
Generating Random Spanning Trees

More Quickly than the Cover Time

David Bruce Wilson*

dbwilson@mit .edu

Department of Mathematics,

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

1. Introduction

It is widely known how to generate random span-

ning trees of an undirected graph. Broder showed

how at FOCS [6], and Aldous too found the algo-

rithm [2]. Start at any vertex and do a simple ran-

dom walk on the graph. Each time a vertex is first

encountered, mark the edge from which it was dis-

covered. When all the vertices are discovered, the

marked edges form a random spanning tree. This

algorithm is easy to code up, has small running time

constants, and has a nice proof that it generates

trees with the right probabilities.

This paper gives a new algorithm for generating

random spanning trees. It too is simple, easy to

code up, and has nice proofs. The new algorithm

also has the following advantages:

●

●

●

On graphs for which the old algorithm works,

the new algorithm is never slower (by more

than a factor of two), and is usually much

faster.

It also works for directed graphs.

It yields the current fastest algorithm for sam-

pling from the stationary probability distribu-

tion of a Markov chain whose transition prob-

abilities are unknown.

Additionally, the proofs double as proofs for an iden-

tity and an inequality.

We are given a weighted directed graph G on

n vertices with edge weights that are nonnegative

* Supported in part by NSA grant MDA904-92-H-3060
and NSF grant DMS 9Z063i’4.

Permissionto makedlgitai/hard copies of all or part of WIS material for
pereoml or classroom use is granted without fee provided that the copies
are not ~de or dktributed for profit or commercial advantage, the c~y-
right stohce, the Wle of the publication and its date appear, and notice IS
given that copyright is by permission of the ACM, Inc. TOcwy othe~iw,
to republish, to post on servers or 10~lkbute to fi*, MWWS SP*lfic
permission andtor fee.
STOC’96, Philadelphia PA,USA
@1996 ACM &89791 -71J5-5/96/05. .$3.50

real numbers. The weight of a spanning tree, with

edges directed towards its root, is the product of the

weights of its edges. Let T,(G) be the probability

distribution on spanning trees rooted at vertex r

such that the probability of a tree is proportional

to its weight, and let T(G) be the probability dis-

tribution on all spanning trees, with probabilities

proportional to the weights of the trees. The goal

is to sample a random spanning tree (according to

T(G)), or a random spanning tree with fixed root r

(according to T’r(G)).

There is a tradeoff between generality and sim-

plicity, so we give more than one variation of the

same meta-algorithm. The first algorithm is Random-

TreeWithRoot, which given a vertex r, returns a

random spanning tree rooted at r. Sampling a ran-

dom spanning tree (with unrestricted root) of an

undirected or Eulerian graph is easily reduced to

one call to RandomTreeWithRo ot. For more general

graphs, the procedure RandomTree can be used.

These are random-walk based algorithms, so we

start by defining a Markov chain from G. G is

stochastic if for each vertex the weighted outde-

gree, i.e. the sum of weights of edges leaving the

vertex, is 1. If G is stochastic, then it already

is a Markov chain. Otherwise, we can define two

stochastic graphs G and @ based on G. To get

G, for each vertex we normalize the weights of its

outdirected edges so that its weighted outdegree is

1. RendomTreeWIJhRoot uses G since T.(G) =

T’, (G). To get G, first add self-loops until the

weighted out degree of each vertex is the same, and

then normalize the weights. RandomTree uses ~

since T(G) = T(G). Both procedures use a sub-

routine RandomSuccessor(u) that returns a ran-

dom successor vertex using the appropriate Markov

chain. Markov chain parameters written with over-

bars refer to G, and parameters written with tildes

refer to G.

