Metadata of the Book that will be visualized online

Book Title	Advances in Combinatorics	
Book SubTitle	Waterloo Workshop in Computer Algebra 2011, W80, May 26-29, 2011	
Copyright Year	2013	
Copyright Holder	Springer-Verlag Berlin Heidelberg	
Editor		
	Family Name	Kotsireas
	Particle	
	Given Name	Ilias S.
	Suffix	
	Division	Dept. of Physics and Computer Science
	Organization	Wilfrid Laurier University
	Address	University Avenue West 75, N2L 3C5, Waterloo, Ontario, Canada
	Email	Zimatsire@ wlu.ca
Family Name		
	Particle	Eugene V.
	Given Name	
	Suffix	Dept. Physics \& Computer Science
	Division	Wilfrid Laurier University
	Organization	University Avenue West 75, N2L 3C5, Waterloo, Ontario, Canada
	Email	ezima @wlu.ca

Editor's Proof

Advances in Combinatorics

Editor's Proof

Editor's Proof

Ilias S. Kotsireas • Eugene V. Zima 2
Editors 3

Advances in Combinatorics

Waterloo Workshop in Computer Algebra, W80, May 26-29, 2011

Editors

Ilias S. Kotsireas
Eugene V. Zima
Department of Physics and Computer
Science
Wilfrid Laurier University
Waterloo, Ontario
Canada

ISBN 978-3-642-30978-6
ISBN 978-3-642-30979-3 (eBook)
DOI 10.1007/978-3-642-30979-3
8
Springer Heidelberg New York Dordrecht London
Library of Congress Control Number: xxxxxxxxxx 9
Mathematics Subject Classification (2010):05-06, 11-06 10
© Springer-Verlag Berlin Heidelberg $2013 \quad 11$
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 12 the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 13 broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 14 storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 15 now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection 16 with reviews or scholarly analysis or material supplied specifically for the purpose of being entered 17 and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of 18 this publication or parts thereof is permitted only under the provisions of the Copyright Law of the 19 Publisher's location, in its current version, and permission for use must always be obtained from Springer. 20
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations 21
are liable to prosecution under the respective Copyright Law. 22
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 23 does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 24 protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of 26 publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for 27 any errors or omissions that may be made. The publisher makes no warranty, express or implied, with 28 respect to the material contained herein. 29

Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)

Editor's Proof

This book is dedicated to the life and

Editor's Proof

Editor's Proof

$$
\begin{aligned}
& \mathbb{N} \rightarrow \mathbb{Q}^{+} \\
& F(n+1, k)-F(n, k)=G(n, k+1)-G(n, k) \\
& \text { Calkin-Wilf tree, courtesy of Douglas Zare }
\end{aligned}
$$

Editor's Proof

Foreword

This volume commemorates and celebrates the life and achievements of an extraor- 2 dinary person, Herb Wilf. The planning of the book started while he was still alive. It ${ }_{3}$ was planned to present it to him in person, but unfortunately he passed away before 4 that could happen. While he was brought down by a neuromuscular degenerative 5 disease, he had been active in research until shortly before his death, and this volume 6 even contains a paper he coauthored.

Among the most prominent qualities that endeared Herb to his many students 8 and colleagues was his warm personality. Deeply devoted to mathematics, he was an 9 enthusiastic supporter of other researchers, especially of young students struggling 10 to establish themselves. Always generous with suggestions and credit, he delighted 11 when others improved on his own results. He was also very supportive of women 12 mathematicians at a time when they faced high barriers and had an unusually large ${ }_{13}$ number of women among his PhD students. 14

Herb Wilf was a superb teacher and writer. His books have had extensive impact 15 on a variety of fields. His many publications with their lucid explanations of 16 abstruse mathematical results give a taste of his abilities as an expositor. He received 17 a variety of teaching prizes, including the Deborah and Franklin Tepper Haimo 18 Award of the Mathematical Association of America, which is given to "teachers 19 of mathematics who have been widely recognized as extraordinarily successful." 20 He devoted substantial effort to editorial activities, including a stint as the editor in 21 chief of the American Mathematical Monthly, and was a cofounder of the Journal 22 of Algorithms and of the Electronic Journal of Combinatorics. ${ }_{23}$

However, Herb was foremost a researcher, driven by the desire to discover the 24 inner workings of the mathematical world, as expressed by Hilbert's famous quote, 25 "We must know. We will know." This volume consists of high-quality refereed 26 research contributions by some of his colleagues, students, and collaborators. The 27 origins of this book project were in the conference held on the occasion of Herb's 28 80th birthday in May 2011. But this is not a conference proceedings, in that many 29 of the papers presented at that meeting are not included and some papers here 30 were not part of the conference program. They are meant as a tribute to Herb 31

Editor's Proof

Wilf's contributions to mathematics and mathematical life. Some are very close 32 to areas he worked in, and some are further apart. But they are all on topics he knew ${ }_{3}$ well and cared deeply about.

Although all the papers in this volume have some connection to Herb, they 35 touch mostly on the last (although longest) phase of his career that associated 36 with combinatorics. It therefore seems appropriate to say a few words about his 37 development as a mathematician. One of the many notable features of his life was 38 the willingness to undertake new projects and change directions. Thus, in the 1990s, 39 while he was already in his 60s and well established as an author and editor in 40 the traditional print world, he saw the promise of electronic communication and 41 moved to set up the free and completely scholar-operated Electronic Journal of 42 Combinatorics. In the spirit of practicing what he preached, he also arranged for 43 as many of his books as possible to be available for free downloads. In a rare case of 44 a good deed being properly rewarded, he found, contrary to predictions, that sales 45 of print copies of those freely downloadable books increased! This flexibility and 46 willingness to experiment extended to research directions. Even close to the end of 47 his life, he was always open to new ideas and wrote some papers in mathematical 48 biology. But this was just a continuation of a lifelong pattern.

The repeated appearance of certain intellectual themes in Herb's work is 50 illustrated nicely by one of his most famous contributions, namely, the work with 51 Doron Zeilberger on automated proofs of identities. The computational aspect of 52 this research offers a link to the start of Herb's professional career, which was 53 closely linked to computers. He did direct hands-on programming of some of 54 the first electronic digital computers, in order to implement early optimization 55 algorithms. He then went on to write a PhD thesis on numerical analysis and 56 carry out a substantial research program in that field, including producing books on 57 mathematical models. Later yet he moved on to more theoretical work on complex 58 analysis and inequalities. And then he was smitten by the charms of combinatorics, 59 and this became the main passion for the rest of his life, not that he forgot or 60 abandoned his earlier interests completely. Computers, for example, continued to 61 play a major role in his life. As just one example, in 1975, he and Albert Nijenhuis 62 published Combinatorial Algorithms. It is not used as widely as it used to be, since 63 the methods it contains are incorporated into standard software programs, such as 64 Maple, Matlab, and Mathematica. But for that time, it was a tremendously useful 65 collection that not only explained the methods but provided working code that could 66 be used when needed. Another illustration of his later work drawing on earlier 67 experience is provided by his work on complex analysis, which played a role in 68 his extensive involvement with generating functions in combinatorics.

In conclusion, we can say that it is difficult to give a full picture of the many 70 facets of Herb Wilf's life and work. There will be more formal obituary notices 71 that will cover his contributions in detail. The brief sketch here serves only as an 72 introduction to this collection of papers, original research contributions by some ${ }_{73}$ of Herb's many students, collaborators, and other admirers and beneficiaries, who 74 dedicate their works to his memory. Herb heard presentations of some of these 75

Editor's Proof

Foreword
papers at his 80th birthday conference. What is certain is that he would have loved to 76 read them all and appreciate the advances they represent in penetrating ever deeper 77 into the mysteries of mathematics.

Minneapolis, USA
Andrew M. Odlyzko 7
March 2013

Editor's Proof

The conference was devoted to the 80th birthday of distinguished combinato- 4 rialist Professor Herbert S. Wilf (University of Pennsylvania, USA). Several of 5 Professor Wilf's books are considered classical; we mention for instance Gener- 6 atingfunctionology, Algorithms and Complexity, $A=B$.

Topics discussed at the workshop were closely related to several research areas 8 in which Herbert Wilf has contributed and influenced.

WWCA 2011 was a real celebration of combinatorial mathematics, with some 10 of the most famous combinatorial mathematicians of the world coming together to 11 present their talks. We had more than a 100 participants at the conference. The list 12 of scheduled invited lectures and presentations made at the conference includes: ${ }_{13}$

- Herbert Wilf, University of Pennsylvania, USA, "Two exercises in combinatorial 14 biology"
- Gert Almkvist, University of Lund, Sweden, "Ramanujan-like formulas for $\frac{1}{\pi^{2}} 16$ and String Theory"
- George E. Andrews, Pennsylvania State University, USA, "Partition Function 18 Differences, and Anti-Telescoping" 19
- Miklos Bona, University of Florida, USA, "Permutations as Genome Rearrange- 20 ments" 21
- Rod Canfield, University of Georgia, USA, "The Asymptotic Hadamard Conjec- 22 ture" 23
- Sylvie Corteel, Univ. Paris 7, France, "Enumeration of staircase tableaux" ${ }_{24}$
- Aviezri Fraenkel, Weizmann Institute of Science, Israel, "What's a question to 25 Herb Wilf's answer?" 26
- Ira Gessel, Brandeis University, USA, "On the WZ method" ${ }_{27}$
- Ian Goulden, University of Waterloo, Canada, "Combinatorics and the KP 28 hierarchy" $\quad 29$
- Ronald Graham, UCSD, USA, "Joint statistics for permutations in S_{n} and ${ }_{30}$ Eulerian numbers"

Editor's Proof

xiv

- Andrew Granville, Universite de Montreal, Canada, "More combinatorics and 32 less analysis: A different approach to prime numbers" 33
- Curtis Greene, Haverford College, USA, "Some Posets Related to Muirhead's, 34 Maclaurin's, and Newton's Inequalities" 35
- Joan Hutchinson, Macalester College, USA, "Some challenges in list-coloring 36 planar graphs" 37
- David Jackson, University of Waterloo, Canada, "Enumerative aspects of cactus 38 graphs"

39

- Christian Krattenthaler, University of Vienna, Austria, "Cyclic sieving for gener- 40 alised non-crossing partitions associated to complex reflection groups" 41
- Victor H. Moll, Tulane University, USA, "p-adic valuations of sequences: 42 examples in search of a theory" 43
- Andrew Odlyzko, University of Minnesota, USA, "Primes, graphs, and generat- 44 ing functions" 45
- Peter Paule, RISC-Linz, Austria, "Proving strategies of WZ-type for modular 46 forms" 47
- Robin Pemantle, University of Pennsylvania, USA, "Zeros of complex polyno- 48 mials and their derivatives" 49
- Marko Petkovsek, University of Ljubljana, Slovenia, "On enumeration of struc- 50 tures with no forbidden substructures" 51
- Bruce Sagan, Michigan State University, USA, "Mahonian Pairs" 52
- Carla D. Savage, NCSU, USA, "Generalized Lecture Hall Partitions and Eulerian 53 Polynomials"
- Jeffrey Shallit, University of Waterloo, Canada, "50 Years of Fine and Wilf" 55
- Richard Stanley, MIT, USA, "Products of Cycles" 56
- John Stembridge, University of Michigan, USA, "A finiteness theorem for 57 W-graphs"

58

- Volker Strehl, Universitaet Erlangen, Germany, "Aspects of a combinatorial 59 annihilation process" 60
- Michelle Wachs, University of Miami, USA, "Unimodality of q-Eulerian Num- 61 bers and p,q-Eulerian Numbers" 62
- Doron Zeilberger, Rutgers University, USA, "Automatic Generation of Theorems 63 and Proofs on Enumerating Consecutive-Wilf classes" 64
- Eugene Zima, Wilfrid Laurier University, Canada, "Synthetic division in the 65 context of indefinite summation"

The workshop was financially supported by the Fields Institute and various 67 offices of Wilfrid Laurier University.

This book presents a collection of selected formally refereed papers submitted 69 after the workshop. The topics discussed in this book are closely related to Herb's 70 influential works. Initially it was planned as a celebratory volume. Herb's sudden 71 death implied that this has now become a book commemorating his contributions to 72 mathematics and computer science.

This book would not have been possible without the dedication and hard work of 74 the anonymous referees, who supplied detailed referee reports and helped authors to 75

Editor's Proof

Preface
improve their papers significantly. Finally, we wish to thank the people at Springer- 76 Verlag, in particular Ruth Allewelt and Martin Peters, for working closely with us 77 and for their dedicated and unwavering support throughout the entire publication 78 process.

We feel very fortunate that we were entrusted in the organization of this confer- 80 ence - "unforgettable conference of historical dimension" according to comments 81 of one of the invitees.

Waterloo, Canada
Ilias S. Kotsireas ${ }^{83}$
December 2012

Editor's Proof

Editor's Proof

A Tribute to Herb Wilf

Doron Zeilberger

To Herbert Saul Wilf(June 13, 1931-Jan. 7, 2012), in

Herbert Wilf was one of the greatest combinatorialists of our time, but his influence 5 far transcends the boundaries of any specific area. He was way ahead of his 6 time when, as a fresh (28-year-old) PhD, he coedited (with Anthony Ralston) 7 the pioneering book "Mathematical Methods for Digital Computers"; - 3 years 8 later wrote the beautiful classic textbook "Mathematics for the Physical Sciences"; 9 when algorithms just started to pop up everywhere, pioneered (with Don Knuth) 10 the Journal of Algorithms; and when the Internet started, pioneered the Electronic 11 Journal of Combinatorics. Herb also realized the great potential of the Internet for 12 the sharing of knowledge and had several of his classic textbooks available for a free 13 download!

Not to mention his great mathematical contributions! 15
Not to mention that he academically fathered 28 (a perfect number!) brilliant 16 combinatorial children, including 8 females (way back when there were very few 17 female PhDs). 18

Many of these brilliant academic children became distinguished academic 19 mathematicians, for example, Fan Chung, Joan Hutchinson, the late Rodica Simion, 20 Felix Lazebnik, and many others. But some of them had brilliant careers elsewhere. 21 These include:

- Richard Garfield, of Magic the Gathering fame, one-time teenage idol, and still 23 a household name among gamesters 24
- The Most Rev. Dr. Anthony Mikovsky, Prime Bishop of the Polish National 25 Catholic Church

Editor's Proof

xviii
D. Zeilberger

- Alkes Price, an ex-prodigy, who made a bundle in finance and wisely went back 27 to academia and is now a rising star in statistical genetics 28
- Michael Wertheimer, CTO of the National Security Agency from 2005 to $2010 \quad 29$

The first scientific contribution of Herb Wilf (b. June 13, 1931) was in astronomy. 30 In the Oct. 1945 issue of Sky and Telescope, in an article that reported on readers' 31 observations of a solar eclipse, one can find the following: "Herbert Wilf of US City, 32 sent in times of the first and last contacts agreeing closely with those predicted for ${ }_{33}$ his location. He used a stop watch of known rate set with radio time signals." 34

After that, Herb focused on mathematics, but his interests ranged far and wide 35 and went through several phases. In a short (probably auto-) biographical footnote 36 for a 1982 American Mathematical Monthly article, it says: 3_{37}

His principal research interests have been in analysis: numerical, mathematical, and in the 38 past several years, combinatorical.

Herb's "religious" conversion to combinatorics was already cited by Fan Chung 40 and Joan Hutchinson's lovely tribute on the occasion of his 65th birthday: In 1965, 41 Gian-Carlo Rota came to the University of Pennsylvania to give a colloquium talk 42 on his then-recent work on Mobius functions and their role in combinatorics. Herb ${ }_{43}$ recalled, "That talk was so brilliant and so beautiful that it lifted me right out of my 44 chair and made me a combinatorialist on the spot." 45

But Herb returned the debt and made me convert to the religion of combinatorics. 46
The bio attached to one of my own articles reads:
47
Doron Zeilberger was born, as a person, on July 2, 1950. He was born, as a 48 mathematician, in 1976, when he got his PhD under the direction of Harry Dym (in 49 analysis). He was born-again, as a combinatorialist, 2 years later, when he read a 50 lovely proof of the so-called Hook-Length Formula (enumerating Standard Young 51 Tableaux) by Curtis Greene, Albert Nijenhuis, and Herb Wilf. He lived happily ever 52 after. 53

I still live happily, and all thanks to Herb (and Albert Nijenhuis and Curtis 54 Greene, now Herb's beloved son-in-law). 55

Thanks Herb for the great inspiration that you bestowed on me and on so many 56 other people whose lives - both mathematically and personally - you have touched. 57

Editor's Proof

Contents

Glaisher's Formulas for $\frac{1}{\pi^{2}}$ and Some Generalizations 12
Gert Almkvist 3
Complementary Bell Numbers: Arithmetical Properties 4
and Wilf's Conjecture 235
Tewodros Amdeberhan, Valerio De Angelis, and Victor H. Moll 6
Partitions with Early Conditions 577
George E. Andrews 8
Hypergeometric Identities Associated with Statistics on Words 779
George E. Andrews, Carla D. Sayage, and Herbert S. Wilf 10
Stationary Distribution and Eigenvalues for a de Bruijn Process 101
Arvind Ayyer and Volker Strehl 12
Automatic Generation of Theorems and Proofs 13
on Enumerating Consecutive-Wilf Classes 121 121
Andrew Baxter, Brian Nakamura, and Doron Zeilberger 15
Watson-Like Formulae for Terminating ${ }_{3} F_{2}$-Series 139
Wenchang Chu and Roberta R. Zhou 17
Balls in Boxes: Variations on a Theme of Warren Ewens 18
and Herbert Wilf 161 19
Shalosh B. Ekhad and Doron Zeilberger
Beating Your Fractional Beatty Game Opponent and: What's 21
the Question to Your Answer? 175
Aviezri S. Fraenkel 2
WZ-Proofs of "Divergent" Ramanujan-Type Series 187
Jesús Guillera 25
Smallest Parts in Compositions 197 26
Arnold Knopfmacher and Augustine O. Munagi 27

Editor's Proof

Cyclic Sieving for Generalised Non-crossing Partitions 28
Associated with Complex Reflection Groups of Exceptional Type 20929
Christian Krattenthaler and Thomas W. Müller 30
Set Partitions with No m-Nesting 24931
Marni Mishna and Lily Yen 32
The Distribution of Zeros of the Derivative of a Random Polynomial 259
Robin Pemantle and Igor Rivin 34
On the Distribution of Small Denominators in the Farey Series 35
of Order N 275 36
C.L. Stewart 37
Lost in Translation 28738
Wadim Zudilin 39

Editor's Proof

AUTHOR QUERY

AQ1. Please provide email address for "Doron Zeilberger."

Editor's Proof

Metadata of the chapter that will be visualized online

Chapter Title	Glaisher's Formulas for and Some Generalizations
Copyright Year	2013
Copyright Holder	Springer-Verlag Berlin Heidelberg
Corresponding Author	Family Name Almkvist
	Particle
	Given Name Gert
	Suffix
	Organization Institute for Algebraic Meditation
	AddressFogdaröd 208, S-24333, Höör, Sweden
Abstract	Glaisher's formulas for are reviewed. Two generalized formulas 5 are proved by using the WZ-method (named after Wilf and Zeilberger). Also an 6 improvement of Fritz Carlson's theorem (proved in an Appendix by ArneMeurman) 7 is used.
Keywords (separated by "-")	π - Glaisher

Glaisher's Formulas for $\frac{1}{\pi^{2}}$ and Some Generalizations

Gert Almkvist

Abstract

Glaisher's formulas for $\frac{1}{\pi^{2}}$ are reviewed. Two generalized formulas 5 are proved by using the WZ-method (named after Wilf and Zeilberger). Also an 6 improvement of Fritz Carlson's theorem (proved in an Appendix by Arne Meurman) 7 is used.

Keywords π • Glaisher

1 Introduction

Ramanujan-like formulas for $\frac{1}{\pi^{2}}$ are rare. Only a dozen genuine (not obtained by 11 "squaring" formulas for $\frac{1}{\pi}$) formulas are known, most of them due to Guillera. Only five of them are proved, all by Guillera, using the WZ-method. Until I found 13 Wenchang Chu's paper [2] I did not know of Glaisher's formulas for $\frac{1}{\pi^{2}}$ from 190514 (see [3]). His paper is not easy to read (also literary, the exponents in Quaterly 15 Journal are very small) and I decided to write a self-contained survey. 16 After finding a slight generalization of Glaisher's formulas and inspired of Levrie's 17 paper, I was lead to the following two new formulas for $\frac{1}{\pi}$.

[^0]
Editor's Proof

2

Theorem 1.

(i)

$$
\begin{aligned}
&\left.\sum_{n=0}^{\infty} \frac{(4 n+1)}{(n+1)(n+2) \ldots(n+}+k\right)(2 n-1)(2 n-3) \ldots(2 n-(2 k-1))\binom{2 n}{n} \\
& 256^{n} \\
&=(-1)^{k} \frac{2^{5 k+1} k!^{4}}{k \cdot(2 k)!^{3}} \frac{1}{\pi^{2}}
\end{aligned}
$$

(ii)

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{(4 n+1)}{(n+1)^{3}(n+2)^{3} \ldots(n+k)^{3}(2 n-1)^{3}(2 n-3)^{3} \ldots(2 n-(2 k-1))^{3}} \frac{\binom{n n}{n}}{256^{n}} \\
=(-1)^{k} \frac{2}{3} \frac{2^{15 k} k!^{3}(3 k)!}{k \cdot(4 k)!^{3}} \frac{1}{\pi^{2}}
\end{gathered}
$$

2 Glaisher's Formulas

We will make use of Legendre polynomials $P_{n}(x)$, defined by the generating 21 function

$$
\begin{equation*}
\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) t^{n} \tag{23}
\end{equation*}
$$

They form an orthogonal system with inner product

$$
\begin{equation*}
\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\delta_{m, n} \frac{2}{2 n+1} \tag{25}
\end{equation*}
$$

Lemma 1.

$$
\begin{equation*}
P_{n+1}^{\prime}(x)-x P_{n}^{\prime}(x)=(n+1) P_{n}(x) \tag{26}
\end{equation*}
$$

Proof. Differentiate the generating function with respect to x

Editor's Proof

Glaisher's Formulas for $\frac{1}{\pi^{2}}$ and Some Generalizations

$$
\begin{equation*}
\frac{d}{d x} \frac{1}{\sqrt{1-2 x t+t^{2}}}=\frac{t}{\left(1-2 x t+t^{2}\right)^{3 / 2}}=\sum_{n=0}^{\infty} P_{n}^{\prime}(x) t^{n} \tag{29}
\end{equation*}
$$

Hence

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(P_{n+1}^{\prime}(x)-x P_{n}^{\prime}(x)\right) t^{n}=\frac{1-x t}{\left(1-2 x t+t^{2}\right)^{3 / 2}} \\
& \quad=\frac{d}{d t} \frac{t}{\sqrt{1-2 x t+t^{2}}}=\sum_{n=0}^{\infty}(n+1) P_{n}(x) t^{n}
\end{aligned}
$$

Lemma 2.

$$
x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)=n P_{n}(x)
$$

Proof. We have

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)\right) t^{n} & =\frac{x t-t^{2}}{\left(1-2 x t+t^{2}\right)^{3 / 2}}=t \frac{d}{d t} \frac{1}{\sqrt{1-2 x t+t^{2}}} \\
& =\sum_{n=0}^{\infty} n P_{n}(x) t^{n}
\end{aligned}
$$

Lemma 3.

$$
\begin{equation*}
P_{n+1}^{\prime}(x)-P_{n-1}^{\prime}(x)=(2 n+1) P_{n}(x) \tag{34}
\end{equation*}
$$

Proof. Add Lemmas 1 and 2.

Lemma 4.

$$
\int_{-1}^{1} \frac{P_{n}(x)}{\sqrt{1-x^{2}}} d x=\pi \frac{\binom{2 m}{m}^{2}}{16^{m}} \text { if } n=2 m \text { and } 0 \text { if } n \text { odd. }
$$

Proof. We make the substitution $x=\cos (\varphi)$ and obtain

$$
\text { LHS }=\int_{0}^{\pi} P_{n}(\cos (\varphi)) d \varphi=\frac{1}{2} \int_{-\pi}^{\pi} P_{n}(\cos (\varphi)) d \varphi
$$

Editor's Proof

4

Then

$$
\begin{aligned}
& \sum_{n=0}^{\infty} P_{n}(\cos (\varphi)) t^{n}=\frac{1}{\sqrt{1-2 t \cos (\varphi)+t^{2}}} \\
& =\frac{1}{(1-t \exp (i \varphi))^{1 / 2}} \frac{1}{(1-t \exp (-i \varphi))^{1 / 2}} \\
& =\sum_{j, k=0}^{\infty}\binom{2 j}{j}\binom{2 k}{k} \frac{t^{j+k}}{4^{j+k}} \exp (i(j-k) \varphi)
\end{aligned}
$$

which gives

$$
P_{n}(\cos (\varphi))=\frac{1}{4^{n}} \sum_{j=0}^{n}\binom{2 j}{j}\binom{2 n-2 j}{n-j} \exp (i(2 j-n) \varphi)
$$

Integrating, the only nonzero term is when $2 j=n$ giving

$$
\frac{1}{2} \int_{-\pi}^{\pi} P_{2 j}(\cos (\varphi)) d \varphi=\pi \frac{\binom{2 j}{j}^{2}}{4^{2 j}}
$$

$\square \quad 4$

Lemma 5.

$$
\int_{-1}^{1} \frac{x P_{n}(x)}{\sqrt{1-x^{2}}} d x=\pi \frac{2 m+1}{2 m+2} \frac{\binom{2 m}{m}^{2}}{16^{m}} \text { if } n=2 m+1 \text { and } 0 \text { if } n \text { even. }
$$

Proof. We have

$$
\int_{-1}^{1} \frac{x P_{n}(x)}{\sqrt{1-x^{2}}} d x=\frac{1}{2} \int_{-\pi}^{\pi} \cos (\varphi) P_{n}(\cos (\varphi)) d \varphi
$$

and

$$
\begin{gathered}
\cos (\varphi) P_{n}(\cos (\varphi)) \\
=\frac{1}{2 \cdot 4^{n}} \sum_{j=0}^{n}\binom{2 j}{j}\binom{2 n-2 j}{n-j}\{\exp (i(2 j-n+1) \varphi)+\exp (i(2 j-n-1) \varphi)\}
\end{gathered}
$$

Integrating, we get a nonzero result only if $n=2 m+1$ and $j=m$ or $j=m+1 .{ }_{50}$ The result is

Editor's Proof

Glaisher's Formulas for $\frac{1}{\pi^{2}}$ and Some Generalizations

$$
\frac{1}{4^{2 m+1}}\binom{2 m}{m}\binom{2 m+2}{m+1}
$$

Proposition 1.

$$
\frac{1}{\sqrt{1-x^{2}}}=\frac{\pi}{2} \sum_{n=0}^{\infty}(4 n+1) \frac{\binom{2 n}{n}^{2}}{16^{n}} P_{2 n}(x)
$$

Proof. Expanding

$$
\frac{1}{\sqrt{1-x^{2}}}=\sum_{n=0}^{\infty} c_{n} P_{n}(x)
$$

we get, using the orthogonality of the Legendre polynomials
$\left.c_{n}=\frac{2 n+1}{2} \int_{-1}^{1} \frac{P_{n}(x)}{\sqrt{1-x^{2}}} d x=\frac{4 m+1}{2} \pi \frac{(2 m}{m}\right)^{2}$ if $n=2 m$ and 0 otherwise.

Remark 1. Putting $x=0$ in the generating function we obtain

$$
\frac{1}{\sqrt{1+t^{2}}}=\sum_{m=0}^{\infty}(-1)^{m} \frac{\binom{2 m}{m}}{4^{m}} t^{2 m}
$$

and hence
61

$$
P_{2 m}(0)=(-1)^{m} \frac{\binom{2 m}{m}}{4^{m}} \text { and } P_{2 m-1}(0)=0
$$

Then putting $x=0$ in Proposition 1 implies

$$
\sum_{n=0}^{\infty}(-1)^{n}(4 n+1) \frac{\binom{2 n}{n}^{3}}{64^{n}}=\frac{2}{\pi}
$$

Editor's Proof

which was found by Bauer already in 1859 (see [1]). The convergence is very slow, 65 as $\frac{1}{\sqrt{n}}$.

Proposition 2.

$$
\arcsin (x)=\frac{\pi}{8} \sum_{n=0}^{\infty} \frac{4 n+3}{(n+1)^{2}} \frac{\binom{2 n}{n}^{2}}{16^{n}} P_{2 n+1}(x)
$$

Proof. We integrate the formula in Proposition 1. By Lemma 3 we have, assuming 69 that $P_{-1}(x)=0$

$$
P_{2 n}(x)=\frac{1}{4 n+1}\left(P_{2 n+1}^{\prime}(x)-P_{2 n-1}^{\prime}(x)\right)
$$

and

$$
\begin{equation*}
\int_{0}^{x} P_{2 n}(t) d t=\frac{1}{4 n+1}\left(P_{2 n+1}(x)-P_{2 n-1}(x)\right)+C \tag{73}
\end{equation*}
$$

where $C=0$ since $P_{2 n+1}(0)=P_{2 n-1}(0)=0$. We get

$$
\begin{aligned}
& \arcsin (x)=\frac{\pi}{2} \sum_{n=0}^{\infty} \frac{\binom{2 n}{n}^{2}}{16^{n}}\left(P_{2 n+1}(x)-P_{2 n-1}(x)\right) \\
& =\frac{\pi}{2} \sum_{n=0}^{\infty}\left\{\frac{\binom{2 n}{n}^{2}}{16^{n}}-\frac{\binom{2 n+2}{n+1}^{2}}{16^{n+1}}\right\} P_{2 n+1}(x) \\
& =\frac{\pi}{8} \sum_{n=0}^{\infty} \frac{4 n+3}{(n+1)^{2}} \frac{\binom{2 n}{n}^{2}}{16^{n}} P_{2 n+1}(x)
\end{aligned}
$$

Theorem 2.

$$
\sum_{n=0}^{\infty} \frac{(2 n+1)(4 n+3)}{(n+1)^{3}} \frac{\binom{2 n}{n}^{4}}{256^{n}}=\frac{32}{\pi^{2}}
$$

Editor's Proof

Glaisher's Formulas for $\frac{1}{\pi^{2}}$ and Some Generalizations

Proof. We have

$$
\int_{-1}^{1} \frac{x}{\sqrt{1-x^{2}}} \arcsin (x) d x=\frac{\pi}{8} \sum_{n=0}^{\infty} \frac{4 n+3}{(n+1)^{2}} \frac{\binom{2 n}{n}^{2}}{16^{n}} \int_{-1}^{1} \frac{x}{\sqrt{1-x^{2}}} P_{2 n+1}(x) d x
$$

Partial integration gives

$$
\int_{-1}^{1} \frac{x}{\sqrt{1-x^{2}}} \arcsin (x) d x=\left[-\sqrt{1-x^{2}} \arcsin (x)\right]_{-1}^{1}+\int_{-1}^{1} \frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}} d x=2
$$

and we finish using Lemma 5.

Proposition 3.

$$
\sqrt{1-x^{2}}=\frac{\pi}{4}\left\{1-\sum_{n=1}^{\infty} \frac{4 n+1}{(n+1)(2 n-1)} \frac{\binom{2 n}{n}^{2}}{16^{n}} P_{2 n}(x)\right\}
$$

Proof. Assume

$$
\sqrt{1-x^{2}}=\sum_{n=0}^{\infty} c_{n} P_{n}(x)
$$

Then

$$
\begin{gathered}
c_{n}=\frac{2 n+1}{2} \int_{-1}^{1} \sqrt{1-x^{2}} P_{n}(x) d x=\frac{2 n+1}{4} \int_{-\pi}^{\pi} P_{n}(\cos (\varphi)) \sin ^{2}(\varphi) d \varphi \\
=\frac{2 n+1}{8} \int_{-\pi}^{\pi} P_{n}(\cos (\varphi))(1-\cos (2 \varphi)) d \varphi
\end{gathered}
$$

Clearly $c_{n}=0$ if n is odd, so let $n=2 m$. Now we know from the proof of 86 Lemma 4

$$
P_{2 m}(\cos (\varphi))=\frac{1}{16^{m}} \sum_{j=0}^{2 m}\binom{2 j}{j}\binom{4 m-2 j}{2 m-j} \exp (2 i(j-m))
$$

Editor's Proof

When integrating we get nonzero terms for $j=m, j=m+1$ and $j=m-1.90$ We have $c_{0}=\frac{\pi}{4}$ and for $m \geq 1$

$$
\begin{gathered}
c_{m}=\frac{\pi}{4} \frac{4 m+1}{16^{m}}\left\{\binom{2 m}{m}^{2}-\binom{2 m+2}{m+1}\binom{2 m-2}{m-1}\right\} \\
=-\frac{\pi}{4} \frac{4 m+1}{(m+1)(2 m-1)} \frac{\binom{2 m}{m}^{2}}{16^{m}}
\end{gathered}
$$

Theorem 3.

$$
\sum_{n=0}^{\infty} \frac{4 n+1}{(n+1)(2 n-1)} \frac{\binom{2 n}{n}^{4}}{256^{n}}=-\frac{8}{\pi^{2}}
$$

Proof. Divide the formula in Proposition 3 by $\sqrt{1-x^{2}}$

$$
1=\frac{\pi}{4}\left\{\frac{1}{\sqrt{1-x^{2}}}-\sum_{n=1}^{\infty} \frac{4 n+1}{(n+1)(2 n-1)} \frac{\binom{2 n}{n}^{2}}{16^{n}} \frac{P_{2 n}(x)}{\sqrt{1-x^{2}}}\right\}
$$

Integrating from -1 to 1 and using Lemma 4 we are done.
Remark 2. The series converges as $\frac{1}{n^{3}}$.
Now

$$
\frac{4 n+1}{(2 n+2)(2 n-1)}=\frac{1}{2 n-1}+\frac{1}{2 n+2}
$$

Editor's Proof

Glaisher's Formulas for $\frac{1}{\pi^{2}}$ and Some Generalizations

$$
\begin{gathered}
\frac{1}{2 n} \frac{\binom{2 n-2}{n-1}^{4}}{256^{n-1}}+\frac{1}{2 n-1} \frac{\binom{2 n}{n}^{4}}{256^{n}} \\
= \\
\frac{\binom{2 n}{n}^{4}}{256^{n}}\left\{\frac{1}{2 n-1}+\frac{1}{2 n} \frac{256 n^{4}}{16(2 n-1)^{4}}\right\} \\
= \\
\frac{(2 n-1)^{3}+(2 n)^{3}}{(2 n-1)^{4}} \frac{\binom{2 n}{n}^{4}}{256^{n}}
\end{gathered}
$$

and we get

$$
1-\sum_{n=1}^{\infty} \frac{(2 n-1)^{3}+(2 n)^{3}}{(2 n-1)^{4}} \frac{\binom{2 n}{n}^{4}}{256^{n}}=\frac{4}{\pi^{2}}
$$

Similarly we can rewrite Theorem 2 as

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{2 n(4 n-1)}{(2 n-1)^{3}} \frac{\binom{2 n}{n}^{4}}{256^{n}}=\frac{4}{\pi^{2}} \tag{103}
\end{equation*}
$$

Adding we obtain

Theorem 4.

$$
\sum_{n=0}^{\infty} \frac{1-4 n}{(2 n-1)^{4}} \frac{\binom{2 n}{n}^{4}}{256^{n}}=\frac{8}{\pi^{2}}
$$

Remark 3. Using the Pochhammer symbol this can be written as

$$
\sum_{n=0}^{\infty}(1-4 n) \frac{(-1 / 2)_{n}^{4}}{n!^{4}}=\frac{8}{\pi^{2}}
$$

which converges as $\frac{1}{n^{5}}$ (not as $\frac{1}{n^{6}}$ as Glaisher claims).

Editor's Proof

Another formula with the same convergence is the following (not in Glaisher):

Theorem 5.

$$
\sum_{n=0}^{\infty} \frac{4 n+1}{(n+1)(n+2)(2 n-1)(2 n-3)} \frac{\binom{2 n}{n}^{4}}{256^{n}}=\frac{32}{27 \pi^{2}}
$$

Proof. Assume

$$
\left(1-x^{2}\right)^{3 / 2}=\sum_{n=0}^{\infty} c_{2 m} P_{2 m}(x)
$$

Doing as in the proof of Proposition 3 we obtain

$$
c_{2 m}=\frac{9 \pi}{8} \frac{4 m+1}{(m+1)(m+2)(2 m-1)(2 m-3)} \frac{\binom{2 m}{m}^{2}}{16^{m}}
$$

Dividing by $\sqrt{1-x^{2}}$ and integrating from -1 to 1 we find the formula.
Remark 4. By expanding $\left(1-x^{2}\right)^{(2 k-1) / 2}$, the above result can be generalized to the 117 first formula below. Coming so far I received the paper [4] by Levrie from Zudilin. Using the hints on p. 229 and experimenting a little one finds formula (ii):

Theorem 6.
(i)

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{(4 n+1)}{(n+1)(n+2) \ldots(n+k)(2 n-1)(2 n-3) \ldots(2 n-(2 k-1))} \frac{\binom{2 n}{n}^{4}}{256^{n}} \\
=(-1)^{k} \frac{2^{5 k+1} k!^{4}}{k \cdot(2 k)!^{3}} \frac{1}{\pi^{2}}
\end{gathered}
$$

(ii)

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{(4 n+1)}{(n+1)^{3}(n+2)^{3} \ldots(n+k)^{3}(2 n-1)^{3}(2 n-3)^{3} \ldots(2 n-(2 k-1))^{3}} \frac{\binom{2 n}{n}}{256^{n}} \\
=(-1)^{k} \frac{2}{3} \frac{2^{15 k} k!^{3}(3 k)!}{k \cdot(4 k)!^{3}} \frac{1}{\pi^{2}}
\end{aligned}
$$

Editor's Proof

Glaisher's Formulas for $\frac{1}{\pi^{2}}$ and Some Generalizations
Proof.
Proof of (i):
The first formula can be written as

$$
\begin{equation*}
\sum_{n=0}^{\infty} G(n, k)=\frac{2}{\pi^{2}} \tag{124}
\end{equation*}
$$

where

$$
G(n, k)=\frac{(-1)^{k} k(4 n+1)\binom{2 k}{k}^{2}\binom{2 n}{n+k}\binom{2 n}{n}^{3}}{16^{2 n+k}\binom{2 n}{2 k}}
$$

Zeilberger's imaginary friend EKHAD (i.e using "WZMethod" in Maple) gives us

$$
\begin{equation*}
F(n, k)=\frac{4(-1)^{k} n^{3}(n-k)\binom{2 k}{k}^{2}\binom{2 n}{n+k}\binom{2 n}{n}^{3}}{16^{2 n+k}(k+1)(2 k+1)\binom{2 n}{2 k+2}} \tag{128}
\end{equation*}
$$

such that

$$
\begin{equation*}
F(n+1, k)-F(n, k)=G(n, k+1)-G(n, k) \tag{130}
\end{equation*}
$$

Write this as

$$
\begin{gathered}
\frac{F(n+1, k)}{F(n, k)}-1=\frac{G(n, k+1)}{F(n, k)}-\frac{G(n, k)}{F(n, k)} \\
=-\frac{(4 n+1)\left(8 n^{2} k+4 n k+2 k+1\right)}{16 n^{3}(n+k+1)}
\end{gathered}
$$

an algebraic identity which is valid for any complex number k. The usual telescoping gives for $H(z)=\sum_{n=0}^{\infty} G(n, z)$

$$
\begin{gathered}
H(z+1)-H(z)=\sum_{n=0}^{\infty} G(n, z+1)-\sum_{n=0}^{\infty} G(n, z) \\
=\lim (F(n+1, z)-F(0, z)=0
\end{gathered}
$$

Editor's Proof

so $H(z)$ is periodic with period one. We want to use Meurman's version of Fritz 134 Carlson's theorem (see the Appendix). We write

$$
G(n, z)=\frac{z \cos (\pi z)(4 n+1)\binom{2 z}{z}^{2}\binom{2 n}{n+z}\binom{2 n}{n}^{3}}{16^{2 n+z}\binom{2 n}{2 z}}
$$

First we notice that

$$
\cos (\pi z)=\sin \left(\pi\left(\frac{1}{2}-z\right)\right)=\frac{\pi}{\Gamma\left(\frac{1}{2}-z\right) \Gamma\left(\frac{1}{2}+z\right)}
$$

and

$$
\frac{(2 z)!}{z!}=\frac{2 \Gamma(2 z)}{\Gamma(z)}=\frac{4^{z}}{\sqrt{\pi}} \Gamma\left(z+\frac{1}{2}\right)
$$

Consider

$$
\begin{gathered}
\frac{z \cos (\pi z)\binom{2 z}{z}^{2}\binom{2 n}{n+z}}{16^{z}\binom{2 n}{2 z}} \\
=\frac{8 \pi z}{z!16^{z} \Gamma\left(\frac{1}{2}-z\right) \Gamma\left(\frac{1}{2}+z\right)(z+n)!}\left\{\frac{\Gamma(2 z)}{\Gamma(z)}\right\}^{3} \frac{\Gamma(2 n-2 z)}{\Gamma(n-z)} \\
=\frac{4^{n} \Gamma\left(z+\frac{1}{2}\right)^{2} \Gamma\left(\frac{1}{2}-z+n\right)}{\pi \Gamma(z) \Gamma\left(\frac{1}{2}-z\right) \Gamma(1+z+n)}
\end{gathered}
$$

Since $H(z)$ has period one, we can assume that $1 \leq \mathfrak{R}(z) \leq 2$. Let $z=x+i y$. Then ${ }_{142}$ we have

$$
|\Gamma(x+i y)| \approx \sqrt{2 \pi}|y|^{x-1 / 2} \exp \left(-\frac{\pi}{2}|y|\right)
$$

and

Editor's Proof

Glaisher's Formulas for $\frac{1}{\pi^{2}}$ and Some Generalizations

$$
\left|\frac{\Gamma\left(\frac{1}{2}-z+n\right)}{\Gamma(1+z+n)}\right| \approx \frac{1}{n^{1 / 2+2 x}} \leq \frac{1}{n^{5 / 2}} \text { for large } n
$$

Furthermore

$$
\left|\frac{\Gamma\left(z+\frac{1}{2}\right)^{2}}{\Gamma(z) \Gamma\left(\frac{1}{2}-z\right)}\right| \approx|y|^{2 x+1 / 2} \leq|y|^{9 / 2}
$$

We have for large n

$$
\frac{(4 n+1)\binom{2 n}{n}^{3}}{16^{2 n}} \approx \frac{4 n}{4^{n}(\pi n)^{3 / 2}}
$$

Collecting the evidence we obtain

$$
\begin{equation*}
|G(n, z)| \leq \frac{4^{n}}{\pi} \frac{1}{n^{5 / 2}} \frac{4}{4^{n}(\pi)^{3 / 2} n^{1 / 2}}|y|^{9 / 2} \leq \frac{2|y|^{9 / 2}}{\pi^{5 / 2}} \frac{1}{n^{3}} \tag{152}
\end{equation*}
$$

and

$$
\begin{equation*}
|H(z)| \leq \frac{2|y|^{9 / 2}}{\pi^{5 / 2}} \varsigma(3)=O(\exp (c|y|)) \tag{154}
\end{equation*}
$$

for any positive $c<2 \pi$, so $H(z)=A$, a constant by Meurman's Theorem. 155 To determine the constant A we put $z=\frac{1}{2}$. We find $G(0, z) \rightarrow \frac{2}{\pi^{2}}$ when $z \rightarrow \frac{1}{2},{ }^{156}$ while $G\left(n, \frac{1}{2}\right)=0$ for $n>0$.
Proof of (ii):
Here we have

$$
G(n, k)=\frac{(-1)^{k} k(4 n+1)\binom{2 k}{k}^{2}\binom{4 k}{2 k}^{3}\binom{2 n}{n+k}^{3}\binom{2 n}{n}}{16^{2 n+3 k}\binom{3 k}{k}\binom{2 n}{2 k}^{3}}
$$

and

Editor's Proof

$$
F(n, k)=\frac{1}{8} \frac{(-1)^{k} n(n-k)^{3}\binom{2 k}{k}^{2}\binom{4 k}{2 k}^{3}\binom{2 n}{n+k}^{3}\binom{2 n}{n} P(n, k)}{16^{2 n+3 k}(k+1)^{4}(2 k+1)^{4}\binom{3 k+3}{k+1}\binom{2 n}{2 k+2}^{3}}
$$

where

$$
\begin{gathered}
P(n, k)=64 n^{3}(n-1)(3 k+1)(3 k+2)-8 n^{2}(3 k+2)\left(80 k^{3}+72 k^{2}+12 k-1\right) \\
+4 n(2 k+1)(3 k+2)\left(40 k^{2}+16 k+1\right)+(2 k+1)^{2}\left(592 k^{4}+752 k^{3}+300 k^{2}+48 k+3\right)
\end{gathered}
$$

As before we check

$$
F(n+1, k)-F(n, k)=G(n, k+1)-G(n, k)
$$

To use Meurman's theorem we write

$$
G(n, z)=\frac{z \cos ^{3}(\pi z)(4 n+1)\binom{2 z}{z}^{2}\binom{4 z}{2 z}^{3}\binom{2 n}{n+z}^{3}\binom{2 n}{n}}{16^{2 n+3 z}\binom{3 z}{z}\binom{2 n}{2 z}^{3}}
$$

We consider

$$
\begin{gathered}
\frac{z \cos ^{3}(\pi z)\binom{2 z}{z}^{2}\binom{4 z}{2 z}^{3}\binom{2 n}{n+z}^{3}}{16^{3 z}\binom{3 z}{z}\binom{2 n}{2 z}^{3}} \\
=\frac{4^{3 n}}{3 \pi^{2}} \frac{\Gamma\left(z+\frac{1}{2}\right) \Gamma\left(2 z+\frac{1}{2}\right)^{3}}{z \Gamma(z) \Gamma(3 z) \Gamma\left(\frac{1}{2}-z\right)^{3}}\left\{\frac{\Gamma\left(n+\frac{1}{2}-z\right)}{\Gamma(n+1+z)}\right\}^{3}
\end{gathered}
$$

Now for $1 \leq \mathfrak{R}(z) \leq 2$ we have

$$
\left|\frac{\Gamma\left(z+\frac{1}{2}\right) \Gamma\left(2 z+\frac{1}{2}\right)^{3}}{z \Gamma(z) \Gamma(3 z) \Gamma\left(\frac{1}{2}-z\right)^{3}}\right| \leq|y|^{6 x+1} \leq|y|^{13}
$$

Editor's Proof

Glaisher's Formulas for $\frac{1}{\pi^{2}}$ and Some Generalizations

Furthermore

$$
\begin{equation*}
\left|\frac{\Gamma\left(\frac{1}{2}-z+n\right)^{3}}{\Gamma(1+z+n)^{3}}\right| \approx \frac{1}{n^{3 / 2+6 x}} \leq \frac{1}{n^{15 / 2}} \text { for large } n \tag{173}
\end{equation*}
$$

We have

$$
\frac{(4 n+1)\binom{2 n}{n}}{16^{2 n}} \approx \frac{4 n}{4^{3 n}(\pi n)^{1 / 2}}
$$

We obtain

$$
\begin{equation*}
|G(n, z)| \leq \frac{4^{3 n}}{3 \pi^{2}} \frac{1}{n^{15 / 2}} \frac{4 n}{4^{3 n}(\pi)^{1 / 2} n^{1 / 2}}|y|^{13} \leq \frac{4|y|^{13}}{3 \pi^{5 / 2}} \frac{1}{n^{7}} \tag{177}
\end{equation*}
$$

and

$$
\begin{equation*}
|H(z)| \leq \frac{4|y|^{13}}{3 \pi^{5 / 2}} \varsigma(7)=O(\exp (c|y|)) \tag{179}
\end{equation*}
$$

for any positive $c<2 \pi$. Hence $H(z)$ is constant. As above we find $G(0, z) \rightarrow \frac{2}{3 \pi^{2}}$ when $z \rightarrow \frac{1}{2}$, while $G\left(n, \frac{1}{2}\right)=0$ for $n>0$.
Remark 5. For $n<k$ we must replace $\frac{\binom{2 n}{n+k}}{\binom{2 n}{2 k}}$ with $(-1)^{k-n} \frac{\binom{2 k}{n+k}}{\binom{2 k-2 n}{k-n}}$ and we 180
obtain the formulas
(i)

$$
\times\left\{\begin{array}{l}
\frac{(-1)^{k} k\binom{2 k}{k}^{2}}{16^{k}} \\
\left.\sum_{n=0}^{k-1} \frac{(-1)^{k-n}(4 n+1)\binom{2 k}{n+k}\binom{2 n}{n}^{3}}{16^{2 n}\binom{2 k-2 n}{k-n}}+\sum_{n=k}^{\infty} \frac{(4 n+1)\binom{2 n}{n+k}\binom{2 n}{n}^{3}}{16^{2 n}\binom{2 n}{2 k}}\right\}=\frac{2}{\pi^{2}}, \frac{2}{2}
\end{array}\right.
$$

Editor's Proof

(ii)

$$
\begin{gathered}
\frac{(-1)^{k} k\binom{2 k}{k}^{2}\binom{4 k}{2 k}^{3}}{16^{3 k}\binom{3 k}{k}} \\
\times\left\{\sum_{n=0}^{k-1} \frac{(-1)^{k-n}(4 n+1)\binom{2 k}{n+k}^{3}\binom{2 n}{n}}{16^{2 n}\binom{2 k-2 n}{k-n}^{3}}+\sum_{n=k}^{\infty} \frac{(4 n+1)\binom{2 n}{n+k}^{3}\binom{2 n}{n}}{16^{2 n}\binom{2 n}{2 k}^{3}}\right\}=\frac{2}{3 \pi^{2}}
\end{gathered}
$$

Remark 6. By using "WZMethod" in Maple on $F(n, k+n)$ in the proof of 182 Conjecture (i) we get an enormous expression, which after putting $k=0{ }^{183}$ simplifies to

$$
\sum_{n=0}^{\infty}(-1)^{n}\binom{2 n}{n}^{5}\left(20 n^{2}+8 n+1\right) \frac{1}{2^{12 n}}=\frac{8}{\pi^{2}}
$$

which is Guillera's first formula for $\frac{1}{\pi^{2}}$. Similarly for $F(n, k+2 n)$ we obtain

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{\binom{2 n}{n}^{3}\binom{4 n}{2 n}^{3}}{\binom{3 n}{n}} \frac{1376 n^{4}+1808 n^{3}+784 n^{2}+138 n+9}{(3 n+1)(3 n+2)} \frac{1}{2^{16 n}}=\frac{32}{\pi^{2}}
$$

In Maple's answer occur expressions like $\binom{2 n}{4 n}$ which need interpretation. Hereby 188 one needs the following expansions to turn the binomial coefficients "upside down" 189

$$
\begin{equation*}
\binom{2(n+\varepsilon)}{4(n+\varepsilon)}=\frac{1}{n\binom{4 n}{2 n}} \varepsilon+O\left(\varepsilon^{2}\right) \tag{190}
\end{equation*}
$$

$$
\begin{equation*}
\binom{2(n+\varepsilon)}{3(n+\varepsilon)}=\frac{(-1)^{n}}{n\binom{3 n}{2 n}} \varepsilon+O\left(\varepsilon^{2}\right) \tag{192}
\end{equation*}
$$

Editor's Proof

Glaisher's Formulas for $\frac{1}{\pi^{2}}$ and Some Generalizations

$$
\binom{2(n+\varepsilon)}{4(n+\varepsilon)+2}=\frac{1}{(n+1)\binom{4 n+2}{2 n}} \varepsilon+O\left(\varepsilon^{2}\right)
$$

$$
\binom{2(n+\varepsilon)+2}{4(n+\varepsilon)+6}=\frac{1}{(n+2)\binom{4 n+6}{2 n+2}} \varepsilon+O\left(\varepsilon^{2}\right)
$$

Finally for $F(n, k+3 n)$ we get

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{\binom{2 n}{n}^{3}\binom{6 n}{3 n}^{2}\binom{6 n}{2 n}}{\binom{4 n}{2 n}} \frac{P(n)}{(3 n+1)(3 n+2)(4 n+1)^{2}(4 n+3)^{2}} \frac{1}{2^{20 n}}=\frac{256}{\pi^{2}}
$$

where

$$
\begin{gathered}
P(n)=4038912 n^{8}+13296384 n^{7}+18184448 n^{6}+13423232 n^{5} \\
+5828864 n^{4}+1523184 n^{3}+234144 n^{2}+19440 n+675
\end{gathered}
$$

Conjecture.
(a) If $p>k$ is a prime then

$$
\begin{aligned}
& \frac{(-1)^{k} k\binom{2 k}{k}^{2}}{16^{k}} \times\left\{\sum_{n=0}^{k-1} \frac{(-1)^{k-n}(4 n+1)\binom{2 k}{n+k}\binom{2 n}{n}^{3}}{16^{2 n}\binom{2 k-2 n}{k-n}}\right. \\
& \left.+\sum_{n=k}^{p-1} \frac{(4 n+1)\binom{2 n}{n+k}\binom{2 n}{n}^{3}}{16^{2 n}\binom{2 n}{2 k}}\right\} \equiv 0 \bmod p^{3}
\end{aligned}
$$

Editor's Proof

(b) If $p>7$ is prime then

$$
\sum_{n=0}^{p-1}(-1)^{n}\binom{2 n}{n}^{5} \frac{(2 n+1)^{2}}{(n+1)^{2}}\left(40 n^{3}+84 n^{2}+54 n+9\right) \frac{1}{2^{12 n}} \equiv 8 p^{2} \quad \bmod p^{3} \quad 204
$$

3 Consequences of Levrie's Work

Levrie's Theorem 7 in [4] can be proved by using the WZ-pair

$$
G(n, k)=\frac{(4 n+1) k\binom{2 k}{k}^{2}\binom{4 k}{2 k}\binom{2 n}{n}^{2}\binom{2 n}{n+k}^{2}}{16^{2 n+2 k}\binom{2 n}{2 k}^{2}}
$$

$$
F(n, k)=-\frac{n^{2}\left(-8 n^{2}+4 n+16 k^{2}+10 k+1\right)\binom{2 k}{k}^{2}\binom{4 k}{2 k}\binom{2 n}{n}^{2}\binom{2 n}{n+k}^{2}}{2 \cdot 16^{2 n+2 k}(2 n-2 k-1)^{2}\binom{2 n}{2 k}^{2}} \quad 209
$$

Using the "WZMethod" on $F(n, k+n)$ and putting $k=0$ we have a new proof of 210 Guillera's formula

$$
\begin{equation*}
\sum_{n=0}^{\infty}\binom{2 n}{n}^{4}\binom{4 n}{2 n} \frac{120 n^{2}+34 n+3}{2^{16 n}}=\frac{32}{\pi^{2}} \tag{212}
\end{equation*}
$$

Similarly for $F(n, k+2 n)$ we get

$$
\sum_{n=0}^{\infty} \frac{\binom{2 n}{n}^{2}\binom{4 n}{2 n}^{4}\binom{8 n}{4 n}}{\binom{3 n}{n}^{2}} \frac{P(n)}{(2 n+1)(3 n+1)^{2}(3 n+2)^{2}} \frac{1}{2^{24 n}}=\frac{1,024}{\pi^{2}}
$$

where

$$
\begin{aligned}
P(n)= & 968704 n^{7}+2683904 n^{6}+3013376 n^{5}+1758208 n^{4} \\
& +568224 n^{3}+100200 n^{2}+8844 n+315 .
\end{aligned}
$$

Editor's Proof

Glaisher's Formulas for $\frac{1}{\pi^{2}}$ and Some Generalizations
References 216

1. G. Bauer, Von den Coefficienten der Kugelfunctionen einer Variablen, J. Reine Angew. Math. 21756 (1859), 101-129.218
2. W. Chu, Dougall's bilateral ${ }_{2} H_{2}$-series and Ramanujan-like π-formulae, Math. of Comp. 80219220
(2010), 2253-2251.
3. J. W. L. Glaisher, On series for $\frac{1}{\pi}$ and $\frac{1}{\pi^{2}}$, Quart. J. Math. 37 (1905), 173-198. 221
4. P. Levrie, Using Fourier-Legendre expansions to derive series for $\frac{1}{\pi}$ and $\frac{1}{\pi^{2}}$, Ramanujan J. 222 222(2010), 221-230.223

Appendix

A Periodic Version of Fritz Carlson's Theorem 225

 Arne Meurman ${ }^{1} \quad 226$When using the WZ-method one often needs Fritz Carlson's theorem (see e.g. [1]) 227 to find the value of a constant. Usually the function $H(z)$ which one wants to prove 228 constant is periodic, $H(z+1)=H(z)$. The following theorem uses the full strength 229 of the periodicity and also improves the size of the constant in the growth condition 230 to $c<2 \pi$. $\quad 231$

Theorem. Let $H(z)$ be an entire function such that $H(z+1)=H(z)$ and there is 232
$c \in \mathbf{R}$ such that $c<2 \pi$ and

$$
H(z)=O(\exp (c|\operatorname{Im}(z)|))
$$

for $z \in \mathbf{C}$. Then $H(z)$ is constant. 235

Proof. Replacing $H(z)$ by $H(z)-H(0)$ we may assume that $H(k)=0$ for all ${ }_{236}$ $k \in \mathbf{Z}$. Then $H(z)$ is divisible by $e^{2 \pi i z}-1$ in the sense that

$$
\begin{equation*}
H(z)=\left(e^{2 \pi i z}-1\right) H_{1}(z) \tag{238}
\end{equation*}
$$

with H_{1} entire. As H_{1} is also periodic with period 1 we can express $H_{1}(z)={ }_{239}$ $h\left(e^{2 \pi i z}\right)$ with h analytic in the punctured plane $\mathbf{C} \backslash\{0\}$. Expanding h in a Laurent 240 series we obtain

$$
\begin{equation*}
H(z)=\left(e^{2 \pi i z}-1\right) \sum_{n=-\infty}^{\infty} a_{n} e^{2 \pi i n z} \tag{242}
\end{equation*}
$$

The coefficients satisfy

$$
\begin{equation*}
a_{n}=\int_{a+y i}^{a+1+y i} \frac{H(z)}{\left(e^{2 \pi i z}-1\right) e^{2 \pi i n z}} d z \tag{244}
\end{equation*}
$$

for any $a, y \in \mathbf{R}$. For $n<0$ we let $y \rightarrow+\infty$ and the assumed estimate on $|H(z)|{ }_{245}$ gives

$$
\begin{equation*}
a_{n}=\lim _{y \rightarrow+\infty} \int_{a+y i}^{a+1+y i} \frac{H(z)}{\left(e^{2 \pi i z}-1\right) e^{2 \pi i n z}} d z=0 \tag{247}
\end{equation*}
$$

[^1]
Editor's Proof

Glaisher's Formulas for $\frac{1}{\pi^{2}}$ and Some Generalizations

$$
21
$$

For $n \geq 0$ we let $y \rightarrow-\infty$ and obtain

$$
a_{n}=\lim _{y \rightarrow-\infty} \int_{a+y i}^{a+1+y i} \frac{H(z)}{\left(e^{2 \pi i z}-1\right) e^{2 \pi i n z}} d z=0
$$

Hence $H(z) \equiv 0$.

Reference

1. G. E. Andrews, R. Askey, R. Roy, Special functions, Cambridge University Press, Cambridge, 252 1999.

Editor's Proof

AUTHOR QUERY

AQ1. Please provide closing parenthesis in " $\ldots=\lim (F(n+1, z)-F(0, z)=0$ ".

Editor's Proof

Metadata of the chapter that will be visualized online

Chapter Title	Complementary Bell Numbers: Arithmetical Properties and Wilf's Conjecture
Copyright Year	2013
Copyright Holder	Springer-Verlag Berlin Heidelberg
Corresponding Author	Family Name Amdeberhan
	Particle
	Given Name Tewodros
	Suffix
	Division Department of Mathematics
	Organization Tulane University
	Address New Orleans, LA, 70118, USA
Author	Family Name Angelis
	Particle De
	Given Name Valerio
	Suffix
	Division Department of Mathematics
	Organization Xavier University of Louisiana
	Address New Orleans, LA, 70125, USA
Author	Family Name Moll
	Particle H.
	Given Name Victor
	Suffix
	Division Department of Mathematics
	Organization Tulane University
	Address New Orleans, LA, 70118, USA
Abstract	The 2-adic valuations of Bell and complementary Bell numbers are 4 determined. The complementary Bell numbers are known to be zero at n $-=-2$ and H.S. Wilf conjectured that this is the only case where vanishing occurs. 6 N. C. Alexander and J. An proved (independently) that there are at most two indices 7 where this happens. This paper presents yet an alternative proof of the latter.
Keywords (separated by "-")	Valuations - Bell numbers - Complementary Bell numbers - Closedform summation - Wilf's conjecture

Complementary Bell Numbers: Arithmetical Properties and Wilf's Conjecture

Tewodros Amdeberhan, Valerio De Angelis, and Victor H. Moll
3

Abstract

The 2-adic valuations of Bell and complementary Bell numbers are 4 determined. The complementary Bell numbers are known to be zero at $n=2{ }_{5}$ and H. S. Wilf conjectured that this is the only case where vanishing occurs. 6 N. C. Alexander and J. An proved (independently) that there are at most two indices 7 where this happens. This paper presents yet an alternative proof of the latter.

Keywords Valuations • Bell numbers - Complementary Bell numbers • 9
Closed-form summation • Wilf's conjecture

1 Introduction

The Stirling numbers of the second kind $S(n, k)$, defined for $n \in \mathbb{N}$ and $0 \leq k \leq n, 12$ count the number of ways to partition a set of n elements into exactly k nonempty ${ }_{13}$ subsets (blocks). The Bell numbers

$$
\begin{equation*}
B(n)=\sum_{k=0}^{n} S(n, k) \tag{1}
\end{equation*}
$$

[^2]count all such partitions independent of size and the complementary Bell numbers
\[

$$
\begin{equation*}
\tilde{B}(n)=\sum_{k=0}^{n}(-1)^{k} S(n, k) \tag{2}
\end{equation*}
$$

\]

takes the parity of the number of blocks into account. The exponential generating 16 functions are given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!}=\exp (\exp (x)-1) \text { and } \sum_{n=0}^{\infty} \tilde{B}(n) \frac{x^{n}}{n!}=\exp (1-\exp (x)) \tag{3}
\end{equation*}
$$

In this paper we consider arithmetical properties of the Bell and complementary 18 Bell numbers. The results described here are part of a general program to describe 19 properties of p-adic valuations of classical sequences. The example of Stirling 20 numbers is described in [3], the ASM numbers that count the number of alternating 21 sign matrices appear in [15] and a not-so-classical sequence appearing in the 22 evaluation of a rational integral is described in [2,10]. On the other hand, much 23 of our interest in the valuations of the complementary Bell numbers is motivated by 24

$$
\text { Wilf's conjecture : } \tilde{B}(n)=0 \text { only for } n=2 \text {. }
$$

The guiding strategy for us is this: if we manage to prove that $v_{2}(\tilde{B}(n))$ is finite 25 for $n>2$, the non-vanishing result will follow. The authors [4] have succeeded in 26 employing this method to prove that the sequence

$$
\begin{equation*}
x_{n}=\frac{n+x_{n-1}}{1-n x_{n-1}}, \text { starting at } x_{1}=1 \tag{4}
\end{equation*}
$$

only vanishes at $n=3$. The more natural question that $x_{n} \notin \mathbb{Z}$ for $n>5$ remains 28 open.

The following notation is adopted throughout this paper: for $n \in \mathbb{N}$ and a prime 30 p, the p-adic valuation of n, denoted by $v_{p}(n)$, is the largest power of p that 31 divides n. The value $v_{p}(0)=+\infty$ is consistent with the fact that any power of 32 p divides 0 . As an example, the complementary Bell number $\tilde{B}(14)=110,176{ }_{33}$ factors as $2^{5} \cdot 11 \cdot 313$; therefore $\nu_{2}(\tilde{B}(14))=5$ and $\nu_{3}(\tilde{B}(14))=0$. Legendre [9] 34 established the formula

$$
\begin{equation*}
v_{p}(n!)=\frac{n-s_{p}(n)}{p-1} \tag{5}
\end{equation*}
$$

where $s_{p}(n)$ is the sum of the digits of n in base p.

Editor's Proof

The exponential generating function (3) and the series representation

$$
\begin{equation*}
\tilde{B}(n)=e \sum_{r=0}^{\infty}(-1)^{r} \frac{r^{n}}{r!} \tag{6}
\end{equation*}
$$

as well as elementary properties of the complementary Bell numbers are presented 38 in [16]. The numbers $\tilde{B}(n)$ also appear in the literature as the Uppuluri-Carpenter 39 numbers. Subbarao and Verma [14] established the asymptotic growth of $\tilde{B}(n), 40$ showing that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log |\tilde{B}(n)|}{n \log n}=1 \tag{7}
\end{equation*}
$$

The non-vanishing of $\tilde{B}(n)$ has been considered by M. Klazar [7, 8] in the 42 context of partitions and by M. R. Murty [11] in reference to p-adic irrationality. 43 Y. Yang [17] established the result $|\{n \leq x: \tilde{B}(n)=0\}|=O\left(x^{2 / 3}\right)$ and 44 De Wannemacker [13] proved that if $n \not \equiv 2,2,944,838\left(\bmod 3 \cdot 2^{20}\right)$, then 45 $\tilde{B}(n) \neq 0$. The main result of [13] is that $\tilde{B}(n)=0$ has at most two solutions. This 46 has been achieved by different techniques by N. C. Alexander [1] and Junkyu An [5]. 47 Our interest in the non-vanishing questions comes from the theory of summation in 48 finite terms.

The methods developed by R. Gosper show that the finite sum

$$
\begin{equation*}
\sum_{k=1}^{n} k! \tag{8}
\end{equation*}
$$

does not admit a closed-form expression as a hypergeometric function of n. The 51 identity

$$
\begin{equation*}
\sum_{k=1}^{n-1} k^{a} k!=\sum_{\ell=1}^{a}(-1)^{\ell+a} r_{\ell}(a)+(-1)^{a+1} \tilde{B}(a+1) \sum_{k=0}^{n-1} k! \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{\ell}(a)=S(a+1, \ell+1) \sum_{i=0}^{\ell-1}((n+i)!-i!) \tag{10}
\end{equation*}
$$

shows that a positive verification of Wilf's conjecture implies that the elementary 54 identity

$$
\begin{equation*}
\sum_{k=1}^{n} k k!=(n+1)!-1 \tag{11}
\end{equation*}
$$

is unique in this category. M. Petkovsek, H. S. Wilf and D. Zeilberger [12] is the 56 standard reference for issues involving closed-form summation. The details for (9) 57 are provided in [6].

58
Section 2 presents a family of polynomials that play a crucial role in the study 59 of the 2-adic valuations of Bell numbers given in Sect.3. The main arguments 60 presented here are based on the representation of the polynomials introduced in 61 Sect. 2 in terms of rising and falling factorials. This is discussed in Sect. 4. An 62 alternative proof of the analytic expressions for the valuations of regular Bell 63 numbers is presented in Sect. 5. This serves as a motivating example for the more 64 difficult case of the 2 -adic valuations of complementary Bell numbers. Experimental 65 data on these valuations are presented in Sect. 6. The data suggests that only those 66 indices congruent to 2 modulo 3 need to be considered. The study of this case begins 67 in Sect. 7, where these valuations are determined for all but two classes modulo 24. 68 The two remaining classes require the introduction of an infinite matrix. This is done 69 in Sect. 8. The two remaining classes are analyzed in Sects. 9 and 10, respectively. 70 The final section presents the exponential generating functions of the two classes of 71 polynomials employed in this work, and some open problems.

2 An Auxiliary Family of Polynomials

The recurrence for the Stirling numbers of second kind

$$
\begin{equation*}
S(n+1, k)=S(n, k-1)+k S(n, k) \tag{12}
\end{equation*}
$$

is summed over $0 \leq k \leq n+1$ to produce

$$
\begin{equation*}
\sum_{k=0}^{n+1} S(n+1, k)=\sum_{k=0}^{n}(k+1) S(n, k) \tag{13}
\end{equation*}
$$

using the vanishing of $S(n, k)$ for $k<0$ or $k>n$. Iteration of this procedure leads 76 to the next result.

Lemma 1. The family of polynomials $\mu_{j}(k)$, defined by

$$
\begin{align*}
\mu_{j+1}(k) & =k \mu_{j}(k)+\mu_{j}(k+1) \tag{14}\\
\mu_{0}(k) & =1 \tag{15}
\end{align*}
$$

satisfy

$$
\begin{equation*}
B(n+j)=\sum_{k=0}^{n+j} S(n+j, k)=\sum_{k=0}^{n} \mu_{j}(k) S(n, k) \tag{16}
\end{equation*}
$$

for all $n, j \geq 0$.

Editor's Proof

Proof. The proof is by induction on j. The inductive step gives

$$
\begin{equation*}
\sum_{k=0}^{(n+1)+j} S((n+1)+j, k)=\sum_{k=0}^{n+1} \mu_{j}(k) S(n+1, k) \tag{17}
\end{equation*}
$$

The recurrence (12) and (14) yield the result.
Note. The polynomials $\mu_{j}(k)$ have positive integer coefficients and the first few 82 are given by

$$
\begin{aligned}
& \mu_{0}(k)=1 \\
& \mu_{1}(k)=k+1 \\
& \mu_{2}(k)=k^{2}+2 k+2 \\
& \mu_{3}(k)=k^{3}+3 k^{2}+6 k+5
\end{aligned}
$$

The degree of μ_{j} is j, so the family $Z_{m}:=\left\{\mu_{j}: 0 \leq j \leq m\right\}$ forms a basis for 84 the space of polynomials of degree at most m.

The special polynomial

$$
\begin{align*}
\mu_{12}(k)= & k^{12}+12 k^{11}+132 k^{10}+1100 k^{9}+7425 k^{8}+41184 k^{7} \tag{18}\\
& +187572 k^{6}+694584 k^{5}+2049300 k^{4}+4652340 k^{3} \\
& +7654350 k^{2}+8142840 k+4,213,597
\end{align*}
$$

plays a crucial role in the study of 2-adic valuation of Bell numbers discussed in 87 Sect. 3.

3 The 2-adic Valuation of Bell Numbers

In this section we determine the 2 -adic valuation of the Bell numbers. The data 90 presented in Fig. 1 suggests examining this valuation according to the equivalence 91 classes modulo 12.

Theorem 1. The 2-adic valuation of the Bell numbers satisfy

$$
\begin{equation*}
v_{2}(B(n))=0 \quad \text { if } n \equiv 0,1 \quad(\bmod 3) . \tag{19}
\end{equation*}
$$

In the missing case, $n \equiv 2(\bmod 3)$, the sequence $\nu_{2}(B(3 n+2))$ is a periodic 94 function of period 4 . The repeating values are $\{1,2,2,1\}$. In particular, the 2-adic 95 valuation of the Bell numbers is completely determined modulo 12. In detail,

Editor's Proof

Fig. 1 The 2-adic valuation of Bell numbers

$$
v_{2}(B(12 n+j))=\left\{\begin{array}{ll}
0 & \text { if } j \equiv 0,13,4,6,7,9,10 \\
1 & \text { if } j \equiv 2,11 \\
2 & \text { if } j \equiv 5,8
\end{array}(\bmod 12) ;(\bmod 12) ; ~(20)\right.
$$

The proof of the theorem starts with a congruence for the Bell numbers.
Lemma 2. The Bell numbers satisfy

$$
\begin{equation*}
B(n+24) \equiv B(n) \quad(\bmod 8) \tag{21}
\end{equation*}
$$

Proof. The identity (16) gives

$$
\begin{equation*}
\sum_{k=0}^{n+12} S(n+12, k)=\sum_{k=0}^{n} \mu_{12}(k) S(n, k) . \tag{22}
\end{equation*}
$$

The polynomial $\mu_{12}(k)$ given in (18) is now expressed in terms of the basis of rising 100 factorials

$$
\begin{equation*}
(k)^{[m]}:=k(k+1)(k+2) \cdots(k+m-1), m \in \mathbb{N}, \text { with }(k)^{[0]}=1 . \tag{23}
\end{equation*}
$$

A direct calculation shows that

$$
\begin{equation*}
\mu_{12}(k) \equiv \sum_{m=0}^{12} a_{m}(k)^{[m]} \tag{24}
\end{equation*}
$$

with $a_{0}=421,359 \equiv 5, a_{1}=3,633,280 \equiv 0, a_{2}=1,563,508 \equiv 4$, and $a_{3}=103$ $414,920 \equiv 0(\bmod 8)$. Also, for $m \geq 4$, we have $(k)^{m} \equiv 0(\bmod 8)$. Thus 104

$$
\begin{equation*}
\mu_{12}(k) \equiv 5+4 k(k+1) \equiv 5 \quad(\bmod 8) \tag{25}
\end{equation*}
$$

Editor's Proof

Fig. 2 The 3-adic valuation of Bell numbers

Now (22) produces

$$
\begin{equation*}
\sum_{k=0}^{n+12} S(n+12, k) \equiv 5 \sum_{k=0}^{n} S(n, k) \quad(\bmod 8) \tag{26}
\end{equation*}
$$

that is, $B(n+12) \equiv 5 B(n)(\bmod 8)$. Repeating this yields $B(n+24) \equiv 5 B(n+$ $12) \equiv 25 B(n) \equiv B(n)(\bmod 8)$.

The result of the theorem now follows from computing of the first 24 Bell numbers modulo 8 to obtain the pattern asserted in the theorem.

Remark 1. The p-adic valuation of Bell numbers for primes $p \neq 2$ exhibit some 108 patterns. Figure 2 shows the case $p=3$.

Experimental observations show that, if $j \not \equiv 2(\bmod 3)$, then

$$
\begin{equation*}
\nu_{3}\left(B_{12 n+13 j}\right)=v_{3}\left(B_{12 n}\right), \text { for } n \geq 0 . \tag{27}
\end{equation*}
$$

In other words, up to a shift, the valuations $\nu_{3}\left(B_{12 n+j}\right)$ are independent of j.

4 A Representation in Two Bases

The set

$$
\begin{equation*}
Z_{m}=\left\{\mu_{j}(k): 0 \leq j \leq m\right\} \tag{28}
\end{equation*}
$$

is a basis of the vector space of polynomials of degree at most m. This section 114 explores the representation of this basis in terms of the usual rising factorials, 115

Editor's Proof

defined by

$$
\begin{align*}
& (k)^{[r]}:=k(k+1)(k+2) \cdots(k+r-1) \quad \text { for } r>0, \tag{29}\\
& (k)^{[0]}:=1,
\end{align*}
$$

and the falling factorials, given by

$$
\begin{align*}
& (k)_{r}:=k(k-1)(k-2) \cdots(k-r+1) \quad \text { for } r>0, \tag{30}\\
& (k)_{0}:=1,
\end{align*}
$$

Definition 1. The coefficients of $\mu_{n}(r)$ with respect to these bases are denoted

$$
\begin{equation*}
\mu_{j}(k)=\sum_{r=0}^{j} a_{j}(r)(k)^{[r]} \quad \text { and } \mu_{j}(k)=\sum_{r=0}^{j} d_{j}(r)(k)_{r} . \tag{31}
\end{equation*}
$$

These coefficients are stored in the vectors

$$
\begin{equation*}
\mathbf{a}_{\mathbf{j}}:=\left[a_{j}(0), a_{j}(1), \cdots\right] \quad \text { and } \quad \mathbf{d}_{\mathbf{j}}:=\left[d_{j}(0), d_{j}(1), \cdots\right] \tag{32}
\end{equation*}
$$

where $a_{j}(r)=d_{j}(r)=0$ for $r>j$.
Certain properties of $(k)_{r}$ and $(k)^{[r]}$ required in the analysis of the 2-adic 121 valuations are stated below.

Lemma 3. The rising factorial symbol satisfies

$$
\begin{aligned}
(k-1)^{[r]} & =(k)^{[r]}-r(k)^{[r-1]} \\
k(k)^{[r]} & =(k)^{[r+1]}-r(k)^{[r]} .
\end{aligned}
$$

The corresponding relations for the falling factorials are

$$
\begin{aligned}
(k+1)_{r} & =(k)_{r}+r(k)_{r-1} \\
k(k)_{r} & =(k)_{r+1}+r(k)_{r} .
\end{aligned}
$$

The next step is to transform the recurrence for μ_{j} in (14) into recurrences for the coefficients $a_{j}(r)$ and $d_{j}(r)$.
Proposition 1. The coefficients $a_{j}(r)$ in Definition 1 satisfy

$$
\begin{equation*}
a_{j+1}(r)-(r+1) a_{j+1}(r+1)=a_{j}(r-1)-2 r a_{j}(r)+(r+1)^{2} a_{j}(r+1) \tag{33}
\end{equation*}
$$

with the assumptions that $a_{j}(r)=0$ if $r<0$ or $r>j$.

Editor's Proof

Proof. This follows directly from the recurrence for μ_{j} and the properties described in Lemma 3.

Note. The recurrences for the coefficients $\mathbf{a}_{\mathbf{j}}$ can be written using the (infinite) matrices

$$
\begin{equation*}
\mathbf{M}=\left(m_{i j}\right)_{i, j \geq 0} \quad \text { and } \mathbf{N}=\left(n_{i j}\right)_{i, j \geq 0} \tag{34}
\end{equation*}
$$

with

$$
m_{i j}=\left\{\begin{array}{ll}
1 & \text { if } i=j ; \\
-(i+1) & \text { if } i=j-1 ; \\
0 & \text { otherwise; }
\end{array} \quad \text { and } \quad n_{i j}= \begin{cases}1 & \text { if } i=j+1 \\
-2(i-1) & \text { if } i=j \\
i^{2} & \text { if } i=j-1 \\
0 & \text { otherwise }\end{cases}\right.
$$

in the form

$$
\begin{equation*}
\mathbf{M} \mathbf{a}_{\mathbf{j}+\mathbf{1}}=\mathbf{N} \mathbf{a}_{\mathbf{j}} \tag{35}
\end{equation*}
$$

The analogue of Proposition 1 for falling factorials is stated next.
Proposition 2. The coefficients $d_{j}(r)$ in (1) satisfy

$$
\begin{equation*}
d_{j+1}(r)=d_{j}(r-1)+(r+1) d_{j}(r)+(r+1) d_{j}(r+1), \tag{36}
\end{equation*}
$$

with the assumptions that $d_{j}(r)=0$ if $r<0$ or $r>j$.
Note. The recurrence for $\mathbf{d}_{\mathbf{j}}$ is now written using $\mathbf{T}=\left(t_{i j}\right)_{i, j \geq 0}$, where

$$
t_{i j}= \begin{cases}i+1 & \text { if } i=j \\ i & \text { if } i=j-1 \\ 1 & \text { if } i=j+1 \\ 0 & \text { otherwise }\end{cases}
$$

in the form

$$
\begin{equation*}
\mathbf{d}_{\mathbf{j}+\mathbf{1}}=\mathbf{T d}_{\mathbf{j}} . \tag{37}
\end{equation*}
$$

5 An Alternative Approach to Valuation of Bell Numbers

This section presents an alternative proof of the congruence (2) based on the 139 results of Sect. 4. Recall that this congruence provides complete structure of the

Editor's Proof

The first step is to identify the Bell numbers as the first entry of the vectors $\mathbf{a}_{j}{ }_{143}$ and \mathbf{d}_{j}.

Lemma 4. The Bell numbers are given by

$$
\begin{equation*}
B(j)=\mu_{j}(0)=a_{j}(0)=d_{j}(0) \tag{38}
\end{equation*}
$$

Proof. Let $n=0$ in the identity (16) to obtain $B(j)=\mu_{j}(0)$. The other two expressions for the Bell numbers $B(j)$ are obtained by letting $k=0$ in (31).

The congruence for the Bell numbers now arises from the analysis of the relations (35) and (37) modulo 8 . The key statement is provided next.

Lemma 5. If $k \in \mathbb{N}$ and $r \geq 4$, then

$$
\begin{equation*}
(k)^{[r]} \equiv(k)_{r} \equiv 0 \quad(\bmod 8) \tag{39}
\end{equation*}
$$

Proof. Among any set of four consecutive integers there is one that is a multiple of 2 and a different one that is a multiple of 4.

