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Preface

The genesis of Statistical mechanics of phase transitions lies in a series
of lectures 1 have given to physics graduates and undergraduates at
Oxford over the past few years. I hope that it will be of use to future
generations of students. .

The book is also intended to act as, if not a bridge, a first stepping
stone towards an understanding of phase transitions for those beginning
research. By providing a summary of the field it may ease the first
forays into the research literature. .

Many scientists apart from theoretical physicists have an interest

‘in phase transitions. I should be pleased if the book were read by

experimentalists and researchers from other disciplines who would like
to understand which theoretical approaches are available, when they
can be expected to work, and why.

Particular thanks are due to Harvey Dobbs, Dr Philippe Binder,
and Professor Eytan Domany for their helpful comments on the

manuscript.
Ozford IMY
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Introduction

A phase transition occurs when there is a singularity in the free en
ergy or one of its derivatives. What is often visible is a sharp chang
in the properties of a substance. The transitions from liquid to gas
from a normal conductor to a superconductor, or from paramagnet te
ferromagnet are common examples.

The phase diagram of a typical fluid is shown in Fig. 1.1. As th
temperature and pressure are varied water can exist as a solid, a liquid
or a gas. Well-defined phase boundaries separate the regions in whicl
each state is stable. Crossing the phase boundaries there is a jump i1
the density and a latent heat, signatures of a first-order transition.

Consider moving along the line of liquid-gas coexistence. As th
temperature increases the difference in density between the liquid anc
the gas decreases continuously to zero as shown in Fig. 1.2. It become
zero at the critical point beyond which it is possible to move continu
ously from a liquid-like to a gas-like fluid. The difference in densities
which becomes non-zero below the critical temperature, is called th
order parameter of the liquid—gas transition.

Seen on the phase diagram of water the critical point looks insignifi
cant. However, there are clues that this might not be the case. Fig. 1..
shows the specific heat of argon measured along the critical isochore
p = pe. There is a striking signature of criticality: the specific hea
diverges and is infinite at the critical temperature itself.

Analogous behaviour is seen in magnetic phase transitions. Thi
phase diagram of a simple ferromagnet is shown in Fig. 1.4. Just as 1
the case of liquid—gas coexistence there is a line of first-order transition;
ending in a critical point. All transitions occur at zero magnetic field
H =0, because of the symmetry of a ferromagnet to reversals in th
field. The additional symmetry means that it is often easier to work i1
magnetic language and we shall do so throughout most of this book.
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Fig. 1.1. Phase diagram of a fluid. All the phase transitions are
first-order except at the critical point C. Beyond C it is possible to
move continuously from a liquid to a gas. The boundary between the

solid and liquid phases is thought to be always first-order and not to -

terminate in a critical point.
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Order parameter
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Fig. 1.2. Values of the densities of the coexisting liquid and gas
along the vapour pressure curve. (priquia{T) — pgas(T)) is the order
parameter for the liquid—gas transition.
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Fig. 1.3. Specific heat at constant volume of argon measured on the

critical isochore, p = pc. After Fisher, M.E. (1964). Physical Review,

136A, 1599.

ple ferromagnet. A line of first-orden

ig. 1.4. Phase diagram of a sim
e tical point at a temperature T..

transitions at zero field ends in a crl



4 Introduction

Order parameter

]

Fig. 1.5. Zero-field magnetization of a ferromagnet. Below the
critical temperature there is a spontaneous magnetization £M (T).

Crossing the phase boundary at temperatures less than the critical
temperature, there is a jump in the magnetization. Above the critical
temperature it is possible to move continuously from a state of negative
magnetization to one of positive magnetization. The critical point itself
i separates these two behaviours; the magnetization is continuous but its
, derivatives are discontinuous. This manifests itself, just as in the fluid

case, by divergences in the response functions, the specific heat and
the susceptibility.

The order parameter for the ferromagnetic phase transition is the
magnetization. Its variation with temperature along the coexistence
curve, H = 0, is shown in Fig. 1.5. Compare this diagram with Fig. 1.2

for the fluid; the only difference is the extra symmetry in the magnetic
case.

1.1 Phase transitions in other systems

Phase transitions in fluids and ferromagnets provide two simple exam-
ples of an enormous diversity of changes of state. Table 1.1 lists other
; examples, together with references for those wishing to pursue them
i further. We describe two cases in more detail to illustrate the richness
and complexity of the phase diagrams found in nature.

1.1.1 A ferrimagnet: cerium antimonide

: In cerium antimonide, strong uniaxial spin anisotropy constrains the
spins to lie along the [100] direction. Within the (100) planes the

1.1

Table 1.1. Examples of th

nature

Phase transitions in other systems 5

e diversity of phase transitions found in

Transition Example Order parameter .
s

ferromagnetic® Fe magnetization o

antiferromagnetic® MnO wsgmaﬁom Bmmbmﬁwa.ob

ferrimagnetic® Fez Oy sublattice magnetization

structural® SrTiOs atomic displacements

ferroelectric’ BaTiO3 electric polarization .

order-disorder® CuZn sublattice atomic concentration

i entration difference
phase mmwmnwﬂoﬁm CCl+CrFi1g  cONC

i iquid * condensate wavefunction
. superfluid® liquid “He

i round state wavefunction
msvmaoonaﬁofbmw Al, NbzSn g

liquid crystalline? rod molecules various

awamm™

. ’
Hﬂwnﬂmr Au. _.mw * 6). ~:§ Q@Cnu\wfv: to .wCNfN .w?iwﬂ ».: $1CS 6 0‘_ (C ey

New York).
bBruce, A. D. and Cowley,
lor and Francis, London).

¢ Als-Nielsen, J. (1976). ZEMG.HOHH mM:& e o,
iti 1 transitions
critical point. In Phase

U.oﬂ%oﬂ%bw\owum uQmmmmmwwvmw,”damwo“wm@amwo%@amww FMM%MMW.. and liquid mizture:

(3rd edn). (Butterworth Scientific, HomeMv L
eWilks, J. and Betts, D. S. (1987).

m&ﬁw mewwwmwwmw ﬁ%%ww.w\wmwmww@r D.J, wﬂ& /MMNHVHEHﬁ J. K. (1984). Matte

o o B-G. v ofiid crv

Press, Oxford). .

R. A. (1981). Structural phase transitions. (Tay-

1 i the
i d spatial correlation near,
e el pher Vol. 5a (&ds C.

duction to liquid helium (2nc

tals. (Oxford Universit
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Yeomans, J.M (

» J.M. (1988). The th . '

models. : ; eory and applicati ; .

and D HHB M&& state physics, Vol. 41 (eds M@ muom on ,.um axial Ising
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Fig. 1.7. Schematic drawings of the idealised structures of surfactant
lution as the surfactant concentration is

molecules that can form in so
increased. After Corkhill, J. M. and Goodman, J. F. (1969). Advance:
in Colloid and Interface Science, 2, 297.

Hexagonal phase

1.1.2 Surfactants in solution

Solutions of surfactant molecules have exotic phase diagrams®. Thes
molecules have a polar head group which is very soluble in water and
hydrocarbon tail which is only just soluble. Hence they like to positio

themselves in such a way th ter molecules an

at the head is next to wa
the tail is shielded from them. If there is a surface they will migra
there and sit head-down. This

lowers the surface tension—hence the
use as s0aps. ’

The phase diagrams of solutions of surfactant molecules are dete

mined mainly by the concentration of the solute. As this increas
micelles form. These are groups of molecules arranged in a sphere
cylinder so that the polar heads shield the hydrocarbon tails from t]
water. A further increase in concentration can lead to a phase tran
tion to a state consisting of micelles ordered in a hexagonal or cul
array with the intervening spaces filled with water. A second transiti
is also observed in some systems. This is to a lamellar phase where t
molecules are arranged into sheets but move freely within the she

\\\\\l
2The future of industrial fuid design. In Chemistry S

4, April (1990).
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like a two-dimensional liquid. Fig. 1.7 illustrates some of the possible
phases.

Fluids, magnets, superconductors, surfactants: all apparently very
different systems. Can the phase transitions associated with such di-
verse types of order be wHozmg within the same theoretical frame-
work? Why is there an order parameter, such as the magnetization,
which becomes non-zero within the ordered phase? Why and how do
the response functions diverge at the critical temperature? The aim
of this book is to give an introduction to the theories that have been
developed to answer these questions. A first step is to describe what
is happening on a microscopic level at a phase transition with the aim
of understanding the physics underlying the properties of a system at
criticality.

A microscopic model

Consider a simple model of a two-dimensional interacting system, the
Ising model on a square lattice. On each lattice site i there is a variable,
called for convenience a spin, which can take two different values, s; =
+1 or s; = —1. Fach spin interacts with its nearest neighbours on
the lattice through an exchange interaction, J, which favours parallel
alignment

:”|‘N .ms.mn . AH..HV
) .

Fig. 1.8. A real-space renormalization group transformation for the
two-dimensional Ising model on the square lattice. The initial config-
uration, corresponding to a temperature T = 1.22T,, was generated
using a Monte Carlo simulation. A sequence of renormalized configu-
rations is then obtained by replacing successive clusters of nine spins
by a single spin which takes the same ‘value as the majority of the
spins in the original cluster. Hence the length scale of the lattice is
changed by a scale factor b = 3, 3%, 3%, and 3% in (b),(c),(d), and (e) re-
spectively. Note that the correlation length decreases under successive
iterations of the renormalization group corresponding to an increase
in the temperature. After Wilson, K. G. (1979). Scientific American,
241, 140. :

1.2
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where we use the notation (i§) to represent a sum OVer nearest neigh-
bour spins on sites ¢ and j. ﬂ
The two-dimensional Ising model has been solved exactly and is _ : .
known to have a phase diagram like that shown in Fig. 1.4 with a - ;
continuous phase transition at zero field and a temperature T.. The I -
Bmmbmﬁmm.ion becomes non-zero at the critical temperature and in- | L : e, )
creases to its saturation value, which corresponds to all the spins being
aligned, at T' = 0, just as in Fig. 1.5. . :
Mo see what is happening to individual spins as the temperature is \
changed it is not difficult to simulate the model on a computer with the
fluctuations characteristic of finite temperatures being mimicked by a i
random number generator. This is the Monte Carlo method which will . ()
~ be described in more detail in Chapter 7. The results are shown in
Figs 1.8-1.10. Black squares are used to represent spin s; = +1 and , 3 4
white squares 8; = —1. _ 5 s
At temperatures very much greater than the critical temperature :
entropic contributions dominate the exchange energy and, although
nearest neighbours tend to lie parallel, this is a small perturbation on
a random configuration. Fig. 1.8(c) is an example of this. As the
temperature is Jowered the effects of the exchange interaction become _ :
more apparent. Nearest neighbours become more likely to point in the . o _
same direction and clusters of aligned or correlated spins appear. The
size of the largest clusters is measured by a length called the correlation - ’ et iis®s
length. In Fig. 1.8(a) where the temperature is 1.2T¢ the correlation . (b)
length is of the order of a few lattice spacings. The system is said to
show short-range order.
As the temperature is lowered the correlation length increases. : s :
Note, however, that Auctuations on a smaller scale remain important; )
there are correlated regions of spins on all length scales up to that set _
by the correlation length. Bach fluctuation is not an area of uniform : 2
spin alignment but includes smaller fluctuations which in turn include ,

¥
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yet smaller ones down to the length scale set by the lattice spacing - . -
. i 4 2
Clusters contain lesser ones B . X de"e §3. 8 12 |
Complicating quite 'em . . : . w % .
And lesser ones have lesser still . . - ’ 3 13 m F_MMM
Inside, ad infinttum. | @ ) o

(adapted from Jonathan Swift)
Fig. 1.9 As Fig. 1.8 but with a starting temperature T = Te.

The critical temperature itself is marked by the correlation length ” Because the correlation length is initially infinite there is no change
becoming infinite. A typical spin configuration at the critical tempera- . in the ordered state under iteration of the renormalization group and
ture is shown in Fig. 1.9(a). There is now no upper length cut-off and , the system remains at the critical temperature. After Wilson, K. G.

ordered structures exist on every length scale. This is the microscopic | , (1979). Scientific American, 241, 140.
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Fogeg e

Fig. 1.10. As Fig. 1.8 but with a starting temperature T' = 0.99T¢.
Fluctuations relative to the ordered state are suppressed by the change
in length scale and the system flows towards zero temperature. After

Wilson, K. G. (1979). Scientific American, 241, 140.

]
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physics which underlies a critical phase transition. Fluctuations on all
scales of length are important.

Below the critical temperature there is a non-zero magnetization.
More spins lie in one of the two spin states: in Fig. 1.10 this is spin-

" up or black. The model is said to exhibit long-range order. At zero
‘temperature all the spins are aligned because of the exchange interac-

tion. As the temperature increases entropic terms in the free energy
lead to fluctuations away from this state and the magnetization drops
from its saturated value. Fig. 1.10(c) shows a spin configuration for
a temperature T' <« T,. The correlation length measures the size of
the largest fluctuations away from the ordered background. As the
temperature increases towards the critical temperature the correlation
length becomes larger. Just as for T' > T. there are clusters embedded
within clusters on all length scales. The fluctuations cause the magne-
tization to fall, and it drops to zero exactly at the critical temperature
where the correlation length becomes infinite and the underlying order
is completely destroyed. .

The long-range fluctuations in the magnetization of magnetic sys-
tems near the critical point are mirrored by long-range fluctuations in
the density-of fluid systems. These can be observed directly. If light is
shone.on to a fiuid near its critical temperature it is reflected strongly,
causing the fluid to appear milky-white. The strong scattering appears
when the density fluctuations become of a size comparable to the wave-
length of light, about a thousand times the interatomic spacing. This
critical opalescence persists throughout the critical region emphazising
that fluctuations at this length scale remain important even though
the maximum length scale increases to infinity (mm or cm in a real
sample).

1.2.1 A renormalization group

We have stressed that, at a critical point, all length scales are im- -
portant. This is an unusual situation: usually physical theories can
concentrate on a small range of scales of length. A continuum theory
of water waves, ignoring atomic motions, or a theory of the arrange-
ment of nucleons which ignores the atomic environment are essentially
exact. So how can we cope with, or even exploit, scale invariance at
criticality? .

The answer lies in a set of theories known as renormalization groups.
These will be Qmmmivwm in much more detail in Chapters 8 and 9 but the
ideas behind them can be illustrated using the Monte Carlo simulations
in Figs 1.8-1.10. The aim is to change the scale of the system and see
how it behaves. This is done by taking each group of nine spins’in turn
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and replacing it by a single spin which takes the same value as the
majority of spins in the original cluster. This procedure reduces the
scale of the system by a factor b = 3. We then keep going to produce
the series of snapshots of the spin configuration, essentially seen under
different magnifications, shown in the figures. .

For a starting temperature above the critical temperature (Fig. 1.8),
the scale change soon obliterates any short-range order and the spins
on the renormalized lattices become uncorrelated. This corresponds
to an infinite temperature: the system has zen renormalized by the
simple transformation we have defined to T' = oo. This will be the case
for all temperatures above T,; the nearer to the critical temperature is
the starting point the more steps of the transformation it will take to
lose the short-range order. ‘

For temperatures below the critical temperature there is an analo-
gous flow as the renormalization group is iterated. However, now any
fluctuations are relative to the ground state and, as these are lost un-
der renormalization, the system flows to a completely ordered state
characteristic of zero temperature. This is the case in Fig. 1.10.

