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 AN ASYMPTOTIC EXPRESSION FOR THE NUMBER

 OF SOLUTIONS OF A GENERAL CLASS OF
 DIOPHANTINE EQUATIONS(')

 BY

 GEORGE E. ANDREWS

 Consider a closed, strictly convex body C defined byf(xi, , xn) _R. If
 f(x1, i , x.) is a homogeneous function, it is easily verified that N, the num-
 ber of solutions of f(xi, - - *, xn) =R in integers, satisfies the inequality
 cRn-1 > N. The object of this paper is to show that this inequality may be re-
 placed by cR>n-l)n/(n l)>N. This result will be derived from the following
 theorem.

 THEOREM. We are given a closed, strictly convex body C with N lattice points

 (i.e. points with integer coordinates) on its surface. If S(C) denotes the surface
 content of the boundary of C, then there exists a constant k(n) depending only on
 n such that

 S (C) > k (n) N (n+ ) / n,

 where n denotes the dimensionality of space.

 We shall now prove four lemmas and then prove this theorem.

 LEMMA 1. If

 a a+1

 2rn(m) < N < rn(M),
 1 1

 then
 a

 EM 112 lrn(m) > c (n) N (nf+) / n
 1

 By rn(m), we mean the number of representations of m as the sum of n squares.

 Proof. We have

 M

 E rn(m) = 7rn/2Mn2/Lr(n/2 + 1) + O(M(n-)/2)
 1

 [3, p. 271]. Hence it is clear that the a defined in the lemma is such that

 a --' c1(n)N .
 Thus

 This paper has been submitted to and accepted for publication by the Proceedings of the
 American Mathematical Society. It has been transferred to these Transactions, with the con-
 sent of the author, for technical reasons. Received by the editors June 6, 1960.

 (1) This paper is a condensation of the author's Master's thesis submitted at Oregon State
 College.
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 A GENERAL CLASS OF DIOPHANTINE EQUATIONS 273

 a a a1 m
 Em 12rrn(m) -a/12 ? rn(m) ((M + 1)1/2 -MI/2) -E rn(i)
 1 m=1 ms1 i=1

 ,7rn/2an/2

 + 0(a(n-)12) =al/2 r(n+i

 r 2 + I ~ ~ ~ ~ 0m(')2 a-1 / 1 \ ,7rna2mn-2

 2mE IV-+ O(Wr-3/2)) n + 0(m (n- 1) I2)

 - +0(an12)~~Z +0 irn/2 (n+l) /2 a-1 n/2 (n-l) /2

 r (-+ l) [ ~2F(-+ 1) (m2)j

 .7rn/2a(n+1)12 M(n-2-1)(n+l)/2
 - - + 0(an'2) - - n + 0(an'2) r( + l) (n 2)r + 1

 = C2(n)N(n+l) In + O(N).

 Since E m 12rn(m) is a positive, increasing function of N, we have
 a

 E m"12rn(m) > c(n)N(n+l)In for all N. q.e.d.
 1

 The following lemmas will concern a closed, strictly convex body C.
 We shall be given the fact that C contains N lattice points on its boundary.
 We shall call the set of boundary lattice points B(N) and shall assume that
 not all members of B (N) are linearly dependent. If all members of B (N) were
 linearly dependent, we would only need to consider a space of lower dimen-
 sionality.

 LEMMA 2. The members of B(N) are the vertices of a convex polytope entirely
 in the interior of C.

 Proof. Since a convex polytope is defined as the convex cover of a finite
 number of points, we see that the convex cover of B (N) is a polytope entirely
 in the interior of C. Call this polytope (Po)a. Clearly all vertices of (Po)a are
 members of B(N) [2, pp. 24 and 29].