RandomTreeWithRoot (see Figure 1) maintains

a “current tree”, which initially consists of just the

296

http://crossmark.crossref.org/dialog/?doi=10.1145%2F237814.237880&domain=pdf&date_stamp=1996-07-01

RandomTreeWithRoot(r)

fori-l ton

InTree[i] -false

IVext[r] + nil

InTree[r] + true

fori+l ton

U+i

while not InTree[u]

Ne%t[u] +- RandomSuccessor(u)

u + IVezt[u]

U+--i

while not InTree[u]

InTree[u] + true

u t Next[u]

return Next

Figure 1: Algorithm for obtaining random spanning

tree with prescribed root r.

root. While there remain vertices not in the tree,

the algorithm does a random walk from one such

vertex, erasing cycles as they are created, until the

walk encounters the current tree. Then the cycle-

erased trajectory gets added to the current tree. It

has been known for some time that the path from

a vertex to the root of a random spanning tree is a

loop-erased random walk (see e.g. [23] and [7]), but

this is the first time that anyone has used this fact

to make a provably efficient algorithm. See [20] for

background on loop-erased random walks.

Theorem 1 RandomTreeWithRoot(r) returns a ran-

dom spanning tree rooted at r.

The proofs of this and subsequent theorems in

the introduction are in \3.

Suppose that what we want is a random span-

ning tree without prescribing the root. If we may

easily pick a random vertex from the steady state

distribution % of the random walk on ~, then pick a

%-random root, and call RandomTreeWithRoot with

this root. The result is a random spanning tree.

Aldous calls this theorem “the most often rediscov-

ered result in probability theory” [3]; [6] includes a

nice proof.

For undirected graphs and Eulerian graphs, %

is just the uniform distribution on vertices. In the

case of undirected graphs, since any vertex r may be

used to generate a free spanning tree, it turns out to

be more efficient to pick r to be a random endpoint

of a random edge, sample from T~, and then pick a

uniformly random vertex to be the root.

Theorem 2 The number of ttmes that RandomTree-

WithRoot(r) cai!s RandoxnSuccessor is gwen by the

mean commute time between r and a %-random ver-

tex. (The running time is ltnear in the number of

ca!k to RandomSuccessor.)

With EiTj denoting the expected number of steps

for a random walk started at i to reach j, the mean

commute time between i and j is EiTj + Ej Ti, and

is always dominated by twice the cover time.

The mean hittzng tzme is the expected time it

takes to go from a r-random vertex to anc)ther r-

random vertex:

(A nice fact, which the proofs will not need, is that

for each start vertex i, r = ~j m(j)E~Tj [3].) If G

is stochastic, and we have a ~-random vertex r as

root, RandomTreeWithRoot makes an average of 2T

calls to RandomSuccessor. For undirected graphs,

a random endpoint of a random edge is fi-random,

so the variation described above runs in 27 time. In

these cases it is perhaps surprising that the running

time should be so small, since the expected time for

just the first vertex to reach the root is r. The

expected additional work needed to connect all the

remaining vertices to the root is also r.

For general graphs RandomTree (see Figure 2)

may be used to sample a random spanning tree

within 0(?) time. Note that since the root of a ran-

dom tree is distributed according to fi, the second

algorithm automatically yields a random sampling

procedure: return the root of a random spanning

tree.

The second algorithm is essentially the same as

the first algorithm, except that it adjoins an extra

vertex labeled “death” to the graph. The proba-

bility of a normal vertex moving to death is S, and

the other transition probabilities are scaled down by

1 – e. Since the death node is a sink, it makes a nat-

ural root from which to grow a spanning tree. The

death node is then deleted from the spanning tree,

resulting in a rooted forest in the original graph. If

the forest has one tree, then it is a random tree.

Otherwise c is decreased and another try is made.

Theorem 3 If Attempt returns a spanning tree,

then it is a random spanning tree. RandomTree calls

RandomSuccessor on average < 22r times, so the

expected running time of RandomTree is O(T).

2. Relation to Previous Work

There is a long history of algorithms to generate

random spanning trees from a graph, and recently

297

RandomTree

&+l

repeat

E +- &/2

tree t Attempt(&)

until tree # Failure

return tree

Attempt(&)

forit-ltorz

InTree[i] efalse

num.roots +- O

fori+-l ton

‘u+i

while not InTree[u]

if Chance(&) then

iVect[u] + nil

lnTree[u] ~ true

num.roots + num.roots + 1

if nurn_roots = 2 then

return Failure

else

Nezt[u] +- RandomSuccessor(u)

u - fVezt[u]

U+i

while not InTree[u]

lnTree[u] +- true

u 4- ~ext[u]

return Next

Figure 2: Algorithm for obtaining random spanning

trees. Chsnce(c) returns true with probability c.

there has been much work on self-verifying algo-

rithms for sampling from the stationary distribution

of a Markov chain that don’t require knowledge of

the mixing time of the Markov chain. In this sec-

tion we compare the results of this paper to previous

work.