The system (35) now reduces to

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a_{j+1}(0) \\
a_{j+1}(1) \\
a_{j+1}(2) \\
a_{j+1}(3)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & -2 & 4 & 0 \\
0 & 1 & -4 & 9 \\
0 & 0 & 1 & -6
\end{array}\right]\left[\begin{array}{l}
a_{j}(0) \\
a_{j}(1) \\
a_{j}(2) \\
a_{j}(3)
\end{array}\right] .
$$

Inverting the matrix on the left and taking entries modulo 8 leads to

$$
\begin{equation*}
\mathbf{a}_{\mathbf{j}+\mathbf{1}}^{(\mathbf{4})} \equiv X_{4} \mathbf{a}_{\mathbf{j}}^{(\mathbf{4})} \quad(\bmod 8) \tag{40}
\end{equation*}
$$

where $\mathbf{a}_{\mathbf{j}}^{(4)}$ represents the first four entries of the coefficient vector $\mathbf{a}_{\mathbf{j}}$ and

$$
X_{4}=\left[\begin{array}{llll}
1 & 1 & 2 & 6 \\
1 & 0 & 2 & 6 \\
0 & 1 & 7 & 7 \\
0 & 0 & 1 & 2
\end{array}\right] .
$$

Now observe that

$$
\begin{equation*}
\mathbf{a}_{\mathbf{j}+\mathbf{2}}^{(\mathbf{4})} \equiv X_{4} \mathbf{a}_{\mathbf{j}+\mathbf{1}}^{(\mathbf{4})} \equiv X_{4}^{2} \mathbf{a}_{\mathbf{j}}^{(\mathbf{4})} \quad(\bmod 8) \tag{41}
\end{equation*}
$$

Editor's Proof

and this extends to

$$
\begin{equation*}
\mathbf{a}_{\mathbf{j}+\mathbf{s}}^{(\mathbf{4})} \equiv X_{4}^{S} \mathbf{a}_{\mathbf{j}}^{(\mathbf{4})} \quad(\bmod 8) \tag{42}
\end{equation*}
$$

for any $s \in \mathbb{N}$.
Lemma 6. The matrix X satisfies $X^{24} \equiv I(\bmod 8)$.
Proof. Direct (symbolic) calculation.
The Bell number $B(j)$ is the first entry of the vector $\mathbf{a}_{\mathbf{j}}^{(4)}$. Then considering the 156 first entry in the relation

$$
\begin{equation*}
\mathbf{a}_{\mathbf{j}+24}^{(\mathbf{4})} \equiv X_{4}^{24} \mathbf{a}_{\mathbf{j}}^{(\mathbf{4})} \quad(\bmod 8) \tag{43}
\end{equation*}
$$

gives the congruence $B(j+24) \equiv B(j)(\bmod 8)$.
Note. The corresponding relation for the coefficient vector $\mathbf{d}_{\mathbf{j}}$ is simpler: the 159 system (37) reduces to

$$
\left[\begin{array}{l}
d_{j+1}(0) \tag{44}\\
d_{j+1}(1) \\
d_{j+1}(2) \\
d_{j+1}(3)
\end{array}\right] \equiv T_{4} \times\left[\begin{array}{c}
d_{j}(0) \\
d_{j}(1) \\
d_{j}(2) \\
d_{j}(3)
\end{array}\right] \quad(\bmod 8)
$$

where

$$
T_{4}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \tag{45}\\
1 & 2 & 2 & 0 \\
0 & 1 & 3 & 3 \\
0 & 0 & 1 & 4
\end{array}\right] .
$$

The matrix T_{4} also satisfies $T_{4}^{24} \equiv I(\bmod 8)$ and the argument proceeds as before. 162

6 Some Experimental Data on $\nu_{2}(\tilde{B}(n))$

This section discusses the 2-adic valuations of the complementary Bell numbers

$$
\begin{equation*}
\{0,0,1,0,0,1,0,0,2,0,0,5,0,0,1,0,0,1,0,0,2,0,0,5,0,0,1,0\} . \tag{46}
\end{equation*}
$$

Editor's Proof

Fig. 3 The 2-adic valuation of the complementary Bell numbers

This suggests that $v_{2}(\tilde{B}(n))=0$ if $n \not \equiv 2(\bmod 3)$. The list of values of 168 $\nu_{2}(\tilde{B}(3 n+2))$ is

$\{1,1,2,5,1,1,2,5,1,1,2,7,1,1,2,6,1,1,2,5,1,1,2,5,1,1,2,6,1,1\}$

and the patterns $\{1,1,2, *\}$ suggests considering the sequence $\nu_{2}(\tilde{B}(n))$ for $n 171$ modulo 12 . The values $n \equiv 2(\bmod 3)$ split into classes $2,5,8$ and 11 modulo 172 12. The data suggests

$$
\nu_{2}(\tilde{B}(12 n+5))=1, \nu_{2}(\tilde{B}(12 n+8))=1, \nu_{2}(\tilde{B}(12 n+11))=2
$$

while the class $n \equiv 2(\bmod 1) 2$ does not exhibit such a pattern.
The first step in the analysis of 2-adic valuations of $\tilde{B}(n)$ is to present some 175 elementary congruences to establish that both $\tilde{B}(3 n)$ and $\tilde{B}(3 n+1)$ are always odd 176 integers. The proof relies on the recurrence

$$
\begin{equation*}
\tilde{B}(n)=-\sum_{k=0}^{n-1}\binom{n-1}{k} \tilde{B}(k), \quad \text { for } n \geq 1 \text { and } \tilde{B}(0)=1 . \tag{47}
\end{equation*}
$$

Proposition 3. The complementary Bell numbers $\tilde{B}(n)$ satisfy

$$
\begin{equation*}
\tilde{B}(3 n) \equiv \tilde{B}(3 n+1) \equiv 1, \text { and } \tilde{B}(3 n+2) \equiv 0 \quad(\bmod 2) . \tag{48}
\end{equation*}
$$

Proof. Proceed by induction. The recurrence (47) yields

$$
\begin{equation*}
-\tilde{B}(3 n)=\sum_{k=0}^{3 n-1}\binom{3 n-1}{k} \tilde{B}(k) \tag{49}
\end{equation*}
$$

Editor's Proof

Fig. 4 The 2-adic valuation of $\widetilde{B}(3 n+2)$

Splitting the sum as
$-\tilde{B}(3 n)=\sum_{k=0}^{n-1}\binom{3 n-1}{3 k} \tilde{B}(3 k)+\sum_{k=0}^{n-1}\binom{3 n-1}{3 k+1} \tilde{B}(3 k+1)+\sum_{k=0}^{n-1}\binom{3 n-1}{3 k+2} \tilde{B}(3 k+2)$
and using the inductive hypothesis gives

$$
\begin{equation*}
-\tilde{B}(3 n) \equiv \sum_{k=0}^{n-1}\binom{3 n-1}{3 k}+\sum_{k=0}^{n-1}\binom{3 n-1}{3 k+1} \quad(\bmod 2) . \tag{50}
\end{equation*}
$$

The two sums appearing in the previous line add up to

$$
\begin{equation*}
2^{3 n-1}-\sum_{k=0}^{n-1}\binom{3 n-1}{3 k+2} \tag{51}
\end{equation*}
$$

The result now follows from the identity

$$
\begin{equation*}
\sum_{k=0}^{n-1}\binom{3 n-1}{3 k+2}=\frac{2^{3 n-1}+(-1)^{n}}{3} \tag{52}
\end{equation*}
$$

Both sides satisfies the recurrence $x_{n+2}-7 x_{n+1}-8 x_{n}=0$ and have the same initial conditions $x_{1}=1$ and $x_{2}=11$.

Proposition 3 shows that

$$
\begin{equation*}
\nu_{2}(\tilde{B}(3 n))=\nu_{2}(\tilde{B}(3 n+1))=0, \tag{53}
\end{equation*}
$$

leaving the case $\nu_{2}(\tilde{B}(3 n+2))$ for discussion. This is presented in Sect. 7. Figure 4186 shows the data for this sequence and its erratic behavior can be seen from the graph. 187

Editor's Proof

7 The 2-Adic Valuation of $\tilde{B}(3 n+2)$

The results from the previous section show that $\tilde{B}(3 n)$ and $\tilde{B}(3 n+1)$ are odd integers and $\tilde{B}(3 n+2)$ is an even integer. This section explores the value of the sequence $\nu_{2}(\tilde{B}(3 n+2))$. The family of polynomials $\left\{\lambda_{j}(k): j \geq 0\right\}$ play the same 191 role as $\mu_{j}(k)$ did for the regular Bell numbers $B(n)$.

Lemma 7. The family of polynomials $\lambda_{j}(k)$, defined by

$$
\begin{align*}
\lambda_{j+1}(k) & =k \lambda_{j}(k)-\lambda_{j}(k+1), \tag{54}\\
\lambda_{0}(k) & =1,
\end{align*}
$$

satisfy

$$
\begin{equation*}
\tilde{B}(n+j)=\sum_{k=0}^{n+j}(-1)^{k} S(n+j, k)=\sum_{k=0}^{n}(-1)^{k} \lambda_{j}(k) S(n, k), \tag{55}
\end{equation*}
$$

for all $n, j \geq 0$.
Proof. Use the recurrence (54) and proceed as in the proof of Lemma 1.
Corollary 1. The evaluation $\tilde{B}(j)=\lambda_{j}(0)$ is valid for $j \in \mathbb{N}$.
The recursions for the falling factorials, given in Proposition 3, yields an evaluation of $\tilde{B}(n)$ in terms of the powers of an infinite matrix.

Note. The (i, j)-entry of a matrix A is denoted by $A(i, j)$. This notation is used to prevent confusion with the presence of a variety of subindices.

Theorem 2. Let $P=P(r, s), r, s \geq 0$ be the infinite matrix defined by

$$
\begin{equation*}
P(r+1, r)=1, P(r, r)=r-1, P(r, r+1)=-r-1, \quad P(r, s)=0 \text { for }|r-s|>1 \tag{56}
\end{equation*}
$$

$$
P=\left(\begin{array}{ccccccc}
-1 & -1 & 0 & 0 & 0 & 0 & \cdots \tag{57}\\
1 & 0 & -2 & 0 & 0 & 0 & \cdots \\
0 & 1 & 1 & -3 & 0 & 0 & \cdots \\
0 & 0 & 1 & 2 & -4 & 0 & \cdots \\
0 & 0 & 0 & 1 & 3 & -5 & \cdots \\
0 & 0 & 0 & 0 & 1 & 4 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Editor's Proof

Then

$$
\begin{equation*}
\tilde{B}(n)=P^{n}(0,0) . \tag{58}
\end{equation*}
$$

Proof. The first step is to express the polynomials $\lambda_{n}(x)$ in terms of the falling 204 factorial:

$$
\begin{equation*}
\lambda_{n}(k)=\sum_{r=0}^{n} c_{n}(r)(k)_{r} . \tag{59}
\end{equation*}
$$

The recurrence relation in Lemma 7 shows that $c_{n}(r)$ are integers with $c_{0}(0)=1,206$ $c_{0}(r)=0$ for $r>0$ and $c_{n}(r)=0$ if $r>n$. Moreover, this recurrence may be 207 expressed as

$$
\begin{equation*}
\mathbf{c}_{\mathbf{n}+1}=P \mathbf{c}_{\mathbf{n}} \tag{60}
\end{equation*}
$$

with P defined in (57) and $\mathbf{c}_{\mathbf{n}}$ is the vector $\left(c_{n}(r): r \geq 0\right)$.
Note that powers of P can be computed with a finite number of operations: each 210 row or column has only finitely many non-zero entries. Iterating (60) gives 211

$$
\begin{equation*}
c_{n}(r)=P^{n}(r, 0), r \geq 0 . \tag{61}
\end{equation*}
$$

The result now follows from Corollary 1 and $c_{n}(0)=\lambda_{n}(0)$.
The next lemma contains a precise description of the fact that the falling factorial $(k)_{r}$ is divisible by a large power of 2 . This is a fundamental tool in the analysis of 213 the 2 -adic valuation of $\tilde{B}(n)$.

Lemma 8. For each $m \geq 0$ and $k \geq 1$, the congruence

$$
\begin{equation*}
(k)_{r} \equiv 0 \quad\left(\bmod 2^{2^{m}-1}\right) \text { holds for all } r \geq 2^{m} \tag{62}
\end{equation*}
$$

Proof. Since $(k)_{r}$ divides $(k)_{j}$ for $j \geq r$, it may be assumed that $r=2^{m}$. Now observe that $(k)_{r} / r!=\binom{k}{r}$, thus $\nu_{2}\left((k)_{r}\right) \geq \nu_{2}(r!)$. For $r=2^{m}$, Legendre's formula (5) gives the value $v_{2}(r!)=2^{m}-s_{2}\left(2^{m}\right)=2^{m}-1$.

Now we exploit the previous lemma to derive congruences for $\tilde{B}(n)$ modulo a 216 large power of 2. The first step is to show a result analogous to Theorem 2, with 217 P replaced by a $2^{m} \times 2^{m}$ matrix, provided the computations are conducted modulo 218 $2^{2^{m}-1}$. Proposition 4 is not necessary for the results that follow it, but it is of interest 219 because it allows us to express $\tilde{B}(n)$ as the top left entry of the power of a finite 220 matrix (with size depending on n).

Proposition 4. Let $P[n]$ be the $n \times n$ matrix defined by

$$
\begin{equation*}
P[n](r, s)=P(r, s), \quad 0 \leq r, s \leq n-1 \tag{63}
\end{equation*}
$$

Editor's Proof

For each $n \geq 1$ and $i \geq 1$,

$$
(P[n])^{i}(r, s)=P^{i}(r, s) \text { for } 0 \leq r, s \leq n-1, r+s+i \leq 2 n-1
$$

Proof. Fix $n \geq 1$ and proceed by induction on i. The statement is clearly true for

$$
\begin{equation*}
(P[n])^{i+1}(r, s)=\sum_{t=0}^{n-1}(P[n])^{i}(r, t) P[n](t, s) \tag{64}
\end{equation*}
$$

Corollary 2. For $i \leq 2 n-1$, the complementary Bell number is given by

$$
\begin{equation*}
\tilde{B}(i)=(P[n])^{i} . \tag{65}
\end{equation*}
$$

For $m \geq 1$ fixed, denote $P\left[2^{m}\right]$ by P_{m}. This is a matrix of size $2^{m} \times 2^{m}$, indexed 228 by $\left\{0,1, \ldots, 2^{m}-1\right\}$. Lemma 8 gives

$$
\begin{equation*}
\lambda_{n}(k) \equiv \sum_{r=0}^{2^{m}-1} c_{n}(r)(k)_{r} \quad\left(\bmod 2^{2^{m}-1}\right), \quad n \geq 1, k \geq 0 \tag{66}
\end{equation*}
$$

and then the same argument as before gives

$$
\begin{equation*}
c_{n}(r) \equiv P_{m}^{n}(r, 0) \quad\left(\bmod 2^{2^{m}-1}\right), \text { for } 0 \leq r \leq 2^{m}-1, n \geq 1 \tag{67}
\end{equation*}
$$

The next proposition summarizes the discussion.
Proposition 5. For $n \in \mathbb{N}$,

$$
\begin{equation*}
\tilde{B}(n) \equiv P_{m}^{n}(0,0) \quad\left(\bmod 2^{2^{m}-1}\right) \tag{68}
\end{equation*}
$$

Corollary 3. The complementary Bell numbers satisfy

$$
\begin{equation*}
\tilde{B}(n+j) \equiv \sum_{r=0}^{2^{m}-1} P_{m}^{j}(0, r) P_{m}^{n}(r, 0) \quad\left(\bmod 2^{2^{m}-1}\right), n \geq 1, j \geq 0 \tag{69}
\end{equation*}
$$

Proof. This is simply the identity $P_{m}^{n+j}=P_{m}^{n} \times P_{m}^{j}$.
Proposition 6. The following table gives the values of $\tilde{B}(24 n+j)$ modulo 8 for ${ }^{234}$ $0 \leq j \leq 23$:

Editor's Proof

j	$\tilde{B}(24 n+j) \bmod 8$	$\tilde{B}(24 n+j) \bmod 8$	
0	1	12	5
1	7	13	3
2	0	14	0
3	1	15	5
4	1	16	5
5	6	18	6
6	7	19	3
7	7	20	2
8	2	21	7
9	3	22	1
10	5	23	4

Proof. Choose $m=2$, and check that $P_{2}^{24} \equiv I(\bmod 8)$. Corollary 3 gives

$$
\begin{equation*}
\tilde{B}(24 n+j) \equiv \sum_{r=0}^{3} P_{2}^{j}(0, r) P_{2}^{24 n}(r, 0) \equiv P_{2}^{j}(0,0) \equiv \tilde{B}(j) \quad(\bmod 8) \tag{70}
\end{equation*}
$$

Therefore the value of $\tilde{B}(j)$ modulo 8 is a periodic function with period 24 .
The result follows by computing the values $\tilde{B}(j)$ for $0 \leq j \leq 23$.
Corollary 4. Assume $j \not \equiv 2,14(\bmod 24)$. Then

$$
v_{2}(\tilde{B}(j))= \begin{cases}1 & \text { if } j \equiv 5,8,17,20 \quad(\bmod 24) \tag{71}\\ 2 & \text { if } j \equiv 11,23 \quad(\bmod 24) \\ 0 & \text { otherwise }\end{cases}
$$

Corollary 5. Assume $j \not \equiv 2,14(\bmod 24)$. Then $\tilde{B}(j) \neq 0$.
The remaining sections discuss the more difficult cases $n \equiv 2$ and $n \equiv 14240$ $(\bmod 24)$.

8 The Top-Left Block of Powers of the Matrix $\boldsymbol{P}_{\boldsymbol{m}}$

The analysis of the 2 -adic valuation of $\tilde{B}(n)$ employs the sequence of matrices 243 appearing in the top-left block of powers of the matrix P_{m}. This section describes 244 properties of this sequence.

A convention on their block structure is presented next: $\quad 246$
let $n \in \mathbb{N}$ and i, j integers with $1 \leq i, j \leq n-1$. For an $n \times n$ matrix Q and an ${ }_{247}$ $i \times j$ matrix A, the block structure is

$$
Q=\left(\begin{array}{ll}
A & B \tag{72}\\
C & D
\end{array}\right)
$$

Since the size of the top left corner determines the rest, the notation

$$
Q=\left(\begin{array}{cc}
\overbrace{A}^{i \times j} & B \\
C & D
\end{array}\right)
$$

will be used to specify the size of all blocks when necessary. The default convention 251 is that whenever a $2^{m} \times 2^{m}$ matrix is written in block form $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, it will be ${ }^{252}$ understood that the blocks are of size $2^{m-1} \times 2^{m-1}$.

The next lemma is the essential part of the argument for the 2-adic analysis of 254 $\tilde{B}(n)$. The proof is a simple check with the definitions.
Definition 2. For each $m \geq 0$, define $2^{m} \times 2^{m}$ matrices B_{m}, D_{m}, V_{m} inductively as

$$
B_{m+1}=\left(\begin{array}{cc}
0 & 0 \\
B_{m} & 0
\end{array}\right), D_{m+1}=\left(\begin{array}{cc}
D_{m} & B_{m} \\
0 & D_{m}
\end{array}\right), V_{m+1}=\left(\begin{array}{cc}
0 & V_{m} \\
0 & 0
\end{array}\right)
$$

where all blocks are $2^{m} \times 2^{m}$ matrices.
Recall the P_{m} is the $2^{m} \times 2^{m}$ matrix obtained from the top left corner of the 260 infinite matrix P defined in (57).
Lemma 9. The matrices P_{m} satisfy the recurrence

$$
P_{m+1}=\left(\begin{array}{cc}
P_{m} & 0 \\
V_{m} & P_{m}
\end{array}\right)+2^{m}\left(\begin{array}{cc}
0 & B_{m} \\
0 & D_{m}
\end{array}\right)
$$

The first point in the analysis is to show that, for every power of P_{m}, the top half 264 of the last column is zero modulo a large power of 2 .

Lemma 10. For all $m \geq 1, n \geq 1$, and $0 \leq i \leq 2^{m}-1$, the inequality

$$
\begin{equation*}
v_{2}\left(P_{m}^{n}\left(i, 2^{m}-1\right)\right) \geq 2^{m}-m-1-v_{2}(i!) . \tag{73}
\end{equation*}
$$

holds.
Proof. The right-hand side vanishes for $m=1$. Fix $m \geq 2$. If $n=1$, the last column 268 of P_{m} has $2^{m}-2$ zeros at the beginning and its last two entries are $-\left(2^{m}-1\right)$ and 269 $2^{m}-2$. Therefore, $\nu_{2}\left(P_{m}\left(i, 2^{m}-1\right)\right)=\infty$ for $0 \leq i \leq 2^{m}-3$, and

$$
\begin{aligned}
& v_{2}\left(P_{m}\left(2^{m}-2,2^{m}-1\right)\right)=v_{2}\left(-\left(2^{m}-1\right)\right)=0, \\
& v_{2}\left(P_{m}\left(2^{m}-1,2^{m}-1\right)\right)=v_{2}\left(2^{m}-2\right)=1
\end{aligned}
$$

Editor's Proof

Legendre's formula (5) shows that the right-hand side of (73) is $2^{m}-m-1-i+s_{2}(i)$, so it vanishes for $i=2^{m}-2$ and $i=2^{m}-1$. This proves the case for $n=1$.

The inductive step is presented next:

$$
\begin{aligned}
P_{m}^{n+1}\left(i, 2^{m}-1\right)= & \sum_{j=0}^{2^{m}-1} P_{m}(i, j) P_{m}^{n}\left(j, 2^{m}-1\right) \\
= & P_{m}(i, i-1) P_{m}^{n}\left(i-1,2^{m}-1\right)+P_{m}(i, i) P_{m}^{n}\left(i, 2^{m}-1\right) \\
& +P_{m}(i, i+1) P_{m}^{n}\left(i+1,2^{m}-1\right) \\
= & P_{m}^{n}\left(i-1,2^{m}-1\right)+(i-1) P_{m}^{n}\left(i, 2^{m}-1\right)-(i+1) P_{m}^{n}\left(i+1,2^{m}-1\right)
\end{aligned}
$$

Observe that the three terms on the last line are elements of the last column of the 275 matrix P_{m}^{n}. The inductive argument provides a lower bound on the power of 2 that 276 divides these integers. Therefore, there are integers q_{1}, q_{2}, q_{3} such that

$$
P_{m}^{n+1}\left(i, 2^{m}-1\right)=2^{2^{m}-m-1}\left(2^{-v_{2}((i-1)!!} q_{1}+2^{v_{2}(i-1)-v_{2}(i!)} q_{2}-2^{v_{2}(i+1)-v_{2}((i+1)!!} q_{3}\right) .
$$

It follows that

$$
\begin{align*}
& v_{2}\left(P_{m}^{n+1}\left(i, 2^{m}-1\right)\right) \geq \\
& \quad 2^{m}-m-1+\min \left\{-v_{2}((i-1)!), \nu_{2}(i-1)-v_{2}(i!), v_{2}(i+1)-v_{2}((i+1)!)\right\} . \tag{74}
\end{align*}
$$

Now use $\nu_{2}(i+1)-v_{2}((i+1)!)=-v_{2}(i!)$ and $-v_{2}((i-1)!) \geq-v_{2}(i!)$, to verify that the minimum on the right is $-v_{2}(i!)$. This completes the argument.

The next step is to describe the relation of the matrix $P_{m}\left(\right.$ of size $\left.2^{m} \times 2^{m}\right)$ to $P_{m+1} \quad 280$ (of size $2^{m+1} \times 2^{m+1}$). The additional block matrices appearing in this transition are 281 defined recursively:

Fix $m \geq 0$, define $2^{m} \times 2^{m}$ matrices $V_{m, n}, A_{m, n}, B_{m, n}, C_{m, n}, D_{m, n}$ inductively by

$$
\begin{align*}
& V_{m, 1}=V_{m}, \quad V_{m, n+1}=V_{m, n} P_{m}+P_{m}^{m} V_{m, n} \\
& B_{m, 1}=B_{m}, \quad B_{m, n+1}=P_{m}^{n} B_{m}+B_{m, n} P_{m} \\
& A_{m, 1}=0, \quad A_{m, n+1}=A_{m, n} P_{m}+B_{m, n} V_{m} \tag{284}\\
& D_{m, 1}=D_{m}, \quad D_{m, n+1}=V_{m, n} B_{m}+P_{m}^{n} D_{m}+D_{m, n} P_{m} \\
& C_{m, 1}=0, \quad C_{m, n+1}=C_{m, n} P_{m}+D_{m, n} V_{m}
\end{align*}
$$

The relation between P_{m} and P_{m+1} is stated next.

Editor's Proof

Lemma 11. For each $n \geq 1$, the congruence

$$
P_{m+1}^{n} \equiv\left(\begin{array}{cc}
P_{m}^{n} & 0 \tag{75}\\
V_{m, n} & P_{m}^{n}
\end{array}\right)+2^{m}\left(\begin{array}{cc}
A_{m, n} & B_{m, n} \\
C_{m, n} & D_{m, n}
\end{array}\right) \quad\left(\bmod 2^{2 m}\right)
$$

holds.
Proof. The result is clear for $n=1$. Computing $P_{m+1}^{n+1}=P_{m+1}^{n} P_{m+1}$, it follows 288 that

$$
\begin{aligned}
P_{m+1}^{n+1} & \equiv\left(\begin{array}{cc}
P_{m}^{n}+2^{m} A_{m, n} & 2^{m} B_{m, n} \\
V_{m, n}+2^{m} C_{m, n} & P_{m}^{n}+2^{m} D_{m, n}
\end{array}\right)\left(\begin{array}{cc}
P_{m}^{n} & 2^{m} B_{m} \\
V_{m, n} & P_{m}^{n}+2^{m} D_{m}
\end{array}\right) \\
& \equiv\left(\begin{array}{cc}
P_{m}^{n+1} & 0 \\
V_{m, n} P_{m}+P_{m}^{n} V_{m} & P_{m}^{n+1}
\end{array}\right) \\
& +2^{m}\left(\begin{array}{cc}
A_{m, n} P_{m}+B_{m, n} V_{m} & P_{m}^{n} B_{m}+B_{m, n} P_{m} \\
C_{m, n} P_{m}+D_{m, n} V_{m} & V_{m, n} B_{m}+P_{m}^{n} D_{m}+D_{m, n} P_{m}
\end{array}\right) \quad\left(\bmod 2^{2 m}\right) .
\end{aligned}
$$

The recurrence for the matrices A, B, C, D and V are designed to complete the inductive step.

Corollary 6.

$$
\begin{equation*}
V_{m, 2 n} \equiv V_{m, n} P_{m}^{n}+P_{m}^{n} V_{m, n} \quad\left(\bmod 2^{2 m}\right) \tag{76}
\end{equation*}
$$

Proof. This follows from Lemma 11 by computing $P_{m+1}^{2 n}=P_{m+1}^{n} P_{m+1}^{n}$.
The next lemma shows some operational rules for the matrices A, B introduced above. The symbol $*$ indicates an unspecified integer or matrix.

Lemma 12. (a) For any $2^{m} \times 2^{m}$ matrix $M(i, j)$ and arbitrary $i \in \mathbb{N}$, we have

$$
\left(M B_{m}\right)(i, 0)=-M\left(i, 2^{m}-1\right)
$$

(b) For $m \geq 2$ and $n \geq 1$, both $B_{m, n}$ and $A_{m, n}$ have the form

$$
\left(\begin{array}{cc}
0 & 0 \\
* & *
\end{array}\right) \quad\left(\bmod 2^{2^{m-1}-1}\right)
$$

Proof. Part (a) follows directly from the definition of B_{m}. Part (b) is established by

$$
\left(P_{m}^{n} B_{m}\right)(i, 0)=-P_{m}^{n}\left(i, 2^{m}-1\right) \equiv 0 \quad\left(\bmod 2^{2^{m-1}-1}\right) \text { for } 0 \leq i \leq 2^{m-1}-1,
$$

Editor's Proof

by part (a) and Lemma 10. The induction hypothesis implies that

$$
B_{m, n} \equiv\left(\begin{array}{cc}
0 & 0 \\
* & *
\end{array}\right) \quad\left(\bmod 2^{2^{m-1}-1}\right)
$$

and this leads to

$$
B_{m, n+1}=P_{m}^{n} B_{m}+B_{m, n} P_{m} \equiv\left(\begin{array}{cc}
0 & 0 \\
* & *
\end{array}\right) \quad\left(\bmod 2^{2^{m-1}-1}\right)
$$

A similar argument shows that

$$
A_{m, n+1}=A_{m, n} P_{m}+B_{m, n} V_{m} \equiv\left(\begin{array}{cc}
0 & 0 \\
* *
\end{array}\right) \quad\left(\bmod 2^{2^{m-1}-1}\right)
$$

The next results describe the powers of $P_{\tilde{m}}$ considered modulo 2^{i}. This leads to explicit formula for the 2 -adic valuation of $\tilde{B}(n)$.

Notation: $d_{m}=3 \times 2^{m}$.
Proposition 7. For all $m \geq 1$,

$$
P_{m}^{d_{m}} \equiv I \quad(\bmod 4), \quad \text { and } \quad V_{m, d_{m}} \equiv 0 \quad(\bmod 2)
$$

Proof. For $m=1$, a direct calculation shows that $P_{1}^{3}=I$ and so $P_{1}^{d_{1}}=P_{1}^{6}=I$. ${ }^{303}$ Also,

$$
V_{1,2} \equiv V_{1} P_{1}+P_{1} V_{1} \equiv\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad(\bmod 2)
$$

$$
V_{1,3} \equiv V_{1,2} P_{1}+P_{1}^{2} V_{1} \equiv\left(\begin{array}{ll}
0 & 1 \tag{307}\\
1 & 1
\end{array}\right) \quad(\bmod 2)
$$

and this produces

$$
V_{1, d_{1}}=V_{1,6} \equiv V_{1,3} P_{1}^{3}+P_{1}^{3} V_{1,3} \equiv\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad(\bmod 2)
$$

Assume now $P_{m}^{d_{m}} \equiv I(\bmod 4)$ and $V_{m, d_{m}} \equiv 0(\bmod 2)$. For simplicity, drop the 310 subscripts in the matrices. Lemma 11 gives

$$
P_{m+1}^{d_{m}} \equiv\left(\begin{array}{cc}
P & 0 \\
V & P
\end{array}\right) \equiv\left(\begin{array}{cc}
I & 0 \\
V & I
\end{array}\right) \quad(\bmod 4)
$$

Editor's Proof

and

$$
P_{m+1}^{d_{m+1}}=\left(P_{m+1}^{d_{m}}\right)^{2} \equiv\left(\begin{array}{cc}
I & 0 \\
V & I
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
V & I
\end{array}\right) \equiv\left(\begin{array}{cc}
I & 0 \\
2 V & I
\end{array}\right) \equiv\left(\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right) \quad(\bmod 4)
$$

Using the notation

$$
V_{m+1, d_{m}}=\left(\begin{array}{ll}
X & Y \\
Z & W
\end{array}\right)
$$

it follows that

$$
\begin{aligned}
V_{m+1, d_{m+1}} & =V_{m+1,2 d_{m}} \equiv V_{m+1, d_{m}} P_{m+1}^{d_{m}}+P_{m+1}^{d_{m}} V_{m+1, d_{m}} \\
& \equiv\left(\begin{array}{cc}
X & Y \\
Z & W
\end{array}\right)\left(\begin{array}{cc}
P & 0 \\
V & P
\end{array}\right)+\left(\begin{array}{cc}
P & 0 \\
V & P
\end{array}\right)\left(\begin{array}{cc}
X & Y \\
Z & W
\end{array}\right) \\
& \equiv\left(\begin{array}{cc}
X & Y \\
Z & W
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
V & I
\end{array}\right)+\left(\begin{array}{cc}
I & 0 \\
V & I
\end{array}\right)\left(\begin{array}{cc}
X & Y \\
Z & W
\end{array}\right) \\
& \equiv\left(\begin{array}{cc}
X+Y V & Y \\
Z+W V & W
\end{array}\right)+\left(\begin{array}{cc}
X & Y \\
V X+Z V Y+W
\end{array}\right) \\
& \equiv\left(\begin{array}{cc}
2 X+Y V & 2 Y \\
2 Z+W V+V X & V+2 W
\end{array}\right) \equiv\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad(\bmod 2)
\end{aligned}
$$

The next proposition provides the structure of $P_{m}^{d_{m}}$ modulo 2^{m+3}, for $m \geq 4$. 318 Introduce the notation

$$
Q=\left(\begin{array}{llll}
1 & 2 & 6 & 0 \\
6 & 1 & 0 & 6 \\
3 & 4 & 5 & 4 \\
0 & 1 & 4 & 3
\end{array}\right)
$$

and define recursively for $m \geq 4$ the $4 \times\left(2^{m}-4\right)$ matrices R_{m} by

$$
\begin{aligned}
R_{4} & =\left(\begin{array}{llllllllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
R_{m+1} & =\left(R_{m} 00\right) .
\end{aligned}
$$

Notation: $q(*)$ indicates a matrix or number that is a multiple of q.

Editor's Proof

Proposition 8. Let $m \geq 4$. Then

$$
P_{m}^{d_{m}} \equiv I+\left(\begin{array}{cc}
2^{m} Q & 2^{m+2} R_{m} \\
4(*) & 4(*)
\end{array}\right) \quad\left(\bmod 2^{m+3}\right)
$$

Proof. The claim holds for $m=4$ by simple task: evaluate P_{4}^{48} modulo 2^{7}. Keep in ${ }_{325}$ mind that P_{4} is a 16×16 matrix.

Assume the claim holds for m. Observe that $2 m \geq m+4$ for $m \geq 4$, therefore the 327 congruence modulo $2^{2 m}$ of Lemma 11 can be replaced with a congruence modulo 2^{m+4}. Write $V=\left(\begin{array}{cc}X & Y \\ Z & W\end{array}\right)$ to obtain

$$
\begin{aligned}
P_{m+1}^{d_{m}} & \equiv\left(\begin{array}{ll}
P & 0 \\
V & P
\end{array}\right)+2^{m}\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \\
& \equiv\left(\begin{array}{cccc}
I+2^{m} Q & 2^{m+2} R & 0 & 0 \\
4(*) & I+4(*) & 2^{m}(*) & 2^{m}(*) \\
X+2^{m}(*) & Y+2^{m}(*) I+2^{m}(*) & 2^{m}(*) \\
Z+2^{m}(*) W+2^{m}(*) & 4(*) & I+4(*)
\end{array}\right) \quad\left(\bmod 2^{m+4}\right) .
\end{aligned}
$$

Squaring this matrix gives

$$
P_{m+1}^{d_{m+1}} \equiv\left(\begin{array}{cccc}
I+2^{m+1} Q & 2^{m+3} R & 0 & 0 \\
4(*) & I+4(*) & 4(*) & 4(*) \\
2 X+4(*) & 2 Y+4(*) & I+4(*) & 4(*) \\
2 Z+4(*) & 2 W+4(*) & 4(*) & I+4(*)
\end{array}\right) \quad\left(\bmod 2^{m+4}\right) . \quad{ }_{331}
$$

The previous proposition shows that $V=\left(\begin{array}{cc}X & Y \\ Z & W\end{array}\right) \equiv 0 \quad(\bmod 2)$, therefore $\quad{ }_{332}$

$$
P_{m+1}^{d_{m+1}} \equiv I+\left(\begin{array}{cc}
2^{m+1} Q & 2^{m+3} R_{m+1} \\
4(*) & 4(*)
\end{array}\right) \quad\left(\bmod 2^{m+4}\right)
$$

This completes the induction argument.
The next corollary is employed in the next section to establish the 2-adic 334 valuation of complementary Bell numbers.

Corollary 7. For each $n \geq 1$,

$$
P_{m}^{n d_{m}} \equiv I+n\left(\begin{array}{cc}
2^{m} Q 2^{m+2} R_{m} \\
4(*) & 4(*) \tag{337}
\end{array}\right) \quad\left(\bmod 2^{m+3}\right)
$$

Proof. The result follows immediately from Proposition 8 and the binomial theorem.

9 The Case $n \equiv 2(\bmod 24)$

The 2-adic valuations for the complementary Bell numbers $\tilde{B}(n)$ are given in 339 Corollary 4 for $j \not \equiv 2,14(\bmod 24)$. This section determines the case $j \equiv 2$. ${ }_{340}$

The main result is:
Theorem 3. For $n \in \mathbb{N}$,

$$
v_{2}(\tilde{B}(24 n+2))=5+v_{2}(n) .
$$

343
Proof. Write $n=2^{m} q$ with q odd. Corollary 3 and Proposition 8 give

$$
\begin{aligned}
\tilde{B}(24 n+2)= & \tilde{B}\left(3 \cdot 2^{m+3} q+2\right) \equiv \sum_{r=0}^{2^{m+3}-1} P_{m+3}^{q d_{m+3}}(0, r) P_{m+3}^{2}(r, 0) \\
\equiv & P_{m+3}^{q d_{m+3}(0,0) P_{m+3}^{2}(0,0)+P_{m+3}^{q d_{m+3}}(0,1) P_{m+3}^{2}(1,0)} \begin{aligned}
& +P_{m+3}^{q d_{m+3}}(0,2) P_{m+3}^{2}(2,0) \\
& \equiv\left(1+2^{m+3} q\right)(0)-q 2^{m+4}+6 q 2^{m+3} \\
\equiv & q 2^{m+5} \equiv 2^{m+5} \quad\left(\bmod 2^{m+6}\right)
\end{aligned} .
\end{aligned}
$$

The expression for the valuation $\nu_{2}(\tilde{B}(24 n+2))$ follows immediately.
The tree shown in Fig. 5 summarizes the information derived so far on the 345 2 -adic valuation of $\tilde{B}(n)$. The top three edges of the tree correspond to the 346 residue class of $n(\bmod 3)$. The number by the side of the edge (if present) 347 gives the (constant) 2 -adic valuation of $\tilde{B}(n)$ for that residue class. For example 348 $\nu_{2}(\tilde{B}(3 n+1))=0$. If there is no number next to the edge, the 2 -adic valuation is 349 not constant for that residue class, so n needs to be split further. The split at each 350 stage is conducted by replacing the index n of the sequence by $2 n$ and $2 n+1$. ${ }_{351}$ For example, the sequence $\nu_{2}(\tilde{B}(12 n+2))$ is not constant so it generates the two 352 new sequences $\nu_{2}(\tilde{B}(24 n+2))$ and $\nu_{2}(\tilde{B}(24 n+14))$. Constant sequences include 353

Editor's Proof

Fig. 5 The 2-adic valuation of $\widetilde{B}(24 n+2)$
$\nu_{2}(\tilde{B}(12 n+8))=\nu_{2}(\tilde{B}(12 n+5))=1$ and $\nu_{2}(\tilde{B}(12 n+11))=2$. The main ${ }_{354}$ theorem of this section shows that the infinite branch on the left, coming from the 355 splitting of $24 n+2$, has a well-determined structure. The other infinite branch, 356 corresponding to $24 n+14$, does not exhibit such a regular pattern. This is the topic 357 of the next section.

10 The Case $n \equiv 14(\bmod 24)$

This section discusses the last missing case in the 2-adic valuations of $\tilde{B}(n)$. The 360 main result of this section is:

Theorem 4. There is at most one integer $n>2$ such that $\tilde{B}(n)=0$.
Outline of the proof. The proof consists of a sequence of steps.

Step 1. Define two sequences $\left\{x_{m}, y_{m}\right\}$ recursively via

$$
\begin{aligned}
& y_{m+1}= \begin{cases}y_{m} & \text { if } v_{2}\left(\tilde{B}\left(x_{m}\right)\right)>m+5 \\
y_{m}+2^{m} & \text { if } v_{2}\left(\tilde{B}\left(x_{m}\right)\right) \leq m+5\end{cases} \\
& x_{m+1}=24 y_{m+1}+14
\end{aligned}
$$

Step 2. Let $y_{m}=\sum_{i=0}^{m} s_{m, i} 2^{i}$ and let $s_{i}=\lim _{m \rightarrow \infty} s_{m, i}$ and define $s=364$ $\left(s_{0}, s_{1}, s_{2}, \cdots\right)$.
Step 3. For $n \in \mathbb{N}$ let $n=\sum_{k} b_{k}(n) 2^{k}$ be its binary expansion. Let $\quad 366$

$$
\omega(n)=\left\{\begin{array}{l}
\text { first index } k \text { such that } b_{k}(n) \neq s_{k} ; \tag{77}\\
\infty \quad \text { otherwise }
\end{array}\right.
$$

Then $\omega(n)<\infty$ unless s has ony finitely many ones and s is the binary expansion of n. If such n exists, it is called exceptional. 368
Step 4. The 2-adic valuation of $\tilde{B}(24 n+14)$ is given by 369

$$
\begin{equation*}
\nu_{2}(\tilde{B}(24 n+14))=\omega(n)+5 \tag{78}
\end{equation*}
$$

In particular $\tilde{B}(n)=0$ only if n is exceptional. This concludes the proof of the 370 theorem.

Proof of Theorem 4. The r-th entry of the top row of P_{m}^{j} needs to be expressed as a linear combination of $\tilde{B}(j+i)\left(\bmod 2^{2^{m}-1}\right), 0 \leq i \leq r$. This is the content of the next lemma.

Lemma 13. Define $b_{r}(i)$ recursively by

$$
\begin{aligned}
b_{0}(0) & =1 \\
b_{r+1}(i) & =b_{r}(i-1)+(1-r) b_{r}(i)+r b_{r-1}(i), \quad 0 \leq i \leq r \\
b_{r}(i) & =0 \text { for } i<0 \text { or } i>r
\end{aligned}
$$

Then for each $m \geq 1, j \geq 1$, and $0 \leq r \leq 2^{m}-1$, we have

$$
P_{m}^{j}(0, r) \equiv \sum_{i=0}^{r} b_{r}(i) \tilde{B}(j+i) \quad\left(\bmod 2^{2^{m}-1}\right)
$$

Editor's Proof

Proof. The proof is by induction on r. If $r=0$, the statement is Proposition 5. 375 Assuming the statement for r, it follows that

$$
\begin{equation*}
P_{m}^{j+1}(0, r) \equiv \sum_{i=0}^{r} b_{r}(i) \tilde{B}(j+1+i) \quad\left(\bmod 2^{2^{m}-1}\right) \tag{377}
\end{equation*}
$$

and also

$$
\begin{aligned}
P_{m}^{j+1}(0, r) & =P_{m}^{j}(0, r-1) P_{m}(r-1, r)+P_{m}^{j}(0, r) P_{m}(r, r) \\
& +P_{m}^{j}(0, r+1) P_{m}(r+1, r) \\
& =-r P_{m}^{j}(0, r-1)+(r-1) P_{m}^{j}(0, r)+P_{m}^{j}(0, r+1)
\end{aligned}
$$

Comparing the two expressions and using induction, $P_{m}^{j}(0, r+1)$ is expressed as a linear combination of $\tilde{B}(j+i), 0 \leq i \leq r$, with coefficients as in the right side of the equation defining $b_{r+1}(i)$.

Extensive calculations suggest that $\nu_{2}(\tilde{B}(24 n+14))$ is always at least 5 , and it is rather irregular. After examining the experimental data, we were led to define the 380 following sequences.

Define x_{m}, y_{m} inductively by:

$$
\begin{equation*}
y_{0}=0, \quad x_{0}=24 y_{0}+14 \tag{383}
\end{equation*}
$$

and if x_{m}, y_{m} have been defined, set

$$
y_{m+1}=\left\{\begin{array}{ll}
y_{m} & \text { if } v_{2}\left(\tilde{B}\left(x_{m}\right)\right)>m+5 \\
2^{m}+y_{m} & \text { if } v_{2}\left(\tilde{B}\left(x_{m}\right)\right) \leq m+5
\end{array}, \quad x_{m+1}=24 y_{m+1}+14 .\right.
$$

The next table gives the first few values of y_{m} and x_{m}.

m	0	1	2	3	4	5	6	7	8	9	10
y_{m}	0	1	1	5	13	13	13	77	77	333	845
x_{m}	14	38	38	134	326	326	326	1,862	1,862	8,006	20,294

The next lemma provides a lower bound for the 2 -adic valuation of the 389 subsequence of complementary Bell numbers indexed by x_{m}.
Lemma 14. For $m \in \mathbb{N}, v_{2}\left(\tilde{B}\left(x_{m}\right)\right) \geq m+5$.

Proof. The proof employs the values of $b_{r}(i)$ for $0 \leq r \leq 2$. These are given in 392 Lemma 13 for $r=0,1,2$. It turns out that $b_{1}(0)=b_{1}(1)=b_{2}(0)=b_{2}(1)=393$ $b_{2}(2)=1$. (In case one wonders here if all non-zero terms of $b_{r}(i)$ are 1 , this is not 394 true for $r \geq 3$).

Direct calculation shows that $\nu_{2}\left(\tilde{B}\left(x_{0}\right)\right)=\nu_{2}(\tilde{B}(14))=5$, and $\nu_{2}\left(\tilde{B}\left(x_{1}\right)\right)={ }^{396}$ $\nu_{2}(\tilde{B}(38))=7$. Therefore the statement holds for $m=0,1$. Assume the result for 397 $m \geq 1$. Therefore $\nu_{2}\left(\tilde{B}\left(x_{m}\right)\right) \geq m+5$. If $v_{2}\left(\tilde{B}\left(x_{m}\right)\right)>m+5$, then by definition 398 $x_{m+1}=x_{m}$, and it follows that $\nu_{2}\left(\tilde{B}\left(x_{m+1}\right)\right) \geq m+6$. On the other hand, if 399 $\nu_{2}\left(\tilde{B}\left(x_{m}\right)\right)=m+5$, write $\tilde{B}\left(x_{m}\right)=2^{m+5} q$, with q is odd. Then $y_{m+1}=2^{m}+y_{m}, 400$ and $x_{m+1}=24\left(2^{m}+y_{m}\right)+14=3 \cdot 2^{m+3}+x_{m}$. Corollary 3 (with $n=3 \cdot 2^{m+3}, j=401$ x_{m}, and m replaced by $m+3$) and Proposition 8 (with m replaced by $m+3$), produce 402

$$
\begin{aligned}
\tilde{B}\left(x_{m+1}\right)= & \tilde{B}\left(3 \cdot 2^{m+3}+x_{m}\right) \equiv \sum_{r=0}^{2^{m+3}-1} P_{m+3}^{x_{m}}(0, r) P_{m+3}^{d_{m+3}}(r, 0) \quad\left(\bmod 2^{2^{m+3}-1}\right) \\
\equiv & \left(1+2^{m+3}\right) P_{m+3}^{x_{m}}(0,0)+6 \cdot 2^{m+3} P_{m+3}^{x_{m}}(0,1)+3 \cdot 2^{m+3} P_{m+3}^{x_{m}}(0,2) \\
& +\sum_{r=4}^{2^{m+3}-1} P_{m+3}^{x_{m}}(0, r) P_{m+3}^{d_{m+3}}(r, 0) \quad\left(\bmod 2^{m+6}\right) .
\end{aligned}
$$

Proposition 8 shows that the first term in the last sum is divisible by 2^{m+5} and the 404 second term is divisible by 4 . Then, Lemma 13 yields

$$
\begin{aligned}
\tilde{B}\left(x_{m+1}\right) \equiv & \left(1+2^{m+3}\right) \tilde{B}\left(x_{m}\right)+3 \cdot 2^{m+4}\left(\tilde{B}\left(x_{m}\right)+\tilde{B}\left(x_{m}+1\right)\right) \\
& +3 \cdot 2^{m+3}\left(\tilde{B}\left(x_{m}\right)+\tilde{B}\left(x_{m}+1\right)+\tilde{B}\left(x_{m}+2\right)\right) \quad\left(\bmod 2^{m+6}\right)
\end{aligned}
$$

Since $x_{m}+1 \equiv 15$ and $x_{m}+2 \equiv 16(\bmod 24)$, Proposition 6 shows that 407 $\tilde{B}\left(x_{m}+1\right) \equiv \tilde{B}\left(x_{m}+2\right) \equiv 5(\bmod 8)$. So we find

$$
\begin{aligned}
\tilde{B}\left(x_{m+1}\right) & \equiv\left(1+2^{m+3}\right) 2^{m+5} q+3 \cdot 2^{m+4}\left(2^{m+5} q+5+8(*)\right) \\
& +3 \cdot 2^{m+3}\left(2^{m+5} q+5+8(*)+5+8(*)\right) \\
& \equiv 2^{m+5} q+15 \cdot 2^{m+4}+15 \cdot 2^{m+3}+15 \cdot 2^{m+3} \\
& \equiv 2^{m+5} q+15 \cdot 2^{m+5} \equiv(q+15) 2^{m+5} \equiv 0 \quad\left(\bmod 2^{m+6}\right)
\end{aligned}
$$

This completes the inductive step.
Lemma 15. The binary expansion of y_{m} has the form

$$
\begin{equation*}
y_{m}=\sum_{i=0}^{m} s_{m, i} i^{i} \tag{79}
\end{equation*}
$$

and $s_{i}=\lim _{m \rightarrow \infty} s_{m, i}$ exists.

Editor's Proof

Proof. By construction $y_{m} \leq 2^{m}-1$, showing that the binary expansion of y_{m} ends at 2^{m-1}. Moreover, the binary expansion of y_{m+1} is the same as that of y_{m} with possibly and extra leading 1 . This confirms the existence of the limit s_{i}.

Note. Step 2 concludes by defining $s=\left(s_{0}, s_{1}, \ldots\right)=(1,0,1,1,0,0,1,0,1,1, \ldots) .411$
Theorem 5. Let n be a positive integer with binary expansion $n=\sum_{k} b_{k} 2^{k}$, and 412 let $\omega(n)$ be the first index for which $b_{k} \neq s_{k}$. If no such index exists, let $\omega(n)=\infty .413$ Then

$$
v_{2}(\tilde{B}(24 n+14))=\omega(n)+5 .
$$

Note. As discussed in Step 3, there is at most one index $n>2$ for which $\omega(n)=\infty .416$ This happens when s, defined above, has finitely many ones. In this situation, s is 417 the binary expansion of this exceptional index. The conjecture of Wilf states that 418 this situation does not happen.

Proof. The notation $m=\omega(n)$ is employed in the proof. If $m=\infty$, then $\tilde{B}(24 n+420$ 14) $=0$ and the formula holds. Suppose now that $m \neq \infty$. Then there is $p \in \mathbb{N}{ }_{421}$ such that $24 n+14=3 \cdot 2^{m+3} p+x_{m}$.

Write $\tilde{B}\left(x_{m}\right)=2^{m+5+i} q$, with q odd and $i \geq 0$. Then, as in the previous proof ${ }^{423}$ (and also using Lemma 7), it follows that 424

$$
\begin{aligned}
\tilde{B}(24 n+14) & =\tilde{B}\left(3 \cdot 2^{m+3} p+x_{m}\right) \\
& \equiv\left(1+2^{m+3} p\right) 2^{m+5+i} q+3 p \cdot 2^{m+4}\left(2^{m+5+i} q+5+8(*)\right) \\
& +3 p \cdot 2^{m+3}\left(2^{m+5+i} q+5+8(*)+5+8(*)\right) \\
& \equiv 2^{m+5+i} q+15 p \cdot 2^{m+4}+15 p \cdot 2^{m+3}+15 p \cdot 2^{m+3} \\
& \equiv 2^{m+5+i} q+15 p \cdot 2^{m+5} \equiv 2^{m+5}\left(2^{i} q+15 p\right) \quad\left(\bmod 2^{m+6}\right)
\end{aligned}
$$

If $i=0$, then $s_{m}=1$, and p must be even (because this is where n and s disagree). Thus the quantity in parentheses on the last line is odd, and $\nu_{2}(\tilde{B}(24 n+14))=$ $m+5$. If $i>0$, then $s_{m}=0$, and p must be odd and, as in the previous case, the quantity in parentheses is odd. The result follows from here.

Note. The tree shown in Fig. 6 updates Fig. 5 by including the 2-adic valuation of 425 $\tilde{B}(24 n+14)$. It is a curious fact that $v_{2}(\tilde{B}(n))$ takes on all non-negative values 426 except 3 and 4 .

Final comment. It remains to decide if the exceptional case exists. If it does 428 not, then $\tilde{B}(n) \neq 0$ for $n>2$, Wilf's conjecture is true and the sequence ${ }_{429}$ $v_{2}(\tilde{B}(24 n+14))$ is unbounded. If this exceptional index exists, then it is unique. 430 Observe that the exceptional case exists if and only if the sequence x_{m} is eventually ${ }_{431}$ constant.

Editor's Proof

Fig. 6 The 2-adic valuation of $\widetilde{B}(24 n+14)$

Editor's Proof

11 Two Classes of Polynomials

Two families of polynomials have been considered in Lemmas 1 and 7: $\mu_{0}(x) \equiv 435$ $1, \lambda_{0}(x) \equiv 1$, and 436

$$
\begin{align*}
& \mu_{j+1}(x)=x \mu_{j}(x)+\mu_{j}(x+1) ; \quad \text { for } n \geq 0 \tag{80}\\
& \lambda_{j+1}(x)=x \lambda_{j}(x)-\lambda_{j}(x+1) ; \quad \text { for } n \geq 0 . \tag{81}
\end{align*}
$$

The corresponding exponential generating functions are provided below.
Lemma 16. The polynomials μ_{j} and λ_{j} have generating functions given by

$$
\begin{equation*}
\sum_{j=0}^{\infty} \frac{z^{j}}{j!} \mu_{j}(x)=e^{x z-1+e^{z}} \quad \text { and } \sum_{j=0}^{\infty} \frac{z^{j}}{j!} \lambda_{j}(x)=e^{x z+1-e^{z}} \tag{82}
\end{equation*}
$$

Proof. Let $F(x, z)=\sum_{j \geq 0} \frac{z^{j}}{j!} \mu_{j}(x)$ and $G(x, z)=e^{x z-1+e^{z}}$. Multiplying the 439 polynomial recurrence through by z^{j} / j ! yields

$$
\mu_{j+1}(x) \frac{z^{j}}{j!}=x \mu_{j}(x) \frac{z^{j}}{j!}+\mu_{j}(x+1) \frac{z^{n}}{j!} .
$$

Now sum over all non-negative integers j to find

$$
\begin{equation*}
\frac{\partial}{\partial z} F(x, z)=x F(x, z)+F(x+1, z) \tag{83}
\end{equation*}
$$

Since $G(x+1, z)=e^{z} G(x, z)$, it follows

$$
\begin{equation*}
\frac{\partial}{\partial z} G(x, z)=G(x, z)\left(x+e^{z}\right)=x G(x, z)+G(x+1, z) \tag{84}
\end{equation*}
$$

On the other hand, $F(x, 0)=\mu_{0}(x)=1=G(x, 0)$. Therefore, $F(x, z)=G(x, z)$. The same argument verifies the second assertion of the lemma. The proof is complete.

Corollary 8. The polynomials μ_{j} and λ_{j} satisfy

$$
\begin{equation*}
\mu_{j}(0)=B(j) \text { and } \lambda_{j}(0)=\tilde{B}(j) \tag{85}
\end{equation*}
$$

Corollary 9. There are double-indexed exponential generating functions for 445 $\mu_{j}(n), \lambda_{j}(n)$:

$$
\sum_{j, n \geq 0} \mu_{j}(n) \frac{z^{j} y^{n}}{j!n!}=e^{-1+(y+1) e^{z}}, \quad \sum_{j, n \geq 0} \lambda_{j}(n) \frac{z^{j} y^{n}}{j!n!}=e^{-1+(y-1) e^{z}}
$$

Editor's Proof

Proof. Direct computation shows

$$
\begin{equation*}
\sum_{j, n} \mu_{j}(n) \frac{z^{j} y^{n}}{j!n!}=\sum_{n} e^{n z-1+e^{z}} \frac{y^{n}}{n!}=e^{-1+e^{z}} \sum_{n} \frac{\left(y e^{z}\right)^{n}}{n!} \tag{86}
\end{equation*}
$$

with a similar argument for λ_{j}.
Corollary 10. The polynomials $\mu_{j}(x), \lambda_{j}(x)$ are binomial convolutions of Bell numbers,

$$
\mu_{j}(x)=\sum_{r}\binom{j}{r} B(r) x^{j-r}, \quad \lambda_{j}(x)=\sum_{r}\binom{j}{r} \tilde{B}(r) x^{j-r} .
$$

Proof. This follows directly from

$$
\begin{equation*}
\sum_{j \geq 0} \mu_{j}(x) \frac{z^{j}}{j!}=e^{e^{z}-1} e^{x z}=\sum_{k \geq 0} B(k) \frac{z^{k}}{k!} \times \sum_{n \geq 0} x^{n} \frac{z^{n}}{n!} \tag{87}
\end{equation*}
$$

and a similar argument for λ_{j}.
Corollary 11. The family of polynomials $\lambda_{j}(x)$ have a missing strip of coeffi- 453 cients, i.e.

$$
\left[x^{j-2}\right] \lambda_{j}(x)=0
$$

Proof. Follows from Corollary 10 and $\tilde{B}(2)=0$.
Define the functions $e^{(k)}(x)$ inductively, as follows:

$$
\begin{aligned}
e(x) & =e^{(1)}(x)=1-e^{x} \\
e^{(k+1)}(x) & =e\left(e^{(k)}(x)\right) .
\end{aligned}
$$

These are called super-exponentials. For example,

$$
e^{(2)}(x)=1-e^{1-e^{x}} \quad \text { and } \quad e^{(3)}(x)=1-e^{1-e^{1-e^{x}}}
$$

Introduce the super-complementary Bell numbers, $\tilde{B}^{(k)}(n)$, according to

$$
\begin{equation*}
\sum_{n \geq 0} \tilde{B}^{(k)}(n) \frac{x^{n}}{n!}=1-e^{(k+1)}(x) \tag{88}
\end{equation*}
$$

The usual complementary Bell numbers $\tilde{B}(n)$ become $\tilde{B}^{(1)}(n)$ due to the relation 460

$$
\begin{equation*}
\sum_{n} \tilde{B}(n) \frac{x^{n}}{n!}=e^{1-e^{x}}=1-e^{(2)}(x) \tag{89}
\end{equation*}
$$

Editor's Proof

The next conjecture is a natural extension of Wilf's original question.
Conjecture 1. Let $k \in \mathbb{N}$ be odd. Then $\tilde{B}^{(k)}(n)=0$ if and only if $n=2$. For $k \in \mathbb{N}{ }_{462}$ even and $k \neq 2$, it is conjectured that $\tilde{B}^{(k)}(n) \neq 0$. The case $k=2$ is peculiar: the ${ }_{463}$ corresponding conjecture is that $\tilde{B}^{(2)}(n)=0$ if and only if $n=3$.

Combinatorial meanings: $B_{1}^{(1)}(n)=$ number of set partitions of $\{1, \ldots, n\}$ with 465 an even number of parts, minus the number of such partitions with an odd number 466 of parts; $B_{1}^{(2)}(n)=$ number of set partitions of $\{1, \ldots, n\}$ with an even number ${ }_{467}$ of parts, minus the number of such partitions with an odd number of parts, and 468 then repeating this process for each block. Similar number of chain reactions yield 469 $B_{1}^{(k)}(n)$. For instance,

$$
\begin{equation*}
\tilde{B}^{(2)}(n)=\sum_{j=0}^{n}(-1)^{j} S(n, j) \tilde{B}(j) \tag{90}
\end{equation*}
$$

Illustrative example. Take $n=3$, and partition the set $\{1,2,3\}$. For $k=1: 471$ $\{1,2,3\}$; for $k=2$: $\{1,\{2,3\}\},\{2,\{1,3\}\},\{3,\{1,2\}\}$; for $k=3:\{\{1\},\{2\},\{3\}\}$. In 472 the next step, partition blocks as follows. When $k=1:\{1,2,3\}$ is its own partition 473 as a 1 -element set; when $k=2$, partition each of $\{1,\{2,3\}\},\{2,\{1,3\}\},\{3,\{1,2\}\} 474$ as 2-element sets; when $k=3$, partition $\{\{1\},\{2\},\{3\}\}$ as a 3 -element set. The 475 resulting collection looks like this:

$$
\begin{aligned}
& \{1,2,3\}, \\
& \{1,\{2,3\}\}, \\
& \{\{1\},\{\{2,3\}\}\}, \\
& \{2,\{1,3\}\}, \\
& \{\{2\},\{\{1,3\}\}\}, \\
& \{3,\{1,2\}\}, \\
& \{\{3\},\{\{1,2\}\}\}, \\
& \{\{1\},\{2\},\{3\}\}, \\
& \{\{1\},\{\{2\},\{3\}\}\}, \\
& \{\{2\},\{\{1\},\{3\}\}\}, \\
& \{\{3\},\{\{1\},\{2\}\}\}, \\
& \{\{1\},\{\{2\}\},\{\{3\}\}\} .
\end{aligned}
$$

Acknowledgements The authors wish to thank the referees for a careful reading of the paper. 477 The last author acknowledges the partial support of NSF-DMS 0713836.4478
References 479

1. N. C. Alexander. Non-vanishing of Uppuluri-Carpenter. Preprint. 2006. 480
2. T. Amdeberhan, D. Manna, and V. Moll. The 2-adic valuation of a sequence arising from a 481
rational integral. Jour. Comb. A, 115:1474-1486, 2008. 482
3. T. Amdeberhan, D. Manna, and V. Moll. The 2-adic valuation of Stirling numbers. 483
Experimental Mathematics, 17:69-82, 2008. 484
4. T. Amdeberhan, L. Medina, and V. Moll. Arithmetical properties of a sequence arising from 485
an arctangent sum. Journal of Number Theory, 128:1808-1847, 2008. 486
5. J. An. Wilf conjecture. Preprint. 2008. 487
6. G. P. Egorychev and E. V. Zima. Integral representation and algorithms for closed form 488
summation. In M. Hazewinkel, editor, Handbook of Algebra, volume 5, pages 459-529. 489
Elsevier, 2008. 490
7. M. Klazar. Bell numbers, their relatives and algebraic differential equations. J. Comb. Theory 491
Ser. A, 102:63-87, 2003. 492
8. M. Klazar. Counting even and odd partitions. Amer. Math. Monthly, 110:527-532, 2003. 493
9. A. M. Legendre. Théorie des Nombres. Firmin Didot Frères, Paris, 1830. 494
10. V. Moll and X. Sun. A binary tree representation for the 2-adic valuation of a sequence arising 495
from a rational integral. INTEGERS, 10:211-222, 2010. 496
11. M. Ram Murty and S. Sumner. On the p-adic series $\sum_{n=1}^{\infty} n^{k} \cdot n$!. In H. Kisilevsky 497
and E. Z. Goren, editors, CRM Proceedings and Lectures Notes. Number Theory, Canadian 498
Number Theory Association VII, pages 219-228. Amer. Math. Soc., 2004. 499
12. M. Petkovsek, H. Wilf, and D. Zeilberger. $A=B$. A. K. Peters, Ltd., 1st edition, 1996. 500
13. T. Laffey S. De Wannemacker and R. Osburn. On a conjecture of Wilf. Journal of 50 501
Combinatorial Theory Series A, 114:1332-1349, 2007. 502
14. M. V. Subbarao and A. Verma. Some remarks on a product expansion: An unexplored partition 503
function. In F. G. Garvan and M. E. H. Ismail, editors, Symbolic Computation, Number Theory, 504
Special Functions, Physics and Combinatorics, Gainsville, Florida, 1999, pages 267-283. 505
Kluwer, Dordrecht, 2001. 506
15. X. Sun and V. Moll. The p-adic valuation of sequences counting alternating sign matrices. 507
Journal of Integer Sequences, 12:09.3.8, 2009. 508
16. V. R. Rao Uppuluri and J. A. Carpenter. Numbers generated by the function $\exp \left(1-e^{x}\right)$. Fib. 509
Quart., 7:437-448, 1969. 510
17. Y. Yang. On a multiplicative partition function. Elec. Jour. Comb., 8:Research Paper 19, 2001. 511

Editor's Proof

Metadata of the chapter that will be visualized online

Chapter Title	Partitions with Early Conditions
Copyright Year	2013
Copyright Holder	Springer-Verlag Berlin Heidelberg
Corresponding Author	Family Name Andrews Particle Given Name George E. Suffix Division Department of Mathematics Organization The Pennsylvania State University Address University Park, PA, 16802, USA
Abstract	In an earlier paper, partitions in which the smaller parts were required to appear at least k-times were considered. Some of those results were tied up with Rogers-Ramanujan type identities and mock theta functions. By considering more general conditions on initial parts we are led to natural explanations of many more identities contained in Slater's compendium of 130 Rogers-Ramanujan identities.

Partitions with Early Conditions

George E. Andrews*

Abstract

In an earlier paper, partitions in which the smaller parts were required to 5 appear at least k-times were considered. Some of those results were tied up with 6 Rogers-Ramanujan type identities and mock theta functions. By considering more 7 general conditions on initial parts we are led to natural explanations of many more 8 identities contained in Slater's compendium of 130 Rogers-Ramanujan identities. 9

1 Introduction

In 1886, J. J. Sylvester [17] posed a couple of problems in the Educational Times 11 that are precursors to the study undertaken here. We reproduce the problems in their 12 entirety:

Definition. If, in any arrangement of integers, each of the numbers $1,2,3, \ldots$ up to any odd

1. Required to prove, that if any number be partitioned in every possible way, the number 18 of unflushed partitions containing an odd number of parts is equal to the number of
[^3]| Ex.gr.: The total partitions of 7 are | 21 |
| :--- | :--- |
| $7 ; 6,1 ; 5,2 ; 5,1,1 ; 4,3 ; 4,2,1 ; 4,1,1,1 ; 3,3,1 ; 3,2,2 ; 3,2,1,1 ; 2,2,2,1 ; 3,1,1,1$, | 22 |
| $1 ; 2,2,1,1,1 ; 2,1,1,1,1,1 ; 1,1,1,1,1,1,1$ | |
| Of these, 6,$1 ; 4,1,1,1 ; 3,3,1 ; 2,2,1,1,1 ; 1,1,1,1,1,1,1$ alone are flushed. Of | 23 |
| the remaining unflushed partitions, five contain an odd number of parts, and five an even | 25 |
| number. | 26 |
| Again, the total partitions of 6 are | 27 |
| 6;5,1;4,2;4,1,1;3,3;3,2,1;2,2,2;3,1,1,1;2,2,1,1;2,1,1,1,1;1,1,1,1,1,1; | 28 |
| of which 5,$1 ; 3,2,1 ; 3,1,1,1$ alone are flushed. Of the remainder, four contain an odd | 29 |
| and four an even number of parts. | 30 |
| N.B.-This transcendental theorem compares singularly with the well-known alge- | 31 |
| braical one, that the total number of the permuted partitions of a number with an odd | 32 |
| number of parts is equal to the same of the same with an even number. | 33 |
| 2. Required to prove that the same proposition holds when any odd number is partitioned | 34 |
| without repetitions in every possible way. | 35 |

Sylvester did not publish solutions to these problems. In 1970, solutions to both 36 problems were published [1] and the generating function for flushed partitions 37 (corrected) was revealed as

$$
\begin{equation*}
(A ; q)_{n}=(1-A)(1-A q) \cdots\left(1-A q^{n-1}\right) \tag{41}
\end{equation*}
$$

The solutions of Sylvester's problems involved generating functions. It is com- 42 pletely unknown whether this was Sylvester's approach and how he came upon 43 flushed partitions in the first place.

Sylvester's flushed partitions suggest a more extensive study of partitions subject 45 to variations on the following three constraints which we shall call the Sylvester 46 constraints:

1. Some of the smaller parts are required to appear a specified number of times 48 (e.g. in the case of flushed partitions, an odd number of times).
2. Immediately following the parts considered in (1) there may be one or two 50 special parts (e.g. in the case of flushed partitions, the first integer appearing 51 an even number of times is even).
3. The larger parts are constrained differently if at all (e.g. in the case of flushed 53 partitions there are no constraints).

54
In the subsequent decades of the twentieth century, N. J. Fine appears to have 55 been the only one to consider questions of this type. In lectures at Penn State, he 56 observed that the conjugates of partitions into distinct parts are "partitions without 57 gaps," i.e. partitions in which every integer smaller than the largest part is also a 58 part. For example, here are the partitions of 6 into distinct parts paired with their 59 conjugates:

Editor's Proof

$$
\begin{array}{rr}
6 & 1+1+1+1+1+1 \\
5+1 & 2+1+1+1+1 \\
4+2 & 2+2+1+1 \\
3+2+1 & 3+2+1
\end{array}
$$

Fine also noted in his book [7, p. 57] (see also [18]) that in one of Ramanujan's 61 third order mock theta functions

$$
\begin{aligned}
\psi(q) & :=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{\left(q ; q^{2}\right)_{n}} \\
& =\sum_{n=0}^{\infty} \beta(n) q^{n}
\end{aligned}
$$

the coefficient $\beta(n)$ is the number of partitions of n into odd parts where each odd ${ }^{63}$ integer smaller than the largest part must also be a part.

In 2009, the theme initiated by Sylvester was further developed in a paper titled 65 "Partitions with initial repetitions" [5].

Definition 1. A partition with initial k-repetitions is a partition in which if any $j{ }^{6}$ appears at least k times as a part, then each positive integer less than j appears $k{ }_{68}$ times as a part.

As noted in [5, Theorem 1], partitions with initial k-repetitions fit naturally into 70 an expanded version of the Glaisher/Euler theorem [2, Corollary 1.3, p. 6].

Theorem 1. The number of partitions of n with initial k-repetitions equals the 72 number of partitions of n into parts not divisible by $2 k$ and also equals the number ${ }_{73}$ of partitions of n in which no part is repeated more than $2 k-1$ times.

This idea was further developed in [5] and sets the stage for the results in this 75 paper.

Definition 2. Let $F_{e}(n)\left(\right.$ resp. $\left.F_{o}(n)\right)$ denote the number of partitions of n in which 77 no odd (resp. no even) parts are repeated and no odd part (resp. even part) is smaller 78 than a repeated even part (resp. odd part), and if an even (resp. odd) part is repeated 79 then each smaller even (resp. odd) positive integer is also a repeated part.

Theorem 2. $F_{e}(n)$ equals the number of partitions of n into parts $\not \equiv 0, \pm 281$ $(\bmod 7)$.

This result follows immediately from the second Rogers-Selberg identity 83 [16, p. 155, Eq. (32)]

$$
\sum_{n=0}^{\infty} \frac{q^{2 n^{2}+2 n}\left(-q^{2 n+1} ; q\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{n}}=\prod_{\substack{n=1 \\ n \neq 0 \pm 2(\bmod 7)}}^{\infty} \frac{1}{1-q^{n}}
$$

Editor's Proof

60

Theorem 3. $\sum_{n=0}^{\infty} F_{o}(n) q^{n}=(-q ; q)_{\infty} f\left(q^{2}\right)$, where $f(q)$ is one of Ramanujan's 86 seventh order mock theta functions [14, p. 355]

$$
f(q)=\sum_{n=1}^{\infty} \frac{q^{n^{2}}}{\left(q^{n} ; q\right)_{n}}
$$

Our object in this paper is to apply the Sylvester constraints to various other 89 Rogers-Ramanujan type identities found by Slater [16], (cf. [14, Appendix A]). In 90 each instance odds and evens will be subject to different restrictions. Interchanging 91 the roles of odds and evens (as was done in passing from Theorems 2 to 3) has 92 an interesting outcome. Sometimes mock theta functions (cf. [18]) arise (cf. (7), 93 (8) and Sect.4), and sometimes other Rogers-Ramanujan type identities arise 94 (cf. Sect. 3).

95
In Sect. 2, we analyze two theorems that were originally found by F. H. Jackson 96 and are listed as identities (38) and (39) in Slater [16]. In this case the 97 exchange of the roles of odds and evens yields two of the mock theta functions 98 listed in [6].

In Sect. 3, we begin with Slater's identity (119) [16, p. 165]. In this case, 100 the reversed roles of odds and evens leads to a result equivalent to Slater's (81) 101 [16, p. 160].

In Sect. 4, events take a surprising turn. We begin with Slater's (44) and (46) 103 [16, p. 156]. Each of these makes condition (2) of the Sylvester constraints rather 104 cumbersome. So the terms of the series in (44) and (46) are slightly altered to 105 streamline condition (2). The result is new Hecke-type series, and the odd even 106 reversal yields a further instance. 107

Finally in Sect.5, we start with Slater's (53). This requires us to move from 108 odd-even (or modulus 2) conditions to modulus 4 conditions. In this case, the role 109 reversal takes us from Slater's (53) to Slater's (55). 110

Section 6 is the conclusion where we discuss a variety of potential projects 111 foreshadowed by this paper.

2 Identities of Modulus 8

Of course, there are two famous modulus 8, Rogers-Ramanujan identities. They are 114 due to Lucy Slater [14, Eqs. (36) and (34)]:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}}}{\left(q^{2} ; q^{2}\right)_{n}}=\prod_{\substack{n=1 \\ n \equiv 1,4,7(\bmod 8)}}^{\infty} \frac{1}{1-q^{n}} \tag{1}
\end{equation*}
$$

Editor's Proof

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}+2 n}}{\left(q^{2} ; q^{2}\right)_{n}}=\prod_{\substack{n=1 \\ n \equiv 3,4,5(\bmod 8)}}^{\infty} \frac{1}{1-q^{n}} \tag{2}
\end{equation*}
$$

Although Slater first obtained these results in her Ph.D. thesis in the late 1940s, 117 they have become known as the Göllnitz-Gordon identities because in the early 1960s both H. Göllnitz [9] and B. Gordon [10] discovered their partition theoretic interpretation.

As A. Sills notes in [15, p. 103], F. H. Jackson [11] found, and Slater [16, Eqs. (39) and (38)] re-found closely related results which we now consider in slightly altered form:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{2 n^{2}}\left(-q^{2 n+1} ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{n}}=\prod_{\substack{n=1 \\ n \equiv 1,4,7(\bmod 8)}}^{\infty} \frac{1}{1-q^{n}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{2 n^{2}+2 n}\left(-q^{2 n+3} ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{n}}=\prod_{\substack{n=1 \\ n=3,4,5(\bmod 8)}}^{\infty} \frac{1}{1-q^{n}} \tag{4}
\end{equation*}
$$

Let us rewrite these series in a form where the partition theoretic interpretation is obvious.

$$
\begin{gather*}
\sum_{n=0}^{\infty} \frac{q^{2+2+4+4+\cdots+(2 n-2)+(2 n-2)+2 n}\left(1+q^{2 n+1}\right)\left(1+q^{2 n+3}\right)\left(1+q^{2 n+5}\right) \cdots}{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 n}\right)} \\
=\prod_{\substack{n=1 \\
n \equiv 1,4,7(\bmod 8)}}^{\infty} \frac{1}{1-q^{n}} \tag{5}
\end{gather*}
$$

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{q^{2+2+4+4+\cdots+2 n+2 n}\left(1+q^{2 n+3}\right)\left(1+q^{2 n+5}\right)\left(1+q^{2 n+7}\right) \cdots}{\left(1-q^{2}\right)\left(1-q^{4}\right) \cdots\left(1-q^{2 n}\right)} \\
=\prod_{\substack{n=1 \\
n \equiv 3,4,5(\bmod 8)}}^{\infty} \frac{1}{1-q^{n}} \tag{6}
\end{align*}
$$

The standard methods for generating partitions from q-series and products

Theorem 4. Let $G_{1}(n)$ denote the number of partitions of n into parts $\equiv 1,4$ or 7 $(\bmod 8)$. Let $R_{1}(n)$ denote the number of partitions of n in which, (i) odd parts are 131 distinct and each is larger than any even part, and (ii) all even integers less than the ${ }_{132}$ largest even part appears at least twice. Then for each $n \geq 0, \quad 133$

$$
\begin{equation*}
G_{1}(n)=R_{1}(n) \tag{134}
\end{equation*}
$$

For example, the 12 partitions enumerated by $G_{1}(15)$ are $15,12+1+1+1,{ }_{135}$ $9+4+1+1,9+1+1+\cdots+1,7+7+1,7+4+4,7+4+1+1+1+1,{ }^{136}$ $7+1+1+\cdots+1,4+4+4+1+1+1,4+4+1+1+\cdots+1,4+1+1+\cdots+1,{ }_{137}$ $1+1+\cdots+1$, and the 12 partitions enumerated by $R_{1}(15)$ are $15,11+3+1,{ }_{138}$ $9+5+1,7+5+3,13+2,11+2+2,9+2+2+2,7+2+2+2+2,{ }^{139}$ $5+2+2+2+2+2,3+2+2+\cdots+2,7+4+2+2,5+4+2+2+2 . \quad 140$
Theorem 5. Let $G_{2}(n)$ denote the number of partitions of n into parts $\equiv 3,4$, or ${ }_{141}$ $5(\bmod 8)$. Let $R_{2}(n)$ denote the number of partitions of n in which, (i) odd parts 142 are distinct, greater than 1, and each is larger than the largest even +2 , and (ii) all 143 even integers up to and including the largest even part appear at least twice. Then 144 for each $n \geq 0$

$$
G_{2}(n)=R_{2}(n)
$$

For example, the 7 partitions enumerate by $G_{2}(16)$ are $13+3,12+4,11+5$,
 $5+5+3+3,5+4+4+3,4+4+4+4,4+3+3+3$, and the 7 partitions 148 enumerated by $R_{2}(16)$ are $13+3,11+5,9+7,7+5+2+2,4+4+2+2+2+2$, 149 $4+4+4+2+2,2+2+\cdots+2$. $\quad 150$

Now let us reverse the roles played by the evens and odds. The resulting 151 counterpart of (5) is

$$
\begin{align*}
\sum_{n \geq 1} \frac{q^{1+1+3+3+\cdots+(2 n-3)+(2 n-3)+(2 n-1)}\left(-q^{2 n} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{n}} & =q \sum_{n \geq 0} \frac{q^{2 n^{2}+2 n}\left(-q^{2 n+2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{n+1}} \\
& =q\left(-q^{2} ; q^{2}\right)_{\infty} \sum_{n=0}^{\infty} \frac{q^{2 n^{2}+2 n}}{(q ;-q)_{2 n+1}} \\
& :=q\left(-q^{2} ; q^{2}\right)_{\infty} \mathcal{S}_{1}(q) \tag{7}
\end{align*}
$$

where [6]
153

$$
\begin{aligned}
\mathcal{G}_{1}(-q) & =\sum_{n=0}^{\infty} \frac{q^{2 n^{2}+2 n}}{(-q ; q)_{2 n+1}} \\
& =\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty} q^{4 n^{2}-3 n}\left(q^{14 n+7}-1\right) \sum_{j=-n}^{n}(-1)^{j} q^{-j^{2}} .
\end{aligned}
$$

Editor's Proof

The latter is the now familiar form of a Hecke-type series involving an indefinite 155 quadratic form (see also [6, Eq. (1.15)]).

The resulting counterpart of (6) is

$$
\begin{align*}
\sum_{n \geq 1} \frac{q^{1+1+3+3+\cdots+(2 n-1)+(2 n-1)}\left(-q^{2 n+2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{n}} & =\sum_{n \geq 0} \frac{q^{2 n^{2}}\left(-q^{2 n+2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{n}} \\
& =\left(-q^{2} ; q^{2}\right)_{\infty} \sum_{n=0}^{\infty} \frac{q^{2 n^{2}}}{(q ;-q)_{2 n}} \\
& =\left(-q^{2} ; q^{2}\right)_{\infty} \mathcal{G}_{2}(q) \tag{8}
\end{align*}
$$

where [6, Eq. (1.14)]

$$
\begin{aligned}
\mathcal{G}_{2}(-q) & =\sum_{n=0}^{\infty} \frac{q^{2 n^{2}}}{(-q ; q)_{2 n}} \\
& =\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty} q^{4 n^{2}+n}\left(1-q^{6 n+3}\right) \sum_{j=-n}^{n}(-1)^{j} q^{-j^{2}} .
\end{aligned}
$$

Thus, as was mentioned in the Introduction, the even-odd reversal transformed the related generating functions from classical theta functions into mock theta functions.

3 Identities of Modulus 28

Suppose now we allow some mixing of odds and evens in our Sylvester constraints. 163 Let us turn to identity (119) in Slater's [16, p. 165] which we write as follows:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{1+3+\cdots+(2 n+1)}\left(-q^{2 n+2} ; q^{2}\right)_{\infty}}{(q ; q)_{2 n+1}}=\quad q \prod_{\substack{n=1 \\ n \neq 0, \pm 4, \pm 5, \pm 9,14(\bmod 28)}}^{\infty} \frac{1}{1-q^{n}} \tag{9}
\end{equation*}
$$

We directly deduce from this the following partition identity.
Theorem 6. Let $H_{1}(n)$ denote the number of partitions of n into parts $\not \equiv 0, \pm 4, \pm 5,166$ $\pm 9,14(\bmod 28)$. Let $S_{1}(n)$ denote the number of partitions of n in which odd parts do 167 appear and without gaps while the evens larger than the largest odd part are distinct. Then 168 for $n \geq 1$

$$
H_{1}(n-1)=S_{1}(n) .
$$

For example, the 18 partitions enumerated by $H_{1}(9)$ are $8+1,7+2,7+1+1$, 171 $6+3,6+2+1,6+1+1+1,3+3+3,3+3+2+1,3+3+1+1+1,3+2+2+2,172$

Editor's Proof

$3+2+2+1+1,3+2+1+1+1+1,3+1+\cdots+1,2+2+2+2+1,2+2+1+1+1$,
$2+2+1+1+1+1+1,2+1+1+\cdots+1,1+1+\cdots+1$, and the 18 partitions 174
enumerated by $S_{1}(10)$ are $8+1+1,6+3+1,6+2+1+1,6+1+1+1+1,175$
$5+3+1+1,4+3+2+1,4+3+1+1+1,4+2+1+1+1+1,3+3+3+1,{ }^{176}$
$4+1+1+\cdots+1,3+3+2+1+1,3+3+1+1+1+1,3+2+2+2+1,{ }^{177}$
$3+2+2+1+1+1,3+2+1+1+\cdots+1,3+1+1+\cdots+1,2+1+1+\cdots+1,178$
$1+1+\cdots+1$.
When we now reverse the roles of evens and odds, we find that, instead of a mock 180 theta function arising, we obtain another identity of Slater's [16]. Thus

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{q^{2+4+\cdots+2 n}\left(-q^{2 n+1} ; q^{2}\right)_{\infty}}{(q ; q)_{2 n}} & =\left(-q ; q^{2}\right)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n^{2}+n}}{(q ; q)_{2 n}\left(-q ; q^{2}\right)_{n}} \\
& =\left(-q ; q^{2}\right)_{\infty} \sum_{n=0}^{\infty} \frac{q^{n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}\left(q^{2} ; q^{4}\right)_{n}} \\
= & \prod_{n \neq 0, \pm 2, \pm 10, \pm 12,14(\bmod 28)}^{\infty} \frac{1}{1-q^{n}}
\end{aligned}
$$

by Slater [16, p. 160, Eq. (81)].
This result is then directly interpretable in the following theorem.
Theorem 7. Let $H_{2}(n)$ denote the number of partitions of n into parts $\not \equiv 0, \pm 2,184$ $\pm 10, \pm 12,14(\bmod 28)$. Let $S_{2}(n)$ denote the number of partitions of n in which even 185 parts appear without gaps and the odd parts larger than the largest even part are distinct. 186 Then

$$
H_{2}(n)=S_{2}(n) .
$$

For example, the 15 partitions enumerated by $H_{2}(9)$ are $9,8+1,7+1+1,6+3$, 189 $6+1+1+1,5+4,5+3+1,5+1+1+1+1,4+4+1,4+3+1+1,4+1+1+\cdots+1, \quad 190$ $3+3+3,3+3+1+1+1,3+1+1+\cdots+1,1+1+\cdots+1$, and the 15 partitions 191 enumerated by $S_{2}(9)$ are $9,7+2,5+3+1,5+2+2,5+2+1+1,4+3+2$, ${ }^{192}$ $4+2+1+1+1,4+2+2+1,3+2+2+2,3+2+2+1+1,3+2+1+1+1+1,{ }^{193}$ $2+2+2+2+1,2+2+2+1+1+1,2+2+1+1+\cdots+1,2+1+1+\cdots+1$. 194

4 Identities Stemming from Modulus 20

As is apparent by now, each section of this paper is devoted to some different 196 outcome when extending Sylvester's three conditions to the interpretation of 197 Slater's identities. In this section we begin with two of Slater's formulas that, 198 upon inspection, suggest rather cumbersome partition identities. The modifications 199 necessary to reduce the awkwardness again lead us to mock theta functions.

Editor's Proof

Partitions with Early Conditions

The identities in question are Slater's (44) and (46) [16, p. 156] slightly rewritten: 201

$$
\begin{align*}
& \sum_{n \geq 0} \frac{q^{1+1+2+3+3+\cdots+(2 n-1)+(2 n-1)+2 n+(2 n+1)}\left(-q^{2 n+3} ; q^{2}\right)_{\infty}}{(q)_{2 n+1}} \\
&= q \prod_{\substack{n=1 \\
n \neq 0, \pm 2, \pm 4, \pm 6,10}}^{\infty} \frac{1}{1-q^{n}} \tag{10}
\end{align*}
$$

and

$$
\begin{gather*}
\sum_{n \geq 0} \frac{q^{1+1+2+3+3+\cdots+(2 n-3)+(2 n-3)+(2 n-2)+(2 n-1)+2 n}\left(-q^{2 n+1} ; q^{2}\right)_{\infty}}{(q)_{2 n}} \tag{11}\\
=\prod_{\substack{ \\
n \neq 0, \pm 2, \pm 6, \pm 8,10(\bmod 20)}}^{\infty} \frac{1}{1-q^{n}}
\end{gather*}
$$

One can interpret (10) and (11) in the Sylvester manner, but, in doing so, 203 condition (2) in the Sylvester constraints becomes quite complicated.