 We need only show that all members of B(N) are vertices of (Po)a. Let
 PGB(N). Choose a regular supporting hyperplane S,,, to C at P. Any two-
 dimensional segment si which contains P either lies in Sn-1 or it does not. If
 s5 lies in Sn_,, then the only point of (Po)' contained by s, is P. Thus points
 of the exterior of (Po)a are contained by si. If si doesn't lie on Sn_,l the part of
 s5 lies on the opposite of S.-, from (Po)'. Thus, again, points of the exterior
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 274 G. E. ANDREWS [May

 of (Po)' are contained by si. Hence no segment completely on the boundary
 of (Po)' contains P. Thus P is a vertex of (Po)'. q.e.d.

 In the next lemma, we multiply each linear dimension of space by 3. In
 this way, (Po)' is transformed into a similar polytope (Po)',. We shall denote
 the set of vertices of (Po)' by B'(N). Since every vertex of (Po)' will be con-
 gruent with all the other members of B'(N) modulo 3, the surface content of
 (Po)' will be 3n-1 times that of (Po).

 LEMMA 3. It is possible to form from (Po)b a convex polytope, (Po)', in the
 interior of (Po)' with lattice point vertices and with at least N (n - 1)-boundaries
 where N is the number of vertices of (Po)?n.

 Proof. In forming (Po)', we have multiplied every linear dimension of
 space by 3. Thus, each segment between two vertices of (Po)' will be divided
 into thirds by two lattice points. Let us form a set z consisting of these
 two lattices points taken from each segment between two vertices of (Po)?n.
 We define (Po)' as the convex cover of I. The polytope (Po)' is in the interior
 of (Po)' by construction. Clearly only members of z are vertices of (Po)'
 [2, pp. 24 and 29].

 Pick a point X in the interior of (Po)',. Clearly (Po), has an interior for no
 edge of (Po)' is completely destroyed in the formation of (Po)', and not all
 members of B'(N) are linearly dependent so that (Po)b has an interior.

 We shall now show that any member of B'(N) is in the exterior of (Po)',.
 Let us choose a regular supporting hyperplane SA'-1 to (Po)" at any member of
 B'(N), say P. We see that all members of 2 lie on one side of S'_1 and none
 onSA i. Therefore, P is neither in nor on the convex cover of M.

 It follows from the above that the segment PX intersects the boundary of
 (Po)' in a single point for each PEB'(N).

 Assume that PEB'(N) and QCB'(N). We shall now show that the seg-
 ments PX and QX do not intersect the same (n - 1)-boundary of (Po)'. As-
 sume that PX and QX intersect the same (n - 1)-boundary fA'-l of (Po)'. Let
 us consider the hyperplane S,"1 containing f '-.. The segment PQ contains
 two members of I by definition. However, the convex cover of 2 is either on
 S,'_1 or on the opposite side of Sn'_1 from P and Q, a contradiction. Hence to
 each segment PX for PEB'(N) corresponds a single (n-1)-boundary of
 (Po)'n.

 Thus (Po)' satisfies all the conditions of the lemma. q.e.d.

 LEMMA 4. We are given an (n - 1)-dimensional simplex with lattice point
 vertices. This simplex lies in the hyperplane S,"'! defined by

 A i(xi - PO + A2(X2 -p2) + * + An(Xn -Pn) 5 ?

 where all the A's are integers, P(p1, P2, ' ' pn) is a vertex of the simplex, and
 g.c.d. (A1, A2, * * - , A.) = 1. Then the content of the above simplex is at least
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 1 2 2 2 1/2

 (n 1)1(Al+ A2+ * * An)

 Proof. Let us assume that P is the origin. If this is not so, we merely
 translate P into the origin. The equation of S,','1 is now

 Aix,+A2x2+ * * * +Anxn= O.

 Since such a translation transforms lattice points into lattice points, we see
 that all the vertices of the considered simplex are still lattice points. Let us
 consider the (n-1) edges of this simplex emanating from the origin as fixed
 position vectors of the form (a n, ai2, , ain). The end points of these vectors
 lie on the hyperplane

 Xl Xa Xn

 all a12 *-aln

 a2l a22 *- . .a2n = .

 a(n-1)1 a(n- 1) 2 a(n-l)n

 But this hyperplane is merely S.'LI. Hence the above determinant must ex-
 pand into

 k(A xi + A2x2 + * + Anxn) = 0.

