞(qKα; qKα)∞

(q; q)∞
,

where QK,i,α,α(0) = 1 and (a; q)∞ = limn→∞
∏n

j=0(1 − aqj).

We note that QK,i,1,1(n) becomes the number of (K, i)-singular overpar-
titions of n given by Andrews in [5].

For any positive integers m and n, let us define a refined partition function
QK,i,α,β(m,n) by the number of (K, i, α, β)-singular overpartitions of n with
an overlined entry in its mth anchor. Again, because of the complexity, anchors
are defined in Sect. 2. Then we have the following theorem.

Theorem 1.2. For m ≥ 1 and n ≥ 0,

QK,i,α,α(m,n) = p

(
n − αK

(
m + 1

2

)
+ αim

)
+ p

(
n − αK

(
m

2

)
− αim

)
,
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diag = 0 −1 −2

1

2

Figure 1. λ = (5, 4, 2, 2) with diagonals

where p(N) denotes the number of ordinary partitions of N with p(0) = 1 and
p(N) = 0 for N < 0.

For arbitrary positive integers α, β, more general and refined results than
Theorems 1.1 and 1.2 are presented in Sect. 6. Our proofs are combinatorial
and bijective generalizing the proof methods used in [15]. One of the main
ingredients of the methods in [15] was Dyson’s map [13]. We will generalize
this map for our purpose.

The rest of this paper is organized as follows. In Sect. 2, some basic
definitions and notions are recollected followed by the definition of (K, i, α, β)-
singular overpartitions. In Sect. 3, Dyson’s map and its generalization are
presented along with the shift map from [15]. Necessary lemmas for later use
are given in Sect. 4. In Sect. 5, another representation of (K, i, α, β)-singular
overpartitions is given and it is shown bijectively that (K, i, α, β)-singular
overpartitions are related to ordinary partitions. In Sect. 6, our theorem on
(K, i, α, β)-singular overpartitions is proved along with Theorems 1.1 and 1.2.
Some remarks are given in Sect. 7.

2. (K, i, α, β)-Singular Overpartitions

For a partition λ of n, we denote it by λ � n, the sum of parts by |λ|, and the
number of parts by �(λ). The Ferrers diagram of λ is a left-justified graphical
representation whose jth row has as many boxes as the jth part λj . The box
in row x and column y of the Ferrers diagram is called node (x, y). If a node
(x, y) is inside the Ferrers diagram, i.e., 1 ≤ x ≤ �(λ) and 1 ≤ y ≤ λx, then
we denote it by (x, y) ∈ λ. For an integer k, the diagonal diag = k is the line
passing through nodes (x, y) with x = y+k [6]. Figure 1 shows some diagonals
on the partition (5, 4, 2, 2).

The conjugate of λ is the partition resulting from reflecting the Ferrers
diagram of λ about the main diagonal, and we denote the conjugate partition
by λ′. For instance, λ′ = (4, 4, 2, 2, 1) in Fig. 1.

Definition 2.1. For a partition λ, we define the hook difference at a node
(x, y) ∈ λ as

h(x,y) = h(x,y)(λ) = (λx − y) − (λ′
y − x) = λx − λ′

y + (x − y). (2.1)
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1042 S. Seo and A. J. Yee

(1,2)

Figure 2. λ = (5, 4, 2, 2) and its hook at (1, 2)

For convenience, we also define the hook difference at a node (x, y) �∈ λ as

h(x,y) = h(x,y)(λ) =

⎧
⎪⎨

⎪⎩

−∞, if x > y,

0, if x = y,

+∞, if x < y.

(2.2)

Here we note that the hook difference at a node (x, y) ∈ λ is defined as
λx − λ′

y in [6].
Figure 2 shows the hook at node (1, 2) in the partition (5, 4, 2, 2) and

its hook difference equals 0. For a node not in λ, (2.2) says that the hook
difference at that node is defined to be 0 if the node is on the main diagonal,
−∞ if it is below the main diagonal, and ∞ if it is above the main diagonal.

In the next two lemmas, we will show how the hook difference at a node
on the diagonal 1 − β affects the hook differences at nodes on the diagonal
α − 1, and vice versa.

Lemma 2.2. For a partition λ, suppose that h(j,j+β−1)(λ) ≤ 1 − i. Then, for
any nonnegative integer x with 0 ≤ x ≤ β − 1,

h(j+x+α−1,j+x) ≤ K − i − 2.

Proof. Let us consider two cases: (j, j + β − 1) ∈ λ and (j, j + β − 1) /∈ λ.

Case 1: (j, j + β − 1) ∈ λ. If (j + x + α − 1, j + x) ∈ λ, then

h(j+x+α−1,j+x) = λj+x+α−1 − λ′
j+x + α − 1

≤ λj − λ′
j+x + α − 1

≤ λj − λ′
j+β−1 + α − 1

= h(j,j+β−1) + (α + β − 2)

≤ 1 − i + (α + β) − 2
≤ K − i − 2,

where the second to last inequality follows from h(j,j+β−1) ≤ 1 − i and
the last inequality follows from K > α + β.

If (j + x + α − 1, j + x) /∈ λ, then

h(j+x+α−1,j+x) ≤ 0 ≤ K − i − 2,

where the left inequality follows from (2.2) and the right inequality follows
from 1 ≤ i < K/2.
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0 1− β

α − 1 (j, j)

(j , j )

a

c
d

Figure 3. Lemma 2.2

Case 2: (j, j + β − 1) /∈ λ. Then, by (2.2), we know that

h(j,j+β−1) = 0 or + ∞.

However, since h(j,j+β−1) ≤ 1 − i, it has to be

h(j,j+β−1) = 0,

and then, by (2.2), it has to be β = 1, i.e., (j, j) /∈ λ. Then, for any
nonnegative integer x, (j + x + α − 1, j + x) /∈ λ. As seen above in the
second case in Case 1, we get the desired inequality.

�

Lemma 2.2 can be summarized as follows. In Fig. 3, if ha ≤ 1 − i, then
hz ≤ K − i−2 for any nodes z between c and d. Further explanations on nodes
(j, j) and (j′, j′) will be given in Remark 2.7.

Lemma 2.3. For a partition λ, suppose that h(j+α−1,j)(λ) ≥ K − i − 1. Then,
for any nonnegative integer x with 0 ≤ x ≤ α − 1,

h(j+x,j+x+β−1)(λ) ≥ 2 − i.

Proof. By conjugation, it is clear that

(j + α − 1, j) ∈ λ if and only if (j, j + α − 1) ∈ λ′

and

h(j+α−1,j)(λ) = −h(j,j+α−1)(λ′).

Thus, by the assumption that h(j+α−1,j)(λ) ≥ K − i − 1, we have

h(j,j+α−1)(λ′) ≤ 1 − (K − i),

which implies by Lemma 2.2 that

h(j+x+β−1,j+x)(λ′) ≤ K − (K − i) − 2.

This is equivalent to

h(j+x,j+x+β−1)(λ) ≥ 2 − i,

as desired. �
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0 1− β

α − 1 (j, j)

(j , j )

a

b
c

Figure 4. Lemma 2.3

Lemma 2.3 can be summarized as follows. In Fig. 4, if hc ≥ K − i − 1,
then hz ≥ 2 − i for any nodes z between a and b. Further explanations on
nodes (j, j) and (j′, j′) will be given in Remark 2.7.

Remark 2.4. By the cases when x = 0 in Lemmas 2.2 and 2.3, we see that
it does not happen simultaneously that h(j,j+β−1) ≤ 1 − i and h(j+α−1,j) ≥
K − i− 1 for any j. That is, in Fig. 3 or 4, it is impossible that ha ≤ 1− i and
hc ≥ K − i − 1 hold at the same time.

We now define the sign of a node on the main diagonal. For a node (j, j),
its sign will be determined by the hook differences at the nodes that are in the
hook of (j, j) and on the diagonals 1 − β or α − 1.

Definition 2.5. Let λ be a partition. For a positive integer j, suppose that a
node (j, j) ∈ λ. Then the node (j, j) is said to be

• (K, i, α, β)-negative if

(j, j + β − 1) ∈ λ and h(j,j+β−1) ≤ 1 − i; (2.3)

• (K, i, α, β)-positive if

(j + α − 1, j) ∈ λ and h(j+α−1,j) ≥ K − i − 1; (2.4)

• (K, i, α, β)-neutral otherwise.

By Remark 2.4, we see that the node (j, j) cannot be (K, i, α, β)-negative
and positive at the same time. Also, we see that the node (j, j) is (K, i, α, β)-
neutral if and only if

h(j,j+β−1) ≥ 2 − i and h(j+α−1,j) ≤ K − i − 2,

which works even if (j, j + β − 1) �∈ λ or (j + β − 1, j) �∈ λ due to (2.2).
In Fig. 5, we set (K, i, α, β) = (7, 2, 3, 2). The number in each box on the

diagonals −1 and 2 is the hook difference at the node. Then the sign of node
(1, 1) is positive since h(1,2) = 3 > 1 − i = −1, but h(3,1) = 5 ≥ K − i − 1 = 4.
The signs of the other nodes on the main diagonal can be determined in the
same way. Here we note that the sign of node (5, 5) is neutral since there are
no nodes in the hook of (5, 5) that are on the diagonals −1 or 2. The letters
p, n and e in the boxes stand for positive, negative and neutral, respectively.
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3

3

4

−1

5

0

0

1

p

e

e

n

e

Figure 5. (7, 2, 3, 2)-positive, negative and neutral

Remark 2.6. By the definition, if a node (j, j) is (K, i, α, β)-negative, then
(j, j + β − 1) ∈ λ, so λj ≥ j + β − 1. Similarly, if a node (j, j) is (K, i, α, β)-
positive, then (j + α − 1, j) ∈ λ, so λ′

j ≥ j + α − 1.

Remark 2.7. By Lemmas 2.2 and 2.3, we also see that the following statements
hold true:

(i) Suppose that a node (j, j) is (K, i, α, β)-negative. Then for any x with
1 ≤ x ≤ β − 1 and (j + x, j + x) ∈ λ, a node (j + x, j + x) cannot be
(K, i, α, β)-positive. That is, in Fig. 3, if (j, j) is negative, then any nodes
between (j, j) and (j′, j′) are negative or neutral.

(ii) Suppose that a node (j, j) is (K, i, α, β)-positive. Then for any x with
1 ≤ x ≤ α − 1 and (j + x, j + x) ∈ λ, a node (j + x, j + x) cannot be
(K, i, α, β)-negative. That is, in Fig. 4, if (j, j) is positive, then any nodes
between (j, j) and (j′, j′) are positive or neutral.

Next, we give the definition of Frobenius symbols and then rephrase our
definition of the sign of nodes in terms of Frobenius symbol.

Definition 2.8. For a partition λ, let δ be the largest x such that λx ≥ x. Then
the Frobenius symbol of λ is defined as

λ =
(

a1 · · · aδ

b1 · · · bδ

)
,

where ax = λx − x and by = λ′
y − y for 1 ≤ x, y ≤ δ.

For 1 ≤ j ≤ δ, the jth column of the Frobenius symbol of λ is said to be
• (K, i, α, β)-negative if the node (j, j) ∈ λ is (K, i, α, β)-negative;
• (K, i, α, β)-positive if the node (j, j) ∈ λ is (K, i, α, β)-positive;
• (K, i, α, β)-neutral if the node (j, j) ∈ λ is (K, i, α, β)-neutral.

For instance, the partition in Fig. 5 can be written as follows:
(

11 9 8 2 0
7 6 4 2 1

)
,

and the first column is positive, the fourth column is negative, and the others
are neutral.
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We note that from the definitions of hook differences and Frobenius sym-
bols, it is clear that for 1 ≤ x, y ≤ δ,

h(x,y) = ax − by + 2(x − y). (2.5)

Remark 2.9. When we compute hook differences from a Frobenius symbol,
perhaps it is more convenient to write the Frobenius symbol in a slightly
different form by shifting the second row to the right or left by α − 1 units or
β − 1 units.

In particular, let δ be the number of columns in the Frobenius symbol
and δ ≥ max(α, β). Then we can explicitly write the conditions for a node
being (K, i, α, β)-negative, positive, or neutral in terms of the entries in the
Frobenius symbol. If δ < min(α, β), then it is better to use Definitions 2.5 and
2.8 with (2.1).

In what follows, assuming that δ ≥ max(α, β), we explain how to deter-
mine if a node is (K, i, α, β)-negative or positive.

(i) To check more easily if a node is (K, i, α, β)-negative, we write the Frobe-
nius symbol as follows:

a1 · · · aδ−β+1 · · · aδ

b1 · · · bβ · · · bδ.

Then, the hook differences to be needed to compute are the difference of
the entries in each column with two entries. Namely, for 1 ≤ j ≤ δ−β+1,
by (2.3) and (2.5), if

aj − bβ+j−1 ≤ 2β − 1 − i, (2.6)

then the node (j, j) is negative.
Let us turn to nodes (j, j) for δ−β+2 ≤ j ≤ δ. See the figure below.

If the node p was negative, i.e., (2.6) holds true for j = δ − β + 1, then
next β − 1 nodes on the main diagonal after p could not be positive by
Remark 2.7 (i). Thus, the nodes (j, j) between p and p′ would be negative
or neutral. However, if the node p was not negative, then the next node
might be positive.

To compute the hook difference, the Ferrers diagram is more convenient
to use than the Frobenius symbol.

0 1− β

p

p

a

(j, j)a = (δ − β + 1, δ)
p = (δ − β + 1, δ − β + 1)
p = (δ, δ)
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(ii) Similarly, to check if a node is (K, i, α, β)-positive, we write the Frobenius
symbol as follows.

a1 · · · aα · · · aδ

b1 · · · bδ−α+1 · · · bδ

Then, the hook differences to be needed to compute are the difference of
the entries in each column with two entries. For 1 ≤ j ≤ δ − α + 1, by
(2.4) and (2.5), if

aα+j−1 − bj ≥ K − i + 1 − 2α, (2.7)

then the node (j, j) is positive. Similarly, we can show that nodes (j, j)
for δ − α + 2 ≤ j ≤ δ cannot be positive if the node (δ − α + 1, δ − α + 1)
is positive, i.e., (2.7) holds true for j = δ − α + 1.

(iii) Adopting the notation for cylindric partitions [14], we may combine the
expressions in (i) and (ii) above as follows:

a1 · · · · · · · · · aδ

b1 · · · bβ · · · · · · bδ

a1 · · · aα · · · · · · aδ.

We note that it should be checked if the difference between the first and
second rows satisfies (2.6) and the difference between the second and
third rows satisfies (2.7).

We give an example to demonstrate how to find positive or negative
columns in a Frobenius symbol.

Example 2.10. Consider the following Frobenius symbol:
(

31 28 27 22 18 9 8 7 1 0
29 26 25 23 22 8 5 4 1 0

)
.

Let (K, i, α, β) = (5, 2, 2, 2).
First, for negative nodes, by (2.6), we compute and see if

aj − bj+1 ≤ 1.

So, we shift the second row to the left by 1 unit and compute the difference
of the entries in each column with two entries. Again, the upper entries with
difference at most 1 are circled:

31 28 27 22© 18 9 8 7 1© 0
29 26 25 23 22 8 5 4 1 0 . (2.8)

These circled entries indicate the negative columns in the original Frobenius
symbol. Since β = 2 and the second to last column is negative, the last column
cannot be positive. Actually, from the Ferrers diagram of the Frobenius symbol,
we see that the node (10, 11) does not exist in the partition, so the sign of the
last column is neutral.

Similarly, for positive nodes, by (2.7), we compute and see if

aj+1 − bj ≥ 0.
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So, we shift the first row of the Frobenius symbol to the left by 1 unit and
compute the difference of the entries in each column with two entries. For
convenience, if the difference is at least 0, then the lower entry will be circled:

31 28 27 22 18 9 8 7 1 0
29 26© 25 23 22 8© 5© 4 1 0 . (2.9)

These circled entries indicate the positive columns in the original Frobenius
symbol. For the last column, we cannot say if it is not positive because the
second to last column is not positive. However from the earlier calculations for
negative nodes, we already know that it is neutral.

We now take the first row in (2.8) and the second row in (2.9) to form
the following Frobenius symbol:

(
31 28 27 22© 18 9 8 7 1© 0
29 26© 25 23 22 8© 5© 4 1 0

)
,

where columns with circled entries in the first row are negative and columns
with circled entries in the second row are positive. Therefore, we have

⎛

⎝
p n p p n

31 28 27 22 18 9 8 7 1 0
29 26 25 23 22 8 5 4 1 0

⎞

⎠ ,

where p and n indicate that the corresponding columns are positive and neg-
ative, respectively.

2.1. (K, i, α, β)-Parity Blocks and Anchors

Following [5], we generalize the notion of parity blocks of Frobenius symbols.
Unlike in [5], for convenience, we introduce neutral blocks. For a Frobenius
symbol, if there are consecutive neutral columns starting from the first column,
then separate them to form a neutral block. We shall say that the block is
neutral and we denote it by E. For the remaining columns, we take sets of
contiguous columns maximally extended to the right, where all the columns
have either the same parity or neutral. We shall say that a block is positive
(or negative) if it contains no negative (or no positive, resp.) nodes, and we
denote it by P (or N , resp.).

Example 2.11. We consider the same Frobenius symbol as in Example 2.10.
Then, the (5, 2, 2, 2)-parity blocks are

(
E
31

P
28 27

N
22 18

P
9 8 7

N
1 0

29 26 25 23 22 8 5 4 1 0

)
,

where the superscripts E, P , and N denote that the block is neutral, positive,
and negative, respectively.

Definition 2.12. For a positive (or negative) block, we define its anchor as the
first column in the block.

Lemma 2.13. Let λ be a partition. For a non-last block of λ, if it is positive or
negative, then there are at least α or β columns, respectively.
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This lemma follows from Remark 2.7 on the sign of α−1 (or β −1) nodes
next to a positive (or negative, resp.) node. So we omit the proof.

Example 2.14. Let (K, i, α, β) = (7, 3, 3, 2). We consider the following Frobe-
nius symbol:

(
31 28 27 22 18 10 9 8 7 1
29 26 25 23 22 20 8 5 4 3

)
.

Following Example 2.10, we will decompose this Frobenius symbol into
(7, 3, 3, 2)-parity blocks and identify their anchors.

First, by (2.6), for negative nodes, we compute and see if

aj − bj+1 ≤ 0.

So, we shift the second row to the left by 1 unit and compute the difference of
the entries in each column with two entries to see if the difference is at most
0.

31 28 27 22© 18© 10 9 8 7 1©
29 26 25 23 22 20 8 5 4 3 ,

where the circled 22, 18 and 1 indicate the negative columns in the original
Frobenius symbol. Here, we note that since the second to last column is not
negative, we cannot determine the sign of the last column from the sign of the
second to last column, so we used the Ferrers diagram to compute the hook
difference at the corresponding node (10, 11), which is 0.

Similarly, by (2.7), for positive nodes, we compute and see if

aj+2 − bj ≥ −1.

We shift the first row of the Frobenius symbol to the left by 2 units and
compute the difference of the entries in each column with two entries.

31 28 27 22 18 10 9 8 7 1
29 26 25 23 22 20 8© 5 4 3,

where the circled 8 indicates the positive column in the original Frobenius
symbol. Here, we used the Ferrers diagram to determine the sign of each of
the last two columns.

Therefore, we see that the (7, 3, 3, 2)-parity blocks with anchors are as
follows:

⎛

⎝
E

31 28 27
N

22 18 10
P

9 8 7
N
1

29 26 25 23 22 20 8 5 4 3

⎞

⎠ ,

where the bottom entries in the anchors of the negative blocks are boxed and
the top entry in the anchor of the positive block is boxed.
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2.2. (K, i, α, β)-Singular Overpartitions

We are now ready to define (K, i, α, β)-singular overpartitions. An overparti-
tion is (K, i, α, β)-singular if its Frobenius symbol satisfies one of the following
conditions:

• there are no overlined entries;
• if there is one overlined entry on the top row, then it occurs in the anchor

of a positive block;
• if there is one overlined entry on the bottom row, then it occurs in the

anchor of a negative block;
• if there are two overlined entries, then they occur in adjacent anchors with

one on the top row of the positive block and the other on the bottom row
of the negative block.

Example 2.15. We consider the same Frobenius symbol as in Example 2.14.
Then, all (7, 3, 3, 2)-singular overpartitions are:

(
31 28 27 22 18 10 9 8 7 1
29 26 25 23 22 20 8 5 4 3

)
,

(
31 28 27 22 18 10 9 8 7 1
29 26 25 23 22 20 8 5 4 3

)
,

(
31 28 27 22 18 10 9 8 7 1
29 26 25 23 22 20 8 5 4 3

)
,

(
31 28 27 22 18 10 9 8 7 1
29 26 25 23 22 20 8 5 4 3

)
,

(
31 28 27 22 18 10 9 8 7 1
29 26 25 23 22 20 8 5 4 3

)
,

(
31 28 27 22 18 10 9 8 7 1
29 26 25 23 22 20 8 5 4 3

)
.

3. A Generalization of the Dyson Map and the Shift Map

In this section, we modify a map of Dyson, which was used to prove a symmetry
of the partition function p(n) [13]. We also recall a map, the so-called shift map,
from [15].

3.1. A Generalization of the Dyson Map

Let t be a positive integer and m be an integer. We define a generalized Dyson
map dt

m as follows:
• Case 1: m ≤ 0. Let π be a partition such that (1, t) ∈ π and

h(1,t) ≤ m (if and only if π1 − π′
t ≤ t − 1 + m). (3.1)

– Delete the first t columns in the Ferrers diagram of π;
– Add rows of size π′

j +m−1 for 1 ≤ j ≤ t on the top of the resulting
Ferrers diagram from the previous step.

– Define dt
m(π) to be the partition whose Ferrers diagram is the one

obtained in the previous step.
Here we note that dt

m can be given explicitly as follows:

dt
m(π) = (π′

1 + m − 1, . . . , π′
t + m − 1, π1 − t, π2 − t, . . .),

which is indeed a partition since πj ≥ πj+1, π′
j ≥ π′

j+1 for any j ≥ 1,
and

π′
t + m − 1 ≥ π1 − t
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(1,2) −→

Figure 6. d2−1(4, 4, 2, 2) = (2, 2, 2, 2)

(2,1) −→

Figure 7. d21(4, 4, 2, 2) = (4, 4)

by (3.1). More details are given in Lemma 3.2 (Figs. 6, 7).
For example, let t = 2,m = −1 and π = (4, 4, 2, 2). We have

h(1,2) = −1 ≤ m = −1.

So,

d2−1(π) = (2, 2, 2, 2).

• Case 2: m > 0. Let π be a partition such that (t, 1) ∈ π and

h(t,1) ≥ m (if and only if πt − π′
1 ≥ 1 − t + m). (3.2)

Then,

dt
m(π) =

(
dt

−m(π′)
)′

.

For example, let t = 2,m = 1 and π = (4, 4, 2, 2). We have

h(2,1) = 1 ≥ m = 1.

By the definition,

d21(π) = (4, 4).

Remark 3.1. Some facts about the generalized Dyson map are noted below.

(i) |π| − |dt
m(π)| = t(|m| + 1).

(ii) For m ≤ 0, d1m becomes the Dyson map dm appeared in [13,15].
(iii) For m ≤ 0, if (3.1) is not satisfied, then dt

m is not defined. Also, for
m > 0, if (3.2) is not satisfied, then dt

m is not defined.

Lemma 3.2. For m ≤ 0, let λ be a partition with (1, t) ∈ λ and h(1,t) ≤ m. If
dt

m(λ) = μ �= ∅, then μ is a partition with μj = λ′
j + m − 1 for 1 ≤ j ≤ t and

μ′
1 = λ′

t+1 + t.
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Proof. Note that μ is a partition if and only if the parts are weakly decreasing.
By the definition of dt

m, we know that

μj =

{
λ′

j + m − 1, for 1 ≤ j ≤ t,

λj−t − t, for j > t.

Thus, clearly μj ≥ μj+1 for 1 ≤ j < t and j > t. Also,

μt − μt+1 = (λ′
t + m − 1) − (λ1 − t)

= λ′
t − λ1 + (t − 1) + m

≥ 0.

In addition, it is clear that μj = λ′
j + m − 1 for 1 ≤ j ≤ t and μ′

1 =
λ′

t+1 + t. �
For m ≤ 0, we first note that if λ = (t1−m), that is, λ is a partition with

part t occurring 1−m times, then dt
m(λ) = ∅. We now give a close look at the

entries in the first column of the Frobenius symbol of dt
m(λ) when λ �= (t1−m).

Suppose that

λ =
(

a1 · · · aδ

b1 · · · bδ

)
.

By Lemma 3.2,

μ =
(

λ′
1 + m − 2 · · ·

λ′
t+1 + t − 1 · · ·

)
=

(
b1 + m − 1 · · ·
γ · · ·

)
, (3.3)

where γ = λ′
t+1 + t − 1. If δ > t, then λ′

t+1 = bt+1 + t + 1, so

γ = bt+1 + 2t;

if δ ≤ t, then λ′
t+1 ≤ t, so

γ = λ′
t+1 + t − 1 ≤ 2t − 1.

Lemma 3.3. For m > 0, let λ be a partition with (t, 1) ∈ λ and h(t,1) ≥ m. If
dt

m(λ) = μ, then μ is a partition with μ1 = λt+1 + t and μ′
1 = λ1 − m − 1 for

1 ≤ j ≤ t.

The proof of this lemma is similar to that of Lemma 3.2, so we omit it.
For m > 0, we first note that if λ = (m + 1)t, then dt

m(λ) = ∅. Suppose
that λ �= (m + 1)t and

λ =
(

a1 · · · aδ

b1 · · · bδ

)
.

By Lemma 3.3,

μ =
(

γ · · ·
a1 − m − 1 · · ·

)
, (3.4)

where γ = λt+1 + t − 1. If δ > t, then λt+1 = at+1 + t + 1, so

γ = at+1 + 2t;

if δ ≤ t, then λt+1 ≤ t, so

γ = λt+1 + t − 1 ≤ 2t − 1.
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s2−→

Figure 8. Shift map

3.2. The Shift Map

Given an integer u, a shift map su is defined as follows [15]:
(

a1 a2 · · · aδ

b1 b2 · · · bδ

)
su−→

(
a1 − u a2 − u · · · aδ − u
b1 + u b2 + u · · · bδ + u

)
. (3.5)

Let λ =
(

a1 a2 · · · aδ

b1 b2 · · · bδ

)
with aδ ≥ u, and μ = su(λ). Then, it is clear

that μ is still a partition. Also, for 1 ≤ x, y ≤ δ,

h(x,y)(μ) = h(x,y)(λ) − 2u. (3.6)

Figure 8 shows that s2(5, 4, 2, 2) = (3, 2, 2, 2, 2, 2).

4. Lemmas

The main purpose of this section is to prove lemmas that will be used in Sect. 5.
We first introduce a necessary definition and then present lemmas.

Definition 4.1. Let ν and σ be two partitions whose Frobenius symbols are

ν =
(

a1 · · · at

b1 · · · bt

)
and σ =

(
at+1 · · ·
bt+1 · · ·

)
.

We define the concatenation of ν and σ as

νσ =
(

a1 · · · at at+1 · · ·
b1 · · · bt bt+1 · · ·

)
.

Let λ = νσ. First, note that if at > at+1 and bt > bt+1, then λ is indeed
a partition. Even if λ is not a partition, we relax the definition of parts of a
partition and define the xth part of λ as

λx = νx + σx−t,

where νx = 0 if x > �(ν), and σx−t = 0 if x − t > �(σ) or x − t ≤ 0. In other
words, λx counts the number of boxes in row x in the concatenated diagram
of λ (see Fig. 9). We now define the hook difference at a node (x, y) of λ as

h(x,y)(λ) = λx − λ′
y + (x − y)
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ν σ

−→

λ

I II

III IV

Figure 9. Concatenation of two partitions

provided λx and λ′
y exist. We also define the weight of λ by the sum of the

weights of ν and σ, i.e.,

|λ| = |ν| + |σ|.
For instance, let

ν =
(

5 4
4 2

)
, σ =

(
3 1
1 0

)
.

Then

νσ =
(

5 4 3 1
4 2 1 0

)
,

which is clearly a partition. However, if we consider

ν =
(

5 4
4 2

)
, σ =

(
4 1
3 0

)
,

then

νσ =
(

5 4 4 1
4 2 3 0

)
,

which is not a partition. In either case, |νσ| = |ν| + |σ|.
Although we can evaluate hook difference at any node, in this paper,

we are interested in the hook differences at nodes only in the regions I–IV in
Fig. 9, where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I = {(x, y)|1 ≤ x, y ≤ t},

II = {(x, y)|1 ≤ x ≤ t < y ≤ t + at},

III = {(x, y)|1 ≤ y ≤ t < x ≤ t + bt},

IV = {(x, y)|t < x, y}.

(4.1)

In the following lemma, we evaluate those hook differences at nodes in each of
the regions I–IV in terms of ν and σ for later use.

Lemma 4.2. Given partitions

ν =
(

a1 · · · at

b1 · · · bt

)
�= ∅ and σ =

(
at+1 · · ·
bt+1 · · ·

)
�= ∅,
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let λ = νσ. Then

h(x,y)(λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h(x,y)(ν) = ax − by + 2(x − y), if (x, y) ∈ I,
h(x,y)(ν) − σ′

y−t = (ax + x) − t + (x − y) − σ′
y−t, if (x, y) ∈ II,

h(x,y)(ν) + σx−t = t − (by + y) + (x − y) + σx−t, if (x, y) ∈ III,
h(x−t,y−t)(σ) = ax − by + 2(x − y), if (x, y) ∈ IV.

(4.2)

Proof. Note that

λx =

{
νx = ax + x, for 1 ≤ x ≤ t,

νx + σx−t = t + σx−t, for t < x ≤ t + bt,

λ′
y =

{
ν′

y = by + y, for 1 ≤ y ≤ t,

ν′
y + σ′

y−t = t + σ′
y−t, for t < y ≤ t + at.

It is easy to prove the statement and we omit the details. �

In the next two lemmas, we will deal with pairs of Frobenius symbols
with certain conditions, and we will show that after the shift map and the
Dyson map are applied to such a pair, the concatenation of the resulting pair
becomes a partition.