Only at the critical temperature itself, Fig. 1.9, where there are
fluctuations on all length scales does the system remain invariant un-
der the renormalization group transformation. This can be exploited
to identify the critical point and describe the behaviour of the thermo-
dynamic functions in its vicinity.

et e

f
1.
]
+
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Statistical mechanics and thermodynamics

This chapter moves through the large number of reminders and de
initions necessary to arrive at the point where we can introduce tl
idea of universality, one of the most striking features of the theory
critical phenomena and a major justification for the interest in moc
systems. The first step is to summarize the statistical mechanics uss
throughout the book. Assuming that this is familiar material the ma
aim will be‘to gather together the relevant formulae in a form suital
for reference. )

We then describe in more detail the behaviour of the thermod
namic functions at a phase transition, distinguishing between firs

order and continuous transitions. It is very important to find a w

of describing the asymptotic behaviour of these functions near a co
tinuous- transition and, to this end, we introduce the critical po
exponents. A discussion of why they play a central role in the theo
leads to the concept of universality. .

2.1 Statistical mechanics

We assume that the reader is sufficiently mmb:rwa with elementary st
tistical mechanics to regard it as reasonable to start from the canoni:
partition function

Z(r,H) =S B 2

'where the sum is over all states r with mb.mam% E,. and 8 = 1/kT witl

Boltzmann’s constant and T' the temperature. Most of the subseque
chapters of this book will be concerned with models which, even if r

~applied to magnetic systems, are written in magnetic language, a

therefore it is convenient to consider an ensemble in which Z deper

15
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on the temperature and the field H. Maxwell-Boltzmann statistics are
appropriate because the magnetic systems we consider will consist of
localized, and hence distinguishable, spins and the fluid systems will
be in the classical regime.

The free energy is proportional to the logarithm of the partition
function ’

F(T,H) = ~kTm Z(T, H). (2.2)

All macroscopic thermodynamic @woﬁmaamm mo:oé m..oE differentiating
the free energy. The relevant formulae are listed in Tables 2.1 and 2.2
for magnetic and fluid systems nmmwmnﬁ:\mg wmw&mam unfamiliar with
these should consult a text on statistical mechanics such as Callen.
Those who are rusty might find it helpful to try problems 2.1 and 2.2.

Often our aim will be to calculate the free energy. However, some-
times, particularly in numerical work, it ,mm,mmmwma to.extract properties
such as the magnetization or the energy &Hmoiu\.; o

2.2 Thermodynamics

For a magnetic system the first law of thermodynamics can either be
written? S

W =TdS-MdH (2.3)

a0 = TdS + HdM o (2.4)

where dU, dS, dH, and dM are the changes in the energy, entropy,
magnetic mmE and magnetization respectively. We have assumed the
volume V is fixed and hence omitted the term —PdV. Both forms of
the first law are equally valid but they correspond to different defini-
tions of the energy. The energy stored in the applied magnetic field is
not included in U, whereas it is included in U.

We shall use eqn (2.3) throughout because the free energy will then
depend on the most convenient variables (T, H) and will be identical

!Callen, H. B. (1985). Thermodynamics and an siﬂoaﬁn?a: to
thermostatistics (2nd edn). (Wiley, New York).
2The ‘field’, H, is taken to have the units of energy and the ‘mag-

netization’, M, to be dimensionless as is customary whan writing spin
) ) Yy

Hamiltonians. If the field is the result of a magnetic field, B, they are

- related by H ~ ugB where pp is the Bohr magneton.

et

)
U

Thermodynamics 1

Table 2.1. The relation of the thermodynamic variables pertinent t
a magnetic system to the partition function .

Thermodynamic variables for a magnet

First law: dU = TdS — MdH

Partition function

Z(T,H) =Y, e PEr

Free energy
F=—kT'InZ
Internal energy Entropy Magnetization
- _ 8F
U=-25F S=~(5F)n M=-(55)r
={U-F)T
Specific heat Specific heat Isothermal susceptibilit

(constant H) ~ (constant X = H,M)

cu=(8)r  Cx=T(5#)x xr = (3i)r
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to the function F defined in Section 2.1. To see this we recall that the

Table 2.2. The relation of the thermodynamic variables pertinent to ¢ thermodynamic definition of F is

a fluid system to the partition function
) F=U-TS. (2.5)

i

Thermodynamic variables for a fluid Differentiating and using eqn (2:3)

! 4F = dU — TdS — SdT = —MdH — SdT. (2.6)

First law: dU = T'dS — PdV
Hence F = F(H,T). (It may avoid some confusion to note that if the
alternative form of the first law (eqn 2.4) is used the free energy defined

Partition function ! by eqn (2.5) becomes a function of M and T. This convention is used
v in some texts.)

(T, V)=, e PEr

|

Free energy i . \..Aaw + amv < f(z1) + flz2) (2.7)
. < 5 .

2.3 Convexity properties of the free energy

R

. A function f(z) is a convex function of its argument x if

2

F=—-kThZ i
: for all z; and z. If the inequality sign is reversed the function is said

\ ? / . to be concave. A more useful definition for our purposes is that if the
! second derivative exists it must be > 0 for a convex function and < 0 .

for a concave function.

Internal ener Ent B ,
: % mropy Pressure : : To determine the convexity properties of the free energy consider
— . 9InZ _ _(8F . (oF its second derivatives
U=-"35 5=-(5)v P=-(3)r
2F -C *F
= (U-F)T A\v =0 (G) = (28)
M P < b oT? / 4 T 8H? )
w . Sw.mam Cpy is the specific heat at constant field and xr is the isother-
4 mal susceptibility. It follows from the third law of thermodynamics
Specific heat Specific heat Isothermal compressibility m that specific heats must be non-negative. Susceptibilities are usually

positive, but there are exceptions, such as diamagnetic materials. How-

(constant V) (constant X = V, P) . . o .
ever, it can be proved that if the Hamiltonian can be written

<

_. (8U _ i
Cv = Awﬂva\. Cx=T Aw%vx Ky = — A.WINVH H=Ho—HM (2.9)

they must be @Om#?mu‘ This formula will apply to all the cases which
will be considered here. Because the second derivatives of the free

-

3Griffiths, R. B. (1965). Journal of Chemical Physics, 43, 1958.
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energy with respect to T' and H are negative it is a concave function
of both its variables.

Correlation functions

Thermodynamic variables like the magnetization or the entropy are
macroscopic properties. In Section 1.2 it became apparent that a much
fuller understanding of phase transitions ccizld be obtained by consid-
ering what was happening on a microscopic level. To be able to do
this in a more quantitative way we introduce correlation functions.
For example the spin—spin correlation function, defined to measure the
correlation between the spins on sites ¢ and j, is

D(7,75) = ((si — (s:))(s5 — {s;))) (2.10)

where 7; is the position vector of site ¢ and (...) denotes a thermal
average. If the system is translationally invariant (s;) = (s;) and T

“depends only on (7; — 7;)
(7 — 7)) =T = (si85) — Ame. (2.11)

Away from the critical point the spins become uncorrelated as r —

oo and hence the correlation function decays to zero. Note that this is
true not only above but also below the critical temperature, although
here the mean value of the spin (s) # 0, because, as is evident from
eqn (2.10), the correlations are measured between the fluctuations of
the spins away from their mean values. The correlations decay to zero
exponentially with the distance between the spins

I(7) ~r " exp™"/¢ (2.12)

where 7 is some number. Equation (2.12) provides a definition of the
correlation length, £, which was used in Section 1.2 as an estimate of
the size of the largest ordered clusters in the Monte Carlo generated
snapshots of an Ising model. We have assumed that £ is independent
of the direction of #*. This is usually the case for large r near criticality.

At the critical point itself long-range order develops in the system.
The correlation length becomes infinite and eqn (2.12) breaks down.
Evidence from experiments and exactly soluble models shows that here
the correlation function decays as a power law

1
L) ~ (2.13)

2.5

First-order and continuous phase transitions 21

where 7, our first example of a critical exponent, is a system-dependent

constant?. ] ) )
It is possible to relate the spin—spin correlation function to the

fluctuations in the magnetization and hence to the mzmomwigm.@‘ d.mgm
the formula relating the magnetization to the partition function given

in Table 2.1 one can check that the fluctuations in the magnetization

are given by

%N

SH? InZ = kTxp. (2.14)

(M = (M))?) = (M?) — (M)? = KT
But, writing the magnetization as a sum over spins,
(M — (M) = 3o — o) D5 = () = D _Tig (215
i F ]
For a translationally invariant system

| MUH,& = ZMUH,S ~ Z\H,?vﬂgl&ﬂ (2.16
i i

where the sum has been replaced by an integral, a step usmewmm&.bw@
criticality where the lattice structure is unimportant. Combinin

eqns (2.14), (2.15), and (2.16) we obtain

XT ~ Z\Hﬁlﬁmliﬁ (2.17

At the critical temperature the susceptibility diverges and hence T'(7
must’ become sufficiently long range that the integral on the righ!
hand side of eqn (2.17) also diverges. This sets an upper Ei.a on 7 ¢
2. Note, from eqn (2.14), that a divergent susceptibility also implies
divergence in the fluctuations of the magnetization.

2.5 First-order and continuous phase transitions

A phase transition is signalled by a singularity F. a @mﬁdo.&ﬁw.&d
potential such as the free energy. If there is a finite discontinuity :
one or more of the first derivatives of the appropriate thermodynam
potential the transition is termed first-order. For a magnetic syste

the free energy F, defined by eqn Aw.mvv is the appropriate potenti

4Fisher, M. E. (1964). Journal of Mathematical Physics, 5, ?E..
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with a discontinuity in the magnetization showing that the transition
is first-order. For a fluid the Gibb’s free energy, 6 = F + PV, is
relevant and there are discontinuities in the volume and the entropy
across the vapour pressure curve. A jump in the entropy implies that
the transition is associated with a latent heat.

If the first derivatives are continuous but second derivatives are dis-
continuous or infinite the transition will be described as higher order,
continuous, oOr critical®. This type of iransition corresponds to a di-
vergent susceptibility, an infinite correlation length, and a power law
decay of correlations (eqn 2.13).

It will be helpful to look more carefully at how the thermodynamic
variables behave near a phase transition for a particular case. The aim
is to compare the behaviour at first- and higher order transitions and
to look in some detail at the signatures of the latter with a view to
defining the critical exponents in Section 2.6. .

The example is the simple ferromagnet in a magnetic fleld. It
phase diagram was introduced in Chapter 1 and is reproduced for con-
venience in Fig. 2.1(a). There is a line of first-order transitions at zero
field stretching from zero temperature to end at a critical point at a
temperature T = L. The symmetry of the phase diagram, which is
a consequence of the symmetry of a ferromagpet under reversals of
the magnetic field, does not obscure any salient features. An example
of a case where this symmetry is missing is the liquid-gas transition
depicted in Fig. 1.1. :

We first describe the field dependence of the free energy and its field
derivatives, the magnetization and the susceptibility, along the three
paths 1,2, and 3 in Fig. 2.1(a). The aim is to compare the behaviour
of these functions at temperatures below, equal to, and above T¢.

The free energy itself is shown in Fig. 2.1(b). Note that it is convex
and symmetric about H = 0 as expected. A cusp develops at H =
for T < T,. This signals a first-order phase transition as is seen more
clearly in the behaviour of the magnetization, M.

The variation of M with H is shown in Fig. 2.1(c). For T > T, it
varies continuously. For T' < T, however, there is a jump at zero field
indicative of the first-order phase transition. At the temperature di-

5The term ‘second-order’ phase transition, used synonymously with
continuous phase transition, is a relic of the original classification of
phase transitions into first-, second-, third- ... order due to Ehren-
fest. This essentially recognized only discontinuities in thermodynamic
derivatives, rather than divergences, which has been proved inappropri-
ate. Therefore we follow M. E. Fisher in terming transitions first-order
or continuous.

2.5
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(d)

T

H<0

fn %
=0

Fig. 2.1. (a) Phase diagram of a simple ferromagnet. There is a
of first-order transitions along H = 0 which ends at a critical p
at T = T,. (b) Field dependence of the free energy. (c) Field dey
dence of the magnetization. (d) Field dependence of the susceptibi
(e) Temperature dependence of the magnetization. (f) Tempera
dependence of the susceptibility.
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viding these behaviours, the critical temperature T, the magnetization
is continuous at H = 0 but has infinite slope.

Differentiating again one obtains the isothermal susceptibility xr,
which behaves in a definitive way at the critical temperature. The sus-
ceptibility is plotted as a function of field in Fig. 2.1(d). For T' > T, it
is a smooth function of the field as expected. Below T, the susceptibil-
ity has a cusp at the first-order phase transition, H = 0. At the critical
point itself the susceptibility diverges; a behaviour characteristic of a
continuous phase transition. :

We shall also be interested in how the magnetization and the sus-
ceptibility vary with temperature at constant field. This can be inferred
from Figs 2.1(c) and 2.1(d) for the three paths 4, 5, and 6 in Fig. 2.1(a).
Note that because of the symmetry of the magnetic phase diagram it is
not possible to cross a line of first-order transitions by varying the tem-
perature as would be the case generically. Following path 5 at H =0
one passes through T, and then follows a line of two-phase coexistence
to zero temperature. Along paths 4 and 6, which have been chosen
to lie equidistant from H = 0 to display the symmetry of the model
better, there is no phase transition. :

The temperature dependence of the magnetization is shown in
Fig. 2.1(e). For non-zero field the magnetization increases smoothly
with decreasing temperature to attain its saturation value, correspond-
ing to all the spins being aligned, at zero temperature. The spins align

along the direction of the field; if H >0 the magnetization is positive -

and vice versa.

For H = 0 no preferred direction is singled out by the field and,
for T' > T., correlated regions of spins are finite and equally likely to
point up or down. Hence the net magnetization is zero. At the critical
temperature the correlation length becomes infinite, allowing a single
cluster to dominate and a non-zero magnetization. The magnetization
increases from zero at T' = T to its saturation value at T' = 0. States
with positive or negative magnetization have identical free energies.
The two branches of the zero-field magnetization curve in Fig. 2.1(e)
reflect this. The upper curve would be attained the presence of an
infinitesimally small positive field; the curve corresponding to negative
magnetization in an infinitely small negative field. Alternatively, cool-
ing in a field and then taking the limit H — 01 or H — 0~ would give
positive or negative M respectively.

Finally we plot in Fig. 2.1( i) the susceptibility as a function of
temperature. It must follow from symmetry that the susceptibility
depends only on the magnitude of H, not on its sign. For finite field
there is a peak in the susceptibility at T.. For H = 0 this becomes a
divergence signalling the critical point.

2.6
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We have considered the dependence of the free energy on H and
of its derivatives with respect to the field, the magnetization, and the
susceptibility, on H and T. What about the temperature dependence
of the free energy? For non-zero field there is no phase transition and
hence the free energy is an analytic function of the temperature. For
H == 0 one passes through a critical point as the temperature is lowered.
This shows up in the second derivatives of the free energy.

Finally, for completeness, we mention the behaviour of the temper-
ature derivatives of the free energy, the entropy, and the specific heat.
At a first-order transition there is a usually a jump in the entropy
and hence a latent heat®. The existence of a critical point is often
marked by a specific heat which diverges at the critical temperature.
An example of this is shown in Fig. 1.3.