2.1. Random tree generation

The first algorithms for generating random span-

ning trees were based on the Matrix Tree Theorem,

which allows one to compute the number of span-

ning trees by evaluating a determinant (see [5, ch. 2,

thin. 8]). Gu.6noche [16] and Kulkarni [19] gave one

such algorithm that runs in O(n3rn) timel, where

1Gu6noche used m < n2 and stated the running time as
O(n5).

n is the number of vertices and m is the number of

edges. This algorithm was optimized for the genera-

tion of many random spanning trees to make it more

suitable for Monte Carlo studies [9]. Colbourn, Day,

and Nel [8] reduced the time spent computing de-

terminants to get an O(n3) algorithm for random

spanning trees. Colbourn, Myrvold, and Neufeld

[10] simplified this algorithm, and showed how to

sample random arborescences in the time required

to multiply n x n matrices, currently O(n2376) [1 1].

A number of other algorithms are based on ran-

dom walks on the graph. For some graphs the best

determinant algorithm will be faster, and for oth-

ers the random walk algorithms will be faster, but

Broder argues that for most graphs, the random

walk algorithms will be faster [6]. Broder [6] and

Aldous [2] found the random walk algorithm (de-

scribed in the introduction) for randomly generat-

ing spanning trees after discussing the Matrix Tree

Theorem with Diaconis. The algorithm works for

undirected graphs and runs within the cover time

of the random walk. The cover time TC of a sim-

ple undirected graph is bounded by 0(n3), and is

often as small as O(n log n); see [6] and references

contained therein. Broder also described an algo-

rithm for the approximate random generation of ar-

borescences from a directed graph. lVhen the out-

degree is regular, the running time is O(Z’C), but

for general simple directed graphs, Broder’s algo-

rithm takes O(nTC) time. Kandel, Matias, Unger,

and Winkler [18] extended the Aldous-Broder algo-

rithm to sample arborescences of a directed Eule-

rian graph (i.e., one in which in-degree equals out-

degree at each node) within the cover time. Wilson

and Propp [26] gave an algorithm for sampling ran-

dom arborescences from a general directed graph

within 18 cover times. Most of this running time

is spent just picking the root, which must be dis-

tributed according to the stationary distribution of

the random walk.

All of these random walk algorithms run within

the cover time of the graph G — the expected time

it takes for the random walk to reach all the vertices.

RandomTree runs within the mean hitting time of ~

— the expected time it takes for the random walk

to reach a single vertex distributed according to the

steady state distribution. For the previous random

walk algorithms (except Wilson-Propp), it is a sim-

ple matter to randomly select the root according the

steady state distribution % of the graphs for which

the algorithms work, so RandomTreeWi.thRoot may

be applied to these graphs. For undirected graphs

the time bound is the mean hitting time of G, for

Eulerian graphs the time bound is the maxtmum

298

Tree Algorithm Expected running time

Gu6noche [16] / Kulkarni [19] O(n37n)

Colbourn, Day, Nel [8] O(n3)

Colbourn, Myrvold, Neufeld [10] M(n) = 0(n2376)

Aldous [2] / Broder [6] O(~c) (undirected)

Kandel, Matias, Unger, Winkler [18] 0(~,) (Eulerian)

Wilson, Propp [26] O(~c) (any graph)

This paper O(F) (undirected)

This paper O(i) (Eulerian)

This paper 0(7) (any graph)

n = number of vertices

m = number of edges

M(n) = time to multiply two n x n matrices

x = stationary probability distribution

EiTj = expected time to reach j starting from i

r = mean hitting time = Z,,J m(i)~(j)EiTj

h = maximum hitting time = ma~,j EiTj

EiC = expected time to visit all states starting from i

T. = cover time = ma~ EiC

Table 1: Summary of algorithms for generating random spanning trees of a graph.

hitting time i of G, i.e. the maximum over all pairs

of states i and j of EiTj.