So instead we consider closely related series where the interpretations are more 205 natural. Let

$$
\begin{align*}
& \sum_{n \geq 0} J_{1}(n) q^{n}:=\sum_{n \geq 0} \frac{q^{1+1+2+3+3+4+\cdots+(2 n-1)+(2 n-1)+2 n}\left(-q^{2 n+1} ; q^{2}\right)_{\infty}}{(q)_{2 n}} \\
&=\sum_{n \geq 0} \frac{q^{3 n^{2}+n}\left(-q^{2 n+1} ; q^{2}\right)_{\infty}}{(q)_{2 n}} . \tag{12}
\end{align*}
$$

and

$$
\begin{array}{r}
\sum_{n \geq 0} J_{2}(n) q^{n}:=\sum_{n \geq 0} \frac{q^{1+1+2+3+3+4+\cdots+2 n+(2 n+1)+(2 n+1)}\left(-q^{2 n+3} ; q^{2}\right)_{\infty}}{(q)_{2 n+1}} \\
=\sum_{n \geq 0} \frac{q^{3 n^{2}+5 n+2}\left(-q^{2 n+3} ; q^{2}\right)_{\infty}}{(q)_{2 n+1}} \tag{13}
\end{array}
$$

Now $J_{1}(n)$ and $J_{2}(n)$ may be viewed as enumerating partitions that mix "parti- 208 tions with initial 2-repetitions" with "partitions without gaps."

Namely, $J_{1}(n)$ is the number of partitions of n in which (1) all odd integers 210 smaller than the largest even part appear at least twice, (2) even parts appear without 211 gaps, and (3) odd parts larger than the largest even part are distinct. 212

The formulation of $J_{2}(n)$ is even more straightforward. $J_{2}(n)$ is the number of 213 partitions of n in which (1) each odd integer smaller than a repeated odd part is a 214 repeated odd part and (2) every even integer smaller than the largest repreated odd 215 part is a part, and (3) there are no other even parts.

Editor's Proof

Theorem 8.

$$
\begin{equation*}
\sum_{n \geq 0} J_{1}(n) q^{n}=\frac{1}{\psi(-q)} \sum_{n=0}^{\infty} q^{4 n^{2}+2 n}\left(1-q^{4 n+2}\right) \sum_{j=-\left\lfloor\frac{n}{2}\right\rfloor}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{j} q^{-6 j^{2}+2 j} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n \geq 0} J_{2}(n) q^{n}=\frac{q^{2}}{\psi(-q)} \sum_{n=0}^{\infty} q^{4 n^{2}+6 n}\left(1-q^{4 n+4}\right) \sum_{j=-\left\lfloor\frac{n}{2}\right\rfloor}^{\left\lfloor\frac{n+1}{2}\right\rfloor}(-1)^{j} q^{-6 j^{2}+2 j} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(q):=\sum_{n=0}^{\infty} q^{n(n+1) / 2} \tag{16}
\end{equation*}
$$

Proof. Using representations (12) and (13) we see that (14) and (15) are equivalent to 219 the following assertions:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{3 n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}\left(q^{2} ; q^{4}\right)_{n}}=\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty} q^{4 n^{2}+2 n}\left(1-q^{4 n+2}\right) \sum_{|2 j| \leq n}(-1)^{j} q^{-6 j^{2}+2 j} \tag{17}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{n=0}^{\infty} & \frac{q^{3 n^{2}+5 n}}{\left(q^{2} ; q^{2}\right)_{n}\left(q^{2} ; q^{4}\right)_{n+1}} \\
& =\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty} q^{4 n^{2}+6 n}\left(1-q^{4 n+4}\right) \sum_{-n \leq 2 j \leq n+1}(-1)^{j} q^{-6 j^{2}+2 j} \tag{18}
\end{align*}
$$

Identities (17) and (18) may be reduced to Bailey pair identities following the use of 222 the strong form of Bailey's Lemma [3, p. 270]. In the case of (17) we replace q by q^{2} in ${ }^{223}$ Bailey's Lemma and set $a=q^{2}$. In the case of (18) we replace q by q^{2} in Bailey's Lemma 224 and set $a=1$. If we then invoke the weak form of Bailey's Lemma [4, p. 27, Eq. (3.33)] 225 we see that (17) and (18) are equivalent to the assertions (27) and (28) below.

Let

$$
\begin{align*}
& a_{1}(n, q)=\sum_{j=0}^{n} \frac{\left(q^{-n} ; q\right)_{j}\left(q^{n+1} ; q\right)_{j} q^{(j+1} 2}{(q ; q)_{j}\left(q ; q^{2}\right)_{j}}, \tag{19}\\
& a_{2}(n, q)=\sum_{j=1}^{n} \frac{\left(q^{-n} ; q\right)_{j}\left(q^{n} ; q\right)_{j} q^{(j+1} 2}{(q ; q)_{j-1}\left(q ; q^{2}\right)_{j}}, \tag{20}\\
& a_{3}(n, q)=\sum_{j=0}^{n} \frac{\left.\left(q^{-n} ; q\right)_{j}\left(q^{n} ; q\right)_{j} q^{(j+1} 2\right)}{(q ; q)_{j}\left(q ; q^{2}\right)_{j}} . \tag{21}
\end{align*}
$$

Editor's Proof

Our proof relies on proving the following three identities. This in the spirit of the 228 method developed at length in [6].

$$
\begin{gather*}
a_{1}(n, q)+q^{n} a_{1}(n-1, q)=\left(1+q^{n}\right) a_{3}(n, q), \tag{22}\\
q^{n} a_{2}(n, q)-\left(1-q^{n}\right) a_{1}(n, q)=-\left(1-q^{n}\right) a_{3}(n, q), \tag{23}\\
a_{3}(n, q)= \begin{cases}0 & \text { if } n \text { is odd } \\
(-1)^{v} q^{-v^{2}} & \text { if } n=2 v .\end{cases} \tag{24}
\end{gather*}
$$

First we prove (22).

$$
\begin{aligned}
& a_{1}(n, q)+q^{n} a_{1}(n-1, q)=\left.\sum_{j=0}^{n} \frac{\left(q^{-n+1} ; q\right)_{j-1}\left(q^{n+1} ; q\right)_{j-1} q^{(j+1} 2}{2}\right) \\
&(q ; q)_{j}\left(q ; q^{2}\right)_{j} \\
& \times\left\{\left(1-q^{-n}\right)\left(1-q^{n+j}\right)+q^{n}\left(1-q^{-n+j}\right)\left(1-q^{n}\right)\right\} \\
&=\left(1+q^{n}\right) \sum_{j=0}^{n} \frac{\left(q^{-n} ; q\right)_{j}\left(q^{n} ; q\right)_{j} q^{(j+1} 2}{(q ; q)_{j}\left(q ; q^{2}\right)_{j}} \\
&=\left(1+q^{n}\right) a_{3}(n, q) .
\end{aligned}
$$

Next we treat (23).

$$
\begin{aligned}
a_{2}(n, q)-\left(1-q^{n}\right) a_{1}(n, q) & =\sum_{j \geq 0} \frac{\left(q^{-n} ; q\right)_{j}\left(q^{n} ; q\right)_{j} q^{(j+1} 2}{(q ; q)_{j}\left(q ; q^{2}\right)_{j}}\left(\left(1-q^{j}\right)-\left(1-q^{n+j}\right)\right. \\
& =-\left(1-q^{n}\right) \sum_{j \geq 0} \frac{\left.\left(q^{-n} ; q\right)_{j}\left(q^{n} ; q\right)_{j} q^{(j+1} 2\right)+j}{(q ; q)_{j}\left(q ; q^{2}\right)_{j}} \\
& =-\left(1-q^{n}\right) \sum_{j \geq 0} \frac{\left.\left(q^{-n} ; q\right)_{j}\left(q^{n} ; q\right)_{j} q^{(j+1} 2\right)\left(1-\left(1-q^{j}\right)\right)}{(q ; q)_{j}\left(q ; q^{2}\right)_{j}} \\
& =-\left(1-q^{n}\right) a_{3}(n, q)+\left(1-q^{n}\right) a_{2}(n, q),
\end{aligned}
$$

Finally we move to (24) using the notation of [8, p. 4] and invoking [8, p. 242, 233 Eq. III.13].

$$
\begin{aligned}
a_{3}(n, q) & =\lim _{\tau \rightarrow 0_{3}} \phi_{2}\binom{q^{-n}, q^{n},-\frac{q}{\tau} ; q, \tau}{q^{\frac{1}{2}},-q^{\frac{1}{2}}} \\
& =\frac{1}{\left(-q^{\frac{1}{2}} ; q\right)_{n}} \lim _{\tau \rightarrow 03} \phi_{2}\binom{q^{-n},-\frac{q}{\tau}, q^{\frac{1}{2}-n} ; q, q}{q^{\frac{1}{2}}, \frac{q^{\frac{3}{2}-n}}{\tau}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\left(-q^{\frac{1}{2}} ; q\right)_{n_{2}}} \phi_{1}\binom{q^{-n}, q^{\frac{1}{2}-n} ; q,-q^{\frac{1}{2}+n}}{q^{\frac{1}{2}}} \\
& = \begin{cases}0 & \text { if } n \text { is odd } \\
(-1)^{v} q^{-v^{2}} & \text { if } n=2 v,\end{cases}
\end{aligned}
$$

where the final line follows from the q-analog of Kummer's theorem [8, p. 236, Eq. (II.9)]. ${ }^{236}$
From (22) to (24) it is clear that each of $a_{1}(n, q), a_{2}(n, q)$ and $a_{3}(n, q)$ is recursively 237 defined as a Laurent polynomial in q. It is then a straightforward matter to show via 238 mathematical induction that

$$
\begin{align*}
& a_{1}(n, q)= \begin{cases}-q^{n} a_{1}(n-1, q) & \text { if } n \text { odd } \\
q^{\binom{n+1}{2}} \sum_{j=-v}^{v}(-1)^{j} q^{-j(3 j+1)} & \text { if } n=2 v .\end{cases} \tag{25}\\
& a_{2}(n, q)=\left(1-q^{n}\right)(-1)^{n} q^{\binom{n}{2}} \sum_{j=-\left\lfloor\frac{n}{2}\right\rfloor}^{\left\lfloor\frac{n-1}{2}\right\rfloor}(-1)^{j} q^{-j(3 j+1) .} \tag{26}
\end{align*}
$$

Equating (19) and (25) are equivalent to the assertion that

$$
\left\{\begin{array}{l}
\alpha_{n}=\frac{(-1)^{n} q^{n^{2}-n}\left(1-q^{4 n+2}\right)}{\left(1-q^{2}\right)} a_{1}\left(n, q^{2}\right) \tag{27}\\
\beta_{n}=\frac{q^{n^{2}-n}}{\left(q^{2} ; q^{2}\right)_{n}\left(q^{2} ; q^{4}\right)^{n}}
\end{array}\right.
$$

are a Bailey pair (where $q \rightarrow q^{2}$ and $a=q^{2}$) (see [3] especially Bailey's Lemma ${ }_{241}$ on page 270 and Eq. (4.1) on page 278). We note that this Bailey pair can also be 242 deduced from the more general Bailey pair given by Lovejoy [12, p. 1510, Eqs. (2.4) 243 and (2.5)]. We may now insert this Bailey pair into the weak form of Bailey's Lemma 244 [4, p. 27, Eq. (3.33)] with $q \rightarrow q^{2}, a=q^{2}$], and then (25) and simplification 245 yields (17).

Equations (20) and (26) are equivalent to the assertion that 247

$$
\left\{\begin{array}{l}
\bar{\alpha}_{n}=(-1)^{n} q^{n^{2}-n}\left(1+q^{2 n}\right) a_{2}(n, q) \tag{28}\\
\bar{\beta}_{n}=\frac{q^{n^{2}-n}\left(1-q^{2 n}\right)}{\left(q^{2} ; q^{2}\right)_{n}\left(q^{2} ; q^{4}\right) n}
\end{array}\right.
$$

are a Bailey pair (with $q \rightarrow q^{2}, a=1$) [3, pp. 270 and 278]. We may now insert this 248 Bailey pair into the weak form of Bailey's Lemma [4, p. 27, Eq. (3.33) with $q \rightarrow q^{2},{ }^{249}$ $a=1$]; then (26) and simplification yields (18).

Notice that our starting position in this section, namely (12) and (13) (inspired 251 by (10) and (11)) landed us in the world of Hecke-type series immediately. So what 252 will happen when we reverse the roles of evens and odds? We define

Editor's Proof

Partitions with Early Conditions

$$
\begin{align*}
& \sum_{n \geq 0} K_{1}(n) q^{n}:=\sum_{n \geq 0} \frac{q^{1+2+2+3+4+4+\cdots+2 n+2 n+(2 n+1)}\left(-q^{2 n+2} ; q^{2}\right)_{\infty}}{(q)_{2 n+1}} \\
&=\sum_{n \geq 0} \frac{q^{3 n^{2}+4 n+1}\left(-q^{2 n+2} ; q^{2}\right)_{\infty}}{(q)_{2 n+1}}, \tag{29}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{n \geq 0} K_{2}(n) q^{n}:=\sum_{n \geq 0} \frac{q^{1+2+2+3+\cdots+2 n+2 n}\left(-q^{2 n+2} ; q^{2}\right)_{\infty}}{(q)_{2 n}} \\
&=\sum_{n \geq 0} \frac{q^{3 n^{2}+2 n}\left(-q^{2 n+2} ; q^{2}\right)_{\infty}}{(q)_{2 n}} \tag{30}
\end{align*}
$$

We shall not formally provide the partition-theoretic interpretations of $K_{1}(n)$ and 255 $K_{2}(n)$ because they are identical with those of $J_{1}(n)$ and $J_{2}(n)$ respectively where 256 the roles of odds and evens have been exchanged.

Theorem 9.

$$
\begin{equation*}
\sum_{n \geq 0} K_{1}(n)(-q)^{n}=\frac{1}{\left(-q ; q^{2}\right)_{\infty}\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty}}-\sum_{n=0}^{\infty} K_{2}(n)(-q)^{n}, \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n \geq 0} K_{2}(n) q^{n}=\frac{1}{\phi\left(-q^{2}\right)} \sum_{n \geq 0} q^{4 n^{2}+2 \hat{n}}\left(1-q^{4 n+2}\right) \sum_{j=-n}^{n}(-1)^{j}(-q)^{-j(3 j-1) / 2}, \tag{32}
\end{equation*}
$$

with $\phi(q)=\sum_{n=-\infty}^{\infty} q^{n^{2}}$
Proof. Using representations (29) and (30) we see that (31) and (32) are equivalent to

$$
\begin{align*}
& \sum_{n \geq 0} \frac{q^{3 n^{2}+4 n+1}}{(q ; q)_{2 n+1}\left(-q^{2} ; q^{2}\right)_{n}} \\
& \quad=\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}}\left(\sum_{n=-\infty}^{\infty}(-1)^{n}(-q)^{n(5 n+3) / 2}\right)-\sum_{n=0}^{\infty} \frac{q^{3 n^{2}+2 n}}{(q ; q)_{2 n}\left(-q^{2} ; q^{2}\right)_{n}} . \tag{33}\\
& \sum_{n \geq 0} \frac{q^{3 n^{2}+2 n}}{(q ; q)_{2 n}\left(-q^{2} ; q^{2}\right)_{n}} \\
& \quad=\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty} q^{4 n^{2}+2 n}\left(1-q^{4 n+2}\right) \sum_{j=-n}^{n}(-1)^{j}(-q)^{-j(3 j-1) / 2} . \tag{34}
\end{align*}
$$

Editor's Proof

Identities (33) and (34) may be reduced to Bailey pair identities following the use of 262 the strong form of Bailey's Lemma [3, p. 270]. For both (33) and (34) we replace q by $q^{2} 263$ in Bailey's Lemma and set $a=q^{2}$. If we then invoke the weak form of Bailey's Lemma 264 [4, p. 27, Eq. (3.33)] we see (33) and (34) are equivalent to the assertions (45) and (46) 265 below.

Let

$$
\begin{align*}
& A_{1}(n, q)=\sum_{j=0}^{n} \frac{\left(q^{-2 n} ; q^{2}\right)_{j}\left(q^{2 n+2} ; q^{2}\right)_{j} q^{j^{2}+4 j+1}}{(q ; q)_{2 j+1}\left(-q^{2} ; q^{2}\right)_{j}} \tag{35}\\
& A_{2}(n, q)=\sum_{j=0}^{n} \frac{\left(q^{-2 n} ; q^{2}\right)_{j}\left(q^{2 n+2} ; q^{2}\right)_{j} q^{j^{2}+2 j}}{(q ; q)_{2 j}\left(-q^{2} ; q^{2}\right)_{j}}, \tag{36}\\
& A_{3}(n, q)=\sum_{j=0}^{n} \frac{\left(q^{-2 n} ; q^{2}\right)_{j}\left(q^{2 n+2} ; q^{2}\right)_{j} q^{j^{2}+2 j}}{(q ; q)_{2 j+1}\left(-q^{2} ; q^{2}\right)_{j}} \tag{37}\\
& A_{4}(n, q)=\sum_{j=0}^{n} \frac{\left(q^{-2 n} ; q^{2}\right)_{j}\left(q^{2 n} ; q^{2}\right)_{j} q^{j^{2}+2 j}}{(q ; q)_{2 j}\left(-q^{2} ; q^{2}\right)_{j}} \tag{38}
\end{align*}
$$

Our proof requires the following identities.

$$
\begin{gather*}
A_{3}(n, q)-A_{1}(n, q)=A_{2}(n, q) \tag{39}\\
A_{2}(n, q)+q^{2 n} A_{2}(n-1, q)=\left(1+q^{2 n}\right) A_{4}(n, q) \tag{40}\\
A_{3}(n, q)=\frac{(-q)^{-\binom{n}{2}}}{1-q^{2 n+1}} \tag{41}\\
 \tag{42}\\
A_{4}(n, q)=\frac{(-q)^{-\binom{n}{2}}\left(1+(-q)^{n}\right)}{1+q^{2 n}} .
\end{gather*}
$$

First we prove (39).

$$
\begin{aligned}
A_{3}(n, q)-A_{1}(n, q) & =\sum_{j=0}^{n} \frac{\left(q^{-2 n} ; q^{2}\right)_{j}\left(q^{2 n+2} ; q^{2}\right)_{j} q^{j^{2}+2 j}\left(1-q^{2 j+1}\right)}{(q ; q)_{2 j+1}\left(-q^{2} ; q^{2}\right)_{j}} \\
& =\sum_{j=0}^{n} \frac{\left(q^{-2 n} ; q^{2}\right)_{j}\left(q^{2 n+2} ; q^{2}\right)_{j} q^{j^{2}+2 j}}{(q ; q)_{2 j}\left(-q^{2} ; q^{2}\right)_{j}}=A_{2}(n, q)
\end{aligned}
$$

Next comes (40).

$$
\begin{aligned}
A_{2}(n, q)+q^{2 n} A_{2}(n & -1, q) \\
& =\sum_{j \geq 0} \frac{\left(q^{-2 n+2} ; q^{2}\right)_{j-1}\left(q^{2 n+2} ; q^{2}\right)_{j-1} q^{j^{2}+2 j}}{(q ; q)_{2 j}\left(-q^{2} ; q^{2}\right)_{j}}
\end{aligned}
$$

Editor's Proof

$$
\begin{aligned}
& \times\left\{\left(1-q^{2 n}\right)\left(1-q^{2 n+2 j}\right)+q^{2 n}\left(1-q^{-2 n+2 j}\right)\left(1-q^{2 n}\right)\right\} \\
= & \left(1+q^{2 n}\right) \sum_{j \geq 0} \frac{\left(q^{-2 n} ; q^{2}\right)_{j}\left(q^{2 n} ; q^{2}\right)_{j} q^{j^{2}+2 j}}{(q ; q)_{2 j}\left(-q^{2} ; q^{2}\right)_{j}}
\end{aligned}
$$

Now we treat (41) using the notation of [8, p. 4].

$$
\begin{aligned}
A_{3}(n, q) & =\frac{1}{1-q} \lim _{\tau \rightarrow 0_{3}} \phi_{2}\binom{q^{-2 n}, q^{2 n+2},-\frac{q}{\tau} ; q^{2}, q^{2} \tau}{q^{3},-q^{2}} \\
& =\frac{1}{\left(q ; q^{2}\right)_{n+1}} \lim _{\tau \rightarrow 0_{3}} \phi_{2}\binom{q^{-2 n},-\frac{q}{\tau},-q^{-2 n} ; q^{2}, q^{2}}{-q^{2},-\frac{q^{2 n}}{\tau}}
\end{aligned}
$$

by Gasper and Rahman [8, p. 242, Eq. (III.13)]
$=\frac{1}{\left(q ; q^{2}\right)_{n+1} 2} \phi_{1}\binom{q^{-2 n},-q^{2 n} ; q^{2}, q^{2 n+3}}{-q^{2}}$
$=\frac{1}{\left(q ; q^{2}\right)_{n+1}} \sum_{j=0}^{n} \frac{\left(q^{-4 n} ; q^{4}\right)_{j} q^{(2 n+3) j}}{\left(q^{4} ; q^{4}\right)_{j}}$
$=\frac{\left(q^{3-2 n} ; q^{4}\right)_{n}}{\left(q ; q^{2}\right)_{n+1}}=\frac{(-q)^{-\binom{n}{2}}}{1-q^{2 n+1}}$,
where the penultimate assertion follows from [8, p. 236, Eq. (II.7)].
Finally we treat the fourth identity (42).

$$
\begin{aligned}
A_{4}(n, q) & =\lim _{\tau \rightarrow 0_{3}} \phi_{2}\binom{q^{-2 n}, q^{2 n},-\frac{q}{\tau} ; q^{2}, q^{2} \tau}{-q^{2}, q} \\
& =\frac{1}{\left(q ; q^{2}\right)_{n_{2}}} \phi_{1}\binom{q^{-2 n},-q^{2-2 n} ; q^{2}, q^{1+2 n}}{-q^{2}}
\end{aligned}
$$

by Gasper and Rahman [8, p. 241, Eq. (III.9)]

$$
\begin{aligned}
& =\frac{1}{\left(q ; q^{2}\right)_{n}} \sum_{j=0}^{n} \frac{\left(q^{4-4 n} ; q^{4}\right)_{j-1}\left(1-q^{-2 n}\right)\left(1+q^{-2 n+2 j}\right) q^{j(1+2 n)}}{\left(q^{4} ; q^{4}\right)_{j}} \\
& =\frac{1}{\left(q ; q^{2}\right)_{n}\left(1+q^{-2 n}\right)} \sum_{j=0}^{n} \frac{\left(q^{-4 n} ; q^{4}\right)_{j}}{\left(q^{4} ; q^{4}\right)_{j}}\left(q^{j(1+2 n)}+q^{-2 n+j(3+2 n)}\right) \\
& =\frac{q^{2 n}}{\left(q ; q^{2}\right)_{n}\left(1+q^{2 n}\right)}\left(\left(q^{1-2 n} ; q^{4}\right)_{n}+\left(q^{3-2 n} ; q^{4}\right)_{n}\right)
\end{aligned}
$$

Editor's Proof

$$
\begin{aligned}
& =\frac{(-q)^{-\binom{n}{2}}(-q)^{n}}{1+q^{2 n}}+\frac{(-q)^{-\binom{n}{2}}}{1+q^{2 n}} \\
& =(-q)^{-\binom{n}{2}} \frac{\left(1+(-q)^{n}\right)}{1+q^{2 n}},
\end{aligned}
$$

as desired.
From (39) to (42), it follows by mathematical induction that

$$
\begin{align*}
& A_{1}(n, q)=-q^{n^{2}+n}(-1)^{n} \sum_{j=-n}^{n}(-1)^{j}(-q)^{-j(3 j-1) / 2}+\frac{(-q)^{-\frac{n(n-1)}{2}}}{1-q^{2 n+1}}, \tag{43}\\
& A_{2}(n, q)=(-1)^{n} q^{n^{2}+n} \sum_{j=-n}^{n}(-1)^{j}(-q)^{-j(3 j-1) / 2} . \tag{44}
\end{align*}
$$

Let us treat (32) or rather its equivalent formulation (34) first. Identity (44) is 277 equivalent to the assertion that

$$
\left\{\begin{array}{l}
\alpha_{n}^{\prime}=\frac{q^{2 n^{2}}\left(1-q^{4 n+2}\right)}{\left(1-q^{2}\right)} \sum_{j=-n}^{n}(-1)^{j}(-q)^{-j(3 j-1) / 2} \tag{45}\\
\beta_{n}^{\prime}=\frac{q^{n^{2}}}{(q ; q) 2 n\left(-q^{2} ; q^{2}\right)_{n}}
\end{array}\right.
$$

are a Bailey pair (where $q \rightarrow q^{2}$ and $a=q^{2}$). It should be noted that this Bailey pair 279 was found earlier by A. Patkowski in [13]. Inserting this Bailey pair into the weak form of 280 Bailey's Lemma, we obtain (34) by invoking (44) and simplifying.

As for (31), or rather its equivalent formulation (33), we see from (43) and (44) that 282

$$
\left\{\begin{array}{l}
\alpha_{n}^{\prime \prime}=-\alpha_{n}^{\prime}+\frac{(-1)^{n}(-q)^{\left(\frac{1}{2}\right)}\left(1+q^{2 n+1}\right)}{\left(1-q^{2}\right)} \tag{46}\\
\beta_{n}^{\prime \prime}=\frac{q^{n^{2}+2 n+1}}{(q ; q) 2 n+1\left(-q^{2} ; q^{2}\right)_{n}}
\end{array}\right.
$$

form a Bailey pair. Furthermore

$$
\begin{aligned}
\sum_{n \geq 0} K_{1}(n) q^{n} & =\sum_{n=0}^{\infty} q^{2 n^{2}+2 n} \beta_{n}^{\prime \prime} \\
& =\frac{1}{\left(q^{4} ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty} q^{2 n^{2}+2 n} \alpha_{n}^{\prime \prime} \\
& =\frac{1}{\left(q^{4} ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty} q^{2 n^{2}+2 n}\left(-\alpha_{n}^{\prime}+\frac{(-1)^{n}(-q)^{\binom{n}{2}}\left(1+q^{2 n+1}\right)}{1-q^{2}}\right) \\
& =-\sum_{n \geq 0} K_{2}(n) q^{n}+\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}} \sum_{n=-\infty}^{\infty}(-1)^{n}(-q)^{\frac{5 n^{2}}{2}+\frac{3 n}{2}},
\end{aligned}
$$

Editor's Proof

and invoking Jacobi's triple product identity [2, Theorem 2.8, p. 21], we see that (33) is established.

5 Identities of Modulus 12

As is obvious by now, we are choosing a variety of examples from Slater's compendium to illustrate the variety that arises when we mix parity with the 286 Sylvester constraints. We close our presentation with a move beyond parity to 287 conditions modulo 4.

Recall that evenly even numbers are numbers divisible by 4 while oddly even 289 numbers are numbers congruent to 2 modulo 4 .

We shall examine Slater's (53) and (55) [16, p. 157].

$$
\begin{aligned}
\prod_{\substack{n=1 \\
: 3, \pm 4}} \frac{1}{1-q^{n}}= & \sum_{n \geq 0} \frac{q^{4 n^{2}}}{\left(q^{4} ; q^{4}\right)_{2 n}\left(q^{4 n+1} ; q^{2}\right)_{\infty}} \\
= & \frac{1}{\left(q ; q^{2}\right)_{\infty}}+\frac{q^{2+2}}{\left(1-q^{2+2}\right)\left(1-q^{4+4}\right)\left(q^{5} ; q^{2}\right)_{\infty}} \\
& +\frac{q^{2+2+6+6}}{\left(1-q^{2+2}\right)\left(1-q^{4+4}\right)\left(1-q^{6+6}\right)\left(1-q^{8+8}\right)\left(q^{9} ; q^{2}\right)_{\infty}} \\
& +\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
& \prod_{n= \pm 3, \pm 4, \pm 5}^{n n} \begin{array}{l}
\\
n=q^{n} \\
(\bmod 12) \\
\\
=
\end{array} \sum_{n \geq 0} \frac{1}{\left(q^{4} ; q^{4}\right)_{2 n+1}\left(q^{4 n+3} ; q^{2}\right)_{\infty}} \\
= & \frac{1}{\left(1-q^{2+2}\right)\left(q^{3} ; q^{2}\right)_{\infty}}+\frac{q^{4+4}}{\left(1-q^{2+2}\right)\left(1-q^{4+4}\right)\left(1-q^{6+6}\right)\left(q^{7} ; q^{2}\right)_{\infty}} \\
& +\frac{q^{4+4+8+8}}{\left(1-q^{2+2}\right)\left(1-q^{4+4}\right)\left(1-q^{6+6}\right)\left(1-q^{8+8}\right)\left(1-q^{10+10}\right)\left(q^{11} ; q^{2}\right)_{\infty}} \\
& +\cdots .
\end{aligned}
$$

In both (47) and (48), the extended final forms are given so that the following 293 theorems are immediately interpreted from these forms.

Theorem 10. Let $L_{1}(n)$ denote the number of partitions of n into parts that are $\equiv 295$ $\pm 1, \pm 3, \pm 4(\bmod 12)$. Let $T_{1}(n)$ denote the number of partitions of n in which (1) all 296
even parts must appear an even number of times, (2) each oddly even integer not exceeding 297 the largest even part must appear, (3) each odd part is at least 3 greater than each oddly 298 even part. Then for $n \geq 0$,

$$
L_{1}(n)=T_{1}(n) .
$$

For example, the 20 partitions enumerated by $T_{1}(13)$ are $13,11+1+1,9+3+1,301$ $9+2+2,9+1+1+1+1,7+5+1,7+3+3,7+3+1+1+1,7+1+1+\cdots+1,302$ $5+5+3,5+5+1+1+1,5+3+3+1+1,5+3+1+\cdots+1,5+2+2+\cdots+2$, зоз $5+1+1+\cdots+1,3+3+3+3+1,3+3+3+1+1+1+1,3+3+1+1+\cdots+1$, 304 $3+1+1+\cdots+1,1+1+\cdots+1$, and the 20 partitions enumerated by $L_{1}(13) 305$ are $13,11+1+1,9+4,9+3+1,9+1+1+1+1,8+4+1,8+3+1+1,306$ $8+1+1+\cdots+1,4+4+4+1,4+4+3+1+1,4+4+1+1+\cdots+1,4+3+3+3,307$ $4+3+3+1+1+1,4+3+1+1+\cdots+1,4+1+1+\cdots+1,3+3+3+3+1,308$ $3+3+3+1+1+1+1,3+3+1+1+\cdots+1,3+1+1+\cdots+1,1+1+\cdots+1,309$

Theorem 11. Let $L_{2}(n)$ denote the number of partitions of n into parts that are $\equiv 310$ $\pm 3, \pm 4, \pm 5(\bmod 12)$. Let $T_{2}(n)$ denote the number of partitions of n in which (1) 311 all even parts must appear an even number of times, (2) each evenly even integer not 312 exceeding the largest even part must appear as a part, (3) each odd part is larger than 1313 and at least 3 larger than the largest evenly even part. Then for $n \geq 0$,

$$
L_{2}(n)=T_{2}(n) .
$$

For example the 10 partitions enumerated by $L_{2}(15)$ are $15,9+3+3,8+7,315$ $8+4+3,7+5+3,7+4+4,5+5+5,5+4+3+3,4+4+4+3,3+3+3+3+3$, 316 and the 10 partitions enumerated by $T_{2}(15)$ are $15,11+2+2,9+3+3,7+5+3,317$ $7+4+4,7+2+2+2+2,5+5+5,5+3+3+2+2,3+3+3+3+3,{ }_{318}$ $3+2+2+\cdots+2$.

6 Conclusion

This paper is in no way meant to be exhaustive. Indeed we have chosen a handful ${ }_{32}$ of Slater's identities for consideration. The examples were chosen to illustrate the 322 variety of possible outcomes.

There are many further formulas in Slater's paper [16] that can be interpreted 324 using the approach we have developed. Indeed this can be done for the original 325 Rogers-Ramanujan identities [14, pp. 133-134 (14)-(18)] and also for variants 326 on the Rogers-Ramanujan identities (cf. Slater's (15), (16), (19), (20) and (25)). 327 Others like the modulus 6 results (Slater's (22)-(30)) are either quite classical 328 (e.g. (23) is effectively due to Euler) or seem to require some alternative analysis. 329 The identities with modulus 27 (Slater's (88)-(93)) seem quite distant from these 330 developments as do those identities like (97), or (101)-(112), or (125)-(130) that 331 apparently are not reducible to a single product.

Editor's Proof

It would certainly be interesting to determine if there is an alternative to ${ }^{333}$ Sylvester's constraints that leads to explanations of further Slater identities that 334 could not be treated here.

It is interesting to note that in each case where a Slater identity was modified to fit the Sylvester paradigm, the resulting infinite product was always of the nicest form imaginable, namely

$$
\prod_{n=1}^{\infty} \frac{1}{1-q^{n}}
$$

where the ' indicates only that the n are restricted to a specified set of arithmetic progressions.

Finally the relation of (33) to the original Rogers-Ramanujan function is striking. 342 Indeed one can provide an alternative proof of (33) by adding together the left-hand ${ }_{343}$ sides of (33) and (34) and proving (slightly non-trivially) that the result is, in fact, 344 Slater's (15) [16, p. 153] with q replaced by $-q$.

In fact, it is possible to prove that, instead of (33),

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{q^{3 n^{2}+4 n+1}}{(q ; q)_{2 n+1}\left(-q^{2} ; q^{2}\right)_{n}} \\
& \quad=\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty} q^{4 n^{2}-2 n}\left(1-q^{12 n+6}\right) \sum_{j=-n}^{n}(-1)^{j}(-q)^{-j(3 j-1) / 2} \tag{49}
\end{align*}
$$

In addition

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{q^{3 n^{2}}}{(q ; q)_{2 n}\left(-q^{2} ; q^{2}\right)_{n}} \\
& \quad=\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}} \sum_{n=0}^{\infty} q^{4 n^{2}}\left(1-q^{8 n+4}\right) \sum_{j=-n}^{n}(-1)^{j}(-q)^{-j(3 j-1) / 2} . \tag{50}
\end{align*}
$$

If we denote the left-hand side of (50) by $T(q)$, then Slater's (19) [16, p. 154] asserts

$$
\begin{equation*}
T(-q)=\frac{\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty}\left(q^{5} ; q^{5}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}} \tag{51}
\end{equation*}
$$

Identities of this nature combined with the results in Sect. 4 suggest a variety of new 350 Hecke-type series results related to the Rogers-Ramanujan identities.

I want to thank J. Lovejoy, A. Patkowski and A. Sills for comments and 352 corrections of an earlier version of this paper.
References 354

1. G. E. Andrews, On a partition problem of J. J. Sylvester, J. London Math. Soc.(2), 2 (1970), 355
571-576. 356
2. G. E. Andrews, The Theory of Partitions, Encycl. Math and Its Appl., Addison-Wesley, 357
Reading, 1976. Reissued: Cambridge Univ. Press, 1998. 358
3. G. E. Andrews, Multiple series Rogers-Ramaujan type identities, Pac. J. Math., 114 (1984), 359
267-283. 360
4. G. E. Andrews, q-Series: Their Development. .., C.B.M.S. Regional Conf. Series in Math., 361
No. 66, Amer. Math. Soc., Providence, 1986. 362
5. G. E. Andrews, Partitions with initial repetitions, Acta Math. Sinica, English Series, 25 (2009), 363
1437-1442. 364
6. G. E. Andrews, q-Othogonal polynomials, Rogers-Ramanujan identities, and mock theta 365 functions, (to appear). 366
7. N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., Providence, 367
8. 368
9. G. Gasper and M. Rahman, Basic Hypergeometric Series, Encycl. Math. and Its Appl., Vol. 35, 369
1990, Cambrige University Press, Cambridge. 370
10. H. Göllnitz, Partitionen mit Differenzenbedingungen, J. Reine u. Angew. Math., 225 (1967), 371
154-190. 372
11. B. Gordon, Some continued fractions of the Rogers-Ramanujan type, Duke Math. J., 32 (1965), 373
741-748. 374
12. F. H. Jackson, Examples of a generalization of Euler's transformation for power series, 375
Messenger of Math., 57 (1928), 169-187. 376
13. J. Lovejoy, A Bailey lattice, Proc. Amer. Math. Soc., 132 (2004), 1507-1516. 377
14. A. E. Patkowski, A note on the rank parity function, Discr. Math., 310 (2010), 961-965. 378
15. S. Ramanujan, Collected Papers, Cambridge University Press, Cambridge, 1927. (Reprinted: 379
Chelsea, New York, 1962). 380
16. A. Sills, Finite Rogers-Ramanujan type identities, Elec. J. Comb., 10 (2003), \#R13, 122 pp. 381
17. L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc.(2), 54 382
(1952), 147-167. 383
18. J. J. Sylvester, "Unsolved questions", Mathematical Questions and Solutions from the Educa- 384
tional Times, 45 (1886), 125-145. 385
19. G. N. Watson, The final problem: an account of the mock theta functions, J. London Math. 386
Soc., 11 (1936), 55-80. 387

Editor's Proof

AUTHOR QUERIES

AQ1. The paragraphs "Definition. If, in any arrangement...repetitions in every possible way." has been treated as display quote. Please check if okay.
AQ2. Please provide opening parenthesis in " $a_{2}(n, q)-\left(1-q^{n}\right) a_{1}(n, q) \ldots$...

Editor's Proof

Metadata of the chapter that will be visualized online

Chapter Title	Hypergeometric Identities Associated with Statistics on Words
Copyright Year	2013
Copyright Holder	Springer-Verlag Berlin Heidelberg
Corresponding Author	Family Name Andrews
	Particle
	Given Name George E.
	Suffix
	Division Department of Mathematics
	Organization The Pennsylvania State University
	Address University Park, PA, 16802, USA
Author	Family Name Savage
	Particle
	Given Name Carla D.
	Suffix
	Division Department of Computer Science
	Organization North Carolina State University
	Address Raleigh, NC, 27695-8206, USA
Author	Family Name Wilf
	Particle
	Given Name Herbert S.
	Suffix
	Division Department of Mathematics
	Organization University of Pennsylvania
	Address Philadelphia, PA, 19104-6395, USA
Abstract	We show how combinatorial arguments involving a variety of statistics on words can produce nontrivial identities between hypergeometric series in two variables. We establish relationships to the Rogers-Fine identity, Heine's second transformation, and mock theta functions. Finally, we show that any hypergeometric series of a certain formcan be interpreted in terms of generalized statistics on words.
Keywords (separated by "-")	Hypergeometric series - Statistics on words

Hypergeometric Identities Associated with Statistics on Words

George E. Andrews*, Carla D. Savage, and Herbert S. Wilf

From the first two authors to the third in honor of his 80th 4 birthday, in memory of his friendship, and in tribute to his 5 mathematics.

Abstract

We show how combinatorial arguments involving a variety of statistics 7 on words can produce nontrivial identities between hypergeometric series in two 8 variables. We establish relationships to the Rogers-Fine identity, Heine's second 9 transformation, and mock theta functions. Finally, we show that any hypergeometric 10 series of a certain form can be interpreted in terms of generalized statistics on words. 11

Keywords Hypergeometric series - Statistics on words

[^4]
1 Introduction

The purpose of this note is to show how combinatorial arguments can produce 14 nontrivial identities between hypergeometric q-series in two variables. This will be 15 illustrated by using as examples

1. The major index of a binary word 17
2. The Durfee square size of an integer partition 18
3. The number of inversions in a binary word $\quad 19$
4. The number of descents in a binary word $\quad 20$
5. The sum of the positions of the 0's in a bitstring 21
6. "Lecture hall" statistics on words.

Let w be a word of length n over the alphabet $\{0,1\}$ (a binary word). By the 23 major index of w we mean the sum of those indices $j, 1 \leq j \leq n-1$, for which 24 $w_{j}>w_{j+1}$, i.e., for which $w_{j}=1$ and $w_{j+1}=0$. Let $f(n, m)$ denote the number 25 of binary words of length n whose major index is $m(f(0,0)=1)$. In Sects. $2{ }_{26}$ and 3 , we find the generating function $F(x, q)=\sum_{n, m} f(n, m) x^{n} q^{m}$ in various 27 ways, compare it to the known Mahonian form of this function, and thereby obtain 28 an interesting chain of seven equalities, namely

$$
\begin{align*}
F(x, q) & \stackrel{\text { def }}{=} \sum_{n, m \geq 0} f(n, m) x^{n} q^{m} \tag{1}\\
& =\sum_{n, k \geq 0}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{n} \tag{2}\\
& =\sum_{n \geq 0} \frac{x^{n}}{(x ; q)_{n+1}} \tag{3}\\
& =-1+\sum_{j \geq 0}\left(1+(1-2 x) q^{j}\right)\left(\frac{\left.x^{j} q^{q^{j} 2}\right)}{(x ; q)_{j+1}}\right)^{2} \tag{4}\\
& =\sum_{j \geq 0}\left(\frac{x^{j} q^{j^{2} / 2}}{(x, q)_{j+1}}\right)^{2} \tag{5}\\
& =1+\sum_{j \geq 0} \frac{x^{j+1}\left(1+q^{j}\right)}{(x ; q)_{j+1}} \tag{6}\\
& =1+2 x+(3+q) x^{2}+\left(4+2 q+2 q^{2}\right) x^{3}+\ldots . \tag{7}
\end{align*}
$$

in which the [] $]_{q}$'s are the Gaussian binomial coefficients.

Editor's Proof

In Sect. 2.5 we highlight the connections between $F(x, q)$ and some third order 31 mock theta functions.

Section 4 deals with words over larger alphabets. In Sect. 5, a related identity 33 is derived by considering the positions of 0's in a bitstring. In Sect. 6 we look at 34 identities arising from some novel statistics on words. In Sect.7, we consider the 35 process of deriving the generating function $F(x, q)=\sum_{n, k \geq 0} t(n, k) x^{n} q^{k}$ when a 36 nice product form for the q-series $\sum_{k \geq 0} t(n, k) q^{k}$ is known. We show in this case ${ }_{37}$ how $F(x, q)$ can be expressed in terms of statistics on words.

2 The Equivalence of (1) Through (5)

For a binary word w of length n, the blocks of w are the maximal contiguous 40 subwords whose letters are all the same. The word $w=11011000$, for example, 41 contains four blocks, namely $11,0,11,000$, of lengths $2,1,2,3$. The major index 42 of w is then the sum of the indices of the final letters of the blocks of 1's, excepting ${ }^{43}$ only a terminal block of 1 's. The word w above has major index $2+5=7$.

2.1 Proof of $(1)=(2)$

This follows from MacMahon's result [8] that

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\sum_{w} g^{\operatorname{maj}(w)}
$$

where the sum is over all binary words w with k ones and $n-k$ zeroes. We refer to 48 (2) as the Mahonian form of $F(x, q)$.

2.2 Proof of (3)

2.2.1 Via Generatingfunctionology
 51

The q-binomial coefficients satisfy the recurrence 52

$$
\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]_{q}=q^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}+\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{q} \quad(n \geq 0)
$$

Editor's Proof

Let's find their vertical generating function

$$
\phi_{k}(t) \stackrel{\operatorname{def}}{=} \sum_{n \geq 0} t^{n}\left[\begin{array}{l}
n \tag{55}\\
k
\end{array}\right]_{q} \quad(k=0,1,2, \ldots) .
$$

We find that

$$
\begin{equation*}
\left(1-t q^{k}\right) \phi_{k}(t)=t \phi_{k-1}(t) \quad\left(k \geq 1 ; \phi_{0}(t)=1 /(1-t)\right) \tag{57}
\end{equation*}
$$

and therefore

$$
\phi_{k}(t)=\frac{t^{k}}{\prod_{j=0}^{k}\left(1-t q^{j}\right)} \quad(k=0,1,2, \ldots)
$$

Next, the horizontal generating function ($=$ the Gaussian polynomial)

$$
\psi_{n}(x) \stackrel{\operatorname{def}}{=} \sum_{k \geq 0}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{k}
$$

satisfies

$$
\begin{equation*}
\psi_{n+1}(x)=\psi_{n}(q x)+x \psi_{n}(x) \quad\left(n \geq 0 ; \psi_{0}=1\right) \tag{63}
\end{equation*}
$$

If we introduce the two variable generating function $\Phi(t, x)=\sum_{n, k \geq 0}\left[\begin{array}{l}n \\ k\end{array}\right]_{q} t^{n} x^{k}, 64$ then we find that

$$
\begin{equation*}
\Phi(t, x)(1-x t)=t \Phi(t, q x)+1 \tag{66}
\end{equation*}
$$

which leads to

$$
\Phi(t, x) \stackrel{\text { def }}{=} \sum_{n, k \geq 0}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} t^{n} x^{k}=\sum_{n \geq 0} \frac{t^{n}}{\prod_{j=0}^{n}\left(1-q^{j} x t\right)},
$$

as required.

2.2.2 Via q-Series

In [2, Theorem 3.3], (3) is derived from (2) using Cauchy's Theorem [2, Theo- 71 rem 2.1]:

$$
\sum_{k \geq 0} \frac{(a ; q)_{k} x^{k}}{(q ; q)_{k}}=\prod_{k=0}^{\infty} \frac{\left(1-a x q^{k}\right)}{\left(1-x q^{k}\right)}
$$

Editor's Proof

with $a=q^{n+1}$, after setting $n=n+k$ in (2). In the process we have

$$
\sum_{k \geq 0}\left[\begin{array}{c}
n+k \tag{8}\\
k
\end{array}\right]_{q} x^{k}=\prod_{k=0}^{\infty} \frac{\left(1-x q^{k+n+1}\right)}{\left(1-x q^{k}\right)}=\frac{1}{(x ; q)_{n+1}}
$$

the q-binomial theorem.

2.3 Proof of $(1)=(4)$

To solve the word problem posed in Sect. 1, we split it into four cases, namely 76 words with an even (resp. odd) number of blocks, the first of which is a block of 1 's 77 (resp. 0's). We will show all steps of the solution for the first case, and then merely 78 exhibit the results for the other three cases.

Let's do the case of words w, of length n, which have an even number, $2 k$, say, 80 of blocks, the first of which is a block of 1 's, and suppose that the lengths of these 81 blocks are $a_{1}, a_{2}, \ldots, a_{2 k}$ (all $a_{i} \geq 1$). Such a word has descents at the indices 82 $a_{1}, a_{1}+a_{2}+a_{3}, \ldots, a_{1}+a_{2}+\cdots+a_{2 k-1}$, so its major index is

$$
\begin{aligned}
\operatorname{maj}(w) & =k a_{1}+(k-1) a_{2}+(k-1) a_{3}+\cdots+a_{2 k-2}+a_{2 k-1} \\
& =\sum_{j=1}^{2 k-1} a_{2 k-j}\left\lceil\frac{j}{2}\right\rceil
\end{aligned}
$$

Let Blocks (w) be the number of blocks of w. It follows that the contribution of 84 all the words whose form is that of the first of the four cases is

$$
\begin{aligned}
F_{1}(x, q, t) & =\sum x^{|w|} q^{\mathrm{m} a j(w)} t^{\mathrm{Blocks}(w)} \\
& =\sum_{k \geq 1} \sum_{a_{1}, \ldots, a_{2 k} \geq 1} x^{\sum_{j=1}^{2 k} a_{j}} q^{\sum_{j=1}^{2 k-1} a_{2 k-j}\lceil j / 2\rceil} t^{2 k} \\
& =\sum_{k=1}^{\infty} \frac{x^{2 k} q^{k^{2}} t^{2 k}}{(1-x)\left(1-x q^{k}\right) \prod_{j=1}^{k-1}\left(1-x q^{j}\right)^{2}} \\
& =x^{2} t^{2} q+x^{3}\left(t^{2} q^{2}+t^{2} q\right)+x^{4}\left(t^{4} q^{4}+t^{2} q^{3}+t^{2} q^{2}+t^{2} q\right)+\ldots
\end{aligned}
$$

Similarly, in the second case, where the number of blocks is even but the first 86 block consists of 0's, we have

Editor's Proof

$$
\begin{aligned}
F_{2}(x, q, t) & =\sum x^{|w|} q^{\operatorname{maj}(w)} t^{\operatorname{Blocks}(w)} \\
& =\sum_{k \geq 1} \sum_{a_{1}, \ldots, a_{2 k} \geq 1} x^{\sum_{j=1}^{2 k} a_{j}} q^{\sum_{j=2}^{2 k-1} a_{2 k-j}\lceil(j-1) / 2\rceil} t^{2 k} \\
& =\sum_{k \geq 1} \frac{x^{2 k} q^{k(k-1)} t^{2 k}}{\prod_{j=0}^{k-1}\left(1-x q^{j}\right)^{2}} \\
& =t^{2} x^{2}+2 t^{2} x^{3}+x^{4}\left(3 t^{2}+t^{4} q^{2}\right)+x^{5}\left(4 t^{2}+2 t^{4} q^{2}+2 t^{4} q^{3}\right)+\ldots
\end{aligned}
$$

In the third case the number of blocks is odd, say $2 k+1$, with $k \geq 0$, and the 88 first block is all 1's. The major index of such a word is

$$
\operatorname{maj}(w)=\sum_{j=1}^{2 k-1} a_{2 k-j}\left\lceil\frac{j}{2}\right\rceil
$$

Thus,

$$
\begin{aligned}
& F_{3}(x, q, t)= \sum x^{|w|} q^{\operatorname{maj}(w)} t^{\operatorname{Blocks}(w)} \\
&= \sum_{k \geq 0} \sum_{a_{1}, \ldots, a_{2 k+1} \geq 1} x^{\sum_{j=1}^{2 k+1} a_{j}} q^{\sum_{j=1}^{2 k-1} a_{2 k-j}^{\Gamma j / 2]}} t^{2 k+1} \\
&= \sum_{k \geq 0} \frac{x^{2 k+1} q^{k^{2}} t^{2 k+1}}{\left(1-x q^{k}\right) \prod_{j=0}^{k-1}\left(1-x q^{j}\right)^{2}} \\
&= t x+t x^{2}+x^{3}\left(q t^{3}+t\right)+x^{4}\left(q^{2} t^{3}+2 q t^{3}+t\right) \\
& \quad \quad+x^{5}\left(q^{4} t^{5}+q^{3} t^{3}+2 q^{2} t^{3}+3 q t^{3}+t\right)+\ldots
\end{aligned}
$$

Finally, if there are $2 k+1$ blocks in the word w and the first block is all 0 's, the 92 major index is

$$
\operatorname{maj}(w)=\sum_{j=0}^{2 k-1} a_{2 k-j}\left\lceil\frac{j+1}{2}\right\rceil,
$$

$$
\begin{aligned}
F_{4}(x, q, t) & =\sum x^{|w|} q^{\operatorname{maj}(w)} t^{\operatorname{Blocks}(w)} \\
& =\sum_{k \geq 0} x^{\sum_{j=1}^{2 k+1} a_{j}} q^{\sum_{j=0}^{2 k-1} a_{2 k-j}\left\lceil\frac{j+1}{2}\right\rceil} t^{2 k+1}
\end{aligned}
$$

Editor's Proof

$$
\begin{aligned}
& =(1-x) \sum_{k \geq 0} \frac{x^{2 k+1} q^{k(k+1)} t^{2 k+1}}{\prod_{j=0}^{k}\left(1-x q^{j}\right)^{2}} \\
& =t x+t x^{2}+x^{3}\left(t^{3} y^{2}+t\right)+x^{4}\left(2 t^{3} y^{3}+t^{3} y^{2}+t\right) \\
& \quad \quad+x^{5}\left(t^{5} y^{6}+3 t^{3} y^{4}+2 t^{3} y^{3}+t^{3} y^{2}+t\right)+\ldots
\end{aligned}
$$

Now we compute the desired generating function $F(x, q, t)$ as
96
in which the F_{i} are explicitly shown above. If we put $t=1$ we find that

$$
\begin{aligned}
\sum x^{|w|} q^{\operatorname{maj}(w)}= & 1+2 x+x^{2}(q+3)+x^{3}\left(2 q^{2}+2 q+4\right) \\
& +x^{4}\left(q^{4}+3 q^{3}+4 q^{2}+3 q+5\right) \\
& +x^{5}\left(2 q^{6}+2 q^{5}+6 q^{4}+6 q^{3}+6 q^{2}+4 q+6\right)+\ldots
\end{aligned}
$$

Observe that if we put $q:=1$, the coefficient of each x^{n} is indeed 2^{n}.
On the other hand, the maj statistic is well known to be Mahonian, which implies 101 that its distribution function is

$$
\sum_{w} x^{|w|} q^{\operatorname{maj}(w)}=\sum_{n, k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{n},
$$

in which the $\left[\begin{array}{c}n \\ k\end{array}\right]_{q}$ are the usual Gaussian polynomials.
It follows that

$$
\sum_{n, k \geq 0}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{n}=1+F_{1}(x, q, 1)+F_{2}(x, q, 1)+F_{3}(x, q, 1)+F_{4}(x, q, 1)
$$

$$
\begin{aligned}
= & 1+\sum_{k=1}^{\infty} \frac{x^{2 k} q^{k^{2}}}{(1-x)\left(1-x q^{k}\right) \prod_{j=1}^{k-1}\left(1-x q^{j}\right)^{2}}+\sum_{k \geq 1} \frac{x^{2 k} q^{k(k-1)}}{\prod_{j=0}^{k-1}\left(1-x q^{j}\right)^{2}} \\
& +\sum_{k \geq 0} \frac{x^{2 k+1} q^{k^{2}}}{\left(1-x q^{k}\right) \prod_{j=0}^{k-1}\left(1-x q^{j}\right)^{2}}+(1-x) \sum_{k \geq 0} \frac{x^{2 k+1} q^{k(k+1)}}{\prod_{j=0}^{k}\left(1-x q^{j}\right)^{2}} \\
= & 1+\sum_{k \geq 1} \frac{x^{2 k} q^{k^{2}}}{(x ; q)_{k}^{2}}\left(\frac{1-x}{1-x q^{k}}+\frac{1}{q^{k}}\right)
\end{aligned}
$$

Editor's Proof

$$
\begin{aligned}
& +\sum_{k \geq 0} \frac{x^{2 k+1} q^{k^{2}}}{(x ; q)_{k}^{2}}\left(\frac{1}{1-x q^{k}}+\frac{(1-x) q^{k}}{\left(1-x q^{k}\right)^{2}}\right) \\
& =-1+\sum_{k \geq 0} \frac{\left(1+(1-2 x) q^{k}\right)}{\left(1-x q^{k}\right)^{2}}\left(\frac{\left.x^{k} q^{k}{ }_{2}^{k}\right)}{(x ; q)_{k}}\right)^{2},
\end{aligned}
$$

as claimed.
2.4 Proof of (5)

We prove (5) in four different ways.

2.4.1 Equivalence of (3) and (5) Using the Rogers-Fine Identity

The Rogers-Fine identity is [5], [4, p. 223]:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(\alpha ; q)_{n}}{(\beta ; q)_{n}} \tau^{n}=\sum_{n=0}^{\infty} \frac{(\alpha ; q)_{n}(\alpha \tau q / \beta ; q)_{n} \beta^{n} \tau^{n} q^{n^{2}-n}\left(1-\alpha \tau q^{2 n}\right)}{(\beta ; q)_{n}(\tau ; q)_{n+1}} \tag{9}
\end{equation*}
$$

Setting $\alpha=0, \tau=x$, and $\beta=x q$ in (9) gives

$$
\sum_{n=0}^{\infty} \frac{1}{(x q ; q)_{n}} x^{n}=\sum_{n=0}^{\infty} \frac{x^{2 n} q^{n^{2}}}{(x q ; q)_{n}(x ; q)_{n+1}}
$$

Multiply through by $1 /(1-x)$ and use the equivalence of (1) and (3) to conclude

$$
F(x, q)=\sum_{n=0}^{\infty} \frac{x^{n}}{(x ; q)_{n+1}}=\sum_{n=0}^{\infty}\left(\frac{x^{n} q^{n^{2} / 2}}{(x ; q)_{n+1}}\right)^{2}
$$

In this form the generating function appears quite similar to, but not identical with (4), though it is of course identical. Consequently, by comparing the two forms, we see that we have proved the small identity

$$
\sum_{k \geq 0}\left(\frac{x^{k} q^{\binom{k}{2}}}{(x, q)_{k+1}}\right)^{2}\left(1-2 x q^{k}\right)=1 .
$$

Editor's Proof

2.4.2 Direct Proof of (4) = (5)

We would like to prove:

$$
-1+\sum_{k \geq 0}\left(1+(1-2 x) q^{k}\right)\left(\frac{x^{k} q^{\binom{k}{2}}}{(x ; q)_{k+1}}\right)^{2}=\sum_{k \geq 0}\left(\frac{x^{k} q^{k^{2} / 2}}{(x, q)_{k+1}}\right)^{2} .
$$

Using the fact that

$$
1+(1-2 x) q^{k}=-x^{2} q^{2 k}+\left(1-x q^{k}\right)\left(1-x q^{k}\right)+q^{k}
$$

we can transform as follows:

$$
\begin{aligned}
&-1+\sum_{k \geq 0}\left(1+(1-2 x) q^{k}\right)\left(\frac{x^{k} q^{\binom{k}{2}}}{(x ; q)_{k+1}}\right)^{2} \\
&=-1-\sum_{k \geq 0} \frac{x^{2 k+2} q^{k^{2}+k}}{(x ; q)_{k+1}^{2}}+\sum_{k \geq 0} \frac{x^{2 k} q^{k^{2}-k}}{(x ; q)_{k}^{2}}+\sum_{k \geq 0} \frac{x^{2 k} q^{k^{2}}}{(x ; q)_{k+1}^{2}} \\
&=-1-\sum_{k \geq 1} \frac{x^{2 k} q^{k^{2}-k}}{(x ; q)_{k}^{2}}+\sum_{k \geq 0} \frac{x^{2 k} q^{k^{2}-k}}{(x ; q)_{k}^{2}}+\sum_{k \geq 0} \frac{x^{2 k} q^{k^{2}}}{(x ; q)_{k+1}^{2}} \\
&=\sum_{k \geq 0} \frac{x^{2 k} q^{k^{2}}}{(x ; q)_{k+1}^{2}}
\end{aligned}
$$

2.4.3 Equivalence of (1) and (5) by Recurrence

As an alternative, we can derive (5) directly from the definition of $F(x, q)$ in terms 126 of binary words.

Lemma 1. Let $f(n, m)$ denote the number of binary words of length n whose major 128
index is m. Then
$f(n, m)=2 f(n-1, m)-f(n-2, m)+f(n-2, m-n+1) \quad(n \geq 2 ; m \geq 0)$
with initial conditions $f(0, m)=\delta_{m, 0}, f(1, m)=2 \delta_{m, 0}$.
Proof. Let $S(n, m)$ be the set of binary words of length n with major index m, so 131 that $f(n, m)=|S(n, m)|$. Let "." denote concatenation of words and observe that

Editor's Proof

$$
\begin{aligned}
\operatorname{maj}(w \cdot 1) & =\operatorname{maj}(w), \\
\operatorname{maj}(w \cdot 10) & =\operatorname{maj}(w)+|w \cdot 1|, \\
\operatorname{maj}(w \cdot 00) & =\operatorname{maj}(w \cdot 0) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
w \cdot 1 \in S(n, m) & \leftrightarrow w \in S(n-1, m), \\
w \cdot 10 \in S(n, m) & \leftrightarrow w \in S(n-2, m-(n-1)), \\
w \cdot 00 \in S(n, m) & \leftrightarrow w \cdot 0 \in S(n-1, m)-S(n-2, m) \cdot 1 .
\end{aligned}
$$

Since every element of $S(n, m)$ falls into exactly one of the cases above, the result follows.

As in (1), we define the generating function $F(x, q)=\sum_{n, m \geq 0} f(n, m) x^{n} q^{m} \cdot{ }^{134}$ Next we multiply each of the four terms in (10) by $x^{n} q^{m}$ and sum over $n \geq 2$ and 135 $m \geq 0$.

The first term yields $F(x, q)-2 x-1$, the second gives $2 x(F(x, q)-1)$, the ${ }_{137}$ third becomes $x^{2} F(x, q)$, and the fourth yields $x^{2} q F(x q, q)$. Therefore we have the ${ }_{138}$ functional equation

$$
F(x, q)=\frac{1+x^{2} q F(x q, q)}{(1-x)^{2}}
$$

whose solution is

$$
F(x, q)=\sum_{j \geq 0} \frac{x^{2 j} q^{j^{2}}}{\prod_{\ell=0}^{j}\left(1-x q^{\ell}\right)^{2}}
$$

2.4.4 Equivalence of (2) and (5) via Partitions

We can also give a direct proof of the identity

$$
\sum_{n, k \geq 0}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{n}=\sum_{j \geq 0} \frac{x^{2 j} q^{j^{2}}}{\left((x ; q)_{j+1}\right)^{2}},
$$

using partitions. We'll see the value of this after we look at inversions in Sect. 3. ${ }_{146}$
We show that both sides count, for every pair (a, b), the number of partitions λ in 147 an $a \times b$ box, where q keeps track of $|\lambda|=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{a}$ and x keeps track of 148 $a+b$. The left-hand side counts all the partitions for fixed (a, b) and then sums over 149

Editor's Proof

all (a, b). The right-hand side counts all the partitions with Durfee square size $j, 150$ for every $(j+s) \times(j+t)$ box containing them, and then sums over all j.

Let $P(a, b)$ be the set of partitions whose Ferrers diagram fit in an $a \times b$ box. Let 152 $D(\lambda)$ denote the size of the Durfee square of λ. The argument above actually shows 153 that

$$
\sum_{a, b, \geq 0} \sum_{\lambda \in P(a, b)} q^{\lambda} x^{a+b} z^{D(\lambda)}=\sum_{j \geq 0} \frac{x^{2 j} q^{j^{2}}}{\left((x ; q)_{j+1}\right)^{2}} z^{j}
$$

We'll return to this at the end of Sect. 3.

2.5 Mock Theta Functions

It was observed in [3] that there is a connection between $F(x, q)$, defined by (1)- ${ }_{158}$ (7), and the following two of Ramanujan's third order mock theta functions ([11], cf. p. 62):

$$
\begin{align*}
& f(q)=\sum_{j \geq 0} \frac{q^{j^{2}}}{(-q, q)_{j}^{2}} \tag{11}\\
& \omega(q)=\sum_{j \geq 0} \frac{q^{2 j^{2}+2 j}}{\left(q, q^{2}\right)_{j+1}^{2}} . \tag{12}
\end{align*}
$$

Specifically, appealing to (5), note that

$$
\begin{align*}
F(-1, q) & =f(q) / 4 \tag{13}\\
F\left(q, q^{2}\right) & =\omega(q) \tag{14}
\end{align*}
$$

One of the goals of the paper [3] was to develop a methodology for interpreting 162 q-series identities in terms of families of partitions, via an appropriate statistic. After deriving the equivalence of (5) and (3), the appropriate partition statistic was 164 revealed for interpreting $F(x, q)$:

$$
\frac{F(x, q)}{1-x}=\sum_{\lambda} q^{|\lambda|} x^{\rho(x)},
$$

where the sum is over all partitions, λ, and the statistic $\rho(\lambda)$ is the sum of the 167 number of parts of λ and the largest part of λ. Note that this is equivalent to the 168 interpretation of $F(x, q)$ in the preceding subsection. This was then combined with 169 the observations (13) and (14) to interpret the mock theta functions (11) and (12) as 170 generating functions for certain families of partitions.

In view of (1), (13), and (14), we see that the mock theta functions (11) and (12) 172 can be interpreted in terms of statistics on binary words as: 173

$$
\begin{aligned}
& f(q)=\sum_{w}(-1)^{|w|} q^{\mathrm{m} a j} \\
& \omega(q)=\sum_{w} q^{|w|+2 \mathrm{~m} a j}
\end{aligned}
$$

where the sum is over all binary words w and $|w|$ denotes the length of w.

3 An 'Inversions" View of (5) and (6)

We obtain another identity by carrying out the same sort of analysis on the inversions of a word, rather than the major index. An inversion in a word w is a pair (i, j) such 177 that $i<j$ but $w_{i}>w_{j}$ and $\operatorname{inv}(w)$ is the number of inversions in w. The statistic 178 inv is also Mahonian on binary words [8], so its distribution is given by (2).

3.1 Proof of (6)

Let $f(n, k, m)$ be the number of binary strings of length n, containing exactly $k 1$'s, 18 and with m inversions. Then evidently

$$
\begin{equation*}
f(n, k, m)=f(n-1, k-1, m)+f(n-1, k, m-k) \tag{183}
\end{equation*}
$$

for $n \geq 2$, with $f(1, k, m)=\delta_{k, 0} \delta_{m, 0}+\delta_{k, 1} \delta_{m, 0}$. If we define the generating function 184 $F(x, y, z)=\sum_{n \geq 1, k \geq 0, m \geq 0} f(n, k, m) x^{n} y^{k} z^{m}$, then we find the functional equation 185

$$
F(x, y, z)=\frac{x(1+y)+x F(x, y z, z)}{1-x y}
$$

whose solution is

$$
\begin{equation*}
F(x, y, z)=\sum_{m \geq 1} \frac{x^{m}\left(1+y z^{m-1}\right)}{\prod_{j=0}^{m-1}\left(1-x y z^{j}\right)} \tag{188}
\end{equation*}
$$

We can now set $y=1$ and find that the number of binary words of length n with m inversions is equal to the coefficient of $x^{n} q^{m}$ in

$$
\sum_{m \geq 0} \frac{x^{m+1}\left(1+q^{m}\right)}{(x ; q)_{m+1}}=2 x+(3+q) x^{2}+\left(4+2 q+2 q^{2}\right) x^{3}+\ldots
$$

Editor's Proof

3.2 The Equivalence of (5) and (6)

Let $g(n, m)$ be the number of binary words of length n with m inversions. 193 The previous subsection showed that (6) is the generating function for 194 $\sum_{n \geq 0, m \geq 0} g(n, m) x^{n} q^{m}$.

Because of the equidistribution of maj and inv, $g(n, m)=f(n, m)$, for $f(n, m) 196$ defined in Sect. 1. But supposing we didn't know that, we show that $g(n, m)$ satisfies 197 the same recurrence as $f(n, m)$ in Lemma 1 of Sect. 2.4.3, and therefore it has the 198 same functional equation, whose solution was shown there to be (5). 199
Claim. We have the recurrence

$$
\begin{equation*}
g(n, m)=2 g(n-1, m)-g(n-2, m)+g(n-2, m-n+1) \quad(n \geq 2 ; m \geq 0) \tag{15}
\end{equation*}
$$

with initial data $g(0, m)=\delta_{m, 0}, g(1, m)=2 \delta_{m, 0}$.
Proof. Let $R(n, m)$ be the set of binary words of length n with m inversions, so that 202 $g(n, m)=|R(n, m)|$. Observe that

$$
\begin{aligned}
\operatorname{inv}(1 \cdot w \cdot 0) & =\operatorname{inv}(w)+|w|+1 \\
\operatorname{inv}(0 \cdot w) & =\operatorname{inv}(w) \\
\operatorname{inv}(w \cdot 1) & =\operatorname{inv}(w)
\end{aligned}
$$

Words of the form $0 \cdot w \cdot 1$ fall into both of the last two classes above and all other

$$
|R(n, m)|=|1 \cdot R(n-2, m-(n-1)) \cdot 0|+|0 \cdot R(n-1, m)|+|R(n-1, m) \cdot 1|-|0 \cdot R(n-2, m) \cdot 1|
$$

and the recurrence follows.

3.3 Revisiting (5)

Recall the notation $P(a, b), D(\lambda)$, and $|\lambda|$ from Sect. 2.4.4 on partitions. View a 208 binary word as a lattice path, where " 1 " is an east step and " 0 " is a north step. 209 Then a binary word w with $a 0$'s and $b 1$'s forms the lower boundary of a partition 210 $\lambda \in P(a, b)$. It is not hard to check that

$$
\operatorname{inv}(w)=|\lambda|,
$$

But also, the Durfee square size, $D(\lambda)$, is interesting, in the following way.
Let ϕ be Foata's "second fundamental transformation" on words [6]. When 214 restricted to binary words $w, \phi(w)$ is a permutation of w, with

$$
\operatorname{maj}(w)=\operatorname{inv}(\phi(w))
$$

and ϕ proves bijectively that for any a, b, maj and inv have the same distribution 216 over the binary words with $a 0$'s and $b 1$'s,

Furthermore, if λ is the partition defined by the lattice path associated with $\phi(w)$,
then it was shown in [9] that

$$
\operatorname{des}(w)=D(\lambda)
$$

where des (w) is the number of descents of w. Thus, (maj, des) and (inv, D) have the 220 same joint distribution.

We can combine these observations with the identity from the end of Sect. 2.2.4:

$$
\sum_{a, b, \geq 0} \sum_{\lambda \in P(a, b)} q^{\lambda} x^{a+b} z^{D(\lambda)}=\sum_{j \geq 0} \frac{x^{2 j} q^{j^{2}}}{\left((x ; q)_{j+1}\right)^{2}} z^{j}
$$

to get

$$
\begin{aligned}
\sum_{j \geq 0} \frac{x^{2 j} q^{j^{2}}}{\left((x ; q)_{j+1}\right)^{2}} z^{j} & =\sum_{a, b, \geq 0} \sum_{\lambda \in P(a, b)} q^{\lambda} x^{a+b} z^{D(\lambda)} \\
& =\sum_{w} q^{\operatorname{inv}(w)} x^{|w|} z^{D(\lambda(w))} \\
& =\sum_{w} q^{\operatorname{maj}(w)} x^{|w|} z^{\operatorname{des}(w)} .
\end{aligned}
$$

So, "des" is something like the "Blocks" statistic used in Sect. 2.3. However, observe

4 Larger Alphabets

The above results were all obtained by studying binary words. Now let's look at
Let $f\left(k_{0}, k_{1}, \ldots, k_{M-1} ; \mu\right)$ denote the number of words over [M] that contain on this set of words [8] and therefore its distribution is given by the q-multinomial ${ }^{233}$ coefficient

$$
\sum_{\mu \geq 0} f\left(k_{0}, k_{1}, \ldots, k_{M-1} ; \mu\right) q^{\mu}=\left[\begin{array}{c}
N \\
k_{0}, k_{1}, \ldots, k_{M-1}
\end{array}\right]_{q} .
$$

Editor's Proof

See Sloane's sequences A129529, A129531 for the cases $M=3$, 4. So, if $[M]^{*}{ }^{236}$ denotes the set of all words over $[M]$,

$$
F(x, q)=\sum_{w \in[M]^{*}} q^{\operatorname{maj}(w)} x^{|w|}=\sum_{N \geq 0} \sum_{k_{0}+\cdots+k_{M-1}=N}\left[\begin{array}{c}
N \tag{16}\\
k_{0}, k_{1}, \ldots, k_{M-1}
\end{array}\right]_{q} x^{N} .
$$

Rewriting the last expression and applying (8), we find
$F(x, q)$
$=\sum_{k_{0}, k_{1}, \ldots, k_{M-1} \geq 0}\left[\begin{array}{c}k_{0}+\cdots+k_{M-1} \\ k_{0}, \ldots, k_{M-1}\end{array}\right]_{q} x^{k_{0}+\cdots+k_{M-1}}$
$=\sum_{k_{0}, k_{1}, \ldots, k_{M-2} \geq 0}\left[\begin{array}{c}k_{0}+\cdots+k_{M-2} \\ k_{0}, \ldots, k_{M-2}\end{array}\right]_{q} x^{k_{0}+\cdots+k_{M-2}} \sum_{k_{M-1} \geq 0}\left[\begin{array}{c}k_{0}+\cdots+k_{M-1} \\ k_{M-1}\end{array}\right]_{q} x^{k_{M-1}} \quad 240$
$=\sum_{k_{0}, k_{1}, \ldots, k_{M-2} \geq 0}\left[\begin{array}{c}k_{0}+\cdots+k_{M-2} \\ k_{0}, \ldots, k_{M-2}\end{array}\right]_{q} \frac{x^{k_{0}+\cdots+k_{M-2}}}{(x ; q)_{k_{0}+\cdots+k_{M-2}}}$.

This generalizes the equivalence of (2) and (3) which is the $M=2$ case. $\quad 242$
We will consider a variation and get a q-difference equation.
Let $f_{i}\left(k_{0}, k_{1}, \ldots, k_{M-1} ; \mu\right)$ denote the number of words over [M] that contain 244 exactly $k_{0} 0$'s, $k_{1} 1$'s,..., $k_{M-1} M-1$'s, and which have major index μ, and whose 245 last letter is $i(i=0, \ldots, M-1)$.

Of these $f_{i}\left(k_{0}, k_{1}, \ldots, k_{M-1}, \mu\right)$ words, the number whose penultimate letter is 247 j is

$$
\begin{cases}f_{j}\left(k_{0}, k_{1}, \ldots, k_{i}-1, \ldots, k_{M-1} ; \mu-(N-1)\right), & \text { if } j>i, \\ f_{j}\left(k_{0}, k_{1}, \ldots, k_{i}-1, \ldots, k_{M-1} ; \mu\right), & \text { if } j \leq i\end{cases}
$$

Consequently, for $i=0 \ldots, M-1$, we have

$$
\begin{aligned}
f_{i}\left(k_{0}, k_{1}, \ldots, k_{M-1} ; \mu\right)=\sum_{j>i} & f_{j}\left(k_{0}, k_{1}, \ldots, k_{i}-1, \ldots, k_{M-1} ; \mu-(N-1)\right) \\
& +\sum_{j \leq i} f_{j}\left(k_{0}, k_{1}, \ldots, k_{i}-1, \ldots, k_{M-1} ; \mu\right)
\end{aligned}
$$

Now sum both sides over all \mathbf{k} such that $k_{0}+\cdots+k_{M-1}=N$, and write $F_{i}(N, \mu){ }_{250}$ for $\sum_{k_{0}+\cdots+k_{M-1}=N} f_{i}\left(k_{0}, k_{1}, \ldots, k_{M-1} ; \mu\right)$. We obtain

$$
F_{i}(N, \mu)=\sum_{j>i} F_{j}(N-1, \mu-N+1)+\sum_{j \leq i} F_{j}(N-1, \mu),
$$

Editor's Proof

with $F_{i}(1, \mu)=M \delta_{\mu, 0}$. In terms of the generating functions

$$
\begin{equation*}
\Phi_{N, i}=\sum_{\mu} F_{i}(N, \mu) q^{\mu} \tag{255}
\end{equation*}
$$

we find that

$$
\begin{equation*}
\Phi_{N, i}=q^{N-1} \sum_{j>i} \Phi_{N-1, j}+\sum_{j \leq i} \Phi_{N-1, j} \tag{257}
\end{equation*}
$$

with $\Phi_{1, i}=1$ for all $i=0, \ldots, M-1$.
258
Finally, if $\Phi_{i}(x, q)=\sum_{N \geq 1} \Phi_{N, i} x^{N}$, we find that

$$
\Phi_{i}(x, q)=x+x \sum_{j>i} \Phi_{j}(q x, q)+x \sum_{j \leq i} \Phi_{j}(x, q) . \quad(i=0,1, \ldots, M-1) \quad 260
$$

5 A Related Identity Based on the Positions

If w is a binary string of length n, let $\sigma(w)$ be the sum of the positions that contain 263 0 bits, the positions being labeled $1,2, \ldots, n$. Thus $f(10101)=2+4=6$. We 264 consider the generating function

$$
F(x, q)=\sum_{w} x^{|w|} q^{\sigma(w)}
$$

the sum extending over all binary words of all lengths.
If we let $T(n, k)$ denote the number of words of length n for which $\sigma(w)=k, 268$ then we have the obvious recurrence $T(n, k)=T(n-1, k)+T(n-1, k-n)$. This 269 leads, in the usual way, to the functional equation

$$
\begin{equation*}
F(x, q)=\frac{1+x q F(x q, q)}{1-x} \tag{17}
\end{equation*}
$$

which in turn leads, by iteration, to the explicit expression

$$
\begin{equation*}
F(x, q)=\sum_{j \geq 0} \frac{\left.x^{j} q^{(j+1} 2\right)}{(x ; q)_{j+1}} . \tag{18}
\end{equation*}
$$

On the other hand it is easy to see that

$$
\begin{equation*}
\sum_{k} T(n, k) q^{k}=\prod_{\ell=1}^{n}\left(1+q^{\ell}\right) \tag{19}
\end{equation*}
$$

Editor's Proof

since each position ℓ in w can either be 1 , which contributes ℓ to $\sigma(w)$, or 0 , which ${ }_{273}$ contributes nothing. Thus, we have the identity

$$
\begin{equation*}
\sum_{j \geq 0} \frac{x^{j} q^{\binom{j+1}{2}}}{(x ; q)_{j+1}}=\sum_{n \geq 0} x^{n} \prod_{\ell=1}^{n}\left(1+q^{\ell}\right) \tag{20}
\end{equation*}
$$

Note that (20) is a specialization of Heine's second transformation (Eq. III. 2 in
 Appendix III of [7] with $a=-q, b=q, c=0, z=x$).

5.1 A Partition Theory View

We can interpret the identity (20) in terms of partitions.
We claim that both sides of the identity count all pairs (λ, n) where λ is a partition 279 into distinct parts and n is greater than or equal to the largest part of λ. 280

On the right-hand side, $\prod_{\ell=1}^{n}\left(1+q^{\ell}\right)$ is the generating function for partitions 281 into distinct parts, the largest of which is $\leq n$. So, the right-hand side counts all 282 pairs (λ, n) where λ is a partition into distinct parts and n is greater than or equal to 283 the largest part of λ, as claimed.

The left-hand side counts the same quantity by summing over all j the terms 285 $x^{n} q^{|\lambda|}$ for all pairs (λ, n) where λ is a partition into j positive distinct parts, the ${ }^{286}$ largest of which is $\leq n$. To see this, If λ is a partition into j distinct positive parts, ${ }^{287}$ then subtracting the staircase partition $(j, j-1, \ldots, 1)$ from λ subtracts $\binom{j+1}{2}$ from 288 the q-weight of λ and subtracts j from the largest part of λ, leaving an ordinary 289 partition λ^{\prime} with at most j parts. Such λ^{\prime} are counted in the left-hand-side of (20) by 290 $1 /(x ; q)_{j+1}$, where x keeps track of the size of the largest part of λ^{\prime} plus an excess 291 corresponding to the number of times the " 0 " part is selected as the $1 /(1-x)$ factor 292 in the product.

5.2 A Generalization

Let w be a word over the K letter alphabet $\{0,1, \ldots, K-1\}$ and let

$$
\sigma(w)=\sum_{i=1}^{n} i w_{i}
$$

We have $\sigma(10101)=1+3+5=9$ and $\sigma(120301)=1+4+12+6=23$. We 297 consider the generating function

$$
F(x, q)=\sum_{w} x^{|w|} q^{\sigma(w)}
$$

If we let $T(n, k)$ denote the number of words of length n for which $\sigma(w)=k, 301$ then we have the obvious recurrence

$$
\begin{equation*}
T(n, k)=\sum_{i=0}^{K-1} T(n-1, k-i n) . \quad\left(n \geq 1 ; T(0, k)=\delta_{k, 0}\right) . \tag{303}
\end{equation*}
$$

If we take our generating function in the form $F(x, q)=\sum_{k, n \geq 0} T(n, k) x^{n} q^{k}$, this 304 leads, in the usual way, to the functional equation

$$
\begin{equation*}
F(x, q)=\frac{1}{1-x}+\frac{x}{1-x} \sum_{i=1}^{K-1} q^{i} F\left(x q^{i}, q\right) \tag{21}
\end{equation*}
$$

In the binary case ($K=2$), this agrees with (17), which has the explicit expression 306 (18).

On the other hand, since a j in position ℓ contributes $j \ell$ to $\sigma(w)$, so

$$
\begin{equation*}
\sum_{k} T(n, k) q^{k}=\prod_{\ell=1}^{n}\left(1+q^{\ell}+q^{2 \ell}+\cdots+q^{(K-1) \ell}\right)=\prod_{\ell=1}^{n} \frac{1-q^{K \ell}}{1-q^{\ell}} \tag{22}
\end{equation*}
$$

and in the case $K=2$ we have another view of the identity (20).
We would like an explicit solution to the functional equation (21) for $K>2$, 310 analogous to (20). Recall that (20) was a special case of Heine's second transfor- 311 mation. There is no analog of Heine's second transformation for $K>2$. However, 312 there is an analog of the first Heine transformation that can be applied. We make use 313 of the following, which is Lemma 1 from [1]:

$$
\begin{equation*}
\sum_{n \geq 0} \frac{t^{n}\left(a ; q^{k}\right)_{n}(b ; q)_{k n}}{\left(q^{k} ; q^{k}\right)_{n}(c ; q)_{k n}}=\frac{(b ; q)_{\infty}\left(a t ; q^{k}\right)_{\infty}}{(c ; q)_{\infty}\left(t ; q^{k}\right)_{\infty}} \sum_{n \geq 0} \frac{b^{n}(c / b ; q)_{n}\left(t ; q^{k}\right)_{n}}{(q ; q)_{n}\left(a t ; q^{k}\right)_{n}} \tag{23}
\end{equation*}
$$

Setting $a=c=0, b=x, k=K$, and $t=q^{k}$ in (23) gives

$$
\begin{equation*}
F(x, q)=\sum_{n \geq 0} \frac{x^{n}\left(q^{K} ; q^{K}\right)_{n}}{(q ; q)_{n}}=\frac{\left(q^{K} ; q^{K}\right)_{\infty}}{(x ; q)_{\infty}} \sum_{n \geq 0} \frac{q^{K n}(x ; q)_{K n}}{\left(q^{K} ; q^{K}\right)_{n}} \tag{316}
\end{equation*}
$$

6 'Lecture Hall" Statistics on Words

The following statistics arose in [10] in a more general context, but we specialize 318 them here to words. For a K-ary word w of length n, define the following statistics: ${ }_{319}$

$$
\operatorname{ASC}(\mathrm{w})=\left\{i \mid i=0 \text { and } w_{1}>0 \text { or } 1 \leq i<n \text { and } w_{i}<w_{i+1}\right\} ;
$$

Editor's Proof

$$
\begin{aligned}
& \operatorname{asc}(w)=|\operatorname{ASC}(w)| \\
& \operatorname{lhp}(w)=-\left(w_{1}+w_{2}+\cdots+w_{n}\right)+\sum_{i \in \operatorname{ASC}(w)} K(n-i)
\end{aligned}
$$

It follows from Theorem 5 in [10] that

$$
\sum_{t \geq 0} \sum_{\lambda \in P(n, K t)} q^{|\lambda|} x^{t}=\frac{\sum_{w \in[K]^{n}} q^{\operatorname{lnp}(w)} x^{\operatorname{asc}(w)}}{\prod_{i=0}^{n}\left(1-x q^{K i}\right)}
$$

where $[K]=\{0,1, \ldots, K-1\}$.323

As observed in [10], the inner sum on the left is a q-binomial coefficient, so we 324 get the identity:

$$
\sum_{t \geq 0}\left[\begin{array}{c}
n+K t \\
n
\end{array}\right]_{q} x^{t}=\frac{\sum_{w \in[K]^{n}} q^{\operatorname{lnp}(w)} x^{\operatorname{asc}(w)}}{\prod_{i=0}^{n}\left(1-x q^{K i}\right)} .
$$

Multiplying both sides by $(1-x)$ and then setting $x=1$ gives

$$
\sum_{t \geq 0}\left(\left[\begin{array}{c}
n+K t \\
n
\end{array}\right]_{q}-\left[\begin{array}{c}
n+K(t-1) \\
n
\end{array}\right]_{q}\right)=\frac{\sum_{w \in[K]^{n}} q^{\operatorname{lhp}(w)}}{(q ; q)_{n}} .
$$

The left-hand side above is just $1 /(q ; q)_{n}$, the generating function for partitions into at most n parts. So, simplifying,

$$
\sum_{w \in[K]^{n}} q^{\operatorname{lnp}(w)}=\prod_{\ell=1}^{n}\left(1+q^{\ell}+q^{2 \ell}+\cdots+q^{(K-1) \ell}\right),
$$

the same distribution as $\sum_{i} i w_{i}$ from Sect. 5.2 (!) We don't have any nice combina- ${ }_{332}$ torial explanation for this yet.