Lemma 4.3. Given integers f, g, h with g ≥ 1, f ≤ 2g − 1, and h ≥ f , let
λ = νσ with

ν =
(

a1 · · · at

b1 · · · bt

)
and σ =

(
at+1 · · ·
bt+1 · · ·

)
�= ∅,

such that

(i) h(t+1,t+β)(λ) ≤ f − 2g + 1;

and if ν �= ∅, then

(ii) h(j,j+β−1)(λ) ≥
{

f, for 1 ≤ j ≤ t − β + 1,

f − g + 1, for t − β + 2 ≤ j ≤ t,

(iii) at > at+1 + g − 1, at+1 ≥ β − 1,
(iv) bt > bt+1 − g + 1, bt ≥ 1.

If μ = sf−g−1(ν)(dβ
f−2g+1(σ))′, then the following are true.

(a) μ is a partition.
(b) h(j,j+β−1)(μ) ≥ −f + 2g + 2 for 1 ≤ j ≤ t, and if (t + 1, t + β) ∈ μ, then

h(t+1,t+β)(μ) ≤ −f + 2g + 1.
(c) For an integer α with 1 ≤ α ≤ t, if ν �= ∅ and h(α,1)(ν) ≥ h, then

h(α,1)(μ) ≥ h − 2f + 2g + 2.
(d) The map from λ to μ is reversible.
(e) |λ| − |μ| = (2g − f)β.

Figure 10 sketches how to get μ from ν and σ.
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1 − β

→ −→

λ ν sf−g+1(ν)
↓ ↓

σ (dβ
f−2g+1(σ)) μ

−→ −→

1 − β

Figure 10. Lemma 4.3

Proof. First, if ν = ∅, then t = 0 and λ = σ, so h(t+1,t+β)(λ) = h(1,β)(σ). Even
if ν �= ∅, we see that by (4.2), h(t+1,t+β)(λ) = h(1,β)(σ). Thus in both cases,
by Condition i) with f ≤ 2g − 1,

h(1,β)(σ) = h(t+1,t+β)(λ) ≤ f − 2g + 1 ≤ 0. (4.3)

Hence, dβ
f−2g+1(σ) is well defined.

We now check if

sf−g−1(ν) =
(

a1 − f + g + 1 · · · at − f + g + 1
b1 + f − g − 1 · · · bt + f − g − 1

)

is well defined. Namely, all the entries in each row of sf−g−1(ν) are nonnegative
and strictly decreasing. Since aj and bj are strictly decreasing, the resulting
sequences aj − f + g + 1 and bj + f − g − 1 are strictly decreasing. For non-
negativity, it suffices to check at − f + g + 1 ≥ 0 and bt + f − g − 1 ≥ 0.
Since

h1,β(σ) = σ1 − σ′
β + (1 − β) ≥ σ1 − σ′

1 + (1 − β) = (at+1 − bt+1) + (1 − β),

(4.3) with at+1 ≥ β − 1 from Condition (iii) guarantees that

bt+1 ≥ (at+1 + 1 − β) + 2g − f − 1 ≥ 2g − f − 1.

So, if ν �= ∅, by Condition (iv)

bt + f − g − 1 ≥ 0.

Also, if ν �= ∅, by Condition (iii)

at ≥ β + g − 1.
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Thus

at − f + g + 1 ≥ β − f + 2g ≥ β + 1 ≥ 2,

where the second inequality follows from the condition that f ≤ 2g − 1. So we
showed that sf−g−1(ν) is well defined.

We now prove each of the five statements.
(a) If ν = ∅, then it follows from Lemma 3.2 that μ = (dβ

f−2g+1(σ))′

is a partition. Also, we note that if dβ
f−2g+1(σ) = ∅, then it is clear that

μ = sf−g−1(ν), which is a partition as shown above.
Now assume that ν �= ∅ and dβ

f−2g+1(σ) �= ∅. Let ν̃ = sf−g−1(ν) and
σ̃ = (dβ

f−2g+1(σ))′. Note that by (3.5),

ν̃ =
(

a1 − f + g + 1 · · · at − f + g + 1
b1 + f − g − 1 · · · bt + f − g − 1

)
. (4.4)

Also, by Lemma 3.2,

σ̃1 = σ′
β+1 + β, (4.5)

and

σ̃′
j = σ′

j + (f − 2g) for 1 ≤ j ≤ β. (4.6)

So the Frobenius symbol of σ̃ is as follows:

σ̃ =
(

σ′
β+1 + β − 1 · · ·

σ′
1 + f − 2g − 1 · · ·

)
.

For μ to be a partition, it has to hold that

at − f + g + 1 > σ′
β+1 + β − 1 (4.7)

and

bt + f − g − 1 > σ′
1 + (f − 2g) − 1. (4.8)

We first prove (4.7). If β = 1, then (t, t + β − 1) ∈ I in (4.1), so by (4.2) and
Condition (ii),

h(t,t+β−1)(λ) = at − bt ≥ f,

so

(at − f + g + 1) − σ′
2 ≥ bt + g + 1 − σ′

2 ≥ bt + g + 1 − bt+1 − 1 > 1,

where the second inequality follows from σ′
2 ≤ σ′

1 = bt+1 + 1 and the last
inequality follows from Condition (iv). If β > 1, then (t, t+β −1) ∈ II in (4.1).
Thus, by (4.2) and Condition (ii),

h(t,t+β−1)(λ) = (at + t) − t − (β − 1) − σ′
β−1 = at − (β − 1) − σ′

β−1 ≥ f − g + 1,

so

(at − f + g + 1) − (σ′
β+1 + β − 1)

≥ σ′
β−1 + (β − 1) + 2 − (σ′

β+1 + β − 1)

= σ′
β−1 − σ′

β+1 + 2 > 1,

since σ′
β−1 ≥ σ′

β+1. This proves (4.7).
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For (4.8), note that σ′
1 = bt+1 + 1, so

(bt + f − g − 1) − (σ′
1 + f − 2g − 1) = (bt − bt+1) + g − 1 > 0,

where the inequality follows from Condition (iv). Therefore, μ is a partition.
(b) For 1 ≤ j ≤ t − β + 1, i.e., (j, j + β − 1) ∈ I in (4.1), by (4.2) and

(4.4),

h(j,j+β−1)(μ) = h(j,j+β−1)(ν̃)

= (aj − f + g + 1) − (bj+β−1 + f − g − 1) − 2(β − 1)

= (aj − bj+β−1) − 2(β − 1) − 2f + 2g + 2

= h(j,j+β−1)(ν) − 2f + 2g + 2

= h(j,j+β−1)(λ) − 2f + 2g + 2
≥ −f + 2g + 2,

where the last inequality follows from Condition (ii).
For t − β + 2 ≤ j ≤ t, i.e., (j, j + β − 1) ∈ II in (4.1), by (4.2), (4.4) and

(4.6),

h(j,j+β−1)(μ) = h(j,j+β−1)(ν̃) − σ̃′
j+β−1−t

= (aj − f + g + 1 + j) − t − (β − 1) − (σ′
j+β−1−t + f − 2g)

=
(
aj + j − t − (β − 1) − σ′

j+β−1−t

) − 2f + 3g + 1

=
(
h(j,j+β−1)(ν) − σ′

j+β−1−t

) − 2f + 3g + 1

= h(j,j+β−1)(λ) − 2f + 3g + 1
≥ −f + 2g + 2,

where the last inequality follows from Condition (ii).
Also, (t + 1, t + β) ∈ IV in (4.1). So, by (4.2), (4.5) and (4.6),

h(t+1,t+β)(μ) = h(1,β)(σ̃)

= σ̃1 − σ̃′
β + (1 − β)

= σ′
β+1 + β − σ′

β − (f − 2g) + (1 − β)
≤ −f + 2g + 1,

where the last inequality follows from σ′
β+1 ≤ σ′

β .
(c) Suppose h(α,1)(ν) ≥ h for 1 ≤ α ≤ t. Then

h(α,1)(μ) = h(α,1)(ν̃) = h(α,1)(ν) − 2f + 2g + 2 ≥ h − 2f + 2g + 2,

where (3.6) is used for the second equality.
(d) By (b), t is uniquely determined, so we can decompose μ into ν̃ and

σ̃. Since the shift map and the Dyson map are reversible, we can recover ν and
σ from μ.

(e) Finally, since |ν̃| = |sf−g−1(ν)| = |ν|, |σ̃| = |dβ
f−2g+1(σ)| = |σ|− (2g−

f)β, |λ| = |ν| + |σ|, |μ| = |ν̃| + |σ̃|, we have

|λ| − |μ| = (2g − f)β,

as desired. �
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Lemma 4.4. Given integers f, g, h with g − f ≥ 1, f ≤ 2g − 1, h ≤ f , let
λ = νσ with

ν =
(

a1 · · · at

b1 · · · bt

)
and σ =

(
at+1 · · ·
bt+1 · · ·

)
�= ∅,

such that

(i) h(t+α,t+1)(λ) ≥ −f + 2g − 1;

and if ν �= ∅, then

(ii) h(j+α−1,j)(λ) ≤
{

f, for 1 ≤ j ≤ t − α + 1,

g − 1, for t − α + 2 ≤ j ≤ t,

(iii) at > at+1 + f − g + 1, at ≥ 1,
(iv) bt > bt+1 − f + g − 1, bt+1 ≥ α − 1.

If μ = sg+1(ν) (dα
2g−f−1(σ))′, then the following are true.

(a) μ is a partition.
(b) h(j+α−1,j)(μ) ≤ f − 2g − 2 for all 1 ≤ j ≤ t, and if (t + α, t + 1) ∈ μ,

then h(t+α,t+1)(μ) ≥ f − 2g − 1.
(c) For an integer β with 1 ≤ β ≤ t, if ν �= ∅ and h(1,β)(ν) ≤ h, then

h(1,β)(μ) ≤ h − 2g − 2.
(d) The map from λ to μ is reversible.
(e) |λ| − |μ| = (2g − f)α.

Proof. Note that h(x,y)(λ) = −h(y,x)(λ′). We substitute ν′, σ′, α, −f , g − f ,
and −h for ν, σ, β, f, g, and h, respectively, in Lemma 4.3. Then we can easily
check that ν′, σ′, α,−f, g − f,−h satisfy the conditions in Lemma 4.3. Thus
all the statements (a)–(e) hold true. �

In the next two lemmas, we will discuss a lower bound of the largest part
of a partition and a lower bound of the number of parts.

Lemma 4.5. Suppose that λ is a partition with the following non-neutral block
decomposition:

λ =
(
D2w D2w−1 · · · D2 D1

)
.

(a) If D1 is negative, then λ1 ≥ Kw;
(b) If D1 is positive, then λ′

1 ≥ Kw.

Proof. (a) For 1 ≤ j ≤ 2w, let xj and yj be the first and last entries in the
top row of Dj , and x̃j and ỹj be the first and last entries in the bottom row
of Dj , i.e.,

Dj =
xj · · · yj

x̃j · · · ỹj
.

First, we note that since D1 is negative, x1 ≥ β − 1 by Remark 2.6.
For j > 1, we note that

yj > xj−1, ỹj > x̃j−1, (4.9)
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since λ is a partition. Also, we note from Lemma 2.13 that for j > 1, Dj has
at least β columns if j is odd (i.e., Dj is negative) and at least α columns if j
is even (i.e., Dj is positive). Thus

xj ≥
{

yj + β − 1, if j is odd,

yj + α − 1, if j is even,
(4.10)

x̃j ≥
{

ỹj + β − 1, if jis odd,

ỹj + α − 1, if j is even.
(4.11)

For convenience, we let ν = (D2w) and σ = (D2w−1). We use induction
on w.

Suppose w = 1. By (4.11), (4.9), we have

ν′
1 = x̃2 + 1 ≥ ỹ2 + α ≥ x̃1 + 1 + α = σ′

1 + α. (4.12)

On the other hand, since D1 is negative,

h(1,β)(σ) = σ1 − σ′
β + (1 − β) ≤ 1 − i,

from which we have

σ′
1 ≥ σ′

β ≥ i − 1 + σ1 + (1 − β) ≥ i, (4.13)

where the last inequality follows since σ1 ≥ β by Remark 2.6. Also, since D2

is positive,

h(α,1)(ν) = να − ν′
1 + (α − 1) ≥ K − i − 1. (4.14)

Hence,

λ1 = ν1 ≥ να ≥ ν′
1 + K − i − 1 + (1 − α)

≥ σ′
1 + α + K − i − 1 + (1 − α)

≥ i + α + K − i − 1 + (1 − α) = K,

where the second, third, and last inequalities follow from (4.14), (4.12) and
(4.13), respectively.

Suppose w > 1, and let μ = (D2w−2| · · · |D1). Then by the induction
hypothesis, we know that

μ1 ≥ K(w − 1). (4.15)

Note that σ1 = x2w−1 +1 and μ1 = x2w−2 +1. Then, by (4.10), (4.9), we have
that

σ1 = x2w−1 + 1 ≥ y2w−1 + β ≥ x2w−2 + 1 + β = μ1 + β ≥ K(w − 1) + β,

(4.16)

where the last inequality follows from (4.15).
We now apply the same analysis as the w = 1 case to νσ = (D2w|D2w−1).

Then, the only difference happens in (4.13), which becomes

σ′
1 ≥ σ′

β ≥ i − 1 + σ1 + (1 − β) ≥ K(w − 1) + i, (4.17)

where the last inequality follows from (4.16). This change leads to

λ1 = ν1 ≥ να ≥ ν′
1 + K − i − 1 + (1 − α)
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≥ σ′
1 + α + K − i − 1 + (1 − α)

≥ K(w − 1) + i + α + K − i − 1 + (1 − α) = Kw,

where the second, third, and last inequalities follow from (4.14), (4.12), and
(4.17), respectively.

(b) We take the conjugate of λ, switch α and β, and then replace i by
K − i in (a). Then we see that λ′ ≥ Kw. We omit the details. �

Lemma 4.6. Suppose that λ is a partition with the following non-neutral block
decomposition:

λ =
(
D2w+1 D2w · · · D2 D1

)
.

(a) If D1 is negative, then λ1 ≥ Kw + β;
(b) If D1 is positive, then λ′

1 ≥ Kw + α.

Proof. (a) First, if w = 0, then λ = D1. Since D1 is negative, λ1 ≥ β by
Remark 2.6.

Suppose w > 0, and let μ = (D2w| · · · |D2|D1). By (a) in Lemma 4.5,
we know that μ1 ≥ Kw. Since λ = (D2w+1|D2w| · · · |D2|D1) is a Frobenius
symbol, the entries in each row are strictly decreasing, so the first entry in the
top row of D2w+1 is at least the first entry in the top row of D2w plus the
number of columns in D2w+1. Since D2w+1 is negative, by Lemma 2.13, there
must be at least β columns in D2w+1. Thus

λ1 ≥ μ1 + β ≥ Kw + β.

(b) We can prove this in a way similar to the proof of (a), so we omit the
details. �

5. Bijections

5.1. (K, i, α, β)-Singular Overpartitions and Dotted Parity Blocks

For convenience, we introduce another representation of singular overparti-
tions, namely partitions with dotted parity blocks. Let λ be a (K, i, α, β)-
singular overpartition. If there is exactly one overlined entry in λ, we put a
dot on the top of each of the blocks between the first non-neutral block and
the block of the overlined entry. If there are two overlined entries in λ, then we
put a dot on the top of each block between the second non-neutral block and
the block of the last overlined entry. In both cases, we remove the overlines
from the entries. It is clear that
S1. there are no dotted blocks, or
S2. there are consecutive dotted blocks starting from the first non-neutral

block, or
S3. there are consecutive dotted blocks starting from the second non-neutral

block.
For instance, if a sequence of parity blocks is EPNPN , then the following

are all the dotted blocks:
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EPNPN ,
EṖNPN , EṖṄPN , EṖṄṖN , EṖṄṖ Ṅ ,
EPṄPN , EPṄṖN , EPṄṖ Ṅ .
Since there is a one-to-one correspondence between (K, i, α, β)-singular

overpartitions and Frobenius symbols with a sequence of parity blocks satis-
fying S1, or S2, or S3, we will use the latter form in this section.

For a positive integer m, let ṗ−
K,i,α,β(m,n) (or ṗ+K,i,α,β(m,n)) be the num-

ber of partitions of n with exactly m dotted parity blocks and the last block
negative (or positive, resp.).

Theorem 5.1. For m ≥ 1 and n ≥ 0,

ṗ−
K,i,α,β(m,n)

= p

(
n −

(
K

⌊m

2

⌋2

+ i
⌊m

2

⌋)
α −

(
K

⌈m

2

⌉2

− (K − i)
⌈m

2

⌉)
β

)
, (5.1)

ṗ+K,i,α,β(m,n)

= p

(
n −

(
K

⌈m

2

⌉2

− i
⌈m

2

⌉)
α −

(
K

⌊m

2

⌋2

+ (K − i)
⌊m

2

⌋)
β

)
. (5.2)

The proof of Theorem 5.1 will be given in Sect. 5.2. When α = β, Theo-
rem 5.1 yields the following theorem.

Theorem 5.2. For m ≥ 1 and n ≥ 0,

ṗ−
K,i,α,α(m,n) = p

(
n − αK

(
m

2

)
− αim

)
,

ṗ+K,i,α,α(m,n) = p

(
n − αK

(
m + 1

2

)
+ αim

)
.

We note that when α = 1, Theorem 5.2 yields Theorem 3.1 in [15].

5.2. The Bijection ψα,β
m

In this section, we will prove Theorem 5.1 by constructing a bijection between
partitions with dotted parity blocks and ordinary partitions. We will prove
only (5.1). The proof of (5.2) will be similar, so it will be omitted.

Let us denote the set of partitions of n by P(n). Also, let Ṗ−
K,i,α,β(m,n)

be the set of partitions of n with exactly m dotted parity blocks with the
last block negative. We will construct a bijection ψα,β

m from Ṗ−
K,i,α,β(m,n) to

P(N), where

N =

{
n − (Ku2 + iu)α − (

Ku2 − (K − i)u
)
β, if m = 2u,

n − (Ku2 + iu)α − (
K(u + 1)2 − (K − i)(u + 1)

)
β, if m = 2u + 1.

(5.3)

Let λ be a partition in Ṗ−
K,i,α,β(m,n). First let D1 be the union of the last

dotted block and the blocks on the right of the last dotted block if any. From
right to left, denote each of the unchosen dotted blocks by Dv for 1 < v ≤ m.
Let Dm+1 be the union of the blocks on the left of Dm if any.
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Let us recall the (5, 2, 2, 2)-singular overpartition from Example 2.11:

λ =
(

31 28 27 22 18 9 8 7 1 0
29 26 25 23 22 8 5 4 1 0

)
,

with its sequence of dotted blocks EPṄṖ Ṅ . Then we have

D4 =
(

31 28 27
29 26 25

)
, D3 =

(
22 18
23 22

)
, D2 =

(
9 8 7
8 5 4

)
, D1 =

(
1 0
1 0

)
.

We then define Γ1, . . . ,Γm+1 and ψα,β
m (λ) as follows:

• Set Γ1 = D1.
• For 1 ≤ v ≤ m, set

Γv+1 =

{
s−i−wK(Dv+1) (dβ

1−i−(v−1)K(Γv))′, if v = 2w + 1 for some w ≥ 0,

swK(Dv+1) (dα
−1+i+(v−1)K(Γv))′, if v = 2w for some w > 0.

• Define ψα,β
m (λ) = Γm+1.

Now we will inductively show that for each 1 ≤ v ≤ m, Γv is a partition
satisfying

h(1,β)(Γv) ≤ 1 − i − (v − 1)K, if v = 2w + 1, (5.4)

h(α,1)(Γv) ≥ −1 + i + (v − 1)K, if v = 2w. (5.5)

First, since Γ1 = D1 and its first column is (K, i, α, β)-negative, Γ1 is a
partition satisfying (5.4).

Assume that for 1 ≤ v < m, Γv is well defined and satisfies (5.4) or (5.5).
We now prove that Γv+1 is a partition satisfying (5.4) or (5.5). Let t be the
number of columns in Dv+1.

Case 1: Suppose v = 2w + 1 for some w ≥ 0. Then we can write Γv+1 as

Γv+1 = s−i−wK(Dv+1) (dβ
1−i−(v−1)K(Γv))′.

In Lemma 4.3, set f = 2 − i, g = wK + 1, h = K − i − 1, and ν = Dv+1,
σ = Γv. Clearly f, g, h satisfy g ≥ 1, f ≤ 2g−1, h ≥ f , since 1 ≤ i < K/2.

Let us check the four conditions of Lemma 4.3. First, (t+1, t+β) ∈
IV in (4.1). So, by (4.2),

h(t+1,t+β)(Dv+1Γv) = h(1,β)(Γv).

Thus, by the induction hypothesis (5.4),

h(t+1,t+β)(Dv+1Γv) = h(1,β)(Γv) ≤ 1 − i − 2wK = f − 2g + 1,

so Condition (i) holds true.
Let us verify Condition (ii) of the lemma. To that end, we have to

consider two different regions where a node (j, j+β−1) is placed, namely
j ≤ t−β +1 and j ≥ t−β +2, i.e., (j, j +β −1) ∈ I and (j, j +β −1) ∈ II
in (4.1). In Fig. 11, the node a falls in the first case and the node b falls
in the second case. The nodes c and d will be discussed later in Case 2.

First note that the hook difference at the node a is unchanged after
Dv and Γv−1 are merged to become Γv, namely,

h(j,j+β−1)(Dv+1Γv) = h(j,j+β−1)(Dv+1DvΓv−1). (5.6)
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c

d

a b

Dv+1 Dv Γv−1

−→

c

d

a b

Dv+1Dv Γv−1 Γv

Figure 11. Dv+1DvΓv−1 → Dv+1Γv

On the other hand, since

Γv = swK(Dv)
(
dα

−1+i+(v−2)K(Γv−1)
)′

,

and Dv is negative, i.e., there are at least β columns, the hook difference
at the node b is affected only by the shift map swK that is applied to Dv,
namely,

h(j,j+β−1)(Dv+1Γv) = h(j,j+β−1)(Dv+1DvΓv−1) − wK

= h(j,j+β−1)(Dv+1DvΓv−1) − (g − 1). (5.7)

Also, we note that Dv+1 cannot be (K, i, α, β)-negative because the last
dotted block is negative and the signs of blocks are alternating. Thus,

h(j,j+β−1)(Dv+1DvΓv−1) ≥ 2 − i = f. (5.8)

Therefore, by (5.6), (5.7), and (5.8),

h(j,j+β−1)(Dv+1Γv) ≥
{

f, for 1 ≤ j ≤ t − β + 1,

f − g + 1, for t − β + 2 ≤ j ≤ t,

which verifies that Condition (ii) holds true.

Lastly, let
x1

x2
and

z1
z2

be the last column of Dv+1 and the first

column of Dv, respectively, i.e.,

(Dv+1|Dv) =
( · · · x1 z1 · · ·

· · · x2 z2 · · ·
)

.

Since Dv+1Dv forms a Frobenius symbol, we have

x1 > z1, x2 > z2.

By Lemma 4.6 (a), we know that z1 ≥ wK + β − 1.
Since

Γv =

{
D1, for v = 1,

swK(Dv)(dα
−1+i+(v−2)K(Γv−1))′, for v > 2,
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the first column of Γv is
z1 − wK
z2 + wK

. Thus, we have

x1 > (z1 − wK) + (wK + 1) − 1 and z1 − wK ≥ β − 1,

x2 > (z2 + wK) − (wK + 1) + 1 and x2 > z2 ≥ 0,

which verify Conditions (iii) and (iv). Since all the four conditions in
Lemma 4.3 are satisfied, by Statement (a) of Lemma 4.3, Γv+1 is a par-
tition. Also, since v < m, Dv+1 �= ∅ is indeed a positive block, so

h(α,1)(Dv+1) ≥ K − i − 1 = h.

Thus, by Statement (c) of Lemma 4.3,

h(α,1)(Γv+1) ≥ h − 2f + 2g + 2 = −1 + i + (2w + 1)K,

which verifies (5.5).
Case 2: Suppose v = 2w for some w ≥ 1. Then we can write Γv+1 as

Γv+1 = swK(Dv+1) (dα
−1+i+(v−1)K(Γv))′.

In Lemma 4.4, set f = K − i − 2, g = wK − 1, h = 1 − i, and ν = Dv+1,
σ = Γv. Clearly, f, g and h satisfy g − f ≥ 1, f ≤ 2g − 1, h ≤ f .

Next, let us verify the four conditions of Lemma 4.4. First, note that
(t + α, t + 1) ∈ IV in (4.1). So, by (4.2), we know that

h(t+α,t+1)(Dv+1Γv) = h(α,1)(Γv).

Thus, by the induction hypothesis (5.5),

h(t+α,t+1)(Dv+1Γv) = h(α,1)(Γv) ≥ −1 + i + (2w − 1)K
= −f + 2g − 1,

so Condition (i) holds true.
For Condition (ii), we have to consider two different regions where

a node (j + α − 1, j) is placed, namely j ≤ t − α + 1 and j ≥ t − α + 2,
i.e., (j +α− 1, j) ∈ I and (j +α− 1, j) ∈ III in (4.1). In Fig. 11, the node
c falls in the first case and the node d falls in the second case. First note
that the hook difference at the node c is unchanged after Dv and Γv−1

are merged to become Γv, namely,

h(j+α−1,j)(Dv+1Γv) = h(j+α−1,j)(Dv+1DvΓv−1). (5.9)

On the other hand, since

Γv = s−i−(w−1)K(Dv) (dβ
1−i−(v−2)K(Γv−1))′,

and Dv is positive, i.e., there are at least α columns, the hook difference
at the node d is affected only by the shift map s−i−(w−1)K that is applied
to Dv, namely,

h(j+α−1,j)(Dv+1Γv) = h(j+α−1,j)(Dv+1DvΓv−1) + i + (w − 1)K

= h(j+α−1,j)(Dv+1DvΓv−1) − f + g − 1. (5.10)
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Also, we note that Dv+1 cannot be (K, i, α, β)-positive because the last
dotted block is negative and the signs of blocks are alternating. Thus,

h(j+α−1,j)(Dv+1DvΓv−1) ≤ K − i − 2 = f. (5.11)

Therefore, by (5.9), (5.10), and (5.11),

h(j+α−1,j)(Dv+1Γv) ≤
{

f, for 1 ≤ j ≤ t − α + 1,

g − 1, for t − α + 2 ≤ j ≤ t,

which verifies that Condition (ii) holds true.
Lastly, Dv+1Dv forms a Frobenius symbol. Thus, in the same way

as in Case 1, Conditions (iii) and (iv) in Lemma 4.4 can be verified. We
omit the details. Therefore, by Statements (a) and (c) of Lemma 4.4,
Γv+1 is a partition satisfying (5.4).
We now have that Γm is a partition satisfying (5.4) or (5.5) from the

induction. Also, Dm+1 is a partition. We can easily check that Dm+1 and Γm

satisfy the conditions for Lemmas 4.3 or 4.4. Therefore, Γm+1 is a partition
by Statement (a) of each lemma. Here we note that all the arguments for
v < m hold for v = m except that if the first column of Dm+1 is neutral,
then Statement (c) does not hold. However, Statement (c) is not needed to
complete our proof, for what we need to prove is that Γm+1 is a partition.

Let us then check the weight difference. By Statement (e) of each of
Lemmas 4.3 and 4.4, we have

|Dv+1Γv| − |Γv+1| =

{
(i + (v − 1)K) β, if v = 2w + 1,

(i + (v − 1)K) α, if v = 2w,
(5.12)

for v = 1, . . . ,m. By (5.12), we have
|λ| = |Dm+1Dm · · · D5D4D3D2D1|

= |Dm+1Dm · · · D5D4D3D2Γ1|
= |Dm+1Dm · · · D5D4D3Γ2| + iβ

= |Dm+1Dm · · · D5D4Γ3| + (i + K)α + iβ

= |Dm+1Dm · · · D5Γ4| + (i + 2K)β + (i + K)α + iβ

...

= |Γm+1|

+

⎧
⎪⎪⎨

⎪⎪⎩

u∑
v=1

((
i + (2v − 1)K

)
α +

(
i + (2v − 2)K

)
β

)
, if m = 2u,

(i + 2uK)β +
u∑

v=1

((
i + (2v − 1)K

)
α +

(
i + (2v − 2)K

)
β

)
, if m = 2u + 1.

Thus

|Γm+1| =

{
|λ| − (Ku2 + iu)α − (Ku2 − Ku + iu)β, if m = 2u,

|λ| − (Ku2 + iu)α − (Ku2 + Ku + iu + i)β, if m = 2u + 1.

This shows that ψα,β
m is a map from Ṗ−

K,i,α,β(m,n) to P(N), where N is given
in (5.3) as desired.
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In addition, by Statement (d) of Lemma 4.3 and Lemma 4.4, each process
of producing Γv+1 is reversible. Therefore, ψα,β

m is indeed a bijection.

Example 5.3. Consider a (5, 2, 2, 2)-singular overpartition

λ =
(

31 28 27 22 18 9 8 7 1 0
29 26 25 23 22 8 5 4 1 0

)
,

with its sequence of dotted blocks EPṄṖ Ṅ . Note that K = 5, i = α = β = 2,
and m = 3. We have the following Γv for v = 1, 2, 3, 4:

• Γ1 = D1 =
(

1 0
1 0

)
,

• Γ2 = s−2(D2)
(
d2−1(Γ1)

)′ =
(

11 10 9
6 3 2

)
,

• Γ3 = s5(D3)
(
d26(Γ2)

)′ =
(

17 13 4 3 2
28 27 13 3 2

)
,

• Γ4 = s−7(D4)
(
d2−11(Γ3)

)′ =
(

38 35 34 17 7 6 3 2
22 19 18 16 15 13 9 0

)
,

where the dashed line is put to indicate the concatenated two arrays in each
Γv. Here Γ4 is the ordinary partition corresponding to the (5, 2, 2, 2)-singular
overpartition λ. Lastly, we check their weight difference

|λ| − |Γ4| = 304 − 262 = 42,

which matches (Ku2 + iu)α + (Ku2 + Ku + iu + i)β as desired.

6. Results

In this section, we will relate (K, i, α, β)-singular overpartitions with ordinary
partitions.

For a (K, i, α, β)-singular overpartition with overlined entries in anchors,
if the first overlined entry occurs in the mth block, then the mth block can
be negative or positive, and the next anchor can have an overlined entry if
exists. In all these four cases, i.e., only one overlined entry in either a negative
or a positive block, or two overlined entries in two consecutive and opposite
parity blocks, we see from the definition of dotted parity blocks given in the
beginning of Sect. 5.1 that such singular overpartitions are partitions with
exactly m dotted parity blocks. Thus,

QK,i,α,β(m,n) = ṗ−
K,i,α,β(m,n) + ṗ+K,i,α,β(m,n), (6.1)

where QK,i,α,β(m,n) is the number of (K, i, α, β)-singular overpartitions of n
with an overlined entry in its mth anchor, which is defined before Theorem 1.2
in Introduction.