2.6 Critical point exponents

‘We have argued that the critical point is marked by divergences in the
specific heat and the susceptibility. It turns out to be very importan
to the theory of critical phenomena to understand more carefully th
form of these divergences and the singular behaviour of the other ther
modynamic functions near the critical point. To do this we define :
set of critical exponents. We shall then start to justify why they pla
such a central role in the theory of critical phase transitions.
Let A

t= (T -T)/Te (2.18

be a measure of the deviation in temperature from the critical tempe

ature T.. Then the critical exponent. associated with a function F'(;

wm.ﬁ

C In| F@®) |
= 2.1¢
. A WIH& H,U_ t| (
or, as it is more usually written,
F@t)~|t]. (2.21

The ~ sign is well advised as it is important to remember that eqn AM.N
only represents the asymptotic behaviour of the function F(t) ast —
More generally one might expect

6For the ferromagnet the transition is between states of magnetiz
tion opposite in sign but equal in magnitude. Hence this is a transiti
with no associated latent heat. :

7 Assuming that the limit exists. See problem 2.3 for an exam]

where this is not the case.
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Table 2.3. Definitions of the most commonly used critical exponents

for a magnetic system

Zero-field specific heat Cg ~|t|™®

Zero-field Bm.mbogmaob . M ~ (~t)#

Zero-field isothermal mcmomvavw:ww; xT ~|t]7

Critical isotherm (t = 0) ) H ~| M | sgn(M)

Correlation length £~

Pair correlation function at Tt G(7) ~ 1[rd=24m
FO)=A[tPQ+btM+.),  M>0 (2.21)

To check that this is a reasonable way of describing the leading

behaviour of the singularities in the thermodynamic functions consider
the zero-field magnetization of a ferromagnet shown in Fig. 2.1(e).
Near T, a sensible guess would be to describe the curve by a formula
M ~ (—t)? with 8 ~ 1/2 because of the resemblance to a parabola.

The zero-field susceptibility diverges at T as shown in Fig. 2.1(f)
and the zero-field specific heat shows qualitatively similar behaviour.
Hence we may write

xr~ ™ Ca~lt]® (2.22)
where o and ~ are positive. : .
. > mo.sgr exponent, 6, is introduced to describe the behaviour of the
critical isotherm near the critical point at H =0,

H~ M P sgn(M) (T=Tc). (2.23)

Check that this corresponds to a curve of the form shown in Fig. 2.1(c).

. One might guess § ~ 2., .

The critical exponent definitions are collected together in Table 2.3
for a magnetic system and Table 2.4 for a fluid. 7 and v are associated
with the pair correlation function and correlation length which were
defined in Section 2.4. In particular, v describes how the correlation
length diverges as the critical temperature is approached.
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Table 2.4. Definitions of the most commonly used critical exponents
for a fluid system

Specific heat at constant volume V., Cv ~ e

Liquid-gas density difference (o1 — pg) ~ (—t)P
Isothermal compressibility wr ~jt]77
Critical isotherm (¢ = 0) P-P. ~

, | 1= pg |° sgnlpr = pg)
Correlation length e~
Pair correlation function at T. G(F) ~ 1/rd=2H7

In compiling Tables 2.3 and 2.4 we have made the as yet totally
unjustified assumption that the critical exponent associated with a
given thermodynamic variable is the same as T — T from above or
below. Early series and numerical work suggested that this was the
case, but it was only with the advent of the renormalization group
that it was indeed proved to be so. A common notation was to use
a prime to distinguish the value of an exponent as T' — T, from the
value as T — T . .

2.6.1 Universality

Having defined the critical exponents we need to justify why they are
interesting. And indeed, why they are more interesting than the critical
temperature T, itself. It turns out that, whereas T, depends sensitively
on the details of the interatomic interactions, the critical exponents
are to a large degree universal depending only on a few fundamental
parameters. For models with short-range interactions these are the
dimensionality of space, d, and the symmetry of the order parameter.
Striking evidence for this comes from a plot by Guggenheim pre-
sented as long ago as 1945. This is shown in Fig. 2.2 where the coexis-
tence curves of eight different fluids are plotted in reduced units, T/T.
and p/p.. Close to the critical point (and indeed surprisingly far away
from it!) all the data lie on the same curve and hence can be described

by the same exponent 3. The fit assumes 3 = 1/3.
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Fig. M.M.. The coexistence curve of eight different fluids plotted in re-
Q:.omm variables. The fit assumes an exponent § = 1/3. After Guggen-
heim, E. A. (1945). Journal of Chemical Physics, 13, 253.
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A further test of universality is to compare this value to that ob-
tained for a phase transition in a completely different system with
a scalar order parameter. Magnets with uniaxial anisotropy in spin

. space are one possibility—for MnF, a classic experiment by Heller

and Benedek® gave 8 = 0.335(5) where the number in brackets de-
notes the uncertainty in the final decimal place. For phase separation
in the binary fluid mixture CCly+CrFq6 the experimental result® is
g = 0.33(2).

The Ising model, which we introduced as a simple example of an
interacting system in Section 1.2 also has a scalar order parameter. It
cannot be solved exactly in three dimensions but numerical estimates
of the values of the critical exponents are very precise and provide
a stringent test of universality. For the simple cubic, body-centred
cubic, and face-centred cubic lattices K, = kT,/J = 0.2216, 0.1574,
and 0.1021 respectively. However, in all three cases § is the same,
0,327, with some argument about the value of the last decimal placel®.
This immediately illustrates the power of using simple models to
describe critical behaviour. By making sure that one is working in
the right dimension and that the symmetry of the order parameter
is correctly represented by a model, it can be used to obtain critica
exponents for all the systems within its universality class. 1t is muck
easier to study the Ising model than a complicated fluid Hamiltonian

Universality classes are often labelled by the simplest model systen
belonging to them. Therefore a discussion of other universality classe
will be postponed to the next chapter when we will have defined th
relevant models.

2.6.2 Exponent inequalities

1t is possible to obtain several rigorous inequalities between the critice
exponents. The easiest to prove is dué to Rushbrooke. It follows fror
the well known thermodynamic relation between the specific heats
constant field and constant magnetization

aM\?
xr(Cuy —Cm) =T Allv : (2.2
T )

Because Cpr must be greater than or equal to zero,

8Heller, P. and Benedek, G. B. (1962). Physical Review Letters,
428.

9Thompson, D. R. and Rice, O. K. (1964). Journal of the Americ
Chemical Society, 86, 3547.

10Tiy; A. J. and Fisher, M. E. (1989). Physica, A156, 35.
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As £ — 0~ in zero field, using the definitions of the critical exponents
in Table 2.3,

Cr ~ (—t)™%, xr~ ()77, Aﬁvm ~ (—t)P1. (2.26)

Therefore the inequality (2.25) can only be obeyed if
a+28+v212. (2.27)
Other inequalities, for example

a+p(1+68)>2, (2.28)

can be obtained from the convexity properties of the free energy. Yet
others, for example

N<@=-nw; dv>2—a; ¥2B(E-1), (2.29)

follow from making reasonable assumptions about the behaviour of the

thermodynamic variables or correlation functions®!.

ﬂ For the two-dimensional Ising model o = 0, 8 = 1/8, v = 7/4,
: §=15,v =1, and n = 1/4 and one can check that all the inequalities

listed above actually hold as equalities. Exponents for some other

; universality classes are given in Table 3.1 and the reader might like to

check whether the scaling laws are obeyed as equalities for these.

We have introduced two very new ideas, universality and inequali-
ties between the critical exponents which appear to hold as equalities.
The reader might well be demanding to know why the exponents have
these striking properties. Such an explanation, based on the physics
of scale invariance, will be forthcoming in Chapter 8 when the renor-
malization group is described. In the intervening chapters we look in
more detail at models of systems which undergo phase transitions and
how to calculate their critical exponents and other properties.

11The derivation of these inequalities is discussed in Stanley, H. E.
(1971). Introduction to phase transitions and eritical phenomena, Ch.
4. (Oxford University Press, Oxford).
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2.7 Problems

2.1 (i) Verify eqn (2.14). o
on& Show in a similar way that the fluctuations n the energy are

related to the specific heat at constant volume by
2
(AE)? =((E - (E))?) = kT*Cv-
Use this equation to argue that AE ~ N 1/2 where N is the
aumber of particles in the system.

2.2 A paramagnetic solid contains alarge number N of non-interacting,

spin-1/2 particles, each of magnetic GoEoﬁ W ou.mxmm lattice
gites. This substance is placed in 2 :Emoma. Ewmdo,an H.me H.
(i) Write down an expression for the partition function of the
solid, neglecting lattice vibrations, in terms o.m z = pH/ wﬂr
(ii) Find the magnetization M, the susceptibility X, and the en-
.S.o@%, S, of the paramagnet in the field H - o .
(iii) Check that.your expressions have mmn.m:v_m. limiting moﬁ.bm or
z>landz <1 Descibe the microscopic spint configuration n
each of these limits. .

T (iv) Sketch M, X, and S as a mﬁ.ﬁofoﬂg of x.

[Answers: (1)2 = (2coshz); ()M = Nptanh®, .

x = Np? /(KT cosh®z), S = Nk{ln2+ In(cosh z) — z tan z}.]

2.3 Determine the critical exponents A for the followin
t— 0

g functions as

@ () =At"+ Bt/* + Ct
@ f@)= At~23(t + B)*/?
@iy  f)= At?e”
(v)  f(t) = At? et
v f@= Aln{exp(1/t*) -1}
[Answers: (1)1 /4, (i)—2/3, (iii)2, (iv)undefined, (v)-4]
2.4 Show that the following functions have a critical exponent A =0
in the limit t — 0:
1) \Qvﬂkﬁb::\m
(ii £(t) = A— Bt
Gi) @) =11t<0; ) =21t>0
Gv)  f() =A@+ B ]t
) %ASHEWE:_.TN
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2.7

12 :
2.512 Consider a model equation of state that can be written
H~aM(@t+bM?)% 1<60<2; a,b>0.

szH the critical point. Find the exponents 3, v, and § and check
that they obey the inequality given in (2.29) as an equality
[Answer: B =1/2,v=0,6=1+20] .

2.6'2 The s ization’]
pontaneous magnetization per spi i i
pin of th -
model on the square lattice is © spia-/2 Lo

(s)® =1 — (sinh 2J/KT)~*.

Show that this can be written in the form
(s) = mﬂlwvmﬁ +b(—t)...}

qu”.mno M Hwﬁﬂ —1T,)/T. and 8 = 1/8. Find B and b and hence
estimate the range of temperatures over which it is reasonable to
ignore the correction to the leading scaling behaviour

[Answer: B = (8 H\ml
TINT. ] A,\mxnv;|c|§ﬁ>\w\m§§ K. =

12 After M. E. Fisher.

3
Models

The aim of this chapter is to describe some of the most fundamental
models of cooperative behaviour. To model a physical system one route
is to include, as realistically as possible, all the complicated many body
interactions and try to obtain a quantitative prediction of the behaviour
by solving Schrodinger’s equation mimerically. The other extreme is to
write down the simplest possible model that still includes the essential

- physics and hope that it is tractable to analytic or precise numerical

solution. The aim here is often to study universal behaviour or to gain
a qualitative understanding of the physics governing the behaviour of
a given class of materials. C
It is the latter approach that we shall take here. Despite the appar-
ent simplicity of the models, they show a rich mathematical structure
and are in general difficult or, more usually, impossible to solve exactly.
Moreover, and perbaps surprisingly at first sight, they do provide valid
and useful representations of experimental systems. ‘We shall return
to discuss why this should be the case at the end of the chapter when
armed with concrete examples.
" It is conventional and convenient to use magnetic language and
write the model Hamiltonians in terms of spin variables, although they
“will turn out to be .n%vzn@zm to many non-magnetic systems. In all
the examples considered here the spins will lie on the sites i of a regular
lattice. Three-dimensional lattices, such as simple cubic, body-centred
cubic, and face-centred cubic, are familiar from conventional crystal-
lography but we shall also be interested in lattices in two dimensions,
such as the square, triangular, and hexagonal lattices shown in Fig. 3.1.
and in one. dimension where the lattice is just a linear chain of sites.
Tt will become apparent in later chapters that most of the scientists in
this field show a marked preference for working in any dimension but

three.

33
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| 3.1 The spin-1/2 Ising model

v . A remarkably successful model of an interacting system, and one that
@ we shall use continually as an example throughout this book, is the
b) MW NN N—X spin-1/2 Ising model. A classical spin variable s;, which is allowed

b : \/>\<< </ : to take values *£1, is placed on each lattice site. The spins interact
i A . /\<<< </\ according to a Hamiltonian
RNAVAVAVAVAVA > 5
H=-J 8;85 — H S;. ﬁw.Hv
VAVAVAVAVAVARRRRS ;‘ s 3

/\</\< </\ The first term in eqn (3.1) is responsible for the cooperative behaviour
\/ > > > \/ \/ and the possibility of a phase transition. J is the exchange energy:

positive J favours parallel and negative J antiparallel alignment of the
spins. We shall use (ij) to denote a sum over nearest neighbour spins;
. . further-neighbour interactions and terms which involve more than two
’ © mwwbw can be added to the Hamiltonian at will.
For J = 0, eqn (3.1) is the Hamiltonian of a paramagnet. (A discus-’
sion of its statistical mechanics forms an early chapter in elementary
statistical mechanics texts. The only influence ordering the spips is
the field H. They do not interact, there are no cooperative effects and
hence no phase transition.

The Ising model is not difficult to solve in one dimension and we
shall do so (several times) as an example of the use of transfer ma-
trices, series expansions and the renormalization group- However, one
dimension represents a special case because the phase transition is at

zero temperature. .

The calculation of ‘the exact partition function of the two-
dimensional Ising model in zero field was a mathematical tour de force
performed by Onsager in 1944. Extensions of his work mean that val-
ues are now known for all the critical exponents—they are rational

Fig. .w.H. Examples of two-dimensional regular lattices (a) square fractions in two dimensions for reasons ﬂwanoawﬁmmovmoﬁmmoﬁw
(b) triangular, (c) hexagonal. : : ’ . long time. The two-dimensional Ising model in a magnetic field and
the guool&ambmwod.& model, even in zero field, remain unsolved al-
though their properties are known very precisely from numerical work.
Professor K. G. Wilson, who won the Nobel prize in 1982 for his work

“on the renormalization group, describes:

When I entered graduate school I had carried out the instructions given to me
by my father and had knocked on both Murray Gell-Mann’s and Feynman's
doors and asked them what they were currently doing. Murray wrote down
the partition function for the three-dimensional Ising model and said it would
be nice if I could solve it (at least that is how I remember the conversation).
Feynman’s answer was ‘nothing’.
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Fig. 3.2. > typical configuration of the copper and zinc atoms of
beta-brass on the body-centred cubic lattice: (a) T > T¢; () T < Te.

Despite its simplicity the Ising model is widely applicable because
it describes any interacting two-state system. We illustrate this with
two examples.

3.1.1 Order—disorder transitions in binary alloys

A classical example of a binary alloy is beta-brass. Beta-brass con-
sists of equal numbers of copper and zinc atoms which lie on the sites
of a body-centred cubic lattice. At high temperatures each lattice
site is occupied at random by a copper or zinc atom giving the dis-
ordered structure shown in Fig. 3.2(a). We stress that the disorder
is substitutional—the atoms occupy random positions on the lattice—
rather than topological—the lattice itself has not ceased to exist, as
would be the case for a liquid. .

As the temperature is lowered there is, at T, = 733K, a continuous
phase transition to an ordered state where each atomic species prefer-
entially occupies one of the two sublattices of the body-centred cubic
lattice. The atomic configuration for T' < T, is shown in Fig. 3.2(b). A
suitable order parameter is the difference between the number of copper
and zinc atoms on a chosen sublattice. Its variation with temperature
is shown in Fig. 3.3.

Our aim is to write down a Hamiltonian which describes the inter-
actions in beta-brass and predicts a continuous phase transition. To
this end we assign the variables

s; = 1 if site 7 is occupied by a copper atom,
8; = —1 if site ¢ is occupied by a zinc atom.