Experiments indicate that when $K=2$, we can actually get the following 334 refinement:
$\sum_{t \geq 0} \sum_{i=0}^{n}\left[\begin{array}{c}n+t-i \\ t\end{array}\right]_{q^{2}}\left[\begin{array}{c}t-1+i \\ t-1\end{array}\right]_{q^{2}}(q z)^{i} x^{t}=\frac{\sum_{w \in[2]^{n}} q^{\operatorname{lhp}(w)} x^{\operatorname{asc}(w)} z^{w_{1}+w_{2}+\cdots+w_{n}}}{\prod_{i=0}^{n}\left(1-x q^{2 i}\right)}$.

To prove this, from the bijective proof of Theorem 5 in [10], it would suffice to verify

The q-binomial coefficient $\left[\begin{array}{c}n+t-i \\ n-i\end{array}\right]_{q^{2}}$ is the generating function for partitions consisting of

7 The Generating Function of the Terms of a Closed Form q-Series

In trying to find the solution to a combinatorial problem, one often goes through
the procedure of finding a recurrence, then a functional equation for the generating
function, then by iteration, the solution of that functional equation, and then, with 350 some luck, a nice product form for the coefficients that are of interest.

Here, let's invert that process. Suppose we have a sequence $t(n, k)$ which satisfies

$$
\sum_{k \geq 0} t(n, k) q^{k}=\prod_{j=1}^{n} \frac{a\left(q^{j}\right)}{b\left(q^{j}\right)},
$$

where $a(t), b(t)$ are fixed polynomials in t. In other words, we suppose that the ${ }_{35}$ sum on the left is a q-hypergeometric term in n. What we would like to know is the 355 generating function

$$
\begin{equation*}
F(x, q)=\sum_{n, k} t(n, k) x^{n} q^{k} \tag{357}
\end{equation*}
$$

To do this, put $f(n)=\sum_{k \geq 0} t(n, k) q^{k}$, and then we have

$$
\begin{equation*}
b\left(q^{n}\right) f(n)=a\left(q^{n}\right) f(n-1) . \quad(n \geq 1 ; f(0)=1) \tag{25}
\end{equation*}
$$

To simplify the appearance of the following results, let R be the operator that 359 transforms x to $x q$, i.e., $R f(x)=f(x q)$, and suppose our polynomials a, b are360 $a(t)=\sum a_{j} t^{j}$ and $b(t)=\sum_{j} b_{j} t^{j}$. Further, take the generating function in the 361 form

$$
\begin{equation*}
F(x, q)=\sum_{n, k \geq 0} t(n, k) x^{n} q^{k} \tag{363}
\end{equation*}
$$

Now multiply (25) by x^{n} and sum over $n \geq 1$, to find that

$$
\begin{equation*}
(b(R)-x a(q R)) F(x, q)=1 \tag{26}
\end{equation*}
$$

Editor's Proof

7.1 Examples

Example 1. In the case (19) above we have $a(t)=1+t$ and $b(t)=1$. The ${ }_{367}$ functional equation (26) now reads as

$$
(1-x(1+q R)) F(x, q)=1=(1-x) F(x, q)-x q F(x q, q)
$$

in agreement with (17).
Example 2. Consider the case of the statistic $\sigma(w)$ of Sect. 5.2 on K-ary words 371 when $K=3$. (This has the same distribution as the statistic lhp from Sect. 6.) Here we have from (22) that $a(t)=1+t+t^{2}$ and $b(t)=1$. The functional equation ${ }^{373}$ (26) takes the form $F(x, q)=1+x\left(F(x, q)+q F(x q, q)+q^{2} F\left(x q^{2}, q\right)\right)$, i.e.,

$$
\begin{equation*}
F(x, q)=\frac{1}{1-x}\left(1+x q F(x q, q)+x q^{2} F\left(x q^{2}, q\right)\right) \tag{27}
\end{equation*}
$$

in agreement with (21). We see by iteration that the solution of this equation is going 375 to be a sum of terms of the form

$$
\begin{equation*}
\frac{q^{\alpha} x^{\beta}}{\prod_{i=1}^{n+1}\left(1-x q^{s_{i}}\right)}, \tag{28}
\end{equation*}
$$

for some collection of α, β, s_{i} to be defined. We want to identify exactly which
 terms occur. The set T of such terms is defined inductively by the two rules

$$
\text { (i) } \frac{1}{1-x} \in T \text {; }
$$

and
(ii) if $\frac{q^{\alpha} x^{\beta}}{\prod_{i=1}^{n+1}\left(1-x q^{s_{i}}\right)} \in T$,
then both of the following terms must be in T :

$$
\frac{q^{\alpha+\beta+1} x^{\beta+1}}{(1-x) \prod_{i=1}^{n+1}\left(1-x q^{s_{i}+1}\right)} \text { and } \frac{q^{\alpha+2 \beta+2} x^{\beta+1}}{(1-x) \prod_{i=1}^{n+1}\left(1-x q^{s_{i}+2}\right)}
$$

It is now straightforward to verify that the inductive rules define T to be:

$$
T=\left\{\left.\frac{q^{\sigma(w)} x^{|w|}}{\prod_{i=1}^{|w|+1}\left(1-x q^{w_{i}+\cdots+w_{|w|}}\right)} \right\rvert\, w \in\{1,2\}^{*}\right\} .
$$

Editor's Proof

The generating function is now

$$
\begin{equation*}
F(x, q)=\sum_{w \in\{1,2\}^{*}} \frac{q^{\sigma(w)} x^{|w|}}{\prod_{i=1}^{|w|+1}\left(1-x q^{\left.w_{i}+\cdots+w_{|w|}\right)}\right.} . \tag{387}
\end{equation*}
$$

Consequently we have the identity

$$
\begin{equation*}
\sum_{w \in\{1,2\}^{*}} \frac{q^{\sigma(w)} x^{|w|}}{\prod_{i=1}^{|w|+1}\left(1-x q^{\left.w_{i}+\cdots+w_{|w|}\right)}\right.}=\sum_{n \geq 0} x^{n} \prod_{j=1}^{n}\left(1+q^{j}+q^{2 j}\right) \tag{29}
\end{equation*}
$$

We're going to tweak the left side of (29) in the hope of making it prettier.
First we change the alphabet from $\{1,2\}$ to $\{0,1\}$, just because it's friendlier. To 390 do that, define new variables $\left\{v_{i}\right\}_{i=1}^{n}$ by $v_{i}=w_{i}-1(i=1, \ldots, n)$, where $n=|w|$. 391 Then the gf becomes

$$
\begin{equation*}
\sum_{v \in\{0,1\}^{*}} \frac{q^{\sigma(w)} x^{|v|}}{\prod_{i=1}^{|v|+1}\left(1-x q^{w_{i}+\cdots+w_{n}}\right)}, \tag{393}
\end{equation*}
$$

where we have temporarily used some v 's and some w 's.
Now introduce yet another set of variables, namely

$$
u_{i}=w_{i}+\cdots+w_{n}=v_{i}+\cdots+v_{n}+n-i+1 \quad(i=1, \ldots, n)
$$

Then we have
$\sigma(w)=\sum_{i=1}^{n} i w_{i}=\left(w_{1}+\cdots+w_{n}\right)+\left(w_{2}+\cdots+w_{n}\right)+\cdots+w_{n}=u_{1}+\cdots+u_{n}=\Sigma(u), \quad 398$
say. The generating function now reads as

$$
\begin{equation*}
\sum_{u} \frac{q^{\Sigma(u)} x^{|u|}}{\prod_{i=1}^{|u|+1}\left(1-x q^{u_{i}}\right)} \tag{401}
\end{equation*}
$$

which is now entirely in terms of the u_{i} 's, but we need to clarify the set of vectors $u 402$ over which the outer summation extends.

Say that a sequence $\left\{t_{i}\right\}_{i=1}^{n+1}$ of nonnegative integers is slowly decreasing if 404 $t_{n+1}=0$, and we have $t_{i}-t_{i+1}=1$ or 2 for all $i=1, \ldots, n$. Then the outer 405 sum above runs over all slowly decreasing sequences of all lengths, i.e., it is

$$
\sum_{u \in \mathrm{sd}} \frac{q^{\Sigma(u)} x^{|u|-1}}{\prod_{i=1}^{|u|}\left(1-x q^{u_{i}}\right)}
$$

Editor's Proof

where sd is the set of all slowly decreasing sequences, $\Sigma(u)$ is the sum of the entries 408 of u, and $|u|$ is the length of u (including the mandatory 0 at the end).

7.2 A Generalization

In the same way we derived (29), we can use the functional equation (26) to derive 411 the following general result.

Suppose $t(n, k)$ satisfies

$$
\sum_{k \geq 0} t(n, k) q^{k}=\prod_{j=1}^{n} \frac{a\left(q^{j}\right)}{b\left(q^{j}\right)}
$$

where $a(t), b(t)$ are fixed polynomials in $t, a(t)=\sum_{t=0}^{K-1} a_{i} t^{i}$, and $b(t)=415$ $\sum_{t=0}^{K-1} b_{i} t^{i}$. Then

$$
\begin{equation*}
F(x, q)=\sum_{n, k} t(n, k) x^{n} q^{k}=\sum_{w \in\{1,2, \ldots, K-1\}^{*}} \frac{\prod_{i=1}^{|w|}\left(a_{w_{i}} x q^{i w_{i}}-b_{w_{i}}\right)}{\prod_{i=1}^{|w|+1}\left(b_{0}-a_{0} x q^{\left.w_{i}+\cdots+w_{|w|}\right)}\right.} . \tag{417}
\end{equation*}
$$

This shows how the statistics $i w_{i}$ on words arise naturally in q-series, with the 418 special case of $\sigma(w)$ appearing when the polynomial b is constant.

References

1. George E. Andrews, q-identities of Auluck, Carlitz, and Rogers, Duke Math. J. 33 (1966), 424 575-581.
2. George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applica- 426
tions, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. 427
3. George E. Andrews, Combinatorics and Ramanujan's "Lost" Notebook,
Lecture Note Series, Cambridge University Press London (1985), 1-23. 428
4. George E. Andrews and Bruce C. Berndt, Ramanujan's Lost Notebook. Part I, Springer, New 430York, 2005.431
5. Nathan J. Fine, Basic Hypergeometric Series and Applications, American Mathematical 432
Society, Providence, RI, 1988. 433
6. Dominique Foata, On the Netto inversion number of a sequence, Proc. Amer. Math. Soc. 19 434
(1968), 236-240. 435
7. George Gasper and Mizan Rahman, Basic hypergeometric series, Encyclopedia of Mathemat- 436
ics and its Applications, 96, Cambridge University Press, Cambridge, 1990. 437

Editor's Proof

8. Percy A. MacMahon, Two applications of general theorems in combinatory analysis, Proc. 438 London Math. Soc. 15 (1916), 314-321, also in Collected Papers, Vol. I, MIT Press, 439 Cambridge, Mass., 556-563.
9. Bruce E. Sagan and Carla D. Savage, Mahonian pairs, J. Comb. Theory Ser. A, 119 (2012), 441 526-545.
10. Carla D. Savage and Michael J. Schuster, Ehrhart series of lecture hall polytopes and Eulerian 443 polynomials for inversion sequences, J. Comb. Theory Ser. A, 119 (2012), 850-870. 444
11. George N. Watson, The final problem: an account of the mock theta functions, J. London Math. 445 Soc., 11(1936), 55-80, 446
12. Herbert S. Wilf, Three problems in combinatorial asymptotics, J. Comb. Theory Ser. A, 35447 (1983), 199-207.

Editor's Proof

AUTHOR QUERIES

AQ1. Please check the "Section 2.2.4" is not provided in this chapter.
AQ2. Please cite Ref. [12] in text.

Editor's Proof

Metadata of the chapter that will be visualized online

Chapter Title	Stationary Distribution and Eigenvalues for a de Bruijn Process
Copyright Year	2013
Copyright Holder	Springer-Verlag Berlin Heidelberg
Corresponding Author	Family Name Ayyer
	Particle
	Given Name Arvind
	Suffix
	Division Department of Mathematics
	Organization University of California
	Address Davis, CA, 95616, USA
Author	Family Name Strehl
	Particle
	Given Name Volker
	Suffix
	Division Department of Computer Science
	Organization Universität Erlangen-Nürnberg
	Address D-91058, Erlangen, Germany
Abstract	We define a de Bruijn process with parameters n and L as a certain continuous-time Markov chain on the de Bruijn graph with words of length L over an n-letter alphabet as vertices. We determine explicitly its steady state distribution and its characteristic polynomial, which turns out to decompose into linear factors. In addition, we examine the stationary state of two specializations in detail. In the first one, the de BruijnBernoulli process, this is a product measure. In the second one, the Skindeep de Bruin process, the distribution has constant density but nontrivial correlation functions. The two point correlation function is determined using generating function techniques.

Stationary Distribution and Eigenvalues for a de Bruijn Process

Arvind Ayyer and Volker Strehl

Abstract

We define a de Bruijn process with parameters n and L as a certain 5 continuous-time Markov chain on the de Bruijn graph with words of length L over 6 an n-letter alphabet as vertices. We determine explicitly its steady state distribution 7 and its characteristic polynomial, which turns out to decompose into linear factors. 8 In addition, we examine the stationary state of two specializations in detail. In 9 the first one, the de Bruijn-Bernoulli process, this is a product measure. In the 10 second one, the Skin-deep de Bruin process, the distribution has constant density 11 but nontrivial correlation functions. The two point correlation function is determined using generating function techniques. os oflus o

1 Introduction

A de Bruijn sequence (or cycle) over an alphabet of n letters and of order L is a 15 cyclic word of length n^{L} such that every possible word of length L over the alphabet 16 appears once and exactly once. The existence of such sequences and their counting 17 was first given by Camille Flye Sainte-Marie in 1894 for the case $n=2$, see [10] 18 and the acknowledgement by de Bruijn[8], although the earliest known example 19 comes from the Sanskrit prosodist Pingala's Chandah Shaastra (some time between 20 the second century BCE and the fourth century CE [15, 25]). This example is for 21

[^5]
Editor's Proof

$n=2$ and $L=3$ essentially contains the word 0111010001 as a mnemonic for 22 a rule in Sanskrit grammar. Omitting the last two letters (since they are repeating ${ }_{23}$ the first two) gives a de Bruijn cycle. Methods for constructing de Bruijn cycles are 24 discussed by Knuth [14].

25
The number of de Bruijn cycles for alphabet size $n=2$ was (re-)proven to 26 be $2^{2^{L-1}-L}$ by de Bruijn [7], hence the name. The generalization to arbitrary 27 alphabet size n was first proven to be $n!^{!^{L-1}} \cdot n^{-L}$ by de Bruijn and van Aardenne- 28 Ehrenfest. This result can be seen as an application of the famous BEST-theorem 29 [22-24], which relates the counting of Eulerian tours in digraphs to the evaluation 30 of a Kirchhoff (spanning-tree counting) determinant. The relevant determinant 31 evaluation for the case of de Bruijn graphs (see below) is due to Dawson and Good 32 [6], see also [13].

33
The (directed) de Bruijn graph $G^{n, L}$ is defined over an alphabet Σ of cardinality 34 n. Its vertices are the words of $u=u_{1} u_{2} \ldots u_{L} \in \sigma^{L}$, and there is an directed edge 35 or arc between any two nodes $u=u_{1} u_{2} \ldots u_{L}$ and $v=v_{1} v_{2} \ldots v_{L}$ if and only if 36 $t(u)=u_{2} \ldots u_{n}=v_{1} \ldots v_{n-1}=h(v)$, where $h(v)(t(u)$ resp.) stands for the head 37 of v (tail of u, resp.). This arc is naturally labeled by the word $w=u \cdot v_{L}=u_{1} \cdot v, 38$ so that $h(w)=u$ and $t(v)=v$. It is intuitively clear that Eulerian tours in the de 39 Bruijn graph $G^{n, L}$ correspond to de Bruijn cycles for words over Σ of length $L+1$. 40 de Bruijn graphs and cycles have applications in several fields, e.g. in networking 41 [12] and bioinformatics [17]. For an introduction to de Bruijn graphs, see e.g. [18]. 42

In this article we will study a natural continuous-time Markov chain on $G^{n, L}{ }_{43}$ which exhibits a very rich algebraic structure. The transition probabilities are not 44 uniform since they depend on the structure of the vertices as words, and they are 45 symbolic in the sense that variables are attached to the edges as weights. We have ${ }_{46}$ not found this in the literature, although there are studies of the uniform random 47 walk on the de Bruijn graph [9]. The hitting times [5] and covering times [16] of 48 this random walk have been studied, as has the structure of the covariance matrix for 49 the alphabet of size $n=2$ [2] and in general [1]. The spectrum for the undirected 50 de Bruijn graph has been found by Strok [21]. We have also found a similar Markov 51 chain whose spectrum is completely determined in the context of cryptography [11]. 52

After describing our model on $G^{n, L}$ for a de Bruijn process in detail in the next ${ }_{53}$ section, we will determine its stationary distribution in Sect. 3 and its spectrum in 54 Sect.4. In the last section we discuss two special cases, the de Bruijn-Bernoulli 55 process and the Skin-deep de Bruijn process.

2 The Model

We take the de Bruijn graph $G^{n, L}$ as defined above. As alphabet we may take 58 $\Sigma=\Sigma_{n}=\{1,2, \ldots, n\}$. Matrices will then be indexed by words over Σ_{n} taken in 59 lexicographical order. Since the alphabet size n will be fixed throughout the article, 60 we will occasionally drop n as super- or subscript if there is no danger of ambiguity. 61

Editor's Proof

From each vertex $u=u_{1} u_{2} \ldots u_{L} \in \Sigma^{L}$ there are n directed edges in $G^{n, L}{ }_{62}$ joining u with the vertices $u_{2} u_{3} \ldots u_{n} \cdot a=t(u) \cdot a$ for $a \in \Sigma$. $\quad{ }_{63}$

We now give weights to the edges of the graph $G^{n, L}$. Let $X=\left\{x_{a, k} ; a \in \Sigma,{ }_{64}\right.$ $k \geq 1\}$ be the set of weights, to be thought of as formal variables. We will work 65 over Σ^{+}, the set of all nonempty words over the alphabet Σ (of size n). An a-block 66 is a word $u \in \Sigma^{+}$which is the repetition of the single letter a so that $u=a^{k}$ for 67 some $a \in \Sigma$ and $k \geq 1$. Obviously, every word u has a unique decomposition into 68 blocks of maximal length,

$$
\begin{equation*}
u=b^{(1)} b^{(2)} \cdots b^{(m)} \tag{1}
\end{equation*}
$$

where each factor $b^{(i)}$ is a block so that any two neighboring factors are blocks 70 of distinct letters. This is the canonical block factorization of u with a minimum 71 number of block-factors.

We now define the function $\beta: \Sigma^{+} \rightarrow X$ as follows: ${ }_{73}$

- For a block a^{k} we set $\beta\left(a^{k}\right)=x_{a, k}$; ${ }_{74}$
- For $u \in \Sigma^{+}$with canonical block factorization (1) we set $\beta(u)=\beta\left(b^{(m)}\right)$, ${ }^{75}$
i.e., the β-value of the last block of u. 76

An edge from vertex $u \in \Sigma^{L}$ to vertex $v \in \Sigma^{L}$, so that $h(v)=t(u)$ with $v=77$ $t(u) \cdot a$, say, will then be given the weight $\beta(v)$. This means that

$$
\beta(v)= \begin{cases}x_{a, L} & \text { if } \beta(u)=x_{a, L} \tag{2}\\ x_{a, k+1} & \text { if } \beta(u)=x_{a, k} \text { with } k<L \\ x_{a, 1} & \text { if } \beta(u)=x_{b, k} \text { for some } b \neq a\end{cases}
$$

Our de Bruijn process will be a continuous time Markov chain derived from 79 the Markov chain represented by the directed de Bruijn graph $G^{n, L}$ with edge 80 weights as defined above. The transition rates are $\beta(v)$ for transitions represented 81 by edges ending in v. We note that these rates can be taken just as variables and not 82 necessarily probabilities. Similarly, expectation values of random variables in this 83 process will be functions in these variables.

The simplest nontrivial example occurs when $n=L=2$. There are four 85 configurations and the relevant edges are given in the Fig. 1.

Before stating our notation for the transition matrix of a continuous-time Markov 87 chain, our de Bruijn process, we need a general notion.

Definition 1. For any $k \times k$ matrix M, let ${ }^{\nabla} M$ denote the matrix where the sum of 89 each column is subtracted from the corresponding diagonal element,

$$
\begin{equation*}
\nabla_{M}=M-\operatorname{diag}\left(1_{k} \cdot M\right), \tag{3}
\end{equation*}
$$

where 1_{k} denotes the all-one row vector of length k and $\operatorname{diag}\left(m_{1}, \ldots, m_{k}\right)$ is a 91 diagonal matrix with entries m_{1}, \ldots, m_{k} on the diagonal.

Editor's Proof

Fig. 1 An example of a de Bruijn graph in two letters and words of length 2

In graph theoretic terms ${ }^{\nabla} M$ is the (negative of) the Kirchhoff matrix or 93 Laplacian matrix of G, if M is the weighted adjacency matrix of a directed graph G. ${ }_{94}$ In case M is a matrix representing transitions of a Markov chain, the column 95 (or right) eigenvector of ${ }^{\nabla} M$ for eigenvalue zero properly normalized gives the 96 stationary probability distribution of the continuous-time Markov chain.

We note that the graphs $G^{n, L}$ are both irreducible and recurrent, so that the 98 stationary distribution is unique (up to normalization). We will use $M^{n, L}$ to denote 99 the transition matrix of our Markov chain,

$$
\begin{equation*}
M_{v, u}^{n, L}=\operatorname{rate}(u \rightarrow v)=\beta(v) \tag{4}
\end{equation*}
$$

${ }^{\nabla} M^{n, L}$ is then precisely the transition matrix,

$$
\nabla_{M_{v, u}^{n, L}}= \begin{cases}\beta(v) & \text { for } u \neq v \tag{5}\\ -\sum_{\substack{w \in \Sigma^{L} \\ u \neq w}} \beta(w) & \text { for } u=v\end{cases}
$$

For the example in Fig. 1, with lexicographic ordering of the states,

$$
\nabla_{M^{2,2}}=\left(\begin{array}{cccc}
-x_{2,1} & 0 & x_{1,2} & 0 \tag{6}\\
x_{2,1} & -x_{1,1}-x_{2,2} & x_{2,1} & 0 \\
0 & x_{1,1} & -x_{1,2}-x_{2,1} & x_{1,1} \\
0 & x_{2,2} & 0 & -x_{1,1}
\end{array}\right)
$$

Editor's Proof

The stationary distribution is given by probabilities of words, which are to be taken 104 as rational functions in the variables $x_{a, t}$. It is the column vector with eigenvalue 105 zero, which after normalization is then given by

$$
\begin{align*}
& \operatorname{Pr}[1,1]=\frac{x_{1,1} x_{1,2}}{\left(x_{1,2}+x_{2,1}\right)\left(x_{1,1}+x_{2,1}\right)}, \operatorname{Pr}[1,2]=\frac{x_{2,1} x_{1,1}}{\left(x_{1,1}+x_{2,2}\right)\left(x_{1,1}+x_{2,1}\right)}, \tag{7}\\
& \operatorname{Pr}[2,1]=\frac{x_{2,1} x_{1,1}}{\left(x_{1,2}+x_{2,1}\right)\left(x_{1,1}+x_{2,1}\right)}, \operatorname{Pr}[2,2]=\frac{x_{2,2} x_{2,1}}{\left(x_{1,1}+x_{2,2}\right)\left(x_{1,1}+x_{2,1}\right)}
\end{align*}
$$

Notice that the probabilities consist of a product of two monomials in the numerator 107 and two factors in the denominator, and that each factor contains two terms. Also, 108 notice that not all the denominators are the same, otherwise the steady state would 109 be a true product measure. Of course, the sums of these probabilities is 1 , which is 110 not completely obvious. 111

It is also interesting to note that the eigenvalues of ${ }^{\nabla} \boldsymbol{M}^{2,2}$ are linear in the 112 variables. Other than zero, the eigenvalues are given by

$$
\begin{equation*}
-x_{1,1}-x_{2,2}, \quad-x_{1,1}-x_{2,1}, \text { and }-x_{1,2}-x_{2,1} \tag{8}
\end{equation*}
$$

Another way of saying this is that the characteristic polynomial of the transition
 matrix factorizes into linear parts.

3 Stationary Distribution

In this section we determine an explicit expression for the steady state distribution

For convenience, we introduce operators which denote the transitions of our 120 Markov chain. Let ∂_{a} be the operator that adds the letter a to the end of a word ${ }_{12}$ and removes the first letter,

$$
\begin{equation*}
\partial_{a}: u \mapsto t(u) \cdot a . \tag{9}
\end{equation*}
$$

With β as introduced we introduce the shorthand notation

$$
\begin{equation*}
\beta_{a, m}=\sum_{b \in \Sigma} \beta\left(\partial_{b} a^{m}\right)=x_{a, m}+\sum_{b \in \Sigma, b \neq a} x_{b, 1} \tag{10}
\end{equation*}
$$

Note that $\beta_{a, 1}=\sum_{b \in \Sigma} x_{b, 1}$ does not depend on a. We now define the valuation $\mu(u)$ for $u \in \Sigma^{+}$as

$$
\begin{equation*}
\mu(u)=\frac{\beta(u)}{\sum_{a \in \Sigma} \beta\left(\partial_{a} u\right)} . \tag{11}
\end{equation*}
$$

Editor's Proof

Note that the restriction of μ on the alphabet Σ is (formally) a probability ${ }_{126}$ distribution. Finally, we define the valuation $\bar{\mu}$, also on Σ^{+}, as

$$
\begin{equation*}
\bar{\mu}(u)=\prod_{i=1}^{L} \mu\left(u_{1} u_{2} \ldots u_{i}\right)=\mu\left(u_{1}\right) \mu\left(u_{1} u_{2}\right) \cdots \mu\left(u_{1} u_{2} \ldots u_{L}\right) \tag{12}
\end{equation*}
$$

if $u=u_{1} u_{2} \ldots u_{L}$. The following result is the key to understanding the stationary ${ }_{128}$ distribution.

Proposition 1. For all $u \in \Sigma^{+}$,

$$
\begin{equation*}
\sum_{a \in \Sigma} \bar{\mu}(a \cdot u)=\bar{\mu}(u) . \tag{13}
\end{equation*}
$$

Proof. As in (1), let us write w in block factorized form:

$$
\begin{equation*}
u=b^{(1)} b^{(2)} \cdots b^{(m)}=\tilde{u} \cdot b^{(m)} \tag{14}
\end{equation*}
$$

where $\tilde{u}=b^{(1)} \ldots b^{(m-1)}$ if $m>1$, and \tilde{u} is the empty word if $m=1$.
If $b^{(m)}=a^{k}$, then

$$
\mu(u)= \begin{cases}\frac{x_{a, k}}{\beta_{a, k}} & \text { if } m=1, \text { i.e., if } u \text { is a block, } \tag{15}\\ \frac{x_{a, k}}{\beta_{a, k+1}} & \text { if } m>1,\end{cases}
$$

and thus

$$
\bar{\mu}(u)= \begin{cases}\prod_{j=1}^{k} \frac{x_{a, j}}{\beta_{a, j}} & \text { if } m=1, \text { i.e., if } u \text { is a block, } \tag{16}\\ \bar{\mu}(\tilde{u}) \cdot \prod_{j=1}^{k} \frac{x_{a, j}}{\beta_{a, j+1}} & \text { if } m>1 .\end{cases}
$$

We will define another valuation on Σ^{+}closely related to $\bar{\mu}$, which we call $\bar{\rho}$. 135 Referring to the factorization (14) we put

$$
\bar{\rho}(u)= \begin{cases}\prod_{j=1}^{k} \frac{x_{a, j}}{\beta_{a, j+1}} & \text { if } m=1, \text { i.e., if } u=a^{k} \text { is a block, } \tag{17}\\ \prod_{l=1}^{m} \bar{\rho}\left(u^{(l)}\right) & \text { if } m>1\end{cases}
$$

Editor's Proof

This new valuation is related to $\bar{\mu}$ by the following properties:

- For blocks $u=a^{k}$ we have

$$
\begin{equation*}
\bar{\rho}\left(a^{k}\right)=\frac{\beta_{a, 1}}{\beta_{a, k+1}} \bar{\mu}\left(a^{k}\right), \tag{18}
\end{equation*}
$$

- For u with factorization (14) we have

$$
\begin{equation*}
\bar{\mu}(u)=\bar{\mu}(\tilde{u}) \cdot \bar{\rho}\left(b^{(m)}\right), \tag{19}
\end{equation*}
$$

- Which, by the obvious induction, implies

$$
\begin{equation*}
\bar{\mu}(u)=\bar{\mu}\left(b^{(1)}\right) \cdot \prod_{l=2}^{m} \bar{\rho}\left(b^{(l)}\right) . \tag{20}
\end{equation*}
$$

We are now in a position to prove identity (13). First consider the case where 141 $u=a^{k}$ is a block.

$$
\begin{align*}
\sum_{b \in \Sigma} \bar{\mu}\left(b \cdot a^{k}\right) & =\bar{\mu}\left(a^{k+1}\right)+\sum_{b \neq a} \bar{\mu}\left(b \cdot a^{k}\right) \\
& =\frac{x_{a, k+1}}{\beta_{a, k+1}} \bar{\mu}\left(a^{k}\right)+\sum_{b \neq a} \bar{\mu}(b) \cdot \bar{\rho}\left(a^{k}\right) \\
& =\frac{x_{a, k+1}}{\beta_{a, k+1}} \bar{\mu}\left(a^{k}\right)+\sum_{b \neq a} \frac{x_{b, 1}}{\beta_{a, 1}} \bar{\rho}\left(a^{k}\right) \tag{21}\\
& =\left(\frac{x_{a, k+1}}{\beta_{a, k+1}}+\sum_{b \neq a} \frac{x_{b, 1}}{\beta_{a, k+1}}\right) \bar{\mu}\left(a^{k}\right) \\
& =\bar{\mu}\left(a^{k}\right),
\end{align*}
$$

where we used (18) in the last-but-one step.
The general case is then proven by a simple induction on m.

$$
\begin{align*}
\sum_{a \in \Sigma} \bar{\mu}\left(a . b^{(1)} b^{(2)} \ldots b^{(m)}\right) & =\sum_{a \in \Sigma} \bar{\mu}\left(a . b^{(1)} b^{(2)} \ldots b^{(m-1)}\right) \cdot \bar{\rho}\left(b^{(m)}\right) \\
& =\bar{\mu}\left(b^{(1)} b^{(2)} \ldots b^{(m-1)}\right) \cdot \bar{\rho}\left(b^{(m)}\right) \tag{22}\\
& =\bar{\mu}\left(b^{(1)} b^{(2)} \ldots b^{(m)}\right)
\end{align*}
$$

where we have used property (19) of $\bar{\rho}$ in the last step.
As a consequence of Proposition 1, we have the following result, which is an 145 easy exercise in induction. The case $L=1$ was already mentioned immediately 146 after (11).

Corollary 2. For any fixed length L of words over the alphabet Σ,

$$
\begin{equation*}
\sum_{w \in \Sigma^{L}} \bar{\mu}(w)=1 . \tag{23}
\end{equation*}
$$

Therefore, the column vector $\bar{\mu}^{n, L}=[\bar{\mu}(u)]_{u \in \Sigma^{L}}$ can be a seen as a formal 149 probability distribution on Σ^{L}. We now look at the transition matrix $M^{n, L}$ more 150 closely.

$$
\begin{equation*}
M_{v, u}^{n, L}=\delta_{h(v)=t(u)} \beta(v) \tag{24}
\end{equation*}
$$

where δ_{x} is the indicator function for x, i.e., it is 1 if the statement x is true and 152 0 otherwise. Thus the matrix $M^{n, L}$ is very sparse. It has just n non-zero entries ${ }_{153}$ per row and per column. More precisely, the row indexed by v has the entry $\beta(v){ }_{154}$ for the $n \partial$-preimages of v, and the column indexed by u contains $\beta\left(\partial_{a} u\right)$ as the 155 only nonzero entries. In particular, the column sum for the column indexed by u is 156 $\sum_{a \in \Sigma} \beta\left(\partial_{a}(u)\right)$. Define the diagonal matrix $\Delta^{n, L}$ as one with precisely these column 157 sums as entries, i.e.

$$
\Delta_{v, u}^{n, L}= \begin{cases}\sum_{a \in \Sigma} \beta\left(\partial_{a} u\right) & v=u \tag{25}\\ 0 & \text { otherwise }\end{cases}
$$

Theorem 3. The vector $\overline{\boldsymbol{\mu}}^{n, L}$ is the stationary vector for the de Bruijn process on 159 $G^{n, L}$, i.e.,

$$
\begin{equation*}
M^{n, L} \overline{\boldsymbol{\mu}}^{n, L}=\Delta^{n, L} \overline{\boldsymbol{\mu}}^{n, L} \tag{26}
\end{equation*}
$$

Proof. Consider the row corresponding to word $v=v_{1} v_{2} \ldots v_{L-1} v_{L}=h(v) \cdot v_{L}$ in 161 the equation

$$
\begin{equation*}
M \bar{\mu}=\Delta \bar{\mu} \tag{27}
\end{equation*}
$$

On the l.h.s. of (27) we have to consider the summation $\sum_{u \in \Sigma^{L}} M_{v, u} \bar{\mu}(u)$, where 163 only those $u \in \Sigma^{L}$ with $t(u) . v_{L}=v$ contribute. This latter condition can be written 164 as $u=b . h(v)$ for some $b \in \Sigma$, so that this summation can be written as 165

$$
\begin{align*}
\sum_{u \in \Sigma^{L}} M_{v, u} \bar{\mu}(u) & =\sum_{b \in \Sigma} M_{v, b \cdot h(v)} \bar{\mu}(b \cdot h(v)) \tag{28}\\
& =\beta(v) \sum_{b \in \Sigma} \bar{\mu}(b \cdot h(v))=\beta(v) \bar{\mu}(h(v))
\end{align*}
$$

where the last equality follows from Lemma 6.

Editor's Proof

On the r.h.s. of (27) we have for the row entry corresponding to the word v :

$$
\begin{align*}
\Delta_{v, v} \bar{\mu}(v) & =\sum_{a \in \Sigma} \beta\left(\partial_{a} v\right) \bar{\mu}(v) \tag{29}\\
& =\sum_{a \in \Sigma} \beta\left(\partial_{a} v\right) \cdot \bar{\mu}(h(v)) \mu(v)=\beta(v) \bar{\mu}(h(v))
\end{align*}
$$

in view of the inductive definition of $\bar{\mu}$ in (12) and the definition of μ in (11).
Let $Z^{n, L}$ denote the common denominator of the stationary probabilities of configurations. This is often called, with some abuse of terminology, the partition function [4]. The abuse comes from the fact that this terminology is strictly applicable in the sense of statistical mechanics while considering Markov chains only when they are reversible. The de Bruijn process definitely does not fall into this category. Since the probabilities are given by products of μ in (12), one arrives at the following product formula.
Corollary 4. The partition function of the de Bruijn process on $G^{n, L}$ is given by

$$
\begin{equation*}
Z^{n, L}=\beta_{1,1} \cdot \prod_{m=2}^{L-1} \prod_{a=1}^{n} \beta_{a, m} \tag{30}
\end{equation*}
$$

Physicists are often interested in properties of the stationary distribution rather 176 than the full distribution itself. One natural quantity of interest in this context is the so-called density distribution of a particular letter, say a, in the alphabet. In other 178 words, they would like to know, for example, how likely it is that a is present at the 179 first site rather than the last site. We can make this precise by defining occupation 180 variables. Let $\eta^{a, i}$ denote the occupation variable of species a at site i : it is a random 181 variable which is 1 when site i is occupied by a and zero otherwise. We define the probability in the stationary distribution by the symbol $\langle\cdot\rangle$. Then $\left\langle\eta^{a, i}\right\rangle{ }^{183}$ 177 gives the density of a at site i. Similarly, one can ask for joint distributions, such as 184 $\left\langle\eta^{a, i} \eta^{b, j}\right\rangle$, which is the probability that site i is occupied by a and simultaneously 185 that site j is occupied by b. Such joint distributions are known as correlation 186 functions.

We will not be able to obtain detailed information about arbitrary correlation 188 functions in full generality, but there is one case in which we can easily give the 189 answer. This is the correlation function for any letters $a_{k}, \ldots, a_{2}, a_{1}$ at the last $k{ }_{190}$ sites.

Corollary 5. Let $u=a_{k} \ldots a_{2} a_{1}$. Then

$$
\begin{equation*}
\left\langle\eta^{a_{k}, L-k+1} \cdots \eta^{a_{2}, L-1} \eta^{a_{1}, L}\right\rangle=\bar{\mu}(u) . \tag{31}
\end{equation*}
$$

Proof. By definition of the stationary state,

$$
\begin{equation*}
\left\langle\eta^{a_{k}, L-k+1} \cdots \eta^{a_{2}, L-1} \eta^{a_{1}, L}\right\rangle=\sum_{v \in \Sigma^{L-k}} \bar{\mu}(v . u) . \tag{32}
\end{equation*}
$$

Using Proposition 1 repeatedly $L-k$ times, we arrive at the desired result.
In particular, Corollary 5 says that the density of species a at the last site is simply

$$
\begin{equation*}
\left\langle\eta^{a, L}\right\rangle=\frac{x_{a, 1}}{\beta_{a, 1}} \tag{33}
\end{equation*}
$$

Formulas for densities at other locations are much more complicated. It would be 195 interesting to find a uniform formula for the density of species a at site k.

4 Characteristic Polynomial of ${ }^{\boldsymbol{\nabla}} \boldsymbol{M}^{\boldsymbol{n}, L}$

We will prove a formula for the characteristic polynomial of ${ }^{\nabla} M^{n, L}$ in the following. ${ }^{198}$ In particular, we will show that it factorizes completely into linear parts. In order 199 to do so, we need to understand the structure of the transition matrices better. We 200 denote by $\chi(M ; \lambda)$ the characteristic polynomial of a matrix M in the variable λ.

To begin with, let us recall from the previous section that the transition matrices 202 $M^{n, L}$, taken as mappings defined on row and column indices, are defined by $\quad 203$

$$
\begin{equation*}
M^{n, L}: \Sigma_{n}^{L} \times \Sigma_{n}^{L} \rightarrow X:(v, u) \mapsto \delta_{h(v)=t(u)} \cdot \beta(v) \tag{34}
\end{equation*}
$$

Lemma 6. The matrix $M^{n, L}$ can be written as

$$
\begin{equation*}
M^{n, L}=\left[A^{n, L}\left|A^{n, L}\right| \ldots \mid A^{n, L}\right]\left(n \text { copies of } A^{n, L}\right) \tag{35}
\end{equation*}
$$

where $A^{n, L}$ is a matrix of size $n^{L} \times n^{L-1}$ given by

$$
\begin{equation*}
A^{n, L}: \Sigma^{n, L} \times \Sigma^{n, L-1} \rightarrow X \cup\{0\}:(v, u) \mapsto \delta_{h(v)=u} \cdot \beta(v) . \tag{36}
\end{equation*}
$$

We have

$$
A^{n, 1}=\left[\begin{array}{c}
x_{1,1} \tag{37}\\
x_{2,1} \\
\vdots \\
x_{n, 1}
\end{array}\right], \quad A^{n, L}=\left[\begin{array}{cccc}
A_{1}^{n, L-1} & 0^{n, L-1} & \cdots & 0^{n, L-1} \\
0^{n, L-1} & A_{2}^{n, L-1} & \cdots & 0^{n, L-1} \\
\vdots & \vdots & \ddots & \vdots \\
0^{n, L-1} & 0^{n, L-1} & \cdots & A_{n}^{n, L-1}
\end{array}\right]=\left[\begin{array}{c}
B_{1}^{n, L-1} \\
B_{2}^{n, L-1} \\
\vdots \\
B_{n}^{n, L-1}
\end{array}\right]
$$

where $A_{k}^{n, L-1}$ is like $A^{n, L-1}$, but with $x_{k, L-1}$ replaced by $x_{k, L}$, and where $0^{n, L-1}$ is 207 the zero matrix of size $n^{L-1} \times n^{L-2}$. The matrices $B_{a}^{n, L-1}$ are square matrices of 208 size $n^{L-1} \times n^{L-1}$, where for each $a \in \Sigma$ the matrix $B_{a}^{n, L}$ is defined by

Editor's Proof

Stationary Distribution and Eigenvalues for a de Bruijn Process

$$
\begin{equation*}
B_{a}^{n, L}: \Sigma^{L} \times \Sigma^{L} \rightarrow X \cup\{0\}:(v, u) \mapsto \delta_{a . h(v)=u} \cdot \beta(a . v) \tag{38}
\end{equation*}
$$

With these matrices at hand we can finally define the matrix $B^{n, L}=\sum_{a \in \Sigma} B_{a}^{n, L}$ of 210 size $n^{L} \times n^{L}$, so that

$$
\begin{equation*}
B^{n, L}: \Sigma^{L} \times \Sigma^{L} \rightarrow X \cup\{0\}:(v, u) \mapsto \delta_{h(v)=t(u)} \cdot \beta\left(u_{1} \cdot v\right) \tag{39}
\end{equation*}
$$

Lemma 7. $M^{n, L}-B^{n, L}$ is a diagonal matrix.
Proof. We have

$$
\begin{equation*}
M^{n, L}(v, u) \neq B^{n, L}(v, u) \Leftrightarrow h(v)=t(u) \text { and } \beta\left(u_{1} . v\right) \neq \beta(v) \tag{40}
\end{equation*}
$$

But $\beta\left(u_{1} \cdot v\right) \neq \beta(v)$ can only happen if the last block of $u_{1} . v$ is different from the 214 last block of v, which only happens if v itself is a block, $v=a^{L}$, and $u_{1}=a$, in 215 which case $\beta(v)=x_{a, L}$ and $\beta\left(u_{1} \cdot v\right)=x_{a, L+1}$. So we have 216

$$
\left(B^{n, L}-M^{n, L}\right)(v, u)= \begin{cases}x_{a, L+1}-x_{a, L} & \text { if } v=u=a^{L} \tag{41}\\ 0 & \text { otherwise }\end{cases}
$$

We state as an equivalent assertion:
Corollary 8. For the Kirchhoff matrices of $M^{n, L}$ and $B^{n, L}$ we have equality:

$$
\begin{equation*}
\nabla_{M^{n, L}}={ }^{\nabla} B^{n, L} . \tag{42}
\end{equation*}
$$

We now prove a very general result about the characteristic polynomial of a 219 matrix with a certain kind of block structure. This will be the key to finding the 220 characteristic polynomial of our transition matrices.

Lemma 9. Let P_{1}, \ldots, P_{m}, Q be any $k \times k$ matrices, $P=P_{1}+\cdots+P_{m}$ and 222

$$
R=\left[\begin{array}{cccc}
P_{1}+Q & P_{1} & \cdots & P_{1} \tag{43}\\
P_{2} & P_{2}+Q \cdots & P_{2} \\
\vdots & \vdots & \ddots & \vdots \\
P_{m} & P_{m} & \cdots & P_{m}+Q
\end{array}\right]
$$

Then

$$
\begin{equation*}
\chi(R ; \lambda)=\chi(Q ; \lambda)^{m-1} \cdot \chi(P+Q ; \lambda) . \tag{44}
\end{equation*}
$$

Proof. Multiply R by the block lower-triangular matrix of unit determinant shown 224 to get

Editor's Proof

$$
R \cdot\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \tag{45}\\
-1 & 1 & 0 & \cdots & 0 \\
0 & -1 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]=\left[\begin{array}{ccccc}
Q & 0 & 0 & \cdots & P_{1} \\
-Q & Q & 0 & \cdots & P_{2} \\
0 & -Q & Q & \cdots & P_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & P_{m}+Q
\end{array}\right]
$$

which has the same determinant as R. Now perform the block row operations which 226 replace row j by the sum of rows 1 through j to get

$$
\left[\begin{array}{ccclc}
Q & 0 & 0 & \cdots & P_{1} \tag{46}\\
0 & Q & 0 & \cdots & P_{1}+P_{2} \\
0 & 0 & Q & \cdots & P_{1}+P_{1}+P_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & P+Q
\end{array}\right]
$$

Since this is now a block upper triangular matrix, the characteristic polynomials is the product of those of the diagonal blocks.

We will now apply this lemma to the block matrix

$$
\nabla_{M^{n, L+1}}=\left[\begin{array}{cccc}
B_{1}^{n, L}-D^{n, L} & B_{1}^{n, L} & \ldots & B_{1}^{n, L} \tag{47}\\
B_{2}^{n, L} & B_{2}^{n, L}-D^{n, L} & \ldots & B_{2}^{n, L} \\
\vdots & \vdots & \ddots & \vdots \\
B_{n}^{n, L} & B_{n}^{n, L} & \ldots B_{n}^{n, L}-D^{n, L}
\end{array}\right]
$$

where $D^{n, L}$ is the $\left(n^{L} \times n^{L}\right)$-diagonal matrix with the column sums of $A^{n, L+1}$ on 229 the main diagonal.
Proposition 10. The characteristic polynomials $\chi\left({ }^{\nabla} M^{n, L} ; z\right)$ satisfy the recursion ${ }_{231}$

$$
\begin{equation*}
\chi\left({ }^{\nabla} M^{n, L+1} ; z\right)=\chi\left(-D^{n, L} ; z\right)^{n-1} \cdot \chi\left({ }^{\nabla} M^{n, L} ; z\right) \tag{48}
\end{equation*}
$$

Proof. From Corollary 8, Lemma 9, and the easily checked fact ${ }^{\nabla} B^{n, L}=B^{n, L}-{ }_{232}$ $D^{n, L}$ we get:

$$
\begin{align*}
\chi\left({ }^{\nabla} M^{n, L+1} ; \lambda\right) & =\chi\left(-D^{n, L} ; \lambda\right)^{n-1} \cdot \chi\left(\sum_{a \in \Sigma} B_{a}^{n, L}-D^{n, L} ; \lambda\right) \\
& =\chi\left(-D^{n, L} ; \lambda\right)^{n-1} \cdot \chi\left(B^{n, L}-D^{n, L} ; \lambda\right) \\
& =\chi\left(-D^{n, L} ; \lambda\right)^{n-1} \cdot \chi\left({ }^{\nabla} B^{n, L} ; \lambda\right) \tag{49}\\
& =\chi\left(-D^{n, L} ; \lambda\right)^{n-1} \cdot \chi\left({ }^{\nabla} M^{n, L} ; \lambda\right) .
\end{align*}
$$

As a final step, we need a formula for $\chi\left(-D^{n, L}, \lambda\right)$.

Editor's Proof

Lemma 11. The characteristic polynomial of $-D^{n, L}$ is given by

$$
\chi\left(-D^{n, L}, \lambda\right)= \begin{cases}\lambda+\beta_{1,1} & \text { if } L=0, \tag{50}\\ \prod_{m=2}^{L} \prod_{a \in \Sigma}\left(\lambda+\beta_{a, m}\right)^{(n-1) n^{L-m}} \prod_{a \in \Sigma}\left(\lambda+\beta_{a, L+1}\right) & \text { if } L>0 .\end{cases}
$$

Proof. The case $L=0$ follows directly from the definition of $A^{n, 1}$ in (37). For ${ }^{236}$ general L, recall that $A^{n, L+1}$ contains n copies of $A^{n, L}$ with one factor containing 237 $x_{a, L}$ removed and one factor containing $x_{a, L+1}$ added instead, for each $a \in \Sigma$. Thus, ${ }^{238}$

$$
\begin{equation*}
\chi\left(-D^{n, L}, \lambda\right)=\left[\chi\left(-D^{n, L-1}, \lambda\right)\right]^{n} \cdot \prod_{a \in \Sigma}\left(\frac{\lambda+\beta_{a, L+1}}{\lambda+\beta_{a, L}}\right) \tag{51}
\end{equation*}
$$

which proves the result.
We can now put everything together and get from Proposition 10, Lemma 11 and 239 checking the initial case for $L=1$:

Theorem 12. The characteristic polynomial of the de Bruijn process on $G^{n, K}$ is 241

 given by$$
\begin{equation*}
\chi\left({ }^{\nabla} M^{n, L} ; \lambda\right)=\lambda\left(\lambda+\beta_{1,1}\right)^{n-1} \cdot \prod_{m=2}^{L} \prod_{a \in \Sigma}\left(\lambda+\beta_{a, m}\right)^{(n-1) n^{L-m}} \tag{52}
\end{equation*}
$$

5 Special Cases

We now consider special cases of the rates where something interesting happens in

5.1 The de Bruijn-Bernoulli Process

There turns out to be a special case of the rates $x_{a, j}$ for which the stationary ${ }_{247}$ distribution is a Bernoulli measure. That is to say, the probability of finding species 248 a at site i in stationarity is independent, not only of any other site, but also of i itself. This is not obvious because the dynamics at any given site is certainly a priori not ${ }^{25}$ independent from what happens at any other site. Since the measure is so simple, all correlation functions are trivial. We denote the single site measure in (11) for this

Corollary 13. Under the choice of rates $x_{a, j}=y_{a}$ independent of j, the stationary 254 distribution of the Markov chain with transition matrix $\nabla_{M^{n, L}}$ is Bernoulli with ${ }_{255}$ density

$$
\begin{equation*}
\rho_{a}=\frac{y_{a}}{\sum_{b \in \Sigma} y_{b}} \tag{53}
\end{equation*}
$$

Proof. The choice of rates simply mean that species a is added with a rate 257 independent of the current configuration. From (11), it follows that for $u={ }_{258}$ $u_{1} u_{2} \ldots u_{L}, \quad 259$

$$
\begin{equation*}
\mu_{y}(u)=\frac{y_{u_{L}}}{\sum_{b \in \Sigma} y_{b}}=\rho_{u_{L}} \tag{54}
\end{equation*}
$$

and using the definition of the stationary distribution $\bar{\mu}$ in (12),

$$
\begin{equation*}
\bar{\mu}_{y}(u)=\prod_{i=1}^{L} \rho_{u_{i}} \tag{55}
\end{equation*}
$$

which is exactly the definition of a Bernoulli distribution.

5.2 The Skin-Deep de Bruijn Process

Another tractable version of the de Bruijn process is one where the rate for 262 transforming the word $u=u_{1} u_{2} \ldots u_{L}$ into $\partial_{a} u=t(u) \cdot a=u_{2} \ldots u_{L} \cdot a$ for $a \in \Sigma{ }^{263}$ only depends on the occupation of the last site, u_{L}. Hence, the rates are only skin- 264 deep. An additional simplification comes by choosing the rate to be x when $a=u_{L}{ }_{265}$ and 1 otherwise. Namely,

$$
x_{a, j}= \begin{cases}x & \text { for } j=1 \tag{56}\\ 1 & \text { for } j>1\end{cases}
$$

We first summarize the results. It turns out that any letter in the alphabet is equally 267 likely to be at any site in the skin-deep de Bruijn process. This is an enormous 268 simplification compared to the original process where we do not have a general 269 formula for the density. Further, we have the property that all correlation functions 270 are independent of the length of the words. This is not obvious because the Markov 271 chain on words of length L is not reducible in any obvious way to the one on words 272 of length $L-1$. This property is quite rare and very few examples are known of 273 such families of Markov chains. One such example is the asymmetric annihilation 274 process [3].

Editor's Proof

The intuition is as follows. By choosing $x \ll 1$ one prefers to add the same letter 276 as u_{L}, and similarly, for $x \gg 1$, one prefers to add any letter in Σ other than $u_{L} \cdot{ }^{277}$ Of course, $x=1$ corresponds to the uniform distribution. Therefore, one expects 278 the average word to be qualitatively different in these two cases. In the former case, 279 one expects the average word to be the same letter repeated L times, whereas in the 280 latter case, one would expect no two neighboring letters to be the same on average. 281 Our final result, a simple formula for the two-point correlation function, exemplifies 282 the different in these two cases.

We begin with a formula for the stationary distribution, which we will denote in 284 this specialization by $\bar{\mu}_{x}$. We will always work with the alphabet Σ on n letters.
Lemma 14. The stationary probability for a word $u=u_{1} u_{2} \ldots u_{L} \in \Sigma^{L}$ is 286 given by

$$
\begin{equation*}
\bar{\mu}_{x}(u)=\frac{x^{\gamma(u)-1}}{n(1+(n-1) x)^{L-1}}, \tag{57}
\end{equation*}
$$

where $\gamma(u)$ is the number of blocks of u.
Proof. Analogous to the notation for the stationary distribution, we denote the block 289 function by β_{x}. From the definition of the model,

$$
\beta_{x}\left(a^{k}\right)= \begin{cases}x & \text { if } k=1, \tag{58}\\ 1 & \text { if } k>1 .\end{cases}
$$

and thus, for any word u the value $\beta_{x}(u)$ is x if the length of the last block in its block decomposition is 1 , and is 1 otherwise. The denominator in (57) is easily 292 explained. For any word u of length L,

$$
\sum_{a \in \Sigma} \beta_{x}(t(u) \cdot a)= \begin{cases}1+(n-1) x & L>1 \tag{59}\\ n x & L=1\end{cases}
$$

because for all but one letter in Σ, the size of the last block in $t(u) \cdot a$ is going to be 294 1. The only exception to this argument is, $L=1$, when $t(u)$ is empty. From (12), 295 we get

$$
\begin{equation*}
\bar{\mu}_{x}(u)=\frac{\beta_{x}\left(u_{1}\right) \beta_{x}\left(u_{1} u_{2}\right) \cdots \beta_{x}\left(u_{1} \ldots u_{L}\right)}{n x(1+(n-1) x)^{L-1}} . \tag{60}
\end{equation*}
$$

The numerator is $x^{\gamma(u)}$, since we pick up a factor of x every time a new block starts. One factor x is cancelled because $\beta_{x}\left(u_{1}\right)=x$.

The formula for the density is essentially an argument about the symmetry of the 297 de Bruijn graph $G^{n, L}$.

Corollary 15. The probability in the stationary state of $G^{n, L}$ that site i is occupied 299 by letter a is uniform, i.e., for any i s.th. $1 \leq i \leq L$ we have

$$
\begin{equation*}
\left\langle\eta^{a, i}\right\rangle=\frac{1}{n}(a \in \Sigma) \tag{61}
\end{equation*}
$$

Proof. Indeed, by Lemma 14 the stationary distribution $\bar{\mu}_{x}$ is invariant under any permutation of the letters of the alphabet Σ. Hence $\left\langle\eta^{a, i}\right\rangle$ does not depend on $a \in \Sigma$ and we have uniformity.

Since the de Bruijn-Bernoulli process has a product measure, the density of a at 301 site i is also independent of i, but the density is not uniform since it is given by $\rho_{a} 302$ (53). The behavior of higher correlation functions here is more complicated than the 303 de Bruijn-Bernoulli process. There is, however, one aspect in which it resembles the 304 former, namely:

Lemma 16. Correlation functions of $G^{n, L}$ in this model are independent of the 306 length L of the words and they are shift-invariant.

Proof. We can represent an arbitrary correlation function in the de Bruijn graph 308 $G^{n, L}$ as

$$
\begin{equation*}
\left\langle\eta^{a_{1}, i_{1}} \cdots \eta^{a_{k}, i_{k}}\right\rangle_{L}=\sum_{w^{(0)}, \ldots, w^{(k)}} \bar{\mu}_{x}\left(w^{(0)} a_{1} w^{(1)} \ldots w^{(k-1)} a_{k} w^{(k)}\right) \tag{62}
\end{equation*}
$$

where we have sites $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq L$ and letters $a_{1}, a_{2}, \ldots, a_{k} \in \Sigma$, ${ }_{310}$ and where the sum runs over all $\left(w^{(0)}, w^{(1)}, \ldots, w^{(k)}\right)$ with $w^{(j)} \in \Sigma^{i_{s+1}-i_{s}-1}$ for 311 $s \in\{0, \ldots, k\}$, and where we put $i_{0}=0$ and $i_{k+1}=L+1$. Now note that we have ${ }_{312}$ from Proposition 1 for any $u \in \Sigma^{k}$

$$
\begin{equation*}
\sum_{w \in \Sigma^{L}} \bar{\mu}_{x}(w \cdot u)=\bar{\mu}_{x}(u) \tag{63}
\end{equation*}
$$

Since $\bar{\mu}_{x}$, as given in Lemma 14, is also invariant under reversal of words, we 314 also have

$$
\begin{equation*}
\sum_{w \in \Sigma^{L}} \bar{\mu}_{x}(u \cdot w)=\bar{\mu}_{x}(u) \tag{64}
\end{equation*}
$$

As a consequence, we can forget about the outermost summations in (62) and get $\quad 316$

$$
\begin{align*}
& \left\langle\eta^{a_{1}, i_{1}} \cdots \eta^{a_{k}, i_{k}}\right\rangle_{L}= \\
& \quad \sum_{w^{(1)}, \ldots, w^{(k-1)}} \bar{\mu}_{x}\left(a_{1} w^{(1)} \cdots w^{(k-1)} a_{k}\right)=\left\langle\eta^{a_{1}, j_{1}} \cdots \eta^{a_{k}, j_{k}}\right\rangle_{i_{k}-i_{1}+1}, \tag{65}
\end{align*}
$$

Editor's Proof

where $j_{s}=i_{s}-i_{1}+1(1 \leq s \leq k)$. Shift-invariance in the sense that

$$
\begin{equation*}
\left\langle\eta^{a_{1}, i_{1}} \cdots \eta^{a_{k}, i_{k}}\right\rangle_{L}=\left\langle\eta^{a_{1}, i_{1}+1} \cdots \eta^{a_{k}, i_{k}+1}\right\rangle_{L} \tag{66}
\end{equation*}
$$

is an immediate consequence.
We now proceed to compute the two-point correlation function. This is an easy 318 exercise in generating functions for words according to the number of blocks. The 319 technique is known as "transfer-matrix method", see, e.g., Sect. 4.7 in [20]. 320

For $a, b \in \Sigma$ and $k \geq 1$ we define the generating polynomial in the variable x

$$
\begin{equation*}
\alpha_{n, k}(a, b ; x)=\sum_{w \in a \cdot \Sigma^{k-1} . b} x^{\gamma(w)-1} \tag{67}
\end{equation*}
$$

where, as before, $\gamma(w)$ denotes the number of blocks in the block factorization of $w \in \Sigma^{+}$(so that $\gamma(w)-1$ is the number of pairs of adjacent distinct letters in w). Note that

$$
\alpha_{n, 1}(a, b ; x)= \begin{cases}1 & \text { if } a=b, \tag{68}\\ x & \text { if } a \neq b\end{cases}
$$

The following statement is folklore:
Lemma 17. Let \mathbb{I}_{n} denote the identity matrix and \mathbb{J}_{n} denote the all-one matrix, ${ }_{326}$ both of size $n \times n$, and let $K_{n}(s, t):=s \cdot \mathbb{I}_{n}+t \cdot \mathbb{J}_{n}$ for parameters s, t. Then

$$
\begin{equation*}
K_{n}(s, t)^{-1}=\frac{1}{s(s+n t)} K_{n}(s+n t,-t) . \tag{69}
\end{equation*}
$$

Indeed, this is a very special case of what is known as the Sherman-Morrison 328 formula, see [19,26]. 329

Consider now the matrix

$$
\begin{equation*}
A_{n}(x):=\left[\alpha_{n, 1}(a, b ; x)\right]_{a, b \in \Sigma}=(1-x) \cdot \mathbb{I}_{n}+x \cdot \mathbb{J}_{n}=K_{n}(1-x, x) \tag{70}
\end{equation*}
$$

which encodes transition in the alphabet Σ. Then, for $k \geq 1, A_{n}(x)^{k}$ is an $(n \times n)-331$ matrix which in position (a, b) contains the generating polynomial $\alpha_{n, k}(a, b ; x)$: ${ }_{332}$

$$
\begin{equation*}
A_{n}(x)^{k}=\left[\alpha_{n, k}(a, b ; x)\right]_{a . b \in \Sigma} \tag{71}
\end{equation*}
$$

We can get generating functions by summing the geometric series and using ${ }^{333}$ Lemma 17:

Editor's Proof

$$
\begin{align*}
\sum_{k \geq 0} A_{n}(x)^{k} z^{k} & =\left(\mathbb{I}_{n}-z \cdot A_{n}(x)\right)^{-1} \\
& =K_{n}(1-z+x z,-x z)^{-1} \tag{72}\\
& =\frac{K_{n}(1-z-(n-1) x z, x z)}{(1-z+x z)(1-z-(n-1) x z)}
\end{align*}
$$

which means that for any two distinct letters $a, b \in \Sigma$:

$$
\begin{align*}
\sum_{k \geq 0} \alpha_{n, k}(a, a ; x) z^{k} & =\frac{1-z-(n-2) x z}{(1-z+x z)(1-z-(n-1) x z)} \\
& =\frac{1}{n} \frac{1}{1-z-(n-1) x z}+\frac{n-1}{n} \frac{1}{1-z+x z} \tag{73}\\
\sum_{k \geq 1} \alpha_{n, k}(a, b ; x) z^{k} & =\frac{x z}{(1-z+x z)(1-z-(n-1) x z)} \\
& =\frac{1}{n} \frac{1}{1-z-(n-1) x z}-\frac{1}{n} \frac{1}{1-z+x z}
\end{align*}
$$

or equivalently,

$$
\begin{align*}
& \alpha_{n, k}(a, a ; x)=\frac{1}{n}\left((1-(n-1) x)^{k}+(n-1)(1-x)^{k}\right) \\
& \alpha_{n, k}(a, b ; x)=\frac{1}{n}\left((1-(n-1) x)^{k}-(1-x)^{k}\right) \tag{74}
\end{align*}
$$

We thus arrive at expressions for the two-point correlation functions:
Proposition 18. For $a, b \in \Sigma$ with $a \neq b$ and $1 \leq i<j \leq L$,

$$
\begin{align*}
& \left\langle\eta^{a, i} \eta^{a, j}\right\rangle=\frac{1}{n^{2}}+\frac{n-1}{n^{2}}\left(\frac{1-x}{1+(n-1) x}\right)^{j-i} \\
& \left\langle\eta^{a, i} \eta^{b, j}\right\rangle=\frac{1}{n^{2}}-\frac{1}{n^{2}}\left(\frac{1-x}{1+(n-1) x}\right)^{j-i} \tag{75}
\end{align*}
$$

Proof. By Lemma 16 we may assume $i=1$ and $j=L$. Comparing Lemma 14339 with the definition of the $\alpha_{n, k}(a, b ; x)$ in (67) we see that for $a, b \in \Sigma$:

$$
\begin{equation*}
\left\langle\eta^{a, 1} \eta^{b, L}\right\rangle=\frac{\alpha_{n, L-1}(a, b ; x)}{n(1+(n-1) x)^{L-1}} \tag{76}
\end{equation*}
$$

so that the assertion follows from 74.

Editor's Proof

The formula (75) is quite interesting because the first term, $1 / n^{2}$, has a 341 significance. From the formula for the density in Corollary 15, we get

$$
\begin{equation*}
\left\langle\eta^{a, 1} \eta^{a, L}\right\rangle-\left\langle\eta^{a, 1}\right\rangle\left\langle\eta^{a, L}\right\rangle=\frac{n-1}{n^{2}}\left(\frac{1-x}{1+(n-1) x}\right)^{L-1} \tag{77}
\end{equation*}
$$

The object on the left hand side is called the truncated two point correlation function 343 in the physics literature, and its value is an indication of how far the stationary 344 distribution is from a product measure. In the case of a product measure, the right 345 hand side would be zero. Setting

$$
\begin{equation*}
\alpha=\frac{1-x}{1+(n-1) x} \tag{78}
\end{equation*}
$$

we see that $|\alpha| \leq 1$, and so the truncated correlation function goes exponentially to 347 zero as $L \rightarrow \infty$. Thus, the stationary measure $\bar{\mu}_{x}$ behaves like a product measure 348 if we do not look for observables which are close to each other. We can use (77) to 349 understand one of the differences between the values $x<1$ and $x>1$, namely in 350 the way this quantity converges. In the former case, the convergence is monotonic, 351 and in the latter, oscillatory.

Acknowledgements We thank the referee for a careful reading of the manuscript. The first author 353 (A.A.) would like to acknowledge hospitality and support from the Tata Institute of Fundamental 354 Research, Mumbai, India where part of this work was done, and thank T. Amdeberhan for 355 discussions. 356

References

1. Abbas Alhakim. On the eigenvalues and eigenvectors of an overlapping Markov chain. Probab. 358 Theory Related Fields, 128(4):589-605, 2004.

2. Abbas Alhakim and Stanislav Molchanov. Some Markov chains on abelian groups with 360 applications. In Random walks and geometry, pages 3-33. Walter de Gruyter GmbH \& Co. 361 KG, Berlin, 2004.
3. Arvind Ayyer and Volker Strehl. Properties of an asymmetric annihilation process. In DMTCS 363 Proceedings, 22nd International Conference on Formal Power Series and Algebraic Combina- 364 torics (FPSAC 2010), pages 461-472, 2010.
4. R A Blythe and M R Evans. Nonequilibrium steady states of matrix-product form: a solver's 366 guide. Journal of Physics A: Mathematical and Theoretical, 40(46):R333, 2007.
5. Haiyan Chen. The random walks on n-dimensional de Bruijn digraphs and graphs. J. Math. 368 Study, 36(4):368-373, 2003.
6. R. Dawson and I.J. Good. ExactMarkov probabilities from oriented linear graphs. Ann. Math. 370 Stat., 28:946-956, 1957.
7. N. G. de Bruijn. A combinatorial problem. Nederl. Akad. Wetensch., Proc., 49:758-764 $=372$ Indagationes Math. 8, 461-467 (1946), 1946.
8. N. G. de Bruijn. Acknowledgement of priority to C. Flye Sainte-Marie on the counting of 374 circular arrangements of 2^{n} zero and ones that show each n-letter word exactly once. Technical 375 report, Technische Hogeschool Eindhoven, Nederland, 1975.
9. P. Flajolet, P. Kirschenhofer, and R. F. Tichy. Deviations from uniformity in random strings. 377 Probability Theory and Related Fields, 80:139-150, 1988. 10.1007/BF00348756. 378
10. C. Flye Saint-Marie. Solution to question nr. 48. L'Intermédiaire des Mathématiciens, 1:107- 379 110, 1894.
11. Willi Geiselmann and Dieter Gollmann. Correlation attacks on cascades of clock controlled 381 shift registers. In Advances in cryptology-ASIACRYPT '96 (Kyongju), volume 1163 of Lecture 382 Notes in Comput. Sci., pages 346-359. Springer, Berlin, 1996.
12. M. Kaashoek and David Karger. Koorde: A simple degree-optimal distributed hash table. 384 In M. Kaashoek and Ion Stoica, editors, Peer-to-Peer Systems II, volume 2735 of Lecture Notes 385 in Computer Science, pages 98-107. Springer Berlin / Heidelberg, 2003. 386
13. Donald E. Knuth. Oriented subtrees of an arc digraph. Journal of Combinatorial Theory, 387 3:309-314, 1967. 388
14. Donald E. Knuth. The art of computer programming. Vol. 4, Fasc. 2. Addison-Wesley, Upper 389 Saddle River, NJ, 2005. Generating all tuples and permutations. 390
15. Donald E. Knuth. The art of computer programming. Vol. 4, Fasc. 4. Addison-Wesley, Upper 391 Saddle River, NJ, 2006. Generating all trees-history of combinatorial generation. 392
16. T. Mori. Random walks on de Bruijn graphs. Teor. Veroyatnost. i Primenen., 37(1):194-197, 393 1992. 394
17. Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An Eulerian path approach to DNA 395 fragment assembly. Proceedings of the National Academy of Sciences, 98(17):9748-9753, 396 2001. 397
18. Anthony Ralston. de Bruijn sequences-a model example of the interaction of discrete 398 mathematics and computer science. Math. Mag., 55(3):131-143, 1982.399
19. J. Sherman and W. Morrison. Adjustment of an inverse matrix, corresponding to a change in 400 one element of a given matrix. Ann. Math. Statist., 21(4):124-127, 1950.
20. Richard P. Stanley. Enumerative combinatorics. Vol. 1, volume 49 of Cambridge Studies in 402 Advanced Mathematics. Cambridge University Press, Cambridge, 1997. With a foreword by 403 Gian-Carlo Rota, Corrected reprint of the 1986 original. 404
21. V. V. Strok. Circulant matrices and spectra of de Bruijn graphs. Ukrä̈n. Mat. Zh., 44(11):1571- 405 1579, 1992.
22. W. T. Tutte and C. A. B. Smith. On unicursal paths in a network of degree 4. The American 407 Mathematical Monthly, 48(4):pp. 233-237, 1941.
23. W.T. Tutte. Graph Theory. Cambridge University Press, 1984. Encyclopedia of Mathematics 409 and its Applications, vol. $21 . \quad 410$
24. T. van Aardenne-Ehrenfest and N. G. de Bruijn. Circuits and trees in oriented linear graphs. 411 Simon Stevin, 28:203-217, $1951 . \quad 412$
25. B. Van Nooten. Binary numbers in Indian antiquity. Journal of Indian Philosophy, 21:31-50, 413 1993. 10.1007/BF01092744. 414
26. Herbert S. Wilf. Matrix inversion by the annihilation of rank. Journal SIAM, 7(2):149-151, 415 1959. 416

Editor's Proof

Metadata of the chapter that will be visualized online

Chapter Title	Automatic Generation of Theorems and Proofs on Enumerating Consecutive-Wilf Classes
Copyright Year	2013
Copyright Holder	Springer-Verlag Berlin Heidelberg
Corresponding Author	Family Name Baxter
	Particle
	Given Name Andrew
	Suffix
	Division Department of Mathematics
	Organization Rutgers University (New Brunswick), Hill Center-Busch Campus
	Address 110 Frelinghuysen Rd., Piscataway, NJ, 08854-8019, USA
Author	Family Name Nakamura
	Particle
	Given Name Brian
	Suffix
	Division Department of Mathematics
	Organization Rutgers University (New Brunswick), Hill Center-Busch Campus
	Address 110 Frelinghuysen Rd., Piscataway, NJ, 08854-8019, USA
Author	Family Name Zeilberger
	Particle
	Given Name Doron
	Suffix
	Division Department of Mathematics
	Organization Rutgers University (New Brunswick), Hill Center-Busch Campus
	Address 110 Frelinghuysen Rd., Piscataway, NJ, 08854-8019, USA
Abstract	This article, describes two complementary approaches to enumeration, the positive and the negative, each with its advantages and disadvantages. Both approaches are amenable to automation, and we apply it to the currently active subarea, initiated in 2003 by Sergi Elizalde and Marc Noy, of enumerating consecutive-Wilf classes (i.e. consecutive patternavoidance) in permutations
Keywords (separated by "-")	Automated enumeration - Consecutive pattern-avoidance

Automatic Generation of Theorems and Proofs on Enumerating Consecutive-Wilf Classes

Andrew Baxter, Brian Nakamura, and Doron Zeilberger

Abstract

This article, describes two complementary approaches to enumeration, 5 the positive and the negative, each with its advantages and disadvantages. Both 6 approaches are amenable to automation, and we apply it to the currently active 7 subarea, initiated in 2003 by Sergi Elizalde and Marc Noy, of enumerating 8 consecutive-Wilf classes (i.e. consecutive pattern-avoidance) in permutations. 9

Keywords Automated enumeration - Consecutive pattern-avoidance

Preface

This article describes two complementary approaches to enumeration, the positive 12 and the negative, each with its advantages and disadvantages. Both approaches 13 are amenable to automation, and when applied to the currently active subarea, 14 initiated in 2003 by Sergi Elizalde and Marc Noy [4], of consecutive pattern- 15 avoidance in permutations, were successfully pursued by the first two authors 16 Andrew Baxter [1] and Brian Nakamura [10]. This article summarizes their research 17 and in the case of [10] presents an umbral viewpoint to the same approach. The 18 main purpose of this article is to briefly explain the Maple packages, SERGI 19 and ELIZALDE, developed by AB-DZ and BN-DZ respectively, implementing 20 the algorithms that enable the computer to "do research" by deriving, all by 21 itself, functional equations for the generating functions that enable polynomial-time

[^6]enumeration for any set of patterns. In the case of ELIZALDE (the "negative" 23 approach), these functional equations can be sometimes (automatically!) simplified, 24 and imply "explicit" formulas, that previously were derived by humans using ad-hoc 25 methods. We also get lots of new "explicit" results, beyond the scope of humans, but 26 we have to admit that we still need humans to handle "infinite families" of patterns, 27 but this too, no doubt, will soon be automatable, and we leave this as a challenge to 28 the (human and/or computer) reader.

Consecutive Pattern Avoidance

Inspired by the very active research in pattern-avoidance, pioneered by Herb 31 Wilf, Rodica Simion, Frank Schmidt, Richard Stanley, Don Knuth and others, 32 Sergi Elizalde, in his PhD thesis (written under the direction of Richard Stanley) ${ }_{3}$ introduced the study of permutations avoiding consecutive patterns. 34

Recall that an n-permutation is a sequence of integers $\pi=\pi_{1} \ldots \pi_{n}$ of length 35 n where each integer in $\{1, \ldots, n\}$ appears exactly once. It is well-known and very 36 easy to see (today!) that the number of n-permutations is $n!:=\prod_{i=1}^{n} i$. $\quad 37$

The reduction of a list of different (integer or real) numbers (or members of 38 any totally ordered set) $\left[i_{1}, i_{2}, \ldots, i_{k}\right]$, to be denoted by $R\left(\left[i_{1}, i_{2}, \ldots, i_{k}\right]\right)$, is the 39 permutation of $\{1,2, \ldots, k\}$ that preserves the relative rankings of the entries. In 40 other words, $p_{i}<p_{j}$ iff $q_{i}<q_{j}$. For example the reduction of [4,2,7,5] is 41 $[2,1,4,3]$ and the reduction of $[\pi, e, \gamma, \phi]$ is $[4,3,1,2]$. 42

Fixing a pattern $p=\left[p_{1}, \ldots, p_{k}\right]$, a permutation $\pi=\left[\pi_{1}, \ldots, \pi_{n}\right]$ avoids the 43 consecutive pattern p if for all $i, 1 \leq i \leq n-k+1$, the reduction of the list 44 $\left[\pi_{i}, \pi_{i+1}, \ldots, \pi_{i+k-1}\right]$ is not p. More generally a permutation π avoids a set of 45 patterns \mathbb{P} if it avoids each and every pattern $p \in \mathbb{P}$.

The central problem is to answer the question: "Given a pattern or a set of 47 patterns, find a 'formula', or at least an efficient algorithm (in the sense of Wilf 48 [12]), that inputs a positive integer n and outputs the number of permutations of 49 length n that avoid that pattern (or set of patterns)".

Human Research

After the pioneering work of Elizalde and Noy [4], quite a few people contributed 52 significantly, including Anders Claesson, Toufik Mansour, Sergey Kitaev, Anthony 53 Mendes, Jeff Remmel, and more recently, Vladimir Dotsenko, Anton Khoroshkin 54 and Boris Shapiro. Also recently we witnessed the beautiful resolution of the 55 Warlimont conjecture by Richard Ehrenborg, Sergey Kitaev, and Peter Perry [3]. 56 The latter paper also contains extensive references.

Recommended Reading

While the present article tries to be self-contained, the readers would get more out 59 of it if they are familiar with [13]. Other applications of the umbral transfer matrix 60 method were given in [5, 14-16].

The Positive Approach vs. the Negative Approach

We will present two complementary approaches to the enumeration of consecutive- 63 Wilf classes, both using the Umbral transfer matrix method. The positive approach 64 works better when you have many patterns, and the negative approach works better 65 when there are only a few, and works best when there is only one pattern to avoid. 66

Outline of the Positive Approach

Instead of dealing with avoidance (the number of permutations that have zero 68 occurrences of the given pattern(s)) we will deal with the more general problem of 69 enumerating the number of permutations that have specified numbers of occurrences 70 of any pattern of length k.

Fix a positive integer k, and let $\left\{t_{p}: p \in S_{k}\right\}$ be k ! commuting indeterminates 72 (alias variables). Define the weight of an n-permutation $\pi=\left[\pi_{1}, \ldots, \pi_{n}\right]$, to be ${ }^{73}$ denoted by $w(\pi)$, by:

$$
w\left(\left[\pi_{1}, \ldots, \pi_{n}\right]\right):=\prod_{i=1}^{n-k+1} t_{R\left(\left[\pi_{i}, \pi_{i}+1, \ldots, \pi_{i+k-1}\right]\right)}
$$

For example, with $k=3$,

$$
\begin{aligned}
w([2,5,1,4,6,3]) & :=t_{R([2,5,1])} t_{R([5,1,4])} t_{R([1,4,6])} t_{R([4,6,3])}= \\
& =t_{231} t_{312} t_{123} t_{231}=t_{123} t_{231}^{2} t_{312} .
\end{aligned}
$$

We are interested in an efficient algorithm for computing the sequence of polynomi- 78 als in k ! variables

$$
\begin{equation*}
P_{n}\left(t_{1 \ldots k}, \ldots, t_{k \ldots 1}\right):=\sum_{\pi \in S_{n}} w(\pi) \tag{80}
\end{equation*}
$$

or equivalently, as many terms as desired in the formal power series

$$
\begin{equation*}
F_{k}\left(\left\{t_{p}, p \in S_{k}\right\} ; z\right)=\sum_{n=0}^{\infty} P_{n} z^{n} \tag{82}
\end{equation*}
$$

Note that once we have computed the P_{n} (or F_{k}), we can answer any question 83 about pattern avoidance by specializing the t 's. For example to get the number of 84 n-permutations avoiding the single pattern p, of length k, first compute P_{n}, and then 85 plug-in $t_{p}=0$ and all the other t's to be 1 . If you want the number of n-permutations 86 avoiding the set of patterns \mathbb{P} (all of the same length k), set $t_{p}=0$ for all $p \in \mathbb{P}$ and 87 the other t's to be 1 . As we shall soon see, we will generate functional equations for 88 F_{k}, featuring the $\left\{t_{p}\right\}$ and of course it would be much more efficient to specialize the 89 t_{p} 's to the numerical values already in the functional equations, rather than crank-out 90 the much more complicated $P_{n}\left(\left\{t_{p}\right\}\right)$'s and then do the plugging-in.

91
First let's recall one of the many proofs that the number of n-permutations, let's 92 denote it by $a(n)$, satisfies the recurrence

$$
a(n+1)=(n+1) a(n)
$$

Given a typical member of S_{n}, let's call it $\pi=\pi_{1} \ldots \pi_{n}$, it can be continued in $n+195$ ways, by deciding on π_{n+1}. If $\pi_{n+1}=i$, then we have to "make room" for the new 96 entry by incrementing by 1 all entries $\geq i$, and then append i. This gives a bijection 97 between $S_{n} \times[1, n+1]$ and S_{n+1} and taking cardinalities yields the recurrence. Of 98 course $a(0)=1$, and "solving" this recurrence yields $a(n)=n$!. Of course this 99 solving is "cheating", since n ! is just shorthand for the solution of this recurrence 100 subject to the initial condition $a(0)=1$, but from now on it is considered "closed 101 form" (just by convention!).

When we do weighted counting with respect to the weight w with a given pattern- 103 length k, we have to keep track of the last $k-1$ entries of π : 104

$$
\left[\pi_{n-k+2} \ldots \pi_{n}\right]
$$

and when we append $\pi_{n+1}=i$, the new permutation (let $a^{\prime}=a$ if $a<i$ and 106 $a^{\prime}=a+1$ if $a \geq i$)

$$
\ldots \pi_{n-k+2}^{\prime} \cdots \pi_{n}^{\prime} i
$$

has "gained" a factor of $t_{R\left[\pi_{n-k+2}^{\prime} \ldots \pi_{n}^{\prime} i\right]}$ to its weight.
This calls for the finite-state method, alas, the "alphabet" is indefinitely large, so 110 we need the umbral transfer-matrix method.

We introduce $k-1$ "catalytic" variables $x_{1}, x_{2}, \ldots, x_{k-1}$, as well as a variable 112 z to keep track of the size of the permutation, and $(k-1)$! "linear" state variables ${ }_{113}$ $A[q]$ for each $q \in S_{k-1}$, to tell us the state that the permutation is in. Define the 114 generalized weight $w^{\prime}(\pi)$ of a permutation $\pi \in S_{n}$ to be: 115

$$
\begin{equation*}
w^{\prime}(\pi):=w(\pi) x_{1}^{j_{1}} x_{2}^{j_{2}} \ldots x_{k-1}^{j_{k-1}} z^{n} A[q], \tag{116}
\end{equation*}
$$

where $\left[j_{1}, \ldots, j_{k-1}\right],\left(1 \leq j_{1}<j_{2}<\cdots<j_{k-1} \leq n\right)$ is the sorted list of the last 117 $k-1$ entries of π, and q is the reduction of its last $k-1$ entries.