The mean and maximum hitting times are al-

ways less than the cover time. Broder described a

simple directed graph on n vertices which has an

exponentially large cover time [6]. It is noteworthy

that the mean hitting time of Broder’s graph is lin-

ear in n. Even for undirected graphs these times can

be substantially smaller than the cover time. For in-

stance, the graph consisting of two paths of size n/3

adjoined to a clique of size n/3 will have a cover time

of @(n3) but a mean hitting time of @(nz). Broder

notes that most random graphs have a cover time of

@(n log n); since most random graphs are expanders

and have a mixing time of 0(1), their maximum

hitting time will be @(n). Thus these times will

usually be much smaller than the cover time, and

in some cases the difference can be quite striking.

2.2. Self-verifying sampling algorithms

Random sampling of combinatorial objects has nu-

merous applications in computer science and statis-

tics. Usually there is a finite space X of objects, and

a probability distribution x on X, and We wish to

sample object ~ c X with probability m(x). One ef-

fective method for random sampling is to construct

an ergodic Markov chain whose steady state distri-

bution is ~. Then one may start the Markov chain

in some arbitrary state, run the chain fc)r a long

time, and output the final state as the sample. The

final state will be sampled from a probability dis-

tribution that can be made arbitrarily close to T,

if the chain is run for long enough. Despite much

work at determining how long is “long enough” [12]

[17] [14] [21] [25] [13], this remains an arduous task.

Asmussen, Glynn, and Thorisson [4] addressed

the problem of not knowing when to stop running

the chain. They give a general procedure, which

given n and a Markov chain on n states, simulates

the Markov chain for a while, stops after finite time,

299

Exact Sampling Algorithm Expected running time

Asmussen, Glynn, Thorisson [4] finite time

Aldous [1] (t bias in sample) 81r/c2

LOV6SZ, Winkler [22] O(hT~i~ n 10g n)

Propp, Wilson [24] (requires monotonicity) O(T”,X log 1)

Wilson, Propp [26] 15TC or O(T~i~n 10g n)

Fill [15] (not yet analyzed)

This paper 22T (7 < h < T.)

n = number of states

1 = length of longest chain (monotone Markov chains only). Usually log 1 = O(log log n).

r = mean hitting time

h = maximum hitting time

T= = cover time

TmiX = mixing time threshold; time for Markov chain to “get within I/e of random”

T~,x = optimal expected stationary stopping time

Table 2: Summary of exact sampling algorithms. See [3] for background on the Markov chain parameters.

and then outputs a random state distributed exactly

according to ir. However, they did not gives bounds

on the running time, and described the procedure

as more of a possibility result than an algorithm

to run. Aldous [1] described an efficient procedure

for sampling within 0(r/e2) time from an unknown

Markov chain that can be simulated, but with some

bias c in the samples. Lov6sz and Winkler [22]

found the first provably polynomial time procedure

for obtaining unbiased samples by observing an un-

known Markov chain. If T~iX is the optimal ex-

pected time of any randomized stopping rule that

leaves the Markov chain in the stationary distri-

bution, then the Lov6sz-Winkler algorithm runs in

O(hT~iXn log n) ~ 0(h2n log n) time. (The param-

eter T~iX is a measure of how long the Markov chain

takes to randomize, and is defined as rl ‘2) in [3].)

Wilson and Propp [26] described another sampling

procedure which runs within the cover time of the

random walk, using a technique called “coupling-

from-the-past”. They used this same technique to

obtain unbiased samples from Markov chains with

huge state spaces (e.g. 2 M,000,ooo states) provided

that the Markov chain has a certain structure called

monotonicit y [24]. Recently Fill [15] has found an-

other exact sampling method which may be applied

to either moderate-sized general Markov chains or

huge Markov chains with special structure. His

method requires the ability to simulate the reverse

Markov chain. Because the algorithm is new, the

running time has not yet been determined.

The sampling application is more pleasant than

the tree application, since by definition the input is

already stochastic. Returning the root of the output

of RandomTree takes O(T) time, which compares fa-

vorably with all the previous algorithms, except the

ones that rely on the Markov chain having special

structure. A preliminary analysis of Fill’s general

Markov chain procedure suggests that the algorithm

given here is faster [15]. Aldous’s 0(~/c2) approx-

imate sampling algorithm suggested that an O(r)

exact sampling algorithm should be possible, but

several changes in the algorithm were necessary, and

the analysis is completely different.

