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 1064 ON ESTIMATES IN NUMBER THEORY [December

 denote the number of solutions in integers of y =f(x) in (xi-1, xi) with a= xo and
 b=xd+1. Then

 d+1

 N_? E N,
 j=1

 d+1

 < c FZ {(M - m)(Xj- xj1)/3
 j=1

 d+1

 <c E {(M-m)(b-a)}1/3
 j=1

 =c(d+ 1) {(M -m)(b - a)1I/3.

 If d =0, then the curve y =f(x) forms an arc which is strictly convex since
 nowf"(x) must be of constant sign [5, pp. 172-3]. Also the region, Ci, bounded
 by y =f(x) and the straight line L through P1: (a, f(a)) and P2: (b, f(b)) lies
 entirely within the rectangle R given by m ? y _ M, a < x ? b.

 Hence if A1 is the area of Ci and Ao is the area of R, then A1<Ao.
 Let us now pass a circle of radius X through the two points P1 and P2 with

 center on the perpendicular bisector of P1P2 and on the same side of L as the
 graph of y =f(x). Let a denote the arc of this circle which lies on the opposite
 side of L from the graph of y =f(x) and has as end points P1 and P2. Provided
 we take X sufficiently large, we have that a and the graph of y =f(x) bound a
 strictly convex body, C2, with area as near that of C1 as we please. Also we may
 take X large enough so that if A2 is the area of C2, then A2<Ao.

 By the main theorem in [2, p. 270],

 A2 > 3C(2)N(2+1)'(2-1) = 3C(2)N3,

 where 3C(2) > 0 is an absolute constant. Hence there exists an absolute constant
 c > 0, such that

 N < cA21/3

 < cA 10/3

 = c{(M -m)(b - a)1.

 This concludes the proof of the theorem.
 We now show how this theorem may be applied.
 If d(n) denotes the number of divisors of n, then trivially d(n) = 0(n). In

 most texts in elementary number theory, improved results are obtained only
 after carefully studying properties of multiplicative functions [3, p. 260]. By
 our main theorem we may quickly get a nontrivial result.

 THEOREM. d (n) = 0(n213).

 Proof. Let f(x)=n/x with a=1, b=n, then M=n, m=1, N=d(n), and
 f"(x)=2n/x3 > 0 in (1, n). Hence
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 d(n) = N < c{(n - 1)(n - 1)}1/3

 < cn2!3.

 By a somewhat more subtle use of the main theorem, we show how a more
 refined result may be obtained.

 THEOREM. d(n) = Q(n1l3 log n).

 Proof. Consider the r intervals (1, nil/r), (nil/r, n2/r), . (r(-1l)/r, n). Let
 f(x) = nix as before. Let N1 be the number of lattice points on the curve in the

 jth interval (n(i')Ir, nilr). Then in the jth interval M-m 5 M=n1-(i-1)Ir, and
 nir _ n(i-1)r <nilr Hence (M-m) (nil j-n(i-1)lr) <nl+(l/r) in the jth interval. Thus

 d(n)=N?NN1
 j=l

 < c*r*(nl+(l/r))1/3.

 Taking r = [log n] + 1, we obtain the desired result.
 Of course we come nowhere near the truth that d (n) =0 (nf) for any e> 0

 [3, p. 260], but we obtained our results without any use of the arithmetic prop-
 erties of d(n).

 As one sees, very seldom will best possible results be obtained. It is clear,
 however, that this method is useful when something stronger than a nontrivial
 estimate is required, and a minimal amount of information about the arithmetic
 properties of the equation under consideration is available.

 Finally, we note that it is not possible to improve our main theorem sub-
 stantially. Taking f(x) - x2, a = 0, b = n, we find that the theorem implies

 N < C(n2.n)1/3 = c.n.

 Actually we see by inspection that N n + 1, so that the exponent W cannot be
 replaced by any smaller number.

 Professor I. J. Schoenberg has pointed out to me the close connection between the main result
 in this paper and the result in [4]. However, Jarnik's result is weaker; for example, his result will
 imply d(n) =0(n2/3), but will not imply d(n) =O(nl/3 log n). Actually the result of Jarnik implies

 the result in [I] in the two-dimensional case.

 The research for this paper was completed under a National Science Foundation Graduate
 Fellowship.
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