Editor's Proof

For example, with $k=3$:

$$
\begin{aligned}
w^{\prime}([4,7,1,6,3,5,8,2]) & =t_{231} t_{322} t_{132} t_{312} t_{123} t_{231} x_{1}^{2} x_{2}^{8} z^{8} A[21]= \\
& =t_{123} t_{132} t_{231}^{2} t_{312}^{2} x_{1}^{2} x_{2}^{8} z^{8} A[21] .
\end{aligned}
$$

Let's illustrate the method with $k=3$. There are two states: $[1,2],[2,1]{ }_{12}$ corresponding to the cases where the two last entries are $j_{1} j_{2}$ or $j_{2} j_{1}$ respectively ${ }_{122}$ (we always assume $j_{1}<j_{2}$).

Suppose we are in state [1,2], so our permutation looks like

$$
\pi=\left[\ldots, j_{1}, j_{2}\right],
$$

and $w^{\prime}(\pi)=w(\pi) x_{1}^{j_{1}} x_{2}^{j_{2}} z^{n} A[1,2]$. We want to append $i(1 \leq i \leq n+1)$ to the ${ }_{126}$ end. There are three cases.

Case 1: $\quad 1 \leq i \leq j_{1}$.
The new permutation, let's call it σ, looks like

$$
\sigma=\left[\ldots j_{1}+1, j_{2}+1, i\right] .
$$

Its state is $[2,1]$ and $w^{\prime}(\sigma)=w(\pi) t_{231} x_{1}^{i} x_{2}^{j_{2}+1} z^{n+1} A[2,1]$.
Case 2: $\quad j_{1}+1 \leq i \leq j_{2}$.132

The new permutation, let's call it σ, looks like 133

$$
\begin{equation*}
\sigma=\left[\ldots j_{1}, j_{2}+1, i\right] \tag{134}
\end{equation*}
$$

Its state is now $[2,1]$ and $w^{\prime}(\sigma)=w(\pi) t_{132} x_{1}^{i} x_{2}^{j_{2}+1} z^{n+1} A[2,1]$. 135
Case 3: $\quad j_{2}+1 \leq i \leq n+1$.
The new permutation, let's call it σ, looks like 137

$$
\sigma=\left[\ldots j_{1}, j_{2}, i\right]
$$138

Its state is now $[1,2]$ and $w^{\prime}(\sigma)=w(\pi) t_{123} x_{1}^{j_{2}} x_{2}^{i} z^{n+1} A[1,2]$.
It follows that any individual permutation of size n, and state [1, 2], gives rise to 140 $n+1$ children, and regarding weight, we have the "umbral evolution" (here W is 141 the fixed part of the weight, that does not change):

$$
\begin{aligned}
& W x_{1}^{j_{1}} x_{2}^{j_{2}} z^{n} A[1,2] \rightarrow W t_{231} z A[2,1]\left(\sum_{i=1}^{j_{1}} x_{1}^{i} x_{2}^{j_{2}+1}\right) z^{n} \\
&+W t_{132} z A[2,1]\left(\sum_{i=j_{1}+1}^{j_{2}} x_{1}^{i} x_{2}^{j_{2}+1}\right) z^{n} \\
&+W t_{123} z A[1,2]\left(\sum_{i=j_{2}+1}^{n+1} x_{1}^{j_{2}} x_{2}^{i}\right) z^{n}
\end{aligned}
$$

Editor's Proof

Taking out of the \sum-signs whatever we can, we have:

$$
\begin{gathered}
W x_{1}^{j_{1}} x_{2}^{j_{2}} z^{n} A[1,2] \rightarrow W t_{231} z A[2,1]\left(\sum_{i=1}^{j_{1}} x_{1}^{i}\right) x_{2}^{j_{2}+1} z^{n} \\
+W t_{132} z A[2,1]\left(\sum_{i=j_{1}+1}^{j_{2}} x_{1}^{i}\right) x_{2}^{j_{2}+1} z^{n} \\
+W t_{123} z A[1,2]\left(\sum_{i=j_{2}+1}^{n+1} x_{2}^{i}\right) x_{1}^{j_{2}} z^{n}
\end{gathered}
$$

Now summing up the geometrical series, using the ancient formula:

$$
\sum_{i=a}^{b} Z^{i}=\frac{Z^{a}-Z^{b+1}}{1-Z}
$$

we get

$$
\begin{aligned}
& W x_{1}^{j_{1}} x_{2}^{j_{2}} z^{n} A[1,2] \rightarrow W t_{231} z A[2,1]\left(\frac{x_{1}-x_{1}^{j_{1}+1}}{1-x_{1}}\right) x_{2}^{j_{2}+1} z^{n} \\
&+W t_{132} z A[2,1]\left(\frac{x_{1}^{j_{1}+1}-x_{1}^{j_{2}+1}}{1-x_{1}}\right) x_{2}^{j_{2}+1} z^{n} \\
&+W t_{123} z A[1,2]\left(\frac{x_{2}^{j_{2}+1}-x_{2}^{n+2}}{1-x_{2}}\right) x_{1}^{j_{2}} z^{n}
\end{aligned}
$$

This is the same as:

$$
\begin{gathered}
W x_{1}^{j_{1}} x_{2}^{j_{2}} z^{n} A[1,2] \rightarrow W t_{231} z A[2,1]\left(\frac{x_{1} x_{2}^{j_{2}+1}-x_{1}^{j_{1}+1} x_{2}^{j_{2}+1}}{1-x_{1}}\right) z^{n} \\
+W t_{132} z A[2,1]\left(\frac{x_{1}^{j_{1}+1} x_{2}^{j_{2}+1}-x_{1}^{j_{2}+1} x_{2}^{j_{2}+1}}{1-x_{1}}\right) z^{n} \\
+W t_{123} z A[1,2]\left(\frac{x_{1}^{j_{2}} x_{2}^{j_{2}+1}-x_{1}^{j_{2}} x_{2}^{n+2}}{1-x_{2}}\right) z^{n}
\end{gathered}
$$

Editor's Proof

This is what was called in [13], and its many sequels, a "pre-umbra". The above 148 evolution can be expressed for a general monomial $M\left(x_{1}, x_{2}, z\right)$ as:

$$
\begin{aligned}
& M\left(x_{1}, x_{2}, z\right) A[1,2] \rightarrow t_{231} z A[2,1]\left(\frac{x_{1} x_{2} M\left(1, x_{2}, z\right)-x_{1} x_{2} M\left(x_{1}, x_{2}, z\right)}{1-x_{1}}\right) \\
& \quad+t_{132} z A[2,1]\left(\frac{x_{1} x_{2} M\left(x_{1}, x_{2}, z\right)-x_{1} x_{2} M\left(1, x_{1} x_{2}, z\right)}{1-x_{1}}\right) \\
& \quad+t_{123} z A[1,2]\left(\frac{x_{2} M\left(1, x_{1} x_{2}, z\right)-x_{2}^{2} M\left(1, x_{1}, x_{2} z\right)}{1-x_{2}}\right)
\end{aligned}
$$

But, by linearity, this means that the coefficient of $A[1,2]$ (the weight-enumerator 150 of all permutations of state $[1,2]$) obeys the evolution equation:

$$
\begin{gathered}
f_{12}\left(x_{1}, x_{2}, z\right) A[1,2] \rightarrow t_{231} z A[2,1]\left(\frac{x_{1} x_{2} f_{12}\left(1, x_{2}, z\right)-x_{1} x_{2} f_{12}\left(x_{1}, x_{2}, z\right)}{1-x_{1}}\right) \\
+t_{132} z A[2,1]\left(\frac{x_{1} x_{2} f_{12}\left(x_{1}, x_{2}, z\right)-x_{1} x_{2} f_{12}\left(1, x_{1} x_{2}, z\right)}{1-x_{1}}\right) \\
\quad+t_{123} z A[1,2]\left(\frac{x_{2} f_{12}\left(1, x_{1} x_{2}, z\right)-x_{2}^{2} f_{12}\left(1, x_{1}, x_{2} z\right)}{1-x_{2}}\right)
\end{gathered}
$$

Now we have to do it all over for a permutation in state $[2,1]$. Suppose we are in state $[2,1]$, so our permutation looks like

$$
\begin{equation*}
\pi=\left[\ldots, j_{2}, j_{1}\right] \tag{154}
\end{equation*}
$$

and $w^{\prime}(\pi)=w(\pi) x_{1}^{j_{1}} x_{2}^{j_{2}} z^{n} A[2,1]$. We want to append $i(1 \leq i \leq n+1)$ to the 155 end. There are three cases.

Case 1: $\quad 1 \leq i \leq j_{1}$.
The new permutation, let's call it σ, looks like

$$
\begin{equation*}
\sigma=\left[\ldots j_{2}+1, j_{1}+1, i\right] \tag{159}
\end{equation*}
$$

Its state is $[2,1]$ and $w^{\prime}(\sigma)=w(\pi) t_{321} x_{1}^{i} x_{2}^{j_{1}+1} z^{n+1} A[2,1]$. 160
Case 2: $\quad j_{1}+1 \leq i \leq j_{2} . \quad 161$
The new permutation, let's call it σ, looks like 162

$$
\sigma=\left[\ldots j_{2}+1, j_{1}, i\right]
$$

Its state is now [1, 2] and 164
$w^{\prime}(\sigma)=w(\pi) t_{312} x_{1}^{j_{1}} x_{2}^{i} z^{n+1} A[1,2]$

Editor's Proof

Case 3: $\quad j_{2}+1 \leq i \leq n+1$.

The new permutation, let's call it σ, looks like 167

$$
\sigma=\left[\ldots j_{2}, j_{1}, i\right]
$$

Its state is $[1,2]$ and $w^{\prime}(\sigma)=w(\pi) t_{213} x_{1}^{j_{1}} x_{2}^{i} z^{n+1} A[1,2]$.
It follows that any individual permutation of size n, and state [2, 1], gives rise to
 $n+1$ children, and regarding weight, we have the "umbral evolution" (here W is 171 the fixed part of the weight, that does not change):

$$
\begin{aligned}
& W x_{1}^{j_{1}} x_{2}^{j_{2}} z^{n} A[2,1] \rightarrow W t_{321} z A[2,1]\left(\sum_{i=1}^{j_{1}} x_{1}^{i} x_{2}^{j_{1}+1}\right) z^{n} \\
&+W t_{312} z A[1,2]\left(\sum_{i=j_{1}+1}^{j_{2}} x_{1}^{j_{1}} x_{2}^{i}\right) z^{n} \\
&+W t_{213} z A[1,2]\left(\sum_{i=j_{2}+1}^{n+1} x_{1}^{j_{1}} x_{2}^{i}\right) z^{n}
\end{aligned}
$$

Taking out of the \sum-signs whatever we can, we have:

$$
\begin{gathered}
W x_{1}^{j_{1}} x_{2}^{j_{2}} z^{n} A[2,1] \rightarrow W t_{321} z A[2,1]\left(\sum_{i=1}^{j_{1}} x_{1}^{i}\right) x_{2}^{j_{1}+1} z^{n} \\
+W t_{312} z A[1,2]\left(\sum_{i=j_{1}+1}^{j_{2}} x_{2}^{i}\right) x_{1}^{j_{1}} z^{n} \\
+W t_{213} z A[1,2]\left(\sum_{i=j_{2}+1}^{n+1} x_{2}^{i}\right) x_{1}^{j_{1}} z^{n}
\end{gathered}
$$

Now summing up the geometrical series, using the ancient formula:

$$
\begin{equation*}
\sum_{i=a}^{b} Z^{i}=\frac{Z^{a}-Z^{b+1}}{1-Z} \tag{175}
\end{equation*}
$$

Editor's Proof

Automatic Generation of Theorems and Proofs on Enumerating Consecutive- . . .
we get

$$
\begin{gathered}
W x_{1}^{j_{1}} x_{2}^{j_{2}} z^{n} A[2,1] \rightarrow W t_{321} z A[2,1]\left(\frac{x_{1}-x_{1}^{j_{1}+1}}{1-x_{1}}\right) x_{2}^{j_{1}+1} z^{n} \\
+W t_{312} z A[1,2]\left(\frac{x_{2}^{j_{1}+1}-x_{2}^{j_{2}+1}}{1-x_{2}}\right) x_{1}^{j_{1}} z^{n} \\
+W t_{213} z A[1,2]\left(\frac{x_{2}^{j_{2}+1}-x_{2}^{n+2}}{1-x_{2}}\right) x_{1}^{j_{1}} z^{n} .
\end{gathered}
$$

This is the same as:

$$
\begin{gathered}
W x_{1}^{j_{1}} x_{2}^{j_{2}} z^{n} A[2,1] \rightarrow W t_{321} z A[2,1]\left(\frac{x_{1} x_{2}^{j_{1}+1}-x_{1}^{j_{1}+1} x_{2}^{j_{1}+1}}{1-x_{1}}\right) z^{n} \\
+W t_{312} z A[1,2]\left(\frac{x_{1}^{j_{1}} x_{2}^{j_{1}+1}-x_{1}^{j_{1}} x_{2}^{j_{2}+1}}{1-x_{2}}\right) z^{n} \\
+W t_{213} z A[1,2]\left(\frac{x_{1}^{j_{1}} x_{2}^{j_{2}+1}-x_{1}^{j_{1}} x_{2}^{n+2}}{1-x_{2}}\right) z^{n}
\end{gathered}
$$

The above evolution can be expressed for a general monomial $M\left(x_{1}, x_{2}, z\right)$ as:

$$
\begin{gathered}
M\left(x_{1}, x_{2}, z\right) A[2,1] \rightarrow t_{321} z A[2,1]\left(\frac{x_{1} x_{2} M\left(x_{2}, 1, z\right)-x_{1} x_{2} M\left(x_{1} x_{2}, 1, z\right)}{1-x_{1}}\right) \\
\\
+t_{312} z A[1,2]\left(\frac{x_{2} M\left(x_{1} x_{2}, 1, z\right)-x_{2} M\left(x_{1}, x_{2}, z\right)}{1-x_{2}}\right) \\
\\
+t_{213} z A[1,2]\left(\frac{x_{2} M\left(x_{1}, x_{2}, z\right)-x_{2}^{2} M\left(x_{1}, 1, x_{2} z\right)}{1-x_{2}}\right) .
\end{gathered}
$$

But, by linearity, this means that the coefficient of $A[2,1]$ (the weight-enumerator of all permutations of state $[2,1]$) obeys the evolution equation:

$$
\begin{aligned}
f_{21}\left(x_{1}, x_{2}, z\right) & A[2,1] \rightarrow t_{321} z A[2,1]\left(\frac{x_{1} x_{2} f_{21}\left(x_{2}, 1, z\right)-x_{1} x_{2} f_{21}\left(x_{1} x_{2}, 1, z\right)}{1-x_{1}}\right) \\
& +t_{312} z A[1,2]\left(\frac{x_{2} f_{21}\left(x_{1} x_{2}, 1, z\right)-x_{2} f_{21}\left(x_{1}, x_{2}, z\right)}{1-x_{2}}\right) \\
& +t_{213} z A[1,2]\left(\frac{x_{2} f_{21}\left(x_{1}, x_{2}, z\right)-x_{2}^{2} f_{21}\left(x_{1}, 1, x_{2} z\right)}{1-x_{2}}\right) .
\end{aligned}
$$

Editor's Proof

Combining we have the "evolution":

$$
\begin{gathered}
f_{12}\left(x_{1}, x_{2}, z\right) A[1,2]+f_{21}\left(x_{1}, x_{2}, z\right) A[2,1] \rightarrow \\
+t_{231} z A[2,1]\left(\frac{x_{1} x_{2} f_{12}\left(1, x_{2}, z\right)-x_{1} x_{2} f_{12}\left(x_{1}, x_{2}, z\right)}{1-x_{1}}\right) \\
+t_{132} z A[2,1]\left(\frac{x_{1} x_{2} f_{12}\left(x_{1}, x_{2}, z\right)-x_{1} x_{2} f_{12}\left(1, x_{1} x_{2}, z\right)}{1-x_{1}}\right) \\
+t_{123} z A[1,2]\left(\frac{x_{2} f_{12}\left(1, x_{1} x_{2}, z\right)-x_{2}^{2} f_{12}\left(1, x_{1}, x_{2} z\right)}{1-x_{2}}\right) . \\
+ \\
+t_{321} z A[2,1]\left(\frac{x_{1} x_{2} f_{21}\left(x_{2}, 1, z\right)-x_{1} x_{2} f_{21}\left(x_{1} x_{2}, 1, z\right)}{1-x_{1}}\right) \\
+t_{312} z A[1,2]\left(\frac{x_{2} f_{21}\left(x_{1} x_{2}, 1, z\right)-x_{2} f_{21}\left(x_{1}, x_{2}, z\right)}{1-x_{2}}\right) \\
+t_{213} z A[1,2]\left(\frac{x_{2} f_{21}\left(x_{1}, x_{2}, z\right)-x_{2}^{2} f_{21}\left(x_{1}, 1, x_{2} z\right)}{1-x_{2}}\right) .
\end{gathered}
$$

Now the "evolved" (new) $f_{12}\left(x_{1}, x_{2}, z\right)$ and $f_{21}\left(x_{1}, x_{2}, z\right)$ are the coefficients of $A[1,2]$ and $A[2,1]$ respectively, and since the initial weight of both of them is 184 $x_{1} x_{2}^{2} z^{2}$, we have the established the following system of functional equations:

$$
\begin{gathered}
f_{12}\left(x_{1}, x_{2}, z\right)=x_{1} x_{2}^{2} z^{2} \\
+t_{123} z\left(\frac{x_{2} f_{12}\left(1, x_{1} x_{2}, z\right)-x_{2}^{2} f_{12}\left(1, x_{1}, x_{2} z\right)}{1-x_{2}}\right) \\
+t_{312} z\left(\frac{x_{2} f_{21}\left(x_{1} x_{2}, 1, z\right)-x_{2} f_{21}\left(x_{1}, x_{2}, z\right)}{1-x_{2}}\right) \\
+t_{213} z\left(\frac{x_{2} f_{21}\left(x_{1}, x_{2}, z\right)-x_{2}^{2} f_{21}\left(x_{1}, 1, x_{2} z\right)}{1-x_{2}}\right),
\end{gathered}
$$

and

$$
\begin{gathered}
f_{21}\left(x_{1}, x_{2}, z\right)=x_{1} x_{2}^{2} z^{2} \\
+t_{231} z\left(\frac{x_{1} x_{2} f_{12}\left(1, x_{2}, z\right)-x_{1} x_{2} f_{12}\left(x_{1}, x_{2}, z\right)}{1-x_{1}}\right) \\
+t_{132} z\left(\frac{x_{1} x_{2} f_{12}\left(x_{1}, x_{2}, z\right)-x_{1} x_{2} f_{12}\left(1, x_{1} x_{2}, z\right)}{1-x_{1}}\right) \\
+t_{321} z\left(\frac{x_{1} x_{2} f_{21}\left(x_{2}, 1, z\right)-x_{1} x_{2} f_{21}\left(x_{1} x_{2}, 1, z\right)}{1-x_{1}}\right) .
\end{gathered}
$$

Editor's Proof

Let the Computer Do It!

All the above was only done for pedagogical reasons. The computer can do it all automatically, much faster and more reliably. Now if we want to find functional equations for the number of permutations avoiding a given set of consecutive 190 patterns \mathbb{P}, all we have to do is plug-in $t_{p}=0$ for $p \in \mathbb{P}$ and $t_{p}=1$ for $p \notin \mathbb{P}$. 191 This gives a polynomial-time algorithm for computing any desired number of terms. This is all done automatically in the Maple package SERGI. See the webpage of this article for lots of sample input and output.

Above we assumed that the members of the set P are all of the same length, k. Of course more general scenarios can be reduced to this case, where k would be the largest length that shows up in P. Note that with this approach we end up with a set of $(k-1)$! functional equations in the $(k-1)$! "functions" (or rather formal power 198 series) f_{p}.

The Negative Approach

Suppose that we want to compute quickly the first 100 terms (or whatever) of the 201 sequence enumerating n-permutations avoiding the pattern $[1,2, \ldots, 20]$. As we 202 have already noted, using the "positive" approach, we have to set-up a system of 203 functional equations with 19 ! equations and 19 ! unknowns. While the algorithm is 204 still polynomial in n (and would give a "Wilfian" answer), it is not very practical! 205 (This is yet another illustration why the ruling paradigm in theoretical computer 206 science, of equating "polynomial time" with "fast" is (sometimes) absurd). 207

This is analogous to computing words in a finite alphabet, say of a letters, 208 avoiding a given word (or words) as factors (consecutive subwords). If the word-to- 209 avoid has length k, then the naive transfer-matrix method would require setting up a 210 system of a^{k-1} equations and a^{k-1} unknowns. The elegant and powerful Goulden- 211 Jackson method [6, 7], beautifully exposited and extended in [11], and even further 212 extended in [9], enables one to do it by solving one equation in one unknown. We 213 assume that the reader is familiar with it, and briefly describe the analog for the 214 present problem, where the alphabet is "infinite". This is also the approach pursued 215 in the beautiful human-generated papers [2] and [8]. We repeat that the focus and 216 novelty in the present work is in automating enumeration, and the current topic of 217 consecutive pattern-avoidance is used as a case-study. 218

First, some generalities! For ease of exposition, let's focus on a single pattern $p 219$ (the case of several patterns is analogous, see [2]). 220

Using the inclusion-exclusion "negative" philosophy for counting, fix a pattern 221 p. For any n-permutation, let $\operatorname{Patt}_{p}(\pi)$ be the set of occurrences of the pattern p in 222 π. For example 223

Editor's Proof

$$
\begin{gathered}
\operatorname{Patt}_{123}(179234568)=\{179,234,345,456,568\}, \\
\operatorname{Patt}_{231}(179234568)=\{792\}, \\
\operatorname{Patt}_{312}(179234568)=\{923\}, \\
\text { Patt }_{132}(179234568)=\operatorname{Patt}_{213}(179234568)=\text { Patt }_{321}(179234568)=\emptyset .
\end{gathered}
$$

Consider the much larger set of pairs 224

$$
\left\{[\pi, S] \mid \pi \in S_{n}, S \subset \operatorname{Patt}_{p}(\pi)\right\}
$$

and define

$$
\text { weight }_{p}[\pi, S]:=(t-1)^{|S|} \text {, }
$$

where $|S|$ is the number of elements of S. For example,

$$
\begin{gathered}
\text { weight }_{123}[179234568,\{234,568\}]=(t-1)^{2} \\
\begin{array}{c}
\text { weight }_{123}[179234568,\{179\}]=(t-1)^{1}=t-1, \\
\text { weight }_{123}[179234568, \emptyset]=(t-1)^{0}=1
\end{array}
\end{gathered}
$$

Fix a (consecutive) pattern p of length k, and consider the weight-enumerator of 229 all n-permutations according to the weight

$$
w(\pi):=t^{\# o c c u r r e n c e s ~ o f ~ p a t t e r n ~} p \text { in } \pi,
$$

let's call it $P_{n}(t)$. So:

$$
P_{n}(t):=\sum_{\pi \in S_{n}} t^{\left|\operatorname{Patt}_{p}(\pi)\right|}
$$

Now we need the crucial, extremely deep, fact:

$$
t=(t-1)+1
$$

and its corollary (for any finite set S):

$$
\begin{equation*}
t^{|S|}=((t-1)+1)^{|S|}=\prod_{s \in S}((t-1)+1)=\sum_{T \subset S}(t-1)^{|T|} \tag{237}
\end{equation*}
$$

Putting this into the definition of $P_{n}(t)$, we get:

$$
P_{n}(t):=\sum_{\pi \in S_{n}} t^{\mid \text {Patt }_{p}(\pi) \mid}=\sum_{\pi \in S_{n}} \sum_{T \subset \operatorname{Patt}_{p}(\pi)}(t-1)^{|T|}
$$

Editor's Proof

Abstract

This is the weight-enumerator (according to a different weight, namely $(t-1)^{|T|}$) of 240 a much larger set, namely the set of pairs, (π, T), where T is a subset of $\operatorname{Patt}_{p}(\pi) .{ }_{241}$ Surprisingly, this is much easier to handle! 242

Consider a typical such "creature" (π, T). There are two cases 243

Case I: The last entry of π, π_{n} does not belong to any of the members of 244 T, in which case chopping it off produces a shorter such creature, in the set 245 $\{1,2, \ldots, n\} \backslash\left\{\pi_{n}\right\}$, and reducing both π and T to $\{1, \ldots, n-1\}$ yields a typical 246 member of size $n-1$. Since there are n choices for π_{n}, the weight-enumerator 247 of creatures of this type (where the last entry does not belong to any member of 248 $T)$ is $n P_{n-1}(t)$. 249
Case II: Let's order the members of T by their first (or last) index: $\quad 250$

$$
\left[s_{1}, s_{2}, \ldots, s_{p}\right]
$$

where the last entry of π, π_{n}, belongs to s_{p}. If s_{p} and s_{p-1} are disjoint, the 252 ending cluster is simply $\left[s_{p}\right]$. Otherwise s_{p} intersects s_{p-1}. If s_{p-1} and s_{p-2} are 253 disjoint, then the ending cluster is $\left[s_{p-1}, s_{p}\right]$. More generally, the ending cluster 254 of the pair $\left[\pi,\left[s_{1}, \ldots, s_{p}\right]\right]$ is the unique list $\left[s_{i}, \ldots, s_{p}\right]$ that has the property that 255 s_{i} intersects s_{i+1}, s_{i+1} intersects s_{i+2}, \ldots, s_{p-1} intersects s_{p}, but s_{i-1} does not 256 intersect s_{i}. It is possible that the ending cluster of $[\pi, T]$ is the whole T. 257

Let's give an example: with the pattern 123. The ending cluster of the pair: 258

$$
[157423689,[157,236,368,689]] \quad 259
$$

is [236, 368, 689] since 236 overlaps with 368 (in two entries) and 368 overlaps with 260 689 (also in two entries), while 157 is disjoint from 236.

Now if you remove the ending cluster of T from T and remove the entries 262 participating in the cluster from π, you get a shorter creature $\left[\pi^{\prime}, T^{\prime}\right]$ where $\pi^{\prime}{ }^{263}$ is the permutation with all the entries in the ending cluster removed, and T^{\prime} is what 264 remains of T after we removed that cluster. In the above example, we have 265

$$
\left[\pi^{\prime}, T^{\prime}\right]=[1574,[157]] .
$$

Suppose that the length of π^{\prime} is r.
267
Let $C_{n}(t)$ be the weight-enumerator, according to the weight $(t-1)^{|T|}$, of 268 canonical clusters of length n, i.e., those whose set of entries is $\{1, \ldots, n\}$. Then 269 in Case II we have to choose a subset of $\{1, \ldots, n\}$ of cardinality $n-r$ to be the set 270 of entries of $\left[\pi^{\prime}, T^{\prime}\right]$ and then choose a creature of size $n-r$ and a cluster of size r. 271 Combining Cases I and II, we have, $P_{0}(t)=1$, and for $n \geq 1$: 272

$$
P_{n}(t)=n P_{n-1}(t)+\sum_{r=2}^{n}\binom{n}{r} P_{n-r}(t) C_{r}(t) .
$$

Editor's Proof

$$
F(z, t):=\sum_{n=0}^{\infty} \frac{P_{n}(t)}{n!} z^{n}
$$

We have

$$
\begin{aligned}
F(z, t) & :=1+\sum_{n=1}^{\infty} \frac{P_{n}(t)}{n!} z^{n}= \\
& =1+\sum_{n=1}^{\infty} \frac{n P_{n-1}(t)}{n!} z^{n}+\sum_{n=0}^{\infty} \frac{1}{n!}\left(\sum_{r=2}^{n}\binom{n}{r} P_{n-r}(t) C_{r}(t)\right) z^{n} \\
& =1+z \sum_{n=1}^{\infty} \frac{P_{n-1}(t)}{(n-1)!} z^{n-1}+\sum_{n=0}^{\infty} \frac{1}{n!}\left(\sum_{r=2}^{n} \frac{n!}{r!(n-r)!} P_{n-r}(t) C_{r}(t)\right) z^{n} \\
& =1+z \sum_{n=0}^{\infty} \frac{P_{n}(t)}{n!} z^{n}+\sum_{n=0}^{\infty}\left(\sum_{r=2}^{n} \frac{1}{r!(n-r)!} P_{n-r}(t) C_{r}(t)\right) z^{n} \\
& =1+z F(z, t)+\sum_{n=0}^{\infty}\left(\sum_{r=2}^{n} \frac{P_{n-r}(t)}{(n-r)!} C_{r}(t) r!\right) z^{n} \\
& =1+z F(z, t)+\left(\sum_{n-r=0}^{\infty} \frac{P_{n-r}(t)}{(n-r)!} z^{n-r}\right)\left(\sum_{r=0}^{\infty} \frac{C_{r}(t)}{r!} z^{r}\right),
\end{aligned}
$$

since $C_{0}(t)=0, C_{1}(t)=0$, and this equals

$$
=1+z F(z, t)+F(z, t) G(z, t)
$$

where $G(z, t)$ is the exponential generating function of $C_{n}(t)$:

$$
G(z, t):=\sum_{n=0}^{\infty} \frac{C_{n}(t)}{n!} z^{n}
$$

It follows that

$$
\begin{equation*}
F(z, t)=1+z F(z, t)+F(z, t) G(z, t), \tag{283}
\end{equation*}
$$

leading to

$$
F(z, t)=\frac{1}{1-z-G(z, t)}
$$

So if we had a quick way to compute the sequence $C_{n}(t)$, we would have a quick 286 way to compute the first whatever coefficients (in z) of $F(z, t)$ (i.e., as many $P_{n}(t){ }^{287}$ as desired).

Editor's Proof

A Fast Way to Compute $\boldsymbol{C}_{\boldsymbol{n}}(\boldsymbol{t})$

For the sake of pedagogy let the fixed pattern be 1324. Consider a typical cluster

$$
[13254768,[1325,2547,4768]]
$$

If we remove the last atom of the cluster, we get the cluster

$$
[132547,[1325,2547]], \quad 293
$$

of the set $\{1,2,3,4,5,7\}$. Its canonical form, reduced to the set $\{1,2,3,4,5,6\}$, is: 294

$$
[132546,[1325,2546]] .
$$

Because of the "Markovian property" (chopping the last atom of the clusters and 296 reducing yields a shorter cluster), we can build-up such a cluster, and in order to 297 know how to add another atom, all we need to know is the current last atom. If the 298 pattern is of length k (in this example, $k=4$), we need only to keep track of the last 299 k entries. Let the sorted list (from small to large) be $i_{1}<\cdots<i_{k}$, so the last atom of 300 the cluster (with r atoms) is $s_{r}=\left[i_{p_{1}}, \ldots, i_{p_{k}}\right]$, where $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$ is 301 some increasing sequence of k integers between 1 and n. We introduce k catalytic 302 variables x_{1}, \ldots, x_{k}, and define

$$
\operatorname{Weight}\left(\left[s_{1}, \ldots, s_{r-1},\left[i_{p_{1}}, \ldots, i_{p_{k}}\right]\right]\right):=z^{n}(t-1)^{r} x_{1}^{i_{1}} \cdots x_{k}^{i_{k}}
$$

Going back to the 1324 example, if we currently have a cluster with r atoms, 305 whose last atom is $\left[i_{1}, i_{3}, i_{2}, i_{4}\right]$, how can we add another atom? Let's call it 306 [$j_{1}, j_{3}, j_{2}, j_{4}$]. This new atom can overlap with the former one in two possibilities.
(a) If the overlap is of length 2 :

$$
j_{1}=i_{2} \quad j_{3}=i_{4}
$$

but because of the "reduction" (making room for the new entries) it is really

$$
\begin{equation*}
j_{1}=i_{2} \quad j_{3}=i_{4}+1 \tag{311}
\end{equation*}
$$

(and j_{2} and j_{4} can be what they wish as long as $i_{2}<j_{2}<i_{4}+1<j_{4} \leq n$).
(b) If the overlap is of length 1 :

$$
j_{1}=i_{4}
$$

(and j_{2}, j_{3}, j_{4} can be what they wish, provided that $i_{4}<j_{2}<j_{3}<j_{4} \leq n$).

Editor's Proof

Hence we have the "umbral-evolution":

$$
\begin{gathered}
z^{n}(t-1)^{r-1} x_{1}^{i_{1}} x_{2}^{i_{2}} x_{3}^{i_{3}} x_{4}^{i_{4}} \rightarrow z^{n+2}(t-1)^{r} \sum_{1 \leq j_{1}=i_{2}<j_{2}<j_{3}=i_{4}+1<j_{4} \leq n} x_{1}^{j_{1}} x_{2}^{j_{2}} x_{3}^{j_{3}} x_{4}^{j_{4}} \\
+z^{n+3}(t-1)^{r} \sum_{1 \leq j_{1}=i_{4}<j_{2}<j_{3}<j_{4} \leq n} x_{1}^{j_{1}} x_{2}^{j_{2}} x_{3}^{j_{3}} x_{4}^{j_{4}}
\end{gathered}
$$

These two iterated geometrical sums can be summed exactly, and from this "pre- 317 umbra" the computer can deduce (automatically!) the umbral operator, yielding a 318 functional equation for the ordinary generating function

$$
\mathcal{C}\left(t, z ; x_{1}, \ldots, x_{k}\right)=\sum_{n=0}^{\infty} C_{n}\left(t ; x_{1}, \ldots, x_{k}\right) z^{n}
$$

of the form

$$
\begin{aligned}
\mathcal{C}\left(t, z ; x_{1}, \ldots, x_{k}\right) & =(t-1) z^{k} x_{1} x_{2}^{2} \ldots x_{k}^{k}+ \\
& +\sum_{\alpha} R_{\alpha}\left(x_{1}, \ldots, x_{k} ; t, z\right) \mathcal{C}\left(t, z ; M_{1}^{\alpha}, \ldots, M_{k}^{\alpha}\right)
\end{aligned}
$$

where $\{\alpha\}$ is a finite index set, $M_{1}^{\alpha}, \ldots, M_{k}^{\alpha}$ are specific monomials in $x_{1}, \ldots, x_{k}, \quad 323$ z, derived by the algorithm, and R_{α} are certain rational functions of their arguments, 324 also derived by the algorithm. 325

Once again, the novelty here is that everything (except for the initial Maple 326 programming) is done automatically by the computer. It is the computer doing 327 combinatorial research all on its own!

Post-processing the Functional Equation

At the end of the day we are only interested in $\mathcal{C}(t, z ; 1, \ldots, 1)$. Alas, plugging 330 in $x_{1}=1, x_{2}=1, \ldots, x_{k}=1$ would give lots of $0 / 0$. Taking the limits, and 331 using L'Hôpital, is an option, but then we get a differential equation that would 332 introduce differentiations with respect to the catalytic variables, and we would not 333 gain anything.

But it so happens, in many cases, that the functional operator preserves some of 335 the exponents of the $x_{i}^{\prime} s$. For example for the pattern 321 the last three entries are ${ }_{336}$ always $[3,2,1]$, and one can do a change of dependent variable:

$$
\circlearrowright\left(t, z ; x_{1}, \ldots, x_{3}\right)=x_{1} x_{2}^{2} x_{3}^{3} g(z ; t)
$$

and now plugging in $x_{1}=1, x_{2}=1, x_{3}=1$ is harmless, and one gets a ${ }_{339}$ much simpler functional equation with no catalytic variables, that turns out to be 340 (according to S.B. Ekhad) the simple algebraic equation 341

Editor's Proof

$$
\begin{equation*}
g(z, t)=-(t-1) z^{2}-(t-1)\left(z+z^{2}\right) g(z, t) \tag{342}
\end{equation*}
$$

that in this case can be solved in closed-form (reproducing a result that goes back 343
to [EN]). Other times (like the pattern 231), we only get rid of some of the catalytic 344
variables. Putting 345

$$
\mathfrak{C}\left(t, z ; x_{1}, \ldots, x_{3}\right)=x_{1} x_{2}^{2} g\left(x_{3}, z ; t\right)
$$

(and then plugging in $x_{1}=1, x_{2}=1$) gives a much simplified functional equation,347 and now taking the limit $x_{3} \rightarrow 1$ and using L'Hôpital (that Maple does all by 348 itself) one gets a pure differential equation for $g(1, z ; t)$, in z, that sometimes can 349 be even solved in closed form (automatically by Maple). But from the point of view 350 of efficient enumeration, it is just as well to leave it at that. 351

Any pattern p is trivially equivalent to (up to) three other patterns (its reverse, its 352 complement, and the reverse-of-the-complement, some of which may coincide). It turns out that out of these (up to) four options, there is one that is easiest to handle, and the computer finds this one, by finding which ones gives the simplest functional (or, if in luck, differential or algebraic) equation, and goes on to handle only this representative.

The Maple Package ELIZALDE

All of this is implemented in the Maple package ELIZALDE, that automatically

$$
\text { produces theorems and proofs. Lots of sample output (including computer-generated } 360
$$

theorems and proofs) can be found on the webpage of this article: 361
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/auto.html. 362
In particular, to see all theorems and proofs for patterns of lengths 3 through 5 go to 363
(respectively): 364
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oEP3_200, 365
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oEP4_60, 366
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oEP5_40. 367
If the proofs bore you, and by now you believe Shalosh B. Ekhad, and you only want 368
to see the statements of the theorems, for lengths 3 through 6 go to (respectively): 369
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oET3_200, 370
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oET4_60, 371
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oET5_40, 372
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oET6_30. 373Humans, with their short attention spans, would probably soon get tired of even 374
the statements of most of the theorems of this last file (for patterns of length 6). 375
In addition to "symbol crunching" this package does quite a lot of "number 376crunching" (of course using the former). To see the "hit parade", ranked by size, 377together with the conjectured asymptotic growth for single cons̃ecũtive-pattern378

Editor's Proof

avoidance of lengths between 3 and 6, see, respectively, the output files: 379
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oE3_200, 380
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oE4_60, 381
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oE5_40, 382
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oE6_30. 383
Enjoy! 384
AQ1 Acknowledgements We would like to thank the members of the (possibly multiset) 3\{referee, VinceVatter\} for very helpful remarks. Accompanied by Maple packages ELIZALDE andSERGI downloadable from the webpage of this article: http://www.math.rutgers.edu/~zeilberg/386mamarim/mamarimhtml/auto.html, where the reader can find lots of sample input and output. The 388work of AB and DZ was supported in part by the United States of America National Science389Foundation.390
References391

1. Andrew Baxter, "Algorithms For Permutation Statistics", PhD dissertation, Rutgers 392
University, May 2011. Available from http://www.math.rutgers.edu/~zeilberg/Theses/ 393
AndrewBaxterThesis.pdf. 394
2. Vladimir Dotsenko and Anton Khoroshkin, Anick-type resolutions and consecutive pattern- 395avoidance, arXiv:1002.2761v1[Math.CO].
3. Richard Ehrenborg, Sergey Kitaev, and Peter Perry, A Spectral Approach to Consecutive 397
Pattern-Avoiding Permutations, arXiv: 1009.2119v1 [math.CO] 10 Sep 2010. 398
4. Sergi Elizalde and Marc Noy, Consecutive patterns in permutations, Advances in Applied 399
Mathematics 30 (2003), 110-125. 400
5. Shalosh B. Ekhad, and D. Zeilberger, Using Rota's Umbral Calculus to Enumerate Stanley's 401 P-Partitions, Advances in Applied Mathematics 41 (2008), 206-217. 402
6. Ian Goulden and David M. Jackson, An inversion theorem for cluster decompositions of 4 403
sequences with distinguished subsequences, J. London Math. Soc.(2)20 (1979), 567-576. 404
7. Ian Goulden and David M. Jackson, "Combinatorial Enumeration", John Wiley, 1983, 405
New York.8. Anton Khoroshkin and Boris Shapiro, Using homological duality in consecutive pattern407
avoidance, arXiv: 1009.5308v1 [math.CO]. 408
8. Elizabeth J. Kupin and Debbie S. Yuster, Generalizations of the Goulden-Jackson Cluster 409
Method, J. Difference Eq. Appl. 16 (2010), 1563-5120. arXiv:0810.5113v1[math.CO]. 410
9. Brian Nakamura, Computational Approaches to Consecutive Pattern Avoidance in Permuta- 411
tions, submitted, available from http://arxiv.org/abs/1102.2480. 412
10. John Noonan and Doron Zeilberger, The Goulden-Jackson Cluster Method: Extensions, 413
Applications, and Implementations, J. Difference Eq. Appl. 5 (1999), 355-377. 414
11. Herbert S. Wilf, What is an answer, Amer. Math. Monthly 89 (1982), 289-292. 415
12. Doron Zeilberger, The Umbral Transfer-Matrix Method I. Foundations, J. Comb. Theory, Ser. 416
A 91 (2000), 451-463. 417
13. Doron Zeilberger, The Umbral Transfer-Matrix Method. III. Counting Animals, New York 418
Journal of Mathematics 7(2001), 223-231. 419
14. Doron Zeilberger, The Umbral Transfer-Matrix Method V. The Goulden-Jackson Cluster 420
Method for Infinitely Many Mistakes, Integers 2 (2002), A5. 421
15. Doron Zeilberger, In How Many Ways Can You Reassemble Several Russian Dolls?, Personal 422
Journal of S.B. Ekhad and D. Zeilberger, http://www.math.rutgers.edu/~zeilberg/pj.html, Sept. 423
16, 2009. 424

Editor's Proof

AUTHOR QUERY

AQ1. We have moved the footnote "We would like to thank the members..." to end of the chapter before references as "Acknowledgment". Please check if this is okay.

Editor's Proof

Metadata of the chapter that will be visualized online

Chapter Title	Watson-Like Formulae for Terminating ${ }_{3} \mathrm{~F} 2$-Series
Copyright Year	2013
Copyright Holder	Springer-Verlag Berlin Heidelberg
Corresponding Author	Family Name Chu
	Particle
	Given Name Wenchang
	Suffix
	Division \quadDipartimento di Matematica e Fisica "Ennio De Giorgi"
	Organization Università del Salento
	Address Via provinciale per Arnesano, 193, 73100, Lecce, Italy
Author	Family Name Zhou
	Particle
	Given Name Roberta R.
	Suffix
	Organization School of Mathematical Sciences, Dalian University of Technology
	Address 116024, Dalian, P.R.China
Abstract	Several closed formulae are established for terminating Watson-like hypergeometric ${ }_{3} \mathrm{~F} 2$-series by investigating, through Gould and Hsu's fundamental pair of inverse series relations, the dual relations of Dougall's formula for the very well-poised ${ }_{5}$ F4-series.

Watson-Like Formulae for Terminating ${ }_{3} F_{2}$-Series

Wenchang Chu and Roberta R. Zhou

Abstract

Several closed formulae are established for terminating Watson-like 4 hypergeometric ${ }_{3} F_{2}$-series by investigating, through Gould and Hsu's fundamental 5 pair of inverse series relations, the dual relations of Dougall's formula for the very 6 well-poised ${ }_{5} F_{4}$-series.

1 Introduction and Preliminaries

Following Bailey [1], the classical hypergeometric series, for an indeterminate z and 9 two nonnegative integers p and q, is defined by

$$
{ }_{1+p} F_{q}\left[\left.\begin{array}{c}
a_{0}, a_{1}, \cdots, a_{p} \\
b_{1}, \cdots, b_{q}
\end{array} \right\rvert\, z\right]=\sum_{k=0}^{\infty} \frac{\left(a_{0}\right)_{k}\left(a_{1}\right)_{k} \cdots\left(a_{p}\right)_{k}}{k!\left(b_{1}\right)_{k} \cdots\left(b_{q}\right)_{k}} z^{k}
$$

where the rising shifted-factorial reads as

$$
(x)_{0}=1 \quad \text { and } \quad(x)_{n}=x(x+1) \cdots(x+n-1) \text { for } n \in \mathbb{N}
$$

with its multi-parameter form being abbreviated as

$$
\left[\begin{array}{l}
\alpha, \beta, \cdots, \gamma \tag{13}\\
A, B, \cdots, C
\end{array}\right]_{n}=\frac{(\alpha)_{n}(\beta)_{n} \cdots(\gamma)_{n}}{(A)_{n}(B)_{n} \cdots(C)_{n}}
$$

[^7]When one of numerator parameters $\left\{a_{k}\right\}$ is a negative integer, then the 14 hypergeometric series becomes terminating, which reduces to a polynomial in z. 15

Around 15 years ago, Chu [3, 4] devised a systematic approach "inversion 16 techniques" to prove terminating hypergeometric series identities. The method is 17 based on a fundamental pair of the inverse series relations discovered by Gould 18 and Hsu [9, 1973]. For its extensions and further applications, the interested reader 19 may refer to the papers [2,5,6]. In order to facilitate the subsequent application, we 20 reproduce Gould and Hsu's inversions as follows. Let $\left\{a_{k}, b_{k}\right\}_{k \geq 0}$ be two sequences 21 such that the φ-polynomials defined by

$$
\begin{equation*}
\varphi(x ; 0) \equiv 1 \quad \text { and } \quad \varphi(x ; n)=\prod_{k=0}^{n-1}\left(a_{k}+x b_{k}\right) \quad \text { with } \quad n \in \mathbb{N} \tag{1}
\end{equation*}
$$

differ from zero for $x, n \in \mathbb{N}_{0}$. Then there hold the inverse series relations

$$
\begin{align*}
& f(m)=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} \varphi(k ; m) g(k) \tag{2}\\
& g(m)=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} \frac{a_{k}+k b_{k}}{\varphi(m ; k+1)} f(k) \tag{3}
\end{align*}
$$

Among numerous summation formulae for hypergeometric series, Dougall's 24 theorem [8, 1907] (cf. Bailey [1, §4.4]) for the very well-poised ${ }_{5} F_{4}$-series has 25 been very useful. One of its terminating version can be expressed as

$$
{ }_{5} F_{4}\left[\begin{array}{ccc}
u, 1+\frac{u}{2}, & \frac{1}{2}+u-v, & \frac{-m}{2}, \\
\frac{u}{2}, & \frac{1-m}{2}+v, & u+\frac{2+m}{2}, \left.u+\frac{1+m}{2} \right\rvert\, 1
\end{array}\right]=\left[\begin{array}{c}
1+2 u, v \\
\frac{1}{2}+u, 2 v
\end{array}\right]_{m}
$$

By investigating, through the inversion machinery, linear combinations of the last 28 ${ }_{5} F_{4}$-series with different parameter settings for u, v and m, we shall evaluate the ${ }_{29}$ following terminating ${ }_{3} F_{2}-$ series

$$
\mathcal{W}_{\varepsilon, \delta}(m \mid u, v)={ }_{3} F_{2}\left[\left.\begin{array}{cc}
-m, m+2 u, & v \tag{4}\\
u+\frac{\varepsilon}{2}, & \delta+2 v
\end{array} \right\rvert\, 1\right]
$$

where ε and δ are integers. They can be considered as terminating variants of 31 Watson's ${ }_{3} F_{2}$-series (cf. Bailey [1, §3.3 and §3.4] and [14])

$$
{ }_{3} F_{2}\left[\left.\begin{array}{cc}
a, b, & c \\
\frac{1+a+b}{2}, & 2 c
\end{array} \right\rvert\, 1\right]=\Gamma\left[\begin{array}{ccc}
\frac{1}{2}, & \frac{1+a+b}{2}, & \frac{1}{2}+c, \\
\frac{1+a}{2}, & \frac{1+b}{2}, & \frac{1-a-b}{2}+c, \\
\frac{1-b}{2}+c
\end{array}\right]
$$

because when terminating by $a=-m$ and $b=m+2 u$, this series can be restated 34 equivalently as Watson's original expression [15]

Editor's Proof

$$
{ }_{3} F_{2}\left[\left.\begin{array}{cc}
-m, m+2 u, & v \tag{36}\\
u+\frac{1}{2}, & 2 v
\end{array} \right\rvert\, 1\right]= \begin{cases}{\left[\begin{array}{lr}
\frac{1}{2}, & \frac{1}{2}+u-v \\
\frac{1}{2}+u, & \frac{1}{2}+v
\end{array}\right]_{n},} & m=2 n \\
0, & m=2 n+1\end{cases}
$$

This identity results in the dual formula of the Dougall sum via Gould and Hsu's 37 inversion pair (2) and (3). To illustrate our approach, this can be confirmed briefly 38 as follows. Write equivalently the foregoing ${ }_{5} F_{4}$-series in terms of a binomial sum 39

$$
\mathfrak{D}_{m}(u, v)=\left[\begin{array}{c}
2 u, v \tag{5}\\
u+\frac{1}{2}, 2 v
\end{array}\right]_{m}=\sum_{k \geq 0}\binom{m}{2 k} \frac{2 u+4 k}{(2 u+m)_{2 k+1}}\left[\begin{array}{c}
u, u-v+\frac{1}{2} \\
v+\frac{1}{2}
\end{array}\right]_{k} \frac{(2 k)!}{k!} .
$$

Observe that the last equation can be obtained from (3) by specifying

$$
g(m)=\left[\begin{array}{c}
2 u, v \tag{41}\\
u+\frac{1}{2}, 2 v
\end{array}\right]_{m} \quad \text { and } \quad \varphi(x ; n)=(2 u+x)_{n}
$$

$$
f(2 k)=\frac{(2 k)!}{k!}\left[\begin{array}{c}
u, u-v+\frac{1}{2} \tag{42}\\
v+\frac{1}{2}
\end{array}\right]_{k} \quad \text { and } \quad f(2 k+1)=0 .
$$

We have the dual relation corresponding to (2) as follows

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(2 u+k)_{m}\left[\begin{array}{c}
2 u, v \\
u+\frac{1}{2}, 2 v
\end{array}\right]_{k}=\left\{\begin{array}{l}
\frac{(2 n)!}{n!}\left[\begin{array}{c}
u, u-v+\frac{1}{2} \\
v+\frac{1}{2}
\end{array}\right]_{n}, m=2 n \\
0, \\
m=2 n+1
\end{array}\right.
$$

In terms of hypergeometric series, this becomes Watson's original identity.
This example encourages us to explore further identities for the ${ }_{3} F_{2}$-series 47 displayed in (4). In the next section, nine identities for $\mathcal{W}_{\varepsilon, \delta}(m \mid u, v)$ will be shown 48 in detail by applying the Gould-Hsu inversions (2) and (3) to linear combinations 49 of $\mathfrak{D}_{m}(u, v)$ displayed in (5). The same approach can be employed to demonstrate 50 further identities with 22 selected ones being tabulated in the third section, which 51 cover the formulae for $\mathcal{W}_{\varepsilon, \delta}(m \mid u, v)$ with ε and δ being small integers.

52
Fifteen years ago, Lewanowicz [13] succeeded in determining analytical formu- 53 lae for generalized Watson series, which have further been improved by Chu [7] 54 recently. However, the formulae derived in these both papers are too involved 55 in double sum expressions. Compared with the method utilized in [7, 13], the 56 approach employed here is totally different and more direct as it leads to finding 57 several elegant formulae expressed in terms of factorial quotients by treating directly 58 with the terminating series $\mathcal{W}_{\varepsilon, \delta}(m \mid u, v)$. To our knowledge, most of the identities 59 proved in this paper do not seem to have explicitly appeared previously except for 60

Editor's Proof

Theorem 5 whose particular case has been found by Larcombe and Larsen [12] 61 recently. In order to assure the accuracy of mathematical computations, we have 62 appropriately devised a Mathematica package to check all the displayed formulae. 63

2 Nine Identities and Their Proofs

By utilizing Gould and Hsu's inversion pair (2) and (3) to linear combinations 65 of $\mathfrak{D}_{m}(u, v)$ displayed in (5), this section will demonstrate nine identities for 66 $\mathcal{W}_{\varepsilon, \delta}(m \mid u, v)$, which are divided into nine subsections with subsection headers being 67 labeled by (ε, δ) parameters.

$2.1 \varepsilon=0$ and $\delta=0$

For the following Dougall sum

$$
\left[\begin{array}{l}
2 u, v \tag{71}\\
u, 2 v
\end{array}\right]_{m}=\frac{2 u+2 m}{2 u+m} \mathfrak{D}_{m}\left(u+\frac{1}{2}, v\right)
$$

we can write it explicitly as
72

$$
\left[\begin{array}{l}
2 u, v \\
u, 2 v
\end{array}\right]_{m}=(2 u+2 m) \sum_{k \geq 0}\binom{m}{2 k} \frac{2 u+4 k+1}{(2 u+m)_{2 k+2}}\left[\begin{array}{c}
u+\frac{1}{2}, u-v+1 \\
v+\frac{1}{2}
\end{array}\right]_{k} \frac{(2 k)!}{k!}
$$

According to the two-term relation

$$
\begin{equation*}
2 u+2 m=\frac{(2 u+m+2 k+1)(2 u+4 k)}{2 u+4 k+1}+\frac{(m-2 k)(2 u+4 k+2)}{2 u+4 k+1} \tag{74}
\end{equation*}
$$

we get correspondingly the expression of two binomial sums

$$
\left[\begin{array}{c}
2 u, v \\
u, 2 v
\end{array}\right]_{m}=\sum_{k \geq 0}\binom{m}{2 k} \frac{(2 u+4 k) f(2 k)}{(2 u+m)_{2 k+1}}-\sum_{k \geq 0}\binom{m}{2 k+1} \frac{(2 u+4 k+2) f(2 k+1)}{(2 u+m)_{2 k+2}} 76
$$

where $f(k)$ is given explicitly by

$$
\begin{aligned}
f(2 k) & =\frac{(2 k)!}{k!}\left[\begin{array}{c}
u+\frac{1}{2}, u-v+1 \\
v+\frac{1}{2}
\end{array}\right]_{k} \\
f(2 k+1) & =-\frac{(2 k+1)!}{k!}\left[\begin{array}{c}
u+\frac{1}{2}, u-v+1 \\
v+\frac{1}{2}
\end{array}\right]_{k}
\end{aligned}
$$

Editor's Proof

Comparing the last equation with (3) under the specifications

$$
g(m)=\left[\begin{array}{l}
2 u, v \\
u, 2 v
\end{array}\right]_{m} \quad \text { and } \quad \varphi(x ; n)=(2 u+x)_{n}
$$

we find the following dual relation corresponding to (2)

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(2 u+k)_{m}\left[\begin{array}{ll}
2 u, v \\
u, 2 v
\end{array}\right]_{k}= \begin{cases}f(2 n), & m=2 n \\
f(2 n+1), & m=2 n+1\end{cases}
$$

In terms of hypergeometric series, this yields the following identity.

Theorem 1 (Terminating series identity).

$$
{ }_{3} F_{2}\left[\left.\begin{array}{cc}
-m, m+2 u, & v \\
u, & 2 v
\end{array} \right\rvert\, 1\right]=\left\{\begin{array}{cc}
{\left[\begin{array}{c}
\frac{1}{2}, u-v+1 \\
u, v+\frac{1}{2}
\end{array}\right]_{n},} & m=2 n \\
{\left[\begin{array}{cc}
\frac{3}{2}, u-v+1 \\
u+1, v+\frac{1}{2}
\end{array}\right]_{n} \frac{-1}{2 u},} & m=2 n+1
\end{array}\right.
$$

$2.2 \varepsilon=2$ and $\delta=0$

The following Dougall sum

$$
\left[\begin{array}{c}
2 u, v \\
u+1,2 v
\end{array}\right]_{m}=\frac{2 u}{2 u+m} \mathfrak{D}_{m}\left(u+\frac{1}{2}, v\right)
$$

can analogously be restated as the equality

$$
\left[\begin{array}{c}
2 u, v \\
u+1,2 v
\end{array}\right]_{m}=2 u \sum_{k \geq 0}\binom{m}{2 k} \frac{2 u+4 k+1}{(2 u+m)_{2 k+2}}\left[\begin{array}{c}
u+\frac{1}{2}, u-v+1 \\
v+\frac{1}{2}
\end{array}\right]_{k} \frac{(2 k)!}{k!} .
$$

Inserting the expression

$$
1=\frac{2 u+m+2 k+1}{2 u+4 k+1}-\frac{m-2 k}{2 u+4 k+1}
$$

Editor's Proof

into the binomial sum, we can reformulate it as

$$
\begin{aligned}
{\left[\begin{array}{c}
2 u, v \\
u+1,2 v
\end{array}\right]_{m} } & =\sum_{k \geq 0}\binom{m}{2 k} \frac{(2 u+4 k) f(2 k)}{(2 u+m)_{2 k+1}} \\
& -\sum_{k \geq 0}\binom{m}{2 k+1} \frac{(2 u+4 k+2) f(2 k+1)}{(2 u+m)_{2 k+2}}
\end{aligned}
$$

where $f(k)$ is given explicitly by

$$
\begin{aligned}
f(2 k) & =\frac{(2 k)!}{k!}\left[\begin{array}{c}
u+\frac{1}{2}, u-v+1 \\
v+\frac{1}{2}
\end{array}\right]_{k} \frac{u}{u+2 k} \\
f(2 k+1) & =\frac{(2 k+1)!}{k!}\left[\begin{array}{c}
u+\frac{1}{2}, u-v+1 \\
v+\frac{1}{2}
\end{array}\right]_{k} \frac{u}{u+2 k+1}
\end{aligned}
$$

This equation matches exactly (3) under the following specifications

$$
g(m)=\left[\begin{array}{c}
2 u, v \\
u+1,2 v
\end{array}\right]_{m} \quad \text { and } \quad \varphi(x ; n)=(2 u+x)_{n} .
$$

Then the dual relation corresponding to (2) reads as

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(2 u+k)_{m}\left[\begin{array}{cl}
2 u, v \tag{91}\\
u+1,2 v
\end{array}\right]_{k}= \begin{cases}f(2 n), & m=2 n \\
f(2 n+1), & m=2 n+1\end{cases}
$$

In terms of hypergeometric series, this gives the following identity.
Theorem 2 (Terminating series identity).

$$
{ }_{3} F_{2}[-m, m+2 u, v \mid 1]=\left\{\begin{array}{ll}
{\left[\begin{array}{c}
\frac{1}{2}, u-v+1 \\
u, v+\frac{1}{2}
\end{array}\right]_{n} \frac{u}{u+2 n},} & m=2 n \\
u+1,2 v
\end{array}\right]=\left\{\begin{array}{cl}
\frac{3}{2}, u-v+1 \\
u+1, v+\frac{1}{2}
\end{array}\right]_{n} \frac{1}{2(u+2 n+1)}, \quad m=2 n+1 .
$$

Editor's Proof

$2.3 \varepsilon=0$ and $\delta=1$

$$
\begin{aligned}
{\left[\begin{array}{c}
2 u, v \\
u, 2 v+1
\end{array}\right]_{m} } & =\frac{4(u-v)}{2 u+m} \mathfrak{D}_{m}\left(u+\frac{1}{2}, v\right) \\
& -\frac{2(u-2 v)(2 v+m+1)}{(2 u+m)(2 v+1)} \mathfrak{D}_{m}\left(u+\frac{1}{2}, v+1\right)
\end{aligned}
$$

there holds explicitly the following equality

$$
\begin{aligned}
{\left[\begin{array}{c}
2 u, v \\
u, 2 v+1
\end{array}\right]_{m} } & =\sum_{k \geq 0}\binom{m}{2 k} \frac{2 u+4 k+1}{(2 u+m)_{2 k+2}}\left[\begin{array}{c}
u+\frac{1}{2}, u-v \\
v+\frac{3}{2}
\end{array}\right]_{k} \frac{(2 k)!}{k!} \\
& \times \frac{4(u-v+k)(2 v+2 k+1)-2(u-2 v)(2 v+m+1)}{2 v+1} .
\end{aligned}
$$

Reformulating the fraction displayed in the last line

$$
\frac{(2 u+m+2 k+1)(2 v+2 k+1)(2 u+4 k)}{(2 u+4 k+1)(2 v+1)}-\frac{(m-2 k)(2 u+4 k+2)(2 u-2 v+2 k)}{(2 u+4 k+1)(2 v+1)}
$$

we have correspondingly the binomial sum expression

$$
\begin{aligned}
{\left[\begin{array}{c}
2 u, v \\
u, 2 v+1
\end{array}\right]_{m} } & =\sum_{k \geq 0}\binom{m}{2 k} \frac{(2 u+4 k) f(2 k)}{(2 u+m)_{2 k+1}} \\
& -\sum_{k \geq 0}\binom{m}{2 k+1} \frac{(2 u+4 k+2) f(2 k+1)}{(2 u+m)_{2 k+2}}
\end{aligned}
$$

where $f(k)$ is given explicitly by

$$
\begin{aligned}
f(2 k) & =\frac{(2 k)!}{k!}\left[\begin{array}{c}
u+\frac{1}{2}, u-v \\
v+\frac{1}{2}
\end{array}\right]_{k}, \\
f(2 k+1) & =\frac{(2 k+1)!}{k!}\left[\begin{array}{c}
u+\frac{1}{2}, u-v \\
v+\frac{3}{2}
\end{array}\right]_{k} \frac{2 u-2 v+2 k}{2 v+1} .
\end{aligned}
$$

This equation fits in well with (3) under the following specifications

$$
g(m)=\left[\begin{array}{c}
2 u, v \\
u, 2 v+1
\end{array}\right]_{m} \quad \text { and } \quad \varphi(x ; n)=(2 u+x)_{n} .
$$

Editor's Proof

Then the dual relation corresponding to (2) results in

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(2 u+k)_{m}\left[\begin{array}{cl}
2 u, v \tag{106}\\
u, 2 v+1
\end{array}\right]_{k}= \begin{cases}f(2 n), & m=2 n \\
f(2 n+1), & m=2 n+1\end{cases}
$$

In terms of hypergeometric series, this becomes the following identity.
Theorem 3 (Terminating series identity).

$$
{ }_{3} F_{2}\left[\begin{array}{cc}
-m, m+2 u, & v \\
u, & 2 v+1
\end{array}\right]= \begin{cases}{\left[\begin{array}{c}
\frac{1}{2}, u-v \\
u, v+\frac{1}{2}
\end{array}\right]_{n},} & m=2 n ; \\
{\left[\begin{array}{c}
\frac{1}{2}, u-v \\
u, v+\frac{1}{2}
\end{array}\right]_{n+1},} & m=2 n+1\end{cases}
$$

$2.4 \varepsilon=1$ and $\delta=1$

From the linear combination

$$
\left[\begin{array}{c}
2 u, v \tag{112}\\
u+\frac{1}{2}, 2 v+1
\end{array}\right]_{m}=\mathfrak{D}_{m}(u, v)-\frac{2 u m}{(2 u+m)(2 v+1)} \mathfrak{D}_{m-1}(u+1, v+1)
$$

we can write it explicitly as the following equality

$$
\begin{aligned}
& {\left[\begin{array}{c}
2 u, v \\
u+\frac{1}{2}, 2 v+1
\end{array}\right]_{m}=\sum_{k \geq 0}\binom{m}{2 k} \frac{2 u+4 k}{(2 u+m)_{2 k+1}}\left[\begin{array}{c}
u, u-v+\frac{1}{2} \\
v+\frac{1}{2}
\end{array}\right]_{k} \frac{(2 k)!}{k!}} \\
& -\frac{2 u m}{(2 u+m)(2 v+1)} \sum_{k \geq 0}\binom{m-1}{2 k} \frac{2 u+4 k+2}{(2 u+m+1)_{2 k+1}}\left[\begin{array}{c}
u+1, u-v+\frac{1}{2} \\
v+\frac{3}{2}
\end{array}\right]_{k} \frac{(2 k)!}{k!}
\end{aligned}
$$

This can be reformulated, in turn, as the binomial sum expression

$$
\begin{aligned}
{\left[\begin{array}{c}
2 u, v \\
u+\frac{1}{2}, 2 v+1
\end{array}\right]_{m} } & =\sum_{k \geq 0}\binom{m}{2 k} \frac{(2 u+4 k) f(2 k)}{(2 u+m)_{2 k+1}} \\
& -\sum_{k \geq 0}\binom{m}{2 k+1} \frac{(2 u+4 k+2) f(2 k+1)}{(2 u+m)_{2 k+2}}
\end{aligned}
$$

Editor's Proof

where $f(k)$ is given explicitly by

$$
\begin{aligned}
f(2 k) & =\frac{(2 k)!}{k!}\left[\begin{array}{c}
u, u-v+\frac{1}{2} \\
v+\frac{1}{2}
\end{array}\right]_{k} \\
f(2 k+1) & =\frac{(2 k+1)!}{k!}\left[\begin{array}{c}
u+1, u-v+\frac{1}{2} \\
v+\frac{3}{2}
\end{array}\right]_{k} \frac{2 u}{2 v+1} .
\end{aligned}
$$

Comparing the last equation with (3) specified by

$$
g(m)=\left[\begin{array}{c}
2 u, v \\
u+\frac{1}{2}, 2 v+1
\end{array}\right]_{m} \quad \text { and } \quad \varphi(x ; n)=(2 u+x)_{n}
$$

we can write down the dual relation corresponding to (2) as

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(2 u+k)_{m}\left[\begin{array}{cl}
2 u, v \\
u+\frac{1}{2}, 2 v+1
\end{array}\right]_{k}= \begin{cases}f(2 n), & m=2 n \\
f(2 n+1), & m=2 n+1\end{cases}
$$

which is equivalent to the following hypergeometric series identity.
Theorem 4 (Terminating series identity).

$$
{ }_{3} F_{2}\left[\begin{array}{cc}
-m, m+2 u, & v \tag{122}\\
u+\frac{1}{2}, & 2 v+1
\end{array}\right]= \begin{cases}{\left[\begin{array}{c}
\frac{1}{2}, u-v+\frac{1}{2} \\
u+\frac{1}{2}, v+\frac{1}{2}
\end{array}\right]_{n},} & m=2 n \\
{\left[\begin{array}{c}
\frac{3}{2}, u-v+\frac{1}{2} \\
u+\frac{1}{2}, v+\frac{3}{2}
\end{array}\right]_{n} \frac{1}{2 v+1},} & m=2 n+1\end{cases}
$$

$2.5 \varepsilon=2$ and $\delta=1$

Taking into account of linear combination

$$
\left[\begin{array}{c}
2 u+1, v \\
u+1,2 v+1
\end{array}\right]_{m}=2 \mathfrak{D}_{m}\left(u+\frac{1}{2}, v\right)-\frac{2 v+m+1}{2 v+1} \mathfrak{D}_{m}\left(u+\frac{1}{2}, v+1\right)
$$

we have explicitly the following binomial equality

$$
\begin{aligned}
{\left[\begin{array}{c}
2 u+1, v \\
u+1,2 v+1
\end{array}\right]_{m} } & =\sum_{k \geq 0}\binom{m}{2 k} \frac{2 u+4 k+1}{(2 u+m+1)_{2 k+1}}\left[\begin{array}{c}
u+\frac{1}{2}, u-v \\
v+\frac{3}{2}
\end{array}\right] \frac{(2 k)!}{k!} \\
& \times \frac{2(u-v+k)(2 v+2 k+1)-(u-v)(2 v+m+1)}{(u-v)(2 v+1)} .
\end{aligned}
$$

Editor's Proof

Reformulating the fraction displayed in the last line

$$
\frac{(2 u+m+2 k+1)(2 v+2 k+1)(u-v+2 k)}{(2 u+4 k+1)(u-v)(2 v+1)}-\frac{(m-2 k)(u+v+2 k+1)(2 u-2 v+2 k)}{(2 u+4 k+1)(u-v)(2 v+1)} 127
$$

we have correspondingly the binomial sum expression

$$
\begin{aligned}
{\left[\begin{array}{c}
2 u, v \\
u+1,2 v+1
\end{array}\right]_{m} } & =\sum_{k \geq 0}\binom{m}{2 k} \frac{(2 u+4 k) f(2 k)}{(2 u+m)_{2 k+1}} \\
& -\sum_{k \geq 0}\binom{m}{2 k+1} \frac{(2 u+4 k+2) f(2 k+1)}{(2 u+m)_{2 k+2}}
\end{aligned}
$$

where $f(k)$ is given explicitly by

$$
\begin{aligned}
f(2 k) & =\frac{(2 k)!}{k!}\left[\begin{array}{c}
u+\frac{1}{2}, u-v \\
v+\frac{1}{2}
\end{array}\right]_{k} \frac{u(u-v+2 k)}{(u-v)(u+2 k)}, \\
f(2 k+1) & =\frac{(2 k+1)!}{k!}\left[\begin{array}{c}
u+\frac{1}{2}, u-v+1 \\
v+\frac{3}{2}
\end{array}\right]_{k} \frac{2 u(u+v+2 k+1)}{(2 v+1)(u+2 k+1)} .
\end{aligned}
$$

The last equation can be obtained from (3) under the specifications

$$
g(m)=\left[\begin{array}{c}
2 u, v \\
u+1,2 v+1
\end{array}\right]_{m} \quad \text { and } \quad \varphi(x ; n)=(2 u+x)_{n} .
$$

Then the dual relation corresponding to (2) reads as

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(2 u+k)_{m}\left[\begin{array}{cl}
2 u, v \tag{133}\\
u+1,2 v+1
\end{array}\right]_{k}=\left\{\begin{array}{cl}
f(2 n), & m=2 n \\
f(2 n+1), & m=2 n+1
\end{array}\right.
$$

In terms of hypergeometric series, this can be stated as the identity.
Theorem 5 (Terminating series identity).
${ }_{3} F_{2}\left[\left.\begin{array}{r}-m, m+2 u, v \\ u+1,2 v+1\end{array} \right\rvert\, 1\right]= \begin{cases}{\left[\begin{array}{c}\frac{1}{2}, u-v \\ u, v+\frac{1}{2}\end{array}\right]_{n} \frac{u(u-v+m)}{(u-v)(u+m)},} & m=2 n ; \\ {\left[\begin{array}{c}\frac{3}{2}, u-v+1 \\ u+1, v+\frac{3}{2}\end{array}\right]_{n} \frac{(u+v+m)}{(2 v+1)(u+m)},} & m=2 n+1 .\end{cases}$

Editor's Proof

When $u=1, v=\frac{1}{2}$ and $m=2 n-1$, this theorem becomes the following identity

$$
{ }_{3} F_{2}\left[\begin{array}{cc|}
\frac{1}{2}, 1+2 n, 1-2 n & 1 \\
2, & 2
\end{array}\right]=\frac{1+4 n}{2 n}\left[\begin{array}{c}
\frac{1}{2}, \frac{1}{2} \\
1,1
\end{array}\right]_{n} \quad \text { for } \quad n \geq 1 .
$$

Larcombe and Larsen [12] proved recently its equivalent binomial sum

$$
16^{n} \sum_{k=0}^{2 n} 4^{k}\binom{\frac{1}{2}}{k}\binom{-\frac{1}{2}}{k}\binom{-2 k}{2 n-k}=(1+4 n)\binom{2 n}{n}^{2}
$$

which has been the primary motivation for us to investigate $\mathcal{W}_{\varepsilon, \delta}(m \mid u, v) .{ }_{141}$ Further different proofs of the last identity can be found in the papers by 142 Gessel-Larcombe [10] and Koepf-Larcombe [11], where generating function 143 approach and computer algebra have respectively been employed.

$2.6 \varepsilon=0$ and $\delta=-1$

The linear combination

$$
\begin{aligned}
{\left[\begin{array}{c}
2 u, v \\
u, 2 v-1
\end{array}\right]_{m} } & =4 \frac{v+m-1}{2 u+m} \mathfrak{D}_{m}\left(u+\frac{1}{2}, v-1\right) \\
& +\frac{2(u-2 v+2)(2 v+m-1)}{(2 u+m)(2 v-1)} \mathfrak{D}_{m}\left(u+\frac{1}{2}, v\right)
\end{aligned}
$$

is equivalent to the following binomial equality

$$
\begin{aligned}
{\left[\begin{array}{c}
2 u, v \\
u, 2 v-1
\end{array}\right]_{m}=} & \sum_{k \geq 0}\binom{m}{2 k} \frac{2 u+4 k+1}{(2 u+m)_{2 k+2}}\left[\begin{array}{c}
u+\frac{1}{2}, u-v+1 \\
v+\frac{1}{2}
\end{array}\right]_{k} \frac{(2 k)!}{k!} \\
& \times\left\{\frac{4(v+m-1)(u-v+k+1)(2 v+2 k-1)}{(u-v+1)(2 v-1)}+\frac{2(u-2 v+2)(2 v+m-1)}{2 v-1}\right\} .
\end{aligned}
$$

Reformulating the fraction inside the braces as

$$
\begin{aligned}
& \frac{(2 u+m+2 k+1)(2 u+4 k)(2 v+2 k-1)(u-v+2 k+1)}{(2 u+4 k+1)(u-v+1)(2 v-1)} \\
& +\frac{2(m-2 k)(2 u+4 k+2)(u+v+2 k)(u-v+k+1)}{(2 u+4 k+1)(u-v+1)(2 v-1)}
\end{aligned}
$$

Editor's Proof

we have correspondingly the binomial sum expression

$$
\begin{aligned}
{\left[\begin{array}{c}
2 u, v \\
u, 2 v-1
\end{array}\right]_{m} } & =\sum_{k \geq 0}\binom{m}{2 k} \frac{(2 u+4 k) f(2 k)}{(2 u+m)_{2 k+1}} \\
& -\sum_{k \geq 0}\binom{m}{2 k+1} \frac{(2 u+4 k+2) f(2 k+1)}{(2 u+m)_{2 k+2}}
\end{aligned}
$$

where $f(k)$ is given explicitly by

$$
\begin{aligned}
f(2 k) & =\frac{(2 k)!}{k!}\left[\begin{array}{c}
u+\frac{1}{2}, u-v+1 \\
v-\frac{1}{2}
\end{array}\right]_{k} \frac{u-v+2 k+1}{u-v+1}, \\
f(2 k+1) & =\frac{(2 k+1)!}{k!}\left[\begin{array}{c}
u+\frac{1}{2}, u-v+2 \\
v+\frac{1}{2}
\end{array}\right]_{k} \frac{2 u+2 v+4 k}{1-2 v} .
\end{aligned}
$$

This equation matches exactly (3) under the following specifications

$$
g(m)=\left[\begin{array}{c}
2 u, v \tag{152}\\
u, 2 v-1
\end{array}\right]_{m} \quad \text { and } \quad \varphi(x ; n)=(2 u+x)_{n} .
$$

Then the dual relation corresponding to (2) give rise to

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(2 u+k)_{m}\left[\begin{array}{cl}
2 u, v \\
u, 2 v-1
\end{array}\right]_{k}= \begin{cases}f(2 n), & m=2 n \\
f(2 n+1), & m=2 n+1\end{cases}
$$

which leads to the following hypergeometric series identity.

Theorem 6 (Terminating series identity).

$$
\begin{aligned}
& { }_{3} F_{2}\left[\left.\begin{array}{c}
-m, m+2 u, v \\
u, 2 v-1
\end{array} \right\rvert\, 1\right] \\
& =\left\{\begin{array}{cl}
{\left[\begin{array}{c}
\frac{1}{2}, u-v+1 \\
u, v-\frac{1}{2}
\end{array}\right]_{n} \frac{u-v+2 n+1}{u-v+1},} & m=2 n ; \\
{\left[\begin{array}{c}
\frac{1}{2}, u-v+2 \\
u, v-\frac{1}{2}
\end{array}\right]_{n+1} \frac{u+v+2 n}{v-u-n-2},} & m=2 n+1 .
\end{array}\right.
\end{aligned}
$$

Editor's Proof

$2.7 \varepsilon=1$ and $\delta=-1$

For the linear combination

$$
\left[\begin{array}{c}
2 u, v \tag{159}\\
u+\frac{1}{2}, 2 v-1
\end{array}\right]_{m}=\mathfrak{D}_{m}(u, v-1)-\frac{2 u m}{(2 u+m)(1-2 v)} \mathfrak{D}_{m-1}(u+1, v)
$$

we can state it explicitly the following equality

$$
\begin{aligned}
& {\left[\begin{array}{c}
2 u, v \\
u+\frac{1}{2}, 2 v-1
\end{array}\right]_{m}=\sum_{k \geq 0}\binom{m}{2 k} \frac{2 u+4 k}{(2 u+m)_{2 k+1}}\left[\begin{array}{c}
u, u-v+\frac{3}{2} \\
v-\frac{1}{2}
\end{array}\right]_{k} \frac{(2 k)!}{k!}} \\
& -\frac{2 u m}{(2 u+m)(1-2 v)} \sum_{k \geq 0}\binom{m-1}{2 k} \frac{2 u+4 k+2}{(2 u+m+1)_{2 k+1}}\left[\begin{array}{c}
u+1, u-v+\frac{3}{2} \\
v+\frac{1}{2}
\end{array}\right]_{k} \frac{(2 k)!}{k!} .
\end{aligned}
$$

This is, in turn, equivalent to the binomial sum expression

$$
\left[\begin{array}{c}
2 u, v \\
u+\frac{1}{2}, 2 v-1
\end{array}\right]_{m}=\sum_{k \geq 0}\binom{m}{2 k} \frac{(2 u+4 k) f(2 k)}{(2 u+m)_{2 k}+1}-\sum_{k \geq 0}\binom{m}{2 k+1} \frac{(2 u+4 k+2) f(2 k+1)}{(2 u+m)_{2 k+2}} \quad 162
$$

where $f(k)$ is given explicitly by

$$
\begin{aligned}
f(2 k) & =\frac{(2 k)!}{k!}\left[\begin{array}{c}
u, u-v+\frac{3}{2} \\
v-\frac{1}{2}
\end{array}\right]_{k}, \\
f(2 k+1) & =\frac{(2 k+1)!}{k!}\left[\begin{array}{c}
u+1, u-v+\frac{3}{2} \\
v+\frac{1}{2}
\end{array}\right]_{k} \frac{2 u}{1-2 v} .
\end{aligned}
$$

Comparing this equation with (3) specified by

$$
g(m)=\left[\begin{array}{c}
2 u, v \\
u+\frac{1}{2}, 2 v-1
\end{array}\right]_{m} \quad \text { and } \quad \varphi(x ; n)=(2 u+x)_{n}
$$

we get the dual relation corresponding to (2)

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(2 u+k)_{m}\left[\begin{array}{cl}
2 u, v \\
u+\frac{1}{2}, 2 v-1
\end{array}\right]_{k}= \begin{cases}f(2 n), & m=2 n \\
f(2 n+1), & m=2 n+1\end{cases}
$$

which results in the following hypergeometric series identity.