The spin on each site can take two values and hence is a spin-1/2
Ising variable. Defining Joucu, Jznzn and Jouzn as the interaction

3.1
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Fig. 3.3. Temperature mm@mﬁ&mbom of ﬁrw order parameter Mm Wm.nm.
brass. The open circles are neutron mnwimn._bm results, arm dashe . Mbm
X-ray scattering results, and the full line is the theoretical ummmc om
a compressible Ising model. The discrepancy vm.?.\mmb the -BM mdﬂ

neutron data may -arise because of the low sensitivity of umlam%m o M
atomic ordering. After Als-Nielsen, J. A.Eqmv. Neutron mopﬁmw_bm @dm
spatial correlation near the critical point. In Nuwamm transitions g%\
critical phenomena, Vol. 5a (eds C. Domb and z S. Q.nm.wa.&4 p-87.

(Academic Press, London).
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between two copper atoms, two zinc atoms, and a copper and a zinc
atom respectively we may write the Hamiltonian

1
H = =Y Jouwcu(l+ s 3o 1
&”W ¢ Qﬁm +MSVAH+M.“V+MM.\NHNSC.|&XH'MN.V
N g

H
+m AMJW &o&iﬁ+&.§|&v+GI&.VGL;E.@.Nv

Hﬁn is easy wo check that if sites ¢ and 7 are both occupied by copper
atoms so that s; = s; = 1 this reduces to J. i
o (2.2) aioen cucy and so on. ‘Oo:moSbm

W sy =Y Ev
(i5) i

. - 1 ‘

MMMMm H&IU 1(Joucu + Jznzn — 2Jcuzn), C is a spin-independent
, and, because there are equal numbers of copper and zinc at
3,8 =0. i

<<,.w have arrived at the Hamiltonian of the nearest-neighbour spin-
1/2 H.mEm.Eomm_ on a body-centred cubic lattice in zero field érm&@
@Hoﬁawsmudm are inherent in using this to describe vmﬂm.gm.m% Fir MMY
I mww:E .ES to stress that the use of an Ising variable is bo.ﬂ an o
EQ.GE@.S@ (as long as there are no impurities or vacancies) as @ﬂ
wm?moo site is strictly in one of two states, occupied by copper om@n
cupied by zinc. Therefore, because of the ideas of SD?Q.,WQE ) MM-
wx@ohmam ‘mchE be those of the three-dimensional Ising Eo&mw\.m :
if the mmﬂ.mim .wm the interatomic interactions are not well mmmol_uoma\mu
Www wwmanﬁob_mb (3.2). This is borne out by the experimental S&:mﬂ
o lﬁp .305 &+ 0.005 and Y= 1.24 & 0.015 which should be compared

e current best estimates for the three-dimensional Isin

B ~0.33 and y ~ 1.24. g mode

To 8o beyond universal properties and try to predict experimental
Hmmﬁ.am like the variation of the order parameter with tem mm t Nm
mmnwbm of the interactions included in the model mmLBEoMmmM Mam .
important. In general, further-neighbour interactions and EEMAWMMM

H .
bmmHﬂMmH'Zﬁ_Mmbw J. (1976). Neutron scattering and spatial correlation
e critical point. In Phase transitions and criti

cal phenomena.

W\MW.Q 5a Amﬂw_m O.. Domb wu.& Z.. S. Green), p.87. (Academic Hunomm,
o~.~v. e %moummmnn% in B is thought to result from the ﬁrmﬁdmm
expansion of the lattice affecting the temperature dependence of th
order parameter near criticality. ) ’
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terms (such as E&.mwv and long-range interactions must be included to
reproduce the thermodynamic functions correctly. In this particular
example, however, they turn out to be unimportant. For beta-brass
the most significant correction to the Ising model result comes from

teraction J with temperature which

the variation of the exchange in
results from the thermal expansion of the lattice. Allowing for this.

the agreement with experiment is excellent, as shown in Fig. 3.3.

3.1.2 Lattice gas models

The archetypal lattice gas is a model where each lattice site can eithe
t. A variable t; = 1,0 is used t¢

be occupied by an atom or vacan
represent an occupied or unoccupied site respectively. The Hamiltonia:

H= |.NBMU?.$ lthMU.?. Aw\w
(i) i ,

where J, is a nearest neighbour interaction which favours neighbourin

chemical potential which controls th

sites being occupied. (L is a
number of atoms: a large positive pr will lead to most sites bein

occupied whereas a large negative /L, will favour vacancies.
As t; is a two-state variable it must be possible to map it on to 2
Ising spin, s; = £1. This is achieved by the transformation

is

t; = (1— 5:)/2. (3.

Substituting eqn (3.5) into eqn (3.4) one regains the usual neare
neighbour, spin-1 /2 Ising Hamiltonian with the field related to t
chemical potential.

A system which is well modelled by a lattice gas and which also
lustrates the possibility of realizing experimental examples of the Isi
model in two dimensions is hydrogen adsorbed on the (110) surface
iron. The atomic configuration of a (110) plane of iron is shown
Fig. 3.4(a). The potential wells between the iron atoms form a tri
gular lattice and define possible sites for the adsorption of hydrog
Fach site can either be occupied (t; = 1) or vacant (t; = 0) with
number of occupied sites, or coverage, being determined by the press
of the hydrogen gas in contact with the surface.

As each adsorption site can be either occupied or vacant it has
states, and hence the phases of hydrogen on iron should be amene
to description by a lattice gas or equivalently an Ising model. As
coverage is varied several different ordered phases exist as the equ
rium state of the adsorbed hydrogen atoms. Some of these are sh

in Fig. 3.4(b). They cannot be described by an Ising model with
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nearest neighbour interactions, but by including the anisotropic seconc
neighbour term and a three-spin interaction proportional to the prod-
uct of spins around each elementary triangle shown in Fig. 3.4(a), the
different phases and the transitions between them can be understooc

in some detail.

3.2 The spin-1 Ising model

For systems with more than two states higher-spin Ising models ar
appropriate. For example, the most general Hamiltonian for the spin-

| Ising model is

i (b)
H ..“.“‘“.“.. H = - ,NM sis; — K mwmw - D MU 52
.ﬂﬂﬁ“ﬁ“ﬁ“ﬁ. @ @ T
P
: .H H‘H‘H‘H. ~-L MAmwmw + ms.mWV -_ m.M Siy s; = %1,0. Aw.m
SO N |
.‘ﬁ‘ﬂ'&‘ﬁ‘. This follows from allowing all possible terms mw,mw ;a,f = 0,1,
Higher powers of the spin do not enter because 57 = ;.
Because of its enlarged parameter space the spin-1 Ising model e
hibits a much richer variety of critical behaviour than its spin-1/2 cou
Ll terpart. The phase diagram for K = L = 0 is shown in Fig. 3.5. Thr
il sheets of first order phase transitions join at a triple line where thr
A_, phases coexist. The triple line ends in a tricritical point where t
m three phases become critical simultaneously.
1@ @:@x ,
| .-Cﬂ.ﬂ N 3.3 The ¢state Potts model
| 0.0.0.0.0.0 |
w Many different spin models, some driven by theoretical and some
i experimental considerations, have been defined in the scientific lites
W ._n._u. 3.4. (a) HHE w.monn configuration of a (100) plane of iron show- ture. Several examples appear in nwm.@uogmmom wwn the end of this a
S ing the adsorption sites for the hydrogen atoms and the interacti . subsequent .n?%ﬁmmm. The only other classical spin Bo@&.;@n I sh
| . _, included in a model Hamiltonian for this system. (b) So omﬂobm define here is the g-state Potts model. The relation of .this system
B resulting equilibrium phases. . . me of the : the physisorption of krypton atoms on a graphite surface provides
interesting example of how to construct a model Hamiltonian with |
correct symmetry.
To define the Potts model a g-state variable, o; = 1,2,3...¢
placed on each lattice cite. The interaction between the spins is
scribed by the Hamiltonian .
H=-J boio; (:
)
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§ is a Kronecker delta-function so the energy of two neighbouring spins
is —J if they lie in the same state and zero otherwise. It is easy to
convince oneself that the Potts model has q equivalent ground states
where all the spins are identical but can take any one of the g values.
As the temperature is increased there is & transition to a paramagnetic

phase which is continuous for ¢ < 4 but first-order for ¢ > 4 in two

&memwobmw .

‘ For ¢q = 2 the Potts model is identical to the spin-1/2 Ising model.
First-order surfaces — T Lines of aritical Note, however, that for ¢ = 3 the Hamiltonian (3.7) does not corre-

@ spond to the first term in eqn (3.6) because the three states of the
spin-1 Ising model are not equivalent (see problem 3.2).

A physical realization of a system with the symmetry of the two-
dimensional, three-state Potts model is krypton absorbed on the basa
planes of graphite. The surface of graphite comprises hexagonal ring
— . . of carbon atoms and it is favourable for an adsorbed krypton to li

Tricritical point within one of the rings. However, the krypton atoms are sufficiently bi
Line of critical that once a hexagon is occupied it becomes unfavourable for an atomn
points to lie on any neighbouring site. Therefore, for one third coverage, th

—> W krypton atoms form a triangular lattice as shown in Fig. 3.6. But ther

are three entirely equivalent positions for the lattice: on the sublattice
labelled a, b, and ¢ in the figure. Hence the system has the symimnetr
of the three-state Potts model where a site corresponds to a triplet
adsorption rings and o; = 1,2,3 to the possibilities of the adsorbe
krypton lying on the a, b, or ¢ sublattices respectively.

«ig

points

Triple line

First-order surface

<z

3.4 X-Y and Heisenberg models

Fig. 3.5. A three-dimensi | ; ' :
. onal cross-sect ; . . . .
gram of the spin-1 Ising model. Three s mw fon through the phase dia- We have so far ignored the most obvious application of a spin model
(two ‘wings’ and the lower @o?mob of gﬂa%nw.m%m Mﬁmﬁ-oaoa Smwmwﬁ.oam to magnetic systems themselves. The restriction of the Ising moc
line, shown in bolder type, where thr W plane) .Emma at a triple is that the spin vector can only lie parallel to the direction of que
phases become identical mmmb::mbmo:&mm Hm ases owo.ucm? HWm three tization introduced by the magnetic field. This means that the Isi
marks the end of the triple line or, e :M J wﬁﬁdodﬁo&. point which Hamiltonian can only prove useful in describing a magnet which
three lines of critical points boun &md @aw_sw@d y, the point where the highly anisotropic in spin space. There are physical systemns, MnF,
g the first-order surfaces meet. . example, which to a good approximation obey this criterion, but f
tuations of the spin away from the axis of quantization must inevita

occur to some degree.
A more realistic model of many magnets with localized moment

H=-J sisf—JL S (st +s¥s]) — HY s (
(i) (5) » :

2Wu, F. Y. (1982). Reviews of Modern Physics, 54, 235.
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Sublattice ¢ occupied

Sublattice a
occupied

Sublattice b occupied

F ig. wm Ww%@ﬁou adsorbed on the basal plane of graphite showing
Womx_mﬁum regions of the three ground states. After Kardar, M. and
erker, A. N. (1982). Physical Review Letters, 48, 1552. “

s&ﬁ.m z, vy, m.Em z label Cartesian axes in spin space. For J| = 0 we
regain the Ising model. For J, = J| eqn (3.8) can be written

H=-J) &8 —Hy si. (3.9)

(i) i

This is the Heisenberg model.

The m.mwmmbvmwm model was introduced in 1928 and was discussed i
some detail as a model of ferromagnetism in Van Vleck’s book of HMwNWE
It gives a reasonable description of the properties of some magnetic 5;.
mE@ﬁon“ such as EuS, and provides a microscopic Hamiltonian describ
ing the exchange interaction which leads to ferromagnetism. How ver,
it does not include the possibility of non-localized spins mb.m ass e
complete isotropy in spin space. e

The most fundamental theoretical difference between the Heisen-
berg and Ising models is that for the former the spin operators do dbﬁ
ooEdEemA Therefore it is a quantum mechanical rather than a omewoMH

$Van Vleck, J. H. (1932). Th
ret y J. I . e theory of electri ;
ceptibilities. (Clarendon Press, ON??C.@ f electric and magnetic sus-
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spin model with corresponding greater difficulty in analytic or numer-
ical treatments. Quantum models can be mapped on to classical spin
systems in one higher dimension and there are some exact ‘results for
one-dimensional quantum models, just as for two-dimensional classical
models?. Moreover, just as the Ising model only has a finite temper-
ature phase transition for d > 1, the Heisenberg model orders at zero
temperature unless d > 2.

The classical limit of the Heisenberg model can be constructed by
taking the number of spin components to infinity and normalizing the
spin from 1/S(S + 1) to 1. The spins become three-dimensional clas-
sical vectors. This limit, which leads to considerable simplifications in
theoretical work, is useful because the critical exponents of the classical
and quantum Heisenberg models are the same. This is an example of
universality.

A second guantum mechanical spin model is the X-Y model, ob-
tained by putting J; =0 in the Hamiltonian (3.8). This leads to spins
which are two-dimensional, quantum mechanical vectors. The X-Y
model, like the Heisenberg model, only has a conventional phase tran-
sition at non-zero.temperature for d > 2. However, in d = 2 there is
a tramsition at finite temperatures to an unusual ordered phase with
quasi long-range order. This is marked by the correlations decaying al-
gebraically (as in eqn 2.13) for all temperatures, not just at the critical

point itself °.

3.5 Universality revisited

In Section 2.6.1 the concept of the universality of critical exponents wa:
described: that, for models with short-range interactions, the expo
nents depend only on the dimensionality of space and the symmetry o
the order parameter. Several systems with the exponents of the three
dimensional Ising model were given as examples with the promise tha
more universality classes would be considered when the appropriat
models had been introduced. We are now in a position to do this.
Universality classes which correspond to the models we have dis
cussed in this chapter are listed in Table 3.1, together with an explic
description of the symmetry of the order parameter, physical example:
and the values of the critical exponents. This is a far from exhaustis

4Kogut, J. B. (1979). Reviews of Modern Physics, 51, 659.

5Kosterlitz, J. M. and Thouless, D..J. (1978). Two-dimension
physics. In Progress in Low Temperature Physics, Vol VIIB (ed. D. ]
Brewer), p.371. (North-Holland, Amsterdam).
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Table 3.1. Universality classes

Physical examples

n

@

Symmetry of order

parameter

Universality

class

some adsorbed mono

1/4

1/8 7/4 15

0
(log)

2-component scalar

2-d Ising

e.g. Hon Fe

0.04 phase separation, flu

0.63

0.33 124 438

0.10

2-component scalar

3-d Ising

order-disorder e.g.

0.04-
0.04

0.66

4.8

1.30

0.34
0.36
1/2

0.01
—0.12

2-dimensional vector

3d XY

superfluids, supercon

isotropic magnets

4.8 0.71

1.39

3-d Heisenberg 3-dimensional vector

1/2

mean-field

(dis.)

some adsorbed mono
e.g. Kr on graphite

4/15
1/4

13/9 14 5/6
7/6 15 2/3

1/9
1/12

1/3
2/3

=4

2-d Potts, g=3 g-component scalar
q

3.5

3.6
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list, but it includes many of the common experimental systems.

There are two questions which it is interesting to ask at this point,
although a full explanation will not be forthcoming until later. Firstly,
what universality class will a magnet that is neither strictly isotropic
nor infinitely anisotropic, that is J1 #£J, #0in the Hamiltonlan (3.8),
belong to? This is the most common situation in reality.

Tt turns out that any anisotropy in the Hamiltonian, however weak,
will eventually, as the system moves towards the critical tempera-
ture, drive the critical exponents away from Heisenberg values. The

d by the strength of the anisotropy-

crossover temperature is determine
al behaviour will be Heisenberg-like over a wide

1f this is weak the critic

range of temperatures and Ising or X-Y exponents may only be realized

too close to the critical temperature to be experimentally observable. If

the interaction J in the Hamiltonian (3.8) dominates, the exponents
if J is the strongetr interaction the

will cross over to Ising values;
asymptotic critical behaviour will be X-Y like. Crossover is discussed

further in Section 8.3.1.