 Since the components of all the vectors considered are integers and since
 g.c.d. (A1, A2, * * *, An) = 1,we have k > 1.

 Let us consider the content of a parallelotope defined by the unit normal
 vector to S'-'1 and the (n-1) vectors of the form (ail, ai2, * , ain). The con-
 tent of this parallelotope will be numerically equal to the (n - 1)-dimensional
 content of its base. Thus if (b1, b2, , bn) denotes the unit normal vector,
 we have

 bi b2 ... bn

 1 al ai 2 i- aln

 (n-i)! a2l a22 ... a2, Vn-l

 a (,-,), a (n-1) 2 a (n-l)n

 where V.-, is the content of the simplex under consideration. However,

 (b,, b2, ... , bn) = (Al + A2 + * (Al, A, 2 , An).

 Substituting this into the above determinant, we obtain
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 276 G. E. ANDREWS [May

 2 22

 Vn- 1 k(Al + A2 + ***+ An)
 (n - 1)!(A2 + A2 + +A2)1/2

 = (_ 1 (Al+ A2 + + An) q.e.d.

 We are now in a position to prove the main theorem. We shall restate it
 here for convenience.

 THEOREM. We are given a closed, strictly convex body C with N lattice points

 on its surface. If S(C) denotes the surface content of the boundary of C, then there

 exists a constant k(n) depending only on n such that

 S (C) > k (n)N(n+l) /nY

 where n denotes the dimensionality of space.

 NOTE. In this proof we shall use the fact that if one convex body is con-
 tained in another, then the first has smaller surface area (content) than the

 second [1, p. 471. This follows from Cauchy's surface area formula.
 We shall start the proof assuming that from C we have constructed

 (Po), w(Po)", and (Po),.
 Proof. By Lemma 2, (Po)a is in the interior of C. Thus

 S(C) _ S[(Po)a].

 From the remarks prefacing Lemma 3, we have

 S[(Po)n] > 3- 1S [ (PO)'n

 From Lemma 3, we have

 S[(Po)b] S[(P0)c]*
 Hence

 S(C) , 3-(nlS( n

 Let us pick one (n - 1)-dimensional simplex from each (n - 1)-boundary of
 (Po)'. By Lemma 3, (Po)" has at least N (n - 1)-boundaries. Hence if S(m)
 denotes the (n - 1)-dimensional content of the mth simplex chosen, then

 N

 S[(PO)n] >_ E S(m)-
 m=l

 However, no three (n - 1)-boundaries of (Po)' may have the same direction
 numbers. If three (n-1)-boundaries of (Po)' had the same direction num-
 bers, then two of these (n - 1)-boundaries would be on opposite sides of the
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 hyperplane containing the third. By Lemma 4, we know that any simplex
 on a hyperplane of direction numbers (Ai:A2: :An) has content not less
 than

 1 2 2 2 1 (Al+ A 2+... + An).
 (n -1)!

 Thus by Lemma 4, there will be no more than r.(1) simplexes among those
 chosen of content 1/(n - 1)!; there will be no more than rn(2) simplexes among
 those chosen of content 2/(n - 1)!, etc. Thus, if

 a a+1

 >2rn(m) ? N < E rn (m),
 m=1 m=1

 then

 N 1 a

 E: S(m) _ 2: m1/2 rn(m).
 m-1 (n - )!m

 Hence by Lemma 1,

 N C2(fl)
 > S(m) > c N(n+l)In.

 Thus combining the above results, we obtain

 S(C) _! k (n) N(n+l ) nq.e.d.

 We may now easily verify the inequality stated at the beginning of this
 paper. Since f(xi, * * *, xn) = R is homogeneous we see that its surface content
 is given by c"Rn-1. Thus by the above theorem,

 c''Rn-1 > k(n) N(n+l) /

 or

 cR(n-l)nI(n+l) > N.
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