Editor's Proof

152
Theorem 7 (Terminating series identity).

$$
{ }_{3} F_{2}\left[\left.\begin{array}{cl}
-m, m+2 u, \quad v \\
u+\frac{1}{2}, 2 v-1
\end{array} \right\rvert\, 1\right]= \begin{cases}{\left[\begin{array}{ll}
\frac{1}{2}, u-v+\frac{3}{2} \\
u+\frac{1}{2}, v-\frac{1}{2}
\end{array}\right]_{n},} & m=2 n \\
{\left[\begin{array}{c}
\frac{3}{2}, u-v+\frac{3}{2} \\
u+\frac{1}{2}, v+\frac{1}{2}
\end{array}\right]_{n} \frac{1}{1-2 v},} & m=2 n+1\end{cases}
$$

$2.8 \varepsilon=2$ and $\delta=-1$

The following Dougall sum

$$
\left[\begin{array}{c}
2 u, v \tag{173}\\
u+1,2 v-1
\end{array}\right]_{m}=\frac{2 u(2 v+m-1)}{(2 u+m)(2 v-1)} \mathfrak{D}_{m}\left(u+\frac{1}{2}, v\right)
$$

can be expressed in terms of binomial sum

$$
\begin{aligned}
{\left[\begin{array}{c}
2 u, v \\
u+1,2 v-1
\end{array}\right]_{m} } & =\frac{2 u(2 v+m-1)}{2 v-1} \\
& \times \sum_{k \geq 0}\binom{m}{2 k} \frac{2 u+4 k+1}{(2 u+m)_{2 k+2}}\left[\begin{array}{c}
u+\frac{1}{2}, u-v+1 \\
v+\frac{1}{2}
\end{array}\right]_{k} \frac{(2 k)!}{k!} .
\end{aligned}
$$

Substituting the linear factor

$$
2 v+m-1=\frac{(2 u+m+2 k+1)(2 v+2 k-1)}{2 u+4 k+1}+\frac{2(m-2 k)(u-v+k+1)}{2 u+4 k+1}
$$

into the binomial sum, we get

$$
\begin{aligned}
{\left[\begin{array}{c}
2 u, v \\
u+1,2 v-1
\end{array}\right]_{m} } & =\sum_{k \geq 0}\binom{m}{2 k} \frac{(2 u+4 k) f(2 k)}{(2 u+m)_{2 k+1}} \\
& -\sum_{k \geq 0}\binom{m}{2 k+1} \frac{(2 u+4 k+2) f(2 k+1)}{(2 u+m)_{2 k+2}}
\end{aligned}
$$

where $f(k)$ is given explicitly by

$$
\begin{aligned}
f(2 k) & =\frac{(2 k)!}{k!}\left[\begin{array}{c}
u+\frac{1}{2}, u-v+1 \\
v-\frac{1}{2}
\end{array}\right]_{k} \frac{u}{u+2 k}, \\
f(2 k+1) & =\frac{(2 k+1)!}{k!}\left[\begin{array}{c}
u+\frac{1}{2}, u-v+1 \\
v+\frac{1}{2}
\end{array}\right]_{k} \frac{2 u(u-v+k+1)}{(1-2 v)(u+2 k+1)} .
\end{aligned}
$$

Editor's Proof

This equation fits in well with (3) under the following specifications

$$
g(m)=\left[\begin{array}{c}
2 u, v \tag{180}\\
u+1,2 v-1
\end{array}\right]_{m} \quad \text { and } \quad \varphi(x ; n)=(2 u+x)_{n} .
$$

Then the dual relation corresponding to (2) becomes

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(2 u+k)_{m}\left[\begin{array}{cl}
2 u, v \tag{182}\\
u+1,2 v-1
\end{array}\right]_{k}= \begin{cases}f(2 n), & m=2 n \\
f(2 n+1), & m=2 n+1\end{cases}
$$

In terms of hypergeometric series, this reads as the following identity.
Theorem 8 (Terminating series identity).
${ }_{3} F_{2}\left[\left.\begin{array}{r}-m, m+2 u, v \\ u+1,2 v-1\end{array} \right\rvert\, 1\right]= \begin{cases}{\left[\begin{array}{l}\frac{1}{2}, u-v+1 \\ u+1, v-\frac{1}{2}\end{array}\right]_{n} \frac{u+n}{u+2 n},} & m=2 n ; \\ -\left[\begin{array}{l}\frac{1}{2}, u-v+1 \\ u+1, v-\frac{1}{2}\end{array}\right]_{n+1} \frac{u+n+1}{u+2 n+1}, & m=2 n+1 .\end{cases}$

$2.9 \varepsilon=3$ and $\delta=-1$

This is the hardest case we have ever encountered in this research which cannot be 187 treated directly by inverting combinations of Dougall's sum $\mathfrak{D}_{m}(u, v)$. Therefore we 188 have to consider the rational function defined by

$$
h(\tau)=\frac{(1-v-\tau)_{\left\lfloor\frac{m}{\lfloor }\right\rfloor}}{u+\tau+1 / 2}=P(\tau)+\frac{(3 / 2+u-v)_{\left\lfloor\frac{m}{2}\right\rfloor}}{u+\tau+1 / 2}
$$

where $P(\tau)$ is polynomial of the degree $\left\lfloor\frac{m-2}{2}\right\rfloor$, the greatest integer $\leq \frac{m-2}{2}$. By 191 means of the induction principle, it is not hard to compute its m-th differences

$$
\Delta^{m} h(\tau)=\Delta^{m} \frac{(3 / 2+u-v)_{\left\lfloor\frac{m}{2}\right\rfloor}}{u+\tau+1 / 2}=(-1)^{m} \frac{m!(3 / 2+u-v)_{\left\lfloor\frac{m}{2}\right\rfloor}}{(u+\tau+1 / 2)_{m+1}} .
$$

Recalling the Newton-Gregory formula

$$
\begin{equation*}
\Delta^{m} h(\tau)=\sum_{k=0}^{m}(-1)^{m+k}\binom{m}{k} h(\tau+k) \tag{195}
\end{equation*}
$$

Editor's Proof

we get the following interesting binomial formula

$$
\begin{equation*}
\frac{m!(u-v+3 / 2)_{\left\lfloor\frac{m}{2}\right\rfloor}}{(u+1 / 2)_{m+1}}=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} \frac{(1-v-k)_{\left\lfloor\frac{m}{2}\right\rfloor}}{u+k+1 / 2} . \tag{197}
\end{equation*}
$$

This equation can be identified to (2) with the connecting polynomial being given by $\varphi(x ; n)=(1-v-x)_{\left\lfloor\frac{n}{2}\right\rfloor}$. The dual relation corresponding to (3) reads as

$$
\begin{aligned}
\frac{2}{2 u+2 m+1} & =\sum_{k \geq 0}\binom{m}{2 k} \frac{(2 k)!}{(1-v-m)_{k}} \frac{(u-v+3 / 2)_{k}}{(u+1 / 2)_{2 k+1}} \\
& -\sum_{k \geq 0}\binom{m}{2 k+1} \frac{(-v-k)(2 k+1)!}{(1-v-m)_{k+1}} \frac{(u-v+3 / 2)_{k}}{(u+1 / 2)_{2 k+2}} .
\end{aligned}
$$

Putting the last two binomial sums together and then applying the relation

$$
\begin{aligned}
& 2(2 u+4 k+3)(1-v-m+k)+4(m-2 k)(v+k) \\
= & (2 u+4 k+3)(2-m-2 v)-(m-2 k)(2 u-4 v+3)
\end{aligned}
$$

we obtain the expression

$$
\begin{aligned}
1 & =\frac{2 u+2 m+1}{8} \sum_{k \geq 0} \frac{(-m)_{2 k}}{(1-v-m)_{k+1}} \frac{(u-v+3 / 2)_{k}}{(u+1 / 2)_{2 k+2}} \\
& \times\{(2 u+4 k+3)(2-m-2 v)-(m-2 k)(2 u-4 v+3)\}
\end{aligned}
$$

which can be rewritten in terms of hypergeometric ${ }_{4} F_{3}$-series as

$$
\begin{aligned}
1 & ={ }_{4} F_{3}\left[\left.\begin{array}{c}
1, \frac{-m}{2}, \frac{1-m}{2}, u-v+\frac{3}{2} \\
2-v-m, \frac{u}{2}+\frac{3}{4}, \frac{u}{2}+\frac{5}{4}
\end{array} \right\rvert\, 1\right] \frac{(2 u+2 m+1)(2 v+m-2)}{(2 u+1)(2 v+2 m-2)} \\
& +{ }_{4} F_{3}\left[\left.\begin{array}{c}
1, \frac{1-m}{2}, \frac{2-m}{2}, u-v+\frac{3}{2} \\
2-v-m, \frac{u}{2}+\frac{5}{4}, \frac{u}{2}+\frac{7}{4}
\end{array} \right\rvert\, 1\right] \frac{m(2 u+2 m+1)(2 u-4 v+3)}{(2 u+1)(2 u+3)(2 v+2 m-2)} .
\end{aligned}
$$

According to the Whipple transformation (cf. Bailey [1, §4.3]), expressing both 20 balanced ${ }_{4} F_{3}$-series in terms of well-poised ${ }_{7} F_{6}$-series, we can reformulate the last 204 equation as

Editor's Proof

$$
\begin{aligned}
& {\left[\begin{array}{c}
2 u+1, v \\
u+\frac{3}{2}, 2 v-1
\end{array}\right]_{m}} \\
& ={ }_{7} F_{6}\left[\begin{array}{rrr}
u, 1+\frac{u}{2}, \frac{u}{2}-\frac{1}{4}, \frac{u}{2}+\frac{1}{4}, u-v+\frac{3}{2}, & \frac{1-m}{2}, & \frac{-m}{2} \\
\frac{u}{2}, & \frac{u}{2}+\frac{5}{4}, \frac{u}{2}+\frac{3}{4}, & v-\frac{1}{2}, \\
u+\frac{1+m}{2}, u+\frac{2+m}{2}
\end{array}\right] \\
& +\frac{m(2 u-4 v+3)(2 u+2)}{(2 u+m+1)(2 v-1)(2 u+3)} \\
& \times{ }_{7} F_{6}\left[\begin{array}{rrr}
u+1, \frac{3+u}{2}, \frac{u}{2}+\frac{1}{4}, \frac{u}{2}+\frac{3}{4}, u-v+\frac{3}{2}, & \frac{2-m}{2}, & \frac{1-m}{2} \\
\frac{1+u}{2}, \frac{u}{2}+\frac{7}{4}, \frac{u}{2}+\frac{5}{4}, & v+\frac{1}{2}, & u+\frac{2+m}{2}, u+\frac{3+m}{2}
\end{array}\right]
\end{aligned}
$$

which can further be stated equivalently as the following binomial sums

$$
\begin{aligned}
{\left[\begin{array}{c}
2 u, v \\
u+\frac{3}{2}, 2 v-1
\end{array}\right]_{m} } & =\sum_{k \geq 0}\binom{m}{2 k} \frac{(2 u+4 k) f(2 k)}{(2 u+m)_{2 k+1}} \\
& -\sum_{k \geq 0}\binom{m}{2 k+1} \frac{(2 u+4 k+2) f(2 k+1)}{(2 u+m)_{2 k+2}}
\end{aligned}
$$

where $f(k)$ is given explicitly by

$$
\begin{array}{r}
f(2 k)=\frac{(2 k)!}{k!}\left[\begin{array}{c}
u, u-v+\frac{3}{2} \\
v-\frac{1}{2}
\end{array}\right]_{k} \frac{(2 u-1)(2 u+1)}{(2 u+4 k-1)(2 u+4 k+1)}, \\
f(2 k+1)=\frac{(2 k+1)!}{k!}\left[\begin{array}{c}
u+1, u-v+\frac{3}{2} \\
v+\frac{1}{2}
\end{array}\right]_{k} \\
\quad \times \frac{2 u(2 u+1)(2 u-4 v+3)}{(2 u+4 k+1)(2 u+4 k+3)(1-2 v)} .
\end{array}
$$

This equation matches exactly (3) under the following specifications

$$
g(m)=\left[\begin{array}{c}
2 u, v \\
u+\frac{3}{2}, 2 v-1
\end{array}\right]_{m} \quad \text { and } \quad \varphi(x ; n)=(2 u+x)_{n} .
$$

Then the dual relation corresponding to (2) reads as

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(2 u+k)_{m}\left[\begin{array}{cl}
2 u, v \\
u+\frac{3}{2}, 2 v-1
\end{array}\right]_{k}=\left\{\begin{array}{cl}
f(2 n), & m=2 n \\
f(2 n+1), & m=2 n+1
\end{array}\right.
$$

In terms of hypergeometric series, this yields the following identity.

Editor's Proof

$\underline{(\varepsilon, \delta)}$	$\mathcal{W}_{\varepsilon, \delta}(2 n \mid u, v)$	(ε, δ)	$\mathcal{W}_{\varepsilon, \delta}(1+2 n \mid u, v)$
$(0,2)$	$\left[\begin{array}{c}\frac{1}{2}, u-v \\ u, v+\frac{3}{2}\end{array}\right]_{n} \frac{v+2 n+1}{v+1}$	$(0,2)$	$\left[\begin{array}{c}\frac{3}{2}, u-v \\ u, v+\frac{3}{2}\end{array}\right]_{n} \frac{u-v / 2+n}{(u+n)(v+1)}$
$(-1,1)$	$\left[\begin{array}{c}\frac{1}{2}, u-v+\frac{1}{2} \\ u+\frac{1}{2}, v+\frac{1}{2}\end{array}\right]_{n}$	$(-1,1)$	$\left[\begin{array}{c}\frac{3}{2}, u-v+\frac{1}{2} \\ u+\frac{1}{2}, v+\frac{3}{2}\end{array}\right]_{n} \frac{2 u-4 v-1}{(2 u-1)(2 v+1)}$
$(-1,2)$	$\left[\begin{array}{c}\frac{1}{2}, u-v-\frac{1}{2} \\ u+\frac{1}{2}, v+\frac{3}{2}\end{array}\right]_{n} \frac{(2 u-1)(v+1)+4 n(u+n)}{(2 u-1)(v+1)}$	$(-1,2)$	$\left[\begin{array}{c}\frac{1}{2}, u-v-\frac{1}{2} \\ u-\frac{1}{2}, v+\frac{1}{2}\end{array}\right]_{n+1} \frac{2 v+1}{v+1}$
$(-1,3)$	$\left[\begin{array}{c}\frac{1}{2}, u-v-\frac{1}{2} \\ u+\frac{1}{2}, v+\frac{3}{2}\end{array}\right]_{n} \frac{(2 u-1)(v+2)+8 n(u+n)}{(2 u-1)(v+2)}$	$(-1,0)$	$\left[\begin{array}{c}\frac{3}{2}, u-v+\frac{3}{2} \\ u+\frac{1}{2}, v+\frac{1}{2}\end{array}\right]_{n} \frac{2}{1-2 u}$
$(2,-2)$	$\left[\begin{array}{c} \frac{1}{2}, u-v+2 \\ u, v-\frac{1}{2} \end{array}\right]_{n} \frac{u(v+2 n-1)}{(u+2 n)(v-1)}$	$(2,-2)$	$\left[\begin{array}{c}\frac{3}{2}, u-v+2 \\ u+1, v-\frac{1}{2}\end{array}\right]_{n} \frac{u-v / 2+n+1}{(u+2 n+1)(1-v)}$
$(-2,2)$	$\left[\begin{array}{c}\frac{1}{2}, u-v \\ u, v+\frac{3}{2}\end{array}\right]_{n} \frac{(u-1)(v+1)+2 n(u-v-1)}{(u-1)(v+1)}$	$(1,2)$	$\left[\begin{array}{c}\frac{3}{2}, u-v+\frac{1}{2} \\ u+\frac{1}{2}, v+\frac{3}{2}\end{array}\right]_{n} \frac{1}{v+1}$

Editor's Proof

$\mathrm{t} 2.1(-2,3)$
$\mathrm{t} 2.2(3,-2)$
$\mathrm{t} 2.3(3,-3)$
$\mathrm{t} 2.4(4,-2)$
$\mathrm{t} 2.5(4,-3)$

Theorem 9 (Terminating series identity).

$$
\begin{aligned}
& { }_{3} F_{2}\left[\left.\begin{array}{c}
-m, m+2 u, v \\
u+\frac{3}{2}, 2 v-1
\end{array} \right\rvert\, 1\right] \\
& = \begin{cases}{\left[\begin{array}{l}
\frac{1}{2}, u-v+\frac{3}{2} \\
u+\frac{1}{2}, v-\frac{1}{2}
\end{array}\right]_{n} \frac{(2 u-1)(2 u+1)}{(2 u+4 n-1)(2 u+4 n+1)},} & m=2 n \\
{\left[\begin{array}{ll}
\frac{3}{2}, u-v+\frac{3}{2} \\
u+\frac{1}{2}, v+\frac{1}{2}
\end{array}\right]_{n} \frac{(2 u+1)(2 u-4 v+3)}{(2 u+4 n+1)(2 u+4 n+3)(1-2 v)},} & m=2 n+1\end{cases}
\end{aligned}
$$

3 Further Hypergeometric Series Identities

Following the same procedure exhibited in the last section, we have systematically 215 examined $\mathcal{W}_{\varepsilon, \delta}(m \mid u, v)$ for small ε and δ parameters with $-5 \leq \varepsilon, \delta \leq 5$. It turns 216 out that further 22 formulae have relatively good product expressions. They are 217 tabulated below in order for the reader to have an easy access to them.

References

1. W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 220
2. 221
3. W. Chu, Inversion techniques and combinatorial identities, Boll. Un. Mat. Ital. 7-B (1993), 222 737-760. 223
4. W. Chu, Inversion techniques and combinatorial identities: strange evaluations of hypergeo- 224 metric series, Pure Math. Appl. 4:4 (1993), 409-428. 225
5. W. Chu, Inversion techniques and combinatorial identities: a quick introduction to hypergeo- 226 metric evaluations, Runs and patterns in probability (Kluwer Acad. Publ., Dordrecht, 1994): 227
Math. Appl. 283 (1994), 31-57. 228
6. W. Chu, Inversion techniques and combinatorial identities: A unified treatment for the 229
${ }_{7} F_{6}$-series identities, Collectanea Mathematica 45:1 (1994), 13-43. 230
7. W. Chu, Inversion techniques and combinatorial identities: balanced hypergeometric 231
series, Rocky Mountain J. Math. 32:2 (2002), 561-587. 232
8. W. Chu, Analytical formulae for extended ${ }_{3} F_{2}$-series of Watson-Whipple-Dixon with two extra 233 integer parameters, Mathematics of Computation 81:277 (2012), 461-479. integer parameters, Mathematics of Computation 81:277 (2012), 461-479. 234 234
9. J. Dougall, On Vandermonde's theorem and some more general expansions, Proc. Edinburgh 235 Math. Soc. 25 (1907), 114-132. 236
10. H. W. Gould, L. C. Hsu, Some new inverse series relations, Duke Math. J. 40 (1973), 885-891. 237
11. I. M. Gessel, P. J. Larcombe, The sum $16^{n} \sum_{k=0}^{2 n} 4^{k}\binom{\frac{1}{2}}{k}\binom{-\frac{1}{2}}{k}\binom{-2 k}{2 n-k}$: a third proof of its closed 238
form, Utilitas Math. 80 (2009), 59-63. 239
12. W. A. Koepf, P. J. Larcombe, The sum $16^{n} \sum_{k=0}^{2 n} 4^{k}\binom{\frac{1}{2}}{k}\binom{-\frac{1}{2}}{k}\binom{-2 k}{2 n-k}$: a computer assisted proof 240
of its closed form and some generalised results, Utilitas Math. 79 (2009), 9-15. 241
13. P. J. Larcombe, M. E. Larsen, The sum $16^{n} \sum_{k=0}^{2 n} 4^{k}\binom{\frac{1}{2}}{k}\binom{-\frac{1}{2}}{k}\binom{-2 k}{2 n-k}$: A proof of its closed 242
form, Utilitas Math. 79 (2009), 3-7. 243

Editor's Proof

13. S. Lewanowicz, Generalized Watson's summation formula for ${ }_{3} F_{2}$ (1), J. Comput. Appl. Math. 244 86 (1997), 375-386.
14. A. K. Rathie, R. B. Paris, A New Proof of Watson's Theorem for the Series $3_{3} F_{2}$ (1), Appl. Math. 246 Sci. 3:4 (2009), 161-164.
15. G. N. Watson, A note on generalized hypergeometric series, Proc. London Math. Soc. (2) 23248 (1925), xiii-xv.

Editor's Proof

Metadata of the chapter that will be visualized online

Chapter Title	Balls in Boxes: Variations on a Theme of Warren Ewens and Herbert Wilf	
Copyright Year	2013	
Copyright Holder	Springer-Verlag Berlin Heidelberg	
Author	Family Name	Ekhad
	Particle	
	Given Name	Shalosh B.
	Suffix	
	Division	Department of Mathematics
	Organization	Rutgers University (New Brunswick),
	Address	Hill Center-Busch Campus
	Family Name	110 Frelinghuysen Rd., Piscataway,
Particle	NJ, 08854-8019, USA	

Balls in Boxes: Variations on a Theme of Warren Ewens and Herbert Wilf

Shalosh B. Ekhad and Doron Zeilberger

Abstract

We discuss, from an experimental mathematics viewpoint, a classical 5 problem in epidemiology recently discussed by Ewens and Wilf, that can be 6 formulated in terms of "balls in boxes", and demonstrate that the "Poission 7 approximation" (usually) suffices.

Keywords Epidemiology • Computer-generated recurrences • Poisson process

Preface

There are r boys and n girls. Each boy must pick one girl to invite to be his date 11 in the prom. Although each girl expects to get $R:=r / n$ invitations, most likely, 12 many of them would receive less, and many of them would receive more. Suppose 13 that Nilini, the most "popular" girl, got as many as $m+1$ prom-invitations, is she 14 indeed so popular, or did she just "luck-out"?

Each one of r students has to choose from n different parallel Calculus sections, 16 taught by different professors. Although each professor expects to get $R:=r / n$

[^8]students signing-up, most likely, many of them would receive less, and many of 17 them would receive more. Suppose that Prof. Niles, the most "popular" professor 18 got as many as $m+1$ students, is Prof. Niles justified in assuming that she is more 19 popular than her peers, or did she just "luck-out"? 20

It is Saturday night, and there are r people who have to decide where to dine, 21 and they have n restaurants to choose from. Although each restaurant expects to get 22 $R:=r / n$ diners, most likely, many of them would receive less, and many of them ${ }_{23}$ would receive more. Suppose that the Nevada Diner, the most "popular" restaurant, 24 got as many as $m+1$ diners, can they congratulate themselves for the quality of 25 their food, or ambiance, or location, or can they only congratulate themselves for 26 being lucky? 27

Each one of r cases of acute lymphocitic leukemia has to choose one of n towns 28 (artificially made all with equal-populations) where to happen. Although each town 29 expects to get $R:=r / n$ cases, most likely, many of them would receive less, and 30 many of them would receive more. Suppose that the Illinois town Niles had $m+1{ }_{31}$ cases of that disease, do its people have to be concerned about their environment, or 32 is it only Lady Luck's fault? ${ }_{33}$

Of course all these questions have the same answer, and typically one talks about 34 r balls being placed, uniformly at random, in n boxes, where the largest number 35 of balls that landed at the same box was $m+1$. Yet another way: A monkey is 36 typing an r-letter word using a keyboard of an alphabet with n letters, and the most 37 frequent letter showed-up $m+1$ times. Does the typing monkey have a particular 38 fondness for that letter, or is he a truly uniformly-at-random monkey who does not play favorites with the letters?

Asking the Right Question

As Herb Wilf pointed out so eloquently in his wonderful talk at the conference W80 42 (celebrating his 80th birthday) (based, in part, on [2]), using the depressing disease ${ }^{43}$ formulation, the right questions are not:

What is the probability that Nilini would get so many ($m+1$ of them) prom-invitations? 45
What is the probability that Prof. Niles would get so many ($m+1$ of them) students? 46
What is the probability that the Nevada Diner would get so many ($m+1$ of them) diners? $\quad 47$
What is the probability that Niles, IL would get so many ($m+1$ of them) cases of acute $\quad 48$
lymphocitic leukemia? 49
Even though this is the wrong question (whose answer would make Nilini, Prof. 50 Niles and the Nevada Diner's successes go to their heads, and would make the real- 51 estate prices in Niles, IL, plummet), because it is so tiny, and seemingly extremely 52 unlikely to be "due to chance", let's answer this question anyway. ${ }_{53}$

The a priori probability of Nilini getting $m+1$ or more prom-invitations, using 54 the Poisson Approximation is:

Editor's Proof

$$
\begin{equation*}
e^{-R}\left(\sum_{i=m+1}^{\infty} \frac{R^{i}}{i!}\right)=e^{-R}\left(e^{R}-\sum_{i=0}^{m} \frac{R^{i}}{i!}\right)=1-e^{-R} \sum_{i=0}^{m} \frac{R^{i}}{i!}, \tag{56}
\end{equation*}
$$

indeed very small if m is considerably larger than R. $\quad 57$
But a priori we don't know who would be the "lucky champion" (or the unlucky 58 town), the right question to ask is:

59
The Right Question: Given r, n, and m, compute (if possible exactly, but at least 60 approximately):
$P(r, n, m):=$ the probability that every box got $\leq m$ balls. 62

Getting the Right Answer to the Right Question, as Fast as Possible

In [2], Ewens and Wilf present a beautiful, fast $(O(m n))$, algorithm for computing 65 the exact value of $P(r, n, m)$, that employs a method that is described in the 66 Nijenhuis-Wilf classic [3] (but that has been around for a long time, and redis- 67 covered several times, e.g. by one of us [5], and before that by J.C.P. Miller, and 68 according to Don Knuth the method goes back to Euler. At any rate, [2] does not 69 claim novelty for the method, only for applying it to the present problem).

The specific real-life examples given in [2] were: 71

1. (Niles, IL): $r=14,400, n=9,000$, (so $R=8 / 5$), $m=7$. Using their method, 72 they got (in less than 1 s !) the value

$$
P(14,400,9,000,7)=0.0953959131671303999971555481626 \ldots,
$$

meaning that the probability that every town in the US, of the size of Niles, 75 IL, would get no more than 7 cases is less than 10%. So with probability 76 0.904604086832869600002844451837 , some town (of the same size, assuming, 77 artificially that the US has been divided into towns of that size) somewhere, in 78 the US, would get at least eight cases. There is (most probably) nothing wrong 79 with their water, or their air-quality, the only one that they may blame is Lady 80 Luck!

For comparison, the a priori probability that Niles, IL would get eight or more 82 cases is roughly:

$$
1-e^{-1.6} \sum_{i=0}^{7} \frac{1.6^{i}}{i!}=0.00026044 \ldots
$$

2. (Churchill County, NV): $r=8,000, n=12,000$, (so $R=2 / 3$), $m=11$. Using 86
their method, they got (in less than 1 s !) the value

$$
P(8,000,12,000,11)=0.999999895529647647310726013392 \ldots,
$$

so it is extremely likely that every district got at most 11 cases, and the probability 89 that some district got 12 or more cases is indeed small, namely 90

$$
1-P(8,000,12,000,11)=0.104470 \cdot 10^{-6}
$$

so these people should indeed panic.
92
For comparison, the a priori probability that Churchill County, NV, would get 93 12 or more cases is roughly:

$$
1-e^{-2 / 3} \sum_{i=0}^{11} \frac{(2 / 3)^{i}}{i!}=0.870586315 \cdot 10^{-11}
$$

in that case people would have been right to be concerned, but for the wrong 96 reason!

The Maple Package BallsInBoxes

This article is accompanied by the Maple package BallsInBoxes available from: 99 http://www.math.rutgers.edu/~zeilberg/tokhniot/BallsInBoxes.

Lots of sample input and output files can be gotten from: 101
http://www.math.rutgers.edu/ zeilberg/mamarim/mamarimhtml/bib.html.

How to Compute $P(r, n, m)$ Exactly?

Easy! As Ewens and Wilf point out in [2], and Herb Wilf mentioned in his talk, 104 there is an obvious, explicit, "answer"

$$
P(r, n, m)=\frac{1}{n^{r}} \sum \frac{r!}{r_{1}!r_{2}!\ldots r_{n}!}
$$

where the sum ranges over the set of n-tuples of integers

$$
A(r, n, m):=\left\{\left(r_{1}, r_{2}, \ldots, r_{n}\right) \mid 0 \leq r_{1}, \ldots, r_{n} \leq m, r_{1}+r_{2}+\cdots+r_{n}=r\right\}
$$

So "all" we need, in order to get the exact answer, is to construct the set $A(r, n, m) 109$ and add-up all the multinomial coefficients.

Editor's Proof

Of course, there is a better way. As it is well-known (see [2]), and easy to see, 111 writing

$$
\begin{equation*}
P(r, n, m)=\frac{r!}{n^{r}} \sum_{\left(r_{1}, \ldots, r_{n}\right) \in A(r, n, m)} \frac{1}{r_{1}!r_{2}!\ldots r_{n}!}, \tag{113}
\end{equation*}
$$

the \sum is the coefficient of x^{r} in the expansion of

$$
\left(\sum_{i=0}^{m} \frac{x^{i}}{i!}\right)^{n}
$$

so all we need is to go to Maple, and type (once r, n, and m have been assigned 116 numerical values)

This works well for small n and r, but, please, don't even try to apply it to the 119 first case of [2], $(r=14,400, n=9,000, m=7)$, Maple would crash! 120

Ewens and Wilf's brilliant idea was to use the Euler-Miller-(Nijenhuis-Wilf)- 121 Zeilberger-... "quick" method for expanding a power of a polynomial, and get an ${ }^{122}$ answer in less than a second! ${ }_{123}$
[We implemented this method in Procedure Prnm (r, n,m) of BallsInBoxes]. ${ }_{124}$
While their method indeed takes less than a second (in Maple) for $r=125$ $14,400, n=9,000$ (and $7 \leq m \leq 12$), it takes quite a bit longer for ${ }_{126}$ $r=144,000, n=90,000$, and we are willing to bet that for $r=10^{8}, n=10^{8}$ it ${ }_{127}$ would be hopeless to get an exact answer, even with this fast algorithm. 128

But why this obsession with exact answers? Hello, this is applied mathematics, 129 and the epidemiological data is, of course, approximate to begin with, and we make 130 lots of unrealistic assumptions (e.g. that the US is divided into 9,000 towns, each exactly the size of Niles, IL). All we need to know is, "are that many diseases likely to be due to pure chance, or is it a cause for concern?", Yes or No?, Ja oder Nein?, Oui ou Non?, Ken o Lo?.

Enumeration Digression

It would be nice to get a more compact (than the huge multisum above) (symbolic) "answer", or "formula", in terms of the symbols r, n and m. This seems to be hopeless. But fixing, positive integers a, b and m, one can ask for a "formula" (or whatever), in n, for the quantity $P(a n, b n, m)$ that can be written as $B(a, b, m ; n) /(a n)^{b n}$ where

$$
B(a, b, m ; n):=(a n)!\sum_{\left(r_{1}, \ldots, r_{n}\right) \in A(a n, b n ; m)} \frac{1}{r_{1}!r_{2}!\ldots r_{n}!}
$$

the cardinality of the natural combinatorial set consisting of placing an balls in bn 142 boxes in such a way that no box receives more than m balls. Equivalently, all words ${ }_{143}$ in a $b n$-letter alphabet, of length $a n$, where no letter occurs more than m times. For 144 example, when $a=b=m=1$, we have the deep theorem: 145

$$
B(1,1,1 ; n)=n!.
$$

Equivalently, $e(n)=B(1,1,1 ; n)$ is a solution of the linear recurrence equation ${ }_{147}$ with polynomial coefficients

$$
e(n+1)-(n+1) e(n)=0,(n \geq 0)
$$

subject to the initial condition $e(0)=1$.
It turns out that, thanks to the not-as-famous-as-it-should-be Almkvist-Zeilberger 151 algorithm [1] (an important component of the deservedly famous Wilf-Zeilberger 152 Algorithmic Proof Theory), one can find similar recurrences (albeit of higher order, ${ }_{153}$ so it is no longer "closed-form", in n) for the sequences $B(a, b, m ; n)$ for any fixed 154 triple of positive integers, a, b, m. 155
(See Procedures Recabm and RacabmV in the Maple package BallsInBoxes). ${ }_{156}$
Indeed, since $B(a, b, m ; n)$ is $(a n)$! times the coefficient of $x^{a n}$ in 157

$$
\left(\sum_{i=0}^{m} \frac{x^{i}}{i!}\right)^{b n}
$$

it can be expressed, (thanks to Cauchy), as

$$
\begin{equation*}
\frac{(a n)!}{2 \pi i} \oint_{|z|=1} \frac{\left(\sum_{i=0}^{m} \frac{z^{i}}{i!}\right)^{b n}}{z^{a n+1}} d z \tag{Cauchy}
\end{equation*}
$$

$$
160
$$

and this is game for the Almkvist-Zeilberger algorithm, that has been incorporated 161 into BallsInBoxes. See the web-book 162 http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes2 163 for these recurrences for $1 \leq a, b \leq 3$ and $1 \leq m \leq 6$. 164

Asymptotics

Once the first-named author of the present article computed a recurrence, it can go 166 on, thanks to the Birkhoff-Trzcinski method [4,6], to get very good asymptotics! So 167 now we can get a very precise asymptotic formula (in n) (to any desired order!) for 168 $P(a n, b n, m)$, that turns out to be very good for large, and even not-so-large n, and 169 for any desired a, b, m. Procedure Asyabm in our Maple package BallsInBoxes 170

Editor's Proof

finds such asymptotic formulas. See 171
http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes1 172
for asymptotic formulas, derived by combining Almkvist-Zeilberger with AsyRec 173
(also included in BallsInBoxes in order to make the latter self-contained.) 174
This works for every m, and every a and b, in principle! In practice, as m gets 175
larger than 10 , the recurrences become very high order, and take a very long time to 176
derive. 177
But as long as $m \leq 8$ and even (in fact, especially) when n is very large, this 178
method is much faster than the method of [2] ($O(m n)$ with large n is not that small!). 179
Granted, it does not give you an exact answer, but neither do they (in spite of their 180
claim, see below!). 181
But let's be pragmatic and forget about our purity and obsession with "exact" 182
answers. Since we know from "general nonsense" that the desired probability 183
$C(a, b, m ; n):=P(a n, b n, m) \quad\left(=B(a, b, m ; n) /(a n)^{b n}\right)$ 184
behaves asymptotically as 185

$$
C(a, b, m ; n) \asymp \mu^{n}\left(c_{0}+O(1 / n)\right)
$$

for some numbers μ and c_{0}, all we have to do is crank out (e.g.) the 200-th and 201- 187 st term and estimate μ to be $C(a, b, m ; 201) / C(a, b, m ; 200)$, and then estimate $c_{0}{ }^{188}$ to be $C(a, b, m ; 200) / \mu^{200}$. Using Least Squares one can do even better, and also 189 estimate higher order asymptotics (but we don't bother, enough is enough!). 190

Procedure AsyabmEmpir in our Maple package BallsInBoxes uses this 191 method, and gets very good results!

For example, for the Niles, IL, example, in order to get estimates for 193 $P(14,400,9,000, m)$, typing 194
evalf(subs (n=1800, AsyabmEmpir (8,5,m,200,n))); 195
for $m=7,8,9,10,11,12$ yields (almost instantaneously) 196
$m=7: 0.09540287131 \ldots$ (the exact value being: $0.095395913167 \ldots$), 197
$m=8: 0.664971462304 \ldots$ (the exact value being: $0.66495441 \ldots$), 198
$m=9: 0.9378712268719 \ldots$ (the exact value being: $0.93786433 \ldots$), 199
$m=10: 0.990845139 \ldots$ (the exact value being: $0.9908433 \ldots$), 200
$m=11: 0.998789295 \ldots$ (the exact value being: $0.99878892861 \ldots$). 201
The advantage of the present approach is that we can handle very large n, for 202 example, with the same effort we can compute 203
evalf(subs (n=180000,AsyabmEmpir(8,5,m,200,n))) 204
getting that $P(1,440,000,900,000,11)$ is very close to 0.88554890636027 . The 205
method used in [2] (i.e. typing 206
Prnm(1440000,900000,11); 207
in BallsInBoxes) would take forever! 208
Caveat Emptor 209
There is another problem with the $O(m n)$ method described in [2]. Sure enough, it 210
works well for the examples given there, namely $P(14,400,9,000, m)$ for $6 \leq m \leq$ 211
12 and $P(8,000,12,000, m)$ for $4 \leq m \leq 8$. 212
This is corroborated by our implementation of that method, (Procedure 213
$\operatorname{Prnm}(r, n, m)$ in 214
BallsInBoxes). 215
Typing (once BallsInBoxes has been read onto a Maple session): 216
t0:=time () : Prnm (14400,9000,9) , time()-t0; 217
returns 218
$0.937864339305858219725360911354,0.884$ 219
that tells you the desired value (we set Digits to be 30), and that it took 0.884 s 220
to compute that value. 221
But now try: 222
t0:=time(): Prnm(1000,100,15), time()-t0; 223
and get in 0.108 s (real fast!) 224
$-0.728465229161818857989128673465 \cdot 10^{50}$ 225
"Something is rotten in the State of Denmark!" We learned in kindergarten that a 226
probability has to be between 0 and 1 , so a negative probability, especially one with 227
50 decimal digits, is a bit fishy. Of course, the problem is that [2]'s "exact" result is 228
not really exact, as it uses floating-point arithmetic. 229
Big deal, since we work in Maple, let's increase the system variable Digits 230
(the number of digits used in floating-point calculations), and type the following 231
line: 232
evalf(Prnm (1000,100,15), 80); 233
getting $5.71860506564981 \ldots$, a little bit better! (the probability is now less than 234
six, and at least it is positive!), but still nonsense. 235
Digits: $=83$ still gives you nonsense, and it only starts to "behave" at 2Digits: $=90$.237
Now let's multiply the inputs, r and n by 10 , and take $m=22$ and try to evaluate 238
$P(10,000,1,000,22)$. Even Digits: $=250$ still gives nonsense! Only Digits:=310 239
gives you something reasonable and (hopefully) correct. 240

The way to overcome this problem is to keep upping Digits until you get 241 close answers with both Digits and, say, Digits+100. This is implemented 242 in Procedure PrnmReliable (r, n, m, k) in BallsInBoxes, if one desires243
an accuracy of k decimal digits. This is reliable indeed, but not exact, 244
and not rigorous, since it uses numerical heuristics. The exact answer is a 245
rational number, that is implemented in Procedure PrnmExact (r, n, m) ofBallsInBoxes.247

Editor's Proof

The Cost of Exactness

If you type 249
t0:=time () : PrnmExact (14400,9000,7): time()-t0; 250
you would get in 42 s (no longer that fast!) a rational number whose numerator 251
and denominator are exact integers with 54,207 digits. 252
See http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes7a for the outputs (and 253 timings) of PrnmExact $(14400,9000, \mathrm{~m})$; for m between 6 and 12 and 254 see http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes7b for the outputs (and 255 timings) of PrnmExact $(8000,12000, \mathrm{~m})$; for m between 4 and 8 . No longer 256 fast at all! (2,535 and 248 s respectively). 257

Let's Keep It Simple: An Ode to the Poisson Approximation

At the end of [2], the authors state: 259
A Poisson Approximation is also possible but it may be inaccurate, particularly around the 260 tails of the distribution. Our exact method is fast and does not suffer from any of those 261 problems. 262

Being curious, we tried it out, to see if it is indeed so bad. Surprise, it is terrific! 263 But let's first review the Poisson approximation as we understand it. 264

The probability of any particular box (of the n boxes) getting $\leq m$ ball is, 265 roughly, using the Poisson approximation $(R:=r / n)$: 266

$$
e^{-R} \sum_{i=0}^{m} \frac{R^{i}}{i!}
$$

Of course the n events are not independent, but let's pretend that they are. The 268 probability that every box got $\leq m$ balls is approximated by

$$
Q(r, n, m):=\left(e^{-R} \sum_{i=0}^{m} \frac{R^{i}}{i!}\right)^{n}
$$

($Q(r, n, m)$ is implemented by procedure PrnmPA (r, n, m) in BallsInBoxes. 271 It is as fast as lightning!)

Ewens and Wilf are very right when they claim that $P(r, n, m)$ and $Q(r, n, m){ }^{273}$ are very far apart around the "tail" of the distribution, but who cares about 274 the tail? Definitely not a scientist and even not an applied mathematician. It 275 turns out, empirically (and we did extensive numerical testing, see Procedure 276 HowGoodPA1 (R0, NO, Incr, M0, m, eps) in BallsInBoxes), that whenever 277 $P(r, n, m)$ is not extremely small, it is very well approximated by $Q(r, n, m)$, and 278 using the latter (it is so much faster!) gives very good approximations, and enables 279

Editor's Proof

one to construct the "center" of the probability distribution (i.e. ignoring the tails) 280
very accurately. See 281
http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes4, 282
and 283
http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes5, for comparisons (and tim- 284
ings!, the Poisson Approximation wins!). 285
In particular, the estimates for the expectation, standard deviation, and even the 286
higher moments match extremely well! 287
Another (empirical!) proof of the fitness of the Poisson Approximation can be 288
seen in: 289
http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes1 290
where the (rigorous!) asymptotic formulas derived, via AsyRec, from the recur- 291
rences obtained via the Almkvist-Zeilberger algorithm are very close to those 292
predicted by the Poisson Approximation (except for very small m, corresponding 293
to the "tail"). 294
The Full Probability Distribution of the Random Variable 295 "Maximum Number of Balls in the Same Box" 296

It would be useful, for given positive integers a and b, to know how the probability297
distribution "maximum number of balls in the same box when throwing an balls into 298
$b n$ boxes" behaves. One can "empirically" construct (without arbitrarily improbable 299
tail) the distribution of the random variable "maximum number of balls in the 300
same box" when an balls are uniformly-at-random placed in bn boxes (Let's call 301
it $X_{n}(a, b)$, and X_{n} for short) using 302

$$
\operatorname{Pr}\left(X_{n}=m\right)=P(a n, b n, m)-P(a n, b n, m-1)
$$

First, and foremost, what is the expectation, μ_{n}, of this random variable? Second,

For the expectation, μ_{n}, Procedure AveFormula ($\mathrm{a}, \mathrm{b}, \mathrm{n}, \mathrm{d}, \mathrm{L}, \mathrm{k}$) uses the 308 more accurate "empirical approach" and Maple's built-in Least-Squares command, 309 to obtain the following empirical (symbolic!) estimates for the expectation. 310
$a=1, b=1$: evalf(AveFormula (1,1,n,1,300,1000,10),10); 311 yields that μ_{n} is roughly $2.293850526+(0.4735983525) \cdot \log n \quad 312$
$a=2, b=1$: evalf (AveFormula ($2,1, \mathrm{n}, 1,300,1000,10$) , 10) ; 313
yields that μ_{n} is roughly $3.963420618+(0.5834252496) \cdot \log n \quad 314$
$a=1, b=2$: evalf (AveFormula (1,2, n, 1, 300,1000,10), 10); 315
yields that μ_{n} is roughly $1.640094145+(0.3873602232) \cdot \log n$. 316

Editor's Proof

Abstract

Note that for $a=1, b=1$, the approximation to μ_{n} can be written $2.293850526+$digits.

Procedure NuskhaPA1 ($\mathrm{R}, \mathrm{n}, \mathrm{K}, \mathrm{d}$) uses the Poisson Approximation to guess 321 polynomials in $\log n$ of degree d fitting the average, standard deviation, and higher 322 moments, as asymptotic expressions in n, for $n R$ balls thrown into n boxes, where ${ }_{323}$ R is now any (numeric) rational number. Even $d=1$ seems to give a fairly good 324 fit, so they all seem to be (roughly) linear in $\log n$.

Procedure SmallestmPA

Procedure SmallestmPA ($\mathrm{r}, \mathrm{n}, \mathrm{conf}$) gives you the smallest m for which, with ${ }^{327}$
confidence conf, you can deduce that the high value of m is not due to chance ${ }^{328}$ (using the Poisson Approximation). For example 329

SmallestmPA(14400,9000,.99); 330
yields 10 , meaning that if a town the size of Niles, IL got 10 or more cases, then 331 with probability >0.99 it is not just bad luck. If you want to be \%99.99-sure of ${ }_{332}$ being a victim of the environment rather than of Lady Luck, type: 333

SmallestmPA(14400,9000,.9999); 334
and get 13 , meaning that if you had 13 cases, then with probability larger than 335 0.9999 it is not due to chance. (1) 336

The Minimum Number of Balls that Landed in the Same Box, ${ }_{337}$ Procedure LargestmPA

An equally interesting, and harder to compute, random variable is the minimum ${ }_{339}$ number of balls that landed in the same box, but the Poisson Approximation handles 340 it equally well. Analogous to SmallestmPA, we have, in BallsInBoxes, 341 Procedure LargestmPA (r, n, conf) that tells you the largest m for which you 342 can't blame luck for getting m or less balls. 343

For example, if there are 10,000 students that have to decide between 100344 different calculus sections, 345

LargestmPA (10000,100,.99); 346
that happens to be 66, tells you that any section that only has 66 students or 347 less, with probability >0.99, it is because that professor (or time slot, e.g. if it is an 348 8:00 a.m. class) is not popular, and you can't blame bad luck. 349

LargestmPA (10000,100,.9999); 350
that outputs 57 , tells you that anyone who only had ≤ 57 students enrolled is 351 unpopular with probability $>\% 99.99$, and can't blame bad luck. 352

On the other end, going back to the original problem, 353
SmallestmPA (10000,100,.99) ; 354
yields 139 , telling you that any section for which 139 or more students signed 355 up is probably (with prob. >0.99) due to the popularity of that section, while 356 SmallestmPA (10000,100,.9999) ; yields 151.

Final Comments

1. One can possibly (using the saddle-point method) get asymptotic formulas from 359 the contour integral (Cauchy), but this is not our cup-of-tea, so we leave it to 360 other people.
2. Another "back-of-the-envelope" "Poisson Approximation" is to argue that since 362 the probability of any individual box getting strictly more than m balls is roughly 363 (recall that $R=r / n$)

$$
e^{-R} \sum_{i=m+1}^{\infty} \frac{R^{i}}{i!}=e^{-R}\left(e^{R}-\sum_{i=0}^{m} \frac{R^{i}}{i!}\right)=1-e^{-R} \sum_{i=0}^{m} \frac{R^{i}}{i!},
$$

by the linearity of expectation, the expected number of lucky (or unlucky if the 366 balls are diseases) boxes exceeding m balls is roughly

$$
n\left(1-e^{-R} \sum_{i=0}^{m} \frac{R^{i}}{i!}\right)
$$

In the case of Niles, IL, the expected number of towns that would get eight or 369 more cases is:

$$
\begin{equation*}
9,000\left(1-e^{-1.6} \sum_{i=0}^{7} \frac{(1.6)^{i}}{i!}\right)=2.343961376410372 \tag{371}
\end{equation*}
$$

so it is not at all surprising that at least one town got as many as eight cases. 372 On the other hand, in the other example $r=8,000, n=12,000, m=12$, the 373 expected number of unfortunate counties is:

$$
\begin{equation*}
12,000\left(1-e^{-(2 / 3)} \sum_{i=0}^{12} \frac{(2 / 3)^{i}}{i!}\right)=0.533706802 \cdot 10^{-8} \tag{375}
\end{equation*}
$$

so it is indeed a reason for concern.

Editor's Proof

Conclusion

We completely agree with Ewens and Wilf that simulation takes way too long, and is 378 not that accurate, and that their method is far superior to it. But we strongly disagree 379 with their dismissal of the Poisson Approximation. In fact, we used their ingenious 380 method to conduct extensive empirical (numerical) testing that established that the Poisson Approximation, that they dismissed as "inaccurate", is, as a matter of fact, sufficiently accurate, and far more reliable, in addition to being yet-much-faster! It is much safer to use the Poisson Approximation than to use their "exact" method (in floating-point arithmetic), and when one uses truly exact calculations, in rational 384 arithmetic, their "fast" method becomes anything but.

Even when the floating-point problem is addressed by using multiple precision 387 (PrnmReliable discussed above), their fast algorithm becomes slow for very 388 large r and n, while the Poisson Approximation is almost instantaneous even for 389 very large r and n, and any m. 390

So while we believe that the algorithm in [2] is not as useful as the Poisson 391 Approximation, it sure was meta-useful, since it enabled us to conduct extensive 392 numerical testing that showed, once and for all, that it is far less useful then the 393 latter.

Additional evidence comes from our own symbolic approach (fully rigorous for 395 $m \leq 9$ and semi-rigorous for higher values of m), that establishes the adequacy of 396 the Poisson Approximation for symbolic n. 397

Finally, as we have already pointed out, since the data that one gets in appli- 398 cations is always approximate to begin with, insisting on an "exact" answer, even 399 when it is easy to compute, is unnecessary.

Coda: But We, Enumerators, Do Care About Exact Results!

Our point, in this article, was that for applications to statistics, the Poissonple, in less than 1 s the exact number of ways that 1,001 balls can be placed
References 416

1. Gert Almkvist and Doron Zeilberger, The Method of Differentiating Under The Integral Sign, J. 417
Symbolic Computation 10 (1990), 571-591. [Available on-line from: http://www.math.rutgers. 418
edu/ \sim zeilberg/mamarim/mamarimPDF/duis.pdf] 419
2. Warren J. Ewens and Herbert S. Wilf, Computing the distribution of the maximum in balls- 420
and-boxes problems with application to clusters of disease cases, Proc. National Academy of 421
Science (USA) 104(27) (July 3, 2007), 11189-11191. [Available on-line from: http://www.pnas. 422
org/content/104/27/11189.full.pdf] 423
3. Albert Nijenhuis and Herbert S. Wilf, Combinatorial algorithms. Computer Science and 424
Applied Mathematics. Academic Press [Harcourt Brace Jovanovich, Publishers], New York- 425
London, 1975. 426
4. Jet Wimp and Doron Zeilberger, Resurrecting the asymptotics of linear recurrences, J. Math. 427
Anal. Appl. 111 (1985), 162-177. [Available on-line from: http://www.math.rutgers.edu/ 428
\sim zeilberg/mamarimY/WimpZeilberger1985.pdf] 429
5. Doron Zeilberger, The J.C.P. Miller Recurrence for exponentiating a polynomial, and its q - 430
Analog, J. Difference Eqs. and Appl. 1 (1995), 57-60. [Available on-line from: http://www. 431
math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/power.html] 432
6. Doron Zeilberger AsyRec: A Maple package for Computing the Asymptotics of Solutions of 433
Linear Recurrence Equations with Polynomial Coefficients, The Personal Journal of Shalosh 434
B. Ekhad and Doron Zeilberger http://www.math.rutgers.edu/~zeilberg/pj.html, April 6, 2008. 435
[Article and package available on-line from: http://www.math.rutgers.edu/~zeilberg/mamarim/ 436
mamarimhtml/asy.html] 437

Editor's Proof

AUTHOR QUERY

AQ1. We have moved the footnote "We wish to thank Eugene Zima for helpful. .." to end of the chapter before references as "Acknowledgments". Please check if this is okay.

Editor's Proof

Metadata of the chapter that will be visualized online

Chapter Title	Beating Your Fractional Beatty Game Opponent and: What's the Question to Your Answer?
Copyright Year	2013
Copyright Holder	Springer-Verlag Berlin Heidelberg
Corresponding Author	Family Name Fraenkel
	Particle
	Given Name Aviezri S.
	Suffix
	Division $\quad \begin{aligned} & \text { Department of Computer Science and } \\ & \text { Applied Mathematics }\end{aligned}$
	Organization Weizmann Institute of Science
	Address Rehovot, 76100, Israel
Abstract	Given a subtraction game on two piles of tokens, the usual question is to characterize its P-positions. These normally split the positive integers into twoc complementary sequences forWythoff-like games. Here we invert the problem:We are given two sequences, and the challenge is to find appropriate succinct game rules for a game having the given P positions. The main additional challenge in this work is that the given sequences do not split the positive integers. We present two solutions for a seemingly first such problem, the second in terms of two exotic numeration systems. Both characterizations lead to linear-time winning strategies for the game induced by the two sequences.

Beating Your Fractional Beatty Game Opponent and: What's the Question to Your Answer?

Aviezri S. Fraenkel

To Herb Wilf on his 80th birthday: He shall be as a CW 5
(Calkin-Wilf) tree planted by the waters that spreads out its 6
roots by the river, shall not see when heat comes, its leaf shall 7
remain green, shall not be anxious in the year of drought, nor 8
shall it cease from bearing fruit (adapted from Jeremiah 17, 8). 9
What was to be a celebratory volume unfortunately turned into 10 a commemorative one. Yet the above dedication remains valid, 11
since Herb's heritage lives on, spreads its roots and continues 12
to bear rich fruit. 13

Abstract

Given a subtraction game on two piles of tokens, the usual question is 14 to characterize its P-positions. These normally split the positive integers into two 1 complementary sequences for Wythoff-like games. Here we invert the problem: We 16 are given two sequences, and the challenge is to find appropriate succinct game 17 rules for a game having the given P-positions. The main additional challenge in 18 this work is that the given sequences do not split the positive integers. We present 19 two solutions for a seemingly first such problem, the second in terms of two exotic 20 numeration systems. Both characterizations lead to linear-time winning strategies 21 for the game induced by the two sequences.

[^9]
Editor's Proof

1 Prologue

Preliminary Thoughts. Subtraction games, also called take-away games, are 24 games on m piles of tokens, where each of two players playing alternately, selects 25 one or more piles and removes from them a number of tokens according to the 26 specified game rules. ${ }^{1}$ In this paper we consider impartial subtraction games. ${ }_{27}$

A game is impartial if for every game position, all moves one player can do also 28 the opponent can do, unlike the partizan chess, where the black player cannot touch 29 a white piece and conversely.

A P-position in a game is a position such that the player moving from it loses 31 whatever his move is; an N-position is a position from which a player has a winning 32 move. Notice that every move from a P-position lands in an N-position; from an ${ }_{33}$ N position there is a (winning) move to a P-position. In normal play the player 34 making the last move wins; in misère play the player making the last move loses. 35 Throughout we are concerned solely with normal play.

Nim is a subtraction game played on a finite number of tokens. A move consists 37 of selecting a (nonempty) pile and removing from it any positive number of tokens, 38 up to and including the entire pile (a Nim move). Wythoff is a subtraction game 39 played on two piles of tokens. There are two types of moves: a Nim move or taking 40 the same number of tokens from both piles. The latter is a Wythoff move.

For $m \geq 2$, the P-positions of games typically split the positive integers into 42 m disjoint sets $A^{1}, \ldots, A^{m}: \cup_{i=1}^{m} A^{i}=\mathbb{Z}_{\geq 1}, A^{i} \cap A^{j}=\emptyset$ for all $i \neq j$ for 43 Wythoff-like games. Two of many examples: [3, 6]. There are only a few studies 44 where this splitting does not hold. In [2] and [8] the Nim move is restricted to 45 taking any positive multiple of b tokens from a single pile, where b is an a priori 46 given positive integer parameter (and there is a restricted Wythoff move in [8]). 47 The P-positions there constitute b pairs of integers and there are omissions and 48 repetitions of integers in some of the pairs. Sequences that jointly cover every 49 positive integer precisely m times for any given $m \geq 1$ were given by O'Bryant 50 [17] using a generating function approach; and Graham and O'Bryant [11] used 51 them for generalizing a conjecture about splitting sets. They were constructed by 52 elementary means by Larsson and applied there to combinatorial game theory [15]. 53 More recently, Gurvich [12] considered a generalization of Wythoff's game where, 54 for $m=2, A^{1} \cap A^{2}=\emptyset$, but $\left|\mathbb{Z}_{\geq 1} \backslash\left(A^{1} \cup A^{2}\right)\right|=\infty$. In [10] games are analyzed 55 for which both $A^{1} \cap A^{2} \neq \emptyset$ and $\left|\mathbb{Z}_{\geq 1} \backslash\left(A^{1} \cup A^{2}\right)\right|=\infty$. But exceptions they 56 are.

In the present paper we consider a case, also for $m=2$, apparently a first of its 58 kind, where the P-positions constitute a single pair (A^{1}, A^{2}) of integers, $\left|A^{1} \cap A^{2}\right|={ }_{59}$ ∞, but $A^{1} \cup A^{2}=\mathbb{Z}_{\geq 1}$ for a Wythoff-like game. The easy part is to construct $A^{1}, A^{2}{ }_{60}$ with such properties; the hard part is to formulate appropriate succinct game rules 61

[^10]
Editor's Proof

Table 1 Excerpts of the first few terms of the sequences A and B

Sequence B

| n | 28 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 49 | 50 | 51 | 52 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | t 2.1 |
| :--- | ---: |
| a_{n} | 30 | 37 | 38 | 39 | 40 | 42 | 43 | 44 | 52 | 53 | 55 | 56 | 64 | 65 | 66 | 67 | 69 | 70 | 71 | 72 | 73 | t 2.2 |
| b_{n} | 48 | 61 | 62 | 64 | 66 | 68 | 69 | 71 | 85 | 87 | 89 | 90 | 104 | 106 | 108 | 109 | 111 | 113 | 115 | 116 | 118 | t 2.3 |

for a game whose P-positions are such non-complementary sequences. We seek a 62 question for a given answer!

2 The Game, Main Theorem and Examples

Denote by $\varphi=(1+\sqrt{5}) / 2$ the golden section. Then $\varphi^{2}=(3+\sqrt{5}) / 2$, and 65 $\varphi^{-1}+\varphi^{-2}=1$. Multiplying by $3 / 2$, we get

$$
\begin{equation*}
\alpha^{-1}+\beta^{-1}=3 / 2, \tag{1}
\end{equation*}
$$

where

$$
\alpha=\frac{2 \varphi}{3}=\frac{1+\sqrt{5}}{3}=1.0786893 \ldots, \quad \beta=\frac{2 \varphi^{2}}{3}=\frac{3+\sqrt{5}}{3}=1.745356 \ldots, \quad 68
$$

and $\beta-\alpha=2 / 3$. For $n \geq 0$, let $a_{n}=\lfloor n \alpha\rfloor, b_{n}=\lfloor n \beta\rfloor$. These are Beatty sequences: 69 the floor of the multiples of a positive number. For $\alpha>0$ irrational, the two Beatty 70 sequences are complementary if and only if $\alpha^{-1}+\beta^{-1}=1$. Complementarity 71 means that every positive integer appears exactly once in exactly one of the two 72 sequences. Let

$$
A:=\cup_{n \geq 0} a_{n}, \quad B:=\cup_{n \geq 0} b_{n}, \quad \mathcal{T}:=\cup_{n \geq 0}\left(a_{n}, b_{n}\right), a_{n} \in A, b_{n} \in B
$$

We denote by $\overline{\mathcal{T}}=\mathbb{Z}_{\geq 0} \backslash \mathcal{T}$ the complement of \mathcal{T}, that is, all pairs $(x, y) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \quad 75$ not in \mathcal{T}. The first few terms of A and B are displayed in Table 1.

In the game Freak there are two piles of finitely many tokens. We denote the 77 piles by the number of tokens they contain, i.e.,

$$
\begin{equation*}
(x, y) \text {, with } 0 \leq x \leq y . \tag{2}
\end{equation*}
$$

Two players alternate in reducing the piles. Play ends when the piles are empty. 79 Recall that the player first unable to move loses and the opponent wins (normal 80 play).

Editor's Proof

Remark 1. In a move from a position (x, y) subject to (2) where x is unchanged, 82 but $y \rightarrow y-t$ with $t>0$, we may have $x \leq y-t$ or $y-t<x$. To be consistent 83 with (2) we write $(x, y) \rightarrow(x, y-t)$ in the former case, and $(x, y) \rightarrow(y-t, x) 84$ in the latter case. 85

The P-positions of Freak are given, namely $\mathcal{P}=\mathcal{T}$. What are succinct game 86 rules of FREAK such that it has precisely these P-positions? We chose this particular 87 set \mathcal{T} since it seems like the simplest case in which the two Beatty sequences are not 88 complementary.

We claim that at each stage a FREAK player has the choice of making one of the 90 following two types of moves:
(I) (Restricted Wythoff move.) $(x, y) \rightarrow(x-t, y-t)$ for every $t \in\{1, \ldots, x\}$, 92 except that this move is blocked if $t \in\{1,2,3\}$ and $x \in A$ and $y \in B$. 93
(II) (Restricted Nim move.)
(a) $(x, y) \rightarrow(x-t, y)$ for any $0<t \leq x$; or 95
(b) $(x, y) \rightarrow(x, y-t)$ for any $0<t \leq y$; or 96
(c) $(x, y) \rightarrow(y-t, x)$ for any $0<t \leq y$, except that this move is blocked if 97 $x \in A \cap B$ and $y \in B$.

Theorem 1. For the game Freak, $\mathcal{P}=\mathcal{T}$.
Example 1. We refer the reader to Table 1.

- The moves from \mathcal{T} to $\mathcal{T}(4,6) \rightarrow(3,5),(12,20) \rightarrow(11,19)$ are blocked because 101 $4,12 \in A$ and $6,20 \in B((\mathrm{I}), t=1)$. 102
- Similarly, the moves $(14,22) \rightarrow(12,20),(28,45) \rightarrow(26,43)$ are blocked $\left((\mathrm{I}),{ }_{103}\right.$ $t=2$).
- Also $(14,22) \rightarrow(11,19),(43,69) \rightarrow(40,66)$ are blocked $((\mathrm{I}), t=3)$. 105
- $(12,20) \rightarrow(7,12)$ and $(19,31) \rightarrow(11,19)$ are blocked by (II)(c), since $12 \in 106$ $A \cap B, 19 \in A \cap B$; and $20,31 \in B$. 107
- For every $s>13,(13, s) \rightarrow(8,13)$ is not blocked by (II)(c), since $13 \notin A$. 108
- Notice that moves from the complement $\overline{\mathcal{T}}$ to \mathcal{T} such as $(15,34) \rightarrow(15,24), 109$ $(15,22) \rightarrow(14,22)$ or $(10,17),(11,16) \rightarrow(8,13)$ are not blocked. 110

It should be clear that a winning strategy for Freak can be effected by means 111 of the P-positions. Given any game position (x, y) subject to (2), we have only to 112 find out to which sequence, A or B, x and y belong. The complexity of the implied ${ }_{113}$ computation will be discussed later on.

3 Preliminaries

For proving Theorem 1, we begin by collecting a few facts about the sequences A and B.

For any number $r \in \mathbb{R}_{>0}$ and $n \in \mathbb{Z}_{\geq 0}$, let $\Delta\lfloor n r\rfloor=\lfloor(n+1) r\rfloor-\lfloor n r\rfloor$.

Editor's Proof

Lemma 1. (i) Each of the sequences A and B is strictly increasing.

(ii) For every $n \geq 0, \Delta\lfloor n \alpha\rfloor=2 \Longrightarrow \Delta\lfloor n \beta\rfloor=2$.

Proof. Note that $1<\alpha<\beta<2$. These inequalities imply:

$$
\begin{equation*}
\Delta\lfloor n \alpha\rfloor \in\{1,2\}, \quad \Delta\lfloor n \beta\rfloor \in\{1,2\} \quad \text { for all } n \in \mathbb{Z}_{\geq 1} . \tag{3}
\end{equation*}
$$

Also note that $\Delta\lfloor n \alpha\rfloor=2$ if and only if $(n+1) \alpha=i+1+\delta_{1}, n \alpha=i-\delta_{2}$ for some integer $i=i(n)$, and $0<\delta_{1}, \delta_{2}<\alpha-1<0.08$. For such n we have, $(n+1) \beta=$ $(n+1)(\alpha+2 / 3)=i+1+\delta_{1}+2(n+1) / 3 ; n \beta=n(\alpha+2 / 3)=i-\delta_{2}+2 n / 3$. Put $n=3 k+i, i \in\{0,1,2\}$. Then $(n+1) \beta=i+1+\delta_{1}+2 k+2(i+1) / 3$, $n \beta=i-\delta_{2}+2 k+2 i / 3$. We consider three cases:

1. $i=0$. Then $\Delta\lfloor n \beta\rfloor=(i+2 k+1)-(i-1+2 k)=2$.
2. $i=1$. Then $\Delta\lfloor n \beta\rfloor=(i+2 k+2)-(i+2 k)=2$.
3. $i=2$. Then $\Delta\lfloor n \beta\rfloor=(i+2 k+3)-(i+2 k+1)=2$.Thus $\Delta\lfloor n \alpha\rfloor=2 \Longrightarrow 129$ $\Delta\lfloor n \beta\rfloor=2$. This implies,

$$
\begin{equation*}
\lfloor n \beta\rfloor-\lfloor n \alpha\rfloor \text { is a nondecreasing function of } n \text {. } \tag{4}
\end{equation*}
$$

The properties (3) immediately imply (i). Let $\lfloor n \alpha\rfloor=K,\lfloor n \beta\rfloor=L$. If $\Delta\lfloor n \alpha\rfloor=2$, then $\lfloor(n+1) \alpha\rfloor=K+2,\lfloor(n+1) \beta\rfloor=L+\delta$, where $\delta \in\{1,2\}$ by (3). Now $\lfloor n \beta\rfloor-\lfloor n \alpha\rfloor=L-K,\lfloor(n+1) \beta\rfloor-\lfloor(n+1) \alpha\rfloor=L-K+\delta-2$. By (4), $L-K+\delta-2 \geq L-K$, so $\delta \geq 2$. By (3), $\delta=2$, establishing (ii).

Corollary 1. For every $n \geq 0, \Delta\lfloor n \beta\rfloor=1 \Longrightarrow \Delta\lfloor n \alpha\rfloor=1$.
Proof. In view of (3), this is the contrapositive statement of Lemma 1(ii).

Lemma 2. We have,

(i) $A \cup B=\mathbb{Z}_{\geq 0}$ (every nonnegative integer appears in $A \cup B$).
(ii) Every nonnegative integer N is assumed at most twice in $A \cup B$. If N appearstwice, it appears once in A and once in B.135
(iii) $b_{m}=a_{n} \Longrightarrow m \leq n$. 136
(iv) $|A \cap B|=\infty$. 137

Proof. (i) It is convenient to put $\xi_{1}=\alpha^{-1}, \xi_{2}=\beta^{-1}$. Consider the sequence ${ }_{138}$ $\zeta=\{\alpha, \beta, 2 \alpha, 2 \beta, 3 \alpha, 3 \beta, \ldots\}$. It suffices to show that if $M \geq 1$ is any integer and there are N_{M} members of $\zeta<M$, then $N_{M+1} \geq N_{M}+1$. The number ${ }_{140}$ of $n>0$ satisfying $n \alpha<M$ is $\left\lfloor M \xi_{1}\right\rfloor$, and the number of $n>0$ satisfying $n \beta<M$ is $\left\lfloor M \xi_{2}\right\rfloor$. So $N_{M}=\left\lfloor M \xi_{1}\right\rfloor+\left\lfloor M \xi_{2}\right\rfloor$. Now

$$
M \xi_{1}-1<\left\lfloor M \xi_{1}\right\rfloor<M \xi_{1}, \quad M \xi_{2}-1<\left\lfloor M \xi_{2}\right\rfloor<M \xi_{2}
$$

Adding, $(3 M / 2)-2<N_{M}<3 M / 2$. If $M=2 t$ is even, then $3 t-2<N_{M}<144$ $3 t$, so $N_{M}=3 t-1$, and then $3 t-1 / 2<N_{M+1}<3 t+3 / 2$, so $N_{M+1} \in{ }_{145}$ $\{3 t, 3 t+1\}$. Thus $N_{M+1}-N_{M} \in\{1,2\}$. If $M=2 t+1, M+1=2 t+2$, we obviously also get $N_{M+1}-N_{M} \in\{1,2\}$, proving (i).
(ii) Since each of A and B is strictly increasing, N can appear at most once in 148 each.
(iii) Follows immediately from the fact that $\alpha<\beta$.
(iv) We have to show that $N_{M+1}-N_{M}=2$ is assumed for infinitely many $M \in$ $\mathbb{Z}_{\geq 0}$. If $N_{M+1}-N_{M}=1$ for all large M then a simple density argument shows that $\xi_{1}+\xi_{2}=1$, a contradiction.

Lemma 3. $\Delta\lfloor n \beta\rfloor=1$ implies

$$
\Delta\lfloor(n-2) \beta\rfloor=\Delta\lfloor(n-1) \beta\rfloor=\Delta\lfloor(n+1) \beta\rfloor=\Delta\lfloor(n+2) \beta\rfloor=2
$$

Proof. We have $\Delta\lfloor n \beta\rfloor=1$ if and only if $N<n \beta<N+1<(n+1) \beta<$ $N+2$ for some $N \in \mathbb{Z}_{\geq 0}$. Since the fractional parts $\{n \beta\}_{n \geq 1}$ are dense in the reals (Kronecker's Theorem), this inequality holds for infinitely many pairs of integers (n, N). Since $1.74<\beta<1.75$, we then have $N+3<(n+2) \beta<N+4<$ $N+5<(n+3) \beta<N+6$. Then $\Delta\lfloor(n+1) \beta\rfloor=\Delta\lfloor(n+2) \beta\rfloor=2$. We also have $\Delta\lfloor n \beta\rfloor=1$ if and only if $N-1>(n-1) \beta>N-2>N-3>(n-2) \beta>N-4$, so $\Delta\lfloor(n-2) \beta\rfloor=\Delta\lfloor(n-1) \beta\rfloor=2$.
Lemma 4. If $\Delta\lfloor n \alpha\rfloor=2$, then $\Delta\lfloor(n+i) \alpha\rfloor=1$ for at least all $i \in\{1, \ldots, 11\}$.
Proof. Follows from the fact that $\left\lfloor\{\alpha\}^{-1}\right\rfloor=12$, where $\{x\}$ denotes the fractional part of x.
Definition 1. For any real number x and any $n \in \mathbb{Z}_{\geq 0}, \Delta\lfloor n x\rfloor$ is called an x - 154 difference.
Lemma 5. For $n, r \in \mathbb{Z}_{\geq 1}$, let

$$
\begin{equation*}
\lfloor(n+r) \beta\rfloor-\lfloor n \beta\rfloor=\lfloor(n+r) \alpha\rfloor-\lfloor n \alpha\rfloor=t \tag{5}
\end{equation*}
$$

Then $r \leq 2, t \leq 3$; and $r=2$ with $t=3$ is achieved.
Proof. We wish to maximize r. If any two consecutive β-differences are 2 , then the corresponding α-differences cannot be 2 by Lemma 4 . So one of the two consecutive β-differences must be 1 . The corresponding α-difference is then also 1 by Corollary 1 . The next β-difference is then necessarily 2 (Lemma 3), and the next α-difference can be 2 . Then the next β-difference is still 2 , but the corresponding α-difference is 1 . Thus $r \leq 2, t \leq 3$; and $r=2$ with $t=3$ in (5) is achieved, for example for $n=11$.
Lemma 6. Let $\left(a_{n}, b_{n}\right) \mathcal{T}$. Then $\left(a_{n}-t, b_{n}-t\right)=\left(a_{m}, b_{m}\right) \in \mathcal{T}$ for no $t>3$.
Proof. Follows immediately from Lemmas 3 to 5.

4 Proof of the Main Theorem

We need to show $\mathcal{P}=\mathcal{T}$. Since Freak is acyclic, it suffices to show two things: 160 Any move from any position in \mathcal{T} results in a position in $\overline{\mathcal{T}}$; and from any position 161 in $\overline{\mathcal{T}}$, there exists a move to a position in \mathcal{T}.

Editor's Proof

We precede these two aspects with a notation and a proposition.
Notation 1. For every $n \in \mathbb{Z} \geq 0$, let $d_{n}:=b_{n}-a_{n}$.
Lemma 7. (i) For every $n \in \mathbb{Z} \geq 0, d_{n+1}-d_{n} \in\{0,1\}$. 165
(ii) d_{n} is a nondecreasing function of n. 166
(iii) $\cup_{n \geq 0} d_{n}=\mathbb{Z}_{\geq 0} . \quad 167$

Proof. (i) We have, $d_{n+1}-d_{n}=\Delta\lfloor n \beta\rfloor-\Delta\lfloor n \alpha\rfloor$. By (3), $\Delta\lfloor n \alpha\rfloor \in\{1,2\}$. 168 If $\Delta\lfloor n \alpha\rfloor=1$, then $\Delta\lfloor n \beta\rfloor \in\{1,2\}$. If $\Delta\lfloor n \alpha\rfloor=2$, then $\Delta\lfloor n \beta\rfloor=2$ by 169 Lemma 1.
(ii) It follows immediately from (i) that d_{n} is nondecreasing.
(iii) The fact that the multiset $\cup_{n \geq 0} d_{n}$ contains every nonnegative integer also follows immediately from (i).

Any move from any position in \mathcal{T} results in a position in $\overline{\mathcal{T}}$. Let $\left(a_{n}, b_{n}\right) \in \mathcal{T}, 172$ $n \geq 1$. We have to show that $\left(a_{n}, b_{n}\right) \rightarrow\left(a_{m}, b_{m}\right) \in \mathcal{T}$ for no $m \geq 0$. For $t \in{ }^{173}$ $\{1,2,3\},\left(a_{n}, b_{n}\right) \rightarrow\left(a_{n}-t, b_{n}-t\right)$ is blocked by (I). For $t>3,\left(a_{n}-t, b_{n}-t\right) \rightarrow 174$ $\left(a_{m}, b_{m}\right)$ is impossible (Lemma 6). Since A and B are strictly increasing, a move of 175 type B cannot lead from \mathcal{T} to \mathcal{T}.

From any position in $\overline{\mathcal{T}}$, there exists a move to a position in \mathcal{T}. Suppose 177 $(x, y) \in \overline{\mathfrak{T}}, 0 \leq x \leq y$. We first deal with the case $x=y:=t$. For $t=1,178$ $(t, t)=(1,1)$ is in $\mathcal{T} ;(2,2) \rightarrow(0,0)$ is not blocked since $2 \notin B$. Also $(3,3) \rightarrow 179$ $(2,3) \in \mathcal{T}$ is not blocked: it is a move of the form (II)(a). For $t>3$, taking (t, t) is 180 never blocked. Moreover, $(0, y) \rightarrow(0,0)$ and $(1, y) \rightarrow(1,1)$ are not blocked. We 18 may thus assume $1<x<y$. Then $x=a_{n}=b_{m}$ implies $n>m$, since $\beta>\alpha$, so ${ }_{182}$ B increases at least as fast as A (CF Lemma 2(iii)).

Since A, B cover the nonnegative integers (Lemma 2(i)), we have either (i) $x=184$ a_{n} or (ii) $x=b_{n}$ for some $n \in \mathbb{Z}_{\geq 0}$. Of course Lemma 2(iv) implies that $x=a_{n}=185$ b_{m} for infinitely many $n>m>1$.
(i) $x \in B$, say $x=b_{m}$.
(i1) $x \notin A$. Then the Nim move $y \rightarrow a_{m}$ is a non blocked move of the form 188 (II)(c)
(i2) $x \in A$, say $x=a_{n}$. We have $1<m<n$. 190
(i21) $y>b_{n}$. Then do $y \rightarrow b_{n}$. This move is of the form (II)(b). It is not blocked, 191 since $b_{n}>x=a_{n}$. 192
(i22) $y<b_{n}$. We consider two cases. 193

1. $y \in B$, say $y=b_{k}$. Then $k<n$, so can make the (II)(a) move $x \rightarrow a_{k}$. 194
2. $y \notin B$. Then move $y \rightarrow x_{m}$. It is an unblocked move of the form (II)(c). 195
(ii) $x \in A$, say $x=a_{n}$. The case where also $x \in B$, say $x=b_{m}$, was dealt with 196 in (i2) above, so we may assume $x \notin B$. 197
(ii1) $y>b_{n}$. Then move $y \rightarrow b_{n}$. This Nim move is not blocked, since $b_{n}>a_{n}=198$ x. The move is of the form (II)(b).
(ii2) $y<b_{n}$. If $y \in B$, say $y=b_{k}$, then we have $k<n$, so we can move $x \rightarrow a_{k}$, as in (i22)1. So we may assume $y \notin B$. We have $1<a_{n}=x<y<b_{n}$. Let $d:=y-x=y-a_{n}<b_{n}-a_{n}=d_{n}$. By Lemma 7(iii), there exists $k<n$
such that $d_{k}=d$, that is, $b_{k}-a_{k}=y-a_{n}$, so $y-b_{k}=a_{n}-a_{k}:=t$. Then the Wythoff move $(x, y) \rightarrow\left(a_{n}-t, y-t\right)=\left(a_{k}, b_{k}\right) \in \mathcal{T}$ is not blocked, even if $t \in\{1,2,3\}$, since $y \notin B$.

5 A Linear Winning Strategy

Given any game position (x, y) of Freak subject to (2), it obviously suffices to 201 know whether $x \in A, x \in B, y \in A, y \in B$. The proof of Theorem 1 then enables 202 us to win if $(x, y) \in \overline{\mathcal{T}}$.

Theorem 2. The computations to determine whether or not any of $x \in A, x \in B, 204$ $y \in A, y \in B$ holds is linear in the succinct input size $\log x+\log y=\log x y$ of 205 any input game position $(x, y), 1 \leq x \leq y$.

Proof. Since α is irrational and $1<\alpha<2$,

$$
\begin{aligned}
x & =\lfloor n \alpha\rfloor \Longleftrightarrow x<n \alpha<x+1 \Longleftrightarrow \frac{x}{\alpha}<n<\frac{x+1}{\alpha} \Longleftrightarrow\left\lfloor\frac{x+1}{\alpha}\right\rfloor \\
& =\left\lfloor\frac{x}{\alpha}\right\rfloor+1 .
\end{aligned}
$$

Therefore either $x=\lfloor n \alpha\rfloor=a_{n}$, where $n=\lfloor(x+1) / \alpha\rfloor$, or else, by Lemma 2(i), 208 $x=\lfloor n \beta\rfloor=b_{n}$, where $n=\lfloor(x+1) / \beta\rfloor$.

Since also $1<\beta<2$, we can compute the same way whether $y=\lfloor n \beta\rfloor$, together with the multiplier n and/or whether $y=\lfloor n \alpha\rfloor$ with its multiplier n. These computations require that α and β be computed to a precision of only $O(\log y)$ digits. Once we made these linear computations, we make the appropriate move prescribed in sub-steps of (i) or (ii) of the proof of Theorem 1.

6 An Alternate Linear Winning Strategy

We now present a strategy that depends on two exotic numeration systems. Recall 21 that any positive irrational α can be expanded in a simple continued fraction:

$$
\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3} . .}}}:=\left[a_{0}, a_{1}, a_{2}, a_{3} \ldots\right],
$$

where $a_{0} \in \mathbb{Z}_{\geq 0}, a_{i} \in \mathbb{Z}_{\geq 1}, i \geq 1$. The convergents of the continued fraction are 214 the rationals $p_{n} / q_{n}=\left[a_{0}, \ldots, a_{n}\right]$, and they satisfy the recurrences (see e.g., [13], 215 Chap. 10):

$$
\begin{equation*}
p_{-1}=1, p_{0}=a_{0}, p_{n}=a_{n} p_{n-1}+p_{n-2} \quad(n \geq 1) \tag{217}
\end{equation*}
$$

Editor's Proof

$$
q_{-1}=0, q_{0}=1, q_{n}=a_{n} q_{n-1}+q_{n-2} \quad(n \geq 1)
$$

For the case $a_{0}=1$ (then $1<\alpha<2$), one of the numeration systems, the $p-219$ system, is spawned by the numerators of the convergents (see [5,9]): Every positive 220 integer N can be written uniquely in the form

$$
N=\sum_{i \geq 0} s_{i} p_{i}, 0 \leq s_{i} \leq a_{i+1}, s_{i+1}=a_{i+2} \Longrightarrow s_{i}=0 \quad(i \geq 0) .
$$

Denote by S, T, the numeration systems based on the numerators of the 223 convergents of the simple continued fraction expansion of α, β, respectively. For ${ }^{224}$ any positive integer N, let $R_{S}(N), R_{T}(N)$ denote the representations of N in the 225 S, T numeration systems, respectively. We say that N is S-vile, T-vile if $R_{S}(N),{ }_{226}$ $R_{T}(N)$ respectively ends in an even number (possibly 0) of 0 s. Analogously, N is ${ }^{227}$ S-dopey, T-dopey if $R_{S}(N), R_{T}(N)$ respectively ends in an odd number of 0 s. ${ }_{228}$

Note 1. The names "evil" and "dopey" are inspired by the evil and odious numbers, those that have an even and an odd number of 1's in their binary representation respectively. To indicate that we count 0 s rather than 1 s , and only at the tail end, the "ev" and "od" are reversed to "ve" and "do" in "vile" and "dopey". "Evil" and "odious" were coined by Elwyn Berlekamp, John Conway and Richard Guy [1].

We notice that

$$
\alpha=[1,12,1,2,2,2, \alpha], \quad \beta=[1,1,2, \alpha] .
$$

The periodicities are of course a manifestation of Lagrange's Theorem ([13,

Comparing Tables 1 and 2, notice that, at least for the range $n \in[1,20]: n \in A 24$ if and only if n is S-vile; $n \in B$ if and only if n is T-vile. This property holds ingeneral - see [5], Sect. 5. It follows immediately that the game rules of Freak, in243 terms of the S - and T-numeration systems, can be stated as follows: 244
(I) (Restricted Wythoff move.) $(x, y) \rightarrow(x-t, y-t)$ for every $t \in\{1, \ldots, x\}, 245$ except that this move is blocked if the following three conditions hold: (a) $t \in{ }^{246}$ $\{1,2,3\}, \quad$ (b) x is S-vile, (c) y is T-vile. $\quad 247$
(II) (Restricted Nim move.) 248
(a) $(x, y) \rightarrow(x-t, y)$ for any $0<t \leq x$; or $\quad 249$
(b) $(x, y) \rightarrow(x, y-t)$ for any $0<t \leq y$; or 250
(c) $(x, y) \rightarrow(y-t, x)$ for any $0<t \leq y$ except that this move is blocked if 251 x is both S-vile and T-vile and y is T-vile.

Table 2 Representation of $1 \leq n \leq 15$ in the S-(left) and T-system (right)

14	13	1	n	7	5	2	1 t 3.1
0	0	1	1	0	0	0	1 t .2
0	0	2	2	0	0	1	0 t3.3
0	0	3	3	0	0	1	1 t3.4
0	0	4	4	0	0	2	0 t3.5
0	0	5	5	0	1	0	0 t3.6
0	0	6	6	0	1	0	$1 \mathrm{t3} .7$
0	0	7	7	1	0	0	0 t3.8
0	0	8	8	1	0	0	1 t 3.9
0	0	9	9	1	0		0 +3.10
0	0	10	10	1	0		1 t3.11
0	0	11	11	1	0		3.1
0	0	12	12	1	1		0 +3.13
0	1	0			1	0	1 t3.14
1	0	0		2	0	0	0 t3.15
1	0	1	15	2	0	0	1 t3.16
1	0		16	2	0	1	0 t3.17
1		3	17	2	0	1	1 t3.18
1	0	4	18	2	0	2	0 +3.19
	0	5	19	2	1	0	0 t3.20
1	0	6	20	2	1	0	1 t3.21

The computation whether x or y is S-vile or T-vile can obviously be done in 253 linear-time in the input size $\log x y$ of any game position (x, y). It follows that 254 also the winning strategy based on the two numeration systems is linear. It has the 255 advantage of avoiding the floor function and division, both of which are needed for 256 our first winning strategy.

7 Epilogue

Preliminary Thoughts. We presented two linear winning strategies for a game on 259 $m=2$ piles of tokens for which the P-positions constitute a single pair of integers 260 (A^{1}, A^{2}) (in contrast to [2] and [8]), (A^{1}, A^{2}) satisfy $\left|A^{1} \cap A^{2}\right|=\infty$, but $\left|A^{1} \cup A^{2}\right|=261$ $\mathbb{Z}_{\geq 1}$. It appears to be a first such case for a Wythoff-like game. 262
FREAK, the name of the game, derives from Fractional BEAtty game. The 263 terminology "vile" and "dopey" is inspired by the evil and odious numbers, 264 those that have an even and an odd number of 1 's in their binary representation 265 respectively. To indicate that we count 0 s rather than 1 s , and only at the tail end, 266 the "ev" and "od" are reversed to "ve" and "do" in "vile" and "dopey". "Evil" 267 and "odious" were coined by Elwyn Berlekamp, John Conway and Richard Guy 268 while composing their famous book Winning Ways [1]. Urban Larsson suggested 269 the particular values of α, β used in this work. A "fractional Beatty theorem" was 270 recently proved by Peter Hegarty [14] (following a suggestion of mine). In previous 271

Editor's Proof

Table 3 The first few terms of the P-positions $\left(a_{n}, b_{n}\right)$

a_{n}	

papers we have shown that a judicious choice of numeration systems can improve 272 the efficiency of winning strategies of various games, much as data structures in 273 Computer Science. In the present paper, numeration systems are the tool used 274 uniformly for both formulating and analyzing Freak.