A second point to note is
of the Ising, X-Y, and Heise
so-called mean-field values.

that for dimensions d > 4 the exponent:
nberg models become the same and take
The mean-field theories which are usec
to calculate these exponents are described in the next chapter. It 1
somewhat surprising that the exponents should suddenly lock into :
&Hbmbm.Sbmﬁ@-mﬂmm@mb@oa value. The explanation of this will nee
the renormalization group. Note that as the dimensionality increase
the Potts model (except for ¢ = 2) does not show the same behaviow

but has a first-order transition. .

3.6 Discussion

In this chapter we have introduced several models and given exampl
of how they can describe experimental systems. We close by sur
marizing the importance of the approach of using simple models a1
discussing more generally why and to what extent they can give us
ful information about real systems whose behaviour is determined
complicated many-body interactions.

The prime advantage of using model systems is that they can
chosen to be tractable theoretically and therefore the details of th
behaviour can be understood with some confidence. In pasticular, |
aim is to extract a clear understanding of the physics leading to t

behaviour which; it is hoped, will be mirrored in the real compoun

Once the basic principles have been established various refineme

or perturbations can be included in the models. Examples would be
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effects of more complicated interactions, of defects, or of more realistic
lattice structures. By ascertaining the robustness of the system to
these perturbations it should be possible to establish whether they will
significantly change the important physics and hence whether they are
essential to model realistically a particular experimental system.

Often it is possible to go further than this and obtain a quantitative
fit to experimental data, rather than just a qualitative understanding of
it. For example, because critical exponents are universal and depend
only on the dimensionality of space and the symmetry of the order
parameter, a model has only to incorporate these properly to predict
the correct critical behaviour. .

It is often also feasible to obtain the behaviour of the thermody-
namic functions throughout the whole range of temperature. This is
because the interactions relevant to the physics under consideration
can be mapped on to a few effective short-range terms. For example,
for the case of hydrogen on iron, described in Section 3.1.2, where we
are just looking at the ordering of the adsorbate, details of the iron—
iron interactions are not important: they can just be considered to
define a lattice of adsorption sites for the hydrogen atoms. Moreover,
the complicated many-body interactions between the adsorbed atoms
themselves can be well approximated by a simple spin Hamiltonian.

Exactly which interactions need to be included and their magni-
tudes must be confirmed by fitting to experimental results or by return-
ing to a first principles calculation based on model atomic potentials.
Hence a calculation of the critical temperature itself is in the realm of
the band theorist and quantum chemist.

It is reassuring to be able to observe examples of spin models in
nature. They also stand as interesting mathematical problems in their
own right. How to study them forms the text of the remainder of this
book.

Problems

3.1 Find the ground state (stable configuration at T = 0) of the
following spin models:

(i) The one-dimensional Ising model with first and second neigh-
bour interactions

H=-4 M $iSiy1 — J2 Mums.m.m+wv 8; = x1.

Consider both positive and negative values of the exchange i
parameters. |
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3.7

(ii) The one-dimensional, p-state chiral clock model

H INMGOm*wﬁQ: I.S....DV\%TEHH“M‘..@
for J > 0 and all values of A.
(iit) The spin-1 Ising model on a simple cubic lattice

H==J sis;— K s¥st— bMUmw s; = +1,0.
{i5) (ig) ?
Consider both positive and negative values of the exchange
interactions.

(iv) The antiferromagnetic spin-

lattice
H= MMU&.@? s; = %1
(i5)

1/2 Ising model on a triangular

with J > 0.

ing model, descibed
try as the three-
if

3.2 Show that on the square lattice the spin-1 Is
by the Hamiltonian (3.6), has the same symme
state Potts model, described by the Hamiltonian (3.7),

D+2(J+K)=0, H=0, L=0

3.3 Hﬁm one-dimensional, p-state clock model is described by the

Hamiltonian
H= IMMUGOmAmﬁAE —n;)/p}, ni=L2...p.
(i) ,
Show that this model is equivalent to the g-state Potts model
H = I.NMUS.Q? c;i=1,2...¢q
(i)

forp=q=2andp=¢= 3 but not for higher values of p.
3.4 The Ising lattice gas is described by a Hamiltonian

H = —-Jg Mu?.u.v 5;85tity; — Ky MUAS tit; — Dy, MUQV 1A

s; = 1, t; = 0,1

rmation which demonstates the equivalence of this

. " fo . g
Find a trans 1 Tsing model defined by the Hamiltonian (3.6)

model to the spin-
with H=L=0.
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4.6

briepiti . _
ricritical point ¢ = b = @ Sketch the form of the free energy in

each region of the (g, b lan ition Ii
it o i (a,b) plane, on the transition lines, and at the

A v
A. U 1 mwwog _“wu@n ﬂwum ANHHnMOm&. par amete; S Om H~H0 .(NRH Q.m cem.m.wm QGEN&HOHH
nmmwmemU_ . AmMHHh%mvm—HmH ’

Pe=a/2T0%, V.=3b, NKT, = sa/am.
(il) Hence show that, when written in terms of reduced variables

p=P/P, u= VIV, t= T/T,,

the equation takes the universal form
(P+3/v*)(v-1/3) = 8t/3.

This : .
his is the law of corresponding states. Although the quantita-

tive for i
m of ﬂvm equation is incorrect for fluids in three dimensions

m.m.w.m Fig. m..m for experimental evidence.
MEV %3@5 values for the critical exponents B, 7, & of the Va
er Waals theory and confirm that they take Emmm-mma SLzmmmu

-_—

>@MMMMWME>WMMM\MM memow E&:Q.mm the terms in odd powers of m see

By » ». and Fisher, M. E. (1979). Physical Review,
6 .

HTOMM %ow«mm‘ mu‘.«\mﬂwwmwwa o O.H.Nmaﬁ.amm wno&ﬁm@mm of the free energy. See

284 (oo Prom, ‘Oxmowmwsni. equilibrium statistical mechanics,

5

The transfer matrix

5.1

The aim of this chapter is to describe how transfer matrices can be used
to solve one-dimensional classical spin models. The idea is to write
down the partition function in terms of a matrix, the transfer matrix.
The thermodynamic properties of the model are then wholly described
by the eigenspectrum of the matrix. In particular the free energy per
spin in the thermodynamic limit depends only on the largest eigenvalue
and the correlation length only on the two largest eigenvalues through
simple formulae.

The simplest application of the transfer matrix technique is to the
exact solution of one-dimensional spin models with a finite number
of neighbours wm.a site and a finite number of spin states. Transfer
matrices have, however, also proved very useful in the solution of.ex-
actly solvable two-dimensional models; now the matrices are infinite-

dimensional and their analysis requires sophisticated mathematics®.

_mmnz:m up the transfer matrix

We shall use the one-dimensional Ising model in a magnetic field as
an explicit example of how to set up a transfer matrix. This model is

described by the Hamiltonian

. .ZIH . ZIH
\IZ HI.N M .ws,.mié I..m. MU .ms.

=0 i=0Q
where we shall, for convenience, take periodic' boundary conditions,
that is identify sy = sg. The choice of boundary conditions becomes
irrelevant in the thermodynamic limit, N — oo.

(5.1)

LBaxter, R. J. (1982). Ezactly solved models in statistical mechan-
ics. (Academic Press, London and San Diego).

67



68  The transfer matrix
. 5.1

The partition function, written out in some detail, is

Z = MQQ.NAMOMH + 8189 + ... + MZIwmov +\Q.m.A.mo +5+ ...+ SN Hv
{s} l

(5.2)
e system,
The important property
esented as a product of matrices is
ucts of terms each depending only

Sw@ww {s} represents the trace over all possible states of th
that is the sum over s; = 21 for all spins s; :
of eqn (5.2) that allows it to be repr a
that it can be rearranged into vmom
on nearest neighbour pairs

Z = MUQQ..NMOMN +\Qmﬁ.wo + mHv\w Q\Q.N.w?mm ;J@m&@ﬁ + .mmv\m
{s} , )
. m%.\m?lpmc +QE.AE<IH + mov\w

| (5.3
= MH_OLH&N...HN,TQ |
- Amk@

) where
Ty = eP5i%r1 + BH(s; + 5141)/2 Am.mv

are the elements of a matrix _H_.ai
and columns by the values of Sit
-model we are considering

th Hos.ym labelled by the values of S;
1. Writing out T explicitly for the

Sit1 =1 Sit1 =~1
5= —1 =BT B(J-H) (5.6)

m . ;o . - . .
orod MM@“MM%M& Mm easily simplified by noting that it is a matrix
in terms. of the component i
prod eIms ponents of the matrix T, Taki
Tace over the spins 1 =1,2,...,N-1 corresponds to vmwmod,n“w

thé product
Zn = M (T )00
] so=z1
50 t i
o that only the summation over sy of the diagonal elements of TV

remains. This is just the trace of TY which i
i oine. This At which is most usefully expressed

Although we have used the example of the one-

to enable us to dis ici
play an explicit f
general result. ’ ormle ot

(5.7)

(5.8)

dimensional Ising model
each step, eqn (5.8) is a

PR ——
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The transfer matrix method is useful whenever the partition func-
tion can be factorized in a form like eqn (5.3) and hence expressed as
: a product of matrices. A common application is to one-dimensional
‘classical spin systems with finite-range interactions. The size of the
transfer matrix depends on the number of spin states per site and on
“the range of the interactions. For example, for the nearest neighbour
g-state Potts model it is ¢ X ¢. For the one-dimensional Ising model
with first and second neighbour interactions the rows and columns are
labelled by s;, s;41 and s;j2, Si+s respectively and hence the matrix
is 4 x 4. As the model gets more complicated the usefulness of the
formalism depends on whether the transfer matrix can be diagonalized
analytically or numerically.

A pictorial way of thinking of the transfer matrix is that it builds
up the lattice step by step. Multiplying by the R power of T adds
the spin sg and traces over the spin sg-i. Hence this step can be
considered to add the bond between spins R — 1 and R. Any further
terms in Z cannot depend on the value of sp1 as the trace has already
been taken over this spin.

. 5.2 The free energy

The power of the transfer matrix formalism becomes apparent in the
formula for the free energy. We shall now leave the example of the
Ising model and consider a general transfer matrix T of size n X n.
If the eigenvalues, listed in terms of decreasing modulus, are labelled
Ao, A1, A2 ... An_1 then, in the thermodynamic limit, the free energy
per spin is given by

‘

. .1

fo= -k Jim a2y 9
- kT li 1 In < AY yw«
= kT Jim +lnq H.TM Y (5.10)

But, as N — o0, (A\;/Xo)" — 0 because the ratio is less than 1 and
‘hence ’

(5.11)

This is an important result because it is often much easier to calculate
Xo than the entire spectrum of a matrix. ’

‘Tt is not necessary to worry about degeneracy in Ao because transfer
matrices can be proved to belong to a class of matrices with non-
degenerate, positive largest eigenvalue Ao, thus giving a physically
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sensible free energy®. We have assumed that the A; are real. This

is not necessarily the case for i # 0 but the formula (5.11) still holds
(see problem 5.3).

5.3 The correlation ?:nzo:

A second Eﬂﬁoi“ma quantity which is simply related to the eigenvalues
of the transfer matrix is the correlation length. To calculate this we
need the spin-spin correlation function which serves as an example of

how to obtain averages of products of spins using transfer matrices. We
recall from Chapter 2 the definitions of I'g,

the two-spin correlation
function, and ¢, the correlation length,

Tr = ((s0sr) — (s0)(sR)), (5.12)

€= Jim *ws | {s05) = {s0)(sr) ;. (5.13)

Consider first the calculation of

Ly sosne PN H
(sosr)N = =— Mmcmmmlm N (5.14)
;)
pge Py = 2y £

where the subscript N denotes that we are again considering a ring

of N spins. Zy is known from eqn (5.8) and the numerator can be
written in a form analogous to eqn (5.4)

MQOmleiz = MUMO .H_PHH,HMM...HEIHLW SR H.?b,z...w.ﬂ_?lfo
{s} {s}
= MU S0 A‘Hmvo& SR A‘H‘levmb - (5.15)
S0SR
P e e o

Let T have wm,mmnu\@,nﬁon | @;) corresponding to the eigenvalues i, i =

0,1,2,...n — 1. It will also be usefil to define the diagonal matrix s R

?This is the Perron—Frobenius theorem which is discussed in Horn,

R. A. and Johnson, C. A. (1985). Matriz analysis, p.508. (Cambridge
University Press, Cambridge).
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" o the possible values of sp and corresponding

with eigenvalies sdue 10 £ D). Making use of the formulac

eigenvectors (§r |= (00...

) SR = M _ .w.mv.mwAw.m _“ Am.Hmv
T =Y |d)hld: |, (5.17)
. (5.18)

(T®)o,r = M.a.o | @M | 3r)

eqn (5.15) becomes

Lige} sospe PHN = sn | ZNYR(E; | Bo).
S apen Lo S0{f0 | BN | Fm)onlBa [ TG N0

?QOC:F HEG w.—mww.ﬂ Huwmﬂﬁ.‘—uﬁ €. QHEOH_.G to _WHO UQ 11NN CM Sv@ @Hcaw:A; @H—A—

using eqn (5.16):

T sosne PN = 3 (s 30 | TN | 5| Z)NE. (520
, {s} - v
Hence, recalling the formula (5.8) for Z, .
35 | so | @) @wvm (i | sr | ;) AWV 21

Amommvz = - W
el
d through by Xo. It is then easy to see that I

. where we have divide j =0 and k = 0 survive

the thermodynamic limit only the terms in

N\ iy Lo | @) | 55| o)
fim (oo = 30 (35 (0 50 | 3 o

A.mo.mmwv .H N—roo i AM.NM

i

. " i) (@ | sr | @o
(o | o | o) (o | 5 | o) + T (35) (o Lo | G){: [ 3|

— (so(s)+ Sapo (3 (o | so | )i | 5m | o)

(5.2

where in the final step we have used o
| (s1) = {ilo | sn. | o) .

g
Erwﬂww can U@ CHOCGQ _Uw a HHH@HHMOQ. GHHRE OH% N.HHN.HC ous to .H_N; _C__Ccc

above (see problem 5.1).
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The correlation function (5.12) then follows immediately as

ta=3(52) Golon |80 sel @) (529

i#0
Note that it depends on all the eigenvalues and eigenvectors of the
transfer matrix. A:much simpler formula is obtained for the correlation

length (5.13). Taking the limit R — oo the term i = 1 dominates the

sum in eqn (5.25) and hence

m‘
€' = Jim -~ QIMV Eimisva:mim& (5.26)
= —In(\ /). | | (5.27)

This formula has proved invaluable in work involving large transfer
matrices—it is far easier numerically to find a small number of domi-
nant eigenvalues than to completely diagonalize the matrix.

A point worth noting is that usually the Hamiltonian considered

is numbmwwﬁobm:% invariant. Hence the product of matrix elements in
eqn (5.25) can be rewritten

(@o | so | %)(T; | sk | o) =| (@ | so | @) |? . (5.28)

We have also ignored the possibility that );, i # 0, can be complex.
This case is followed through in problem 5.3

5.4 Results for the Ising model

Let us now return to the example considered in Section 5.1, the nearest
neighbour Ising model in a magnetic field, to obtain explicit results for

ﬂWm@cwﬁﬁﬂmm&mo:mmmambwmoiobmm.w mbmm‘w. Umm.mobwzmwumgm
matrix (5.6) gives : , .