Theorem 6.1. For m ≥ 1 and n ≥ 0,
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QK,i,α,β(m,n)

= p

(
n −

(
K

⌈m

2

⌉2

− i
⌈m

2

⌉)
α −

(
K

⌊m

2

⌋2

+ (K − i)
⌊m

2

⌋)
β

)

+ p

(
n −

(
K

⌊m

2

⌋2

+ i
⌊m

2

⌋)
α −

(
K

⌈m

2

⌉2

− (K − i)
⌈m

2

⌉)
β

)
,

where p(N) denotes the number of ordinary partitions of N with p(0) = 1 and
p(N) = 0 for N < 0.

Proof. This theorem follows from (6.1) and Theorem 5.1. �

Remark 6.2. Some facts about QK,i,α,β(m,n) are noted below.

(i) Since
⌊

m
2

⌋
= − ⌈−m

2

⌉
and

⌈
m
2

⌉
= − ⌊−m

2

⌋
, we have

QK,i,α,β(m,n)

= p

(
n −

(
K

⌈m

2

⌉2

− i
⌈m

2

⌉)
α −

(
K

⌊m

2

⌋2

+ (K − i)
⌊m

2

⌋)
β

)

+ p

(
n −

(
K

⌈−m

2

⌉2

− i

⌈−m

2

⌉)
α −

(
K

⌊−m

2

⌋2

+ (K − i)
⌊−m

2

⌋)
β

)

for m ≥ 1 and n ≥ 0.
(ii) Each ordinary partition of n can be regarded as a (K, i, α, β)-singular

overpartition without any overlined entries. Thus

QK,i,α,β(0, n) = p(n).

Let us recall QK,i,α,β(n):

QK,i,α,β(n) =
∞∑

m=0

QK,i,α,β(m,n). (6.2)

Theorem 6.3. We have
∞∑

n=0

QK,i,α,β(n)qn

=
(q2K(α+β),−q(K+i)α+iβ ,−q(K−i)α+(2K−i)β ; q2K(α+β))∞

(q; q)∞

+ qiβ (q2K(α+β),−q(K−i)α−iβ ,−q(K+i)α+(2K+i)β ; q2K(α+β))∞
(q; q)∞

,

where (a1, a2, . . . , aM ; q)∞ = (a1; q)∞(a2; q)∞ · · · (aM ; q)∞.

Proof. By (6.2), Theorem 6.1, and Remark 6.2,

QK,i,α,β(n)

=
∞∑

m=−∞
p

(
n −

(
K

⌊m

2

⌋2

+ i
⌊m

2

⌋)
α −

(
K

⌈m

2

⌉2

− (K − i)
⌈m

2

⌉)
β

)
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=
∞∑

u=−∞
p

(
n − (Ku2 + iu)α − (Ku2 − Ku + iu)β

)
(m = 2u)

+
∞∑

u=−∞
p

(
n − (Ku2 + iu)α − (Ku2 + Ku + iu + i)β

)
(m = 2u + 1).

Thus,
∞∑

n=0

QK,i,α,β(n)qn

=
∞∑

n=0

∞∑

u=−∞
p

(
n − (Ku2 + iu)α − (Ku2 − Ku + iu)β

)
qn

+
∞∑

n=0

∞∑

u=−∞
p

(
n − (Ku2 + iu)α − (Ku2 + Ku + iu + i)β

)
qn

=
1

(q; q)∞

∞∑

u=−∞
q(Ku2+iu)α+(Ku2−Ku+iu)β

+
1

(q; q)∞

∞∑

u=−∞
q(Ku2+iu)α+(Ku2+Ku+iu+i)β

=
(q2K(α+β),−q(K+i)α+iβ ,−q(K−i)α+(2K−i)β ; q2K(α+β))∞

(q; q)∞

+ qiβ (q2K(α+β),−q(K+i)α+(2K+i)β ,−q(K−i)α−iβ ; q2K(α+β))∞
(q; q)∞

,

where the last equality follows from Jacobi’s triple product identity [3,17]. �

6.1. Proof of Theorem 1.1

When α = β, Theorem 6.3 can be simplified further. By Theorem 5.2, we have

QK,i,α,α(n) =
∞∑

m=−∞
p

(
n − αK

(
m

2

)
− αim

)
,

where we use the fact
(
m+1
2

)
=

(−m
2

)
. Thus,

∞∑

n=0

QK,i,α,α(n)qn

=
∞∑

n=0

∞∑

m=−∞
p

(
n − αK

(
m

2

)
− αim

)
qn

=
∞∑

m=−∞
qαK(m2 )+αim

∞∑

n=0

p

(
n − αK

(
m

2

)
− αim

)
qn−αK(m2 )−αim

=
∞∑

m=−∞
qαK(m2 )+αim

∞∑

n=0

p(n)qn
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=
1

(q; q)∞

∞∑

m=−∞
qαK(m2 )+αim

=
(−qiα,−q(K−i)α, qKα; qKα)∞

(q; q)∞
, (6.3)

where the last equality follows from Jacobi’s triple product identity [3,17].
This proves Theorem 1.1.

We easily see that the right hand side of (6.3) is the generating function
of overpartitions in which parts �≡ 0 mod Kα and only parts ≡ ±iα mod Kα
may be overlined.

6.2. Proof of Theorem 1.2

Theorem 1.2 follows immediately from (6.1) and Theorem 5.2.

7. Remarks

We provide a few remarks. First, for a positive integer k > 1, the case when
i = k and K = 2k is investigated by Bressoud in [8]. In [16], when K = 3, i =
α = β = 1, further refined cases were studied.

Finally, let pE
K,i,α,β(n) be the number of partitions of n without any signed

blocks. Since QK,i,α,β(m,n) counts the number of singular overpartitions of n
with an overlined entry in the mth anchor, it is the same as the number of
partitions of n with at least m signed blocks. By the sieving method, we have

pE
K,i,α,β(n) = p(n) +

∑

m≥1

(−1)mQK,i,α,β(m,n),

from which we can deduce Theorem 2 in [6].

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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Abstract. MacMahon showed that the generating function for partitions
into at most k parts can be decomposed into a partial fraction-type sum
indexed by the partitions of k. In the present work, a generalization of
MacMahon’s result is given, which in turn provides a full combinatorial
explanation.
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1. Introduction

1.1. An Excerpt from MacMahon’s Combinatory Analysis

In Combinatory Analysis, vol. 2 [7, p. 61ff], P.A. MacMahon writes:
We commence by observing the two identities

1
(1 − x)(1 − x2)

=
1
2

1
(1 − x)2

+
1
2

1
(1 − x2)

,

1
(1 − x)(1 − x2)(1 − x3)

=
1
6

1
(1 − x)3

+
1
2

1
(1 − x)(1 − x2)

+
1
3

1
1 − x3

,

which we will also write in the illuminating notation so often
employed:

1
(1)(2)

=
1
2

1
(1)2

+
1
2

1
(2)

,

The author thanks the National Security Agency for partially supporting his research pro-
gram via Grant H98230-14-1-0159 during 2014–2015, when this research project commenced.
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1074 A. V. Sills

1
(1)(2)(3)

=
1
6

1
(1)3

+
1
2

1
(1)(2)

+
1
3

1
(3)

.

[Elsewhere [7, p. 5] the “very convenient notation” (j) = 1 − xj is
defined and attributed to Cayley.]

The observation leads to the conjecture that we are in the
presence of partial fractions of a new and special kind. We note
that in the first identity we have a fraction corresponding to each of
the partitions (12), (2) of the number 2 and in the second fractions
corresponding to and derived from each of the partitions (13), (21),
(3) of the number 3. . . . [In general] we find

1
(1)(2) · · · (i)

=
∑ 1

1p1 .2p2 .3p3 . . . p1!p2!p3! . . .
1

(1)p1(2)p2(3)p3 . . .
, (1.1)

where (1p12p23p3 . . . ) is a partition of i and the summation is in
regard to all partitions of i. This remarkable result shows the decom-
position of the generating function into as many fractions as the
number i possesses partitions. The denominator of each fraction is
directly derived from one of the partitions and is of degree i in x.
The numerator does not involve x and the coefficient is the easily
calculable number

1
1p1 .2p2 .3p3 . . . p1!p2!p3! . . .

.

Remark 1.1. In [3, p. 209, Ex. 1] Andrews attributes (1.1) to Cayley, and this
attribution has been repeated by other authors in the literature. However,
the author has been unable to find (1.1) anywhere in Cayley’s works [5], and
indeed MacMahon, in the chapter where he presents his “partial fractions of
a new and special kind” [7, Sect. VII, Chapter V] contrasts his results with
those of Cayley several times.

1.2. Some Definitions and Notation

1.2.1. Partitions and Related Objects. It will be necessary to employ parti-
tions and compositions of positive integers, sometimes allowing 0’s as parts,
and sometimes not. Accordingly, we will formalize terminology via the follow-
ing definitions.

Definition 1.2. A weak k-composition γ is a k-tuple of nonnegative integers
(γ1, γ2, . . . , γk). Each γi (even if γi = 0) is called a part of γ. The weight of γ,
denoted |γ|, is

∑m
i=1 γi. The length of γ, denoted l(γ), is the number of parts

in γ. The frequency (or multiplicity) of part j in γ, denoted fj(γ) or simply fj

when γ is clear from context, is the number of times that j appears as a part
in γ:

fj(γ) := #{i : γi = j}.

The frequency sequence associated with γ is

f(γ) := (f0(γ), f1(γ), f2(γ), f3(γ), . . . ).
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MacMahon’s Partial Fractions 1075

The set of all weak k-compositions will be denoted Ck.

Remark 1.3. The author prefers to use the term frequency and the correspond-
ing notation fj over the term multiplicity (with the notation mj) to be con-
sistent with the works of Andrews [1–3].

Definition 1.4. A weak k-composition w = (w1, w2, . . . , wk) is called a weak
k-partition if its parts occur in nonincreasing order

w1 ≥ w2 ≥ · · · ≥ wk.

The set of weak k-partitions of weight n will be denoted Wk(n) and the cardi-
nality of this set by pk(n).

Definition 1.5. If w is a weak k-partition and γ is a weak k-composition, we
shall say that γ is of type w if γ is a permutation of w.

Definition 1.6. A partition λ is any nonincreasing finite or infinite sequence
(λ1, λ2, λ3, . . . ) of nonnegative integers. However, in contrast to Definition 1.2,
only positive integers are considered parts, thus for a partition λ, l(λ) = #{i :
λi > 0}. Analogous to the frequency sequence of a weak composition, the
frequency sequence f(λ) of λ is

f(λ) = (f1(λ), f2(λ), f3(λ), . . . ).

Remark 1.7. In fact, no distinction will be drawn between, e.g., λ = (5, 2, 1, 1)
and λ = (5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, . . . ); both will be considered the same
partition of length 4 and weight 9. Also, f

(
(5, 2, 1, 1)

)
= (2, 1, 0, 0, 1, 0, 0, . . . ).

It will be convenient to consider λj = 0 for any j > l(λ), even when λ is
not explicitly constructed with a tail of zeros.

Definition 1.8. The set of all partitions of weight n is denoted by P(n) and
the cardinality of P(n) by p(n). The notation λ � n means “λ is a partition
of weight n”, i.e., λ ∈ P(n).

For example,

P(4) = {(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)},

so p(4) = 5.

Definition 1.9. For a partition λ, the partition λ − 1 is the partition obtained
from λ by decreasing each of its parts by 1:

λ − 1 := (λ1 − 1, λ2 − 1, . . . , λl(λ) − 1).

Notice that l(λ − 1) = l(λ) − f1(λ).
It is often convenient to denote a partition (respectively, weak k-

partition) by the superscript frequency notation 〈1f12f23f3 · · · 〉 (respectively,
〈0f01f12f23f3 · · · 〉) where it is permissible to omit fj if fj = 1 and to omit jfj

if fj = 0. Thus,

(5, 5, 5, 5, 3, 2, 2, 1, 1, 1) = 〈13223 54〉
are two ways of expressing that particular (weak 10-)partition of 30.
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1076 A. V. Sills

A variant on this notation for weak compositions (to emphasize runs of
adjacent equal parts) will also be useful. For example, let us allow ourselves
to write the weak 9-composition (3, 3, 2, 0, 0, 3, 3, 3, 3) of 20 as [32210234].

The following quantities will arise often enough to warrant these defini-
tions:

Definition 1.10. Following Schneider [11], for a partition λ = (λ1, λ2, . . . , λk),
we define its norm to be the product of its parts,

N (λ) := λ1λ2 · · · λk.

Further, the factorial of a partition λ is λ! = (λ1!, λ2!, . . . , λk!), so that
N (λ!) = λ1!λ2! · · · λk!. Analogously for a weak k-composition γ = (γ1, . . . , γk),

N (γ!) := γ1!γ2! . . . γk!

Observe that f effectively maps a partition λ = (λ1, λ2, . . . ) to a weak
λ1-composition of weight l(λ) if we ignore the infinite tail of zeros in f(λ). For
example, f((5, 5, 5, 5, 3, 2, 2, 1, 1, 1)) = (3, 2, 1, 0, 4), a weak 5-composition of
weight 10. Likewise, f maps a weak k-composition γ to a weak L-composition
of weight k, where L is the largest part of γ. Thus, the frequency factorial
product of a weak k-composition γ may be consistently notated as

N
(
f(γ)!

)
= f0(γ)!f1(γ)!f2(γ)! · · · ,

and that of a partition λ as

N
(
f(λ)!

)
= f1(λ)!f2(λ)!f3(λ)! · · · .

Observation 1.11. The number of weak k-compositions of type w = (w1, . . . ,
wk), where w is a weak k-partition, is k!/N

(
f(w)!

)
.

Definition 1.12. A multipartition is a t-tuple of partitions for some t.

For example, ((1, 1, 1), (4, 1), (3, 2, 2)) is a multipartition simply because
(1, 1, 1), (4, 1), and (3, 2, 2) are all partitions.

Definition 1.13. The multipartition dissection MD (λ) of the partition λ is the
following Cartesian product:

MD (λ) := P(λ1) × P(λ2) × · · · × P(λl(λ)).

We will require the result given by Fine [6, p. 38, Eq. (22.2)],
∑

λ�n

1
1f12f23f3 · · · f1!f2!f3! · · · = 1, (1.2)

which may be expressed in the present notation as
∑

λ�n

1
N (λ) N

(
f(λ)!

) = 1, (1.3)

in the iterated form
p(λ1)p(λ2)···p(λl(λ))∑

i=1

l(λ)∏

j=1

1
N

(
f(μij)!

)
N (μij)

= 1. (1.4)
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The superscript notation on μ is to be understood as follows: if λ = (λ1, . . . , λl)
is a partition, then μij is the ith partition of λj where the p(λ1)p(λ2) · · · p(λl)
multipartitions of MD (λ) have been placed in some order; any order is fine.
See also (3.3) below for an explicit illustration.

Notice that (1.2) states that the sum of the coefficients that appear in
the MacMahon partial fraction decomposition

1
(1 − x)(1 − x2) · · · (1 − xk)

=
∑

λ�k

1
1f12f23f3 · · · f1!f2!f3! · · ·g(λ;x, x, . . . , x),

where g is defined below in Eq. (1.5), must be 1.

1.2.2. Combinatorial Generating Functions. As part of the combinatorial con-
struction to be undertaken, we will need to associate with each partition λ
a certain rational generating function in the indeterminates x1, x2, . . . , x|λ|,
namely let

g(λ;x) := g(λ;x1, x2, . . . , x|λ|) :=
l(λ)∏

j=1

1

1 − ∏λj

k=1 xs(λ;j,k)

, (1.5)

with

s(λ; j, k) = k +
j−1∑

r=1

λr.

Of necessity, the notation used in defining (1.5) for a general partition
λ makes a simple idea rather opaque. To understand immediately how to
construct g(λ;x) for any partition λ, simply consider, for example, for the five
partitions of 4, we have the following associated “g-functions”:

g
(
(4);x1, x2, x3, x4

)
=

1
1 − x1x2x3x4

,

g
(
(3, 1);x1, x2, x3, x4

)
=

1
(1 − x1x2x3)(1 − x4)

,

g
(
(2, 2);x1, x2, x3, x4

)
=

1
(1 − x1x2)(1 − x3x4)

,

g
(
(2, 1, 1);x1, x2, x3, x4

)
=

1
(1 − x1x2)(1 − x3)(1 − x4)

,

g
(
(1, 1, 1, 1);x1, x2, x3, x4

)
=

1
(1 − x1)(1 − x2)(1 − x3)(1 − x4)

.

We denote the symmetric group of degree n by Sn. The application of a
permutation σ ∈ S|λ| to g(λ;x), will be written as σg(λ;x), with the intended
meaning

σg(λ;x) = g(λ;σx) = g(λ;xσ(1), xσ(2), . . . , xσ(|λ|)).

Let Oλ (respectively, Hλ) denote the orbit (resp. stabilizer) of g(λ;x)
under the action of S|λ|.

Thus,

|Hλ| = N (λ!) N
(
f(λ)!

)
, (1.6)
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1078 A. V. Sills

or, by the orbit–stabilizer theorem,

|Oλ| =
|λ|!

N (λ!) N
(
f(λ)!

) . (1.7)

Remark 1.14. Notice that

N ((λ − 1)!) |Oλ| =
|λ|!

N (λ)N
(
f(λ)!

) ,

which is |λ|! times the coefficient of the term indexed by λ in the MacMahon
decomposition.

1.3. Statement of Main Result

The goal is to understand (1.1) combinatorially. This will be accomplished by
proving the following natural multivariate generalization of (1.1):

Theorem 1.15.
∑

σ∈Sk

σ
1

(1 − x1)(1 − x1x2)(1 − x1x2x3) · · · (1 − x1x2 · · · xk)

=
∑

λ�k

N ((λ − 1)!)
∑

φ(x)∈Oλ

φ(x), (1.8)

where Oλ is the orbit of g(λ;x) under the action of S|λ|, and g(λ;x) is defined
in (1.5).

2. Partial Fraction Decompositions

It is well known that for a fixed positive integer k, the generating function for
pk(n) is

Fk(x) :=
∑

n≥0

pk(n)xn =
k∏

j=1

1
1 − xj

. (2.1)

Since the right-hand side of (2.1) is a rational function, it can be decom-
posed into ordinary partial fractions, as considered, e.g., by Cayley [4] and
Rademacher [10, p. 302], or into q-partial fractions, as studied by Munagi
[8,9].

In examining the ordinary partial fraction decompositions of, say, F4(x),

F4(x) =
−17/72
x − 1

+
59/288
(x − 1)2

+
1/8

(x − 1)3
+

1/24
(x − 1)4

+
1/8

x + 1
+

1/32
(x + 1)2

+
(x + 1)/9
x2 + x + 1

+
1/8

x2 + 1

=
−17/72
x − 1

+
59/288
(x − 1)2

+
1/8

(x − 1)3
+

1/24
(x − 1)4

+
1/8

x + 1
+

1/32
(x + 1)2

+
(2 + ω2)/27

x − ω
+

(2 + ω)/27
x − ω2

+
−i/16
x − i

+
i/16
x + i

, (2.2)
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where ω := exp(2πi/3), we notice immediately the apparent arbitrariness of
the coefficients that arise in the expansion.

For Munagi’s q-partial fractions, the coefficients are nicer, but still not
transparent:

F4(x) =
25/144
(1 − x)2

+
1/8

(1 − x)3
+

1/24
(1 − x)4

+
1/16

1 − x2

+
1/8

(1 − x2)2
+

(x + 2)/9
1 − x3

+
1/4

1 − x4
.

MacMahon’s partial fraction decomposition of Fk(x),
k∏

j=1

1
1 − xj

=
∑

λ�m

g(λ;x, x, x, . . . , x)
N

(
f(λ)!

)
N (λ)

, (2.3)

thus has the distinct advantage that the coefficients are known a priori and,
furthermore, these coefficients are “combinatorial numbers” in the sense that
they are products of integer exponential and factorial expressions.

To begin to understand (2.3) combinatorially, we shall multiply both sides
of (2.3) by k! and observe that g(λ;x, x, x, . . . , x) is the generating function
for the sequence that counts a certain class of restricted weak k-compositions
defined below.

Equation (2.3) together with (1.7), after some investigation, suggested
the generalization of MacMahon’s partial fraction decomposition presented
above as Theorem 1.15.

3. Proof of Theorem 1.15

Starting with the left member of (1.8), we have
∑

σ∈Sk

σ

(
1

(1 − x1)(1 − x1x2)(1 − x1x2x3) · · · (1 − x1x2x3 · · · xk)

)

=
∑

σ∈Sk

σ

⎛

⎝
∑

a1,a2,...,ak≥0

xa1
1 (x1x2)a2(x1x2x3)a3 · · · (x1x2 · · · xk)ak

⎞

⎠

=
∑

σ∈Sk

σ

⎛

⎝
∑

a1,a2,...,ak≥0

xa1+a2+···+ak
1 xa2+a3+···+ak

2 · · · xak−1+ak

k−1 xak

k

⎞

⎠

=
∑

σ∈Sk

σ

⎛

⎝
∑

w1≥w2≥···≥wk≥0

xw1
1 xw2

2 · · · xwk

k

⎞

⎠

=
∑

σ∈Sk

σ

(
∑

w∈Wk

xw1
1 xw2

2 · · · xwk

k

)

=
∑

γ∈Ck

N
(
f(γ)!

)
xγ1
1 xγ2

2 · · · xγk

k .
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Thus, we see that the left member of (1.8) generates every weak k-
composition (where the jth part appears as the exponent of xj) exactly
N

(
f(γ)!

)
times.

Now let us consider the right member of (1.8),
∑

λ�m

N ((λ − 1)!)
∑

φ(x)∈Oλ

φ(x), (3.1)

where Oλ is the orbit of g(λ;x) under the (transitive) action of S|λ|.
Pick an arbitrary weak k-composition γ. We need to show that the term

xγ1
1 xγ2

2 · · · xγk

k appears in the expansion of (3.1) with coefficient N
(
f(γ)!

)
.

Associated with γ is the frequency sequence f(γ) = (f0(γ), f1(γ), f2(γ), . . . ).
Permute the nonzero terms of f(γ) into nondecreasing order to form a partition
λ of weight k, and we may write λ = λ(γ) since the partition λ is uniquely
determined by γ. Thus, it must be the case that there exists σ ∈ Sk such
that the weak k-composition σ(γ) is of type [cλ1

1 cλ2
2 · · · cλl

l ] for some distinct
nonnegative integers c1, c2, . . . , cl.

For a given λ � k of length l, we have, by expanding (1.5) as a series,

g(λ;x) =
∑

c1,c2,...,cl≥0

(x1x2 · · · xλ1)
c1(xλ1+1xλ1+2 · · · xλ1+λ2)

c2 · · ·

×(xλ1+λ2+···λl−1+1xλ1+λ2+···+λl−1+2 · · · xλ1+λ2+···+λl
)cl ,

so g(λ;x) is the generating function for weak k-compositions of type

[cλ1
1 cλ2

2 · · · cλl

l ].

Now the orbit Oλ of g(λ;x) under the action of Sk contains the terms
that generate all permutations of weak k-compositions of type [cλ1

1 cλ2
2 · · · cλl

l ].
The terms xγ1

1 xγ2
2 · · · xγk

k are generated by those terms of (3.1) in the
orbit of g(μ;x) for multipartitions μ ∈ MD (λ), where λ = λ(γ).

For each weak k-composition γ, and the corresponding partition

λ = λ(γ) = (λ1, λ2, . . . , λl(λ)),

we generate all the associated multipartitions in MD (λ). Let μij
k denote the

kth part in the partition μij , where μij is the ith partition of λj , the jth part
of λ.

Note that i runs from 1 through p(λ1)p(λ2) · · · p(λl(λ)) where some order-
ing has been imposed on the multipartitions (any ordering will do). Of course,
j runs from 1 to l(λ), and k runs from 1 to l(μij).

For example, if we wish to calculate the number of times the weak 5-
composition γ = (7, 7, 4, 7, 4) is generated by the right-hand side of (1.8), i.e.,
the number of times the expression x7

1x
7
2x

4
3x

7
4x

4
5 appears, we see, by symmetry,

that this must be the same as the number of times (7, 7, 7, 4, 4) appears.
The weak 5-partition (7, 7, 7, 4, 4) is clearly obtained from (7, 7, 4, 7, 4) by

allowing the permutation σ = (3, 4) to act on it. Then λ(γ) = λ(σγ) = (3, 2)
because part 7 appears three times and part 4 appears two times in both γ
and σγ.
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We notice that a certain number of copies of (7, 7, 7, 4, 4) are generated
by each of the terms

2
(1 − x1x2x3)(1 − x4x5)

,
2

(1 − x1x2x3)(1 − x4)(1 − x5)
,

1
(1 − x1x2)(1 − x3)(1 − x4x5)

,
1

(1 − x1x2)(1 − x3)(1 − x4)(1 − x5)
,

1
(1 − x1)(1 − x2)(1 − x3)(1 − x4x5)

,
1

(1 − x1)(1 − x2)(1 − x3)(1 − x4)(1 − x5)
,

(3.2)

and by no other terms. To aid our analysis we consider the multipartition
dissection of the partition λ = (3, 2):

MD ((3, 2)) = {all partitions of 3} × {all partitions of 2}
=

{(
(3), (2)

)
,
(
(3), (1, 1)

)
,
(
(2, 1), (2)

)
,
(
(2, 1), (1, 1)

)
,

(
(1, 1, 1), (2)

)
,
(
(1, 1, 1), (1, 1)

)}
, (3.3)

because each of these six multipartitions indexes a term that generates some
number of copies of σγ = (7, 7, 7, 4, 4). In this example, we have μ1 = ((3), (2)),
μ2 = ((3), (1, 1)), μ3 = ((2, 1), (2)), μ4 = ((2, 1), (1, 1)), μ5 = ((1, 1, 1), (2)),
and μ6 = ((1, 1, 1), (1, 1)); μ11 = μ21 = (3), μ12 = μ32 = μ52 = (2), μ22 =
μ42 = μ62 = (1, 1), and μ51 = μ61 = (1, 1, 1).

We use elementary combinatorial reasoning to count how many copies of
(7, 7, 7, 4, 4) are generated by each of the six terms. That number is a conse-
quence of the commutativity of ordinary multiplication. For example, consider
the third term in (3.2)

To generate (7, 7, 7, 4, 4), we may do so by any of the following permuta-
tions of this third term:

1
(1 − x1x2)(1 − x3)(1 − x4x5)

,

1
(1 − x1x3)(1 − x2)(1 − x4x5)

,

1
(1 − x2x3)(1 − x1)(1 − x4x5)

,

which are indexed by the multipartition μ3 = ((2, 1), (2)).
This clearly lists all elements in the Cartesian product of the two orbits:

one is the orbit of 1
(1−x1x2)(1−x3)

under the action of S3 = S{1,2,3}, (the per-
mutations of {1, 2, 3}), and the other is the orbit of 1

1−x4x5
under the action

of S{4,5}. Since each term generates one copy of (7, 7, 7, 4, 4), the total contri-
bution of these terms is given by

(μ31 − 1)!(μ32 − 1)!
∣∣Oμ31

∣∣ ∣∣Oμ32

∣∣

=
λ1!

f1(μ31)!f2(μ31)! · · · μ31
1 μ31

2

· λ2!
f1(μ32)!f2(μ32)! · · · μ32

1

, (3.4)
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where we have applied Remark 1.14.
Of course, to generate all copies of (7, 7, 7, 4, 4), we must sum over all of

the terms indexed by the six members of MD ((3, 2)), employing the analogous
counting formula in each case.

In the general case, the preceding combinatorial argument yields

∏

i,j

(μij − 1)!
∣∣Oμij

∣∣ =
p(λ1)p(λ2)···p(λl(λ))∑

i=1

l(λ)∏

j=1

λj !
N

(
f(μij)!

)
N (μij)

.

Thus, all that remains to prove Theorem 1.15 is to establish:

N
(
f(γ)!

)
=

∑

i

∏

j

λj !
N

(
f(μij)!

)
N (μij)

. (3.5)

Since N
(
f(γ)!

)
= N (λ!) =

∏
j λj !, we immediately see that (3.5) is

equivalent to the assertion

1 =
∑

i

∏

j

1
N

(
f(μij)!

)
N (μij)

,

which is exactly (1.4), and thus Theorem 1.15 is established. �

4. Example: The Case k = 4

Before concluding, let us examine the k = 4 case in some detail. Our main
result, Theorem 1.15, in the case k = 4 asserts

∑

σ∈S4

σ

(
1

(1 − x1)(1 − x1x2)(1 − x1x2x3)(1 − x1x2x3x4)

)

=
6

1 − x1x2x3x4
+ 2

(
1

(1 − x1x2x3)(1 − x4)
+

1
(1 − x1x2x4)(1 − x3)

+
1

(1 − x1x3x4)(1 − x2)
+

1
(1 − x1)(1 − x2x3x4)

)

+
(

1
(1 − x1x2)(1 − x3x4)

+
1

(1 − x1x3)(1 − x2x4)

+
1

(1 − x1x4)(1 − x2x3)

)

+
(

1
(1 − x1x2)(1 − x3)(1 − x4)

+
1

(1 − x1x3)(1 − x2)(1 − x4)

+
1

(1 − x1x4)(1 − x2)(1 − x3)
+

1
(1 − x1)(1 − x2x3)(1 − x4)

+
1

(1 − x1)(1 − x2x4)(1 − x3)
+

1
(1 − x1)(1 − x2)(1 − x3x4)

)

+
1

(1 − x1)(1 − x2)(1 − x3)(1 − x4)
. (4.1)
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In the left member of (4.1), we have
1

(1 − x1)(1 − x1x2)(1 − x1x2x3)(1 − x1x2x3x4)
,

which generates every weak 4-partition w = (w1, w2, w3, w4) exactly once. The
cardinality of the orbit of the action of S4 on w is

4!
f0(w)!f1(w)!f2(w)! · · · ,

i.e., there are 4!/(f0(w)!f1(w)!f2(w)! · · · ) distinct weak 4-compositions of type
w. Or equivalently, a given weak 4-composition γ which equals σw for some
permutation σ ∈ S4, is generated N

(
f(γ)!

)
= f0(γ)!f1(γ)!f2(γ)! · · · times.

The generation of weak 4-compositions on the right side of (4.1) is more
subtle. Notice that the terms of the right side are grouped according to the
partitions of 4 (which index the sum on the right side) in the order (4), (3, 1),
(2, 2), (2, 1, 1), (1, 1, 1, 1). For a given weak 4-composition γ, the multiplicities
of the parts determine which of the terms of the right side contribute to its
generation.