Further questions
(1) Extend the above results to an infinite set of fractional Beatty games, for 277 example, for $\alpha=\ell \varphi /(2 k+1), \beta=\ell \varphi^{2} /(2 k+1), k$, ℓ any fixed positive 278 integers.
(2) Are there "simpler" game rules for the same set of P-positions considered here? 280
(3) A move $R=\left(r_{1}, \ldots, r_{m}\right) \neq(0, \ldots, 0)$ in an m-pile subtraction game is 281 invariant if R can be made from every game position $\left(s_{1}, \ldots, s_{m}\right)$ for which 282 $s_{i}-r_{i} \geq 0$ for $i=1, \ldots, m$. An m-pile subtraction game is invariant if all its 283 moves are invariant. Otherwise the game is variant. The move rules for Freak 284 are obviously variant. Duchêne and Rigo [4] conjectured that for $m=2$, given 285 any two complementary Beatty sequences A, B, there exists an invariant game 286 with $(A, B) \cup\{(0,0)\}$ as its P-positions. This conjecture was proved in [16]. Is 287 there an invariant game with the P-positions presented in Sect. 2 above? 288
(4) More generally, can the invariance theorem proved in [16] be extended in 289 the following sense: Is there a nontrivial subset of non-complementary Beatty 290 sequences A, B, for which there always exists an invariant game with $(A, B) \cup 291$ $\{(0,0)\}$ as its P-positions?
(5) Let $r, t \in \mathbb{R}_{>0}$. The equation $\alpha^{-1}+(\alpha+t)^{-1}=r$ has the positive solution ${ }_{293}$ $\alpha=\left(2 r^{-1}-t+\sqrt{t^{2}+4 r^{-2}}\right) / 2$. For every set of values $(r, t) \in \mathbb{R}_{>0}^{2}$ for which 294 α is irrational one can define, in principle, an (r, t)-Beatty game. So there is 295 a continuum of such games. If r and t are restricted to be rational we get a 296 denumerable number of games. (One can even consider such games when α is 297 rational, see [7].) For example, for $r=3 / 2, t=2, \alpha=(\sqrt{13}-1) / 3$ (so 298 $2 / 3<\alpha<1)$, and $\beta=\alpha+2=(\sqrt{13}+5) / 3$. It may be of interest to 299 formulate game rules for a game whose P-positions are $\cup_{n \geq 0}\left(a_{n}, b_{n}\right)$, where 300 $a_{n}=\lfloor n \alpha\rfloor, b_{n}=\lfloor n \beta\rfloor$. In this game there are infinitely many integers that are 301 repeated (at most twice) in $\left\{a_{n}\right\}_{n \geq 0}$, in addition to $|A \cap B|=\infty$. But there is 302 the nice property that $b_{n}=a_{n}+2 n$ for all $n \geq 0$, as can be seen in Table 3303 below.
(6) Investigate the Sprague-Grundy function of fractional Beatty games in an 305 attempt to give a poly-time winning strategy for playing them in a sum. 306
(7) Consider take-away games on $m>2$ piles, where the m sequences $A^{1}, \ldots, A^{m}{ }_{307}$ constituting the P-positions do not split $\mathbb{Z}_{\geq 1}$. 308
(8) Consider partizan take-away games where the P-positions do not split $\mathbb{Z}_{\geq 1}$. $\quad 309$
(9) Investigate Fractional Beatty games for misère play.
Acknowledgements Thanks to Urban Larsson, for his useful comments at the beginning of this 311
work. 312
References 313

1. E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways for your Mathematical Plays, 314 Vol. 1-4, A K Peters, Wellesley, MA, 2nd edition: vol. 1 (2001), vols. 2, 3 (2003), vol. 4 (2004). 315
2. I. G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181-190. 316
3. E. Duchêne and M. Rigo, Amorphic approach to combinatorial games: the Tribonacci case, 317
Theor. Inform. Appl. 42 (2008) 375-393. 318
4. E. Duchêne and M. Rigo, Invariant games, Theoret. Comput. Sci. 411 (2010) 3169-3180. 319
5. A. S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. 320
Monthly 89 (1982) 353-361. 321
6. A. S. Fraenkel, The Raleigh game, Integers, Electr. J. of Combinat. Number Theory 7(20), 322
special volume in honor of Ron Graham, \#A13, 11 pp., 2007, http://www.integers-ejent.org/ 323
$\operatorname{vol} 7(2) . \mathrm{html}$ 324
7. A. S. Fraenkel, The rat game and the mouse game, to appear in Games of No Chance 4. 325
8. A. S. Fraenkel and I. Borosh, A generalization of Wythoff's game, J. Combinatorial Theory 326
(Ser. A) 15 (1973) 175-191. 327
9. A. S. Fraenkel, J. Levitt and M. Shimshoni, Characterization of the set of values $f(n)=[n \alpha]$, 328
$n=1,2, \ldots$, Discrete Math. 2 (1972) 335-345. 329
10. A. S. Fraenkel and Y. Tanny, A class of Wythoff-like games, to appear in Proc. INTEGERS 330
Conference, Carrollton, Georgia, Oct. 26-29, 2011 Carrollton, Georgia. 331
11. R. Graham and K. O'Bryant, A discrete Fourier kernel and Fraenkel's tiling conjecture, Acta 332
Arith. 118 (2005) 283-304. 333
12. V. Gurvich, Further generalizations of Wythoff's game and minimum excludant function, 334
Rutgers Research Report RRR 16-2010, 2010. 335
13. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th ed., Oxford, 336 2007. 337
14. P. Hegarty, On m-covering families of Beatty sequences with irrational moduli, J. Number 338
Theory 132 (2012) 2277-2296. 339
15. U. Larsson, Restrictions of m-Wythoff Nim and p-complementary Beatty sequences, to appearin Games of No Chance-4.341
16. U. Larsson, P. Hegarty and A. S. Fraenkel, Invariant and dual subtraction games resolving the 342
Duchêne-Rigo conjecture, Theoretical Computer Science 412 (2011) 729-735. 343
17. K. O'Bryant, A generating function technique for Beatty sequences and other step sequences, 344
J. Number Theory 94 (2002) 299-319. 345

Editor's Proof

Metadata of the chapter that will be visualized online

Chapter Title	WZ-Proofs of "Divergent" Ramanujan-1Type Series
Copyright Year	2013
Copyright Holder	Springer-Verlag Berlin Heidelberg
Corresponding Author	Family Name Guillera
	Particle
	Given Name Jesús
	Suffix
	Organization Avda
	Address Cesáreo Alierta,31, Zaragoza, Spain
Abstract	We prove some "divergent" Ramanujan-type series for $1 / \pi$ and $1 / \pi^{2}$ applying a Barnes-integrals strategy of the WZ-method. In addition, in the last section, we apply the WZ-duality technique to evaluate some convergent related series.
Keywords (separated by "-")	Hypergeometric series - WZ-method - Ramanujan-type series for $1 / \pi$ and $1 / \pi^{2}$ - Barnes integrals

WZ-Proofs of "Divergent" Ramanujan-Type

 SeriesJesús Guillera

Abstract

We prove some "divergent" Ramanujan-type series for $1 / \pi$ and $1 / \pi^{2}{ }_{4}$ applying a Barnes-integrals strategy of the WZ-method. In addition, in the last 5 section, we apply the WZ-duality technique to evaluate some convergent related 6 series.

Keywords Hypergeometric series - WZ-method - Ramanujan-type series for 8 $1 / \pi$ and $1 / \pi^{2} \cdot$ Barnes integrals

1 Wilf-Zeilberger's Pairs

We recall that a function $A(n, k)$ is hypergeometric in its two variables if the 11 quotients

$$
\frac{A(n+1, k)}{A(n, k)} \text { and } \frac{A(n, k+1)}{A(n, k)}
$$

are rational functions in n and k, respectively. Also, a pair of hypergeometric functions in its two variables, $F(n, k)$ and $G(n, k)$, is said to be a Wilf and 15 Zeilberger (WZ) pair [13, Chap. 7] if

$$
\begin{equation*}
F(n+1, k)-F(n, k)=G(n, k+1)-G(n, k) . \tag{1}
\end{equation*}
$$

In this case, H. S. Wilf and D. Zeilberger [17] have proved that there exists a rational 17 function $C(n, k)$ such that

$$
\begin{equation*}
G(n, k)=C(n, k) F(n, k) . \tag{2}
\end{equation*}
$$

[^11]The rational function $C(n, k)$ is the so-called certificate of the pair (F, G). To 19 discover WZ-pairs, we use Zeilberger's Maple package EKHAD [13, Appendix A]. 20 If EKHAD certifies a function, we have found a WZ-pair! We will write the 21 functions $F(n, k)$ and $G(n, k)$ using rising factorials, also called Pochhammer 22 symbols, rather than the ordinary factorials. The rising factorial is defined by

$$
(x)_{n}= \begin{cases}x(x+1) \cdots(x+n-1), & n \in \mathbb{Z}^{+}, \tag{3}\\ 1, & n=0,\end{cases}
$$

or more generally by $(x)_{t}=\Gamma(x+t) / \Gamma(x)$. For $t \in \mathbb{Z}-\mathbb{Z}^{-}$, this last definition ${ }_{24}$ coincide with (3). But it is more general because it is also defined for all complex $x \quad 25$ and t such that $x+t \in \mathbb{C}-\left(\mathbb{Z}-\mathbb{Z}^{+}\right)$.

2 A Barnes-Integrals WZ Strategy

If we sum (1) over all $n \geq 0$, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} G(n, k)-\sum_{n=0}^{\infty} G(n, k+1)=-F(0, k)+\lim _{n \rightarrow \infty} F(n, k) \tag{4}
\end{equation*}
$$

whenever the series above are convergent and the limit is finite. D. Zeilberger was 29 the first to apply the WZ-method to prove a Ramanujan-type series for $1 / \pi$ [4]. 30 Following his idea, in a series of papers [5,6,9,10] and in the author's thesis [8], we 31 use WZ-pairs together with formula (4) to prove a total of 11 Ramanujan-type series 32 for $1 / \pi$ and 4 Ramanujan-like series for $1 / \pi^{2}$. However, while we discovered those ${ }_{33}$ pairs we also found some WZ-pairs corresponding to "divergent" Ramanujan-type 34 series [12], like the following pair:

$$
\begin{equation*}
F(n, k)=A(n, k) \frac{(-1)^{n}}{\Gamma(n+1)}\left(\frac{16}{9}\right)^{n}, \quad G(n, k)=B(n, k) \frac{(-1)^{n}}{\Gamma(n+1)}\left(\frac{16}{9}\right)^{n} \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
A(n, k)=U(n, k) \frac{-n(n-2)}{3(n+2 k+1)}, \quad B(n, k)=U(n, k)(5 n+6 k+1) \tag{38}
\end{equation*}
$$

and

$$
U(n, k)=\frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{4}+\frac{3 k}{2}\right)_{n}\left(\frac{3}{4}+\frac{3 k}{2}\right)_{n}}{(1+k)_{n}(1+2 k)_{n}} \frac{\left(\frac{1}{6}\right)_{k}\left(\frac{5}{6}\right)_{k}}{(1)_{k}^{2}}
$$

Editor's Proof

We cannot use formula (4) with this pair because the series is divergent and the limit 41 is infinite, due to the factor $(-16 / 9)^{n}$. To deal with this kind of WZ-pairs we will 42 proceed as follows: First we replace the factor $(-1)^{n}$ with $\Gamma(n+1) \Gamma(-n)$. By doing ${ }_{43}$ it we again get a WZ-pair, because $(-1)^{n}$ and $\Gamma(n+1) \Gamma(-n)$ transform formally 44 in the same way under the substitution $n \rightarrow n+1$; namely, the sign changes. To fix ${ }_{45}$ ideas, the modified version of the WZ-pair above is

$$
\begin{equation*}
\tilde{F}(s, t)=A(s, t) \Gamma(-s)\left(\frac{16}{9}\right)^{s}, \quad \tilde{G}(s, t)=B(s, t) \Gamma(-s)\left(\frac{16}{9}\right)^{s} . \tag{47}
\end{equation*}
$$

Then, integrating from $s=-i \infty$ to $s=i \infty$ along a path \mathcal{P} (curved if necessary) 48 which separates the poles of the form $s=0,1,2 \ldots$ from all the other poles, 49 we obtain

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} B(s, t) \Gamma(-s)(-z)^{s} d s=\sum_{n=0}^{\infty} B(n, t) \frac{z^{n}}{n!}, \quad|z|<1 \tag{5}
\end{equation*}
$$

where we have used the Barnes integral theorem, which is an application of 51 Cauchy's residues theorem using a contour which closes the path with a right side 52 semicircle of center at the origin and infinite radius. The Barnes integral gives the 53 analytic continuation of the series to $z \in \mathbb{C}-[1, \infty)$. Integrating along the same 54 path the identity $\tilde{G}(s, t+1)-\tilde{G}(s, t)=\tilde{F}(s+1, t)-\tilde{F}(s, t)$, we obtain

$$
\begin{align*}
& \int_{-i \infty}^{i \infty} \tilde{G}(s, t+1) d s-\int_{-i \infty}^{i \infty} \tilde{G}(s, t) d s=\int_{-i \infty}^{i \infty} \tilde{F}(s+1, t) d s-\int_{-i \infty}^{i \infty} \tilde{F}(s, t) d s \tag{6}\\
& =\int_{1-i \infty}^{1+i \infty} \tilde{F}(s, t) d s-\int_{-i \infty}^{i \infty} \tilde{F}(s, t) d s=-\int_{\mathcal{C}} \tilde{F}(s, t) d s
\end{align*}
$$

where \mathcal{C} is the contour limited by the path \mathcal{P}, the same path but moved one unit to 56 the right, and the lines $y=-\infty$ and $y=+\infty$. As the only pole inside this contour 57 is at $s=0$ and the residue at this point is zero, the last integral is zero and we have 58

$$
\begin{equation*}
\int_{-i \infty}^{i \infty} \tilde{G}(s, t) d s=\int_{-i \infty}^{i \infty} \tilde{G}(s, t+1) d s \tag{7}
\end{equation*}
$$

This implies, by Weierstrass's theorem [16], that

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \tilde{G}(s, t) d s & =\lim _{t \rightarrow \infty} \frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \tilde{G}(s, t) d s=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \lim _{t \rightarrow \infty} \tilde{G}(s, t) d s \\
& =\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{3}{\pi}\left(\frac{1}{2}\right)_{s} \Gamma(-s) 2^{s} d s=\frac{\sqrt{3}}{\pi},
\end{aligned}
$$

Editor's Proof

where the last equality holds because

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty}\left(\frac{1}{2}\right)_{s} \Gamma(-s)(-z)^{s} d s=\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}}{(1)_{n}} z^{n}=\frac{1}{\sqrt{1-z}}, \quad|z|<1 \tag{61}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty}\left(\frac{1}{2}\right)_{s} \Gamma(-s)(-z)^{s} d s=\frac{1}{\sqrt{1-z}}, \quad z \in \mathbb{C}-[1, \infty) \tag{63}
\end{equation*}
$$

Hence, we have
$\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{\left(\frac{1}{2}\right)_{s}\left(\frac{1}{4}+\frac{3 t}{2}\right)_{s}\left(\frac{3}{4}+\frac{3 t}{2}\right)_{s}}{(1+t)_{s}(1+2 t)_{s}} \frac{\left(\frac{1}{6}\right)_{t}\left(\frac{5}{6}\right)_{t}}{(1)_{t}^{2}}(5 s+6 t+1) \Gamma(-s)\left(\frac{4}{3}\right)^{2 s} d s=\frac{\sqrt{3}}{\pi}, 65$
or equivalently
$\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{\left(\frac{1}{2}\right)_{s}\left(\frac{1}{4}+\frac{3 t}{2}\right)_{s}\left(\frac{3}{4}+\frac{3 t}{2}\right)_{s}}{(1+t)_{s}(1+2 t)_{s}}(5 s+6 t+1) \Gamma(-s)\left(\frac{4}{3}\right)^{2 s} d s=\frac{\sqrt{3}}{\pi} \frac{(1)_{t}^{2}}{\left(\frac{1}{6}\right)_{t}\left(\frac{5}{6}\right)_{t}} .67$
Finally, substituting $t=0$, we see that

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{\left(\frac{1}{2}\right)_{s}\left(\frac{1}{4}\right)_{s}\left(\frac{3}{4}\right)_{s}}{(1)_{s}^{2}}(5 s+1) \Gamma(-s)\left(\frac{4}{3}\right)^{2 s} d s=\frac{\sqrt{3}}{\pi} \tag{8}
\end{equation*}
$$

It is very convenient to write the Barnes integral in hypergeometric notation. 69 By the definition of hypergeometric series, we see that for $-1 \leq z<1$, we have 70

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}(s)_{n}(1-s)_{n}}{(1)_{n}^{3}} z^{n}={ }_{3} F_{2}\left(\left.\begin{array}{cc}
\frac{1}{2}, s, & 1-s \tag{71}\\
1, & 1
\end{array} \right\rvert\, z\right)
$$

and

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}(s)_{n}(1-s)_{n}}{(1)_{n}^{3}} n z^{n}=\frac{1}{2} s(1-s) z_{3} F_{2}\left(\left.\begin{array}{cc}
\frac{3}{2}, 1+s, 2-s \\
2, & 2
\end{array} \right\rvert\, z\right)
$$

where the notation on the right side stands for the analytic continuation of the series 74 on the left. Hence, we can write (8) in the form

$$
{ }_{3} F_{2}\left(\begin{array}{r}
\frac{1}{2}, \\
, \\
\frac{1}{4},
\end{array}\left|\begin{array}{r}
\frac{3}{4} \\
1,
\end{array}\right| \frac{-16}{9}\right)-\frac{5}{6}{ }_{3} F_{2}\left(\left.\begin{array}{r}
\frac{3}{2}, \\
, \frac{5}{4}, \frac{7}{4} \\
2,2
\end{array} \right\rvert\, \frac{-16}{9}\right)=\frac{\sqrt{3}}{\pi} .
$$

Editor's Proof

If, instead of integrating to the right side, we integrate (8) along a contour which 76 closes the path \mathcal{P} with a semicircle of center $s=0$ taken to the left side with an 77 infinite radius, then we have poles at $s=-n-1 / 2$, at $s=-n-1 / 4$ and at 78 $s=-n-3 / 4$ for $n=0,1,2, \ldots$, and we obtain

$$
\begin{aligned}
& \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}}{(1)_{n}\left(\frac{3}{4}\right)_{n}\left(\frac{5}{4}\right)_{n}}(10 n+3)(-1)^{n}\left(\frac{3}{4}\right)^{2 n} \\
& -\frac{\sqrt{2} \pi^{2}}{8 \Gamma\left(\frac{3}{4}\right)^{4}} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}\right)_{n}^{3}}{(1)_{n}\left(\frac{1}{2}\right)_{n}\left(\frac{3}{4}\right)_{n}}(20 n+1)(-1)^{n}\left(\frac{3}{4}\right)^{2 n} \\
& \quad-\frac{3 \sqrt{2} \Gamma\left(\frac{3}{4}\right)^{4}}{16 \pi^{2}} \sum_{n=0}^{\infty} \frac{\left(\frac{3}{4}\right)_{n}^{3}}{(1)_{n}\left(\frac{3}{2}\right)_{n}\left(\frac{5}{4}\right)_{n}}(20 n+11)(-1)^{n}\left(\frac{3}{4}\right)^{2 n}=1 .
\end{aligned}
$$

which is an identity relating three convergent series.

3 Other Examples

81

In a similar way we can prove other identities of the same kind, for example,

$$
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{\left(\frac{1}{2}+t\right)_{s}^{3}\left(\frac{1}{2}\right)_{s}^{2}}{(1+t)_{s}^{3}(1+2 t)_{s}}\left(10 s^{2}+6 s+1+14 s t+4 t^{2}+4 t\right) \Gamma(-s) 2^{2 s} d s=\frac{4}{\pi^{2}} \frac{(1)_{t}^{4}}{\left(\frac{1}{2}\right)_{t}^{4}}, 83
$$

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{\left(\frac{1}{2}\right)_{s}\left(\frac{1}{2}+t\right)_{s}^{2}}{(1)_{s}(1+2 t)_{s}}(3 s+2 t+1) \Gamma(-s) 2^{3 s} d s=\frac{1}{\pi} \frac{(1)_{t}}{\left(\frac{1}{2}\right)_{t}}, \tag{85}
\end{equation*}
$$

and

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} & \frac{\left(\frac{1}{2}\right)_{s}\left(\frac{1}{2}+2 t\right)_{s}\left(\frac{1}{3}+t\right)_{s}\left(\frac{2}{3}+t\right)_{s}}{\left(\frac{1}{2}+\frac{t}{2}\right)_{s}\left(1+\frac{t}{2}\right)_{s}(1+t)_{s}} \\
& \times \frac{(15 s+4)(2 s+1)+t(33 s+16)}{2 s+t+1} \Gamma(-s) 2^{2 s} d s=\frac{3 \sqrt{3}}{\pi} \frac{1}{2^{6 t}} \frac{(1)_{t}^{2}}{\left(\frac{1}{4}\right)_{t}\left(\frac{3}{4}\right)_{t}} .
\end{aligned}
$$

In the two last examples the hypothesis of Weierstrass theorem fail and hence 87 we cannot apply it, but we obtain the sum using Meurman's periodic version of 88 Carlson's theorem [2, p. 39] which asserts that if $H(z)$ is a periodic entire function of 89 period 1 and there is a real number $c<2 \pi$ such that $H(z)=\mathcal{O}(\exp (c|\operatorname{Im}(z)|))$ for 90 all $z \in \mathbb{C}$, then $H(z)$ is constant [1, Appendix] and [11, Theorem 2.3]. In the second 91
and third examples we determine the constants $1 / \pi$ and $3 \sqrt{3} / \pi$ taking $t=1 / 292$ and $t=-1 / 3$ respectively. Substituting $t=0$ in the above examples, we obtain 93 respectively

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{\left(\frac{1}{2}\right)_{s}^{5}}{(1)_{s}^{4}}\left(10 s^{2}+6 s+1\right) \Gamma(-s) 2^{2 s} d s=\frac{4}{\pi^{2}} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{\left(\frac{1}{2}\right)_{s}^{3}}{(1)_{s}^{2}}(3 s+1) \Gamma(-s) 2^{3 s} d s=\frac{1}{\pi} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{\left(\frac{1}{2}\right)_{s}\left(\frac{1}{3}\right)_{s}\left(\frac{2}{3}\right)_{s}}{(1)_{s}^{2}}(15 s+4) \Gamma(-s) 2^{2 s} d s=\frac{3 \sqrt{3}}{\pi} \tag{11}
\end{equation*}
$$

Using hypergeometric notation, we can write (9), (10) and (11) respectively in the 97 following forms:

$$
\begin{aligned}
& { }_{5} F_{4}\left(\begin{array}{r}
\frac{1}{2}, \frac{1}{2}, \\
\frac{1}{2}, \\
1, \\
2
\end{array}, \left.\frac{1}{2} \right\rvert\,-4\right)-\frac{3}{4}{ }_{5} F_{4}\left(\begin{array}{rrr|r}
\frac{3}{2}, & \frac{3}{2}, & \frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & -4 \\
2, & 2, & 2, & 2
\end{array}\right) \\
& -\frac{5}{4}{ }_{5} F_{4}\left(\begin{array}{rrrr|r}
\frac{3}{2}, & \frac{3}{2}, & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} \\
2, & 2, & 2, & 1 & -4)=\frac{4}{\pi^{2}}, ~
\end{array}\right. \\
& { }_{3} F_{2}\left(\begin{array}{r}
\frac{1}{2}, \\
2
\end{array} \frac{1}{2}, \left.\frac{1}{2} \right\rvert\,-8\right)-3{ }_{3} F_{2}\left(\begin{array}{r}
\frac{3}{2}, \\
1, \\
1
\end{array}\left|\frac{3}{2}, \frac{3}{2}\right|-8\right)=\frac{1}{\pi},
\end{aligned}
$$

and
99

$$
4_{3} F_{2}\left(\left.\begin{array}{r}
\frac{1}{2}, \frac{1}{3}, \\
3 \\
1,
\end{array} \right\rvert\,-4\right)-\frac{20}{3}{ }_{3} F_{2}\left(\left.\begin{array}{r}
\frac{3}{2}, \frac{4}{3}, \frac{5}{3} \\
2,2
\end{array} \right\rvert\,-4\right)=\frac{3 \sqrt{3}}{\pi} .
$$

Related applications of the WZ-method for Barnes-type integrals are for example in 101 [3, Sect. 5.2] and [14].

4 The Dual of a "Divergent" Ramanujan-Type Series

The WZ duality technique [13, Chap. 7] allows to transform pairs which lead to 104 divergences into pairs which lead to convergent series. To get the dual $\hat{G}(n, k)$ of 105 $G(-n,-k)$, we make the following changes:
$(a)_{-n} \rightarrow \frac{(-1)^{n}}{(1-a)_{n}}$,
$(1)_{-n} \rightarrow \frac{n(-1)^{n}}{(1)_{n}}$,
$(a)_{-k} \rightarrow \frac{(-1)^{k}}{(1-a)_{k}}$,
$(1)_{-k} \rightarrow \frac{k(-1)^{k}}{(1)_{k}} .107$

Editor's Proof

4.1 Example 1

The package EKHAD certifies the pair

$$
\begin{equation*}
F(n, k)=U(n, k) \frac{2 n^{2}}{2 n+k}, \quad G(n, k)=U(n, k) \frac{6 n^{2}+2 n+k+4 n k}{2 n+k} \tag{12}
\end{equation*}
$$

where

$$
U(n, k)=\frac{\left(\frac{1}{2}\right)_{n}^{2}\left(1+\frac{k}{2}\right)_{n}\left(\frac{1}{2}+\frac{k}{2}\right)_{n}}{(1)_{n}^{2}(1+k)_{n}^{2}} \frac{\left(\frac{1}{2}\right)_{k}}{(1)_{k}} 4^{n}=\frac{(2 n)!^{2}(2 n+k)!(2 k)!}{n!^{4} k!(n+k)!^{2}} \frac{1}{16^{n} 4^{k}}
$$

We cannot use this WZ-pair to obtain a Ramanujan-like evaluation because, as $z>1$, the corresponding series and also the corresponding Barnes integral are both 113 divergent. However, we will see how to use it to evaluate a related convergent series. What we will do is to apply the WZ duality technique. Thus, if we take the dual of 115 $G(-n,-k)$ and replace k with $k-1$, we obtain

$$
\hat{G}(n, k)=\frac{1}{U(n, k)} \frac{2(2 k-1)(2 n+k)}{n^{2}(n+k)^{2}(n+k-1)^{2}}\left(6 n^{2}-6 n+1-k+4 n k\right),
$$

and EHKAD finds its companion

$$
\hat{F}(n, k)=\frac{1}{U(n, k)} \frac{-2(2 n+k)(2 n+k-1)(2 n-1)^{2}}{n^{2}(n+k)^{2}(n+k-1)^{2}} .
$$

Applying Zeilberger's formula

$$
\begin{equation*}
\sum_{n=j}^{\infty}(\hat{F}(n+1, n)+\hat{G}(n, n))=\sum_{n=j}^{\infty} \hat{G}(n, j) \tag{121}
\end{equation*}
$$

with $j=1$, we obtain

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{16}{27}\right)^{n} \frac{(1)_{n}^{3}}{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}} \frac{11 n-3}{n^{3}}=16 \sum_{n=1}^{\infty} \frac{1}{4^{n}} \frac{(1)_{n}^{3}}{\left(\frac{1}{2}\right)_{n}^{3}} \frac{3 n-1}{n^{3}} . \tag{13}
\end{equation*}
$$

The series in (13) are dual to Ramanujan-type "divergent" series, and in [7, p. 221]

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{16}{27}\right)^{n} \frac{(1)_{n}^{3}}{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}} \frac{11 n-3}{n^{3}}=8 \pi^{2} . \tag{14}
\end{equation*}
$$

Formula (14), as well as other similar formulas, was conjectured in [15, Conjec- 125 ture 1.4] by Zhi-Wei Sun.

4.2 Example 2

The package EKHAD certifies the pair

$$
\begin{aligned}
& F(n, k)=U(n, k) \frac{64 n^{3}}{(2 k+1)(2 n-2 k+1)} \\
& G(n, k)=U(n, k) \frac{(2 n+1)^{2}(11 n+3)-12 k\left(2 n^{2}+3 n k+n+k\right)}{(2 n+1)^{2}}
\end{aligned}
$$

where

$$
U(n, k)=\frac{\left(\frac{1}{2}-k\right)_{n}\left(\frac{1}{2}+k\right)_{n}^{2}\left(\frac{1}{3}\right)_{n}\left(\frac{1}{3}\right)_{n}}{(1)_{n}^{3}\left(\frac{1}{2}\right)_{n}^{2}}\left(\frac{27}{16}\right)^{n}
$$

Taking the dual $\hat{G}(n, k)$ of $G(-n,-k)$, replacing n with $n+x$ and applying

$$
\begin{equation*}
\sum_{n=0}^{\infty} \hat{G}(n+x, 0)=\lim _{k \rightarrow \infty} \sum_{n=0}^{\infty} \hat{G}(n+x, k)+\sum_{k=0}^{\infty} \hat{F}(x, k) \tag{133}
\end{equation*}
$$

where $\hat{F}(n, k)$ is the companion of $\hat{G}(n, k)$, we obtain

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(1+x)_{n}^{3}}{\left(\frac{1}{2}+x\right)_{n}\left(\frac{1}{3}+x\right)_{n}\left(\frac{2}{3}+x\right)_{n}}\left(\frac{16}{27}\right)^{n} \frac{11(n+x)-3}{(n+x)^{3}} \\
&=\frac{6(3 x-1)(3 x-2)}{x^{3}(2 x-1)} \sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{k}\left(\frac{3}{2}-x\right)_{k}}{\left(\frac{1}{2}+x\right)_{k}^{2}}
\end{aligned}
$$

Taking $x=1$ we again obtain (14).

Acknowledgements I thank W. Zudilin for encouraging me to use the Barnes integral represen-

References

1. G. Almkvist Glaisher's formulas for $1 / \pi^{2}$ and some generalizations, (2011).
2. W.N. Bailey, Generalized hypergeometric series, Cambridge Math. Tracts 32, Cambridge Univ. Press, Cambridge, (1935); $2^{\text {nd }}$ reprinted edition, Stechert-Hafner, New York-London, (1964).
3. D.H. Bailey, D. Borwein, J.M. Borwein, R.E. Crandall Hypergeometric forms for Ising-class 144 integrals, Experiment. Math. 16, 257-276, (2007).

Editor's Proof

4. Ekhad, S.B., Zeilberger D.: A WZ proof of Ramanujan's formula for π. In Rassias, J.M. (ed.). 146 Geometry, Analysis and Mechanics. World Scientific, Singapore, 107-108, (1994); also 147 available at arXiv:math/9306213v1. (The coauthor EKHAD is a Maple package written by 148 D. Zeilberger). 149
5. J. Guillera, Some binomial series obtained by the WZ-method. Adv. in Appl. Math. 29, 150 599-603, (2002); arXiv:math/0503345. 151
6. J. Guillera, Generators of Some Ramanujan Formulas, Ramanujan J. 11, 41-48, (2006). 152
7. J. Guillera, Hypergeometric identities for 10 extended Ramanujan-type series, Ramanujan J., 153 15, 219-234 (2008). 154
8. J. Guillera, Series de Ramanujan: Generalizaciones y conjeturas. Ph.D. Thesis, University of 155 Zaragoza, Spain, (2007). 156
9. J. Guillera, On WZ-pairs which prove Ramanujan series, Ramanujan J, 22, 249-259, (2008); 157 arXiv:0904.0406. 158
10. J. Guillera, A new Ramanujan-like series for $1 / \pi^{2}$, Ramanujan J. 26, 369-374, (2011); 159 arXiv:1003.1915. 160
11. J. Guillera, More hypergeometric identities related to Ramanujan-type series, To appear in 161 Ramanujan J.; arXiv:1003.1915. 162
12. J. Guillera and W. Zudilin, "Divergent" Ramanujan-type supercongruences, Proc. of the Amer. 163 Math. Soc. 140, 765-777, (2012); arXiv:1004.4337. 164
13. M. Petkovs̆ek, H. S. Wilf, D. Zeilberger, A=B, A K. Peters, Ltd., (1996); also available at 165 http://www.math.upenn.edu/~wilf/AeqB.html. 166
14. F. Stan, On recurrences for Ising integrals, Adv. in Appl. Math. 45, 334-345, (2010). 167
15. Z.W. Sun, Supercongruences and Euler numbers, Sci. China Math. 54, 2509-2535, (2011); 168 arXiv:1001.4453. 169
16. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis. Cambridge Univ. Press, (1927). 170
17. H.S. Wilf, D. Zeilberger, Rational functions certify combinatorial identities, J. Amer. Math. 171 Soc. 3, 147-158, (1990) (winner of the Steele Prize). 172

Editor's Proof

Metadata of the chapter that will be visualized online

Chapter Title	Smallest Parts in Compositions
Copyright Year	2013
Copyright Holder	Springer-Verlag Berlin Heidelberg
Corresponding Author	Family Name Knopfmacher
	Particle
	Given Name Arnold
	Suffix
	Organization University of the Witwatersrand
	Address Johannesburg, South Africa
Author	Family Name Munagi
	Particle
	Given Name Augustine O.
	Suffix
	Organization University of the Witwatersrand
	Address Johannesburg, South Africa
Abstract	By analogy with recent Work of Andrews on smallest parts in partitions of integers, we consider smallest parts in compositions (ordered partitions) of integers. In particular, we study the number of smallest parts and the sum of smallest parts in compositions of n as well as the position of the first smallest part in a random composition of n.

Smallest Parts in Compositions

Arnold Knopfmacher and Augustine O. Munagi

Abstract

By analogy with recent Work of Andrews on smallest parts in partitions 4 of integers, we consider smallest parts in compositions (ordered partitions) of 5 integers. In particular, we study the number of smallest parts and the sum of smallest 6 parts in compositions of n as well as the position of the first smallest part in a random 7 composition of n.

1 Introduction

A composition of an integer $n>0$ is a representation of n as an ordered sum of 10 positive integers $n=a_{1}+a_{2}+\cdots+a_{m}$. It is well known that there are $2^{n-1}{ }_{11}$ compositions of n, and $\binom{n-1}{k-1}$ compositions of n with exactly k summands or parts, 12 which will also be referred to as k-compositions.

The subject of integer compositions has engaged the attention of Herbert Wilf on 14 several occasions (see for example [5] and [9]).

In this note we undertake an enumerative study of compositions with respect to 16 the smallest summand. Our inspiration came mostly from the work of G. Andrews 17 which considered smallest parts in integer partitions [2]. He proved that the number 18 $\operatorname{spt}(n)$ of smallest parts in partitions of n is given by

$$
\begin{equation*}
\operatorname{spt}(n)=n p(n)-\frac{1}{2} N_{2}(n), \tag{20}
\end{equation*}
$$

[^12]
Editor's Proof

where $p(n)$ is the number of partitions of n and $N_{2}(n)$ is the second Atkin-Garvan 21 moment of ranks.

We will consider both the number and sum of smallest parts in all compositions. 23 It turns out that, in the case of compositions, we are availed of both elementary 24 and advanced techniques for discussing the two statistics. We will compute explicit 25 formulas, and asymptotic estimates, for the total number of smallest parts in all 26 compositions of n, and for the sum of smallest parts in all compositions of n. 27

In this context we find the following sequence in the Encyclopedia of Integer 28 Sequences:

Total number of smallest parts in compositions of $n \geq 1$ ([10, A097941]):
$1,3,6,15,31,72,155,340,738,1,595,3,424,7,335,15,642,33,243,70,432,148,808$,

In Sect. 2 we use elementary constructive arguments to derive the necessary 30 exact formulas. Then in Sect. 3 we use generating function techniques to obtain 31 the formulas, leading naturally to asymptotic enumeration of compositions for large 32 n. The final section is devoted to the enumeration of compositions with respect to 33 the first position of the smallest parts.

2 Constructive Proofs

We will need the following known result (see for example [1, p. 63]):
Lemma 1. The number of k-compositions of $[n]$ in which each part $\geq m$ is given by

$$
\binom{n-(m-1) k-1}{k-1}
$$

Let $c_{j}(n, k, r) \stackrel{\text { def }}{=}$ number of k-compositions of n with smallest part j such that 39 j appears r times in each composition. 40 Then 41

Proposition 1. If $n=k j$ then $c_{j}(n, k, r)=\delta_{1 r}$, and

$$
\begin{equation*}
c_{j}(n, k, r)=\binom{k}{r}\binom{n-j k-1}{k-r-1}, \quad n>k j \tag{1}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker delta.
Proof. The case $n=j k$ gives the unique composition $\left(\frac{n}{k}, \ldots, \frac{n}{k}\right)$. So we assume 44 $n>j k$ and construct a composition enumerated by $c_{j}(n, k, r)$.

Editor's Proof

Fix any r of the k positions to hold the j 's, in $\binom{k}{r}$ ways. Then the remaining 46 $k-r$ positions can be filled with a composition of $n-r j$, into $k-r$ parts, each 47 $\geq j+1$, such that the i th part occupies the i th available position, from left to right. 48 The number of such compositions, by Lemma 1, is $\binom{n-r j-j(k-r)-1}{k-r-1}=\binom{n-j k-1}{k-r-1}$. 49 Hence

$$
\begin{equation*}
c_{j}(n, k, r)=\binom{k}{r}\binom{n-j k-1}{k-r-1} \tag{51}
\end{equation*}
$$

Corollary 1. The number $c_{j}(n, k)$ of k-compositions of n with smallest part j is 52 given by

$$
\begin{equation*}
c_{j}(n, k)=\binom{n-(j-1) k-1}{k-1}-\binom{n-j k-1}{k-1} . \tag{2}
\end{equation*}
$$

Proof. If compositions with parts $\geq j+1$ are deleted from the set of compositions with parts $\geq j$, we obtain the set of compositions with smallest part j. Now apply Lemma 1.

2.1 The Number of Smallest Parts

Corollary 2. The number $f_{j}(n, k)$ of all occurrences of a fixed smallest part $j 55$ among all k-compositions of n is given by.

$$
\begin{equation*}
f_{j}(n, k)=k\binom{n-(j-1) k-2}{k-2} \tag{3}
\end{equation*}
$$

Proof. Since there are $c_{j}(n, k, r) k$-compositions of n with smallest part j such 57 that j appears r times in each composition, the frequency $f_{j}(n, k, r)$ of j among 58 all compositions in which it appears r times is given by $f_{j}(n, k, r)=r c_{j}(n, k, r)$. 59 Thus

$$
f_{j}(n, k, r)=r c_{j}(n, k, r)=r\binom{k}{r}\binom{n-j k-1}{k-r-1}
$$

and

$$
f_{j}(n, k)=\sum_{r \geq 1} f_{j}(n, k, r)=\sum_{r \geq 1} r\binom{k}{r}\binom{n-j k-1}{k-r-1}
$$

Editor's Proof

Then we apply the rule $\frac{k}{n}\binom{n}{k}=\binom{n-1}{k-1}$, and note that the Vandermonde convolution 64 gives:

$$
\begin{equation*}
\sum_{r \geq 1}\binom{k-1}{r-1}\binom{n-j k-1}{k-r-1}=\binom{n-(j-1) k-2}{k-2} \tag{66}
\end{equation*}
$$

Since the set of smallest parts among all k-compositions of n is $\{1,2, \ldots,\lfloor n / k\rfloor\}, 67$ we can use Corollary 2 to obtain:

Corollary 3. The number $\operatorname{sp}(n, k)$ of smallest parts among all k-compositions of $n 69$ is given by

$$
\begin{equation*}
s p(n, k)=k \sum_{j=1}^{\lfloor n / k\rfloor}\binom{n-(j-1) k-2}{k-2} \tag{4}
\end{equation*}
$$

It is easily verified that the sum $\sum_{k} s p(n, k), n>0$, agrees with the Sloane 71 sequence [10, A097941] mentioned earlier.

2.2 The Sum of Smallest Parts

The following corollaries are immediate consequences of Corollaries 2 and 3.
Corollary 4. The sum $s(n, k, j)$ of all copies of a fixed smallest part j among all 75 k-compositions of n is given below.

$$
\begin{equation*}
s(n, k, j)=j k\binom{n-(j-1) k-2}{k-2} \tag{5}
\end{equation*}
$$

Corollary 5. The sum $s(n, k)$ of all smallest parts among all k-compositions of $n 77$ is given below.

$$
\begin{equation*}
s(n, k)=k \sum_{j=1}^{\lfloor n / k\rfloor} j\binom{n-(j-1) k-2}{k-2} \tag{6}
\end{equation*}
$$

The sequence for the sum of smallest parts in all compositions of an integer $n>079$ is not yet in Sloane [10]:

$$
\sum_{k} s(n, k), n>0,: 1,4,8,20,37,56,173,372,788,1,680,3,550,7,554, \ldots \quad 81
$$

Editor's Proof

3 An Approach via Generating Functions

3.1 The Number of Compositions of \boldsymbol{n} with Smallest Part \boldsymbol{j}

Let $c_{j}(n, m)$ denote the number of compositions of n with m parts and with smallest 84 part j and let $c_{j}(n)$ denote the number of compositions of n with smallest part $j .85$ We use the following decomposition of the set C_{j} of compositions of n with smallest 86 part j.

$$
\begin{align*}
C_{j} & =\{\text { a composition with all parts } \geq j+1\} \\
& \times\{\text { a part equal to } j\} \times\{\text { a composition with all parts } \geq j\} . \tag{7}
\end{align*}
$$

Translating to generating functions, where z marks the size of a composition and 88 y marks the number of parts, gives

$$
\begin{aligned}
C_{j}(z, y)=\sum_{n \geq 1} \sum_{m \geq 1} c_{j}(n, m) z^{n} y^{m} & =\frac{y z^{j}}{\left(1-\frac{y z^{j}}{1-z}\right)\left(1-\frac{y z^{j+1}}{1-z}\right)} \\
& =\frac{y(z-1)^{2} z^{j}}{\left(y z^{j}+z-1\right)\left(y z^{j+1}+z-1\right)} .
\end{aligned}
$$

Setting $y=1$ the generating function for compositions with smallest part j is

$$
\sum_{n \geq 1} c_{j}(n) z^{n}=\frac{(z-1)^{2} z^{j}}{\left(z^{j}+z-1\right)\left(z^{j+1}+z-1\right)}
$$

The generating function for $c_{j}(n)$ is a rational function of z and the asymptotic 92 growth of the coefficients will depend on the smallest positive zero ρ of the 93 denominator polynomials $z^{j}+z-1$ and $z^{j+1}+z-1$. Since $\rho<1$, it satisfies 94 the equation $1-\rho-\rho^{j}=0$. By singularity analysis

$$
c_{j}(n) \sim\left[z^{n}\right] \frac{(\rho-1)^{2} \rho^{j}}{\left(j \rho^{j-1}+1\right)\left(\rho^{j+1}+\rho-1\right)(z-\rho)}
$$

After some simplification this leads to the asymptotic estimate

$$
c_{j}(n) \sim \frac{\rho^{2 j-n-1}}{(1-\rho)\left(j \rho^{j-1}+1\right)}
$$

Editor's Proof

In the case $j=1$ we have the exact result $c_{j}(n)=2^{n-1}-F_{n}$ where F_{n} is the n-th 99 Fibonacci number with $F_{0}=0$ and $F_{1}=1$. Consequently almost all compositions 100 of n have smallest part 1 .

For $j=2$ we find $\rho=\frac{1}{2}(\sqrt{5}-1)=0.618034 \ldots$ and for $n=50$ our 102 asymptotic estimate for $c_{2}(50)$ is $7,778,742,049$ as compared the exact value 103 $7,739,952,337$. Similarly, For $j=3$ we find $\rho=0.682327803 \ldots$ and for $n=50104$ our asymptotic estimate for $c_{3}(50)$ is $38,789,712$ as compared the exact value 105 37,287,157.

106
For a fixed number m of parts we can obtain explicit formulas for $c_{j}(n, m)$ in the 107 spirit of Sect. 1. We can write 108

$$
C_{j}(z, y)=y z^{j}\left(\sum_{k=0}^{\infty} \frac{y^{k} z^{(j+1) k}}{(1-z)^{k}}\right) \sum_{k=0}^{\infty} \frac{y^{k} z^{j k}}{(1-z)^{k}}
$$

Then

$$
\begin{equation*}
\left[y^{m}\right] C_{j}(z, y)=\frac{z^{j}}{(1-z)^{m-1}} \sum_{k=0}^{m-1} z^{(j+1) k} z^{j(-k+m-1)}=(1-z)^{-m}\left(z^{j m}-z^{(j+1) m}\right) \tag{111}
\end{equation*}
$$

Consequently

$$
c_{j}(n, m)=\binom{n-(j-1) m-1}{m-1}[[n \geq j m]]-\binom{n-j m-1}{m-1}[[n \geq(j+1) m]] \quad 113
$$

and hence

$$
c_{j}(n)=\sum_{m=1}^{n}\left(\binom{n-(j-1) m-1}{m-1}[[n \geq j m]]-\binom{n-j m-1}{m-1}[[n \geq(j+1) m]]\right)
$$

where the Iverson notation $[[P]]$ takes the value 1 if the condition P is satisfied and 116 0 otherwise.

3.2 The Number of Smallest Parts in Compositions of n

Again we use the decomposition (7). We mark with u all the smallest parts, getting the bivariate generating function for the number of smallest parts of compositions 120 of n with smallest part j as

$$
\begin{equation*}
\frac{u z^{j}}{\left(1-\frac{z^{j+1}}{1-z}\right)\left(1-u z^{j}-\frac{z^{j+1}}{1-z}\right)}=\frac{u(z-1)^{2} z^{j}}{\left(1-z^{j+1}-z\right)\left((u-1) z^{j+1}-u z^{j}-z+1\right)} \tag{122}
\end{equation*}
$$

Editor's Proof

Summing over j we find that the generating function for compositions of $n{ }^{123}$ according to number of smallest parts is

$$
\begin{equation*}
S(z, u):=\sum_{j \geq 1} \frac{u(z-1)^{2} z^{j}}{\left(1-z^{j+1}-z\right)\left((u-1) z^{j+1}-u z^{j}-z+1\right)} . \tag{125}
\end{equation*}
$$

In particular, the total number of smallest parts in compositions of n has generating function

$$
S^{\prime}(z, 1)=\sum_{j \geq 1} \frac{(z-1)^{2} z^{j}}{\left(1-z-z^{j}\right)^{2}}
$$

We find this is

$$
z+3 z^{2}+6 z^{3}+15 z^{4}+31 z^{5}+72 z^{6}+155 z^{7}+340 z^{8}+738 z^{9}+1595 z^{10}+3424 z^{11}{ }_{130}
$$

$$
+7335 z^{12}+15642 z^{13}+33243 z^{14}+70432 z^{15}+148808 z^{16}+313571 z^{17}+O[z]^{18} \cdot 132
$$

The coefficients are sequence $A 097941$ in Sloane. For asymptotic purposes the ${ }_{133}$ dominant pole comes from the $j=1$ term whose coefficient is $2^{-3+n}(2+n)$.

Thus the average number of smallest parts in compositions of n is $\frac{n+2}{4}+135$ $O\left(\left(\frac{\sqrt{5}+1}{4}\right)^{n}\right)$.

3.3 The Sum of Smallest Parts in Compositions of n

We mark with u^{j} all the smallest parts, getting the bivariate generating function for the sum of smallest parts of compositions of n with smallest part j as

$$
\frac{u^{j} z^{j}}{\left(1-\frac{z^{j+1}}{1-z}\right)\left(1-u^{j} z^{j}-\frac{z^{j+1}}{1-z}\right)}=\frac{u^{j}(z-1)^{2} z^{j}}{\left(1-z^{j+1}-z\right)\left(\left(u^{j}-1\right) z^{j+1}-u^{j} z^{j}-z+1\right)} . \quad 140
$$

Summing over j we find that the generating function for compositions of n

$$
S 2(z, u):=\sum_{j \geq 1} \frac{u^{j}(z-1)^{2} z^{j}}{\left(1-z^{j+1}-z\right)\left(\left(u^{j}-1\right) z^{j+1}-u^{j} z^{j}-z+1\right)} .
$$

Editor's Proof

In particular, the total sum of smallest parts in compositions of n has generating 144 function

$$
S 2^{\prime}(z, 1)=\sum_{j \geq 1} \frac{(z-1)^{2} j z^{j}}{\left(1-z-z^{j}\right)^{2}}
$$

We find this is

$$
\begin{aligned}
& z+4 z^{2}+8 z^{3}+20 z^{4}+37 z^{5}+86 z^{6}+173 z^{7}+372 z^{8}+788 z^{9}+1680 z^{10}+3550 z^{11} \\
& +7554 z^{12}+15994 z^{13}+33820 z^{14}+71374 z^{15}+150376 z^{16}+316151 z^{17}+O[z]^{18}
\end{aligned}
$$

The coefficients are sequence $A 097940$ in Sloane. For asymptotic purposes the dominant pole again comes from the $j=1$ term whose coefficient is $2^{-3+n}(2+n)$.

Thus the average sum of smallest parts in compositions of n is $\frac{n+2}{4}+153$ $O\left(\left(\frac{\sqrt{5}+1}{4}\right)^{n}\right)$. We can make this more precise by considering the $j=2$ term more carefully. From this we find that
the total sum of smallest parts in compositions of n exceeds the total number of smallest parts in compositions of n by

$$
\frac{1}{50}(-25+13 \sqrt{5}+(35-15 \sqrt{5}) n)\left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right)^{n} \text { as } n \rightarrow \infty
$$

For example, for $n=50$ the exact difference is $43,618,840,751$ and the asymptotic 159 result is $43,351,455,601$.

4 First Position of Smallest Parts

In this section we consider the related idea of counting compositions with respect to the first position of their smallest parts. We denote the result of Lemma 1 by

$$
c(n, k)_{\geq m}=\binom{n-(m-1) k-1}{k-1}
$$

Let $w(n, k, p)$ denote the number of k-compositions of n in which the smallest

Editor's Proof

Then the following special values are immediate

$$
w_{s}(n, k, 1)=c(n-s, k-1)_{\geq s} ; w_{s}(n, k, k)=c(n-s, k-1)_{>s} ;
$$

Thus

$$
\begin{equation*}
w_{n}(n, k, 1)=\delta_{1 k}=w_{n}(n, k, k) . \tag{173}
\end{equation*}
$$

In general, when $1<p<k$, a composition enumerated by $w_{s}(n, k, p)$ consists of 174 the concatenation of three strings namely:
$((p-1)$-composition of m with parts $>s),(s),((k-p)$-composition of $n-m 176$ with parts $\geq s)$,
where $1 \leq m \leq n-s-1$.
Hence Lemma 1 gives, for $1<p<k$,

$$
w_{s}(n, k, p)=\sum_{m} c(m, p-1)_{>s} \cdot 1 \cdot c(n-s-m, k-p)_{\geq s},
$$

that is,

$$
\begin{equation*}
w_{s}(n, k, p)=\sum_{m}\binom{m-s(p-1)-1}{p-2}\binom{n-s-m-(s-1)(k-p)-1}{k-p-1} \tag{8}
\end{equation*}
$$

and when $1 \leq s<n, k>1$, we have

$$
w_{s}(n, k, 1)=\binom{n-s-(s-1)(k-1)-1}{k-2}, \quad w_{s}(n, k, k)=\binom{n-s-s(k-1)-1}{k-2} .
$$

4.1 First Position of Smallest Parts via Generating Functions

Let $v_{j}(n, m, l)$ denote the number of compositions of n with m parts and with 186 smallest part j and l positions prior to the first smallest part. As previously we 187 use the decomposition (7) of the set C_{j} of compositions of n with smallest part $j . \quad 188$

Translating to generating functions, where z marks the size of a composition, $y 189$ the number of parts and x the number of positions prior to the first smallest part, 190 gives

$$
\begin{aligned}
V_{j}(z, y, x)=\sum_{n \geq 1} \sum_{m \geq 1} \sum_{\ell \geq 0} v_{j}(n, m, l) z^{n} y^{m} x^{\ell} & =\frac{y z^{j}}{\left(1-\frac{y z j^{j}}{1-z}\right)\left(1-\frac{x y z^{j+1}}{1-z}\right)} \\
& =\frac{y(z-1)^{2} z^{j}}{\left(y z^{j}+z-1\right)\left(x y z^{j+1}+z-1\right)}
\end{aligned}
$$

Setting $y=1$ the generating function for compositions with smallest part j and $l{ }_{192}$ positions prior to the first smallest part is

$$
\begin{equation*}
V_{j}(z, 1, x)=\frac{(z-1)^{2} z^{j}}{\left(z^{j}+z-1\right)\left(x z^{j+1}+z-1\right)} \tag{194}
\end{equation*}
$$

Summing over j and differentiating with respect to x gives

$$
\begin{equation*}
V^{\prime}(z, 1,1)=\sum_{j \geq 1} \frac{(z-1)^{2} z^{2 j+1}}{\left(1-z-z^{j}\right)\left(z^{j+1}+z-1\right)^{2}} \tag{196}
\end{equation*}
$$

This is

$$
\begin{gathered}
z^{3}+2 z^{4}+7 z^{5}+15 z^{6}+36 z^{7}+80 z^{8}+174 z^{9}+371 z^{10}+787 z^{11}+1644 z^{12}+3410 z^{13} \\
+7031 z^{14}+14423 z^{15}+29455 z^{16}+59948 z^{17}+O\left(z^{18}\right)
\end{gathered}
$$

which is not in Sloane. The dominant pole again comes from the $j=1$ term, with 201 $\left[z^{n}\right] V^{\prime}(z, 1,1) \sim 2^{n-1}$. It follows that the average position of the first smallest part 202 is 2 .

We can also determine the asymptotic distribution of the position of the first 20 smallest part. The generating function for compositions in which the first smallest part occurs in position k is

$$
V_{(k)}(z)=\sum_{j \geq 1}\left(\frac{z^{j+1}}{1-z}\right)^{k-1} \frac{z^{j}(1-z)}{1-z-z^{j}}=\frac{1}{(1-z)^{k-2}} \sum_{j \geq 1} \frac{z^{k j+k-1}}{1-z-z^{j}}
$$

The dominant pole again comes from the $j=1$ term, with $\left[z^{n}\right] V_{(k)}(z) \sim 2^{-k} 2^{n-1} .208$ Thus the position of the first smallest part follows a geometric distribution with 209 parameter $1 / 2$. In particular, asymptotically half of all compositions of n will have 210 the first smallest part in position 1.

4.2 The First Position of the Part Equal to k

The distribution of part sizes in a random composition is well known to be

Editor's Proof

We mark with x the positions to the left of the first k obtaining the generating 219 function

$$
\begin{equation*}
\frac{1}{1-x\left(\frac{z}{1-z}-z^{k}\right)} \frac{z^{k}}{1-2 z}=\frac{z^{k}(1-z)^{2}}{1-z-x z+x z^{k}(1-z)} \tag{221}
\end{equation*}
$$

Differentiating with respect to x gives

$$
\frac{z^{k}(1-z)^{2}\left(z-z^{k}(1-z)\right.}{(1-2 z)\left(1-2 z+z^{k}(1-z)\right)^{2}}
$$

From the dominant pole at $z=1 / 2$ we find that the coefficient of z^{n} is asymptotic

Asymptotically almost all compositions of n have one or more parts k, so the 226 average position of the first part equal to k is therefore 2^{k}, as is to be expected from ${ }^{227}$ the essentially geometric distribution of the part sizes.

References

3. K. Bringmann, J. Lovejoy, R. Osburn, Rank and crank moments for overpartitions, J. Number 233Theory 129 (2009), 1758-1772.234
4. L. Comtet, Advanced Combinatorics. The art of finite and infinite expansions, D. Reidel 235Publishing Co., The Netherlands, Reyised and enlarged edition (1974).236
5. S. Corteel, C. Savage and H. Wilf, A note on partitions and compositions defined by 237 inequalities, Integers 5 (2005), A24. 238
6. P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press (2009). 239
7. P. A. MacMahon, Combinatory Analysis, Vol. 2, Cambridge, 1917, reprinted by Chelsea 2 240
(1984). 241
8. A. Knopfmacher, A.O. Munagi, Successions in integer partitions, Ramanujan J. 18 (2009), 242
239-255. 243
9. C. Savage and H. Wilf, Pattern avoidance in compositions and multiset permutations, $A d v$. 244
Appl. Math. 36 (2006), 194-201. 245
10. N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, (available via: http://www. 246
research.att.com $/ \sim$ njas/sequences/). 247
11. R. P. Stanley, Enumerative Combinatorics Volume I, Wadsworth \& Brooks-Cole, Monterey 248
(1986). 24912. H. Wilf, generatingfunctionology, Academic Press Inc (1994).250

Editor's Proof

AUTHOR QUERY

AQ1. Please cite Refs. [3, 4, 7, 8, 11, 12] in text.

Editor's Proof

Metadata of the chapter that will be visualized online

Chapter Title	Cyclic Sieving for Generalised Non-crossing Partitions Associated with Complex Reflection Groups of Exceptional Type
Copyright Year	2013
Copyright Holder	Springer-Verlag Berlin Heidelberg
Corresponding Author	Family Name Krattenthaler
	Particle
	Given Name Christian
	Suffix
	Organization Fakultät für Mathematik, Universität Wien
	Address \quadNordbergstraße 15, A-1090, Vienna, Austria
Author	Family Name Müller
	Particle
	Given Name Thomas W.
	Suffix
	Organization School of Mathematical Sciences, Queen Mary \& Westfield College, University of London
	Address Mile End Road, London, E1 4NS, UK
Abstract	We prove that the generalised non-crossing partitions associated with well-generated complex reflection groups of exceptional type obey two different cyclic sieving phenomena, as conjectured by Armstrong, and by Bessis and Reiner.The computational details are provided in the manuscript "Cyclic sieving for generalised non-crossing partitions associated with complex reflection groups of exceptional type-the details" [arұiv:1001.0030].

Cyclic Sieving for Generalised Non-crossing Groups of Exceptional Type

Christian Krattenthaler* and Thomas W. Müller ${ }^{\dagger}$

Abstract

We prove that the generalised non-crossing partitions associated with 6 well-generated complex reflection groups of exceptional type obey two different 7 cyclic sieving phenomena, as conjectured by Armstrong, and by Bessis and Reiner. 8 The computational details are provided in the manuscript "Cyclic sieving for 9 generalised non-crossing partitions associated with complex reflection groups of 10 exceptional type-the details" [ar $\chi \mathrm{iy}: 1001.0030]$.

1 Introduction

In his memoir [3], Armstrong introduced generalised non-crossing partitions 13 associated with finite (real) reflection groups, thereby embedding Kreweras' non- 14 crossing partitions [23], Edelman's m-divisible non-crossing partitions [13], the 15

[^13]
Editor's Proof

non-crossing partitions associated with reflection groups due to Bessis [7] and Brady 16 and Watt [11] into one uniform framework. Bessis and Reiner [10] observed that 17 Armstrong's definition can be straightforwardly extended to well-generated complex 18 reflection groups (see Sect. 2 for the precise definition). These generalised non- 19 crossing partitions possess a wealth of beautiful properties, and they display deep 20 and surprising relations to other combinatorial objects defined for reflection groups 21 (such as the generalised cluster complex of Fomin and Reading [14], or the extended 22 Shi arrangement and the geometric multichains of filters of Athanasiadis [5,6]); see 23 Armstrong's memoir [3] and the references given therein.

On the other hand, cyclic sieving is a phenomenon brought to light by Reiner, 25 Stanton and White [30]. It extends the so-called " (-1)-phenomenon" of Stembridge 26 [36, 37]. Cyclic sieving can be defined in three equivalent ways (cf. [30, Propo- 27 sition 2.1]). The one which gives the name can be described as follows: given a 28 set S of combinatorial objects, an action on S of a cyclic group $G=\langle g\rangle$ with ${ }_{29}$ generator g of order n, and a polynomial $P(q)$ in q with non-negative integer 30 coefficients, we say that the triple (S, P, G) exhibits the cyclic sieving phenomenon, 31 if the number of elements of S fixed by g^{k} equals $P\left(e^{2 \pi i k / n}\right)$. In [30] it is shown that ${ }_{32}$ this phenomenon occurs in surprisingly many contexts, and several further instances 33 have been discovered since then, see the recent survey [33].

In [3, Conjecture 5.4.7] (also appearing in [10, Conjecture 6.4]) and [10, Conjec- 35 ture 6.5], Armstrong, respectively Bessis and Reiner, conjecture that generalised 36 non-crossing partitions for irreducible well-generated complex reflection groups 37 exhibit two different cyclic sieving phenomena (see Sects. 3 and 7 for the precise 38 statements). 39

According to the classification of these groups due to Shephard and Todd [34], 40 there are two infinite families of irreducible well-generated complex reflection 41 groups, namely the groups $G(d, 1, n)$ and $G(e, e, n)$, where n, d, e are positive 42 integers, and there are 26 exceptional groups. For the infinite families of types 43 $G(d, 1, n)$ and $G(e, e, n)$, the two cyclic sieving conjectures follow from the results 44 in [20].

The purpose of the present article is to present a proof of the cyclic sieving 46 conjectures of Armstrong, and of Bessis and Reiner, for the 26 exceptional types, 47 thus completing the proof of these conjectures. Since the generalised non-crossing 48 partitions feature a parameter m, from the outset this is not a finite problem. Con- 49 sequently, we first need several auxiliary results to reduce the conjectures for each 50 of the 26 exceptional types to a finite problem. Subsequently, we use Stembridge's 51 Maple package coxeter [38] and the GAP package CHEVIE [15,28] to carry out 52 the remaining finite computations. The details of these computations are provided 53 in [22]. In the present paper, we content ourselves with exemplifying the necessary 54 computations by going through some representative cases. It is interesting to observe ${ }_{55}$ that, for the verification of the type E_{8} case, it is essential to use the decomposition 56 numbers in the sense of $[18,19,21]$ because, otherwise, the necessary computations 57 would not be feasible in reasonable time with the currently available computer 58 facilities. We point out that, for the special case where the aforementioned parameter 59 m is equal to 1 , the first cyclic sieving conjecture has been proven in a uniform 60

Editor's Proof

fashion by Bessis and Reiner in [10]. The crucial result on which this proof is based 61 is (14) below, and it plays an important role in our reduction of the conjectures for 62 the 26 exceptional groups to a finite problem. A-non-uniform—proof of cyclic 63 sieving for non-crossing partitions associated with real reflection groups under the 64 action of the so-called Kreweras map-a special case of the second cyclic sieving 65 phenomenon discussed in the present paper-is given by Armstrong, Stump and 66 Thomas in [4]. Just recently, Rhoades proposed a uniform approach to prove the 67 first cyclic sieving conjecture for real reflection groups (but for generic m), see [31, 68 Theorem 3.7].

69
Our paper is organised as follows. In the next section, we recall the definition 70 of generalised non-crossing partitions for well-generated complex reflection groups 71 and of decomposition numbers in the sense of $[18,19,21]$, and we review some 72 basic facts. The first cyclic sieving conjecture is subsequently stated in Sect. 3. ${ }^{73}$ In Sect. 4, we outline an elementary proof that the q-Fu β-Catalan number, which 74 is the polynomial P in the cyclic sieving phenomena concerning the generalised 75 non-crossing partitions for well-generated complex reflection groups, is always a 76 polynomial with non-negative integer coefficients, as required by the definition of 77 cyclic sieving. (Full details can be found in [22, Sect. 4]. The reader is referred to 78 the first paragraph of Sect. 4 for comments on other approaches for establishing 79 polynomiality with non-negative coefficients.) Section 5 contains the announced 80 auxiliary results which, for the 26 exceptional types, allow a reduction of the 81 conjecture to a finite problem. In Sect. 6, we discuss a few cases which, in a 82 representative manner, demonstrate how to perform the remaining case-by-case 83 verification of the conjecture. For full details, we refer the reader to [22, Sect. 6]. The 84 second cyclic sieving conjecture is stated in Sect. 7. Section 8 contains the auxiliary 85 results which, for the 26 exceptional types, allow a reduction of the conjecture 86 to a finite problem, while in Sect. 9 we discuss some representative cases of the 87 remaining case-by-case verification of the conjecture. Again, for full details we refer 88 the reader to [22, Sect.9].

2 Preliminaries

A complex reflection group is a group generated by (complex) reflections in $\mathbb{C}^{n} .91$ (Here, a reflection is a non-trivial element of $G L_{n}(\mathbb{C})$ which fixes a hyperplane 92 pointwise and which has finite order.) We refer to [25] for an in-depth exposition of 93 the theory complex reflection groups.

Shephard and Todd provided a complete classification of all finite complex 95 reflection groups in [34] (see also [25, Chap. 8]). According to this classification, 96 an arbitrary complex reflection group W decomposes into a direct product of irre- 97 ducible complex reflection groups, acting on mutually orthogonal subspaces of the 98 complex vector space on which W is acting. Moreover, the list of irreducible com- 99 plex reflection groups consists of the infinite family of groups $G(m, p, n)$, where 100 m, p, n are positive integers, and 34 exceptional groups, denoted $G_{4}, G_{5}, \ldots, G_{37} 101$ by Shephard and Todd. 102 02

Editor's Proof

In this paper, we are only interested in finite complex reflection groups which 103 are well-generated. A complex reflection group of rank n is called well-generated if 104 it is generated by n reflections. ${ }^{1}$ Well-generation can be equivalently characterised 105 by a duality property due to Orlik and Solomon [29]. Namely, a complex reflection 106 group of rank n has two sets of distinguished integers $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$ and 107 $d_{1}^{*} \geq d_{2}^{*} \geq \cdots \geq d_{n}^{*}$, called its degrees and codegrees, respectively (see [25, p. 51108 and Definition 10.27]). Orlik and Solomon observed, using case-by-case checking, 109 that an irreducible complex reflection group W of rank n is well-generated if and 110 only if its degrees and codegrees satisfy

$$
d_{i}+d_{i}^{*}=d_{n}
$$

for all $i=1,2, \ldots, n$. The reader is referred to [25, Appendix D.2] for a table 112 of the degrees and codegrees of all irreducible complex reflection groups. Together 113 with the classification of Shephard and Todd [34], this constitutes a classification of 114 well-generated complex reflection groups: the irreducible well-generated complex 115 reflection groups are

- The two infinite families $G(d, 1, n)$ and $G(e, e, n)$, where d, e, n are positive 117 integers, 118
- The exceptional groups $G_{4}, G_{5}, G_{6}, G_{8}, G_{9}, G_{10}, G_{14}, G_{16}, G_{17}, G_{18}, G_{20}, G_{21}$ of 119 rank 2,
- The exceptional groups $G_{23}=H_{3}, G_{24}, G_{25}, G_{26}, G_{27}$ of rank 3, 121
- The exceptional groups $G_{28}=F_{4}, G_{29}, G_{30}=H_{4}, G_{32}$ of rank 4, ${ }_{122}$
- The exceptional group G_{33} of rank 5, ${ }_{123}$
- The exceptional groups $G_{34}, G_{35}=E_{6}$ of rank 6, 124
- The exceptional group $G_{36}=E_{7}$ of rank 7, $\quad 125$
- And the exceptional group $G_{37}=E_{8}$ of rank $8 . \quad 126$

In this list, we have made visible the groups $H_{3}, F_{4}, H_{4}, E_{6}, E_{7}, E_{8}$ which appear 127 as exceptional groups in the classification of all irreducible real reflection groups 128 (cf. [17]). ${ }^{129}$

Let W be a well-generated complex reflection group of rank n, and let $T \subseteq W{ }_{130}$ denote the set of all (complex) reflections in the group. Let $\ell_{T}: W \rightarrow \mathbb{Z}$ denote the ${ }_{131}$ word length in terms of the generators T. This word length is called absolute length ${ }_{132}$ or reflection length. Furthermore, we define a partial order \leq_{T} on W by 133

$$
\begin{equation*}
u \leq_{T} w \text { if and only if } \quad \ell_{T}(w)=\ell_{T}(u)+\ell_{T}\left(u^{-1} w\right) \tag{1}
\end{equation*}
$$

This partial order is called absolute order or reflection order. As is well-known and easy to see, the equation in (1) is equivalent to the statement that every shortest representation of u by reflections occurs as an initial segment in some shortest product representation of w by reflections.

[^14]
Editor's Proof

Now fix a (generalised) Coxeter element ${ }^{2} c \in W$ and a positive integer m. The 138 m-divisible non-crossing partitions $N C^{m}(W)$ are defined as the set

$$
\begin{aligned}
& N C^{m}(W)=\left\{\left(w_{0} ; w_{1}, \ldots, w_{m}\right): w_{0} w_{1} \cdots w_{m}=c\right. \text { and } \\
& \left.\qquad \ell_{T}\left(w_{0}\right)+\ell_{T}\left(w_{1}\right)+\cdots+\ell_{T}\left(w_{m}\right)=\ell_{T}(c)\right\} .
\end{aligned}
$$

A partial order is defined on this set by

$$
\left(w_{0} ; w_{1}, \ldots, w_{m}\right) \leq\left(u_{0} ; u_{1}, \ldots, u_{m}\right) \quad \text { if and only if } \quad u_{i} \leq_{T} w_{i} \text { for } 1 \leq i \leq m
$$

We have suppressed the dependence on c, since we understand this definition up to 142 isomorphism of posets. To be more precise, it can be shown that any two Coxeter 143 elements are related to each other by conjugation and (possibly) an automorphism on the field of complex numbers (see [35, Theorem 4.2] or [25, Corollary 11.25]),
and hence the resulting posets $N C^{m}(W)$ are isomorphic to each other. If $m=1$, then $N C^{1}(W)$ can be identified with the set $N C(W)$ of non-crossing partitions for
the (complex) reflection group W as defined by Bessis and Corran (cf. [9] and [8,
Sect. 13]; their definition extends the earlier definition by Bessis [7] and Brady and Watt [11] for real reflection groups). 150

The following result has been proved by a collaborative effort of several authors 15 (see [8, Proposition 13.1]).

Theorem 1. Let W be an irreducible well-generated complex reflection group, and

$$
\begin{equation*}
\left|N C^{m}(W)\right|=\prod_{i=1}^{n} \frac{m h+d_{i}}{d_{i}} . \tag{2}
\end{equation*}
$$

Remark 1. (1) The number in (2) is called the Fu β-Catalan number for the 155 reflection group W.
(2) If c is a Coxeter element of a well-generated complex reflection group W of 157 rank n, then $\ell_{T}(c)=n$. (This follows from [8, Sect. 7].) 158

[^15]We conclude this section by recalling the definition of decomposition numbers from $[18,19,21]$. Although we need them here only for (very small) real reflection groups, and although, strictly speaking, they have been only defined for real 161 reflection groups in $[18,19,21]$, this definition can be extended to well-generated 162 complex reflection groups without any extra effort, which we do now.

Given a well-generated complex reflection group W of rank n, types 164 $T_{1}, T_{2}, \ldots, T_{d}$ (in the sense of the classification of well-generated complex 165 reflection groups) such that the sum of the ranks of the T_{i} 's equals n, and a 166 Coxeter element c, the decomposition number $N_{W}\left(T_{1}, T_{2}, \ldots, T_{d}\right)$ is defined as 167 the number of "minimal" factorisations $c=c_{1} c_{2} \cdots c_{d}$, "minimal" meaning that 168 $\ell_{T}\left(c_{1}\right)+\ell_{T}\left(c_{2}\right)+\cdots+\ell_{T}\left(c_{d}\right)=\ell_{T}(c)=n$, such that, for $i=1,2, \ldots, d$, the 169 type of c_{i} as a parabolic Coxeter element is T_{i}. (Here, the term "parabolic Coxeter 170 element" means a Coxeter element in some parabolic subgroup. It follows from 17 [32, Proposition 6.3] that any element c_{i} is indeed a Coxeter element in a unique 172 parabolic subgroup of $W .{ }^{3}$ By definition, the type of c_{i} is the type of this parabolic 173 subgroup.) Since any two Coxeter elements are related to each other by conjugation 174 plus field automorphism, the decomposition numbers are independent of the choice 175 of the Coxeter element c.

The decomposition numbers for real reflection groups have been computed in [18, 19, 21]. To compute the decomposition numbers for well-generated complex reflection groups is a task that remains to be done.

3 Cyclic Sieving I

In this section we present the first cyclic sieving conjecture due to Armstrong [3,
Let $\phi: N C^{m}(W) \rightarrow N C^{m}(W)$ be the map defined by

$$
\begin{equation*}
\left(w_{0} ; w_{1}, \ldots, w_{m}\right) \mapsto\left(\left(c w_{m} c^{-1}\right) w_{0}\left(c w_{m} c^{-1}\right)^{-1} ; c w_{m} c^{-1}, w_{1}, w_{2}, \ldots, w_{m-1}\right) . \tag{3}
\end{equation*}
$$

It is indeed not difficult to see that, if the $(m+1)$-tuple on the left-hand side is an 184 element of $N C^{m}(W)$, then so is the $(m+1)$-tuple on the right-hand side. For $m=1$, this action reduces to conjugation by the Coxeter element c (applied to w_{1}). Cyclic 186 sieving arising from conjugation by c has been the subject of [10].

[^16]
Editor's Proof

It is easy to see that $\phi^{m h}$ acts as the identity, where h is the Coxeter number of 188 W (see (10) and Lemma 6 below). By slight abuse of notation, let C_{1} be the cyclic 189 group of order $m h$ generated by ϕ. (The slight abuse consists in the fact that we 190 insist on C_{1} to be a cyclic group of order $m h$, while it may happen that the order of 191 the action of ϕ given in (3) is actually a proper divisor of $m h$.) 192

Given these definitions, we are now in the position to state the first cyclic sieving 193 conjecture of Armstrong, respectively of Bessis and Reiner. By the results of [20] 194 and of this paper, it becomes the following theorem. 195

Theorem 2. For an irreducible well-generated complex reflection group W and 196 any $m \geq 1$, the triple $\left(N C^{m}(W), \operatorname{Cat}^{m}(W ; q), C_{1}\right)$, where $\operatorname{Cat}^{m}(W ; q)$ is the 197 q-analogue of the Fu β-Catalan number defined by

$$
\begin{equation*}
\operatorname{Cat}^{m}(W ; q):=\prod_{i=1}^{n} \frac{\left[m h+d_{i}\right]_{q}}{\left[d_{i}\right]_{q}} \tag{4}
\end{equation*}
$$

exhibits the cyclic sieving phenomenon in the sense of Reiner, Stanton and White 199 [30]. Here, n is the rank of $W, d_{1}, d_{2}, \ldots, d_{n}$ are the degrees of W, h is the Coxeter 200 number of W, and $[\alpha]_{q}:=\left(1-q^{\alpha}\right) /(1-q)$.

Remark 2. We write $\mathrm{Cat}^{m}(W)$ for $\mathrm{Cat}^{m}(W ; 1)$.
By definition of the cyclic sieving phenomenon, we have to prove that 203 $\mathrm{Cat}^{m}(W ; q)$ is a polynomial in q with non-negative integer coefficients, and that

$$
\begin{equation*}
\left|\operatorname{Fix}_{N C^{m}(W)}\left(\phi^{p}\right)\right|=\left.\operatorname{Cat}^{m}(W ; q)\right|_{q=e^{2 \pi i p / m h}}, \tag{5}
\end{equation*}
$$

for all p in the range $0 \leq p<m h$. The first fact is established in the next section, 205 while the proof of the second is achieved by making use of several auxiliary results, 206 given in Sect. 5, to reduce the proof to a finite problem, and a subsequent case- 207 by-case analysis. All details of this analysis can be found in [22, Sect. 6]. In the 208 present paper, we content ourselves with discussing the cases where $W=G_{24}$ and 209 where $W=G_{37}=E_{8}$, since these suffice to convey the flavour of the necessary 210 computations.

4 The q-Fusz-Catalan Numbers $\operatorname{Cat}^{\boldsymbol{m}}(\boldsymbol{W} ; q)$

The purpose of this section is to provide an elementary and (essentially) self- 213 contained proof of the fact that, for all irreducible complex reflection groups W, the 214 q-Fuß-Catalan number $\mathrm{Cat}^{m}(W ; q)$ is a polynomial in q with non-negative integer 215 coefficients. For most of the groups, this is a known property. However, aside from 216 the fact that, for many of the known cases, the proof is very indirect and uses deep 217 algebraic results on rational Cherednik algebras, there still remained some cases 218 where this property had not been formally established. The reader is referred to the 219 Theorem in Sect. 1.6 of [16], which says that, under the assumption of a certain rank 220

Editor's Proof

condition [16, Hypothesis 2.4], the q-Fuß-Catalan number $\mathrm{Cat}^{m}(W ; q)$ is a Hilbert 221 series of a finite-dimensional quotient of the ring of invariants of W and also the 222 graded character of a finite-dimensional irreducible representation of a spherical 223 rational Cherednik algebra associated with W. At present, this rank condition has 224 been proven for all irreducible well-generated complex reflection groups apart from 225 $G_{17}, G_{18}, G_{29}, G_{33}, G_{34}$; see [26, Tables 8 and 9, column "rank"] and the recent 226 paper [27], which establishes the result in the case of G_{32}. ${ }_{227}$

In the sequel, aside from the standard notation $[\alpha]_{q}=\left(1-q^{\alpha}\right) /(1-q)$ for 228 q-integers, we shall also use the q-binomial coefficient, which is defined by $\quad 229$

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:= \begin{cases}1, & \text { if } k=0 \\
\frac{[n]_{q}[n-1]_{q} \cdots[n-k+1]_{q}}{[k]_{q}[k-1]_{q} \cdots[1]_{q}}, & \text { if } k>0\end{cases}
$$

We begin with several auxiliary results. The first of these (Proposition 1) is well- 231 known (and follows, for example, from [1, Eqs. (3.3.3) and (3.3.4)]), or from [1, 232 Theorem 3.1]). The second (Proposition 2) follows by replacing n by $m n+1$ and ${ }_{233}$ AQ1 j by n in Theorem 2 of [2]. 234

Proposition 1. For all non-negative integers n and k, the q-binomial coefficient ${ }^{235}$ $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is a polynomial in q with non-negative integer coefficients. $\quad 236$
Proposition 2. For all non-negative integers m and n, the q-Fu β-Catalan number 237 of type A_{n},

$$
\frac{1}{[(m+1) n+1]_{q}}\left[\begin{array}{c}
(m+1) n+1 \\
n
\end{array}\right]_{q}
$$

is a polynomial in q with non-negative integer coefficients.
The purpose of the next lemma is to lay the basis for the proof of the positivity 241 of coefficients in the polynomial in Corollary 1.242
Lemma 1. If a and b are coprime positive integers, then

$$
\begin{equation*}
\frac{[a b]_{q}}{[a]_{q}[b]_{q}} \tag{6}
\end{equation*}
$$

is a polynomial in q of degree $(a-1)(b-1)$, all of whose coefficients are in ${ }^{244}$ $\{0,1,-1\}$. Moreover, if one disregards the coefficients which are 0 , then +1 's and 245 (-1) 's alternate, and the constant coefficient as well as the leading coefficient of the 246 polynomial equal +1 .
Proof. Let $\Phi_{n}(q)$ denote the n-th cyclotomic polynomial in q. Using the classical 248 formula

$$
1-q^{n}=\prod_{d \mid n} \Phi_{d}(q)
$$

Editor's Proof

Cyclic Sieving for Generalised Non-crossing Partitions Associated with ...
we see that

$$
\begin{equation*}
\frac{(1-q)\left(1-q^{a b}\right)}{\left(1-q^{a}\right)\left(1-q^{b}\right)}=\prod_{\substack{d_{1}\left|a, d_{1} \neq 1 \\ d_{2}\right| a, d_{2} \neq 1}} \Phi_{d_{1} d_{2}}(q) \tag{252}
\end{equation*}
$$

so that, manifestly, the expression in (6) is a polynomial in q. The claim concerning 253 the degree of this polynomial is obvious.254

In order to establish the claim on the coefficients, we start with a sub-expression 255 of (6),

$$
\begin{equation*}
\frac{\left(1-q^{a b}\right)}{\left(1-q^{a}\right)\left(1-q^{b}\right)}=\left(\sum_{i=0}^{b-1} q^{i a}\right)\left(\sum_{j=0}^{\infty} q^{j b}\right)=\sum_{k=0}^{\infty} C_{k} q^{k} \tag{7}
\end{equation*}
$$

say. The assumption that a and b are coprime implies that $0 \leq C_{k} \leq 1$ for $k \leq 257$ $(a-1)(b-1)$. Multiplying both sides of (7) by $1-q$, we obtain the equation 258

$$
\begin{equation*}
\frac{[a b]_{q}}{[a]_{q}[b]_{q}}=(1-q) \sum_{k=0}^{(a-1)(b-1)} C_{k} q^{k}+(1-q) \sum_{k=(a-1)(b-1)+1}^{\infty} C_{k} q^{k} \tag{8}
\end{equation*}
$$

By our previous observation on the coefficients C_{k} with $k \leq(a-1)(b-1)$, it is 259 obvious that the coefficients of the first expression on the right-hand side of (8) are 260 alternately +1 and -1 , when 0 's are disregarded. Since we already know that the 261 left-hand side is a polynomial in q of degree $(a-1)(b-1)$, we may ignore the 262 second expression.

The proof is concluded by observing that the claims on the constant and leading coefficients are obvious.

Corollary 1. Let a and b be coprime positive integers, and let γ be an integer with 264 $\gamma \geq(a-1)(b-1)$. Then the expression

$$
\frac{[\gamma]_{q}[a b]_{q}}{[a]_{q}[b]_{q}}
$$

is a polynomial in q with non-negative integer coefficients.
Proof. Let

$$
\frac{[a b]_{q}}{[a]_{q}[b]_{q}}=\sum_{k=0}^{(a-1)(b-1)} D_{k} q^{k}
$$

We then have

$$
\begin{equation*}
\frac{[\gamma]_{q}[a b]_{q}}{[a]_{q}[b]_{q}}=\sum_{N=0}^{(a-1)(b-1)+\gamma-1} q^{N} \sum_{k=\max \{0, N-\gamma+1\}}^{N} D_{k} . \tag{9}
\end{equation*}
$$

Editor's Proof

If $N \leq \gamma-1$, then, by Lemma 1, the sum over k on the right-hand side of (9) 271 equals $1-1+1-1+\cdots$, which is manifestly non-negative. On the other hand, if 272 $N>\gamma-1$, then we may rewrite the sum over k on the right-hand side of (9) as $\quad 273$

$$
\begin{equation*}
\sum_{k=\max \{0, N-\gamma+1\}}^{N} D_{k}=\sum_{k=N-\gamma+1}^{(a-1)(b-1)} D_{k}=\sum_{k=0}^{(a-1)(b-1)+\gamma-1-N} D_{(a-1)(b-1)-k} . \tag{274}
\end{equation*}
$$

Again, by Lemma 1, this sum equals $1-1+1-1+\cdots$, which is manifestly nonnegative.

The next lemma collects positivity results for coefficients in polynomials given 275 by rational function expressions of special form. 276

Lemma 2. Let α and β be positive integers. The following expressions are polyno- 277 mials in q with non-negative integer coefficients:
(a) $[\alpha]_{q^{3}}[\beta]_{q^{4}} \frac{[72]_{q}[3]_{q}[4]_{q}}{[8]_{q}[9]_{q}[12]_{q}}$ for $\alpha \geq 6$ and $\beta \geq 8$;
(b) $[\alpha]_{q}[\beta]_{q^{4}} \frac{[15]_{q}}{[3]_{q}[5]_{q}} \frac{\left.[72]_{q}[3]\right]_{q}[4]_{q}}{[8]_{q}}$ for $\alpha \geq 26$ and $\beta \geq 8$;
(c) $[\alpha]_{q^{3}}[\beta]_{q^{4}} \frac{[90]_{q}[3]_{q}[4]_{q}}{[5]_{q}[6]_{q}[9]_{q}}$ for $\alpha \geq 18$ and $\beta \geq 3$;
(d) $[\alpha]_{q}[\beta]_{q^{3}} \frac{[90]_{q}[3]_{q}}{[5]_{q}[6]_{q}[9]_{q}}$ for $\alpha \geq 20$ and $\beta \geq 18$; $\quad 282$
(e) $[\alpha]_{q} \frac{[15]_{q}}{[3]_{q}[5]_{q}} \frac{[12]_{q^{3}}}{[3]_{q^{3}}[4]_{q^{3}}} \quad$ for $\alpha \geq 26$;
(f) $[\alpha]_{q} \frac{[15]_{q}}{[3]_{q}[5]_{q}} \frac{[6]_{q^{3}}}{\left.[2]_{q^{3}} 3\right]_{q^{3}}} \quad$ for $\alpha \geq 14$;
(g) $[\alpha]_{q}[\beta]_{q^{2}} \frac{[84]_{q}[2]_{q}}{[4]_{q}[6]_{q}[7]_{q}}$ for $\alpha \geq 30$ and $\beta \geq 20$; $\quad 285$
(h) $[\alpha]_{q}[\beta]_{q} \frac{[105]_{q}}{[3]_{q}[5]_{q}[7]_{q}}$ for $\alpha \geq 24$ and $\beta \geq 68$;
(i) $[\alpha]_{q}[\beta]_{q} \frac{[70]_{q}}{[2]_{q}[5]_{q}[7]_{q}}$ for $\alpha \geq 24$ and $\beta \geq 34$; $\quad 287$
(j) $[\alpha]_{q^{2}}[\beta]_{q^{5}} \frac{[30]_{q}[2]_{q}[3]_{q}[5]_{q}}{[6]_{q}[10]_{q}[15]_{q}} \quad$ for $\alpha \geq 4$ and $\beta \geq 2$; $\quad 288$
(k) $[\alpha]_{q}[\beta]_{q^{5}} \frac{[14]_{q}}{[2]_{q}[7]_{q}} \frac{[30]_{q}[2]_{q}[3]_{q}[5]_{q}}{[6]_{q}[10]_{q}[15]_{q}}$ for $\alpha \geq 14$ and $\beta \geq 2$; $\quad 289$
(l) $[\alpha]_{q}[\beta]_{q^{2}} \frac{[35]_{q}}{\left.[5]_{q} 7\right]_{q}} \frac{[30]_{q}[2]_{q}[3]_{q}[5]_{q}}{\left.[6]_{q}[10]_{q} 115\right]_{q}}$ for $\alpha \geq 32$ and $\beta \geq 12 ; \quad 290$
(m) $[\alpha]_{q^{2}}[\beta]_{q^{5}} \frac{[60]_{q}[2]_{q}[3]_{q}[5]_{q}}{[10]_{q}[12]_{q}[15]_{q}}$ for $\alpha \geq 16$ and $\beta \geq 2$; 291
(n) $[\alpha]_{q}[\beta]_{q^{2}} \frac{[35]_{q}}{[5]_{q}[7]_{q}} \frac{[60]_{q}\left[2[]_{q}[3]_{q}[5]_{q}\right.}{[10]_{q}[12]_{q}[15]_{q}}$ for $\alpha \geq 56$ and $\beta \geq 4$; $\quad 292$
(o) $[\alpha]_{q}[\beta]_{q^{5}} \frac{[14]_{q}}{[2]_{q}[7]_{q}} \frac{[60]_{q}[2]_{q}[3]_{q}[5]_{q}}{[10]_{q}[12]_{q}[15]_{q}}$ for $\alpha \geq 38$ and $\beta \geq 2$; $\quad 293$
(p) $[\alpha]_{q}[\beta]_{q^{3}} \frac{[126]_{q}[3]_{q}}{[6]_{q}[7]_{q}[9]_{q}}$ for $\alpha \geq 30$ and $\beta \geq 26$; 294
(q) $[\alpha]_{q}[\beta]_{q^{3}} \frac{[25]_{q}[3]_{q}}{[7]_{q}[1]_{q}[12]_{q}}$ for $\alpha \geq 66$ and $\beta \geq 54$; $\quad 295$
(r) $[\alpha]_{q}[\beta]_{q^{2}} \frac{[140]_{q}[2]_{q}}{[4]_{q}[7]_{q}[10]_{q}} \quad$ for $\alpha \geq 54$ and $\beta \geq 34$.
296

Editor's Proof

Proof. All these assertions have a very similar flavour, and so do their proofs. 297 In order to avoid repetition, proof details are only provided for items (a) and (j); 298 the proofs of items (b)-(i) and (p)-(r) follow the pattern exhibited in the proof of 299 item (a), while the proofs of items (k)-(o) follow that of the proof of item (j). Full 300 details are found in [22, Sect. 4].