Ao = P coshBH + /\mw\m,\mw&m BH + mlmm,ﬁ (5.29)
(@ [= (ay,0n), (i@ |= (o, —ay) - (5.30)
where )
1 , B i
o=z |1+ ¢ smhpH . (5.31)
A/ e2BJ sinp? GH + e=26J .

Using eqns (5.29)(5.31) we shall write down expressions for the free
energy per spin f, the magnetization per spin (s}, the correlation func-

ﬁobﬁmumgm ooHHmFaob_mdmgm_wbaowmnwgmn gm.%vmr%mmuw
sensible way. .

5.4
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5.4.1 The free energy

From equs (5.11) and (5.29) -
. 12 —

ﬁmm& cosh BH + e28J sinh? BH +e

v . (532

(5.33

As f — o©
F — —kTIn{eP” (cosh BH +sinh fH)} = —J — H

i d.
which is the energy pex spin as expecte

tization
.4.2 The magne .
m differentiating the negative of the fre

This can be obtained ether Y O eld H, o by using eqn (5.24

energy with respect to the mag

One obtains o = A 1o v A o v (5.3

mm& sinh BH ) (5.3
)

e20J sinh? BH + e—28J
= 0 (or equivalently T = ),

this reduc
For non-interacting spins J

to (5.1

" (s) = tanh fH :
i ratt
ted for a paramagnet. In zero field at any finite tempe
as expecte

less one tal
try of the model, un
(s) =0, as expected from the symmetry

A
__ _:_.ml“~ 5.
.

[ T mAv

t t p mV 1
m~HOcc:wm su,@ HF@H@ 15 & HHNM@ GHNRHM:U#OHH at zero tem @HPH_H_Q to a n

ordered ground state.

5.4.3 ‘ Tle correlation function

From eqn (5.25)

A\ F o287 A (5
L) SpToog e =287
Tr=\X) e2B7cmn®fH +e
For zero field this simplifies to A ~ o G
v Tr(H = 0) = tanh™ 8J.

- _ m Nw_
H U@ Zero m.mwhw cor t1o un n

H@HW. 1011 mﬁﬂGﬁHOb 15 HVHC. n@mw as a m ctio Q
&wm.mHOHHﬂ ﬁOBmuOHN.ﬂCﬁmm m M Hm. m.v.”—.. HAO&O HWHO @unmumﬂ\» m&. Q@GN.% ccwwww .~
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5.5

1 KTl=

0.5}
0.5

0
5 10 15 m_om#o

Fig. 5.1. De .
-4 pendence of the spi .
one-di. i : . pin—spin correlati :
mensional Ising model in zero field on &mdmbow Mﬂﬂpﬂmfob o the
mperature.

all T # 0. If the coupling i ,
S pling is antif .
function changes sign for odd mwu erromagnetic (J < 0) the correlation

5.4.4 The correlation length
From eqn (5.27)

.
P coshGH — /\mwuk sinh? BH + e—26J
eBJ cosh SH + /\mm\m,\ sinh? H + ¢—287

El=—In

(5.40)

Check that as T' — 0, ¢~
O“ M L 0 si 1
and that as T — oo, £-1 — co signalling the expected phase transition

5.5 Problems

5.1 Prove that, in the thermodynamic limit

spin (s} is given by , the average value of the

{s) = (o | s | )

)

where s i ; .

sible val WMMHMM mwmoﬂ& Bwﬁﬂcn with eigenvalues equal to the p
spin and | i) is the ei 0%

to the largest eigenvalue of the demmmnm Hmpmmﬂwmumﬁg corresponding

mw.M 1 ((H: e AwOSHH _“HHQ nHNRHMMQH matrix mOH S..—O CHH@I&LEHOEMwOH_.Nh -|m* ate
A V
)

Potts model which is described by the Hamiltonia,
n

Problems 75

=T boiyny Oi= L2

5.5

' (i) Show that the largest eigenvalue is ef J 4 g — 1 and that.
the remaining eigenvalues are all degenerate and take the value
mm J_1.
(iil) Write down expressions for the free energy and correlation
length of the model and show that they take sensible values in
the limits of zero and infinite temperature.

e one-dimensional spin-1

5.3 Write down the transfer matrix for th
bed by the Hamiltonian

Ising model in zero field which is descri

= I%Mm&m@#f s; = =+1,0. ,,

e energy per spin of this model and show

Hence calculate the ir
behaviour in the limits T — 0 and

that it has the expected

T — oo.
[Answer: f = —kTIn{(1+2 cosh fJ+{(2 cosh pI-1)2+84/2)/2}]

5.4 Consider a transfer matrix with largest eigenvalue Ao whose eigen-
values of second largest modulus form a complex conjugate pair
[ 2] %% Prove that the correlation length is given by

gt =—In(| A | /%)

and that the correlations decay with a wavevector 6.

5.5 The one-dimensional, three-state chiral clock model is described

by the Hamiltonian

= IHMOOMAM\:‘T‘S —ni41 + Dv\wwq n; =0,1,2.

d show that its eigenvalues

a

(i) Write down the transfer matrix an
and eigenvectors are

1
Vo“@+~u+n —\mwo “‘mAH"Hqu

) = (L e?)

7

v&H9+€v+Ema
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5.5
Ao = \F =
2 ¥ =a+w?h+we | i) = —=(1,w? w)
b )

where w is a complex cube root of unity and
_ PBJc
a=él ‘Omﬁwﬂb\ww, b = O cos{2r(A —1)/3}
¢ = BJ cos{2m(A +1)/3} ,
i) H i o
(ii) Hence determine the free energy f, correlation function '
on 1 g,

correlation len
gth ¢, and .
correlations 6. £, wavevector associated with the decay of

(iif) Comment on the limit A — 0
[Answers: f = —kTIn(a+ b+ c); .

Fp=% Ahw%vmogmm.
¢t =In{(a+b+c)/ _MQ.TEN
0 =tan ' {v3(b—¢)/(2a — b WMWM g

5.6 Show that th
e transfer matrix fo i
r the - in
first and second neighbour mamnmnﬁouw pia1/2 Toing model with

H= -0y S ss;
1 MU 8i8it1 — Ja M.U $iSit2, & =1

7

may be written'in terms of z = ¢8J1 and y B2
=e as

(8i+2,8i43)

Am:&iv 1,1 1,-1 —-1,1 -1
L1 (2% o2 1 s

Hu —1 wa QIM@M w\(M Yy
-1,1 1 y=? &lw@w Wm
—1,-1 y? 1 2 Mm@m

if two spi
o spins are added by each transfer matrix or

(Sit1,8i42)

(84, 8i41) L1 1,-1 ~1.1 —1
,—1 0 0 o o
-1,1 slyl gy o@ z %

-1,-1 0 0 zy~1 2y

M a mwbm_ﬂm spin is added at each step

n analysi i C i :

e Q@W&M aowc nw_m. n.wom.mr which circumvents diagonalizi

e i atrix is given in Stephenson, J. (197 S
rnal of Physics, 48, 1724. o ©)- Ganadian

5.5

Problems 77

5.7 A simple model of an interface is the solid-on-solid model illus-
trated in Fig. 5.2. In each column of the lattice, i, the interface
lies at a position 14 which is constrained to be single-valued. Thus
overhangs and excitations of the bulk are forbidden. A solid-on-
solid Hamiltonian which allows description of the binding of the

interface to a substrate at n; =0 18

\IHMM_\Sl:.&+H | IW.MUmE.ow

qSHO,HgN....

(i) Write down the transfer matrix of this model in terms of

O 71 —— L

w =

(it) By considering an eigenvector of the form

(b, cos(g+ 9), cos(2g+ g)...)

show that there is a continuous spectrum of eigenvalues

(1 —w)/(+w) AL A +w)/A-0)

(iii) Show that, for & > (1 — w)~t, there is also a bound state

eigenvector of the form

(o, e ¥, 2L

which corresponds to an eigenvalue

_s(1 —w?)(k—1)
M= W) -1 ,

(iv) Show that, where it exists, Ao is the largest eigenvalue. This
means that it dominates the thermodynamics and the interface
binds to the substrate at ke = (1 IEVL. What is the eigenvector

corresponding to the largest eigenvalue at this point?
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m, = : Substrate _ @
1 ‘ i m M H
”, eries mx_umjm_ojm
2 !
3 —
4
W Exact power series expansions for thermodynamic functions have in the
Fig. 5.2. The solid . | past proved an invaluable aid to understanding the critical behaviour
Jatti id-on-solid model of an int P A of insoluble models. Indeed, the first suggestions of power law singular-
attice. In each col ! erface on a semi-infi , e Y .
ne >0 umn of the lattice, 4, the interface lie .J;m | ities at criticality were based on such analyses. Immediately before the
) : s at a position renormalization group was proposed, work using series expansions had

| ~ ledto alarge body of evidence that exponents had universal properties,
L o that they were the same above and below the critical temperature, and
that mean-field values set in abruptly above four dimensions.

_ - ‘One somewhat intriguing result that has arisen from the Tmlm& analysis
of lattices with d > 3 is the following: rather than the anticipated mean-
field behaviour setting in gradually as d — oo the mean-field critical point
exponents appear to be obtained for all values of d > gt

Series expansions remain, in many cases, one of the most accurate
ways of estimating critical exponents. The idea is to find a system-
atic way of calculating classes of contributions to the partition function
which can be obtained exactly and hope that the successive approxima-
tions can be extrapolated to give information about critical properties.
Two expansion procedures will be considered in this chapter. The
frst is high temperature series where the Boltzmann factor is expanded
in powers of the inverse temperature and the trace taken term by term.
In the second, low temperature expansions, configurations are counted
in order of their importance as the temperature is increased from zero:
starting from the ground state the series is constructed by successively
adding terms from 1, 2,3,... flipped spins. :
As the order of the expansion is increased the number and com-
plexity of contributing terms also increases rapidly. A rule of thumb is

e

igtanley, H. E. AHQNC. Introduction to phase transitions and critica
phenomenda, Ch. 4. (Oxford University Press, Oxford). .

79
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that the work involved in calculating the last term is the same as that
needed to calculate all the preceding terms. As we shall see, each term
in the series can be represented by graphs on a lattice and constructing
the series comes down to counting the allowed graphs, which is usually
done using a computer.

The expansions obtained can be used to give an approximation to
the thermodynamic properties of a model at low and high tempera-
tures. However, they can be, and more often are, used to study critical
properties. The hope is that the expansions are sufficiently well be-
haved that information about their singularities can be obtained from
the limited number of terms available.

The radius of convergence of a series is determined by the singu-
larity which lies nearest to the origin in the complex plane. If this is
on the real axis it can, in general, be identified as the critical point

whose value and associated exponents can be estimated. Even if the

leading singularity lies in the complex plane and is non-physical there
are still analysis techniques which can be used to extract the critical
behaviour.

There is no rigorous justification that the series expansions are con-
vergent. However, it is widely believed that this procedure works, and
not only works but works well-—at present the argument is over the
third decimal place in series estimates of the exponents of the three-
dimensional Ising model. Confidence in the method lies in the large
body of circumstantial evidence available. Series expansions agree
well with high accuracy Monte Carlo simulations, with renormaliza-
tion group results, and with exact results for soluble models where
these are available. Comparable results are obtained from the analysis
of series for different thermodynamic variables and from low and high
temperature expansions. Moreover, usually the series behave in a sen-
sible way; as extra terms are added the extrapolated results converge
stably. More recently the understanding of the universality of critical
exponents has provided another benchmark; the scatter of results for
.., different lattice types provides some estimate of the error bars in the
expansion results. However, historically, it was the results from series
expansions that suggested universality.

6.1 High temperature series expansions

We first consider the high temperature series expansion for the two-
.dimensional, zero-field Ising model, defined by the Hamiltonian (3.1)
with H = 0, on a square lattice. Although this has many simplifying
" features it illustrates the important ideas involved in the construction

High temperature series expansions 81

: i .s; = L1, we may
of series expansions. Because, for the Ising model, 5is; +1,

write
BI85 = cosh BJ + 8is; sinh BJ = cosh fJ(1 + 5:85V). (6.1)

is the natural high temperature expansion variable for

v—0asT — 00 as required. .
6.1) to rewrite the partition function leads to a form

this probiem:
Using eqn ( : :
that can be easily expanded in powers of ¥

z = Y11 BT s:55 (6.2)

{s} (i)
= (cosh BJYE MHHC + 8;8;V) (6.3)
{s} i3 )
= AoOmwmbm MAH + eMUmT&.
{s} (i)
+en MU .m?mu.mwﬁl_.:.v Am.%v

(i3)5(kD)

where B is the number of bonds on the lattice. The aim is to oocbﬁhwm
number of contributions to Z which are of order v™ up to as large val

f n as possible. The easiest way is to use the correspondence between
o .

the terms in eqn (6.4) and graphs on the square lattice. Each product

.of a pair of spins, 8;8;, can be associated with the bond on the M@MSW
éEoM joins sites 4 and j. Each term of order v can Wm Hmwnmmmmroaw%u
2 espond to two bonds W
inole bond. Terms of order v” cOrT h ma
mumww% not, touch and so on. Therefore each term of oaow v 5@”
O v . g
one-to-one woimm@oummbnm with a graph with n edges on the sq
in Fig. 6.1.
ice. Examples are shown in Fig. .
_mﬂ_%\m have .mM consider not only the number of m_...wvwm at a m?mb— oﬂm
but also their contribution to the partition ?EOSOF. Fortunately

is zero in many cases. Because s; = +1

igd ST = 2V 1l n; even) ﬁ
shigtis™ ) = 2N (all mj ever 6.
: MUA&A PR = 0 AOarauiwmmv (

.
EHHOHG N( 1S ﬂ%v@ H:HHHHUQH OM m@:wm on ﬂr.m H.N‘—..HHOO. Hw..nwnﬁm OHHM% @HOQCORM

i en nu
hich every spin operator appears an ev :
MHMWESZM these terms correspond to o_Ommmzwoovm. .no @.mm m,umm a
i ight, 2.
4. Each contributes the same weight, £ ‘
mzoMM finding the contribution to the partition function of ~oama MM
reduced to the problem of counting the number of closed loops
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Amv.. . . - qu . \t‘llok
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! m e I m e -
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/ e n i o n
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Fig. 6.1. Graphs on the square lattice, each of which corresponds to
a vﬁomwﬂnﬁ of spins in the sum in eqn (6.4): (a) s15m, (b) 815m8jSks
(¢) si5¥sm, (d) sisisisk,, (e) 2535787 55,57.50, (f) s2s2s7sh 5% 050
O.E% (d) and (f), where the number of bonds at each vertex is even,
give a non-zero contribution to the partition function.

6.1
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bonds that can be put on the square lattice. Remember that every
position and orientation of the loops will give a contribution to the
partition function. Terms to order v'C are shown in Table 6.1. Reading
from the table and using eqn (6.4) gives the leading terms in the high
temperature series expansion for the partition function of the two-
dimensional Ising model on the square lattice.

zZ = Aoo&wmbmm»ﬁ? + Nv* +2Nv°
+w2ﬁ< 49 +2N(INV + 6)0'° + o(w'H}. (6.6)

The free energy follows as usual from the logarithm of the partition
function. Taking the logarithm of eqn (6.6), noting for the square
lattice that B = 2N, and expanding for small v-gives

3 7 19 61
F=-—NkT{ln2+v*+ wé» + Mcm + Nlem + Imtepo +0(0®)}. (6.7)

Happily terms with counts proportional to N 2 have dropped out. It
can be proved that only terms proportional to N survive at all orders
of the expansion, as must be the case if the free energy is to be ex-
tensive. This is an example of the linked cluster theorem?. It means
that it is often possible to formulate rules for calculating the contribu-
tion from disconnected diagrams, which are those responsible for terms
non-linear in N, without having to obtain the full count.