A detailed summary is provided in Table 1. To make sure the table is
clear, let us look at one line of it in detail. Observe the case with λ = (2, 2)
and form of γ as abab. The abab means we are considering weak 4-compositions
where the first and third parts are the same, and the second and fourth parts
are the same, but the first and second parts are different. The corresponding
terms from the right member of (4.1) are equivalent to

(23)g(22,x) + (23)g(211,x) + (14)g(211,x) + g(1111,x). (4.2)

Since

g(22,x) =
1

(1 − x1x2)(1 − x3x4)
,

the first term (23)g(22,x) of (4.2) is
1

(1 − x1x3)(1 − x2x4)
. (4.3)

Expand each factor of the right side of (4.3) as a geometric series to find that
weak 4-compositions (w1, w2, w3, w4) are generated (in the exponents of the
xi’s) in which w1 = w3 and w2 = w4, i.e., compositions of the type (a, b, a, b).
Is this the only way that compositions of type (a, b, a, b) may be generated?
No. Consider the second term of (4.2), (23)g(211,x), which is

1
(1 − x1x3)(1 − x2)(1 − x4)

.

This term generates weak 4-compositions (w1, w2, w3, w4), in which w1 = w3.
Some of the weak compositions generated by this term will happen to have
w2 = w4, and thus these will be of the form (a, b, a, b) as well, i.e., this term
generates compositions of the general form (a, b, a, c); on those occasions that
it happens to be the case that b = c, we have a weak composition of the form
considered by this particular line of the table. Similarly, compositions of type
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(a, b, a, b) also can be generated by the third and fourth terms of (4.2). The
other lines of the table may be interpreted similarly.
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that Euler Missed (Twice)
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Kenneth B. Stolarsky

Abstract. We introduce a polynomial E(d, t, x) in three variables that
comes from the intersections of a family of ellipses described by Euler.
For fixed odd integers t ≥ 3, the sequence of E(d, t, x) with d running
through the integers produces, conjecturally, sequences of “twin compos-
ites” analogous to the twin primes of the integers. This polynomial and
its lower degree relative R(d, t, x) have strikingly simple discriminants
and resolvents. Moreover, the roots of R for certain values of d have con-
tinued fractions with at least two large partial quotients, the second of
which mysteriously involves the 12th cyclotomic polynomial. Various re-
lated polynomials whose roots also have conjecturally strange continued
fractions are also examined.

Mathematics Subject Classification. 11A55, 11C08, 11R32, 12D05, 12D10.

Keywords. Continued fraction, Cyclotomic polynomial, Discriminant,
Ellipse, Pythagorean triple, Resolvent, Resultant, Twin composites.

1. Introduction

Our object is to introduce a special polynomial E = E(d, t, x) in three vari-
ables whose discriminant with respect to x and whose cubic resolvent (see [3, p.
316]) with respect to x are remarkably transparent. We also establish the geo-
metric meaning of this polynomial, and make a series of conjectures regarding
its properties and its connection to some strange continued fractions. These
include a “twin composites” conjecture and a connection to the expression:

w(k, t) =
4t(t12k − 1)

(t2 − 1)(1 − t2 + t4)
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involving the 12th cyclotomic polynomial. The E polynomial arises from trans-
formations of simpler polynomials that were almost ignored (but for good
reason) by Euler.

One may say that the theory of elliptic functions began when Euler stud-
ied the lemniscate bisection paper of Fagnano and then proceeded by analogy
with trigonometry to produce the:

r =
u
√

1 − v4 + v
√

1 − u4

1 + u2v2

addition formula for the lemniscate integral. As recounted in [4, pp. 15–16],
Euler wrote to Goldbach that the integral

x2 + y2 = c2 + 2xy
√

1 − c4 − c2x2y2

of
dy√
1 − y4

=
dx√

1 − x4

that led to his new addition formula was analogous to the integral:

x2 + y2 = c2 + 2xy
√

1 − c2 (1.1)

for
dy√
1 − y2

=
dx√

1 − x2
.

This integral can be written as:

y = x
√

1 − c2 ± c
√

1 − x2.

Euler thus began the theory of elliptic functions with no further emphasis
on (1.1), which is the equation of an ellipse. He took the most important path.
However, there is yet something special about the ellipse (1.1) with parameter
c that calls for further investigation. The title of this paper echoes the title of
the famous short paper of Apostol [1] in which it is shown that the “forty-five
degree” orthogonal change of variable in a simple double integral easily yields
a proof of Euler’s formula for ζ(2). In fact, this very same change of variable
leads to a convenient form of the ellipse (1.4), now viewed as a family of ellipses
with parameter c. Also, this family has a simple elegant envelope related to
this change of variable. Moreover, it has internal intersection properties for c
running through sets of rational numbers that lead to deeper investigations.

The change of variable alluded to above is:

x =
x∗ − y∗

√
2

, y =
x∗ + y∗

√
2

. (1.2)

This produces (we now omit the “star” superscript) the family of ellipses:

x2(1 −
√

1 − c2) + y2(1 +
√

1 − c2) = c2. (1.3)

Each has area πc, so as c varies from 1 to 0, the area goes from π (the unit
circle case) to 0 for c = 0. The foci are at ±√

2(1 − c2)1/4. One also easily
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verifies that as c → 0, the ellipse approaches the line segment [−√
2,

√
2]. Now,

define

T (x, y) = ((x − y)2 − 2)((x + y)2 − 2),

and

F (c, x, y) = x2(1 −
√

1 − c2) + y2(1 +
√

1 − c2) − c2.

To determine the envelope of the ellipses for 0 ≤ c ≤ 1, we must eliminate
c from:

F = 0 and
∂F

∂c
= 0. (1.4)

The result is T (x, y) = 0. The homogeneous form of this equation is
essentially the assertion that at least one of the transformations of (1.2) is
valid! Geometrically, it says that the envelope of the ellipses for 0 ≤ c ≤ 1 is
the boundary of a square with vertices at (±√

2, 0) and (0,±√
2).

Now, let E(c) denote the ellipse of (1.3). For 0 < c1 < c2 < 1, the ellipses
E(c1) and E(c2) have four real intersections. Let t and d be positive integers.
We shall henceforth focus on E(d, t, x), a polynomial with constant term t4

that is quartic in t and octic in d and x. (In fact, it is quadratic in t2 and quartic
in both d2 and x2). Our geometric interest is in the positive x coordinate of
the intersection of E

(
1
d

)
and E

(
t
d

)
. We call it x(d, t) or simply x. We show in

Sect. 2 that E(d, t, x) is divisible by the minimal polynomial of this x(d, t). We
then examine E(d, t, x) from the point of view of discriminants and resolvents
(Sect. 3), reducibility (Sect. 3), and continued fractions (Sect. 4).

The historical investigations of the lemniscate were bound up with com-
pass and ruler constructions and the solution of equations by radicals. This
led to considerations of reducibility. In fact, studies of this nature by Eisen-
stein led to his well-known irreducibility criterion [3, pp. 496–497]. Here, we
shall pose a, perhaps, new type of question about polynomials, motivated by
the common observation that polynomials in Z[x] are “usually” irreducible,
while members of Z, the integers, are “usually” composite. It is a form of the
“infinitude of twin primes” conjecture, except that the roles of reducible (=
composite) and irreducible (= prime) are reversed.

We ask if there are two-variable polynomials p(u, x) ∈ Z[u, x], such that
the sequence {p(m,x)}, where m ≥ 1 runs through the integers, has the fol-
lowing three properties.

1. The reducible elements in this sequence are rare, and, in fact, exponen-
tially sparse.

2. There are infinitely many reducible elements.
3. To each reducible p(m, k), there is another reducible element p(k, x), such

that

|m − k| < C,

where C is a fixed constant.
More precisely, our conjecture is that each E(d, t, x) polynomial, with t ≥

3 a fixed odd number, provides an example. Curiously, the detailed conjecture
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(see Sect. 3) involves simple exact formulas, something certainly not available
for the classical twin prime conjecture.

It is notable that E(d, t, x) for a fixed odd integer t ≥ 3 and d large has
two roots whose ratio is very close to t. In Sect. 4, we conjecture a simple form
for a polynomial R = R(d, t, x) of degree 4 divisible by the minimal polynomial
of this ratio. We then examine the ratio from the point of view of continued
fractions. In Sect. 5, we study the root ratios of the polynomial R. Here, we
have theorems rather than conjectures, and a curious reducibility connection
with the set of Pythagorean triples. In Sect. 6, we prove some properties of
generalizations of R and connect them with some further strange continued
fractions.

2. The E(d, t, x) Polynomial

Our central object of study is the E(d, t, x) polynomial.

Definition 2.1. Let

E(d, t, x) = t4 − 8t2d4x2 + 8d4(−t2 + 2(t2 + 1)d2)x4 − 32d8x6 + 16d8x8.

Theorem 2.2. Let d ≥ 1 and t ≥ 2 be integers with t ≤ d. Then, the x coordi-
nates of the intersection of the ellipses E

(
1
d

)
and E

(
t
d

)
are roots of E(d, t, x).

Indication of Proof. It is straightforward to find formulas involving square
roots for the coordinates of the intersection points of E

(
1
d

)
and E

(
t
d

)
. Also,

since E(d, t, x) is quartic in x2, it is solvable by radicals. Thus, one can verify
that the roots of E(d, t, x) = 0 agree with the formulas for the x-coordinates
coming from the intersection computation above. This is an elementary but
somewhat tedious process, since these formulas are somewhat awkward. We
suppress the details.

To simply see that the theorem is plausible, set t = λd where 0 ≤ λ ≤ 1.
Then, as a polynomial in d, the coefficient of the lead term is:

16x4(λ2 − 2x2 + x4).

Say d is very large, so this term dominates. If λ is close to 0, then there
is a root very close to

√
2. If λ is close to 1, then there is a root very close to

1. For λ close to zero, we have two very thin ellipses reaching almost to
√

2.
For λ close to 1, we have the very thin ellipse E

(
1
d

)
, reaching almost to

√
2,

intersecting E(λ), which is almost the unit circle.
If E(d, t, x) is irreducible, this theorem implies of course that it is the

minimal polynomial of the x coordinates. �

3. The Properties of E

The discriminant of E = E(d, t, x) with respect to x is remarkably transparent.
The same holds for the cubic resolvent of E(d, t,

√
x) with respect to x which

also factors completely. Computer algebra yields the following.

736



Twin Composites, Strange Continued Fractions 1091

Proposition 3.1. We have

Discriminant (E, x) = (215(1 − d2)(1 − t2)(d2 − t2)t3d16)4.

All factors here are linear and each corresponds to an “obvious extreme
value” of a parameter. The discriminant with respect to d is also somewhat
simple, despite a non-obvious factor.

Proposition 3.2. We have

Discriminant (E, d) = 244(1 − t2)4t20x34(x2 − 2)P (x, t)2,

where

P (x, t) = −8t2 + 3(9 − 2t2 + 9t4)x2 − 96t2x4 + 64t2x6.

Note the x2 − 2 factor here, which clearly fits the geometry of our family
of ellipses.

Proposition 3.3. The cubic resolvent of E(d, t,
√

x) with respect to x is

(−t2 + 2d4x)(−2d2 + t2 + 2d4x)(t2 − 2d2t2 + 2d4x)/(8d12).

The question of when E(d, t, x) is reducible leads, as indicated previously,
to some curious conjectures. We begin with a special case.

Conjecture 3.4. Let t = 3. Let
∞∑

n=0

a(n)xn =
1 − 2x + 5x2

(1 − x)(1 − 6x + x2)
= 1 + 5x + 33x2 + 197x3 + · · ·

and
∞∑

n=0

b(n)xn =
1 + 8x − x2

(1 − x)(1 − 6x + x2)
= 1 + 15x + 97x2 + 575x3 + · · · .

Then, E(d, t, x) = E(d, 3, x) is reducible whenever d = a(n) or a(n) + 2 and
also when d = b(n) or b(n) + 4.

For example, when d = 197, we have E = p(x)p(−x) where

p(x) = (9 + 330960x + · · · + 6024553924x4),

and when d = 199, we have E = p(x)p(−x) where

p(x) = (9 + 334320x + · · · + 6272956804x4).

Note that the roots of the denominators of the above rational functions
lie in Q(

√
2). It is also the case that

an

bn
→ 6 − 4

√
2 ≈ .3431 . . . and

an+1

bn
→ 2,

so the two types of “twin composites” alternate when n is large.
In the above example, we note that 2 and 4 are t−1 and t+1, respectively.

We now state a much more general conjecture.
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Conjecture 3.5. Set

1 + (t − 5)x + (t + 2)x2

(1 − x)(1 − 6x + x2)
=

∞∑

n=0

r(n)xn

and

(t − 2) + (t + 5)x − x2

(1 − x)(1 − 6x + x2)
=

∞∑

n=0

s(n)xn.

Fix an odd t ≥ 3. Then, for d large, say that d ≥ d(t), we have the following:
1. The numbers d for which E(d, t, x) factors and such that E(d+ t−1, t, x)

also factors, are exactly the r(m) for m ≥ m0 for some positive m0.
2. The numbers d for which E(d, t, x) factors, and such that E(d+t+1, t, x)

also factors, are exactly the s(m) for m ≥ m0 for some positive m0.
3. All other E(d, t, x) for d ≥ d0 are irreducible octic polynomials.

We remark that the numerators of the rational functions in the above
conjecture cannot have any factor in common with the denominators for t ≥ 3.
In fact, the resultants of each numerator with its denominator are, respectively,
−16(1 − t)(1 + t)2 and 16(1 − t)2(1 + t).

There appear to be similar phenomena for t even, but here it seems harder
to formulate a clear conjecture. The reader is welcome to tabulate the “twin
composites” for t = 6 and to attempt to describe in detail their pattern of
occurrence.

4. Root Ratios and Continued Fractions Involving E

Given an odd t ≥ 3, there seem to be always two roots of E(d, t, x) whose ratio
is close to t, and remarkably close if d is large. For E(105, 5, x), consider its
two right-most roots lying in the interval (0, 1). Their ratio is

5.000 000 003 000 000 00 3825 000 00 6003 · · · .

As a continued fraction, this is

[5, 333 333 332, 1, 9, 1, 9, 1, 554630, 3, 1, 4, . . . ].

For E(107, 5, x), one gets

[5, 333 333 333 332, 1, 9, 1, 9, 1, 5546311701, 1, 4 . . . ].

It is notable that the second and eighth partial quotients here are far
larger than probability would suggest. It is also notable that their ratio seems
to rapidly approach 601 = 1− 52 +54, as d goes to infinity. Also, for d = 1014,
there is a very large 30th partial quotient.

To understand the above, we would like to know about the minimal poly-
nomial of the ratio.

Definition 4.1. Let

R = R(d, t, x) = −4d2x(t − x)(1 − tx) + t2(1 − x2)2. (4.1)
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Theorem 4.2. For t ≥ 3 odd, the minimal polynomial of the above root ratio
for E(d, t, x) is a divisor of R(d, t, x).

Indication of Proof. This follows by applying the formula for the cubic re-
solvent of E as is done for R and S in Sect. 5. We leave the details to the
“Appendix”. �

The polynomial R need not be irreducible. In fact, for t = d, we have:

R(d, d, x) = d2(1 − 2dx + x2)2.

We remark further that having an at most degree 4 minimal polynomial
for the ratio of roots of an asymmetric eighth degree polynomial is in itself
notable. For a random example, the minimal polynomial of the ratio of the
largest roots of 1 − 11x2 + x3 has degree 6.

The R(d, t, x) is again an example of a polynomial with both a remarkably
transparent discriminant and a remarkably transparent cubic resolvent with
respect to x.

Proposition 4.3. We have

Discriminant (R, x) = 212((1 − d2)d2)2((1 − t2)t2)2(d2 − t2)2. (4.2)

Note that although R is very far from being symmetric in d and t, its
discriminant does have this symmetry.

Proposition 4.4. The cubic resolvent of R(d, t, x) with respect to x is:

(2 − 4d2 + x)(2t2 − 4d2 + t2x)(x − 2)
t2

.

The large size of the second partial quotient in the above example is
somewhat explained by the following. Make the change of variable x = t + s
with t fixed and s the new variable. The equation R = 0 becomes

14400 − 450(d2 − 25)s + (3700 − 196d2)52 − 20(d2 − 25)52 + 25s4 = 0.

For s small, one may neglect terms of order s2 or higher. The resulting
linear polynomial has a solution s given by:

1
s

=
d2 − 25

30
.

This suggests that the second partial quotient has quadratic growth in d.
It is in fact obvious from the form of R that for d large, there is a root

very close to t. In fact, if we tie d to t by setting d = t6k+1, this closeness takes
on an elegant form.

Conjecture 4.5. The equation

R(t6k+1, t, x) = 0, k = 1, 2, . . . (4.3)

has

u(t) = t +
t(1 − t2)

1 + 2t2 − 4t2(6k+1)
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as an excellent approximation to the root near t in the sense that as t goes to
infinity through the integers:

R(t6k+1, t, u(t)) = 0(t6−24k).

Note that as a continued fraction u(t) has the form:

u(t) =
{

t,
4t(1 − t12k)

1 − t2
,
t − 1

2
, 2, t − 1, 2,

t − 1
2

, g

}
,

(note the internal symmetry) where g = ∞.

The conjectural reason that u(t) is such a good approximation is that for
t large and odd the next partial quotient of the continued fraction expansion
of the actual root, i.e., the actual value of the g of (4.5), is w(k, t) − 1 where
w(k, t) is the expression defined in the introduction.

Conjecture 4.6. For k ≥ 1, and t ≥ 3, t odd, the eighth partial quotient of the
root of (4.3) nearest to t is:

4t(t12k − 1)
(t2 − 1)(1 − t2 + t4)

− 1 = w(k, t) − 1.

The above conjecture indicates that the eighth partial quotient is much
smaller than the second owing to the presence of the 12th cyclotomic poly-
nomial in its denominator, but it is very large nonetheless. It is likely that
slightly more involved expansions exist for d = t6k+a with a not congruent to
1 mod 6. For example, when d = t22, one can conjecture that the first large
partial quotient of the continued fraction for the root is

b2 =
4t(t22 − 1)

t2 − 1
and that the eighth partial quotient is

b8 =
b2 + 4t(1 − t2)

1 − t2 + t4
,

where the cubic polynomial added to b2 in the numerator is the negative of
the remainder of b2 after polynomial division by 1 − t2 + t4.

5. The Root Ratios for R

One might ask if the fourth-degree polynomial R(t, d, x) has two roots whose
ratio satisfies a second-degree polynomial.

Theorem 5.1. Let t and d be fixed integers with 1 < t < d. Then, the two largest
roots of the polynomial R(d, t, x) have a ratio whose minimal polynomial is a
divisor of S, where

S = S(t, d, x) = t2 + 2(t2 − 2d2)x + t2x

= −4d2x + t2(1 + x)2.
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Proof. Since

R = t2 − 4d2tx + 2(2d2 − t2 + 2d2t2)x2 − 4d2tx3 + t2x4,

it is self-reciprocal. From (4.1), we see that it cannot have negative roots.
Moreover, if we solve R = 0 for x by radicals (tedious to write out), we can
easily confirm that all roots are real (one does need the observation that

(d2 − 1) + (d2 − t) − 2
√

d2 − 1
√

t2 − 1

is positive by the inequality of the arithmetic and geometric means). Thus, we
can label the 4 roots by r, r2, r3, r4, so that

0 < r1 ≤ r2 ≤ r3 ≤ r4.

The self-reciprocal property tells us that r1r4 = 1, and hence, we also have
r2r3 = 1. This explains the x − 2 factor in the cubic resolvent of R, since one
of the roots of this resolvent is r1r4 +r2r3. The other roots are r1r3 +r2r4 and
r1r2 + r3r4. Since

r1r2 + r3r4 ≥ r1r3 + r2r4,

it follows from the complete factorization of the cubic resolvent that besides

r1r4 + r2r3 = 2,

we also have

r1r3 + r2r4 = 4
(

d2

t2

)
− 2

and

r1r2 + r3r4 = 4d2 − 2.

Next, division by r1r4 = 1 yields

r3
r4

+
r4
r3

= 4
(

d2

t2

)
− 2.

Thus, for the ratio p = r4/r3, we have

(x − p)
(

x − 1
p

)
= x2 −

(
4d2

t2
− 2

)
x + 1,

and the result follows. �

Proposition 5.2. We have

Discriminant (S, x) = 16d2(d2 − t2).

Corollary 5.3. The polynomial S = S(d, t, x) is reducible if and only if d and
t are two elements of a Pythagorean triple with d as the largest element.
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6. More Strange Continued Fractions

How robust is the conjecture about the continued fraction expansion of the
root of (4.3) closest to t? Something does remain if the 4 is replaced by 5 or 7.
We shall give a related conjecture below, and then proceed to prove properties
about polynomials more general than R that display some new conjectural
properties.

Conjecture 6.1. Let an(t) denote the nth partial quotient of the root closest to
t of

−ct12k+2(t − x)x(1 − xt) + t2(1 − x2)2 = 0.

If c = 5 or 7:

t ≡ ± 2mod 6,

and t is large, then

a2(t) = ct
t12k − 1
t2 − 1

and a10(t) =
a2(t)

1 − t2 + t4
− 1.

Numerical evidence suggests that the above is false at least for c = 3, 6, 9
and 11, and also false for t 
≡ ±2 mod 6. Thus, the simplicity of the case c = 4
is special.

We now widen our point of view.

Definition 6.2. For positive integers a,m, and t, define

H (a,m, t, x) = 4ax(x − t)(1 − xt) + m(1 − x2)2.

We still have a polynomial whose discriminant is transparent:

Proposition 6.3.

Discriminant (H,x) = 212a2(m − a)2(1 − t2)2(m − at2)2.

Also, if H is normalized to become monic, its cubic resolvent factors
completely and becomes:

(x − 2)(mx − 4a + 2m)(mx − 4at2 + 2m)
m2

.

Observe that previously, we examined cases in which the first term was
weighted. We now consider heavily weighting the second term that involves
(1 − x2)2.

Theorem 6.4. Assume that a ≥ 1 and t ≥ 2 are positive integers. Then, for
m ≥ at2, the polynomial H has all roots on the unit circle �.

Proof. For m = 2at2, the equation H = 0 becomes

2at2 − 4atx + 4ax2 − 4atx3 + 2at2x4 = 0.

If we replace x by −x, we have on the left a self-inversive polynomial whose
coefficients starting with the constant term decrease with a minimum at the
central term and then increase with the second appearance of the maximal
coefficient at the lead term. By a known result (see [2]), all zeros lie on the
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unit circle. If we now vary m, we see by the symmetry of the roots that no root
can leave the unit circle without causing the discriminant to be zero. Hence,
by the formula for the discriminant in the above Proposition, all roots must
lie on the unit circle, no matter how the real parameter m varies, provided
m ≥ at2. �

Theorem 6.5. Let a,m, and t be positive integers with a ≥ 1, t ≥ 2 and m ≥
at2. Then, the real parts of the roots of H = 0 satisfy the equation M(x) = 0,
where

M(x) = mx2 − 2atx − (m − a(1 + t2)).

The imaginary parts satisfy N(x2) = 0, where

N(x) = a2(t2 − 1)2 − 2a(m(1 + t2) − 2at2)x + m2x2.

Proof. Observe that if h is a root of N(x2), then ih satisfies N∗(x) = 0, where

N∗(x) = a2(t2 − 1)2 + 2a(m(1 + t2) − 2at2)x2 + m2x4.

Note the sign of the middle term above. Now

Resultant (M(x), N∗(y − x), x)

is a polynomial in y whose roots are all possible sums of rj and ihk where the
rj are the roots of M and the hk are the roots of N(x2). By computer algebra,
the above resultant has the factorization:

m3H(a,m, t, y)K(a,m, t, y),

where K is a polynomial of degree 4 in y having 14 terms. (Curiously, the
ratio of the y discriminant of the above K to that of the above H is exactly
m18.) Since, as calculation reveals, K is not self-reciprocal, it has the “wrong”
combination of real and imaginary parts. Thus, we see that H is formed from
the roots of M and N as desired. �

Proposition 6.6. For M(x), we have

Discriminant (M,x) = 4(a − m)(at2 − m)

and

Discriminant (M, t) = −4a(a − m)(1 − x2).

For N(x), we have

Discriminant (N,x) = 16a2(m − at2)(m − a)t2,

Discriminant (N, t) = 212a8(m − a)2x2(1 − x)2(mx − a)2

and

Discriminant (N,m) = 16a2t2(1 − x)x2.
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We now come to perhaps our most curious conjecture, which we state
rather loosely. If m is “very large”, the continued fraction of the largest root of
M(x) has many extremely large partial quotients. Their distribution among the
partial quotients is “irregular”, but if listed in order of size, say b < b2 < b3 <
· · · , their ratios bi+1/bi are remarkably close to squares of rational numbers
with relatively small numerators and denominators. For 2 ≤ a < t < m with
m = tA where A is “large”, these approximating squares are conjecturally all
composed of integers that divide a2t(1− t2)2. The square integers have density
0, so this seems, a priori, most unlikely.

Example 6.7. Let a = 7, t = 12, and m = 1242. Then, of the first 806 partial
quotients, 6 exceed 1010. The smallest of these is 4 947 868 451 216. Of those
less than 1010, the largest is 4 937 987. Of the ratios formed by the 6 largest,
the first exceeds (7 · 11 · 13)2 by less than 2 · 10−7. The remaining ratios are
much closer to (7 · 11 · 13)2. We add that the large partial quotients are the an

for n = 3, 13, 33, 65, 105, and 157.

The author does not know of any discussion of the continued fraction
representations of the ratios of partial quotients occurring in a given continued
fraction. However, also in the next examples, they seem of interest.

Example 6.8. Take a = 2, t = 13, and m = 1050. Here, m is not a power of t,
so one expects less regularity. Among the first 308 partial quotients, there are
13 that exceed 109. We now expand their 12 ratios into continued fractions.
In each case, we find one or more “small” partial quotients followed by an
“obviously large” partial quotient. After truncating, we find the following list
of lists of initial small parts:

{1, 2, 1, 3, 3}, {26, 2, 4, 2, 2}, {36}, {1296},

{1, 2, 1, 3, 3}, {26, 2, 4, 2, 2}, {36}, {1296},

{1, 2, 1, 3, 3}, {26, 2, 4, 2, 2}, {36}, {1764}.

Upon converting these continued fractions to ordinary fractions, we obtain
(

7
6

)2

,

(
36
7

)2

, 62, 362,
(

7
6

)2

,

(
36
7

)2

, 62, 362,
(

7
6

)2

,

(
36
7

)2

, 62, 422.

Note that in this case, a2(1 − t2)2 = 283272. We add that the large partial
quotients are the an with

n = 3, 9, 21, 37, 51, 69, 97, 117, 145, 173, 205, 245, 275.

Example 6.9. Let a = 2, t = 13, and m = 1344. Then, each ratio is close to
(22 · 3 · 7)2, a divisor of (2 · 12 · 14)2.

Example 6.10. Return to Example 6.7 but now consider the largest root of
N(x); this is the square of the imaginary part of a root. Proceed as in Exam-
ple 6.7 to find the partial quotients that exceed 104. Then form the continued
fractions of their ratios. We find that each has a first quite large partial quo-
tient followed by small ones that lead to another large one. We truncate these
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continued fractions by removing the second large partial quotient and all par-
tial quotients that follow it. The resulting truncated continued fractions are:

{27833, 2, 1, 3, 3}, {16032018}, {563625, 1, 1, 3, 2},

{445, 1, 3, 1, 1}, {250500, 3, 1}, {24843}.

Here, the corresponding ordinary fractions are
(

1001
6

)2

, (4 · 1001)2,
(

3 · 1001
4

)2

,

(
2 · 1001

3

)2

,

(
1001

2

)2

, 3 · (7 · 13)2.

All prime factors of the above are (see Example 6.7) either 7, 11, 13 or a divisor
of t = 12. Only the last ratio fails to be a perfect square. We remark that
the large partial quotients used to construct the ratios are the an for n =
2, 13, 29, 55, 93, 139, and 201. Only the first and largest of these has n even; if
we exclude it we exclude the one fraction above that is not a perfect square.

7. Further Remarks

The square envelope result mentioned in the introduction is in fact a special
case of a quartic envelope of a three-parameter family of ellipses. We give the
details here, and then return to describe in greater detail the geometry of
the ellipses inside the original square envelope. Finally, we indicate a direct
connection between E and the set of Pythagorean triples.

Let b and h be real parameters and consider the three-parameter family
of ellipses:

(b2 − 1 −
√

1 − c2)x2 + (h2 − 1 +
√

1 − c2)y2 = c2.

The standard procedure for determining its envelope yields:

(x2 − y2)2 − 4(x2(b2 − 1) + y2(h2 − 1) − 1) = 0.

For x and y large, the second term above is small, and we have curves that
resemble two hyperbolas, one with foci on the x-axis and one with foci on the
y-axis. For x and y small, the first term is small and we have an oval that
resembles an ellipse centered at the origin. When b =

√
2, the left side factors

and becomes

(x2 − 2hy − y2 − 2)(x2 + 2hy − y2 − 2) = 0.

In this case, for h >
√

2, the horizontal extremities of the inner “oval” are
sharp corners, as are those of the “hyperbola-like” curve that intersects the
x-axis. These curves touch at the two points (±√

2, 0). (Here, the “hyperbola-
like” curve has the “wrong” concavity, and is a union of the infinite segments,
lying in |x| ≥ √

2, of two distinct actual hyperbolas.)
The case studied in the previous sections of this paper is b = h =

√
2.

Here, we have the further factorization:

(
√

2 − x − y)(
√

2 + x − y)(
√

2 − x + y)(
√

2 + x + y)

= ((x − y)2 − 2)((x + y)2 − 2).
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In this case, the “oval” has become a square, and the “hyperbolas” have
become pairs of perpendicular rays emanating from the four vertices of the
square, namely (±√

2, 0) and (0,±√
2). The configuration as a whole, as the

above factorization indicates, consists of two pairs of parallel lines, each or-
thogonal to the other.

There is more to say about both the E(c) ellipses and how they fit into
S, the convex hull of the enveloping square. The four points at which E(c)
touches the boundary of S are:

(
± 1 +

√
1 − c2√
2

, ±1 − √
1 − c2√
2

)
.

Its foci are at ±√
2(1 − c2)1/4, and its eccentricity is

e =
√

2(1 − c2)1/4√
(1 +

√
1 − c2)

.