3. Proofs of Theorems

We will describe a randomized process that results

in the random generation of a tree with a given root

r. The procedure RandomTreeWithRoot simulates

this process. Then we reduce the problem of finding

a random tree to that of finding a random tree with

a given root, and analyze the running time.

Associate with vertex r an empty stack, and as-

300

while G has a cycle

Pop any such cycle off the stacks

return tree left on stacks

Figure 3: Cycle popping procedure

sociate with each vertex u # r an infinite stack of

random vertices SU = S’u,l, SU,2, SU,3, . . . such that

Pr[Su,i = v] = Pr[RandomSuccessor(u) = v], and

such that all the items in all the stacks are mutually

independent.

The process will pop items off the stacks, To pop

~,t, su,i+l, su,t+z,an item off u’s current stack S
. .

replace lt with SU,3+1, SU,i+Z,

The tops of the stacks define a directed graph G,

which contains edge (u, v) if and only if u’s stack is

nonempty and its top (first) item is v. If there is a

directed cycle in G, then by “popping the cycle” we

mean that we pop the top item of the stack of each

vertex in the cycle. The process is summarized in

Figure 3. If this process terminates, the result will

be a directed spanning tree with root r. We will see

later that this process terminates with probability

1 iff there exists a spanning tree with root r and

non zero weight. But first let us consider what effect

the choices of which cycle to pop might have.

For convenience, suppose there are an infinite

number of colors, and that stack entry SU ,i has color

i. Then the directed graph G defined by the stacks

is vertex-colored, and the cycles that get popped

are colored. A cycle may be popped many times,

but a colored cycle can only be popped once. If

eventually there are no more cycles, the result is a

colored tree.

Theorem 4 The choices of which cycle to pop next

are irrelevant: For a given set of stacks, either 1)

the algorithm never terminates for any set of choices,

or .2) the algorithm returns some fized colored tree

independent of the set of choices.

Proof: Consider a colored cycle C that can be

popped, i.e. there is a sequence of colored cycles

CI, C?,, C3) . . . , Ck = C that may be popped one

after the other until C is popped. But suppose that

the first colored cycle that the algorithm pops is not

Cl, but inste~d ~. Is it still possible for C to get

popped? If C shares no vertices with Cl, , , ., C~,

then the answer is clearly yes. Otherwise, let Ci be

the first of these cycles that shares a vertex with ~.

If Ci and ~ are not equal as cycles, then they share
some vertex w which has different successor vertices

in the two cycles. But since none of Cl, -Ci - 1

contain w, w has the same color in Ci and C, so

it must have the same successor vertex in the two

cycles. Since ~ and Ci are equal as cycles, and ~

shares no vertices with Cl, . . . , Ci - 1, @ and Ci are

equal as colored cycles. Hence we may pop colored

CyCleSQ =Ci, C~, Cz, . . . ,ci_l, c%+l,ck=c.

If there are infinitely many colored cycles which

can be popped, then there always will be infinitely

many colored cycles which can be popped, and the

algorithm never terminates. If there a,re a finite

number of cycles which can be popped, then every

one of them is eventually popped. The number of

these cycles cent aining vertex u determines u‘s color

in the resulting tree. •1

To summarize, the stacks uniquely define a tree

together with a partially ordered set of cycles lay-

ered on top of it. The algorithm peels off these

cycles to find the tree.

An implementation of the cycle popping algo-

rithm might start at some vertex, and do a walk on

the stacks so that the next vertex is given by the top

of the current vertex’s stack. Whenever a vertex is

re-encountered, then a cycle has been found, and it

may be popped. If the current tree (initially just the

root r) is encountered, then if we redo the walk from

the start vertex with the updated stacks, no vertex

encountered is part of a cycle. These vertices may

then be added to the current tree, and the imple-

mentation may then start again at another vertex.

RandomTreeWithRoot is just this implementation.

RandomSuccessor(u) reads the top of u’s stack and

deletes this item; in case this item wasn”t supposed

to be popped, it gets stored in the Next array. The

InTree array gives the vertices of the current tree.