Having written down an expansion for the free energy the specific
heat series can be obtained by differentiation. If a magnetic field is
included in the original Hamiltonian—which leads to a relaxation of the
constraint on even vertices—the susceptibility series can be generated
This case is considered in problem 6.7. It is also possible to write dowx
series expansions for the correlation functions (see problem 6.6).

How far is it possible to get? The two-dimensional Ising mode
on a square lattice can be solved exactly in zero field and therefore
the series expansion, should one be interested, can be written down t«
all orders in v. The greatest interest lies in three dimensions wheré
there is continuing progress in refining values for the critical exponent
for comparison with increasingly accurate experiments. At the time 0
writing the susceptibility series for the Ising model on the body-centre:
cubic lattice is complete to order %1, the specific heat series to orde

2Wortis, M. (1974). Linked cluster expansion. In Phase ‘transitior
and_critical phenomena, Vol 3 (eds C. Domb and M. S. Green), p.11:
(Academic Press, London). ) '
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' . v'%. The argument is about the third decimal place in the values of the
| critical exponents, the fourth in the value of the critical temperature.
h The identity (6.1) which is a property of the spin-1/2 Ising model
Table 6.1. The configurations, together with their counts, which introduces simplifications helpful to both practitioner and pedagogue.

contribute to the high temperature expansion of the partition function : More generally the expansion of the partition function is written

of the Ising model on a square lattice

mHmmlmiHM?!ETQ?%DT.L (6.8)

! Order Contributing graphs Count

and the problem is to evaluate the trace of powers of the Hamiltonian.
These are just traces of products of spins which it is helpful to identify

vt m N with graphs on a lattice as before. However, in general, multiple bonds
] are allowed and the weights depend on the topology of the graphs.
’ v® HHHHH 2N Rules pertinent to a given model are drawn up and many ingenious
ways of doing the counting which lead to efficient numerical algorithms
08 HHH HHH N(N —5)/2 . , have been documented in the literature®.
HIM ' o These are details best left to the expert, but it is important to
! 4N point out that high temperature series have been applied widely to
] . Ising models of all spin magnitudes and with further-neighbour and
| N s long-range interactions, other discrete models, such as Potts models,
. and continuous spin systems. The technique has also proved useful in
HIIMHO\TH 2N geometrical problems such as percolation, self-avoiding walks, and in
10 D B ANV — 8) studying the field theories used in particle physics.
BS8S 2N ‘ 6.2 Low temperature series expansions
& 8N . High temperature expansions cannot give any information about prop--
erties below the critical temperature. Therefore, to obtain a complete
4N . . picture, low ﬁmwb@oamaﬁ.m expansions are also needed. At low temper-
HH . atures for models with discrete spin variables? the dominant contribu-
) 8N tion to the partition function is from states where few spins are flipped
relative to their value in the ground state. To exploit this we choose
ﬁwuw 4N ~ to order the terms in the partition function sum
o0
N . : z=eBo/kT (115" Az (6.9)
. . oyt

3Domb, C. and Green, M. S. (eds) (1974). Phase transitions and
critical phenomena, Vol 3. (Academic Press, London).

4For Heisenberg models there are no excitations involving discrete
energy steps and spin-wave theory is appropriate.
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6.3 The

where DNN@& is the sum of Boltzmann factors (with energy, for conve-
nience, being measured relative to the ground state energy Ey) of all
states where n spins are flipped relative to the ground state.

For the Ising model each wrong bond associated with flipping a
spin has an energy, relative to the ground state, of 2J and hence a
Boltzmann weight

x

_ 2 |
# is the natural expansion variable for the low temperature series. For
a single spin flip, which in two dimensions generates four dissatisfied
bonds, the Boltzmann weight is z*; for two spin flips it is z® unless
they are nearest neighbours, in which case only six wrong bonds are
generated giving a Boltzmann weight xb.

Two factors go to make up the NM/“&W the number of ways of flipping
n spins with given Boltzmann weights, or counts, and the correspond-
ing Boltzmann weights themselves. These are listed in Table 6.2; once
the counts are sorted out the Boltzmann weights follow easily. Adding
the terms in the table gives the leading behaviour of the low temper-
ature expansion of the partition function of the two-dimensional Ising
model:

zZ = ml@o\wﬂﬁ + Nz* +2Nz® + W.ZA»Z +9)a®
2N(N +6)z + 0(z'%)}. (6.11)

Note that there is not a one-to-one correspondence between the number
of spin flips and the powers of z appearing in the Boltzmann weights.
Four-flip terms contribute at orders between z® and x1%. The expansion
is in powers of z, not in the number of spin flips.

one-dimensional Ising model

Because the ordering temperature of the one-dimensional Ising model is
zero the high temperature series expansion is expected to be convergent
at all finite temperatures. It can be written down exactly and easily.
For a lattice with free boundaries and N spins there are no closed
graphs. Hence, from eqn (6.4),

' Z =2V cosh¥ 1 BT (6.12)
where the .woéowm of 2 come from taking the trace of unity and B =

N — 1. For periodic boundary conditions and N spins the graph where
all bonds are occupied is allowed and

(6.10)
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Table 6.2. The configurations, together with their counts and H.wo;N-
mann weights, which contribute to the low temperature expansion of
the partition function of the two-dimensional Ising model on a square
lattice to order z*°

Number of Configuration Count Boltzmann
mw@@ma spins weight

1 . N zt

. 2 —s 2N ’ aml
. N(N-5)/2 z8

3 -—o—s 2N z?

H|o 4N - z8

. IN(N - 8) 210

.. N(@?-15N +62)/6 712

4 m N z8
Hlola 8N zt0

—os 2N '

AN zt0

4N z10

(terms up to z1%)

8N Rwo

(terms up to z2%)

IN R—o

5P Ab

(terms up to %)
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Table 6.3. The configurations, together with their counts and Boltz-
mann weights, which contribute to the low temperature expansion of
the partition function of the one-dimensional Ising model i

Number of Configuration Count . Boltzmann
flipped spins weight
1 R .A N z*
2 -—e N . z?
« o N(N-3)/2 z*
3 -~ 2 HN
—e e N(N - 4) -zt
e o o N(N?—9N+20)/6 z0
4 >—o—0—o N HN

(terms up to z®)

Z =2 cosh™ gJ(1 +v™). (6.13)

The first few terms in the low temperature expansion of the one-
dimensional Ising model are shown in Table 6.3. Flipping any number
of neighbouring spins gives the same Boltzmann weight, z2. So the
series diverges at = = 0 as expected for a model with a zero temperature
phase transition. .

6.4 Analysis of series expansions

Summing the terms in a series expansion can give an approximation to
the low or high temperature behaviour of a given spin model. However,
historically there has been far more interest in using-the expansions to
predict the value of the critical temperature and the associated critical
exponents. To do this the singular behaviour must be extracted from
a regular expansion.

The radius of convergence of a power series is determined by the

6.4
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singularity nearest the origin in the complex plane. If this fortuitously
lies on the positive real axis it can be identified with the critical temper-
ature and a simple analysis of successive coefiicients allows the scaling

behaviour to be extracted.
As T — T, a thermodynamic function Y (t) is expected to obey the

scaling form

Y(t) ~ 7 (6.14
where t is the reduced temperature defined by eqn (2.18). Writin
eqn (6.14) in terms of a typical high temperature expansion variabl
y'= 4J and expanding in y gives

V() ~ AMvJI.@JrEAMVNL,?

Ye Ye 2! Ye
MO+ A+ (n—1 roo-
DO (1)
nl Ye
= MU n:m\i.y Am.wm
where y. = B.J. Comparing the coeflicients of w§+y and y** 1 in th
expansion one obtains the simple result
n 1 A~
e 1 Q-1 (6.16

Gn-—1 Ye Yt

Corrections to scaling will lead to deviations from eqn (6.16) for a
finite n. However, the hope is that a plot of an/as_1 versus 1 /n wi
give an intercept and slope approximating to y7 ' and (A — Dyt re
spectively. :

An example is shown in Fig. 6.2 for the reduced susceptibility (the
is, the susceptibility divided by its value in the non-interacting limif
series of the spin-1 /2 Ising model on lattices of different dimensional
ties. These series are well behaved and, even for the low orders show
converge rather smoothly to the asymptotic behaviour described b
eqn (6.16). )

Life becomes more complicated if the closest singularity to the or
gin does not lie on the real axis. The signal of this is that the ratio ¢
successive coefficients does not converge smoothly. In this case a con
mon approach is to calculate the series for the logarithmic derivati

of a thermodynamic function

d A g
&I\Hfﬂu\ﬁvw ~ Ig. (6.1
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1.0¢ - G e e O — O OO0 — — ’
. Mean-field . ) Table 6.4. Estimates of the critical point v, and the critical expc
- , . nent «y (in brackets) for the Ising model on a square lattice from th
0 ~~— o @3 : . poles and residues of the [L,M] Padé approximants to the series fc
0.8 ~_ T oy the logarithmic derivative of the susceptibility. After Gaunt, D.S. an
L ° //o,/ 7 - Guttmann, A. J. (1974). Asymptotic analysis of coefficients. In Phas
/o/dd W transitions and critical phenomena, Vol 3 (eds C. Domb and M. ¢
0.6} =27 ; Green), p.181. (Academic Press, London)
a, h
za, | ?/
0.4} //
AN
| Ju/ P , .
Ny, =1 , - . M L=M-1 L=M
0.2} N -
Y
nnﬂf/ . 1 0.50000 Alw.oooov 0.28571 Alc.mmwwv
00l ; T 27 0.38871 (-1.4017) 041119  (-1.6546)
B 3 1558w O 3 0.40888 (—1.6186) 0.40927 (—1.6257)
1/n 4 0.40877° (—1.6171) 0.41645 (~1.7974)
5 0.41019 (—1.6383) 0.41217° Alw.mmwwv
6 041484 . (—1.7782) 0.41413  (—1.7458)
Fig. 6.2. The ratio of successive coefficients, a,/zan,-1, of the re- 7 .0.414249 (—1.7515) 0.414211 (~1.7496)
duced susceptibility series of the spin-1/2 Ising model on lattices of - 8 0.414214 (—1.7498) 0.414213 (—1.7498)
different dimensionality plotted against 1/n. For ease of display the 9 0414213 (—1.7498) 0.414214° (—1.7498)
10

data are normalised by the coordination number of the lattice z. The
expected limiting behaviour, given by eqn (6.16), is shown by the dot-
ted lines with the parameters in the equation taken from the exact or exact values V2 -1 —~7/4
best series results available. After Stanley, H. E. (1971). Introduction ,,
to phase transitions and critical phenomena. (By permission of Oxford
University Press, Oxford). ’

0.414202 (—1.7484) 0.414213 (—1.7497)

%gpproximant with an intervening spurious pole
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which has a simple pole at T = T, with residue —A. An [L, M]

Padé approximant

Pry) _ po+py+pey’+.. +pry”
Qmly) 1+aqy+qy?+... +auyM

(6.18)

is then constructed with the L + M + 1 coeflicients, p;, g;, chosen so
that the expansion of the Padé agrees with the first (L + M + 1) terms
in the series expansion. The hope is that the denominator of the Padé
will reproduce the pole at Tt. g

For a series with ng + 1 terms Padé approximants can be written
down for all L, M such that I+ M < ng. L = M usually gives the best
results. A comparison of the values which result from different approx-
imants is used to give some feel for the stability of the procedure®. An
example is given in Table 6.4.

6.5 Problems \

6.1 Consider an interface in a one-dimensional Ising model,

8; =1, 1>0.

s =1, 1<0;

By writing down the energy and entropy associated with such
an excitation argue that the one-dimensional Ising model cannot
sustain long-range order for any non-zero temperature.

6.2 Show that there is a one-to-one correspondence between the terms
in the high and low temperature expansions of the spin-1/2, zero-
field Ising model on the square lattice. This model is said to be
self-dual.

Hence argue that, if the critical temperature, T¢, is unique, it
must be given by

e 2K e — tanh J/kT,

or
T/KT, = W In(1 + V).

5Relatively little is known about the way in which Padé approxi-
mants converge, but see the reference given in Table 6.4 for a summary
-of the results available. :

Problems ¢

-

6.3 The exact result for the spontaneous magnetization per spin
the spin-1/2 Ising model on the square lattice is

(s) = (1+u)/*(1—u) /2 (1-6u+u?)/5, u= —4I/KT (6
Expanding this result gives
(s) = 1—2u> —8u® —34u* — 152u° — 7140’ —3472u" —.... (6.

(i) Generalize the low temperature expansion for this moc
given in Section 6.2, to include a non-zero field, H. Hence obt
the series for the zero-field magnetization to terms O(u®). Ch
that your answer agrees with the exact result.

(ii) Use the ratio method to obtain an estimate for the cr
cal temperature and the exponent § from the expansion (6.2
Compare with the exact results, uc = 3 — 2v2, § = 1/8, wh
follow immediately from eqn (6.19).

6.4 For the three-dimensional spin-1/2 Ising model on a cubic latt
the low temperature expansion for the partition function is

Zy = e PNEo(1 4 Nzb + 3Nz + LN(N — 7)z?
+15Nz + 3N(N — 11)z*® + O(z'®)}

where N is the number of spins on the lattice and Ep is
ground state energy per spin. List the graphs, and the associa
counts and Boltzmann weights, that contribute to this expressi
Comment on the order of the correction term.

6.5 In performing the low temperature expansion for the ¢-state P

model .
H= I%Muﬁqu., o;=1,2...¢q

(i)

account must be taken of configurations in which the spin f
to each of the (g — 1) other states. Bearing this in mind list
Boltzmann weights that would be associated with the configy
tions listed in Table 6.2 for the g-state Potts model.

6.6 Use a high temperature series expansion to show that the t
spin correlation function of the one-dimensional Ising mode

zero field is
_ Tg = tanh®™ gJ.
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6.7 This problem deals with the extension of the high temperature
series expansion of the spin-1/2 Ising model, developed in Sec-
tion 6.1, to include a field term. :
(i) Show that the partition function of the spin-1 /2 Ising model
in a field can be written

Z = cosh® 8J cosh™ gH MU :C + 8;8;v) EC + s:y)
{s}if) i

where v = tanh 8J; y = tanh 8H, and B and N are the number
of bonds and sites on the lattice respectively.

(it) Show that the terms in Z can be represented by graphs on
a lattice where each graph with ! bonds and m odd vertices con-
tributes a factor 2V v'y™, and hence that Z can be rewritten

Z = cosh® BJ(2cosh H)N (1 + Sy + y°Sz +y*Sa +...) (6:21)

where S,,(v, N) is the contribution from all graphs with m odd

vertices. ,
Taking the logarithm of eqn (6.21) and using the Linked Cluster
Theorem® gives :

— BF = Blncosh BJ + NIn2cosh BH + (8§ +1°Sy +y*S; +..)
(6.22)

where the prime denotes that, for a given graph, only the part of

the count proportional to N must be included.

(iii) Differentiate eqn (6.22) to show that the zero-field suscepti-

bility is

x = BN + 268;.

(iv) List the low order graphs with two odd vertices to show

that the first few terms in the high temperature expansion of the

zero-field susceptibility of the spin-1/2 Ising model on the square

lattice are ‘

x = BN +20(2v + 60% + 18v% +...).

6See eqn (6.7) for an explicit example of how this works.

7

Monte Carlo simulations

It could be argued that current physics research can be divided i1
three areas—theoretical, experimental, and computational. Numeri
approaches, in which systems are mimicked as accurately as possi
using a computer or in which computer models are set up to prov
well-behaved experimental systems are increasingly providing a bric
between theory and experiment. The limitations on what can be d«
are set by the computational resources available.