Here, the eccentricity may be verified to be monotonically decreasing as c goes
from 0 to 1. Hence, this family of ellipses contains, up to similarity, exactly
one copy of every ellipse (or two copies if the transverse family generated by
interchanging x and y is included).

We now indicate how the ellipses fill the convex hull S.

Lemma 7.1. Let 0 ≤ x ≤ y and x + y ≤ √
2. Then

x2(1 − u) + y2(1 + u) = 1 − u2

implies that u is real and |u| ≤ 1.

Proof. The discriminant D of

(x2 + y2 − 1) + (y2 − x2)u + u2

with respect to u is

D = 4 + (x2 − y2)2 − 4(x2 + y2)

= (2 + x2 − y2)2 − 8x2

= (2 − (x + y)2)(2 − (y − x)2) ≥ 0,

so u must be real. Now, observe that

2 + x2 − y2 ≥ 2 − y2 ≥ 0.

Since

D ≤ (2 + x2 − y2)2,

we have

|u| = |x2 − y2 ±
√

D|/2 ≤ (y2 − x2 + (2 + x2 − y2))/2 = 1

and the result follows. �
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Now, define c by u2 + c2 = 1 to see that when 0 ≤ x ≤ y and x+y ≤ √
2,

there exists a value of c with 0 ≤ c ≤ 1, such that

x2(1 −
√

1 − c2) + y2(1 +
√

1 − c2) = c2.

By applying essentially the same argument to other sectors of S, we have
the following result.

Theorem 7.2. For any point in S, there is either (1) a value of c with 0 ≤ c ≤
1, such that an ellipse of the family passes through it, or (2) a value of c with
0 ≤ c ≤ 1, such that an ellipse of the transverse family

x2(1 +
√

1 − c2) + y2(1 −
√

1 − c2) = c2

passes through it.

We can provide a bit more detail here. Rewrite the equation of a typical
E(c) ellipse as P = P (x, y, c) = 0, where

P = h2 + h((y2 − x2)2 − 2(x2 + y2)) + 4x2y2

and h = c2. Although this has degree 4 in c, the numbers c and −c play the
same role for our purposes, so we may as well work with the above quadratic
equation. Of course, a quadratic equation has either one root or two depending
upon its discriminant. The discriminant of P with respect to h is

(x − y)2(x + y)2((x − y)2 − 2)((x + y)2 − 2).

From the points at which this is zero, we draw the following conclusions.

(1) Any point at which an ellipse of our family touches the boundary of S is
a point that uniquely determines the ellipse.

(2) Any point at which an ellipse of our family intersects a line of the form
y = ±x is a point that uniquely determines the ellipse.

(3) At any other point V inside S, there are exactly two ellipses of the family
(or of the transverse family) that pass through V .

We conclude here by observing that if (d, t, u) is a Pythagorean triple
with d > t and d > u, then E(d, t, x) factors. Set

Py = Py(h, k, x)

= (h + k)4 + 4(h + k)2(h2 + k2)3x + 4(h2 + k2)4x2.

Then, for d = k2 + h2 and t = k2 − h2, we have

E(d, t, x) = Py(h, k, x2) · Py(h,−k, x2).

Also

Discriminant (Py, x) = 16(h + k)4(h2 + k2 − 1)(h2 + k2 + 1)(h2 + k2)4,

where every non-constant factor is obvious. There are similar formulas for
t = 2hk.
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Appendix: More About E

Here, we provide more details about the nature of E = E(d, t, x) and its
relation to R = R(d, t, x).

Theorem 7.3. Let 1 < t < d. Then, all roots of the quartic

E(d, t,
√

x) = 0

are real and positive.

Proof. Inspection of the unwieldy solution by radicals formula shows that all
roots are real. For d = t, the discriminant is 0, and we have

E(t, t, x) = t4(1 − 4t2x + 4t2x2)2.

The roots of the above are all positive, since t > 1. It has two distinct roots,
each of multiplicity two. As d increases from t, these multiple roots immediately
separate into distinct positive roots lying on the real axis, since the roots must
remain real. Since the discriminant does not change sign for d in the open
interval (t,∞), the roots remain henceforth distinct and real. If, for some
d > t, one of them becomes negative, then, by continuity, one of them became
0 for a smaller value of d. However

E(d, t, 0) = t4,

so this cannot happen. The result follows. �

Remark 7.4. One can show by implicit differentiation that as d increases from
t, each of the two double roots separates horizontally into two simple roots at
a rate that is initially infinite. However, the ratio of the rate of separation of
the larger root to that of the smaller root is the larger root of

1 − (4t2 − 1)x + x2 = 0.

We now establish the relationship between E and R.

Theorem 7.5. If we arrange the roots si of E(d, t,
√

x), so that 0 ≤ s1 ≤ s2 ≤
s3 ≤ s4, then the positive square root of s3/s2 is a root of R(d, t, x).

Proof. Proceed as in Sect. 5. In E(d, t,
√

x), replace x by tx
(2d2) and call the new

roots the s′
i. This change of variable results in a self-reciprocal polynomial, so

s′
1s

′
4 = s′

2s
′
3 = 1. Thus, for the original roots, we have

s1s4 = s2s3 = t2/(4d4).
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We now apply the cubic resolvent of Sect. 3 much as we did with a cubic
resolvent in Sect. 5. We obtain

s1s2 + s3s4 =
t2(2d2 − 1)

2d4
,

s1s3 + s2s4 =
2d2 − t2

2d4
,

and

s1s4 + s2s3 =
t2

2d4
.

Division of the second of the above equations by s2s3 = s1s4 yields

(s1/s2) + (s2/s1) = 2(2d2 − t2)/t2,

and similarly, the third yields

(s1/s3) + (s3/s1) = 2(2d2 − 1).

Now, x+(1/x) = r is equivalent to x2−rx+1 = 0 and a simple calculation with
resultants shows that if also y2 −sy+1 = 0, then xy is a root of T = T (r, s, z),
where

T = 1 − rsz + (r2 + s2 − 2)z2 − rsz3 + z4.

Thus, to find a multiple of the minimal polynomial of

(s3/s2) = (s3/s1)(s1/s2),

we simply use the values of r and s provided by the above equations. Computer
algebra then yields the factorization

T (r, s, z2) = R(d, t, z)R(d, t,−z).

Thus, the positive square root of the ratio is a root of R(d, t, z) and the result
follows. �
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1. Introduction

Throughout this paper, we adopt the standard notation and terminology for
q-series in [15]: For |q| < 1 and n ≥ 1, the q-shifted factorials are defined by

(x; q)0 = 1,

(x; q)n = (1 − x)(1 − xq) · · · (1 − xqn−1),

(x; q)∞ = lim
n→∞(x; q)n.

The third-order mock theta functions ω(q) and ν(q) due to Ramanujan
[19] and Watson [23] are defined by

ω(q) =
∞∑

n=0

q2n
2+2n

(q; q2)2n+1

, ν(q) =
∞∑

n=0

qn
2+n

(−q; q2)n+1
.

This work was supported by the NSFC Grants no. 11471237 and no. 11971341.
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Andrews [1] introduced the following two variable generalizations:

ω(z; q) =
∞∑

n=0

znq2n
2+2n

(q, zq; q2)n+1
, ν(z; q) =

∞∑

n=0

qn
2+n

(−zq; q2)n+1
. (1.1)

Notice that for z = 1, ω(z; q) and ν(z; q) reduce to ω(q) and ν(q). Andrews,
Dixit and Yee [8] discovered that ω(q) and ν(q) serve as the generating func-
tions for special integer partitions.

Andrews and Yee [11] obtained the following q-series identities associated
with ω(q) and ν(q):

Lemma 1.1. ([11, Theorem 1, Eq. (6)/Eq. (7); Eq. (8)]). We have
∞∑

n=0

znq2n
2+2n+1

(q, zq; q2)n+1
=

∞∑

n=1

zn−1qn

(q; q2)n
, (1.2)

∞∑

n=0

qn(−zqn+1; q)n(zq2n+2; q2)∞ =
∞∑

n=0

znqn
2+n

(q; q2)n+1
, (1.3)

∞∑

n=1

qn

(zqn; q)n+1(zq2n+2; q2)∞
=

∞∑

n=1

zn−1qn

(q; q2)n
. (1.4)

In this paper, we generalize the identities (1.3) and (1.4) and give a new
proof of (1.2).

Theorem 1.2. For |y| < 1, we have
∞∑

n=0

yn(−zqn+1; q)n(zq2n+2; q2)∞

=
∞∑

n=0

znqn
2+n (−y; q)n

(yqn; q)n+1

n∑

k=0

q2k
(y/q; q)2k

(q2, y2; q2)k
, (1.5)

∞∑

n=1

yn−1

(zqn; q)n+1(zq2n+2; q2)∞
=

∞∑

n=0

(−y; q)n(qz)n

(yqn; q)n+1

n∑

k=0

(y/q; q)2kqk

(q2, y2; q2)k
. (1.6)

In the process of proving Theorem 1.2, we obtain the following identities.
Recall that the q-binomial coefficients are defined by

[
n

k

]

q

=
(q; q)n

(q; q)n−k(q; q)k
.

Theorem 1.3. For any n ≥ 0 and any complex number y not of the form −q−m

with m ≥ 0, the following identities hold:
n∑

k=0

qk
(yqn; q)k
(q2; q2)k

= (−y; q)n
n∑

k=0

qk
(y/q; q)2k

(q2, y2; q2)k
, (1.7)

n∑

k=0

[
n

k

]

q

ykqk(k−1)/2 (q; q)k
(yqn; q)k+1

=
(q2, y2; q2)n
(y; q)2n+1

n∑

k=0

q2k
(y/q; q)2k

(q2, y2; q2)k
. (1.8)
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In particular, we have
∞∑

k=0

ykqk(k−1)/2 = (q2; q2)∞(−y; q)∞ 2φ1

[
y/q, y

y2
; q2, q2

]
, (1.9)

and for any r ≥ 0,

(−q; q)2r
∞∑

k=0

q
k(k+1)

2 +2rk =
(q2; q2)∞
(q; q2)∞

∞∑

k=0

q2k
(q2r; q)2k

(q2, q4r+2; q2)k
. (1.10)

It should be noted that Andrews and Warnaar [10] used the Bailey trans-
formation to deduce the following identity that is different from (1.10):

(−q; q)2r
∞∑

k=0

q
k(k+1)

2 +2rk =
∞∑

k=0

(q2r+1; q)2kqk

(q2, q4r+2; q2)k
. (1.11)

We find that (1.8) gives a new Bailey pair:
⎧
⎪⎨

⎪⎩

αn(y) = ynqn(n−1)/2,

βn(y) =
(−q,−y; q)n

(yq; q)2n

n∑

k=0

q2k(y/q; q)2k
(q2, y2; q2)k

.
(1.12)

Applying the Bailey lemma to the Bailey pair (αn(y), βn(y)), we get

Theorem 1.4. Assume that y is not of the form −q−m with m ≥ 0. Assume
that |yq/ab| < 1. Then

∞∑

n=0

(a, b; q)n
(yq/a, yq/b; q)n

(
y2

ab

)n

qn(n+1)/2

=
(yq, yq/ab; q)∞
(yq/a, yq/b; q)∞

∞∑

n=0

(−q,−y, a, b; q)n
(yq; q)2n

(yq

ab

)n n∑

k=0

(y/q; q)2kq2k

(q2, y2; q2)k
. (1.13)

We also derive from (1.8) a formula for the product of two 2φ1 series in
terms of a 4φ3 series. Other formulas for the products of two 2φ1 series can be
found in [20]. The r+1φr series is given by

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, x

]
=

∞∑

n=0

(a1, a2, . . . , ar+1; q)n
(q, b1, b2, . . . , br; q)n

xn.

Theorem 1.5. For any complex numbers a and b not of the form −q−m with
m ≥ 0, we have

2φ1

[
a, a/q

a2
; q2, q2

]
2φ1

[
b, b/q

b2
; q2, q2

]

=
(q; q2)∞
(q2; q2)∞

4φ3

[
(ab)1/2,−(ab)1/2, (ab/q)1/2,−(ab/q)1/2

−a,−b, ab/q
; q, q

]
.(1.14)

This paper is organized as follows: In Sect. 2, we prove Theorems 1.2–1.5,
and give another proof of the identity (1.2). In Sect. 3, we define two finite sums
Um(x) and Sm(x, y) related to (1.2) and (1.3). We derive recurrence relations
satisfied by Um(x) and deduce a transformation formula for Sm(x, y).

753



1108 J. Wang and X. Ma

2. Proofs of the Main Theorems

In this section, we give the proofs of Theorems 1.2–1.5 and present a proof of
the identity (1.2) using the Lagrange inversion formula.

2.1. Proofs of Theorems 1.2 and 1.3

For notational convenience, we write τ(n) for (−1)nqn(n−1)/2. In addition,
given any formal power series

f(x) =
∞∑

n=0

anxn,

we adopt the common notation

[xn]f(x) = an,

for n ≥ 0. To prove Theorem 1.2, we need the following transformation formu-
las:

Lemma 2.1. ([15, p. 360, (III.11)/(III.13)]).

3φ2

[
q−n, b, c

d, e
; q, q

]
=

(de/bc; q)n
(e; q)n

(
bc

d

)n

3φ2

[
q−n, d/b, d/c

d, de/bc
; q, q

]
, (2.1)

3φ2

[
q−n, b, c

d, e
; q,

deqn

bc

]
=

(e/c; q)n
(e; q)n

3φ2

[
q−n, c, d/b

d, cq1−n/e
; q, q

]
. (2.2)

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. We first prove (1.5). Let
∞∑

n=0

fn(y)zn =
∞∑

n=0

yn(−zqn+1; q)n(zq2n+2; q2)∞. (2.3)

Then (1.5) is equivalent to

fm(y) = qm
2+m (y2; q2)m

(y; q)2m+1

m∑

k=0

q2k(y/q; q)2k
(q2, y2; q2)k

. (2.4)

Thus we only need to prove (2.4). It is easy to see that

(−zqn+1; q)n(−zq2n+2; q2)∞ =
(−zqn+1; q)∞

(−zq2n+1; q2)∞
. (2.5)

It follows from (2.3) and (2.5) that
∞∑

n=0

fn(y)zn =
∞∑

n=0

yn (−zqn+1; q)∞
(−zq2n+1; q2)∞

. (2.6)

By the q-binomial theorem [15, p. 354, (II.1) and (II.2)], we obtain
∞∑

n=0

fn(y)zn =
∞∑

n=0

yn
∞∑

i=0

τ(i)
(q; q)i

(−zqn+1)i
∞∑

j=0

(−zq2n+1)j

(q2; q2)j
. (2.7)
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Comparing the coefficients of zm on both sides of (2.7), we see that

fm(y) =
∞∑

n=0

yn
∑

i+j=m

(−1)i
τ(i)qni+i

(q; q)i
(−1)j(q2n+1)j

(q2; q2)j

= (−1)mqm
∑

i+j=m

τ(i)
(q; q)i(q2; q2)j

∞∑

n=0

qn(i+2j)yn

= (−1)mqm
∑

i+j=m

τ(i)
(q; q)i(q2; q2)j

1
1 − yqm+j

. (2.8)

Multiplying both sides of (2.8) by (−1)mq−m(1 − yqm)(q; q)m yields

(−1)mq−m(1 − yqm)(q; q)mfm(y) =
m∑

j=0

[
m

m − j

]

q

τ(m − j)
(yqm; q)j

(−q, yqm+1; q)j
.

(2.9)

Noting that
[
n

k

]

q

τ(k) =
(q−n; q)k
(q; q)k

qnk (2.10)

(see [15, p. 353, (I.42)]) and

(a; q)n−k

(b; q)n−k
=

(a; q)n
(b; q)n

(q1−n/b; q)k
(q1−n/a; q)k

(
b

a

)k

(2.11)

(see [15, p. 351, (I.11)]), we obtain
[

m

m − j

]

q

τ(m − j) =
(q−m; q)m−j

(q; q)m−j
qm(m−j)

=
(q−m; q)m

(q; q)m
(q−m; q)j

(q; q)j
qm(m−j)+(m+1)j

= τ(m)qj
(q−m; q)j

(q; q)j
.

Thus (2.9) reduces to

(−1)mq−m(1 − yqm)(q; q)mfm(y) = τ(m)3φ2

[
q−m, yqm, 0
−q, yqm+1

; q, q
]
. (2.12)

Taking

(n, b, c, d, e) = (m, yqm, 0, yqm+1,−q)

in the transformation formula (2.1), we get

3φ2

[
q−m, yqm, 0
−q, yqm+1

; q, q
]

=
qm(m+1)/2

(−q; q)m
2φ1

[
q−m, q

yqm+1
; q,−yqm

]
. (2.13)

755



1110 J. Wang and X. Ma

Substituting (2.13) into (2.12) gives

(−1)mq−m(1 − yqm)(q; q)mfm(y)

=
(−1)mqm

2

(−q; q)m

m∑

k=0

[
m

k

]

q

ykqk(k−1)/2 (q; q)k
(yqm+1; q)k

,

or, equivalently,

q−m2−m(q2; q2)mfm(y) =
m∑

k=0

[
m

k

]

q

ykqk(k−1)/2 (q; q)k
(yqm; q)k+1

. (2.14)

To compute fm(y), we define

Sm(k) =
[
m

k

]

q

ykqk(k−1)/2 (q; q)k
(yqm; q)k+1

and Tm =
m∑

k=0

Sm(k).

By the WZ method (see [18]), we find that Sm(k) satisfies the following recur-
rence relation

Sm+1(k) − (1 − q2m+2)(1 − y2q2m)
(1 − yq2m+1)(1 − yq2m+2)

Sm(k) = G(m, k) − G(m, k − 1),

(2.15)

where

G(m, k) =
yqk+m+1 + qk+1 − qm+1 − 1
(1 − yq2m+1) (1 − yq2m+2)

× (q; q)k+1

(yqm+1; q)k+1

[
m + 1
k + 1

]

q

yk+1q
k(k−1)

2 +m.

Summing both sides of (2.15) over k from 0 to m, we get

Tm − (1 − q2m)(1 − y2q2m−2)
(1 − yq2m−1)(1 − yq2m)

Tm−1 =
q2m−1(q − y)

(1 − yq2m−1) (1 − yq2m)
, (2.16)

where T0 = 1/(1 − y). Therefore,

Tm =
(q2, y2; q2)m
(y; q)2m+1

m∑

k=0

q2k(y/q; q)2k
(q2, y2; q2)k

. (2.17)

Substituting (2.17) into (2.14) yields (2.4).
Next we proceed to prove (1.6). Let

∞∑

n=0

gn(y)zn =
∞∑

n=1

yn

(zqn; q)n+1(zq2n+2; q2)∞
. (2.18)

In order to prove (1.6), it suffices to show that

gm(y) = yqm
(−y; q)m

(yqm; q)m+1

m∑

k=0

qk
(y/q; q)2k

(q2, y2; q2)k
. (2.19)

Observing that

1
(zqn; q)n+1(zq2n+2; q2)∞

=
(zq2n+1; q2)∞

(zqn; q)∞
,
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we get
∞∑

n=0

gn(y)zn =
∞∑

n=1

yn (zq2n+1; q2)∞
(zqn; q)∞

. (2.20)

Comparing the coefficients of zm on both sides of (2.20) yields

gm(y) =
∞∑

n=1

yn[zm]
(zq2n+1; q2)∞

(zqn; q)∞
. (2.21)

Invoking the q-binomial theorem [15, p. 354, (II.3)], we get

(zq2n+1; q2)∞
(zqn; q)∞

=
∞∑

i=0

(zqn)i

(q; q)i

∞∑

j=0

(−1)jqj
2−j(zq2n+1)j

(q2; q2)j
. (2.22)

Combining (2.21) and (2.22), we have

gm(y) =
∞∑

n=1

yn
∑

i+j=m

qni

(q; q)i
(−1)jqj

2−j(q2n+1)j

(q2; q2)j

=
∑

i+j=m

(−1)jqj
2

(q; q)i(q2; q2)j

∞∑

n=1

(yqi+2j)n

=
yqm

1 − yqm

∑

i+j=m

(−1)jqj
2+j

(q; q)i(q; q)j(−q; q)j
(yqm; q)j

(yqm+1; q)j
. (2.23)

Now, the identity (2.23) can be written as

(1 − yqm)(q; q)mgm(y) = yqm lim
b→∞ 3φ2

[
q−m, yqm, b

−q, yqm+1
; q,−qm+2

b

]
. (2.24)

Taking

(n, b, c, d, e) = (m, b, yqm,−q, yqm+1)

in the transformation formula (2.2), we get

3φ2

[
q−m, yqm, b

−q, yqm+1
; q,−qm+2

b

]
=

(q; q)m
(yqm+1; q)m

3φ2

[
q−m, yqm,−q/b

−q, q−m
; q, q

]
.

(2.25)

Substituting (2.25) into (2.24) gives

(1 − yqm)(q; q)mgm(y) = yqm
(q; q)m

(yqm+1; q)m

m∑

k=0

(yqm; q)k
(q2; q2)k

qk,

which simplifies to

(yqm; q)m+1

yqm
gm(y) =

m∑

k=0

(yqm; q)k
(q2; q2)k

qk. (2.26)

In order to compute gm(y), we define

Sm(k) =
(yqm; q)k
(q2; q2)k

qk and Tm =
m∑

k=0

Sm(k).
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By the WZ method, we find that Sm(k) admits the following recurrence rela-
tion:

Sm+1(k) − (1 + yqm)Sm(k) = G(m, k) − G(m, k − 1), (2.27)

where

G(m, k) = −yqm
(yqm+1; q)k

(q2; q2)k
.

Summing both sides of (2.27) over k from 0 to m, we obtain that

Tm+1 − (1 + yqm)Tm =
qm(q − y)(yqm+1; q)m

(q2; q2)m+1
,

where T0 = 1. It follows that

Tm = (−y; q)m
m∑

k=0

qk
(y/q; q)2k

(q2, y2; q2)k
. (2.28)

Combining (2.26) and (2.28), we reach (2.19). �

Using the relations in the proof of Theorem 1.2, we give a proof of The-
orem 1.3.

Proof of Theorem 1.3. Combining (2.19) and (2.26), we obtain (1.7). Substi-
tuting (2.4) into (2.14) yields (1.8). Taking the limitation of (1.8) as n tends
to infinity, we arrive at (1.9). Setting y = q2r+1 in (1.9), we get (1.10). �

2.2. Proofs of Theorems 1.4 and 1.5

Theorem 1.4 can be proved using (1.8). We need the definition of a Bailey pair,
which can be found in Andrews [3, p. 26, Remark].

Definition 2.2. A pair of sequences {αn(t)}n≥0 and {βn(t)}n≥0 that satisfies

βn(t) =
n∑

k=0

αk(t)
(q; q)n−k(tq; q)n+k

(2.29)

is called a Bailey pair relative to t.

As demonstrated by Andrews and Berndt [6, pp. 251–259, Sect. 11.5] and
[7, pp. 97–112, Chap. 5], the Bailey lemma is a basic tool to study Ramanujan’s
mock theta function identities. The Bailey lemma [12, Eq. (3.1)] can be stated
as follows. See also [3, p. 27, Eq. (3.33)], [21, p. 99, Eq. (3.4.9)] and [22]:

Lemma 2.3. (Bailey’s Lemma). For any Bailey pair (αn(t), βn(t)), we have
∞∑

n=0

(a, b; q)n
(tq/a, tq/b; q)n

(
tq

ab

)n

αn(t)

=
(tq, tq/ab; q)∞
(tq/a, tq/b; q)∞

∞∑

n=0

(a, b; q)n

(
tq

ab

)n

βn(t). (2.30)
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Proof of Theorem 1.4. Consider the sequences αn(y) and βn(y) given in (1.12):

αn(y) = ynqn(n−1)/2, (2.31)

βn(y) =
(−q,−y; q)n

(yq; q)2n

n∑

k=0

q2k(y/q; q)2k
(q2, y2; q2)k

. (2.32)

By virtue of (1.8), we see that

βn(y) =
n∑

k=0

αk(y)
(q; q)n−k(yq; q)n+k

.

Thus (αn(y), βn(y)) forms a Bailey pair. Utilizing Lemma 2.3, we obtain that
∞∑

n=0

(a, b; q)n
(yq/a, yq/b; q)n

(
y2q

ab

)n

qn(n−1)/2

=
(yq, yq/ab; q)∞
(yq/a, yq/b; q)∞

∞∑

n=0

(a, b; q)n
(yq

ab

)n (−q,−y; q)n
(yq; q)2n

n∑

k=0

q2k(y/q; q)2k
(q2, y2; q2)k

.

This completes the proof. �

As a consequence of Theorem 1.4, we obtain

Corollary 2.4. For |q2/ab| < 1,
∞∑

n=0

(a, b; q)n
(q2/a, q2/b; q)n

(
1
ab

)n

qn(n+5)/2

=
(q2, q2/ab; q)∞
(q2/a, q2/b; q)∞

3φ2

[
a, b,−q

q3/2,−q3/2
; q,

q2

ab

]
. (2.33)

In particular,
∞∑

n=0

q3n(n+1)/2 = (q; q)∞
∞∑

n=0

(−q; q)n
(q; q)n(q; q2)n+1

qn(n+1), (2.34)

∞∑

n=0

(a,−q3/2; q)n
(q2/a,−q1/2; q)n

(
−1

a

)n

qn(n+2)/2 =
(q2, q3/2/a; q)∞
(q2/a, q3/2; q)∞

. (2.35)

Proof. Taking y = q in (1.13) yields (2.33). As a, b in (2.33) tend to infinity,
we are led to (2.34). Considering b = −q3/2 in (2.33) and then applying the
q-Gauss 2φ1 sum [15, p. 354, (II.8)], we obtain (2.35). �

Using (2.33), we establish the following transformation formula:

Corollary 2.5. For |ab| > 1,
∞∑

n=−∞

(aq, bq; q)n
(q/a, q/b; q)n

(
1
ab

)n

qn(n+1)/2

= 2
(q2, 1/ab; q)∞
(q/a, q/b; q)∞

3φ2

[
aq, bq,−q

q3/2,−q3/2
; q,

1
ab

]
. (2.36)
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Proof. Notice that
∞∑

n=−∞

(aq, bq; q)n
(q/a, q/b; q)n

(
1
ab

)n

qn(n+1)/2

=

{ ∞∑

n=0

+
−1∑

n=−∞

}
(aq, bq; q)n

(q/a, q/b; q)n

(
1
ab

)n

qn(n+1)/2. (2.37)

Using (2.11), we have
−1∑

n=−∞

(aq, bq; q)n
(q/a, q/b; q)n

(
1
ab

)n

qn(n+1)/2

=
∞∑

n=1

(a, b; q)n
(1/a, 1/b; q)n

(
1
ab

)n

qn(n−1)/2

n−1→n=
∞∑

n=0

(aq, bq; q)n
(q/a, q/b; q)n

(
1
ab

)n

qn(n+1)/2. (2.38)

Substituting (2.38) into (2.37), we find that
∞∑

n=−∞

(aq, bq; q)n
(q/a, q/b; q)n

(
1
ab

)n

qn(n+1)/2 = 2
∞∑

n=0

(aq, bq; q)n
(q/a, q/b; q)n

(
1
ab

)n

qn(n+1)/2.

Applying (2.33) to the above identity with a, b replace by aq, bq, respectively,
we obtain (2.36). �

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let

θ(q, x) =
∞∑

n=0

τ(n)xn.

For y = −a,−b, the identity (1.9) in Theorem 1.3 yields

θ(q, a) = (q2; q2)∞(a; q)∞2φ1

[−a/q,−a

a2
; q2, q2

]
,

θ(q, b) = (q2; q2)∞(b; q)∞2φ1

[−b/q,−b

b2
; q2, q2

]
.

It follows that

θ(q, a)θ(q, b) = (q2; q2)2∞(a, b; q)∞

× 2φ1

[−a/q,−a

a2
; q2, q2

]
2φ1

[−b/q,−b

b2
; q2, q2

]
. (2.39)

On the other hand, Andrews and Warnaar [9, Theorem 1.1] have shown that

θ(q, a)θ(q, b) = (q, a, b; q)∞
∞∑

n=0

(ab/q; q)2n
(q, a, b, ab/q; q)n

qn. (2.40)
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Combining (2.39) and (2.40), we have

(q2; q2)2∞(a, b; q)∞2φ1

[−a/q,−a

a2
; q2, q2

]
2φ1

[−b/q,−b

b2
; q2, q2

]

= (q, a, b; q)∞
∞∑

n=0

(ab/q; q)2n
(q, a, b, ab/q; q)n

qn. (2.41)

Replacing a, b by −a,−b in (2.41), we arrive at (1.14), as claimed. �

2.3. Proof of Identity (1.2)

Andrews [2] utilized the transformation formula for 3φ2 series to give a proof
of (1.2), and Chern [13] provided a combinatorial proof. We now present a
proof of (1.2) by using the Lagrange inversion formula.

Lemma 2.6. (The Lagrange inversion formula [16, Example 2.2]). Let {xn}n≥0

be a complex sequences such that |1−xnz| �= 0 and F (z) be an analytic function.
If F (z) has the following expansion:

F (z) =
∞∑

n=0

an
zn

∏n+1
i=1 (1 − xiz)

, (2.42a)

then

an = [zn]F (z)
n∏

i=1

(1 − xiz). (2.42b)

Proof. By Lemma 2.6, we see that (1.2) is equivalent to

q2n
2+2n+1

(q; q2)n+1
= [zn]

( ∞∑

k=1

qkzk−1

(q; q2)k
(zq; q2)n

)
. (2.43)

We claim that (2.43) is equivalent to the following identity:
n∑

k=0

[
1 + 2n

2k

]

q

(q; q2)k(−1)kqk(k−1) = q2n
2+n. (2.44)

Note that the right-hand side of (2.43) equals
n∑

k=0

qk+1

(q; q2)k+1
[zn−k]

(zq; q2)∞
(zq2n+1; q2)∞

,

and so

q2n
2+2n+1

(q; q2)n+1
=

n∑

k=0

qk+1

(q; q2)k+1
[zn−k]

(zq; q2)∞
(zq2n+1; q2)∞

. (2.45)

Employing the relations (2.10) and (2.11), we have

[zn−k]
(zq1/2; q)∞

(zqn+1/2; q)∞
= [zn−k]

∞∑

i=0

(q−n; q)i
(q; q)i

(zqn+1/2)i

=
(q−n; q)n−k

(q; q)n−k
q(n+1/2)(n−k)
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=
(q−n; q)n
(q; q)n

(q−n; q)k
(q; q)k

q(k+2n2+n)/2

=
[
n

k

]

q

(−1)n−kq(n−k)2/2. (2.46)

Replacing q by q2 in (2.46), we obtain that

[zn−k]
(zq; q2)∞

(zq2n+1; q2)∞
=

(q2; q2)n
(q2; q2)k(q2; q2)n−k

(−1)n−kq(n−k)2 . (2.47)

Plugging (2.47) into (2.45), we find that

q2n
2+2n+1 =

n∑

k=0

qk+1 (q; q2)n+1(q2; q2)n
(q; q2)k+1(q2; q2)k

(−1)n−kq(n−k)2

(q2; q2)n−k
. (2.48)

Dividing by qn+1 on both sides of (2.48), we have

q2n
2+n =

n∑

k=0

qk−n (q; q)2n+1

(q; q)2k+1(q; q)2(n−k)

(−1)n−kq(n−k)2(q; q)2n−2k

(q2; q2)n−k

k→n−k=
n∑

k=0

[
1 + 2n

2k

]

q

(−1)kqk
2−k(q; q)2k

(q2; q2)k

=
n∑

k=0

[
1 + 2n

2k

]

q

(q; q2)k(−1)kqk
2−k.