If there is a tree with root r and nonzero weight,

then a random walk started at any vertex eventually

reachs r with probability 1. Thus the algorithm

halts with probability 1 if such a tree exists.

Proof of Theorem 1: Consider the probability

that the stacks define a tree T and a set C of colored

cycles. By the i.i. d. nature of the stack entries, this

probability factors into a term depending on C alone

and a term depending on T alone — the product

of the cycle weights, and the weight of T. Even

if we condition on a particular set of cycles being

popped, the resulting tree is distributed according

to ‘T,. El

The proof of Theorem 1 also shows that if we

sum the weights of sets of colored cycles that ex-

clude vertex r, the result is the reciprocal of the

weighted sum of trees rooted at r.

Proof of Theorem 2: What is the expected

number of times that RandomSuccessor(u) is called?

Since the order of cycle popping is irrelevant, we

may assume that the first trajectory starts at u.

301

It is a standard result (see [3]) that the expected

number of times the random walk started at u re-

turns to u before reaching r is given by m(u)[EUTr +

ErTU], where the “return” at time O is included,

and EiTj is the expected number of steps to reach

j starting from i. Thus the number of calls to

RandomSuccessor is

~T(u)(EuTr + .E,T.)
u

❑

If the root r is n-random, then the expected

number of calls to RandonSuccessor is

u,r

Since the number of calls to RandomSuccessor is at

least n – 1, we get for free

n–1
T>—.

2

This inequality isn’t hard to obtain by other meth-

ods, but this way we get a nice combinatorial inter-

pretation of the numerator.

Proof of Theorem 3: Consider the original

graph modified to include a “death node”, where

every original node has an t chance of moving to

the death node, which is a sink. Sample a random

spanning tree rooted at the death node. If the death

node has one child, then the subtree is a random

spanning tree of the original graph. The Attempt

procedure aborts if the death node will have mul-

tiple children, and otherwise it returns a random

spanning tree.

The expected number of steps before the second

death is 2/&, which upper bounds the expected run-

ning time of Attempt. Suppose that we start at a

r-random location and do the random walk until

death. The node at which the death occurs is a ir-

random node, and it is the death node’s first child.

Suppose that at this point all future deaths are sup-

pressed. The expected number of additional calls to

RandomSucces sor before the tree is built is at most

2r. This bound has two consequences. First, the ex-

pected number of steps that a call to Attempt will

take is bounded above by 1/s + 2r. More impor-

tantly, the expected number of suppressed deaths

is bounded by 2rc. Thus the probability that a

second death will occur is bounded by 27-s. But

the probability of aborting is independent of which

vertex Attempt starts at. Hence the probability of

aborting is at most min(l, 27s).

The expected amount of work done before 1/s

becomes bigger than T is bounded by O(r). After-

wards the probability that a call to Attempt results

in Failure decays exponentially. The probability

that Attempt gets called at least z’ additional times

is 2-nIi2J, while the expected amount of work done

the ith time is T2°(iJ. Thus the total amount of

work done is O(T). (n)

If constant factors do not concern the reader, the

proof is done. Otherwise read on.

Let &j be the value of e the ~th time RandomTree

calls Attempt procedure. The expected number of

times T that RandomTree calls RandomSucces sor is

bounded by

co i—l

i=l j=l

where &j = s-~. Let k be the smallest ~ with 2TEj <

1, and let ~ = 2rck; 1/.s < ~ <1: Breaking the sum

apart and using &j = K/(QT);k-j we get

Now since this expression is concave up in K, we

may evaluate it at K = 1 and ~ = 1/s, and take

the maximum as an upper bound. It should not be

surprising that evaluating at these two values of K

yields the same answer. With s = 2 we get a bound

of T < 21.85T. ❑

Suppose that the initial s is chosen to be 1/s

raised to a random power between O and 1. Then N

is 1/s raised to a random power between O and 1,

and we have

Then when s = 2.3 we get T < 21T.

Note

In the course of finishing this writeup I found a nicer

RandomTree algorithm, but had insufficient time to

properly analyze its performance. Look for it in the

journal version.