A powerful numerical approach is the Monte Carlo method. Tt +
introduced in 1953 at the dawn of the computer age and its range
applicability and accuracy have continued to increase with the devel
ment of more advanced computer technology. One of the simplest
most natural applications, which we shall focus on here, is to discr
spin models. However the technique is very widely used: to study c
tinuous spin systems, fluids, polymers, disordered materials, and latf
gauge theories. Some examples are given at the end of this chapte:

7.1 Importance sampling

A common aim in statistical mechanics is to find the value of a tl
modynamic variable, such as the energy or the magnetization, wl
is a weighted sum over all states in phase space

MUTV Ae—PH

(4) :
M*mv m|E:

For an Ising model on a lattice of N sites the sum is over 2N conf
rations. This is a number which increases very quickly with N ar

direct evaluation is feasible only for N < 40.

95



96 Monte Carlo simulations 7.1

The first way one might try to get round this is to choose randomly
a sample of the spin configurations, {s}, and, weighing them appro-
priately according to eqn (7.1), work out an estimate of the required
average. This approach may be familiar as it is a standard technique
used for the evaluation of integrals.. However, it fails here because of
the rapid variation of the Boltzmann factor, e #™  with energy. Very
few of the chosen configurations will be weighted by a sufficiently large
factor to make a significant contribution to the average and a very
unreliable estimate will result.

This problem occurs because only an mﬁhmamq restricted part of
configuration space is important in determining the averages. This we
already know from statistical mechanics—the system spends the vast
majority of its time in states with thermodynamic parameters within
O(1/v/'N) of those describing thermodynamic equilibrium. Therefore
it would seem sensible to restrict the sampling te these states. This is
a technique known as importance sampling. But how to generate such
a set of states? To try to find the probability distribution exactly the
partition function would need to be calculated and this is tantamount
to going back to the original problem of summing over an impossibly
large number of states.

Luckily it turns out to be possible to generate a Markov ner of
configurations (a sequence of states each of which depends only on the
preceding one) which has the property that A,, the average of 4 over
1, successive states, converges to the thermodynamic average defined
in eqn (7.1)

~

An = (A +0(n=?), (7.2)

In the limit n — oo each state is weighted by its Boltzmann factor,
e~P¥ . The disadvantage of this approach is that successive states of the
Markov chain ar¢ highly correlated, which means that a much longer

sequence of sample configurations is needed to achieve a given accuracy

than if this were not the case.

The conditions on the transition probability between Markov states
needed to achieve the result (7.2) are physically transparent. The tran-
sition probability must be normalized. It must be ergedic, that is all
states must eventually be accessible. Finally, a suflicient condition is
that it must obey detailed balance!. ’

This does not specify the transition probability uniquely. The
choice often used in Monte Carlo simulations is the Metropolis algo-
rithm. A final state, {s}s, is chosen from an initial state, {s};, by

tParisi, G. (1988). Statistical field theory, p.346. (Addison-Wesley,
Wokingham).
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flipping one or more gpins. The probability that the system is allowed

to move from 7 to f is
e PEs —Bi) it g, > E (7.3)
1 ‘ 5@@

P({s}i = {s}y)
where F; and Mx are the energies of the wbw&& and final states respec-

I

tively.

There is a physically intuitive argument that shows that with this
choice of transition probabilities the system tends asymptotically
(n — 00) to a steady state in which the probability of a given con-
figuration is e~PE{s}  Consider m, systems in a state {s}, and m; in
a state {s}¢ such that E, < E,. Using random numbers it is possible
to construct a move such that the a priori probability of moving from
state r to ¢ is the same as that to move from ¢ to r. (This is feasible but
not always the case in realistic simulations.) Then, using eqns (7.3),
the number of transitions from r to ¢ and from t to r are

M.+ o« m, (7.4)
M, Sﬁml\mﬁwslmﬁv (7.5)

respectively. The net number of transitions is
AM,_; o fm, — mye PEr = E)}, (7.6)

The system will converge to a steady state where AM,_,; =0 or

My . nlmmﬂ

7.2 Practical details

The steps involved in setting up a Monte Carlo simulation for a simple
spin model are listed in the flow chart in Table 7.1. This is the basis
“of the program used to generate the spin configurations in Fig. 1.8.
The procedure can be thought of in three parts. We concentrate in
this section on the details of how to set up the program and return
in the next to a fuller discussion of the @HoEmBm Ermnmnn in the data
analysis.

Setting up. The first task is to define a lattice of NV sites, 4, each of
which is occupied by a spin, s;..This needs to be done in such
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Table 7.1. Flow diagram showing the steps in a Monte Carlo calcula-
tion of thermodynamic averages for a simple spin model. The system
takes ng steps to reach equilibrium and the total number of steps is

SSQH

set up _mﬁﬁnwh sites ¢
define m@mmw.,ﬁ
define H
set counter, n =1

choose 1y, Nmaz

flip spin
~AE/JET

calculate r = e

generate a random no. 0 <z <1

n=n+4+1 ifr>z

ifr<z

accept flip

reject flip

calculate variables, A,

store for each step n > no

calculate averages

A@v = Wm M:Vﬁc A

.

7.7,

Practical details 99

a way that a record is kept of the neighbours of each spin as
its energy will be needed later. The parameters in the problem,
such as the temperature and exchange interactions, should also
be defined here.

Because N is necessarily finite thought must be given as to what
to do with the spins on the boundaries of the system. These can
either be left with fewer bonds than usual (free boundary condi-
tions) or assumed to interact with the corresponding spin on the
opposite face of the lattice (periodic boundary conditions). The
latter option often gives the best results, but care must be taken
that the system is not subject to false constraints. For example,
,simulations on a simple antiferromagnet with periodic boundary
conditions can be expected to give inaccurate or spurious results
if the length of the lattice is an odd number of spins.

. Another consideration is the choice of initial values for the spins.

Usually any choice will eventually lead to thermal equilibrium but
it is helpful if this happens sooner rather than later. For a simple
ferromagnet a ferromagnetically ordered state is likely to provide
the most efficient initial configuration at low temperatures; at
higher temperatures a random state provides the best starting
point. We return to the problems of convergence to equilibrium
and finite system size in Sections 7.3.1 and 7.3.3 respectively.

Generating the Markov chain. This is the heart of the program.

It is summarized in the centre portion of Table 7.1. The steps
are listed below

1. Select a spin, either randomly or sequentially. Calculate
r = e AE/KT where AE = E; — E; is the change in energy
associated with a possible spin flip (to a randomly chosen
final state if the spin has more than two states).

2. Compare 7 to a random number 0 < z < 1.
3. Flip the spin? if r > 2.

4. Use the final configuration (whether the test spin was flipped
- ornot) to generate the value of any thermodynamic quantity
to be averaged. Store this value.

21t is not hard to convince oneself that this procedure reproduces
the transition probability given by eqn (7.3): for AE < 0, 7 > 1 and
hence the spin is always flipped; for AE < 0, the probability that z < r
is r and hence the spin is flipped with probability r = e

—AE/kT
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It is important to be aware that any bias in the random number
generator will introduce systematic errors into the results. The

evidence is that the random number generators built into modern
computers have sufficiently good statistics that the errors are
insignificant compared to statistical errors. The question of how
many configurations are needed to give satisfactory wﬁwwwmom is
discussed in Section 7.3.2.

Calculating the averages. Average the thermodynamic variables
generated at each step of the Markov chain. Care must be taken
not to include the initial states where the starting configuration
still has an influence. The magnetization and energy are the eas-
iest quantities to calculate as they are just sums over spins or
products of spins.

Considerations in the data analysis

7.3.1 Influence of the starting configuration

During the first iterations of the Monte Carlo procedure the system is

not in equilibrium, and hence these configurations cannot be included

in the final averages. It can be hard to decide how many steps to
exclude. One possibility is to perform several Monte Carlo runs with
the same parameters but using different starting configurations. If the
results agree to within statistical error it can be concluded that the
influence of the starting configuration has been eliminated. A circum-
stance that can nullify this procedure, which has caused confusion in
the past, is that a system can become stuck in a metastable state and
feign true thermal equilibrium.

If the simulation is performed near the critical temperature, the
additional problem of critical slowing down is encountered. Because of

the increasing range of the correlations as criticality is approached, the .

time for relaxation to equilibrium 7 diverges

T~ g (7:8)

with z ~ 2 for most models. In a finite system the divergence is sup-
pressed; the smaller the system the quicker equilibrium can be achieved
for a given temperature. However, at the same time finite-size correc-
tions become more severe and a balance between these and equilibra-
tion times must be struck in the design of a Monte Carlo simulation.
An example of raw data from a Monte Carlo simulation showing
the approach to equilibrium and the importance of excluding the initial
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Fig. 7.1. Magnetization of an Ising ferromagnet on a cubic lattice of
size 10x 10 x 10 with periodic boundary conditions plotted as a function
of the number of Monte Carlo configurations for different temperatures.
Open circles denote averages taken over the three preceding Monte
Carlo steps per spin. Full curves give a running average if no initial
configurations are excluded. The dashed lines are the final estimates

“of the magnetization where-initial configurations have been excluded.

After Binder, K. and Rauch, Z. (1969). Zeitschrift fir Physik, 219,
201. .

configurations is shown in Fig. 7.1. Note that equilibrium is attained
after a few Monte Carlo steps per spin for temperatures sufficiently far
from the critical point but a slower relaxation and larger fluctuations
are observed closer to 1, (J/kT, = 0.22).

7.3.2 Statistical errors

To obtain reliable results for the equilibrium value of an observable,
(4), the average must be taken over a time much longer than that
over which the Monte Carlo states are correlated. This becomes more
difficult near the critical point or if there are metastable states in the
system. It can be shown that the deviation of A, from (4) is normally
distributed in the limit n — oo. Thus standard data analysis can be
applied to determine the statistical error.

Dividing the equilibrium configurations into independent blocks
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and calculating A for each block gives a set of essentially independent
estimates of {4), the variance of which gives a value for the sampling

error. The problem is to know when a block of states is Jong enough

that different blocks can indeed be considered mutually independent.
A test for this is to perform the,analysis using several different block
sizes. The blocks are long enough when the variance becomes indepen-
dent of the block size.’ .

An alternative is to average over several different runs. The dis-
advantage of this procedure is that the system must be equilibrated
afresh for each set of data.

7.3.3 Finite-size corrections

Because it is impossible to simulate an infinite system—for a three-
dimensional Ising model N = (128) is a realistic size on modern
supercomputers— finite-size effects must be taken into account. Away
from the critical point, where the correlation length is small compared
to the system size, this is usually not a major problem and the pa-
rameters of the simulation can be chosen so that the errors due to the
limitations in the number of spins are small compared to statistical
€ITOors.

The problem becomes much more acute as a continuous phase tran-
sition is approached, because on a finite lattice the correlation length
is prevented from becoming infinite. As a result any singularities as-
sociated with the phase transition are shifted and rounded. The best

compromise is to obtain high quality data for lattices of different linear
‘dimension L, and extrapolate to .L = oo.

7.4 Examples

7.4.1 The three-dimensional Ising model

A lot of effort has been put into Monte Carlo simulations for the three- -

dimensional mgm model. This is partly because of its suitability for

fast algorithms and partly because of the intrinsic interest in obtaining
precise values for the critical parameters. Special purpose machines, in
which the time-consuming spin updating is carried out by a specially
constructed processor, have been built in several places. These are
orders of magnitude cheaper than supercomputers but can only carry
out the specific task for which they were designed. They can achieve
an accuracy comparable to that obtained by careful programming on
the most powerful conventional computers. oo
As an example of the run times that can be achieved we give some

7.4

Examples 1

figures from a machine at Santa Barbara, USA3. This can update ]
spins each second. Lattice sizes of up to N = 64 x 64 x 64 were u
and data for 107-108 Monte Carlo steps per spin collected for each si
At the critical temperature on the largest lattices the time to come
equilibrium was of the order of 7000 Monte Carlo steps per spin.

Using these data the result for the critical temperature was K.
J/kT, = 0.221650(5) where the figure in brackets is the estimate of t
error in the last digit. This agrees with, and is comparable in accur:
to, the best estimate from series expansions, K, = 0.221655(5)%. 1
value obtained for the exponent ratio /v = 1.98(2) is considerably
precise because of the problems of finite-size effects. Better results ¢
be obtained using the Monte Carlo renormalization group, a techmnic
which combines the strengths of the renormalization group and Mo:
Carlo simulations. This will be described in Chapter 9.

7.4.2 More complicated systems

Although Monte Carlo is particularly well suited to simulations of |
Ising and other discrete spin models it was originally introduced
relation to fluids and has proved useful both here and in many ot
contexts. The most fundamental difference between simulations
different systems is in the choice of test configuration.

For example, for fluids, one possibility is to choose a molecule
random and allow it to move through a distance chosen at rand
between 0 and A in a random direction. The most accurate rest
are obtained if A is chosen so that approximately half the trials
accepted. Many different models have been considered in the literatt
ranging from a gas of hard sphere molecules to attempts to incorpor
realistic interatomic potentials. Common aims are to calculate
equation of state or the pair correlation function.

With today’s computational power it is feasible to obtain realis
results for even more complicated systems. One example is soluti
of polymers, long chain molecules, where Monte Carlo has been 1
ticularly useful in looking at properties which depend on the polyz
topology rather than the details of the chemistry. Here the so-ca
reptation technique is one of the most efficient ways of generating s
able sequences of states. Starting from an arbitrary configuration
end of one of the chains is removed at random and added to the ot

3Barber, M. N., Pearson, R. B., Toussaint, D., and Richardson
L. (1985). Physical Review, B32, 1720. ‘

4Adler, J. (1983). Journal of Physics A: Mathematical and Gene
16, 3585. _
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‘end of the chain. Aslong as the self-avoidance of the chains is preserved

the move is accepted according to the usual Metropolis criterion. Re-
sults have been obtained for such diverse problems as the changes in
chain morphology as the temperature or solvent composition are varied,
for the properties of chain molecules at surfaces, and for the dynamics
of tangled polymers.

7.5 Problem =

7.1 Write a Monte Carlo program to determine the temperature de-
pendence of the energy and magnetization of a two-dimensional
Ising model on a square lattice. Choose a lattice size appropriate
to the power of the computer you are using: Useful illustrative
results can be obtained using lattices of size as small as 6 x 6.
Discuss
(i) the initial conditions used
(ii) the boundary conditions
(iii) the number of steps required to achieve thermodynamic equi-
librium : .

(iv) error bars for the results at each temperature
(v) the effect of the finite system size.

£

® | m

The renormalization group

The approaches described so far in this book have given a broad ph
nomenological understanding of critical phenomena. However, althou
a substantial framework of results and connections has been built u
we have, as yet, no explanations for the following:

1. Continuous phase transitions fall into universality classes chara
terized by a given value of the critical exponents.

2. For a given universality class there is an upper critical dimensic
above which exponents take on mean-field values.

3. Relations between exponents, which follow as inequalities fro
thermodynamics, hold as equalities.

4. Critical exponents take the same value as the transition tempe
ature is approached from above or below.

5. Two-dimensional critical exponents often appear to be ration
fractions. )

What is needed is a theory, based on the physics of what is ha
pening at the critical point. We argued in Chapter 1 that the speci
feature of criticality is that the correlation length is infinite and th.

. the critical system is invariant on all length scales. The aim is to wri
down a (hopefully short, elegant, and comprehensible) mathematic

theory which embodies this physics and explains all the observatio
listed above. A useful theory will also allow the calculation of critic
exponents and transition temperatures, if not exactly, then within

- accurate and well-controlled approximation scheme.
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