So the claim is confirmed.
Therefore, we only need to prove (2.44). Recall the q-Kummer (Bailey-

Daum) sum [15, p. 351, (II.9)]:
∞∑

k=0

(a, b; q)k
(q, aq/b; q)k

(−q/b)k =
(−q; q)∞(aq, aq2/b2; q2)∞

(−q/b, aq/b; q)∞
. (2.49)

Setting a = q−n and letting b tend to infinity in (2.49), we find that
n∑

k=0

[
n

k

]

q

τ(n − k)Y (k) = X(n), (2.50)

where

X(n) =

{
(−1)kqk

2−k(q; q2)k, if n = 2k,

0, if n = 2k + 1,

and Y (n) = qn(n−1)/2. Note that (2.50) is equivalent to
n∑

k=0

[
n

k

]

q

X(k) = Y (n). (2.51)

Hence (2.44) holds, and the proof is complete. �
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3. Two Finite q-Series Sums

In this section, we introduce two finite sums related to the Andrews–Yee iden-
tities in Lemma 1.1. As noted by Andrews and Yee [11], the proofs of (1.2)
and (1.3) rely on the identities

m∑

k=0

(q; q)m+k

(q2; q2)k
qk = (q2; q2)m, (3.1)

m∑

k=0

(q; q)m+k

(q2; q2)k
q2k = (q; q2)m+1 + qm+1(q2; q2)m. (3.2)

For m ≥ 0, we define

Um(x) =
m∑

k=0

[
m + k

k

]

q

xk

(−q; q)k
, (3.3)

Sm(x, y) =
m∑

k=0

[
m + k

k

]

q

(y; q)k
(x; q)k

qk. (3.4)

When x = q and x = q2, Um(x) becomes the sums in (3.1) and (3.2) subject
to a factor. More precisely, we have

Um(q) = (−q; q)m, (3.5)

Um(q2) =
(q; q2)m+1

(q; q)m
+ qm+1(−q; q)m. (3.6)

Notice that Sm(−q, 0) = Um(q). We shall establish recurrence relations for
Um(x) and a transformation formula for Sm(x, y).

3.1. q-Difference Equations and a Three-Term Recurrence Relation for
Um (x)

We find that Um(x) satisfies the following recurrence relations:

Lemma 3.1. For m ≥ 0, we have

Um(xq2) = Um(x) − (1 − qm+1)xUm+1(x) + (x + 1)xm+1 (q; q2)m+1

(q; q)m
, (3.7)

qm+1Um(xq) = Um(x) − (1 − qm+1)Um+1(x) + xm+1 (q; q2)m+1

(q; q)m
. (3.8)

Proof. We first prove (3.7). Note that

(1 − qm)xUm(x) =
m∑

k=0

(qm; q)k+1

(q2; q2)k+1
xk+1(1 − q2k+2)

=
m+1∑

k=1

(qm; q)k
(q2; q2)k

xk −
m+1∑

k=1

(qm; q)k
(q2; q2)k

(xq2)k. (3.9)

It is easy to check that the right-hand side of (3.9) equals

Um−1(x) − Um−1(xq2) + (x + 1)xm (q; q2)m
(q; q)m−1

. (3.10)
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Hence

Um−1(xq2) = Um−1(x) − (1 − qm)xUm(x) + (x + 1)xm (q; q2)m
(q; q)m−1

.

Shifting m to m + 1, we get (3.7).
To prove (3.8), let

Vm(x) = (q; q)mUm(x),

so that

Vm(x) − Vm−1(x) =
m∑

k=0

(q; q)m+k

(q2; q2)k
xk −

m−1∑

k=0

(q; q)m+k−1

(q2; q2)k
xk

=
(q; q)2m
(q2; q2)m

xm +
m−1∑

k=0

(q; q)m+k − (q; q)m+k−1

(q2; q2)k
xk

= (q; q2)mxm − qm
m−1∑

k=0

(q; q)m+k−1

(q2; q2)k
(xq)k

= (q; q2)mxm − qmVm−1(xq). (3.11)

Replacing m with m + 1 in (3.11) yields (3.8). �

Example 3.2. The initial value of Um(x) is given in (3.5), that is, Um(q) =
(−q; q)m. Combining (3.5) and (3.8), we can compute Um(qk) for k ≥ 2. For
instance, setting x = q in (3.8), we have

qm+1Um(q2) = Um(q) − (1 − qm+1)Um+1(q) + qm+1 (q; q2)m+1

(q; q)m

= (−q; q)m − (1 − qm+1)(−q; q)m+1 + qm+1 (q; q2)m+1

(q; q)m

= (−q; q)mq2m+2 + qm+1 (q; q2)m+1

(q; q)m
,

which gives (3.6).

By Lemma 3.1, we find that Um(x) satisfies a second-order q-difference
equation.

Theorem 3.3. We have

Um(xq2) = (1 − x)Um(x) + xqm+1Um(xq) + xm+1 (q; q2)m+1

(q; q)m
. (3.12)

Proof. Rewriting (3.8) as

(1 − qm+1)Um+1(x) = Um(x) − qm+1Um(xq) + xm+1 (q; q2)m+1

(q; q)m
, (3.13)

and substituting (3.13) into (3.7), we find that

Um(xq2) = Um(x) − x

(
Um(x) − qm+1Um(xq) + xm+1 (q; q2)m+1

(q; q)m

)
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+ (x + 1)xm+1 (q; q2)m+1

(q; q)m

= (1 − x)Um(x) + xqm+1Um(xq) + xm+1 (q; q2)m+1

(q; q)m
.

This completes the proof. �

Employing Lemma 3.1, we deduce a three-term recurrence relation for
{Um(x)}m≥0.

Theorem 3.4. For m ≥ 0, we have

(1 − qm+2)Um+2(x) + (xq2m+3 − q − 1)Um+1(x) + q(1 + qm+1)Um(x)

= (x − q)
(qm+2; q)m
(q2; q2)m

xm+1. (3.14)

Proof. It follows from (3.8) that

q2m+3Um(xq2) = qm+2Um(xq) − (1 − qm+1)qm+2Um+1(xq)

+ xm+1q2m+3 (q; q2)m+1

(q; q)m
.

Applying (3.8) to Um(xq) and Um+1(xq), we have

q2m+3Um(xq2) = qUm(x) − (1 + q)(1 − qm+1)Um+1(x)

+ (1 − qm+1)(1 − qm+2)Um+2(x)

+ qxm+1 (q; q2)m+1

(q; q)m
− xm+2 (q; q2)m+2

(q; q)m

+ xm+1q2m+3 (q; q2)m+1

(q; q)m
. (3.15)

Multiplying both sides of (3.7) by q2m+3, we get

q2m+3Um(xq2) = q2m+3Um(x) − q2m+3(1 − qm+1)xUm+1(x)

+ q2m+3(x + 1)xm+1 (q; q2)m+1

(q; q)m
. (3.16)

Subtracting (3.16) from (3.15), we have

0 = q(1 − q2m+2)Um(x) + (xq2m+3 − 1 − q)(1 − qm+1)Um+1(x)

+ (1 − qm+1)(1 − qm+2)Um+2(x) + qxm+1 (q; q2)m+1

(q; q)m

− xm+2 (q; q2)m+1

(q; q)m
,

which gives (3.14). �

Remark 3.5. Let Vm(k;x) be the summand of Um(x), that is,

Vm(k;x) =
[
m + k

k

]

q

xk

(−q; q)k
.
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In light of the WZ method, we find that Vm(k;x) satisfies the recurrence
relation:

Vm+2(k;x) +
−xq2m+3 + q + 1

qm+2 − 1
Vm+1(k;x) +

q(qm+1 + 1)
1 − qm+2

Vm(k;x)

= Vm(k;x)R(m, k;x) − Vm(k − 1;x)R(m, k − 1;x), (3.17)

where

R(m, k;x) =
xq2m+3(1 − qm+k+1)
(1 − qm+1)(1 − qm+2)

.

The recurrence relation (3.14) can be derived by summing both sides of (3.17)
over k from 0 to m.

3.2. A Transformation Formula for Sm (x, y)
We derive the following transformation formula for Sm(x, y) by the WZ
method.

Theorem 3.6. For any m ≥ 0,

(yq2/x; q)m
(q2/x; q)m

m∑

k=0

[
m + k

k

]

q

(y; q)k
(x; q)k

qk

= 1 +
q + x

x − yq

m∑

k=1

[
2k − 1

k

]

q

(y, yq/x; q)k
(x, q2/x; q)k

qk

− yq

x − yq

m∑

k=1

[
2k

k

]

q

(y, yq/x; q)k
(x, q2/x; q)k

q2k. (3.18)

Proof. Using the WZ method, we find that {Sm(x, y)}m≥0 satisfies the first-
order recurrence relation:

Sm(x, y) − x − qm+1

x − yqm+1
Sm−1(x, y)

= qm
q + x − qm+1(1 + qm)y

x − qm+1y

[
2m − 1

m

]

q

(y; q)m
(x; q)m

,

and thus

Sm(x, y) =
(q2/x; q)m
(yq2/x; q)m

(
1 +

1
x − yq

m∑

k=1

qk(q + x − y(qk + 1)qk+1)

×
[
2k − 1

k

]

q

(y, yq/x; q)k
(x, q2/x; q)k

)
,

which leads to (3.18). �
Setting x = −q and y = 0 in Theorem 3.6, respectively, we arrive at the

following identities:

Corollary 3.7. For any m ≥ 0,

(−yq; q)m
(−q; q)m

m∑

k=0

(qm+1, y; q)k
(q2; q2)k

qk = 1 +
y

1 + y

m∑

k=1

[
2k

k

]

q

(y2; q2)k
(−q; q)2k

q2k,

766



On the Andrews–Yee Identities 1121

1
(q2/x; q)m

m∑

k=0

[
m + k

k

]

q

qk

(x; q)k
= 1 + (1 + q/x)

m∑

k=1

[
2k − 1

k

]

q

qk

(x, q2/x; q)k
.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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Congruences for q-Binomial Coefficients
To George Andrews, with warm q-wishes and well-looking q-congruences

Wadim Zudilin

Abstract. We discuss q-analogues of the classical congruence
(
ap
bp

) ≡ (
a
b

)

(mod p3), for primes p > 3, as well as its generalisations. In particular,
we prove related congruences for (q-analogues of) integral factorial ratios.

Mathematics Subject Classification. Primary 11B65; Secondary 05A10,
11A07.

Keywords. Congruence, q-Binomial coefficient, Cyclotomic polynomial,
Radial asymptotics.

1. Introduction

For a non-negative integer a, a standard q-environment includes the q-numbers
[a] = [a]q = (1 − qa)/(1 − q) ∈ Z[q], the q-factorials [a]! = [1][2] · · · [a] ∈ Z[q]
and the q-binomial coefficients

[
a

b

]
=

[
a

b

]

q

=
[a]!

[b]! [a − b]!
∈ Z[q], where b = 0, 1, . . . , a.

One also adopts the cyclotomic polynomials

Φn(q) =
n∏

j=1
(j,n)=1

(q − e2πij/n) ∈ Z[q]

as q-analogues of prime numbers, because these are the only factors of the
q-numbers which are irreducible over Q.

Arithmetically significant relations often possess several q-analogues.
While looking for q-extensions of the classical (Wolstenholme–Ljunggren) con-
gruence

(
ap

bp

)
≡

(
a

b

)
(mod p3) for any prime p > 3, (1.1)

769
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1124 W. Zudilin

more precisely, at a ‘q-microscope setup’ (when q-congruences for truncated hy-
pergeometric sums are read off from the asymptotics of their non-terminating
versions, usually equipped with extra parameters, at roots of unity, see [5]) for
Straub’s q-congruence [8], [9, Theorem 2.2],

[
an

bn

]

q

≡
[
a

b

]

qn2
− b(a − b)

(
a

b

)
n2 − 1

24
(qn − 1)2 (mod Φn(q)3), (1.2)

this author accidentally arrived at
[
an

bn

]
σb

nq(
bn
2 ) ≡

(
a − 1

b

)
+

(
a − 1
a − b

)
σa

nq(
an
2 ) (mod Φn(q)2), (1.3)

where the notation

σn = (−1)n−1

is implemented. Notice that the expression on the right-hand side is a sum
of two q-monomials. The q-congruence (1.3) may be compared with another
q-extension of (1.1),

[
an

bn

]

q

≡ σb(a−b)
n qb(a−b)(n2)

[
a

b

]

qn

(mod Φn(q)2) (1.4)

for any n > 1. This is given by Andrews in [2] for primes n = p > 3 only; though
proved modulo Φp(q)2, a complimentary result from [2] demonstrates that (1.1)
in its full modulo p3 strength can be derived from (1.4). More directly, Pan [7]
shows that (1.4) can be generalised further to
[an
bn

]

q
≡ σb(a−b)

n qb(a−b)(n2)
[a
b

]

qn
+ ab(a − b)

(a
b

)n2 − 1

24
(qn − 1)2 (mod Φn(q)

3).

(1.5)

It is worth mentioning that the transition from Φn(q)2 to Φn(q)3 (or, from p2

to p3) is significant because the former has a simple combinatorial proof (re-
sulting from the q-Chu–Vandermonde identity) whereas no combinatorial proof
is known for the latter.

Since q(
bn
2 ) ∼ σb

n as q → ζ, a primitive n-th root of unity, the congruence
(1.3) is seen to be an extension of the trivial (q-Lucas) congruence

[
an

bn

]
≡

(
a

b

)
=

(
a − 1

b

)
+

(
a − 1
a − b

)
(mod Φn(q)).

The principal goal of this note is to provide a modulo Φn(q)4 extension
of (1.3) (see Lemma 2.1 below) as well as to use the result for extending the
congruences (1.2) and (1.5). In this way, our theorems provide two q-extensions
of the congruence

(
ap

bp

)
≡

(
a

b

)
+ ab(a − b)

(
a

b

)
p

p−1∑

k=1

1
k

(mod p4) for prime p > 3.

The latter can be continued further to higher powers of primes [6], and our
‘mechanical’ approach here suggests that one may try—with a lot of effort!—to
deduce corresponding q-analogues.
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Theorem 1.1. The congruence
[
an

bn

]

q

≡
[
a

b

]

qn2
− b(a − b)

(
a

b

)
(qn − 1)

(
a

n−1∑

k=1

qk

1 − qk
+

a(n − 1)
2

+
(a + 1)(n2 − 1)

24
(qn − 1) +

(b(a − b)n − a − 2)(n2 − 1)
48

(qn − 1)2
)

(1.6)

holds modulo Φn(q)4 for any n > 1.

Theorem 1.2. For any n > 1, we have the congruence
[
an

bn

]

q

≡ σb(a−b)
n qb(a−b)(n2)

[
a

b

]

qn

− ab(a − b)
(

a

b

)
(qn − 1)

(n−1∑

k=1

qk

1 − qk
+

n − 1
2

− (b(a − b)n − 1)(n2 − 1)
48

(qn − 1)2
)

(mod Φn(q)4). (1.7)

We point out that a congruence A1(q) ≡ A2(q) (mod P (q)) for rational
functions A1(q), A2(q) ∈ Q(q) and a polynomial P (q) ∈ Q[q] is understood as
follows: the polynomial P (q) is relatively prime with the denominators of A1(q)
and A2(q), and P (q) divides the numerator A(q) of the difference A1(q)−A2(q).
The latter is equivalent to the condition that for each zero α ∈ C of P (q) of
multiplicity k, the polynomial (q − α)k divides A(q) in C[q]; in other words,
A1(q) − A2(q) = O

(
(q − α)k

)
as q → α. This latter interpretation underlies

our argument in proving the results. For example, the congruence (1.3) can be
established by verifying that[

an

bn

]

q

(1 − ε)(
bn
2 ) =

(
a − 1

b

)
+

(
a − 1
a − b

)
σa

n(1 − ε)(
an
2 ) + O(ε2) as ε → 0+,

(1.8)

when q = ζ(1 − ε) and ζ is any primitive n-th root of unity.
Our approach goes in line with [5] and shares similarities with the one

developed by Gorodetsky in [4], who reads off the asymptotic information of
binomial sums at roots of unity through the q-Gauss congruences. It does
not seem straightforward to us but Gorodetsky’s method may be capable of
proving Theorems 1.1 and 1.2. Furthermore, the part [4, Sect. 2.3] contains a
survey on q-analogues of (1.1).

After proving an asymptotical expansion for q-binomial coefficients at
roots of unity in Sect. 2 [essentially, the O(ε4)-extension of (1.8)], we perform
a similar asymptotic analysis for q-harmonic sums in Sect. 3. The information
gathered is then applied in Sect. 4 to proving Theorems 1.1 and 1.2. Finally, in
Sect. 5, we generalise the congruences (1.2) and (1.5) in a different direction,
to integral factorial ratios.

2. Expansions of q-Binomials at Roots of Unity

This section is exclusively devoted to an asymptotical result, which forms the
grounds of our later arithmetic analysis. We moderate its proof by highlighting
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1126 W. Zudilin

principal ingredients (and difficulties) of derivation and leaving some technical
details to the reader.

Lemma 2.1. Let ζ be a primitive n-th root of unity. Then, as q = ζ(1− ε) → ζ
radially,
[
an

bn

]

q

σb
nq(

bn
2 ) −

(
a − 1

b

)
−

(
a − 1
a − b

)
σa

nq(
an
2 )

= b(a − b)
(

a

b

)(−ε2n2ρ0(a, n) + ε3n2ρ1(a, b, n) + ε3 anSn−1(ζ)
)

+ O(ε4),

(2.1)

where

ρ0(a, n) =
3(an − 1)2 − an2 − 1

24
,

ρ1(a, b, n) =
abn2(an − 1)(an − n − 2) + (an + 2)(an − 1)2(an − 3) + an2 + a + 2

48

and

Sn−1(q) =
1
2

n−1∑

k=1

kqk((k + 1)qk + k − 1)
(1 − qk)3

.

Proof. It follows from the q-binomial theorem [3, Chap. 10] that

(x; q)N =
N∑

k=0

[
N

k

]

q

(−x)kq(
k
2). (2.2)

Taking N = an, for a primitive n-th root of unity ζ = ζn, we have

1
n

n∑

j=1

(ζjx; q)an =
an∑

k=0
n|k

[
an

k

]
(−x)kqk(k−1)/2 =

a∑

b=0

[
an

bn

]
(−x)bnqbn(bn−1)/2.

(2.3)

When q = ζ(1 − ε), we get d/dε = −ζ (d/dq). If

f(q) = (x; q)an and g(q) =
d
dq

log f(q) = −
an−1∑

�=1

�q�−1x

1 − q�x
,

then f(q)|ε=0 = (1 − xn)a and

df

dq
= fg,

d2f

dq2
= f

(
g2 +

dg

dq

)
,

d3f

dq3
= f

(
g3 + 3g

dg

dq
+

d2g

dq2

)
.

In particular,

df

dε

∣∣∣∣
ε=0

= (1 − xn)a
an−1∑

�=1

�ζ�x

1 − ζ�x
,

d2f

dε2

∣∣∣∣
ε=0

= (1 − xn)a

((an−1∑

�=1

�ζ�x

1 − ζ�x

)2

−
an−1∑

�=1

(
�2ζ2�x2

(1 − ζ�x)2
+

�(� − 1)ζ�x

1 − ζ�x

))
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Congruences for q-Binomial Coefficients 1127

and

d3f

dε3

∣∣∣∣
ε=0

= (1 − xn)a

((an−1∑

�=1

�ζ�x

1 − ζ�x

)3

− 3
an−1∑

�=1

�ζ�x

1 − ζ�x

an−1∑

�=1

(
�2ζ2�x2

(1 − ζ�x)2
+

�(� − 1)ζ�x

1 − ζ�x

)

+
an−1∑

�=1

(
2�3ζ3�x3

(1 − ζ�x)3
+

3�2(� − 1)ζ2�x2

(1 − ζ�x)2
+

�(� − 1)(� − 2)ζ�x

1 − ζ�x

))
.

Now observe the following summation formulae:

1
n

n∑

j=1

x

1 − x

∣∣∣∣
x�→ζjx

=
xn

1 − xn
,

1
n

n∑

j=1

(
x

1 − x

)2∣∣∣∣
x�→ζjx

=
nxn

(1 − xn)2
− xn

1 − xn
,

1
n

n∑

j=1

x

1 − x

ζkx

1 − ζkx

∣∣∣∣
x�→ζjx

= − xn

1 − xn
for k �≡ 0 (mod n),

1
n

n∑

j=1

(
x

1 − x

)3∣∣∣∣
x�→ζjx

=
n2xn(1 + xn)
2(1 − xn)3

− 3nxn

2(1 − xn)2
+

xn

1 − xn
,

1
n

n∑

j=1

x

1 − x

ζkx

1 − ζkx

ζ�x

1 − ζ�x

∣∣∣∣
x�→ζjx

=
xn

1 − xn

for k �≡ 0, � �≡ 0, k �≡ � (mod n),

and

1
n

n∑

j=1

(
x

1 − x

)2
ζkx

1 − ζkx

∣∣∣∣
x�→ζjx

=
nxn

(1 − xn)2
ζk

1 − ζk
+

xn

1 − xn

for k �≡ 0 (mod n).

Implementing this information in (2.3), we obtain

a∑

b=0

[
an

bn

]
(−x)bnqbn(bn−1)/2

∣∣∣∣
q=ζ(1−ε)

= (1 − xn)a

(
1 + ε

xn

1 − xn

an−1∑

�=1

�

− ε2

2
xn

1 − xn

(an−1∑

�=1

�

)2

+
ε2

2
nxn

(1 − xn)2

an−1∑

�1,�2=1
�1≡�2 (mod n)

�1�2

− ε2

2

(
nxn

(1 − xn)2
− xn

1 − xn

) an−1∑

�=1

�2 − ε2

2
xn

1 − xn

an−1∑

�=1

�(� − 1)
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+ · · · +
ε3

2
nxn

(1 − xn)2

an−1∑

�1,�2,�3=1
�1≡�2 �≡�3 (mod n)

�1�2�3
ζ�3−�1

1 − ζ�3−�1
+ · · ·

+ · · · − ε3

2
nxn

(1 − xn)2

an−1∑

�1,�2=1
�1 �≡�2 (mod n)

�21�2
ζ�2−�1

1 − ζ�2−�1
+ · · ·

)
+ O(ε4),

where we intentionally omit all ordinary ε3-terms—those that sum up to poly-
nomials in a and n multiplied by powers of xn/(1−xn), like the ones appearing
as ε- and ε2-terms. The exceptional ε3-summands are computed separately:

an−1∑

�1,�2,�3=1
�1≡�2 �≡�3 (mod n)

�1�2�3
ζ�3−�1

1 − ζ�3−�1
= −a3

n−1∑

k=1

kζk((k + 1)ζk + k − 1)
(1 − ζk)3

− a3n(n − 1)(3an(an − 1)(an − 2) + n2(an − 2a − 1) − 2)
48

and
an−1∑

�1,�2=1
�1 �≡�2 (mod n)

�21�2
ζ�2−�1

1 − ζ�2−�1
= −a2

n−1∑

k=1

kζk((k + 1)ζk + k − 1)
(1 − ζk)3

− a2n(n − 1)(an(an − 1)(2an − 3) − an2 − 1)
24

.

The finale of our argument is comparison of the coefficients of powers of xn

on both sides of the relation obtained; this way we arrive at the asymptotics
in (2.1). �

3. A q-Harmonic Sum

Again, the notation ζ is reserved for a primitive n-th root of unity. For the
sum

Hn−1(q) =
n−1∑

k=1

qk

1 − qk
,

we have

dHn−1

dq
=

n−1∑

k=1

kqk−1

(1 − qk)2
,

d2Hn−1

dq2
=

n−1∑

k=1

kqk−2((k + 1)qk + k − 1)
(1 − qk)3

= 2q−2Sn−1(q),

where Sn−1(q) is defined in Lemma 2.1. It follows that, for q = ζ(1 − ε),

Hn−1(q) =
n−1∑

k=1

ζk

1 − ζk
− ε

n−1∑

k=1

kζk

(1 − ζk)2
(3.1)
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+
ε2

2

n−1∑

k=1

kζk((k + 1)ζk + k − 1)
(1 − ζk)3

+ O(ε3)

= −n − 1
2

+
(n2 − 1)n

24
ε + Sn−1(ζ)ε2 + O(ε3)

= −n − 1
2

− n2 − 1
24

(qn − 1) +
(n − 1)(n2 − 1)

48n
(qn − 1)2

+
1
n2

Sn−1(ζ)(qn − 1)2 + O(ε3) (3.2)

as ε → 0, where we use

ε = − 1
n

(qn − 1) +
n − 1
2n2

(qn − 1)2 + O(ε3) as ε → 0.

The latter asymptotics implies that

n−1∑

k=1

qk

1 − qk
≡ −n − 1

2
− n2 − 1

24
(qn − 1) +

(n − 1)(n2 − 1)
48n

(qn − 1)2

+
(qn − 1)2

2n2

n−1∑

k=1

kqk((k + 1)qk + k − 1)
(1 − qk)3

(mod Φn(q)3),

which may be viewed as an extension of

n−1∑

k=1

qk

1 − qk
≡ −n − 1

2
− n2 − 1

24
(qn − 1) (mod Φn(q)2)

recorded, for example, in [6].
A different consequence of (3.2) is the following fact.

Lemma 3.1. The term ε2Sn−1(ζ) appearing in the expansion (2.1) can be re-
placed with

Hn−1(q) +
n − 1

2
+

n2 − 1
24

(qn − 1) − (n − 1)(n2 − 1)
48n

(qn − 1)2 + O(ε3)

when q = ζ(1 − ε) and ε → 0.

4. Proof of the Theorems

To prove Theorems 1.1 and 1.2, we need to produce ‘matching’ asymptotics
for

[
a

b

]

qn2
and σb(a−b)

n qb(a−b)(n2)
[
a

b

]

qn

,

respectively. These happen to be easier than that from Lemma 2.1 because
qn2

= (1 − ε)n2
and qn = (1 − ε)n do not depend on the choice of primitive

n-th root of unity ζ when q = ζ(1 − ε).
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Lemma 4.1. As q = ζ(1 − ε) → ζ radially,
[
a

b

]

qn2
σb

nq(
bn
2 ) −

(
a − 1

b

)
−

(
a − 1
a − b

)
σa

nq(
an
2 )

= b(a − b)
(

a

b

)(−ε2n2ρ̂0(a, n) + ε3n2ρ̂1(a, b, n)
)

+ O(ε4),

where

ρ̂0(a, n) =
3(an − 1)2 − (a + 1)n2

24
,

ρ̂1(a, b, n) =
bn(an − 1)((an − 1)2 − (a + 1)n2)

48

+
an(an − 1)3 − 6(an − 1)2 + 2(a + 1)n2

48
.

Proof. For N = a in (2.2), take xnq(
n
2) and qn2

for x and q:

(xnq(
n
2); qn2

)a =
a∑

b=0

[
a

b

]

qn2
σb

n(−x)bnq(
bn
2 ).

Then, for q = ζ(1 − ε), we write y = σnxn to obtain

(xnq(
n
2); qn2

)a = (y(1 − ε)(
n
2); (ε)n2

)a

=
a−1∏

�=0

(
1 − y(1 − ε)�n2+(n2)

)

= (1 − y)a
a−1∏

�=0

⎛

⎜⎝1 − y

1 − y

�n2+(n2)∑

i=1

(
�n2 +

(
n
2

)

i

)
(−ε)i

⎞

⎟⎠ .