302

Acknowledgements

The author thanks Jim Propp for useful discussions

and comments. Thanks also to Henry Cohn and

Jim Propp for their suggestions on the manuscript.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

David Aldous. On simulating a Markov chain sta-

tionary distribution when transition probabilities

are unknown, 1994. Preprint.

David J. Aldous. A random walk construction of

uniform spanning trees and uniform Iabelled trees.

SIAM Journal of Discrete Mathematics, 3(4):450-
465, 1990.

David J. Aldous and James A. Fill. Reversible

Markov Chains and Random Walks on Graphs.

Book in preparation, 1995.

S@ren Asmussen, Peter W. Glynn, and Hermann

Thorisson. Stationary detection in the initial tran-

sient problem. ACM Transcsctions on Modeling and

Computer Simulation, 2(2):130-157, 1992.

B61a Bollobi%. Graph Theor~: An Introductory

Course. Springer-Verlag, 1979. Graduate texts in

mathematics, #63.

Andrei Broder. Generating random spanning trees.

In Foundations of Computer Science, pages 442-
447, 1989.

Robert Burton and Robin Pemantle. Local charac-

teristics, entropy and limit theorems for spanning

trees and domino tilings via transfer-impedances.

The Annals of Probabilit~, 21(3):1329-1371, 1993.

Charles J. Colbourn, Robert P. J. Day, and

Louis D. Nel. Unranking and ranking spanning

trees of a graph. Journal of Algorithms, 10:271-

286, 1989.

Charles J. Colbourn, Bradley M. Debroni, and

Wendy J. Myrvold. Estimating the coefficients of

the reliability polynomial. Congrewms Numeran-

tium, 62:217-223, 1988.

Charles J. Colbourn, Wendy J. Myrvold, and Eu-

gene Neufeld. Two algorithms for unranking ar-

borescences. Journai of Algorithms, 1995. To ap-

pear.

Don Coppersmith and Shmuel Winograd. Matrix

multiplication via arithmetic progressions, Journal

of Symbolic Computation, 9:251–280, 1990.

Persi Diaconis. Group Representations in ProbabiL

ity and Statistics. Institute of Mathematical Statis-

tics, 1988.

Persi Diaconis and Laurent Saloff-Coste. What do

we know about the Metropolis algorithm? In Sym-

posium on the Theory OJ Computing, pages IIZ–

129, 1995.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Persi Diaconis and Daniel Stroock. Geometric

bounds for eigenvalues of Markov chains. The An-

nals o./ Applied Probabdity, 1(1):36–61, 1991.

James A. Fill, 1995. Personal communication.

A. Gu6noche. Random spanning tree. Journal of

Algorithms, 4:214-220, 1983, In French.

Mark Jerrum and Alist air Sinclair. Approximat-

ing the permanent. SIAM Journal on Computing,

18(6):1149-1178, 1989.

D. Kandel, Y. Matias, R. Unger, and P. Winkler.

Shuffling biological sequences, 1995. Preprint.

V. G. Kulkarni. Generating random combinato-

rial objects. Journal of Algorithms, 11 (2):185-207,

1990.

Gregory F. Lawler. Intersections of Random Walks.

Birkhauser, 1991.

L&sz16 Lov&.z and Mik16s Simonovits. On the ran-

domized complexity of volume and diameter. In

Foundations of Computer Science, pages 482-491,

1992.

L.%z16 Lov~sz and Peter Winkler. Exact mixing in

an unknown Markov chain. Electronic Journal of

Combinatorics, 2, 1995. Paper #R15.

Robin Pemantle. Choosing a spanning tree for the

integer lattice uniformly. The A nnab OJ Probab ilz t y,

19(4):1559-1574, 1991.

James G. Propp and David B. Wilson. Exact sam-

pling with coupled Markov chains and applications

to statistical mechanics. Random Structures and

Algorithms, 1996. To appear.

Alistair Sinclair. Algorithms for Random Gener-

atiorr and Counting: A Markov Chain Approach.

Birkhauser, 1993.

David B. Wilson and James G, Propp. How to

get an exact sample from a generic M arkov chain

and sample a random spanning tree from a directed

graph, both within the cover time. In Symposium

on Discrete Aigorvthmsj 1996.

303