To conclude, we apply the same argument as in the proof of Lemma 2.1. �

Proof of Theorem 1.1. Combining the expansions in Lemmas 2.1–4.1, we find
that
[
an

bn

]

q

σb
nq(

bn

2 ) −
[
a

b

]

qn2

σb
nq(

bn

2 )

= −b(a − b)

(
a

b

)
(qn − 1)

(
a

n−1∑

k=1

qk

1 − qk
+

a(n − 1)

2
+

(a + 1)(n2 − 1)

24
(qn − 1)

+
(b(a − b)n − a − 2)(n2 − 1)

48
(qn − 1)2

)
+ O(ε4)

as q = ζ(1 − ε) → ζ radially. This means that the difference of both sides is
divisible by (q − ζ)4 for any n-th primitive root of unity ζ, hence by Φn(q)4.
The latter property is equivalent to the congruence (1.6). �
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Proof. We first use Lemma 2.1 with n = 1:

[
a

b

]

q

q(
b
2) −

(
a − 1

b

)
−

(
a − 1
a − b

)
q(

a
2)

= b(a − b)
(

a

b

)(−(1 − q)2ρ0(a, 1) + (1 − q)3ρ1(a, b, 1)
)

+ O
(
(1 − q)4

)

as q → 1. Now, take n > 1 arbitrarily and apply this relation with q replaced
with qn, where q = ζ(1 − ε), 0 < ε < 1 and ζ is a primitive n-th root of unity:

σb(a−b)
n qb(a−b)(n2)

[
a

b

]

qn

=
(

a − 1
b

)
(1 − ε)b(a−b)(n2)−(b

2)n +
(

a − 1
a − b

)
(1 − ε)b(a−b)(n2)+(a2)n−(b

2)n

+ b(a − b)
(

a

b

)(−(1 − (1 − ε)n)2ρ0(a, 1) + ε3n3ρ1(a, b, 1)
)

× (1 − ε)b(a−b)(n2)−(b
2)n + O(ε4)

=
(

a − 1
b

)
(1 − ε)−(bn2 )+ab(n2) +

(
a − 1
a − b

)
(1 − ε)(

an
2 )−(bn2 )−a(a−b)(n2)

+ b(a − b)
(

a

b

)(−ε2n2ρ0(a, 1) + ε3n2
(
(n − 1)ρ0(a, 1) + nρ1(a, b, 1)

))

×
(

1 − ((a − b)n − a + 1)bn
2

ε + O(ε2)
)

+ O(ε4)

as ε → 0. At the same time, from Lemma 2.1, we have

[
an

bn

]

q

=
(

a − 1
b

)
(1 − ε)−(bn2 ) +

(
a − 1
a − b

)
(1 − ε)(

an
2 )−(bn2 )

+ b(a − b)
(

a

b

)(−ε2n2ρ0(a, n) + ε3n2ρ1(a, b, n) + ε3 anSn−1(ζ)
)

×
(

1 +
(

bn

2

)
ε + O(ε2)

)
+ O(ε4)

as ε → 0. Using

(1 − ε)N = 1 − Nε +
(

N

2

)
ε2 −

(
N

3

)
ε3 + O(ε4) as ε → 0

for N = −(
bn
2

)
+ ab

(
n
2

)
,
(
an
2

) − (
bn
2

) − a(a − b)
(
n
2

)
, −(

bn
2

)
and

(
an
2

) − (
bn
2

)
we

deduce from the two expansions and Lemma 3.1 that, for q = ζ(1 − ε),
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[
an

bn

]

q

− σb(a−b)
n qb(a−b)(n2)

[
a

b

]

qn

= −ab(a − b)
(

a

b

)
(qn − 1)

(n−1∑

k=1

qk

1 − qk
+

n − 1
2

− (b(a − b)n − 1)(n2 − 1)
48

(qn − 1)2
)

+ O(ε4)

as ε → 0. This implies the congruence in (1.7). �

5. q-Rious Congruences

In this final part, we look at the binomial coefficients as particular instances of
integral ratios of factorials, also known as Chebyshev–Landau factorial ratios.
In the q-setting, these are defined by

Dn(q) = Dn(a, b; q) =
[a1n]! · · · [arn]!
[b1n]! · · · [bsn]!

,

where a = (a1, . . . , ar) and b = (b1, . . . , bs) are tuples of positive integers
satisfying

a1 + · · · + ar = b1 + · · · + bs (5.1)

and

�a1x� + · · · + �arx� ≥ �b1x� + · · · + �bsx� for all x > 0 (5.2)

(see, for example, [10]), � · � denotes the integer part of a number. Then Dn(q) ∈
Z[q] are polynomials with values

Dn(1) =
(a1n)! · · · (arn)!
(b1n)! · · · (bsn)!

at q = 1, and the congruences (1.2) and (1.5) generalise as follows.

Theorem 5.1. In the notation

ci = ci(a, b) =
(

a1

i

)
+ · · · +

(
ar

i

)
−

(
b1
i

)
− · · · −

(
bs

i

)
for i = 2, 3,

the congruences

Dn(q) ≡ D1(qn2
) − D1(1)

c2 (n2 − 1)
24

(qn − 1)2 (mod Φn(q)3) (5.3)

and

Dn(q) ≡ σc2
n qc2(n2)D1(qn) + D1(1)

(c2 + c3) (n2 − 1)
12

(qn − 1)2 (mod Φn(q)3)

(5.4)

are valid for any n ≥ 1.
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Observe that when n = p > 3 and q → 1, one recovers from any of these
two congruences

Dp(1) ≡ D1(1) (mod p3),

of which (1.1) is a special case. Furthermore, it is tempting to expect that these
two families of q-congruences may be generalised even further in the spirit of
Theorems 1.1 and 1.2, and that the polynomials Dn(q) satisfy the q-Gauss
relations from [4]. We do not pursue this line here.

Proof of Theorem 5.1. Though the congruences (5.3) and (5.4) are between
polynomials rather than rational functions, we prove the theorem without the
assumption (5.2): in other words, the congruences remain true for the ratio-
nal functions Dn(q) provided that the balancing condition (5.1) (equivalently,
c1(a, b) = 0 in the above notation for ci) is satisfied. In turn, this more general
statement follows from its validity for particular cases

Dn(q) =
[an]!

[bn]! [(a − b)n]!
and D̃n(q) =

[bn]! [(a − b)n]!
[an]!

by induction (on r + s, say). Indeed, the inductive step exploits the property
of both (5.3) and (5.4) to imply the congruence for the product

Dn(a, b; q)Dn(ã, b̃; q)

whenever it is already known for the individual factors; we leave this simple fact
to the reader and only discuss its other appearance when dealing with D̃n(q)
below. Notice that

[
an
bn

] ≡ (
an
bn

) �≡ 0 (mod Φn(q)), so that D̃n(q) =
[
an
bn

]−1 is
well-defined modulo of any power of Φn(q).

For Dn(q) =
[
an
bn

]
, we have c2 = b(a− b) and c2 + c3 = ab(a− b)/2; hence,

(5.3) and (5.4) follow from (1.2) and (1.5), respectively.
Turning to q = ζ(1 − ε), where 0 < ε < 1 and ζ is a primitive n-th root

of unity, write the congruences (1.2) and (1.5) as the asymptotic relation
[
an

bn

]
= B(q) + cB(1)ε2 + O(ε3) as ε → 0,

in which

B(q) =
[
a

b

]

qn2
, c = −b(a − b)n2(n2 − 1)

24
for the case (1.2)

and

B(q) = σb(a−b)
n qb(a−b)(n2)

[
a

b

]

qn

, c =
ab(a − b)n2(n2 − 1)

24
for the case (1.5).

Then

D̃n(q) =
[
an

bn

]−1

= B(q)−1
(
1 + cB(1)B(q)−1ε2 + O(ε3)

)−1

= B(q)−1 − cB(1)B(q)−2ε2 + O(ε3)

= B(q)−1 − cB(1)−1ε2 + O(ε3),
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because we have B(q) = B(1) + O(ε) as ε → 0 for our choices of B(q).
The resulting expansion implies the truth of (5.3) and (5.4) for
D̃n(q) = Dn((b, a − b), (a); q) in view of

ci((b, a − b), (a)) = −ci((a), (b, a − b)) for i = 2, 3.

As explained above, this also establishes the general case of (5.3) and (5.4). �

For related Lucas-type congruences satisfied by the q-factorial ratios
Dn(q), see [1].
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The Final Problem: A Series Identity
from the Lost Notebook

Bruce C. Berndt, Junxian Li, and Alexandru Zaharescu

In celebration of the 80th birthday of George Andrews.

Abstract When Ramanujan’s lost notebook (Ramanujan, The lost notebook and
other unpublished papers, Narosa, New Delhi, 1988) was published in 1988, accom-
panying it were other unpublished notes and partial manuscripts by Ramanujan.
In one of these previously unpublished partial manuscripts, Ramanujan offered
two elegant identities, associated, respectively, with the classical circle and divisor
problems. In fact, they are two-variable analogues, but not generalizations, of
classical identities associated with these two famous problems. The origin and
history of this partial manuscript is unclear. We do know that after Ramanujan
died in 1920, the University of Madras on 30 August, 1923 sent to G.H. Hardy
a parcel of Ramanujan’s unpublished work, probably containing the lost notebook
and the previously mentioned fragment (Berndt and Rankin, Ramanujan: essays and
surveys, American Mathematical Society, Providence, 2001; London Mathematical
Society, London, 2001, p. 266). Unfortunately, we do not have any record of what
was included in this package. If this fragment was included in the mailing, then it
is possible that Ramanujan wrote it at the end of his life in either 1919 or 1920. On
the other hand, from Hardy’s paper (Hardy, Q J Math, 46:263–283, 1915) on the
circle problem published in 1915, it is evident that by early in his stay in England,
Ramanujan had a strong interest in the circle and divisor problems, and so the
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fragment may emanate from this period. In 2013, the first and third present authors
and S. Kim published a proof (Berndt et al., Adv Math, 236:24–59, 2013) of the
identity from the fragment connected with the circle problem. In this paper, a proof
of the second identity is briefly sketched.

1 Introduction

After returning to India in 1919, Ramanujan wrote to Hardy only once before he
died on 26 April 1920. Ramanujan began his letter by announcing a new discovery,
which he called mock ϑ-functions.

I am extremely sorry for not writing you a single letter up to now . . . . I discovered very
interesting functions recently which I call “Mock” ϑ-functions. Unlike the “False” ϑ-
functions (studied by Prof. Rogers in his interesting paper) they enter into mathematics
as beautifully as the ordinary ϑ-functions. I am sending you with this letter some examples
. . . .

Part of the original letter has apparently been lost. A copy of an evidently small
portion of the letter can be found in Ramanujan’s Collected Papers [17, pp. xxxi–
xxxii, 354–355]. A much larger portion of the letter was photocopied and published
with Ramanujan’s “lost notebook” [18, pp. 127–131]. As the ellipses . . . above
indicate, it is highly likely that a portion of the first paragraph or some of the text
immediately following the first paragraph is missing. For further commentary on the
completeness (or lack thereof) of this letter, see [10, pp. 223–224].

G.N. Watson, titled his final Presidential Address to the London Mathematical
Society on 14 November, 1935, The Final Problem: An Account of the Mock
Theta Functions. His published paper [20], [11, pp. 325–347] was an expanded
version of his address. The subtitle, The Final Problem, is borrowed from Sir
Arthur Conan Doyle’s last memoir on Sherlock Holmes. We also note that Sherlock
Holmes’ famous sidekick was Dr. Watson (no relation).

The present authors are clearly borrowing from G.N. Watson who had borrowed
from Sir Arthur Conan Doyle and Sherlock Holmes. However, for us, the “final
problem” is the final entry from the “lost notebook” that remained to be proved. As
readers have noted above, this paper is devoted to George Andrews who discovered
the “lost notebook” in the spring of 1976 in the library of Trinity College, Cam-
bridge [1], [11, pp. 165–184]. Since that time, he has been proving and elucidating
the contents of the “lost notebook,” in particular, during the past 20 years, with
the first author of this paper [2–6]. However, one entry remained impenetrable, and
a proof was not given in [2–6]. We emphasize that we are using the term “lost
notebook” broadly here, for with the publication of the “lost notebook” [18], as
mentioned at the beginning of our abstract, are partial unpublished manuscripts and
other fragments, mostly from the last year of Ramanujan’s life, which the authors
also address in their volumes [2–6]. The entry that remained unproved was the
second of a pair of identities in an isolated fragment in [18, p. 335] connected,
respectively, with the circle and divisor problems. The present authors recently
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constructed a proof of this identity [9]. The purpose of this paper is to share this
identity with readers and to convince them that this is indeed a beautiful, and
possibly important, identity. We provide a brief sketch of the proof at the end of
the present paper, and refer readers to a complete proof in [9].

Perhaps it is therefore wise to begin with very brief descriptions of the circle and
divisor problems. More complete and recent surveys of these problems can be found
in a paper with S. Kim by the first and third authors [8].

2 The Circle and Divisor Problems

Let r2(n) denote the number of representations of the positive integer n as a sum of
two squares, where representations with different orders and different signs on the
summands being squared are regarded as distinct. Thus, r2(7) = 0 and r2(13) = 8,
since 13 = (±2)2 + (±3)2 = (±3)2 + (±2)2. Set r2(0) = 1. Each representation
of n as a sum of two squares can be identified with a lattice point in the plane. It is
therefore not difficult to see that

∑

0≤n≤x

r2(n)

is equal to the number of lattice points in a circle of radius
√

x, and that this number
is approximately equal to πx. Define the “error” term P(x), for x > 0, by

R(x) :=
∑′

0<n≤x

r2(n) = πx + P(x), (2.1)

where the prime ′ on the summation sign indicates that if x is an integer, then only
1
2r2(x) is counted. Finding the correct order of magnitude for P(x), as x → ∞, is
known as the circle problem.

We remark that an elementary representation of R(x), depending on an elemen-
tary formula for r2(n) [15, p. 150], can be given, namely,

R(x) = 4
∑

0<n≤x

′ ∑

d |n
sin

(
πd

2

)

= 4
∑

0<dj≤x

′
sin

(
πd

2

)

= 4
∑

0<d≤x

′ [x

d

]
sin

(
πd

2

)
, (2.2)

where [x] is the greatest integer less than or equal to x. We shall return to this
formula shortly.
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Let d(n) denote the number of positive divisors of the positive integer n. For
example, d(6) = 4, since 1, 2, 3 and 6 comprise all of the divisors of 6. Each divisor
d of n ≤ x can be associated with a lattice point (d, n/d) in the plane. For any
x > 0, by an elementary argument counting these lattice points and involving a
familiar estimate for a partial sum of a harmonic series [16, p. 102, Theorem 42],
we can estimate, as x → ∞,

D(x) :=
∑′

n≤x

d(n) = x(log x + (2γ − 1)) + O(
√

x), (2.3)

where the prime ′ on the summation sign indicates that if x is an integer, then only
1
2d(x) is counted, and where γ denotes Euler’s constant. The error term Δ(x) has
historically been defined by

D(x) = x(log x + (2γ − 1)) + 1

4
+ Δ(x), (2.4)

where the discrepancy 1
4 between (2.3) and (2.4) arises because of a representation

for Δ(x) to be given in the sequel. Determining the correct order of magnitude of
Δ(x) as x tends to ∞ is known as the divisor problem.

In finding bounds for the error terms P(x) and Δ(x), representations in terms of
infinite series of Bessel functions are of central importance; we describe these now.

In reference to (2.1), the error term P(x), x > 0, has the representation

∑

0<n≤x

′
r2(n) = πx +

∞∑

n=1

r2(n)
(x

n

)1/2
J1(2π

√
nx), (2.5)

where the ordinary Bessel function Jν(z) is defined by

Jν(z) :=
∞∑

n=0

(−1)n

n!Γ (ν + n + 1)

( z

2

)ν+2n
, 0 < |z| < ∞, ν ∈ C. (2.6)

The identity (2.5) apparently first appeared in Hardy’s paper [13], [14, pp. 243–
263], where he wrote “The form of this equation was suggested to me by
Mr. S. Ramanujan, . . . ” We can therefore conclude that (2.5) was first proved by
Ramanujan, although we do not have access to his proof.

An analogue for Δ(x) was established earlier in 1904 by G.F. Voronoï [19], and,
from (2.4), is given by

D(x) = x (log x + 2γ − 1) + 1

4
+

∞∑

n=1

d(n)
(x

n

)1/2
I1(4π

√
nx), (2.7)
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where Iν(z) is defined by

Iν(z) := −Yν(z) − 2

π
Kν(z), (2.8)

and where Yν(z) is the Bessel function of the second kind defined by

Yν(z) := Jν(z) cos(νπ) − J−ν(z)

sin(νπ)
, |z| < ∞, (2.9)

and Kν(z) is the modified Bessel function defined by

Kν(z) := π

2

eπiν/2J−ν(iz) − e−πiν/2Jν(iz)

sin(νπ)
, −π < arg z < 1

2π, 0 < |z| < ∞.

(2.10)

If ν is an integer n, it is understood that we define the functions above by taking
their limits as ν → n in (2.9) and (2.10).

3 A Fragment Published with the Lost Notebook

The fragment [18, p. 335] published with the “lost notebook” contains two-variable
analogues of (2.5) and (2.7). We shall adhere to Ramanujan’s notation and first
define

F(x) =
{

[x], if x is not an integer,

x − 1
2 , if x is an integer.

(3.1)

The first entry from [18, p. 335] is associated with the circle problem.

Entry 3.1 ([18, p. 335]) Let F(x) be defined by (3.1), and recall that J1(z) is
defined in (2.6). If 0 < θ < 1 and x > 0, then

∞∑

n=1

F
(x

n

)
sin(2πnθ) = πx

(
1

2
− θ

)
− 1

4
cot(πθ)

+ 1

2

√
x

∞∑

m=1

∞∑

n=0

{
J1

(
4π

√
m(n + θ)x

)
√

m(n + θ)
− J1

(
4π

√
m(n + 1 − θ)x

)
√

m(n + 1 − θ)

}
.

(3.2)

This formula is very interesting, for the left-hand side of (3.2) can be considered
as a two-variable analogue of (2.2), while the right-hand side of (3.2) is a two-
variable analogue of the right-hand side of (2.5). Entry 3.1 was first proved by the
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first and third authors [12] with the order of summation on the double sum reversed
from that recorded by Ramanujan. A proof of (3.2) with the order of summation as
given by Ramanujan was established 7 years later by the first author, S. Kim, and the
third author [7]. They also proved a version of (3.2) with the product of the indices
mn tending to ∞.

The second entry from the fragment [18, p. 335] is associated with the divisor
problem.

Entry 3.2 ([18, p. 335]) Let F(x) be defined by (3.1). Then, for x > 0 and 0 <

θ < 1,

∞∑

n=1

F
(x

n

)
cos(2πnθ) = 1

4
− x log(2 sin(πθ))

+ 1

2

√
x

∞∑

m=1

∞∑

n=0

{
I1

(
4π

√
m(n + θ)x

)
√

m(n + θ)
+ I1

(
4π

√
m(n + 1 − θ)x

)
√

m(n + 1 − θ)

}
, (3.3)

where I1(z) is defined by (2.8).

Recalling the definition of D(x) from (2.3), by an elementary argument we see
that

D(x) =
∑

n≤x

∑

d |n

′
1 =

∑

dj≤x

′
1 =

∑

d≤x

∑

1≤j≤x/d

′
1 =

∑

d≤x

′ [x

d

]
. (3.4)

Thus, the left side of (3.3) is a generalization of (3.4), while the right-hand side is a
two-variable analogue of the right-hand side of (2.7).

The first and third authors in collaboration with S. Kim [7] were able to prove
(3.3), but only with the order of summation either reversed or with the product of
indices mn tending to ∞. A proof of (3.3) with the order of summation as recorded
by Ramanujan evidently required a more sophisticated argument than the one in
[7]. Indeed, certain difficulties, that did not arise in the proof of (3.2) arose in their
attempts to prove (3.3). Thus, Entry 3.2 has remained unproved and has had the
distinction in recent times for being the only unproved claim of Ramanujan from
[18]. Fortunately, to help celebrate the birthday of George Andrews, the present
authors were able to devise a proof of (3.3) [9].

It is possible that Ramanujan devised Entries 3.1 and 3.2 in order to attack the
circle problem and divisor problem, respectively. It is clear from Hardy’s paper
[13] that Ramanujan had developed an interest in the circle problem, and possibly
also the divisor problem, either before he came to England in 1914 or shortly
thereafter. In analytic number theory, often the introduction of an extra parameter or
variable allows the researcher to employ additional ideas and techniques that would
otherwise be unavailable in investigating the problem. Perhaps Ramanujan had ideas
to attack the circle problem and divisor problemwhen he introduced another variable
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θ to establish two-variable analogues of (2.5) and (2.7) in Entries 3.1 and 3.2,
respectively.

4 Brief Sketch of the Proof of Entry 3.2

A primary difficulty in proving (3.3) is that when we apply the asymptotic formulas,
as z → ∞, for the Bessel functions (2.9) and (2.10), we readily find that the series
on the right-hand side of (3.3) does not converge absolutely. We therefore consider
a two-variable extension of this series defined by

G(x, θ, s,w) :=
∞∑

m=1

∞∑

n=1

(
a1(x, θ,m, n)

ms(n + θ)w
+ a2(x, θ,m, n)

ms(n + 1 − θ)w

)
, (4.1)

where

a1(x, θ,m, n) = I1(4π
√

m(n + θ)x), (4.2)

a2(x, θ,m, n) = I1(4π
√

m(n + 1 − θ)x), (4.3)

where I1(z) is defined by (2.8). We not only want to determine the values of (s,w)

for whichG(x, θ, s,w) converges, but we also want to obtain regions in the complex
s and w planes where the series converges uniformly with respect to θ on any
compact subset of (0, 1).

Theorem 4.1 Let G(x, θ, s,w) be defined above. Assume that Re(s) > 1
4 and

Re(w) > 1
4 . Furthermore, if x is an integer, assume that Re(s) + Re(w) > 25

26 ,
while if x is not an integer, assume that Re(s) + Re(w) > 5

6 . Then the series (4.1)
converges uniformly with respect to θ in any compact subinterval of (0, 1).

It is helpful to work with continuous functions on [0, 1], instead of functions
continuous only on (0, 1). We therefore first multiply both sides of the proposed
identity (3.3) by sin2(πθ) in order to extend the domain of continuity 0 < θ < 1
to 0 ≤ θ ≤ 1. We then rewrite the amended proposed identity by isolating the
series of Bessel functions on one side of the equation. Next, we calculate the
Fourier series of each side of the new amended proposed identity and show that
they are equal. Because each side of the proposed identity is continuous, we can
thus conclude from the theory of Fourier series that the two sides are identical
for 0 < θ < 1.
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A Family of Identities That Yields a Wide
Variety of Partition Theorems

Louis W. Kolitsch and Stephanie Kolitsch

Dedicated to George Andrews in celebration of his 80th
birthday.

Abstract In a recent paper, Andrews and Yee presented two identities that were
described as surprising. In this paper, a family of similar identities will be presented
and used to establish a wide variety of partition theorems.
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1 Introduction

In [4] Andrews and Yee presented the identities

n∑

j=0

qj (q; q)n+j

(q2; q2)j
= (q2; q2)n

and

n∑

j=0

q2j (q; q)n+j

(q2; q2)j
= (q; q2)n+1 + qn+1(q2; q2)n.

In this paper, a family of one-parameter series will be presented where the first two
members of the family are connected in a similar manner. The first two members of
the family are stated in Theorems 2.1 and 2.2 and the general case of the family is
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stated in Theorem 2.3. After proving these theorems, several examples for specific
choices of the parameter z will be explored.

2 The Initial Theorems

Theorems 2.1 and 2.2 will be proved using the technique used by Andrews and Yee
in [4]. Namely, let

Sn(k, z) =
n∑

j=0

qkj (z; q)j

(q; q)j

and observe that the sum in Theorem 2.1 is Sn(1, z) and the sum in Theorem 2.2 is
Sn(2, z).

Theorem 2.1 For a non-negative integer n,

n∑

j=0

qj (z; q)j

(q; q)j
= (zq; q)n

(q; q)n
.

Proof It is easy to see that the result is true for n = 0 and n = 1. Proceeding by
mathematical induction, we find that

Sn+1(1, z) =
n+1∑

j=0

qj (z; q)j

(q; q)j

= Sn(1, z) + qn+1(z; q)n+1

(q; q)n+1

= (zq; q)n

(q; q)n
+ qn+1(z; q)n+1

(q; q)n+1

= (zq; q)n

(q; q)n+1

(
(1 − qn+1) + qn+1(1 − z)

)

= (zq; q)n+1

(q; q)n+1
.

Since the result for n implies the result for n + 1, this completes the proof of the
theorem. �
Theorem 2.2 For a positive integer n,

n∑

j=0

q2j (z; q)j

(q; q)j
= (zq2; q)n

(q2; q)n−1
+ qn+1(zq; q)n

(q; q)n
.
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Proof To prove Theorem 2.2, we first note that for a positive integer n,

Sn(k, z) =
n∑

j=0

qkj (z; q)j

(q; q)j
=

n∑

j=0

q(k−1)j (1 − (1 − qj ))(z; q)j

(q; q)j

= Sn(k − 1, z) −
n∑

j=1

q(k−1)j (z; q)j

(q; q)j−1

= Sn(k − 1, z) −
n−1∑

j=0

q(k−1)(j+1)(z; q)j+1

(q; q)j

= Sn(k − 1, z) − qk−1(1 − z)Sn−1(k − 1, zq).

Thus

Sn(2, z) = Sn(1, z) − q(1 − z)Sn−1(1, zq)

= (zq; q)n

(q; q)n
− q(1 − z)

(
(zq2; q)n−1

(q; q)n−1

)

= (zq2; q)n−1

(q; q)n

(
(1 − zq) − q(1 − z)(1 − qn)

)

= (zq2; q)n−1

(q; q)n

(
(1 − q) + qn+1(1 − z)

)

= (zq2; q)n−1

(q; q)n

(
(1 − zqn+1)(1 − q) + qn+1(1 − zq)

)

= (zq2; q)n

(q2; q)n−1
+ qn+1(zq; q)n

(q; q)n
.

�
It should be noted that the sum in Theorem 2.1 is F(zq−1, 1, q, n) and the sum

in Theorem 2.2 is F(zq−1, 1, q2, n) from [2]. If we take the limit of the result in
Theorem 2.1 as n goes to infinity, we obtain the q-binomial theorem (Theorem 2.1
in [3]) with t replaced by q and a replaced by z. Also, in a personal communication
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from Andrews and in a note from the editors, it was pointed out that Theorem 2.1
can be proved using the q-analog of the Chu-Vandemonde summation

n∑

j=0

(q−n; q)j (b; q)j

(q; q)j (c; q)j
= bn( c

b
; q)n

(c; q)n

by letting c = q−n.
The result of Theorem 2.1 is the k = 1 case of the following theorem while the

k = 2 case of this theorem is the fourth line in the proof of the result for Sn(2, z).

Theorem 2.3 For a positive integer n and a positive integer k ≤ n + 1,

n∑

j=0

qkj (z; q)j

(q; q)j
= (zqk; q)n−k+1

(q; q)n

k−1∑

j=0

(
q(n+1)j (z; q)j (q

j+1; q)k−1−j

)
.

Proof We will use induction to show that the result is true for k if we assume the
result is true for k − 1. Starting with the fact that

Sn(k, z) = Sn(k − 1, z) − qk−1(1 − z)Sn−1(k − 1, zq),

we have

Sn(k, z) = (zqk−1; q)n−k+2

(q; q)n

( k−2∑

j=0

q(n+1)j (z; q)j (q
j+1; q)k−2−j

)

−qk−1(1 − z)
(zqk; q)n−k+1

(q; q)n−1

( k−2∑

j=0

qnj (zq; q)j(q
j+1; q)k−2−j

)

= (zqk; q)n−k+1

(q; q)n

(
(1 − zqk−1)

k−2∑

j=0

q(n+1)j (z; q)j(q
j+1; q)k−1−j

−qk−1
k−2∑

j=0

(qnj − qn(j+1))(z; q)j+1(q
j+1; q)k−2−j

)

= (zqk; q)n−k+1

(q; q)n

k−2∑

j=0

(
qnj (z; q)j (q

j+1; q)k−2−j (q
j − qk−1 + qk−1+n

−zqk−1+n+j )

)
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= (zqk; q)n−k+1

(q; q)n

k−2∑

j=0

(
qnj (z; q)j(q

j+1; q)k−2−j (q
j − qk−1+j − qk−1

+qk−1+j + qk−1+n − zqk−1+n+j )

)

= (zqk; q)n−k+1

(q; q)n

( k−2∑

j=0

(
q(n+1)j (z; q)j (q

j+1; q)k−1−j

)

−qk−1
k−2∑

j=0

(
qnj (z; q)j (q

j ; q)k−1−j

)

+qk−1
k−2∑

j=0

(
qn(j+1)(z; q)j+1(q

j ; q)k−2−j

))
.

When combined these last two sums are equal to qk−1qn(k−1)(z; q)k−1 giving us

Sn(k, z) = (zqk; q)n−k+1

(q; q)n

k−1∑

j=0

(
q(n+1)j (z; q)j(q

j+1; q)k−1−j

)

which completes the proof. �

3 Some Partition Theorems Associated with Theorem 2.1

In this section, we will interpret the result in Theorem 2.1 in terms of partitions for
several choices of the parameter z. Each result will first be proved analytically using
a generating function. A combinatorial proof of each result is also provided, along
with an example illustrating the bijection in the combinatorial proof. For the first
result we let z = 0 which gives us the following identity:

n∑

j=0

qj

(q; q)j
= 1

(q; q)n
.

The product on the right-hand side is the generating function for partitions into
parts less than or equal to n. The sum on the left-hand side simply sorts these
partitions based on the largest part less than or equal to n that appears in the partition.
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Our first theorem is:

Theorem 3.1 The number of partitions of m into parts less than or equal to n is the
same as the number of partitions of m into parts less than or equal to 2n − 1 where
the gap between the largest part less than n and the smallest part greater than or
equal to n is at least n.

Proof Replacing n with n − 1 and letting z = qn in Theorem 2.1, we obtain

n−1∑

j=0

qj (qn; q)j

(q; q)j
= (qn+1; q)n−1

(q; q)n−1
.

To interpret this in terms of partitions we divide each side of the equation by
(qn; q)n to obtain

n−1∑

j=0

qj

(qn+j ; q)n−j (q; q)j
= 1

(q; q)n
.

The product on the right-hand side is the generating function for partitions into
parts less than or equal to n. The sum on the left-hand side is the generating function
for partitions into parts less than or equal to 2n−1 where the gap between the largest
part less than n and the smallest part greater than or equal to n is at least n. (If there
are no parts less than n, we take the largest part less than n to be 0.) �

To illustrate this theorem we have listed the partitions of m = 7 of the two
types described in Theorem 3.1 for n = 3 in the table below. We have paired the
partitions using the bijection that can be used to prove this theorem combinatorially.
The combinatorial proof is presented immediately following the table.

To prove Theorem 3.1 combinatorially, we will describe a bijection between the
two types of partitions.

Partitions of 7 into parts less than or equal
to 3

Partitions of 7 into parts less than or equal
to 5 where the gap between the largest part
less than 3 and the smallest part greater
than or equal to 3 is at least 3

3 + 3 + 1 4 + 3

3 + 2 + 2 5 + 2

3 + 2 + 1 + 1 5 + 1 + 1

3 + 1 + 1 + 1 + 1 4 + 1 + 1 + 1

2 + 2 + 2 + 1 2 + 2 + 2 + 1

2 + 2 + 1 + 1 + 1 2 + 2 + 1 + 1 + 1

2 + 1 + 1 + 1 + 1 + 1 2 + 1 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1 + 1
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Proof We will start with a partition, a1 ≤ a2 ≤ · · · ≤ ar < b1 ≤ b2 ≤ · · · ≤ bs ,
where the parts are all less than or equal to 2n − 1, the a-parts are less than n, the
b-parts are greater than or equal to n, and b1 − ar ≥ n. If the set of b-parts is empty,
the partition is already a partition into parts less than n and we will not change the
partition. If the set of a-parts is empty, we will simply subtract n from each of the
b-parts and create a new partition consisting of s parts of size n and the parts b1−n,
b2 − n, . . . , bs − n. Note that some of the parts bi − n could be zero and will
simply be deleted. If neither the set of a-parts nor the set of b-parts is empty, we
will subtract n from each b-part and create a new partition, a1 ≤ a2 ≤ · · · ar ≤
b1 − n ≤ b2 − n ≤ · · · ≤ bs − n < n ≤ n ≤ · · · ≤ n where there are s parts of size
n. It should be noted that b1 − n ≥ ar because of the gap condition and bs − n < n

since the parts in our original partition are all less than or equal to 2n − 1. Clearly
the transformations described above can be reversed and thus we have a bijection
between the two sets of partitions in Theorem 3.1. �
Our second theorem is:

Theorem 3.2 The number of partitions of m into parts less than or equal to 2n+ 1
where the only odd parts that can appear are 2n + 1 is the same as the number of
partitions of m into parts less than or equal to 4n + 1 where the even parts are less
than or equal to 2n and the odd parts are at least 2n + 1 greater than the largest
even part.

Proof Replacing q by q2 and letting z = q2n−1 in Theorem 2.1, we have

n∑

j=0

q2j (q2n−1; q2)j

(q2; q2)j
= (q2n+1; q2)n

(q2; q2)n
.

To interpret this in terms of partitions we multiply each side of the equation by
(q;q2)n

(q;q2)2n+1
to obtain

n∑

j=0

q2j

(q2n+2j+1; q2)n−j+1(q2; q2)j
= 1

(1 − q2n+1)(q2; q2)n
.

The product on the right-hand side is the generating function for partitions into
parts less than or equal to 2n+1 where the only odd parts that can appear are 2n+1.
The sum on the left-hand side is the generating function for partitions into parts less
than or equal to 4n + 1 where the even parts are less than or equal to 2n, the odd
parts are greater than the largest even part, and the gap between the largest even part
and the smallest odd part is at least 2n + 1. (If there are no even parts, we take the
largest even part to be 0.) �

To illustrate this theorem we have listed the partitions of m = 21 of the two
types described in Theorem 3.2 for n = 3 in the table below. We have paired the
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partitions using the bijection that can be used to prove this theorem combinatorially.
The combinatorial proof is presented immediately following the table.

Partitions of 21 into parts less than or equal
to 7 where the only odd parts that can
appear are 7s

Partitions of 21 into parts less than or equal
to 13 where the even parts are less than or
equal to 6 and the odd parts are at least 7
more than the largest even part

7 + 7 + 7 7 + 7 + 7

7 + 6 + 6 + 2 13 + 6 + 2

7 + 6 + 4 + 4 13 + 4 + 4

7 + 6 + 4 + 2 + 2 13 + 4 + 2 + 2

7 + 6 + 2 + 2 + 2 + 2 13 + 2 + 2 + 2 + 2

7 + 4 + 4 + 4 + 2 11 + 4 + 4 + 2

7 + 4 + 4 + 2 + 2 + 2 11 + 4 + 2 + 2 + 2

7 + 4 + 2 + 2 + 2 + 2 + 2 11 + 2 + 2 + 2 + 2 + 2

7 + 2 + 2 + 2 + 2 + 2 + 2 + 2 9 + 2 + 2 + 2 + 2 + 2 + 2

To prove this theorem combinatorially, we will describe a bijection between the
two types of partitions.

Proof We will start with a partition, a1 ≤ a2 ≤ · · · ≤ ar < b1 ≤ b2 ≤ · · · ≤ bs ,
where the parts are all less than or equal to 4n + 1, the a-parts are even and less
than or equal to 2n, the b-parts are odd and greater than or equal to 2n + 1, and
b1 − ar ≥ 2n + 1. If the set of b-parts is empty, the partition is already a partition
into even parts less than or equal to 2n and we will not change the partition. If the
set of a-parts is empty, we will simply subtract 2n + 1 from each of the b-parts and
create a new partition consisting of s parts of size 2n + 1 and the parts b1 − 2n − 1,
b2 − 2n− 1, . . . , bs − 2n− 1. Note that some of the parts bi − 2n− 1 could be zero
and will simply be deleted. Also note that the parts bi − 2n − 1 are even and less
than or equal to 2n. If neither the set of a-parts nor the set of b-parts is empty, we
will subtract 2n+1 from each b-part and create a new partition, a1 ≤ a2 ≤ · · · ar ≤
b1 − 2n− 1 ≤ b2 − 2n− 1 ≤ · · · ≤ bs − 2n− 1 ≤ 2n+ 1 ≤ 2n+ 1 ≤ · · · ≤ 2n+ 1
where there are s parts of size 2n + 1. It should be noted that the parts bi − 2n − 1
are all even and less than or equal to 2n and b1 − 2n − 1 ≥ ar because of the gap
condition. Clearly the transformations described above can be reversed and thus we
have a bijection between the two sets of partitions in Theorem 3.2. �

Our next theorem is:

Theorem 3.3 The number of overpartitions of m where the overlined parts are
greater than or equal to 2 and less than or equal to n + 1 and the non-overlined
parts are less than or equal to n is the same as the number of overpartitions of m

into parts less than or equal to n where the overlined parts in the partition are less
than or equal to the largest non-overlined part.
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Proof Letting z = −q in Theorem 2.1, we have

n∑

j=0

qj (−q; q)j

(q; q)j
= (−q2; q)n

(q; q)n
.

The product on the right-hand side is the generating function for overpartitions
[5] where the overlined parts are greater than or equal to 2 and less than or equal to
n + 1 and the non-overlined parts are less than or equal to n. The sum on the left-
hand side is the generating function for overpartitions into parts less than or equal
to n where the overlined parts in the partition are less than or equal to the largest
non-overlined part. �

To illustrate this theorem we have listed the overpartitions of m = 6 of the two
types described in Theorem 3.3 for n = 2 in the table below. We have paired the
partitions using the bijection that can be used to prove this theorem combinatorially.
The combinatorial proof is presented immediately following the table.

Overpartitions of 6 where the overlined
parts are greater than or equal to 2 and less
than or equal to 3 and the non-overlined
parts are less than or equal to 2

Overpartitions of 6 into parts less than or
equal to 2 where the overlined parts in the
partition are less than or equal to the largest
non-overlined part

3 + 2 + 1 2 + 2 + 1 + 1

3 + 2 + 1 2 + 2 + 1 + 1

3 + 1 + 1 + 1 2 + 1 + 1 + 1 + 1

2 + 2 + 2 2 + 2 + 2

2 + 2 + 2 2 + 2 + 2

2 + 2 + 1 + 1 2 + 2 + 1 + 1

2 + 2 + 1 + 1 2 + 2 + 1 + 1

2 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1

2 + 1 + 1 + 1 + 1 2 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1

To prove this theorem combinatorially, we will describe a bijection between the
two types of partitions.
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Proof We will start with a partition, 2 ≤ a1 < a2 < · · · < ar ≤ n + 1 and
1 ≤ b1 ≤ b2 ≤ · · · ≤ bs ≤ n, where the a-parts are the overlined parts and the
b-parts are the non-overlined parts. If the set of a-parts is empty or ar ≤ bs , the
partition is already a partition in the other set and we will not change the partition.
If ar > bs , we will delete ar and replace it with the non-overlined part ar − 1 and
the overlined part 1 to get a partition in the other set. Clearly this transformation
can be reversed and thus we have a bijection between the two sets of partitions in
Theorem 3.3. �

In Corollary 1.2 in [5] the identity

n∑

k=0

(−1
a

; q)kc
kakqk(k+1)/2

(cq; q)k

[
n

k

]
= (−acq; q)n

(cq; q)n

was interpreted combinatorially. If we let c = 1 and a = q , the right-hand side
of this identity is the same as the right-hand side of the identity we interpreted in
Theorem 3.3. This gives us the following theorem.

Theorem 3.4 The number of overpartitions of m into parts less than or equal to
n where the overlined parts in the partition are less than or equal to the largest
non-overlined part is the same as the number of Frobenius partitions of m where
the number of columns is less than or equal to n, the partition in the top row is a
partition into nonnegative, distinct parts where each part is less than or equal to
n − 1 and the partition in the bottom row is an overpartition where the overlined
parts are nonnegative integers and the non-overlined parts are positive integers.

Noticing that when a = q in the above sum all of the terms for k greater than 1
will include a factor of 2 gives us the following corollaries.

Corollary 3.5 The number of overpartitions of m into parts less than or equal to
n where the overlined parts in the partition are less than or equal to the largest
non-overlined part is even if and only if m > n.

Corollary 3.6 The number of Frobenius partitions of m where the number of
columns is less than or equal to n, the partition in the top row is a partition into
distinct parts where each part is less than or equal to n − 1 and the partition in the
bottom row is an overpartition where the overlined parts are nonnegative integers
and the non-overlined parts are positive integers is even if and only if m > n.
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Corollary 3.7 The number of overpartitions of m where the overlined parts are
greater than or equal to 2 and less than or equal to n + 1 and the non-overlined
parts are less than or equal to n is even if and only if m > n.

Our next theorem is:

Theorem 3.8 The number of overpartitions of m into parts less than or equal to 2n
where non-overlined parts are less than or equal to n and overlined parts must be
at most n greater than the largest non-overlined part is the same as the number of
overpartitions of m into parts less than or equal to 2n + 1 where n + 1 does not
appear as a part, parts less than or equal to n can be overlined or not, and parts
greater than n + 1 must be overlined.

Proof Letting z = −qn+1 in Theorem 2.1 gives us

n∑

j=0

qj (−qn+1; q)j

(q; q)j
= (−qn+2; q)n

(q; q)n
.

To interpret this in terms of partitions we multiply each side of the equation by
(−q; q)n to obtain

n∑

j=0

qj (−q; q)n+j

(q; q)j
= (−q; q)2n+1

(1 + qn+1)(q; q)n
.

The product on the right-hand side is the generating function for overpartitions
into parts less than or equal to 2n + 1 where n + 1 does not appear as a part, parts
less than or equal to n can be overlined or not, and parts greater than n + 1 must be
overlined. The sum on the left-hand side is the generating function for overpartitions
into parts less than or equal to 2n where non-overlined parts are less than or equal
to n and overlined parts must be at most n greater than the largest non-overlined
part. (If there are no non-overlined parts, we take the largest non-overlined part to
be 0.) �

To illustrate this theorem we have listed the overpartitions of m = 5 of the
two types described in Theorem 3.8 for n = 2 in the table below. We have
paired the overpartitions using the bijection that can be used to prove this theorem
combinatorially. The table appears immediately following the combinatorial proof.
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Overpartitions of 5 into parts less than or
equal to 4 where non-overlined parts are
less than or equal to 2 and overlined parts
must be at most 2 greater than the largest
non-overlined part

Overpartitions of 5 into parts less than or
equal to 5 where 3 does not appear as a
part, parts less than or equal to 2 can be
overlined or not, and parts greater than 3
must be overlined

3 + 2 5

3 + 1 + 1 4 + 1

3 + 1 + 1 4 + 1

2 + 2 + 1 2 + 2 + 1

2 + 2 + 1 2 + 2 + 1

2 + 2 + 1 2 + 2 + 1

2 + 2 + 1 2 + 2 + 1

2 + 1 + 1 + 1 2 + 1 + 1 + 1

2 + 1 + 1 + 1 2 + 1 + 1 + 1

2 + 1 + 1 + 1 2 + 1 + 1 + 1

2 + 1 + 1 + 1 2 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1

To prove this theorem combinatorially, we will describe a bijection between the
two types of partitions.

Proof We will start with an overpartition, λ, with parts a1 ≤ a2 ≤ · · · ≤ ar and
b1 < b2 < · · · < bs , where the a-parts are the non-overlined parts less than or equal
to n and the b-parts are the overlined parts that are greater than or equal to 1 and
are all less than or equal to ar + n. If there are no non-overlined parts ar is taken to
be 0. If λ is an overpartition with no part of size n + 1 then λ is a partition in the
other set. If λ contains a part n + 1 then we will transform λ into an overpartition
in the other set. We first note that there must be a non-overlined part in λ since if
there is no non-overlined part then the largest non-overlined part would be 0 and
the size condition on the overlined parts would force the overlined parts less than or
equal to n. We will delete the overlined part n + 1 and create the new overlined part
ar + n + 1 to create an overpartition in the other set. It should be noted that the part
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ar + n + 1 is the largest overlined part in the new overpartition and was not already
in λ because of the size constraint on the overlined parts relative to the largest non-
overlined part. Clearly the transformation described above can be reversed and thus
we have a bijection between the two sets of overpartitions in Theorem 3.8. �

Our next theorem is:

Theorem 3.9 The number of pod-partitions of m where the odd parts are greater
than or equal to 3 and less than or equal to 2n + 1 and the even parts are less than
or equal to 2n is the same as the number of pod-partitions of m into parts less than
or equal to 2n where the odd parts in the partition are less than the largest even
part.

Proof Letting z = zq and then replacing q with q2 and z with −q−1 in
Theorem 2.1, we have

n∑

j=0

q2j (−q; q2)j

(q2; q2)j
= (−q3; q2)n

(q2; q2)n
.

The product on the right-hand side is the generating function for partitions with
odd parts distinct (pod-partitions) [1] where the odd parts are greater than or equal
to 3 and less than or equal to 2n + 1 and the even parts are less than or equal to
2n. The sum on the left-hand side is the generating function for pod-partitions into
parts less than or equal to 2n where the odd parts in the partition are less than the
largest even part. �

To illustrate this theorem we have listed the pod-partitions of m = 10 of the two
types described in Theorem 3.9 for n = 4 in the table below. We have paired the
partitions using the bijection that can be used to prove this theorem combinatorially.
The combinatorial proof is presented immediately following the table.

pod-partitions of 10 where the odd parts
are greater than or equal to 3 and less than
or equal to 9 and the even parts are less
than or equal to 8

pod-partitions of 10 into parts less than
or equal to 8 where the odd parts in the
partition are less than the largest even part

8 + 2 8 + 2

7 + 3 6 + 3 + 1

6 + 4 6 + 4

6 + 2 + 2 6 + 2 + 2

5 + 3 + 2 4 + 3 + 2 + 1

4 + 4 + 2 4 + 4 + 2

4 + 2 + 2 + 2 4 + 2 + 2 + 2

2 + 2 + 2 + 2 + 2 2 + 2 + 2 + 2 + 2

To prove this theorem combinatorially, we will describe a bijection between the
two types of pod-partitions.
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Proof We will start with a partition, 3 ≤ a1 < a2 < · · · < ar ≤ 2n + 1 and
2 ≤ b1 ≤ b2 ≤ · · · ≤ bs ≤ 2n, where the a-parts are the odd parts and the b-parts
are the even parts. If the set of a-parts is empty or ar < bs , the partition is already
a partition in the other set and we will not change the partition. If ar > bs , we
will delete ar and replace it with the even part ar − 1 and the odd part 1 to get a
partition in the other set. Clearly this transformation can be reversed and thus we
have a bijection between the two sets of partitions in Theorem 3.9. �

Again if we use a combinatorial interpretation of the identity from Corollary 2.1
in [5] with q replaced by q2 and c = 1 and a = q , we obtain the right-hand side of
the identity we interpreted in Theorem 3.9. This gives us the following theorem.

Theorem 3.10 The number of pod-partitions of m where the odd parts are greater
than or equal to 3 and less than or equal to 2n + 1 and the even parts are less
than or equal to 2n is the same as the number of Frobenius partitions of m where
the number of columns is less than or equal to n, the partition in the top row is a
partition into distinct odd parts where each part is less than or equal to 2n − 1 and
the partition in the bottom row is an overpartition where the overlined parts are
nonnegative even integers and the non-overlined parts are odd positive integers.

Our last theorem in this section is:

Theorem 3.11 The number of pod-partitions of m where the even parts are less
than or equal to 2n, the odd parts are less than or equal to 4n + 1, and 2n + 1 does
not appear as a part is the same as the number of pod-partitions of m where the
even parts are less than or equal to 2n and the odd parts are at most 2n − 1 greater
than the largest even part.

Proof Replacing q by q2 and letting z = −q2n+1 in Theorem 2.1, gives us

n∑

j=0

q2j (−q2n+1; q2)j

(q2; q2)j
= (−q2n+3; q2)n

(q2; q2)n
.

To interpret this in terms of partitions we multiply each side of the equation by
(−q; q2)n to obtain

n∑

j=0

q2j (−q; q2)n+j

(q2; q2)j
= (−q; q2)2n+1

(1 + q2n+1)(q2; q2)n
.

The product on the right-hand side is the generating function for pod-partitions
where the even parts are less than or equal to 2n, the odd parts are less than or equal
to 4n + 1, and 2n+ 1 does not appear as a part. The sum on the left-hand side is the
generating function for pod-partitions into parts less than or equal to 4n − 1 where
the odd parts are at most 2n − 1 greater than the largest even part. (If there are no
even parts, we take the largest even part to be 0.) �
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To illustrate this theorem we have listed the partitions of m = 11 of the two
types described in Theorem 3.11 for n = 3 in the table below. We have paired the
partitions using the bijection that can be used to prove this theorem combinatorially.
The table appears immediately following the combinatorial proof.

pod-partitions of 11 where the even parts
are less than or equal to 6, the odd parts
are less than or equal to 13, and 7 does not
appear as a part

pod-partitions of 11 where the even parts
are less than or equal to 6 and the odd parts
are at most 5 greater than the largest even
part

11 7 + 4

9 + 2 7 + 2 + 2

6 + 5 6 + 5

6 + 4 + 1 6 + 4 + 1

6 + 3 + 2 6 + 3 + 2

6 + 2 + 2 + 1 6 + 2 + 2 + 1

5 + 4 + 2 5 + 4 + 2

5 + 3 + 2 + 1 5 + 3 + 2 + 1

5 + 2 + 2 + 2 5 + 2 + 2 + 2

4 + 4 + 3 4 + 4 + 3

4 + 4 + 2 + 1 4 + 4 + 2 + 1

4 + 3 + 2 + 2 4 + 3 + 2 + 2

4 + 2 + 2 + 2 + 1 4 + 2 + 2 + 2 + 1

3 + 2 + 2 + 2 + 2 3 + 2 + 2 + 2 + 2

2 + 2 + 2 + 2 + 2 + 1 2 + 2 + 2 + 2 + 2 + 1

To prove this theorem combinatorially, we will describe a bijection between the
two types of partitions.

Proof We will start with a pod-partition, λ, with parts a1 ≤ a2 ≤ · · · ≤ ar and
b1 < b2 < · · · < bs , where the a-parts are all even and less than or equal to 2n
and the b-parts are all odd, greater than or equal to 1, and no more than 2n − 1
greater than ar . Note that if there are no even parts then ar is taken to be 0. If λ is
a pod partition with no parts of size 2n + 1 then λ is a partition in the other set. If
λ contains a part 2n + 1 then we will transform λ into a pod partition in the other
set. We first note that there must be an even part in λ since if there is no even part
then the largest even part would be 0 and the size condition on the odd parts would
force the odd parts less than or equal to 2n − 1. We will delete the part 2n + 1 and
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create the new part ar + 2n + 1 to create a pod partition in the other set. It should
be noted that the part ar +2n+1 is the largest odd part in the new partition and was
not already in λ because of the size constraint on the odd parts relative to the largest
even part. Clearly the transformation described above can be reversed and thus we
have a bijection between the two sets of partitions in Theorem 3.11. �

4 Some Partition Theorems Associated with Theorems 2.2
and 2.3

In this section, we will interpret the results in Theorems 2.2 and 2.3 in terms of
partitions. For the first result we let z = 0 in Theorem 2.3 which leads us to the
following theorem.

Theorem 4.1 The number of partitions of m into parts less than or equal to n where
the largest part is repeated at least k times is the same as the number of partitions
of m into parts less than or equal to n where either there are no parts less than k or
if j > 0 is the largest part less than k appearing in the partition then the partition
contains at least j n’s.

Proof Letting z = 0 in Theorem 2.3, we have

n∑

j=0

qkj

(q; q)j
= 1

(q; q)n

k−1∑

j=0

(
q(n+1)j (qj+1; q)k−1−j

)

= 1

(qk; q)n−k+1
+

k−1∑

j=1

(
q(n+1)j

(q; q)j(qk; q)n−k+1

)
.

The sum on the left-hand side is the generating function for partitions into parts
less than or equal to n where the largest part is repeated at least k times. The function
on the right-hand side counts partitions of m where the parts are less than or equal
to n and there are either no parts less than k or if a part less than k appears in the
partition then the number of n’s that appear in the partition is at least as large as the
largest part less than k that appears. �

To illustrate this theoremwe have listed the partitions ofm = 10 of the two types
described in Theorem 4.1 for n = 3 and k = 2 in the table below.We have paired the
partitions using the bijection that can be used to prove this theorem combinatorially.
The combinatorial proof is presented immediately following the table.
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Partitions of 10 into parts less than or equal
to 3 where the largest part is repeated at
least 2 times

Partitions of 10 into parts less than or equal
to 3 which contain no 1s or contain at least
one 1 and at least one 3

3 + 3 + 3 + 1 3 + 3 + 3 + 1

3 + 3 + 2 + 2 3 + 3 + 2 + 2

3 + 3 + 2 + 1 + 1 3 + 3 + 2 + 1 + 1

3 + 3 + 1 + 1 + 1 + 1 3 + 3 + 1 + 1 + 1 + 1

2 + 2 + 2 + 2 + 2 2 + 2 + 2 + 2 + 2

2 + 2 + 2 + 2 + 1 + 1 3 + 2 + 2 + 2 + 1

2 + 2 + 2 + 1 + 1 + 1 + 1 3 + 2 + 2 + 1 + 1 + 1

2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 3 + 2 + 1 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1

To prove this theorem combinatorially, we will describe a bijection between the
two types of partitions.

Proof We will start with a partition λ with parts, a1 ≤ a2 ≤ · · · ≤ ar < b1 ≤
b2 ≤ · · · ≤ bs , where the parts are all less than or equal to n, the a-parts are less
than k, the b-parts are greater than or equal to k, and bs = bs−1 = · · · = bs−k+1. If
r = 0, we will do nothing which gives us the partitions counted by the j = 0 term
on the right-hand side of the equation that have their largest part repeated k or more
times. If 0 < r ≤ n and s = 0, we will simply conjugate λ to get the partitions
counted by the j = 0 term on the right hand side of the equation that contain fewer
than k parts greater than or equal to k. If r > n and s = 0, we will conjugate the
block of parts, ar, ar−1, ..., ar−n+1, and form the partition with the conjugate parts
and the parts ar−n, ..., a1 to get the partitions counted by the j = ar−n term on
the right hand side of the equation that contain at least ar−n but fewer than k n’s
and contain fewer than k parts greater than or equal to k. If r > 0 and bs = n, we
will do nothing which accounts for the partitions counted by the j = ar term on
the right-hand side of the equation that contain k or more n’s. If r > 0, bs 
= n,
and r + bs ≤ n, we will conjugate the r parts less than k and add the conjugate
parts successively to bs, bs−1, ..., bs−ar−1 to get the partitions counted by the j = 0
term on the right-hand side of the equation that have k or more parts greater than or
equal to k and their largest part is repeated fewer than k times. If r > 0, bs 
= n, and
r+bs > n, we will conjugate the block of parts, ar, ar−1, ..., ar−n+bs+1 and add the
conjugate parts successively to the largest parts in λ giving us the partitions counted
by the j = ar−n+bs term on the right-hand side of the equation that contain at least
ar−n+bs but fewer than k n’s and contain k or more parts greater than or equal to
k. Clearly these transformations give us each of the partitions counted by the sum
on the right hand side of the equation in a unique way which gives us a bijection
between the two sets of partitions in Theorem 4.1. �

For our second example in this section, we obtain the following result from
Theorem 2.2.

807



L. W. Kolitsch and S. Kolitsch

Theorem 4.2 For n ≥ 2, the number of partitions of m into parts less than or
equal to 2n − 1 where the largest part less than n is repeated and the gap between
the largest part less than n and the smallest part greater than or equal to n is at
least n is equal to the number of partitions of m into parts less than or equal to n

where the partitions contain at least as many parts of size n as they do 1s or the
partitions contain the part n − 1 and the number of 1s in the partition is greater
than the number of n’s.

Proof Replacing n by n − 1 and letting z = qn in Theorem 2.2, we obtain

n−1∑

j=0

q2j (qn; q)j

(q; q)j
= (qn+2; q)n−1

(q2; q)n−2
+ qn(qn+1; q)n−1

(q; q)n−1
.

To interpret this in terms of partitions, we will multiply each side of the equation
by (q;q)n−1

(q;q)2n−1
to obtain

n−1∑

j=0

q2j

(qn+j ; q)n−j (q; q)j
= 1 − q2n

(q2; q)n
+ qn

(q; q)n

= 1

(q2; q)n−1(1 − qn+1)
+ qn

(q; q)n−1(1 − qn+1)
.

The sum on the left-hand side is the generating function for partitions into parts
less than or equal to 2n − 1 where the largest part less than n is repeated and the
gap between the largest part less than n and the smallest part greater than or equal
to n is at least n. Note that this function allows the largest part less than n to be
0 in which case the partitions generated are simply those into parts greater than or
equal to n and less than or equal to 2n − 1. To interpret the right-hand side of the
equation in terms of partitions, we will view the factor 1−qn+1 in the denominators
as generating pairs of parts 1 and n and will view the factor qn in the numerator as
generating parts 1 and n−1. With this view, the first function on the right-hand side
is the generating function for partitions into parts less than or equal to n where the
number of parts of size n is greater than or equal to the number of 1s and the second
function on the right-hand side is the generating functions for partitions into parts
less than or equal to n which contain the part n − 1 and the number of 1s in the
partition is greater than the number of n’s. �

To illustrate this theorem we have listed the partitions of m = 7 of the two
types described in Theorem 4.2 for n = 4 in the table below. Unlike the previous
examples, we are simply illustrating that there are the same number of partitions in
each of the two sets.
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Partitions of 7 into parts less than or equal
to 7 where the largest part less than 4 is
repeated and the gap between the largest
part less than 4 and the smallest part
greater than or equal to 4 is at least 4

Partitions of 7 into parts less than or equal
to 4 where the partitions contain at least
as many parts of size 4 as they do 1s or
the partitions contain the part 3 and the
number of 1s in the partition is greater than
the number of 4s

7 4 + 3

5 + 1 + 1 4 + 2 + 1

3 + 3 + 1 3 + 3 + 1

2 + 2 + 2 + 1 3 + 2 + 2

2 + 2 + 1 + 1 + 1 3 + 2 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1 + 1 3 + 1 + 1 + 1 + 1

We do not have an explicit combinatorial proof of Theorem 4.2. However, we
can give a partial combinatorial proof.

Proof We will start by rewriting the generating function in the following form:

n−1∑

j=0

q2j

(qn+j ; q)n−j (q; q)j
= 1

(q; q)n
− q

(q; q)n−2(1 − qn+1)
.

The function on the right-hand side is now the generating function for partitions
into parts less than or equal to n excluding those partitions that contain no parts
of size n − 1 and have at least as many 1s as parts of size n. We will now argue
combinatorially why the number of partitions of an integer m into parts less than or
equal to 2n − 1 where the largest part less than n is repeated and the gap between
the largest part less than n and the smallest part greater than or equal to n is at least
n is the same as the total number of partitions of m into parts less than or equal to
n where the partitions contain at least as many parts of size n as they do 1s or the
partitions contain the part n − 1 and the number of 1s in the partition is greater than
or equal to the number of n’s.

We first note that the partitions of an integer m into parts less than or equal to
2n − 1 where the largest part less than n is repeated and the gap between the largest
part less than n and the smallest part greater than or equal to n is at least n is a
subset of the partitions in Theorem 3.1. To complete the combinatorial proof, we
need to show that the partitions into parts less than or equal to 2n − 1 where the
largest part less than n is greater than 0, is not repeated, and the gap between this
largest part less than n and the smallest part greater than or equal to n is at least
n are equinumerous with the partitions generated by q

(q;q)n−2(1−qn+1)
. To show this

we will describe a bijection between these latter two sets of partitions. We will start
with a partition λ given by a1 ≤ a2 ≤ · · · < ar < b1 ≤ b2 ≤ · · · ≤ bs , where the
parts are all less than or equal to 2n − 1, the a-parts are less than n, the b-parts are
greater than or equal to n, b1 − ar ≥ n, and if r > 1, ar−1 < ar . Note that r must
be at least 1, but s could be zero. If s = 0 and r = 1, we will map λ to the partition
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1 and ar − 1. If s = 0 and r > 1 then 1 < ar ≤ n − 1 and we can map λ to the
partition consisting of 1, a1, a2, . . ., ar −1. If s > 0 and r = 1 then we can map λ to
the partition consisting of s +1 1s, s n’s, ar −1 and the parts b1 −n−1, b2 −n−1,
. . ., bs − n − 1 where any parts of size 0 are ignored. If s > 0 and r > 1 (ar > 1)
then we can map λ to the partition consisting of s + 1 1s, s n’s, and the parts a1, a2,
. . ., ar − 1, b1 − n − 1, b2 − n − 1, . . ., bs − n − 1.

To clearly show that this map is a bijection, we will describe how this map can
be reversed by describing how a partition μ of m into parts less than or equal to n

that contains no parts of size n − 1 and contains more 1s than n’s can be mapped to
a partition in the other set. Let s ≥ 0 be the number of n’s, t where t ≥ s + 1 be the
number of 1s, and ct+1 ≤ ct+2 ≤ · · · ≤ ct+v be the parts greater than 1 and less than
n − 2 in μ. Let c1 = c2 = · · · = ct = 1. We will use s of the 1s together with the s

parts of size n to create s n+ 1’s. Note that there are t − s parts of size 1 remaining.
If s ≥ t − s − 1 + v we will map μ to the partition consisting of the parts a1 = c1,
s− t −v+1 (n+1)’s (if s− t −v+1 > 0, these are the parts b1, . . ., bs−t−v+1), and
bs−t−v+2 = n + 1+ c2, . . ., bs = n + 1+ ct+v . If s < t − s − 1+ v we will map μ

to the partition consisting of the parts a1 = c2, a2 = c3, . . ., at+v−2−s = ct+v−1−s ,
at+v−1−s = ct+v−s + c1, b1 = n + 1 + ct+v−s+1, b2 = n + 1 + ct+v−s+2,. . .,
bs = n + 1 + ct+v. �

5 Conclusion

The results in Theorems 2.1–2.3 seem to be very versatile. We have shown how they
are connected to a variety of partitions including ordinary partitions, overpartitions,
and pod-partitions. A couple of questions for further research immediately come to
mind.

Question 1: Is there a family of similar functions that include the series given by
Andrews and Yee as a special case?

Question 2: Are there other such families or examples of functions of this type?
Question 3: Can an explicit bijection be found between the two sets of partitions

in Theorem 4.2?
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