In order to establish item (a), we start with the factorisation

$$
\begin{aligned}
& \frac{[72]_{q}[3]_{q}[4]_{q}}{[8]_{q}[9]_{q}[12]_{q}} \\
= & \left(1-q^{3}+q^{9}-q^{15}+q^{18}\right)\left(1-q^{4}+q^{8}-q^{12}+q^{16}-q^{20}+q^{24}-q^{28}+q^{32}\right) .
\end{aligned}
$$

It should be observed that both factors on the right-hand side have the property that coefficients are in $\{0,1,-1\}$ and that $(+1)$'s and (-1) 's alternate, if one disregards 30 the coefficients which are 0 . If we now apply the same idea as in the proof of 305 Corollary 1, then we see that $[\alpha]_{q^{3}}$ times the first factor is a polynomial in q with 306 non-negative integer coefficients, as is $[\beta]_{q^{4}}$ times the second factor. Taken together, ${ }^{307}$ this establishes the claim.

Now we turn to item (j). We have

$$
\frac{[30]_{q}[2]_{q}[3]_{q}[5]_{q}}{[6]_{q}[10]_{q}[15]_{q}}=1+q-q^{3}-q^{4}-q^{5}+q^{7}+q^{8}
$$

If we multiply this expression by $[\alpha]_{q^{2}}$, then, for $\alpha=4$ we obtain

$$
1+q+q^{2}-q^{5}-q^{9}+q^{12}+q^{13}+q^{14}
$$

for $\alpha=5$ we obtain

$$
1+q+q^{2}-q^{5}+q^{8}-q^{11}+q^{14}+q^{15}+q^{16}
$$

and, for $\alpha \geq 6$, we obtain
$1+q+q^{2}-q^{5}+q^{8}+q^{10}+p_{1}(q)+q^{2 \alpha-4}+q^{2 \alpha-2}-q^{2 \alpha+1}+q^{2 \alpha+4}+q^{2 \alpha+5}+q^{2 \alpha+6}, \quad 316$
where $p_{1}(q)$ is a polynomial in q with non-negative coefficients of order at least 11 and degree at most $2 \alpha-5$. In all cases it is obvious that the product of the result and $[\beta]_{q^{5}}$, with $\beta \geq 2$, is a polynomial in q with non-negative coefficients.

We are now ready for the proof of the main result of this section.
Theorem 3. For all irreducible well-generated complex reflection groups and 318 positive integers m, the q-Fu β-Catalan number $\operatorname{Cat}^{m}(W ; q)$ is a polynomial in $q 319$ with non-negative integer coefficients.

Proof. First, let $W=A_{n}$. In this case, the degrees are $2,3, \ldots, n+1$, and hence

$$
\operatorname{Cat}^{m}\left(A_{n} ; q\right)=\frac{1}{[(m+1) n+1]_{q}}\left[\begin{array}{c}
(m+1) n+1 \tag{322}\\
n
\end{array}\right]_{q}
$$

which, by Proposition 2, is a polynomial in q with non-negative integer coefficients. ${ }^{323}$
Next, let $W=G(d, 1, n)$. In this case, the degrees are $d, 2 d, \ldots, n d$, and hence 324

$$
\operatorname{Cat}^{m}(G(d, 1, n) ; q)=\left[\begin{array}{c}
(m+1) n \\
n
\end{array}\right]_{q^{d}}
$$

which, by Proposition 1, is a polynomial in q with non-negative integer coefficients. ${ }^{326}$
Now, let $W=G(e, e, n)$. In this case, the degrees are $e, 2 e, \ldots,(n-1) e, n$, and 327 hence

$$
\begin{aligned}
\mathrm{Cat}^{m}(G(e, e, n) ; q) & =\frac{[m(n-1) e+n]_{q}}{[n]_{q}} \prod_{i=1}^{n-1} \frac{[m(n-1) e+i e]_{q}}{[i e]_{q}} \\
& =\left[\begin{array}{c}
(m+1)(n-1) \\
n-1
\end{array}\right]_{q^{e}}+q^{n}[e]_{q^{n}}\left[\begin{array}{c}
(m+1)(n-1) \\
n
\end{array}\right]_{q^{e}}
\end{aligned}
$$

which, by Proposition 1, is a polynomial in q with non-negative integer coefficients.
It remains to verify the claim for the exceptional groups. 330
For the groups $W=G_{6}, G_{9}, G_{14}, G_{17}, G_{21}$, and partially for the groups $W={ }_{331}$ $G_{20}, G_{23}, G_{28}, G_{30}, G_{33}, G_{35}, G_{36}, G_{37}$ (depending on congruence properties of the ${ }_{332}$ parameter m), polynomiality and non-negativity of coefficients of the corresponding ${ }^{333}$ q-Fuß-Catalan number can be directly read off by a proper rearrangement of the 334 terms in the defining expression; for example, for $W=G_{21}$ (with degrees given by ${ }_{335}$ 12,60) we have

$$
\begin{equation*}
\operatorname{Cat}^{m}\left(G_{21} ; q\right)=\frac{[60 m+12]_{q}[60 m+60]_{q}}{[12]_{q}[60]_{q}}=[5 m+1]_{q^{12}}[m+1]_{q^{60}} \tag{337}
\end{equation*}
$$

which is manifestly a polynomial in q with non-negative integer coefficients.
For the groups $G_{5}, G_{10}, G_{18}, G_{26}, G_{27}, G_{29}, G_{34}$, the terms in the defining expres- ${ }^{339}$ sion of the corresponding q-Fu β-Catalan number can be arranged in a manner 340 so that a q-binomial coefficient appears; polynomiality and non-negativity of 341 coefficients then follow from Proposition 1. For example, for $W=G_{34}$ (with 342 degrees given by $6,12,18,24,30,42$) we have

$$
\begin{aligned}
\operatorname{Cat}^{m} & \left(G_{34} ; q\right) \\
& =\frac{[42 m+6]_{q}[42 m+12]_{q}[42 m+18]_{q}[42 m+24]_{q}[42 m+30]_{q}[42 m+42]_{q}}{[6]_{q}[12]_{q}[18]_{q}[24]_{q}[30]_{q}[42]_{q}} \\
& =[m+1]_{q^{42}}\left[\begin{array}{c}
7 m+5 \\
5
\end{array}\right]_{q^{6}},
\end{aligned}
$$

Editor's Proof

which, written in this form, is obviously a polynomial in q with non-negative integer 344 coefficients.

On the other hand, for the groups $G_{4}, G_{8}, G_{16}, G_{25}, G_{32}$, the terms in the defining ${ }_{346}$ expression of the corresponding q-Fuß-Catalan number can be arranged in a manner 347 so that a q-Fuß-Catalan number of type A appears and Proposition 2 applies; for 348 example, for $W=G_{32}$ (with degrees given by $12,18,24,30$) we have 349

$$
\begin{aligned}
\operatorname{Cat}^{m}\left(G_{32} ; q\right) & =\frac{[30 m+12]_{q}[30 m+18]_{q}[30 m+24]_{q}[30 m+30]_{q}}{[12]_{q}[18]_{q}[24]_{q}[30]_{q}} \\
& =\frac{1}{[5 m+6]_{q^{6}}}\left[\begin{array}{c}
5 m+6 \\
5
\end{array}\right]_{q^{6}}
\end{aligned}
$$

which indeed fits into the framework of Proposition 2 and, hence, is a polynomial in q with non-negative integer coefficients.

In the other cases, the more "specialised" auxiliary results given in Corollary 1

$$
\frac{[30 m+12]_{q} \cdot(\text { other terms })}{[12]_{q} \cdot(\text { other terms })}
$$

and know that m is even, then we would simplify this to

$$
\left[\frac{5 m+2}{2}\right]_{q^{12}} \cdot \frac{(\text { other terms })}{(\text { other terms })}
$$

where $\left[\frac{5 m+2}{2}\right]_{q^{12}}$ is manifestly a polynomial in q with non-negative integer coeffi- 364 cients. On the other hand, in a situation where two denominator factors "want" to 365 divide a single numerator factor, we "extract" as much as we can from the numerator 366 factor and compensate by additional "fudge" factors. To be more concrete, if we 367 encounter the expression

$$
\frac{[14 m+14]_{q} \cdot(\text { other terms })}{[6]_{q}[14]_{q} \cdot(\text { other terms })}
$$

and we know that $m \equiv 2(\bmod 3)$, then we would try the rewriting

$$
\left[\frac{m+1}{3}\right]_{q^{42}} \frac{[21]_{q^{2}}}{[3]_{q^{2}}[7]_{q^{2}}[2]_{q}} \cdot \frac{(\text { other terms })}{(\text { other terms })},
$$

with the idea that we might find somewhere else a term $[2 \alpha]_{q}$, which could be 372 combined with the term $[2]_{q}$ in the denominator into $[2 \alpha]_{q} /[2]_{q}=[\alpha]_{q^{2}}$, and then 373 apply Corollary 1 to see that

$$
\begin{equation*}
[\alpha]_{q^{2}} \frac{[21]_{q^{2}}}{[3]_{q^{2}}[7]_{q^{2}}} \tag{375}
\end{equation*}
$$

is a polynomial in q with non-negative integer coefficients (provided α is at least 12), with $\left[\frac{m+1}{3}\right]_{q^{42}}$ being such a polynomial in any case.

In situations where three denominator factors "want" to divide a single numerator 378 factor, one has to perform more complicated rearrangements, in order to be able to 379 apply one of the assertions from Lemma 2.

For example, for $W=G_{24}$, the degrees are 4, 6, 14, and hence

$$
\operatorname{Cat}^{m}\left(G_{24} ; q\right)=\frac{[14 m+4]_{q}[14 m+6]_{q}[14 m+14]_{q}}{[4]_{q}[6]_{q}[14]_{q}} .
$$

We have
which, by Corollary 1, are polynomials in q with non-negative integer coefficients 385 in all cases.

For $W=G_{30}=H_{4}$, the degrees are 2,12,20,30, and hence 387

$$
\mathrm{Cat}^{m}\left(H_{4} ; q\right)=\frac{[30 m+2]_{q}[30 m+12]_{q}[30 m+20]_{q}[30 m+30]_{q}}{[2]_{q}[12]_{q}[20]_{q}[30]_{q}}
$$

If m is odd, then we may write

$$
\operatorname{Cat}^{m}\left(H_{4} ; q\right)=\left[\frac{15 m+1}{2}\right]_{q^{4}}[5 m+2]_{q^{6}}[3 m+2]_{q^{10}}\left[\frac{m+1}{2}\right]_{q^{60}} \frac{[30]_{q^{2}}[2]_{q^{2}}[3]_{q^{2}}[5]_{q^{2}}}{[6]_{q^{6}}[10]_{q^{2}}[15]_{q^{2}}}
$$

which, by Lemma 2.(j), is a polynomial in q with non-negative integer coeffi- 390 cients.

Editor's Proof

Cyclic Sieving for Generalised Non-crossing Partitions Associated with ...

For $W=G_{35}=E_{6}$, the degrees are $2,5,6,8,9,12$, and hence
$\operatorname{Cat}^{m}\left(E_{6} ; q\right)=\frac{[12 m+2]_{q}[12 m+5]_{q}[12 m+6]_{q}[12 m+8]_{q}[12 m+9]_{q}[12 m+12]_{q}}{[2]_{q}[5]_{q}[6]_{q}[8]_{q}[9]_{q}[12]_{q}}$.
If $m \equiv 5(\bmod 30)$, then we have

$$
\begin{aligned}
& \operatorname{Cat}^{m}\left(E_{6} ; q\right)=[6 m+1]_{q^{2}}\left[\frac{12 m+5}{5}\right]_{q^{5}}[2 m+1]_{q^{6}} \\
& \times[3 m+2]_{q^{4}}[4 m+3]_{q^{3}}\left[\frac{m+1}{6}\right]_{q^{72}} \frac{[72]_{q}[3]_{q}[4]_{q}}{[8]_{q}[9]_{q}[12]_{q}}
\end{aligned}
$$

which, by Lemma 2.(a), is a polynomial in q with non-negative integer coefficients. 394
If $m \equiv 7(\bmod 30)$, then we have

$$
\begin{aligned}
& \operatorname{Cat}^{m}\left(E_{6} ; q\right)=\left[\frac{6 m+1}{2}\right]_{q^{4}}[12 m+5]_{q}\left[\frac{2 m+1}{15}\right]_{q^{90}} \\
& \quad \times \frac{[90]_{q}[3]_{q}[4]_{q}}{[5]_{q}[6]_{q}[9]_{q}}[3 m+2]_{q^{4}}[4 m+3]_{q^{3}}\left[\frac{m+1}{2}\right]_{q^{24}} \frac{[6]_{q^{4}}}{[2]_{q^{4}}[3]_{q^{4}}},
\end{aligned}
$$

which, by Corollary 1 and Lemma 2.(c), is a polynomial in q with non-negative 396 integer coefficients.

If $m \equiv 8(\bmod 30)$, then we have
$\operatorname{Cat}^{m}\left(E_{6} ; q\right)=[6 m+1]_{q^{2}}[12 m+5]_{q}[2 m+1]_{q^{6}}\left[\frac{3 m+2}{2}\right]_{q^{8}}$

$$
\times\left[\frac{4 m+3}{5}\right]_{q^{15}} \frac{[15]_{q}}{[3]_{q}[5]_{q}}\left[\frac{m+1}{3}\right]_{q^{36}} \frac{[12]_{q^{3}}}{[3]_{q^{3}}[4]_{q^{3}}},
$$

which, by Lemma 2.(e), is a polynomial in q with non-negative integer coefficients. 399
If $m \equiv 13(\bmod 30)$, then we have

$$
\begin{aligned}
& \operatorname{Cat}^{m}\left(E_{6} ; q\right)=[6 m+1]_{q^{2}}[12 m+5]_{q}\left[\frac{2 m+1}{3}\right]_{q^{18}} \frac{[6]_{q^{3}}}{[2]_{q^{3}}[3]_{q^{3}}} \\
& \times[3 m+2]_{q^{4}}\left[\frac{4 m+3}{5}\right]_{q^{15}} \frac{[15]_{q}}{[3]_{q}[5]_{q}}\left[\frac{m+1}{2}\right]_{q^{24}} \frac{[6]_{q^{4}}}{[2]_{q^{4}}[3]_{q^{4}}},
\end{aligned}
$$

which, by Lemma 2.(f), is a polynomial in q with non-negative integer coefficients. 401
If $m \equiv 22(\bmod 30)$, then we have

$$
\begin{aligned}
& \operatorname{Cat}^{m}\left(E_{6} ; q\right)=[6 m+1]_{q^{2}}[12 m+5]_{q}\left[\frac{2 m+1}{15}\right]_{q^{90}} \frac{[90]_{q}[3]_{q}}{[5]_{q}[6]_{q}[9]_{q}} \\
& \times\left[\frac{3 m+2}{2}\right]_{q^{8}}[4 m+3]_{q^{3}}[m+1]_{q^{12}},
\end{aligned}
$$

Editor's Proof

which, by Lemma 2.(d), is a polynomial in q with non-negative integer coefficients. 403
If $m \equiv 23(\bmod 30)$, then we have

$$
\begin{aligned}
\operatorname{Cat}^{m}\left(E_{6} ; q\right)=[6 m+ & 1]_{q^{2}}[12 m+5]_{q}[2 m+1]_{q^{6}} \\
& \times[3 m+2]_{q^{4}}\left[\frac{4 m+3}{5}\right]_{q^{15}} \frac{[15]_{q}}{[3]_{q}[5]_{q}}\left[\frac{m+1}{6}\right]_{q^{72}} \frac{[72]_{q}[3]_{q}[4]_{q}}{[8]_{q}[9]_{q}[12]_{q}},
\end{aligned}
$$

which, by Lemma 2.(b), is a polynomial in q with non-negative integer coefficients. 405
For $W=G_{36}=E_{7}$, the degrees are $2,6,8,10,12,14,18$, and hence

$$
\begin{gathered}
\operatorname{Cat}^{m}\left(E_{7} ; q\right)=\frac{[18 m+2]_{q}[18 m+6]_{q}[18 m+8]_{q}[18 m+10]_{q}}{[2]_{q}[6]_{q}[8]_{q}[10]_{q}} \\
\times \frac{[18 m+12]_{q}[18 m+14]_{q}[18 m+18]_{q}}{[12]_{q}[14]_{q}[18]_{q}} .
\end{gathered}
$$

If $m \equiv 18(\bmod 140)$, then we have

$$
\begin{aligned}
& \operatorname{Cat}^{m}\left(E_{7} ; q\right)=[9 m+1]_{q^{2}}\left[\frac{3 m+1}{5}\right]_{q^{30}} \frac{[15]_{q^{2}}}{[3]_{q^{2}}[5]_{q^{2}}} \\
& \quad \times\left[\frac{9 m+4}{2}\right]_{q^{4}}[9 m+5]_{q^{2}}\left[\frac{3 m+2}{28}\right]_{q^{168}}[8]_{q^{2}}[64]_{q^{2}}[2]_{q^{2}} \\
& \quad[7]_{q^{2}}
\end{aligned}[9 m+7]_{q^{2}}[m+1]_{q^{18}},
$$

which, by Corollary 1 and Lemma 2.(g), is a polynomial in q with non-negative 408 integer coefficients.

If $m \equiv 23(\bmod 140)$, then we have

$$
\begin{aligned}
\operatorname{Cat}^{m}\left(E_{7} ; q\right)=\left[\frac{9 m+1}{4}\right]_{q^{8}}\left[\frac{3 m+1}{35}\right]_{q^{210}} & {[3]_{q^{2}}[5]_{q^{2}}[7]_{q^{2}} }
\end{aligned}[9 m+4]_{q^{2}}[9 m+5]_{q^{2}}, ~(3 m+2]_{q^{6}}[9 m+7]_{q^{2}}\left[\frac{m+1}{2}\right]_{q^{36}} \frac{[6]_{q^{6}}}{[2]_{q^{6}}[3]_{q^{6}}},
$$

which, by Corollary 1 and Lemma 2.(h), is a polynomial in q with non-negative 411 integer coefficients.

If $m \equiv 54(\bmod 140)$, then we have

$$
\begin{aligned}
& \operatorname{Cat}^{m}\left(E_{7} ; q\right)=[9 m+1]_{q^{2}}[3 m+1]_{q^{6}}\left[\frac{9 m+4}{70}\right]_{q^{140}} \frac{[70]_{q^{2}}}{[2]_{q^{2}}[5]_{q^{2}}[7]_{q^{2}}}[9 m+5]_{q^{2}} \\
& \times\left[\frac{3 m+2}{4}\right]_{q^{24}} \frac{[6]_{q^{4}}}{[2]_{q^{4}}[3]_{q^{4}}}[9 m+7]_{q^{2}}[m+1]_{q^{18}} .
\end{aligned}
$$

Editor's Proof

Cyclic Sieving for Generalised Non-crossing Partitions Associated with ...

If one decomposes $[9 m+7]_{q^{2}}$ as $\left[\frac{9 m}{2}+4\right]_{q^{4}}+q^{2}\left[\frac{9 m}{2}+3\right]_{q^{4}}$, then one sees that, 414 by Corollary 1 and Lemma 2.(i), this is a polynomial in q with non-negative integer 415 coefficients.

For $W=G_{37}=E_{8}$, the degrees are $2,8,12,14,18,20,24,30$, and hence $\quad 417$

$$
\begin{aligned}
& \operatorname{Cat}^{m}\left(E_{7} ; q\right)= \frac{[30 m+2]_{q}[30 m+8]_{q}[30 m+12]_{q}[30 m+14]_{q}}{[2]_{q}[8]_{q}[12]_{q}[14]_{q}} \\
& \times \frac{[30 m+18]_{q}[30 m+20]_{q}[30 m+24]_{q}[30 m+30]_{q}}{[18]_{q}[20]_{q}[24]_{q}[30]_{q}}
\end{aligned}
$$

If $m \equiv 3(\bmod 84)$, then we have

$$
\begin{aligned}
\operatorname{Cat}^{m}\left(E_{8} ; q\right)=\left[\frac{15 m+1}{2}\right]_{q^{4}}\left[\frac{15 m+4}{7}\right]_{q^{14}}[5 m+2]_{q^{6}}\left[\frac{15 m+7}{4}\right]_{q^{8}}\left[\frac{5 m+3}{6}\right]_{q^{36}} \frac{[6]_{q^{6}}}{[2]_{q^{6}}[3]_{q^{6}}} \\
\times[3 m+2]_{q^{10}}[5 m+4]_{q^{6}}\left[\frac{m+1}{4}\right]_{q^{120}} \frac{[60]_{q^{2}}[2]_{q^{2}}[3]_{q^{2}}[5]_{q^{2}}}{[10]_{q^{2}}[12]_{q^{2}}[15]_{q^{2}}},
\end{aligned}
$$

which, by Corollary 1 and Lemma 2.(m), is a polynomial in q with non-negative 419 integer coefficients.

If $m \equiv 8(\bmod 84)$, then we have

$$
\begin{aligned}
\operatorname{Cat}^{m}\left(E_{8} ; q\right)=[15 m & +1]_{q^{2}}\left[\frac{15 m+4}{4}\right]_{q^{8}}\left[\frac{5 m+2}{42}\right]_{q^{252}} \frac{[126]_{q^{2}}[3]_{q^{2}}}{[6]_{q^{2}}[7]_{q^{2}}[9]_{q^{2}}} \\
& \times[15 m+7]_{q^{2}}[5 m+3]_{q^{6}}\left[\frac{3 m+2}{2}\right]_{q^{20}}\left[\frac{5 m+4}{4}\right]_{q^{24}}[m+1]_{q^{30}},
\end{aligned}
$$

which, by Lemma 2.(p), is a polynomial in q with non-negative integer coefficients. ${ }^{422}$
If $m \equiv 11(\bmod 84)$, then we have 423

$$
\begin{aligned}
\operatorname{Cat}^{m}\left(E_{8} ; q\right) & =\left[\frac{15 m+1}{2}\right]_{q^{4}}[15 m+4]_{q^{2}}\left[\frac{5 m+2}{3}\right]_{q^{18}}\left[\frac{15 m+7}{4}\right]_{q^{8}}\left[\frac{5 m+3}{2}\right]_{q^{12}} \\
& \times\left[\frac{3 m+2}{7}\right]_{q^{70}} \frac{[35]_{q^{2}}}{[5]_{q^{2}}[7]_{q^{2}}}[5 m+4]_{q^{6}}\left[\frac{m+1}{4}\right]_{q^{120}} \frac{[60]_{q^{2}}[2]_{q^{2}}[3]_{q^{2}}[5]_{q^{2}}}{[10]_{q^{2}}[12]_{q^{2}}[15]_{q^{2}}},
\end{aligned}
$$

which, by Corollary 1 and Lemma 2.(n), is a polynomial in q with non-negative ${ }_{424}$ integer coefficients.

If $m \equiv 16(\bmod 84)$, then we have

$$
\begin{aligned}
& \operatorname{Cat}^{m}\left(E_{8} ; q\right)=[15 m+1]_{q^{2}}\left[\frac{15 m+4}{4}\right]_{q^{8}}\left[\frac{5 m+2}{2}\right]_{q^{12}}[15 m+7]_{q^{2}}[5 m+3]_{q^{6}} \\
& \times\left[\frac{3 m+2}{2}\right]_{q^{20}}\left[\frac{5 m+4}{84}\right]_{q^{504}} \frac{[252]_{q^{2}}[3]_{q^{2}}}{[7]_{q^{2}}[12]_{q^{2}}}[m+1]_{q^{30}},
\end{aligned}
$$

which, by Lemma 2.(q), is a polynomial in q with non-negative integer coefficients. 427

Editor's Proof

If $m \equiv 18(\bmod 84)$, then we have

$$
\begin{aligned}
& \operatorname{Cat}^{m}\left(E_{8} ; q\right)=[15 m+1]_{q^{2}}\left[\frac{15 m+4}{2}\right]_{q^{4}}\left[\frac{5 m+2}{4}\right]_{q^{24}}[15 m+7]_{q^{2}}\left[\frac{5 m+3}{3}\right]_{q^{18}} \\
& {\left[\frac{3 m+2}{28}\right]_{q^{280}} \frac{[140]_{q^{2}}[2]_{q^{2}}}{[4]_{q^{2}}[7]_{q^{2}}[10]_{q^{2}}}\left[\frac{5 m+4}{2}\right]_{q^{12}}[m+1]_{q^{30}}, }
\end{aligned}
$$

which, by Lemma 2.(r), is a polynomial in q with non-negative integer coefficients. 429
If $m \equiv 21(\bmod 84)$, then we have

$$
\begin{aligned}
\operatorname{Cat}^{m}\left(E_{8} ; q\right) & =\left[\frac{15 m+1}{4}\right]_{q^{8}}[15 m+4]_{q^{2}}[5 m+2]_{q^{6}}\left[\frac{15 m+7}{14}\right]_{q^{28}} \frac{[14]_{q^{2}}}{[2]_{q^{2}}[7]_{q^{2}}}\left[\frac{5 m+3}{12}\right]_{q^{72}} \\
& \times \frac{[12]_{q^{6}}}{[3]_{q^{6}}[4]_{q^{6}}}[3 m+2]_{q^{10}}[5 m+4]_{q^{6}}\left[\frac{m+1}{2}\right]_{q^{60}} \frac{[30]_{q^{2}}[2]_{q^{2}}[3]_{q^{2}}[5]_{q^{2}}}{[6]_{q^{2}}[10]_{q^{2}}[15]_{q^{2}}},
\end{aligned}
$$

which, by Corollary 1 and Lemma 2.(k), is a polynomial in q with non-negative 431 integer coefficients.

If $m \equiv 25(\bmod 84)$, then we have

$$
\begin{aligned}
\operatorname{Cat}^{m}\left(E_{8} ; q\right)= & {\left[\frac{15 m+1}{4}\right]_{q^{8}}[15 m+4]_{q^{2}}[5 m+2]_{q^{6}}\left[\frac{15 m+7}{2}\right]_{q^{4}}\left[\frac{5 m+3}{4}\right]_{q^{24}} } \\
& \times\left[\frac{3 m+2}{7}\right]_{q^{70}} \frac{[35]_{q^{2}}}{[5]_{q^{2}}[7]_{q^{2}}}\left[\frac{5 m+4}{3}\right]_{q^{18}}\left[\frac{m+1}{2}\right]_{q^{60}} \frac{[30]_{q^{2}}[2]_{q^{2}}[3]_{q^{2}}[5]_{q^{2}}}{[6]_{q^{2}}[10]_{q^{2}}[15]_{q^{2}}},
\end{aligned}
$$

which, by Lemma 2.(1), is a polynomial in q with non-negative integer coefficients. 434
If $m \equiv 27(\bmod 84)$, then we have

$$
\begin{gathered}
\operatorname{Cat}^{m}\left(E_{8} ; q\right)=\left[\frac{15 m+1}{14}\right]_{q^{28}} \frac{[14]_{q^{2}}}{[2]_{q^{2}}[7]_{q^{2}}}[15 m+4]_{q^{2}}[5 m+2]_{q^{6}}\left[\frac{15 m+7}{4}\right]_{q^{8}}\left[\frac{5 m+3}{6}\right]_{q^{36}} \\
\times \frac{[6]_{q^{6}}}{[2]_{q^{6}}[3]_{q^{6}}}[3 m+2]_{q^{10}}[5 m+4]_{q^{6}}\left[\frac{m+1}{4}\right]_{q^{120}} \frac{[60]_{q^{2}}[2]_{q^{2}}[3]_{q^{2}}[5]_{q^{2}}}{[10]_{q^{2}}[12]_{q^{2}}[15]_{q^{2}}},
\end{gathered}
$$

which, by Corollary 1 and Lemma 2.(o), is a polynomial in q with non-negative ${ }^{436}$ integer coefficients.

All other cases are disposed of in a similar fashion.

5 Auxiliary Results I

This section collects several auxiliary results which allow us to reduce the problem 439 of proving Theorem 2, or the equivalent statement (5), for the 26 exceptional groups 440 listed in Sect. 2 to a finite problem. While Lemmas 4 and 5 cover special choices of 441

Editor's Proof

the parameters, Lemmas 3 and 7 afford an inductive procedure. More precisely, if we assume that we have already verified Theorem 2 for all groups of smaller rank, 443 then Lemmas 3 and 7, together with Lemmas 4 and 8, reduce the verification of 444 Theorem 2 for the group that we are currently considering to a finite problem; see 445 Remark 3. The final lemma of this section, Lemma 9, disposes of complex reflection 446 groups with a special property satisfied by their degrees. 447

Let $p=a m+b, 0 \leq b<m$. We have

$$
\begin{align*}
& \phi^{p}\left(\left(w_{0} ; w_{1}, \ldots, w_{m}\right)\right) \\
& \quad=\left(* ; c^{a+1} w_{m-b+1} c^{-a-1}, c^{a+1} w_{m-b+2} c^{-a-1}, \ldots, c^{a+1} w_{m} c^{-a-1},\right. \\
& \left.\quad c^{a} w_{1} c^{-a}, \ldots, c^{a} w_{m-b} c^{-a}\right), \tag{10}
\end{align*}
$$

where $*$ stands for the element of W which is needed to complete the product of the 449 components to c.

Lemma 3. It suffices to check (5) for p a divisor of mh. More precisely, let p be a 451 divisor of $m h$, and let k be another positive integer with $\operatorname{gcd}(k, m h / p)=1$, then 452 we have

$$
\begin{equation*}
\left.\mathrm{Cat}^{m}(W ; q)\right|_{q=e^{2 \pi i p / m h}}=\left.\operatorname{Cat}^{m}(W ; q)\right|_{q=e^{2 \pi i k p / m h}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\operatorname{Fix}_{N C^{m}(W)}\left(\phi^{p}\right)\right|=\left|\operatorname{Fix}_{N C^{m}(W)}\left(\phi^{k p}\right)\right| . \tag{12}
\end{equation*}
$$

Proof. For (11), this follows immediately from

$$
\lim _{q \rightarrow \zeta} \frac{[\alpha]_{q}}{[\beta]_{q}}= \begin{cases}\frac{\alpha}{\beta} & \text { if } \alpha \equiv \beta \equiv 0 \quad(\bmod d) \tag{13}\\ 1 & \text { otherwise }\end{cases}
$$

where ζ is a primitive d-th root of unity and α, β are non-negative integers such that $\alpha \equiv \beta(\bmod d)$.

In order to establish (12), suppose that $x \in \operatorname{Fix}_{N C^{m}(W)}\left(\phi^{p}\right)$, that is, $x \in N C^{m}(W)$ and $\phi^{p}(x)=x$. It obviously follows that $\phi^{k p}(x)=x$, so that $x \in \operatorname{Fix}_{N C^{m}(W)}\left(\phi^{k p}\right)$. To establish the converse, note that, if $\operatorname{gcd}(k, m h / p)=1$, then there exists k^{\prime} with $k^{\prime} k \equiv 1\left(\bmod \frac{m h}{p}\right)$. It follows that, if $x \in \operatorname{Fix}_{N C^{m}(W)}\left(\phi^{k p}\right)$, that is, if $x \in N C^{m}(W)$ and $\phi^{k p}(x)=x$, then $x=\phi^{k^{\prime} k p}(x)=\phi^{p}(x)$, whence $x \in \operatorname{Fix}_{N C^{m}(W)}\left(\phi^{p}\right)$.

Lemma 4. Let p be a divisor of m. If p is divisible by m, then (5) is true.
Proof. According to (10), the action of ϕ^{p} on $N C^{m}(W)$ is described by

$$
\phi^{p}\left(\left(w_{0} ; w_{1}, \ldots, w_{m}\right)\right)=\left(* ; c^{p / m} w_{1} c^{-p / m}, \ldots, c^{p / m} w_{m} c^{-p / m}\right) .
$$

Editor's Proof

Hence, if $\left(w_{0} ; w_{1}, \ldots, w_{m}\right)$ is fixed by ϕ^{p}, then each individual w_{i} must be fixed 460 under conjugation by $c^{p / m}$.

Using the notation $W^{\prime}=\operatorname{Cent}_{W}\left(c^{p / m}\right)$, the previous observation means 462 that $w_{i} \in W^{\prime}, i=1,2, \ldots, m$. Springer [35, Theorem 4.2] (see also [25, 463 Theorem $11.24(\mathrm{iii})$]) proved that W^{\prime} is a well-generated complex reflection group 464 whose degrees coincide with those degrees of W that are divisible by $m h / p$. It was 465 furthermore shown in [10, Lemma 3.3] that ${ }_{466}$

$$
\begin{equation*}
N C(W) \cap W^{\prime}=N C\left(W^{\prime}\right) \tag{14}
\end{equation*}
$$

Hence, the tuples $\left(w_{0} ; w_{1}, \ldots, w_{m}\right)$ fixed by ϕ^{p} are in fact identical with the 467 elements of $N C^{m}\left(W^{\prime}\right)$, which implies that

$$
\begin{equation*}
\left|\operatorname{Fix}_{N C^{m}(W)}\left(\phi^{p}\right)\right|=\left|N C^{m}\left(W^{\prime}\right)\right| . \tag{15}
\end{equation*}
$$

Application of Theorem 1 with W replaced by W^{\prime} and of the "limit rule" (13) then 469 yields that

$$
\begin{equation*}
\left|N C^{m}\left(W^{\prime}\right)\right|=\prod_{\substack{\left.1 \leq i \leq n \\ \frac{m h}{p} \right\rvert\, d_{i}}} \frac{m h+d_{i}}{d_{i}}=\left.\operatorname{Cat}^{m}(W ; q)\right|_{q=e^{2 \pi i p / m h}} \tag{16}
\end{equation*}
$$

Combining (15) and (16), we obtain (5). This finishes the proof of the lemma.
Lemma 5. Equation (5) holds for all divisors p of m.
Proof. Using (13) and the fact that the degrees of irreducible well-generated 472 complex reflection groups satisfy $d_{i}<h$ for all $i<n$, we see that ${ }_{473}$

$$
\left.\operatorname{Cat}^{m}(W ; q)\right|_{q=e^{2 \pi i p / m h}}= \begin{cases}m+1 & \text { if } m=p \tag{474}\\ 1 & \text { if } m \neq p\end{cases}
$$

On the other hand, if $\left(w_{0} ; w_{1}, \ldots, w_{m}\right)$ is fixed by ϕ^{p}, then, because of the action 475 (10), we must have $w_{1}=w_{p+1}=\cdots=w_{m-p+1}$ and $w_{1}=c w_{m-p+1} c^{-1} .{ }^{476}$ In particular, $w_{1} \in \operatorname{Cent}_{W}(c)$. By the theorem of Springer cited in the proof of 477 Lemma 4, the subgroup Cent ${ }_{W}(c)$ is itself a complex reflection group whose degrees 478 are those degrees of W that are divisible by h. The only such degree is h itself, 479 hence $\operatorname{Cent}_{W}(c)$ is the cyclic group generated by c. Moreover, by (14), we obtain 480 that $w_{1}=\varepsilon$, the identity element of W, or $w_{1}=c$. Therefore, for $m=p$ the 481 set $\operatorname{Fix}_{N C^{m}(W)}\left(\phi^{p}\right)$ consists of the $m+1$ elements $\left(w_{0} ; w_{1}, \ldots, w_{m}\right)$ obtained by 482 choosing $w_{i}=c$ for a particular i between 0 and m, all other w_{j} 's being equal to $\varepsilon, 483$ while, for $m \neq p$, we have ${ }_{484}$

$$
\operatorname{Fix}_{N C^{m}(W)}\left(\phi^{p}\right)=\{(c ; \varepsilon, \ldots, \varepsilon)\}
$$

whence the result.

Editor's Proof

Lemma 6. Let W be an irreducible well-generated complex reflection group all of 486 whose degrees are divisible by d. Then each element of W is fixed under conjugation 487 by $c^{h / d}$.

Proof. By the theorem of Springer cited in the proof of Lemma 4, the subgroup $W^{\prime}=\operatorname{Cent}_{W}\left(c^{h / d}\right)$ is itself a complex reflection group whose degrees are those degrees of W that are divisible by d. Thus, by our assumption, the degrees of W^{\prime} coincide with the degrees of W, and hence W^{\prime} must be equal to W. Phrased differently, each element of W is fixed under conjugation by $c^{h / d}$, as claimed.

Lemma 7. Let W be an irreducible well-generated complex reflection group of 489 rank n, and let $p=m_{1} h_{1}$ be a divisor of $m h$, where $m=m_{1} m_{2}$ and $h=h_{1} h_{2} .490$ Without loss of generality, we assume that $\operatorname{gcd}\left(h_{1}, m_{2}\right)=1$. Suppose that Theorem 2491 has already been verified for all irreducible well-generated complex reflection 492 groups with rank $<n$. If h_{2} does not divide all degrees d_{i}, then Eq. (5) is satisfied. ${ }^{493}$

Proof. Let us write $h_{1}=a m_{2}+b$, with $0 \leq b<m_{2}$. The condition $\operatorname{gcd}\left(h_{1}, m_{2}\right)=1494$ translates into $\operatorname{gcd}\left(b, m_{2}\right)=1$. From (10), we infer that

$$
\begin{align*}
& \phi^{p}\left(\left(w_{0} ; w_{1}, \ldots, w_{m}\right)\right) \\
& =\left(* ; c^{a+1} w_{m-m_{1} b+1} c^{-a-1}, c^{a+1} w_{m-m_{1} b+2} c^{-a-1}, \ldots, c^{a+1} w_{m} c^{-a-1},\right. \\
& \left.c^{a} w_{1} c^{-a}, \ldots, c^{a} w_{m-m_{1} b} c^{-a}\right) . \tag{17}
\end{align*}
$$

Supposing that $\left(w_{0} ; w_{1}, \ldots, w_{m}\right)$ is fixed by ϕ^{p}, we obtain the system of equations 496

$$
\begin{aligned}
& w_{i}=c^{a+1} w_{i+m-m_{1} b} c^{-a-1}, \quad i=1,2, \ldots, m_{1} b, \\
& w_{i}=c^{a} w_{i-m_{1} b} c^{-a}, \quad i=m_{1} b+1, m_{1} b+2, \ldots, m
\end{aligned}
$$

which, after iteration, implies in particular that

$$
w_{i}=c^{b(a+1)+\left(m_{2}-b\right) a} w_{i} c^{-b(a+1)-\left(m_{2}-b\right) a}=c^{h_{1}} w_{i} c^{-h_{1}}, \quad i=1,2, \ldots, m
$$

It is at this point where we need $\operatorname{gcd}\left(b, m_{2}\right)=1$. The last equation shows that 499 each $w_{i}, i=1,2, \ldots, m$, and thus also w_{0}, lies in $\operatorname{Cent}_{W}\left(c^{h_{1}}\right)$. By the theorem of 500 Springer cited in the proof of Lemma 4, this centraliser subgroup is itself a complex 501 reflection group, W^{\prime} say, whose degrees are those degrees of W that are divisible 502 by $h / h_{1}=h_{2}$. Since, by assumption, h_{2} does not divide all degrees, W^{\prime} has rank 503 strictly less than n. Again by assumption, we know that Theorem 2 is true for W^{\prime}, 504 so that in particular,

$$
\left|\operatorname{Fix}_{N C^{m}\left(W^{\prime}\right)}\left(\phi^{p}\right)\right|=\left.\operatorname{Cat}^{m}\left(W^{\prime} ; q\right)\right|_{q=e^{2 \pi i p / m h}}
$$

The arguments above together with (14) show that

$$
\operatorname{Fix}_{N C^{m}(W)}\left(\phi^{p}\right)=\operatorname{Fix}_{N C^{m}\left(W^{\prime}\right)}\left(\phi^{p}\right)
$$

On the other hand, using (13) it is straightforward to see that

$$
\left.\operatorname{Cat}^{m}(W ; q)\right|_{q=e^{2 \pi i p / m h}}=\left.\operatorname{Cat}^{m}\left(W^{\prime} ; q\right)\right|_{q=e^{2 \pi i p / m h}}
$$

This proves (5) for our particular p, as required.
Lemma 8. Let W be an irreducible well-generated complex reflection group of 511 rank n, and let $p=m_{1} h_{1}$ be a divisor of $m h$, where $m=m_{1} m_{2}$ and $h=h_{1} h_{2}$. We 512 assume that $\operatorname{gcd}\left(h_{1}, m_{2}\right)=1$. If $m_{2}>n$ then

$$
\operatorname{Fix}_{N C^{m}(W)}\left(\phi^{p}\right)=\{(c ; \varepsilon, \ldots, \varepsilon)\} .
$$

Proof. Let us suppose that $\left(w_{0} ; w_{1}, \ldots, w_{m}\right) \in \operatorname{Fix}_{N C^{m}(W)}\left(\phi^{p}\right)$ and that there exists a $j \geq 1$ such that $w_{j} \neq \varepsilon$. By (17), it then follows for such a j that also $w_{k} \neq \varepsilon$ for all $k \equiv j-m_{1} b(\bmod m)$, where, as before, b is defined as the unique integer with $h_{1}=a m_{2}+b$ and $0 \leq b<m_{2}$. Since, by assumption, $\operatorname{gcd}\left(b, m_{2}\right)=1$, there are exactly m_{2} such k 's which are distinct mod m. However, this implies that the sum of the absolute lengths of the w_{i} 's, $0 \leq i \leq m$, is at least $m_{2}>n$, a contradiction to Remark 1.(2).

Remark 3. (1) If we put ourselves in the situation of the assumptions of Lemma 7, then we may conclude that Eq. (5) only needs to be checked for pairs (m_{2}, h_{2}) 516 subject to the following restrictions:

$$
\begin{equation*}
m_{2} \geq 2, \quad \operatorname{gcd}\left(h_{1}, m_{2}\right)=1, \quad \text { and } h_{2} \text { divides all degrees of } W . \tag{18}
\end{equation*}
$$

Indeed, Lemmas 4 and 7 together imply that Eq. (5) is always satisfied in all 518 other cases.

(2) Still putting ourselves in the situation of Lemma 7, if $m_{2}>n$ and $m_{2} h_{2}$ does 520 not divide any of the degrees of W, then Eq. (5) is satisfied. Indeed, Lemma $8{ }_{521}$ says that in this case the left-hand side of (5) equals 1 , while a straightforward 522 computation using (13) shows that in this case the right-hand side of (5) equals 523 1 as well.
(3) It should be observed that this leaves a finite number of choices for m_{2} to 525 consider, whence a finite number of choices for $\left(m_{1}, m_{2}, h_{1}, h_{2}\right)$. Altogether, ${ }_{526}$ there remains a finite number of choices for $p=h_{1} m_{1}$ to be checked.
Lemma 9. Let W be an irreducible well-generated complex reflection group of 528 rank n with the property that $d_{i} \mid h$ for $i=1,2, \ldots, n$. Then Theorem 2 is true for 529 this group W.
Proof. By Lemma 3, we may restrict ourselves to divisors p of $m h$. ${ }_{531}$
Suppose that $e^{2 \pi i p / m h}$ is a d_{i}-th root of unity for some i. In other words, $m h / p 532$ divides d_{i}. Since d_{i} is a divisor of h by assumption, the integer $m h / p$ also divides $h .{ }_{533}$ But this is equivalent to saying that m divides p, and Eq. (5) holds by Lemma $4 . \quad{ }_{534}$

Now assume that $m h / p$ does not divide any of the d_{i} 's. Then, by (13), the right- 535 hand side of (5) equals 1 . On the other hand, $(c ; \varepsilon, \ldots, \varepsilon)$ is always an element of ${ }_{536}$

Editor's Proof

$\operatorname{Fix}_{N C^{m}(W)}\left(\phi^{p}\right)$. To see that there are no others, we make appeal to the classification ${ }_{537}$ of all irreducible well-generated complex reflection groups, which we recalled in 538 Sect. 2. Inspection reveals that all groups satisfying the hypotheses of the lemma 539 have rank $n \leq 2$. Except for the groups contained in the infinite series $G(d, 1, n) 540$ and $G(e, e, n)$ for which Theorem 2 has been established in [20], these are the 541 groups $G_{5}, G_{6}, G_{9}, G_{10}, G_{14}, G_{17}, G_{18}, G_{21}$. We now discuss these groups case by 542 case, keeping the notation of Lemma 7. In order to simplify the argument, we 543 note that Lemma 8 implies that Eq. (5) holds if $m_{2}>2$, so that in the following 544 arguments we always may assume that $m_{2}=2$.

CASE G_{5}. The degrees are 6, 12, and therefore Remark 3.(1) implies that Eq. (5) 546 is always satisfied.

CASE G_{6}. The degrees are 4,12 , and therefore, according to Remark 3.(1), we 548 need only consider the case where $h_{2}=4$ and $m_{2}=2$, that is, $p=3 m / 2$. Then 549 (17) becomes

$$
\begin{align*}
& \phi^{p}\left(\left(w_{0} ; w_{1}, \ldots, w_{m}\right)\right) \tag{19}\\
& =\left(c^{2} w_{\frac{m}{2}+1} c^{-2}, c^{2} w_{\frac{m}{2}+2} c^{-2}, \ldots, c^{2} w_{m} c^{-2}, c w_{1} c^{-1}, \ldots, c w_{\frac{m}{2}} c^{-1}\right) .
\end{align*}
$$

If $\left(w_{0} ; w_{1}, \ldots, w_{m}\right)$ is fixed by ϕ^{p} and not equal to $(c ; \varepsilon, \ldots, \varepsilon)$, there must exist 551 an i with $1 \leq i \leq \frac{m}{2}$ such that $\ell_{T}\left(w_{i}\right)=\ell_{T}\left(w \frac{m}{2}+i\right)=1, w_{\frac{m}{2}+i}=c w_{i} c^{-1},{ }_{552}$ $w_{i} w_{\frac{m}{2}+i}=w_{i} c w_{i} c^{-1}=c$, and all w_{j}, with $j \neq i, \frac{m}{2}+i$, equal ε. However, with ${ }_{553}$ the help of the GAP package CHEVIE [15, 28], one verifies that there is no w_{i} in 554 G_{6} such that

$$
\ell_{T}\left(w_{i}\right)=1 \quad \text { and } \quad w_{i} c w_{i} c^{-1}=c
$$

are simultaneously satisfied. Hence, the left-hand side of (5) is equal to 1 , as 557 required.

CASE G_{9}. The degrees are 8,24 , and therefore, according to Remark 3.(1), we 559 need only consider the case where $h_{2}=8$ and $m_{2}=2$, that is, $p=3 m / 2$. This is 560 the same p as for G_{6}. Again, CHEVIE finds no solution. Hence, the left-hand side 561 of (5) is equal to 1 , as required. 562

CASE G_{10}. The degrees are 12,24 , and therefore Remark 3.(1) implies that 563 Eq. (5) is always satisfied. 564

CASE G_{14}. The degrees are 6, 24, and therefore Remark 3.(1) implies that Eq. (5) 565 is always satisfied.

CASE G_{17}. The degrees are 20, 60, and therefore, according to Remark 3.(1), we 567 need only consider the cases where $h_{2}=20$ or $h_{2}=4$. In the first case, $p=3 \mathrm{~m} / 2$, 568 which is the same p as for G_{6}. Again, CHEVIE finds no solution. In the second 569 case, $p=15 m / 2$. Then (17) becomes

$$
\begin{align*}
& \phi^{p}\left(\left(w_{0} ; w_{1}, \ldots, w_{m}\right)\right) \\
& \quad=\left(* ; c^{8} w_{\frac{m}{2}+1} c^{-8}, c^{8} w_{\frac{m}{2}+2} c^{-8}, \ldots, c^{8} w_{m} c^{-8}, c^{7} w_{1} c^{-7}, \ldots, c^{7} w_{\frac{m}{2}} c^{-7}\right) \tag{20}
\end{align*}
$$

Editor's Proof

By Lemma 6, every element of $N C(W)$ is fixed under conjugation by c^{3}, and, thus, 571 on elements fixed by ϕ^{p}, the above action of ϕ^{p} reduces to the one in (19). This 572 action was already discussed in the first case. Hence, in both cases, the left-hand 573 side of (5) is equal to 1 , as required. 574

CASE G_{18}. The degrees are 30,60, and therefore Remark 3.(1) implies that 575 Eq. (5) is always satisfied. ${ }_{576}$

CASE G_{21}. The degrees are 12,60 , and therefore, according to Remark 3.(1), we 577 need only consider the cases where $h_{2}=12$ or $h_{2}=4$. In the first case, $p=5 \mathrm{~m} / 2$, 578 so that (17) becomes

$$
\begin{align*}
& \phi^{p}\left(\left(w_{0} ; w_{1}, \ldots, w_{m}\right)\right) \\
& \quad=\left(* ; c^{3} w_{\frac{m}{2}+1} c^{-3}, c^{3} w_{\frac{m}{2}+2} c^{-3}, \ldots, c^{3} w_{m} c^{-3}, c^{2} w_{1} c^{-2}, \ldots, c^{2} w_{\frac{m}{2}} c^{-2}\right) \tag{21}
\end{align*}
$$

If $\left(w_{0} ; w_{1}, \ldots, w_{m}\right)$ is fixed by ϕ^{p} and not equal to $(c ; \varepsilon, \ldots, \varepsilon)$, there must exist an $i 580$ with $1 \leq i \leq \frac{m}{2}$ such that $\ell_{T}\left(w_{i}\right)=1$ and $w_{i} c^{2} w_{i} c^{-2}=c$. However, with the help 581 of the GAP package CHEVIE [15,28], one verifies that there is no such solution 582 to this equation. In the second case, $p=15 \mathrm{~m} / 2$. Then (17) becomes the action in 583 (20). By Lemma 6, every element of $N C(W)$ is fixed under conjugation by c^{5}, and, 584 thus, on elements fixed by ϕ^{p}, the action of ϕ^{p} in (20) reduces to the one in the first 585 case. Hence, in both cases, the left-hand side of (5) is equal to 1, as required. 586

This completes the proof of the lemma.

6 Exemplification of Case-by-Case Verification of Theorem 2

It remains to verify Theorem 2 for the groups $G_{4}, G_{8}, G_{16}, G_{20}, G_{23}={ }_{588}$ $H_{3}, G_{24}, G_{25}, G_{26}, G_{27}, G_{28}=F_{4}, G_{29}, G_{30}=H_{4}, G_{32}, G_{33}, G_{34}, G_{35}=E_{6}, G_{36}={ }_{589}$ $E_{7}, G_{37}=E_{8}$. All details can be found in [22, Sect. 6]. We content ourselves with 590 illustrating the type of computation that is needed here by going through the case 591 of the group G_{24}, and by discussing some of the arguments needed for the group 592 $G_{37}=E_{8}$.

In the sequel we write ζ_{d} for a primitive d-th root of unity.

6.1 CASE \boldsymbol{G}_{24}

The degrees are $4,6,14$, and hence we have

$$
\begin{equation*}
\operatorname{Cat}^{m}\left(G_{24} ; q\right)=\frac{[14 m+14]_{q}[14 m+6]_{q}[14 m+4]_{q}}{[14]_{q}[6]_{q}[4]_{q}} \tag{597}
\end{equation*}
$$

Editor's Proof

Let ζ be a $14 m$-th root of unity. In what follows, we abbreviate the assertion that " $\zeta 598$ is a primitive d-th root of unity" as " $\zeta=\zeta_{d}$." The following cases on the right-hand 599 side of (5) occur:

$$
\begin{align*}
& \lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(G_{24} ; q\right) \quad=m+1, \quad \text { if } \zeta=\zeta_{14}, \zeta_{7}, \tag{22}\\
& \lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(G_{24} ; q\right)=\frac{7 m+3}{3}, \quad \text { if } \zeta=\zeta_{6}, \zeta_{3}, 3 \mid m, \tag{23}\\
& \lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(G_{24} ; q\right)=\frac{7 m+2}{2}, \quad \text { if } \zeta=\zeta_{4}, 2 \mid m, \tag{24}\\
& \lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(G_{24} ; q\right)=\operatorname{Cat}^{m}\left(G_{24}\right), \quad \text { if } \zeta=-1 \text { or } \zeta=1, \tag{25}\\
& \lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(G_{24} ; q\right) \quad=1, \quad \text { otherwise. } \tag{26}
\end{align*}
$$

We must now prove that the left-hand side of (5) in each case agrees with the 601 values exhibited in (22)-(26). The only cases not covered by Lemma 4 are the ones 602 in (23), (24), and (26). (In both (22) and (25) we have $d \mid h$.) ${ }_{603}$

We first consider (23). By Lemma 3, we are free to choose $p=7 m / 3$ if $\zeta=\zeta_{6}, 604$ respectively $p=14 m / 3$ if $\zeta=\zeta_{3}$. In both cases, m must be divisible by 3 . 605

We start with the case that $p=7 m / 3$. From (10), we infer 606

$$
\begin{aligned}
& \phi^{p}\left(\left(w_{0} ; w_{1}, \ldots, w_{m}\right)\right) \\
& \quad=\left(* ; c^{3} w_{\frac{2 m}{3}+1} c^{-3}, c^{3} w_{\frac{2 m}{3}+2} c^{-3}, \ldots, c^{3} w_{m} c^{-3}, c^{2} w_{1} c^{-2}, \ldots, c^{2} w_{\frac{2 m}{3}} c^{-2}\right)
\end{aligned}
$$

Supposing that $\left(w_{0} ; w_{1}, \ldots, w_{m}\right)$ is fixed by ϕ^{p}, we obtain the system of equations

$$
\begin{align*}
& w_{i} \quad=c^{3} w_{\frac{2 m}{3}+i} c^{-3}, \quad i=1,2, \ldots, \frac{m}{3}, \tag{27}\\
& w_{i}=c^{2} w_{i-\frac{m}{3}} c^{-2}, \quad i=\frac{m}{3}+1, \frac{m}{3}+2, \ldots, m . \tag{28}
\end{align*}
$$

There are two distinct possibilities for choosing the w_{i} 's, $1 \leq i \leq m$: either all 608 the w_{i} 's are equal to ε, or there is an i with $1 \leq i \leq \frac{m}{3}$ such that

$$
\begin{equation*}
\ell_{T}\left(w_{i}\right)=\ell_{T}\left(w_{i+\frac{m}{3}}\right)=\ell_{T}\left(w_{i+\frac{2 m}{3}}\right)=1 . \tag{610}
\end{equation*}
$$

Writing t_{1}, t_{2}, t_{3} for $w_{i}, w_{i+\frac{m}{3}}, w_{i+\frac{2 m}{3}}$, respectively, the Eqs. (27) and (28) reduce to 611

$$
\begin{align*}
& t_{1}=c^{3} t_{3} c^{-3}, \tag{29}\\
& t_{2}=c^{2} t_{1} c^{-2} \tag{30}\\
& t_{3}=c^{2} t_{2} c^{-2} \tag{31}
\end{align*}
$$

Editor's Proof

One of these equations is in fact superfluous: if we substitute (30) and (31) in 612 (29), then we obtain $t_{1}=c^{7} t_{1} c^{-7}$ which is automatically satisfied due to Lemma 6613 with $d=2$.

Since $\left(w_{0} ; w_{1}, \ldots, w_{m}\right) \in N C^{m}\left(G_{24}\right)$, we must have $t_{1} t_{2} t_{3}=c$. Combining this 615 with (29)-(31), we infer that

$$
\begin{equation*}
t_{1}\left(c^{2} t_{1} c^{-2}\right)\left(c^{4} t_{1} c^{-4}\right)=c \tag{32}
\end{equation*}
$$

With the help of CHEVIE, one obtains seven solutions for t_{1} in this equation, each 617 of them giving rise to $m / 3$ elements of $\operatorname{Fix}_{N C^{m}\left(G_{24}\right)}\left(\phi^{p}\right)$ since i (in w_{i}) ranges from 618 1 to $m / 3$.

In total, we obtain $1+7 \frac{m}{3}=\frac{7 m+3}{3}$ elements in $\operatorname{Fix}_{N C^{m}\left(G_{24}\right)}\left(\phi^{p}\right)$, which agrees 620 with the limit in (23).

The case where $p=14 m / 3$ can be treated in a similar fashion. In the end, it 622 turns out that we have to solve the same enumeration problem as for $p=7 \mathrm{~m} / 3,623$ and, consequently, the number of elements of $\operatorname{Fix}_{N C^{m}\left(G_{24}\right)}\left(\phi^{p}\right)$ is the same, namely 624 $\frac{7 m+3}{3}$, as required.

Our next case is (24). Proceeding in a similar manner as before, we see that there 626 is again the trivial possibility $(c ; \varepsilon, \ldots, \varepsilon)$, and otherwise we have to find t_{1} with 627 $\ell_{T}\left(t_{1}\right)=1$ satisfying the inequality

$$
\begin{equation*}
t_{1}\left(c^{3} t_{1} c^{-3}\right) \leq_{T} c . \tag{33}
\end{equation*}
$$

With the help of CHEVIE, one obtains 7 solutions for t_{1} in this relation, each of 629 them giving rise to $m / 2$ elements of $\operatorname{Fix}_{N C^{m}\left(G_{24}\right)}\left(\phi^{p}\right)$ since i (in w_{i}) ranges from $1{ }_{630}$ to $m / 2$.

In total, we obtain $1+7 \frac{m}{2}=\frac{7 m+2}{2}$ elements in $\operatorname{Fix}_{N C^{m}\left(G_{24}\right)}\left(\phi^{p}\right)$, which agrees 632 with the limit in (24).

Finally, we turn to (26). By Remark 3, the only choices for h_{2} and m_{2} to be 634 considered are $h_{2}=1$ and $m_{2}=3, h_{2}=m_{2}=2$, and $h_{2}=2$ and $m_{2}=3$. These ${ }_{635}$ correspond to the choices $p=14 m / 3, p=7 m / 2$, respectively $p=7 m / 3$, all of 636 which have already been discussed as they do not belong to (26). Hence, (5) must 637 necessarily hold, as required.

6.2 CASE $G_{37}=E_{8}$

The degrees are $2,8,12,14,18,20,24,30$, and hence we have

$$
\begin{aligned}
& \operatorname{Cat}^{m}\left(E_{8} ; q\right)= \frac{[30 m+30]_{q}[30 m+24]_{q}[30 m+20]_{q}[30 m+18]_{q}}{[30]_{q}[24]_{q}[20]_{q}[18]_{q}} \\
& \times \frac{[30 m+14]_{q}[30 m+12]_{q}[30 m+8]_{q}[30 m+2]_{q}}{[14]_{q}[12]_{q}[8]_{q}[2]_{q}} .
\end{aligned}
$$

Editor's Proof

Cyclic Sieving for Generalised Non-crossing Partitions Associated with ...

Let ζ be a $30 m$-th root of unity. The cases occurring on the right-hand side of (5) 641 not covered by Lemma 4 are:

$$
\begin{array}{ll}
\lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(E_{8} ; q\right) & =\frac{5 m+4}{4}, \quad \text { if } \zeta=\zeta_{24}, 4 \mid m \\
\lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(E_{8} ; q\right) & =\frac{3 m+2}{2}, \quad \text { if } \zeta=\zeta_{20}, 2 \mid m, \\
\lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(E_{8} ; q\right) & =\frac{5 m+3}{3}, \quad \text { if } \zeta=\zeta_{18}, \zeta_{9}, 3 \mid m, \\
\lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(E_{8} ; q\right) & =\frac{15 m+7}{7}, \quad \text { if } \zeta=\zeta_{14}, \zeta_{7}, 7 \mid m, \\
\lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(E_{8} ; q\right) & =\frac{(5 m+4)(5 m+2)}{8}, \quad \text { if } \zeta=\zeta_{12}, 2 \mid m, \\
\lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(E_{8} ; q\right) & =\frac{(5 m+4)(15 m+4)}{16}, \quad \text { if } \zeta=\zeta_{8}, 4 \mid m, \\
\lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(E_{8} ; q\right)=\frac{(5 m+4)(3 m+2)(5 m+2)(15 m+4)}{64}, \quad \text { if } \zeta=\zeta_{4}, 2 \mid m, \\
\lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(E_{8} ; q\right) & =\operatorname{Cat}^{m}\left(E_{8}\right), \quad \text { if } \zeta=-1 \text { or } \zeta=1, \\
\lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(E_{8} ; q\right) & =1, \quad \text { otherwise. }, \tag{42}
\end{array}
$$

We now have to prove that the left-hand side of (5) in each case agrees with the 643 values exhibited in (34)-(42). Since the corresponding computations in the various 644 cases are very similar, we concentrate here only on the cases (39) and (40), these 645 two being representative of the types of arguments arising. As before, we refer the 646 reader to [22, Sect. 6] for full details.

Let us consider the case in (39) first. By Lemma 3, we are free to choose $p=648$ $15 m / 4$. In particular, m must be divisible by 4 . From (10), we infer

$$
\begin{aligned}
& \phi^{p}\left(\left(w_{0} ; w_{1}, \ldots, w_{m}\right)\right) \\
& \quad=\left(* ; c^{4} w_{\frac{m}{4}+1} c^{-4}, c^{4} w_{\frac{m}{4}+2} c^{-4}, \ldots, c^{4} w_{m} c^{-4}, c^{3} w_{1} c^{-3}, \ldots, c^{3} w_{\frac{m}{4}} c^{-3}\right)
\end{aligned}
$$

Supposing that $\left(w_{0} ; w_{1}, \ldots, w_{m}\right)$ is fixed by ϕ^{p}, we obtain the system of equations 650

$$
\begin{align*}
& w_{i} \quad=c^{4} w_{\frac{m}{4}+i} c^{-4}, \quad i=1,2, \ldots, \frac{3 m}{4} \tag{43}\\
& w_{i}=c^{3} w_{i-\frac{3 m}{4}} c^{-3}, \quad i=\frac{3 m}{4}+1, \frac{3 m}{4}+2, \ldots, m \tag{44}
\end{align*}
$$

There are several distinct possibilities for choosing the w_{i} 's, $1 \leq i \leq m$, which 651 we summarize as follows:
(i) All the w_{i} 's are equal to ε (and $w_{0}=c$),
(ii) There is an i with $1 \leq i \leq \frac{m}{4}$ such that

Editor's Proof

236

$$
\begin{equation*}
1 \leq \ell_{T}\left(w_{i}\right)=\ell_{T}\left(w_{i+\frac{m}{4}}\right)=\ell_{T}\left(w_{i+\frac{2 m}{4}}\right)=\ell_{T}\left(w_{i+\frac{3 m}{4}}\right) \leq 2, \tag{45}
\end{equation*}
$$

and the other w_{j} 's, $1 \leq j \leq m$, are equal to ε,
(iii) There are i_{1} and i_{2} with $1 \leq i_{1}<i_{2} \leq \frac{m}{4}$ such that

$$
\begin{align*}
& \ell_{T}\left(w_{i_{1}}\right)=\ell_{T}\left(w_{i_{2}}\right)=\ell_{T}\left(w_{i_{1}+\frac{m}{4}}\right)=\ell_{T}\left(w_{i_{2}+\frac{m}{4}}\right) \\
& \quad=\ell_{T}\left(w_{i_{1}+\frac{2 m}{4}}\right)=\ell_{T}\left(w_{i_{2}+\frac{2 m}{4}}\right)=\ell_{T}\left(w_{i_{1}+\frac{3 m}{4}}\right)=\ell_{T}\left(w_{i_{2}+\frac{3 m}{4}}\right)=1, \tag{46}
\end{align*}
$$

and all other w_{j} are equal to ε.
Moreover, since $\left(w_{0} ; w_{1}, \ldots, w_{m}\right) \in N C^{m}\left(E_{8}\right)$, we must have

$$
w_{i} w_{i+\frac{m}{4}} w_{i+\frac{2 m}{4}} w_{i+\frac{3 m}{4}} \leq T c
$$

or

$$
w_{i_{1}} w_{i_{2}} w_{i_{1}+\frac{m}{4}} w_{i_{2}+\frac{m}{4}} w_{i_{1}+\frac{2 m}{4}} w_{i_{2}+\frac{2 m}{4}} w_{i_{1}+\frac{3 m}{4}} w_{i_{2}+\frac{3 m}{4}}=c .
$$

Together with Eqs. (43), (44), (45), and (46), this implies that

$$
\begin{equation*}
w_{i}=c^{15} w_{i} c^{-15} \quad \text { and } \quad w_{i}\left(c^{11} w_{i} c^{-11}\right)\left(c^{7} w_{i} c^{-7}\right)\left(c^{3} w_{i} c^{-3}\right) \leq_{T} c, \tag{47}
\end{equation*}
$$

or that

$$
\begin{align*}
& w_{i_{1}}=c^{15} w_{i_{1}} c^{-15}, \quad w_{i_{1}}=c^{15} w_{i_{2}} c^{-15}, \quad \text { and } \\
& w_{i_{1}} w_{i_{2}}\left(c^{11} w_{i_{1}} c^{-11}\right)\left(c^{11} w_{i_{2}} c^{-11}\right)\left(c^{7} w_{i_{1}} c^{-7}\right)\left(c^{7} w_{i_{2}} c^{-7}\right)\left(c^{3} w_{i_{1}} c^{-3}\right)\left(c^{3} w_{i_{2}} c^{-3}\right)=c . \tag{48}
\end{align*}
$$

Here, the first equation in (47) and the first two equations in (48) are automatically 664 satisfied due to Lemma 6 with $d=2$.

With the help of Stembridge's Maple package coxeter [38], one obtains 30666 solutions for w_{i} in (47) with $\ell_{T}\left(w_{i}\right)=1,45$ solutions for w_{i} with $\ell_{T}\left(w_{i}\right)=2667$ and w_{i} of type A_{1}^{2} (as a parabolic Coxeter element; see the end of Sect. 2), and 668 20 solutions for w_{i} with $\ell_{T}\left(w_{i}\right)=2$ and w_{i} of type A_{2}. Each of them gives rise to 669 $m / 4$ elements of $\operatorname{Fix}_{N C^{m}\left(E_{8}\right)}\left(\phi^{p}\right)$ since i ranges from 1 to $m / 4$.

The number of solutions in Case (iii) can be computed from our knowledge of the 671 solutions in Case (ii) according to type, using some elementary counting arguments. 672 Namely, the number of solutions of (48) is equal to

$$
45 \cdot 2+20 \cdot 3=150
$$

since an element of type A_{1}^{2} can be decomposed in two ways into a product of two 675 elements of absolute length 1 , while for an element of type A_{2} this can be done in 3676 ways.

Editor's Proof

In total, we obtain $1+(30+45+20) \frac{m}{4}+150\binom{m / 4}{2}=\frac{(5 m+4)(15 m+4)}{16}$ elements 678 in $\operatorname{Fix}_{N C^{m}\left(E_{8}\right)}\left(\phi^{p}\right)$, which agrees with the limit in (39).

Next, we discuss the case in (40). By Lemma 3, we are free to choose $p=680$ $15 m / 2$. In particular, m must be divisible by 2 . From (10), we infer

$$
\begin{aligned}
& \phi^{p}\left(\left(w_{0} ; w_{1}, \ldots, w_{m}\right)\right) \\
& \quad=\left(* ; c^{8} w_{\frac{m}{2}+1} c^{-8}, c^{8} w_{\frac{m}{2}+2} c^{-8}, \ldots, c^{8} w_{m} c^{-8}, c^{7} w_{1} c^{-7}, \ldots, c^{7} w_{\frac{m}{2}} c^{-7}\right)
\end{aligned}
$$

Supposing that $\left(w_{0} ; w_{1}, \ldots, w_{m}\right)$ is fixed by ϕ^{p}, we obtain the system of equations

$$
\begin{align*}
& w_{i} \quad=c^{8} w_{\frac{m}{2}+i} c^{-8}, \quad i=1,2, \ldots, \frac{m}{2}, \tag{49}\\
& w_{i}=c^{7} w_{i-\frac{m}{2}} c^{-7}, \quad i=\frac{m}{2}+1, \frac{m}{2}+2, \ldots, m \tag{50}
\end{align*}
$$

There are several distinct possibilities for choosing the w_{i} s, $1 \leq i \leq m$:
(i) All the w_{i} 's are equal to ε (and $w_{0}=c$),
(ii) There is an i with $1 \leq i \leq \frac{m}{2}$ such that

$$
\begin{equation*}
1 \leq \ell_{T}\left(w_{i}\right)=\ell_{T}\left(w_{i+\frac{m}{2}}\right) \leq 4, \tag{51}
\end{equation*}
$$

and the other w_{j} 's, $1 \leq j \leq m$, are equal to ε,
(iii) There are i_{1} and i_{2} with $1 \leq i_{1}<i_{2} \leq \frac{m}{2}$ such that

$$
\begin{array}{r}
\ell_{1}:=\ell_{T}\left(w_{i_{1}}\right)=\ell_{T}\left(w_{i_{1}+\frac{m}{2}}\right) \geq 1, \quad \ell_{2}:=\ell_{T}\left(w_{i_{2}}\right)=\ell_{T}\left(w_{i_{2}+\frac{m}{2}}\right) \geq 1 \\
\text { and } \quad \ell_{1}+\ell_{2} \leq 4, \tag{52}
\end{array}
$$

and the other w_{j} s, $1 \leq j \leq m$, are equal to ε,
(iv) There are i_{1}, i_{2}, i_{3} with $1 \leq i_{1}<i_{2}<i_{3} \leq \frac{m}{2}$ such that

$$
\begin{gather*}
\ell_{1}:=\ell_{T}\left(w_{i_{1}}\right)=\ell_{T}\left(w_{i_{1}+\frac{m}{2}}\right) \geq 1, \quad \ell_{2}:=\ell_{T}\left(w_{i_{2}}\right)=\ell_{T}\left(w_{i_{2}+\frac{m}{2}}\right) \geq 1, \\
\ell_{3}:=\ell_{T}\left(w_{i_{3}}\right)=\ell_{T}\left(w_{i_{3}+\frac{m}{2}}\right) \geq 1, \quad \text { and } \quad \ell_{1}+\ell_{2}+\ell_{3} \leq 4, \tag{53}
\end{gather*}
$$

and the other w_{j} 's, $1 \leq j \leq m$, are equal to ε,
(v) There are $i_{1}, i_{2}, i_{3}, i_{4}$ with $1 \leq i_{1}<i_{2}<i_{3}<i_{4} \leq \frac{m}{2}$ such that

$$
\begin{align*}
& \ell_{T}\left(w_{i_{1}}\right)=\ell_{T}\left(w_{i_{2}}\right)=\ell_{T}\left(w_{i_{3}}\right)=\ell_{T}\left(w_{i_{4}}\right) \\
& \quad=\ell_{T}\left(w_{i_{1}+\frac{m}{2}}\right)=\ell_{T}\left(w_{i_{2}+\frac{m}{2}}\right)=\ell_{T}\left(w_{i_{3}+\frac{m}{2}}\right)=\ell_{T}\left(w_{i_{4}+\frac{m}{2}}\right)=1, \tag{54}
\end{align*}
$$

and all other w_{j} 's are equal to ε.
Moreover, since $\left(w_{0} ; w_{1}, \ldots, w_{m}\right) \in N C^{m}\left(E_{8}\right)$, we must have $w_{i} w_{i+\frac{m}{2}} \leq_{T} c$, 693 respectively $w_{i_{1}} w_{i_{2}} w_{i_{1}+\frac{m}{2}} w_{i_{2}+\frac{m}{2}} \leq_{T} c$, respectively

Editor's Proof

$$
w_{i_{1}} w_{i_{2}} w_{i_{3}} w_{i_{1}+\frac{m}{2}} w_{i_{2}+\frac{m}{2}} w_{i_{3}+\frac{m}{2}} \leq_{T} c,
$$

respectively

$$
w_{i_{1}} w_{i_{2}} w_{i_{3}} w_{i_{4}} w_{i_{1}+\frac{m}{2}} w_{i_{2}+\frac{m}{2}} w_{i_{3}+\frac{m}{2}} w_{i_{4}+\frac{m}{2}}=c .
$$

Together with Eqs. (49), (50), and (51)-(54), this implies that

$$
\begin{equation*}
w_{i}=c^{15} w_{i} c^{-15} \quad \text { and } \quad w_{i}\left(c^{7} w_{i} c^{-7}\right) \leq_{T} c, \tag{55}
\end{equation*}
$$

respectively that

$$
\begin{equation*}
w_{i_{1}}=c^{15} w_{i_{1}} c^{-15}, \quad w_{i_{2}}=c^{15} w_{i_{2}} c^{-15}, \quad \text { and } \quad w_{i_{1}} w_{i_{2}}\left(c^{7} w_{i_{1}} c^{-7}\right)\left(c^{7} w_{i_{2}} c^{-7}\right) \leq T c \tag{56}
\end{equation*}
$$

respectively that

$$
\begin{align*}
& w_{i_{1}}=c^{15} w_{i_{1}} c^{-15}, \quad w_{i_{2}}=c^{15} w_{i_{2}} c^{-15}, \quad w_{i_{3}}=c^{15} w_{i_{3}} c^{-15} \\
& \text { and } \quad w_{i_{1}} w_{i_{2}} w_{i_{3}}\left(c^{7} w_{i_{1}} c^{-7}\right)\left(c^{7} w_{i_{2}} c^{-7}\right)\left(c^{7} w_{i_{3}} c^{-7}\right) \leq_{T} c \tag{57}
\end{align*}
$$

respectively that

$$
\begin{gather*}
w_{i_{1}}=c^{15} w_{i_{1}} c^{-15}, \quad w_{i_{2}}=c^{15} w_{i_{2}} c^{-15}, \quad w_{i_{3}}=c^{15} w_{i_{3}} c^{-15}, \quad w_{i_{4}}=c^{15} w_{i_{4}} c^{-15}, \\
\quad \text { and } \quad w_{i_{1}} w_{i_{2}} w_{i_{3}} w_{i_{4}}\left(c^{7} w_{i_{1}} c^{-7}\right)\left(c^{7} w_{i_{2}} c^{-7}\right)\left(c^{7} w_{i_{3}} c^{-7}\right)\left(c^{7} w_{i_{4}} c^{-7}\right)=c . \tag{58}
\end{gather*}
$$

Here, the first equation in (55), the first two in (56), the first three in (57), and the 702 first four in (58), are all automatically satisfied due to Lemma 6 with $d=2$. $\quad{ }_{703}$

With the help of Stembridge's Maple package coxeter [38], one obtains 704

- 45 solutions for w_{i} in (55) with $\ell_{T}\left(w_{i}\right)=1$,
- 150 solutions for w_{i} in (55) with $\ell_{T}\left(w_{i}\right)=2$ and w_{i} of type $A_{1}^{2}, \quad 706$
- 100 solutions for w_{i} in (55) with $\ell_{T}\left(w_{i}\right)=2$ and w_{i} of type $A_{2}, \quad 707$
- 75 solutions for w_{i} in (55) with $\ell_{T}\left(w_{i}\right)=3$ and w_{i} of type A_{1}^{3}, 708
- 165 solutions for w_{i} in (55) with $\ell_{T}\left(w_{i}\right)=3$ and w_{i} of type $A_{1} * A_{2}, \quad 709$
- 90 solutions for w_{i} in (55) with $\ell_{T}\left(w_{i}\right)=3$ and w_{i} of type $A_{3}, \quad 710$
- 15 solutions for w_{i} in (55) with $\ell_{T}\left(w_{i}\right)=4$ and w_{i} of type $A_{1}^{2} * A_{2}, \quad 711$
- 45 solutions for w_{i} in (55) with $\ell_{T}\left(w_{i}\right)=4$ and w_{i} of type $A_{1} * A_{3}$; 712
-5 solutions for w_{i} in (55) with $\ell_{T}\left(w_{i}\right)=4$ and w_{i} of type A_{2}^{2}, 713
- 18 solutions for w_{i} in (55) with $\ell_{T}\left(w_{i}\right)=4$ and w_{i} of type A_{4}, 714
- 5 solutions for w_{i} in (55) with $\ell_{T}\left(w_{i}\right)=4$ and w_{i} of type D_{4}. 715

Each of them gives rise to $m / 2$ elements of $\operatorname{Fix}_{N C^{m}\left(E_{8}\right)}\left(\phi^{p}\right)$ since i ranges from 1 to 716 $m / 2$. There are no solutions for w_{i} in (55) with w_{i} of type A_{1}^{4}.

Letting the computer find all solutions in cases (iii)-(v) would take years. 718 However, the number of these solutions can be computed from our knowledge of 719 the solutions in Case (ii) according to type, if this information is combined with 720

Editor's Proof

the decomposition numbers in the sense of [18, 19,21] (see the end of Sect.2) and 721 some elementary (multiset) permutation counting. The decomposition numbers for 722 A_{2}, A_{3}, A_{4}, and D_{4} of which we make use can be found in the appendix of [19]. ${ }_{723}$

To begin with, the number of solutions of (56) with $\ell_{1}=\ell_{2}=1$ is equal to $\quad{ }_{724}$

$$
n_{1,1}:=150 \cdot 2+100 \cdot N_{A_{2}}\left(A_{1}, A_{1}\right)=600,
$$

since an element of type A_{1}^{2} can be decomposed in two ways into a product of two 726 elements of absolute length 1 , while for an element of type A_{2} this can be done in 727 $N_{A_{2}}\left(A_{1}, A_{1}\right)=3$ ways. Similarly, the number of solutions of (56) with $\ell_{1}=2$ and 728 $\ell_{2}=1$ is equal to

$$
n_{2,1}:=75 \cdot 3+165 \cdot\left(1+N_{A_{2}}\left(A_{1}, A_{1}\right)\right)+90 \cdot N_{A_{3}}\left(A_{2}, A_{1}\right)=1,425
$$

the number of solutions of (56) with $\ell_{1}=3$ and $\ell_{2}=1$ is equal to

$$
\begin{aligned}
& n_{3,1}:=15 \cdot\left(2+N_{A_{2}}\left(A_{1}, A_{1}\right)\right)+45 \cdot\left(1+N_{A_{3}}\left(A_{2}, A_{1}\right)\right)+5 \cdot\left(2 N_{A_{2}}\left(A_{1}, A_{1}\right)\right) \\
+ & 18 \cdot\left(N_{A_{4}}\left(A_{3}, A_{1}\right)+N_{A_{4}}\left(A_{1} * A_{2}, A_{1}\right)\right)+5 \cdot\left(N_{D_{4}}\left(A_{3}, A_{1}\right)+N_{D_{4}}\left(A_{1}^{3}, A_{1}\right)\right)=660,
\end{aligned}
$$

the number of solutions of (56) with $\ell_{1}=\ell_{2}=2$ is equal to

$$
\begin{gathered}
n_{2,2}:=15 \cdot\left(2+2 N_{A_{2}}\left(A_{1}, A_{1}\right)\right)+45 \cdot\left(2 N_{A_{3}}\left(A_{2}, A_{1}\right)\right)+5 \cdot\left(2+N_{A_{2}}\left(A_{1}, A_{1}\right)^{2}\right) \\
+18 \cdot\left(N_{A_{4}}\left(A_{2}, A_{2}\right)+N_{A_{4}}\left(A_{1}^{2}, A_{1}^{2}\right)+2 N_{A_{4}}\left(A_{2}, A_{1}^{2}\right)\right) \\
+5 \cdot\left(N_{D_{4}}\left(A_{2}, A_{2}\right)+2 N_{D_{4}}\left(A_{2}, A_{1}^{2}\right)\right)=1,195,
\end{gathered}
$$

the number of solutions of (57) with $\ell_{1}=\ell_{2}=\ell_{3}=1$ is equal to

$$
n_{1,1,1}:=75 \cdot 3!+165 \cdot\left(3 N_{A_{2}}\left(A_{1}, A_{1}\right)\right)+90 N_{A_{3}}\left(A_{1}, A_{1}, A_{1}\right)=3,375
$$

the number of solutions of (57) with $\ell_{1}=2$ and $\ell_{2}=\ell_{3}=1$ is equal to

$$
\begin{aligned}
& n_{2,1,1}:=15 \cdot\left(2+N_{A_{2}}\left(A_{1}, A_{1}\right)+2 \cdot 2 \cdot N_{A_{2}}\left(A_{1}, A_{1}\right)\right) \\
&+45 \cdot\left(2 N_{A_{3}}\left(A_{2}, A_{1}\right)+\right.\left.N_{A_{3}}\left(A_{1}, A_{1}, A_{1}\right)\right)+5 \cdot\left(2 N_{A_{2}}\left(A_{1}, A_{1}\right)+2 N_{A_{2}}\left(A_{1}, A_{1}\right)^{2}\right) \\
&+18 \cdot\left(N_{A_{4}}\left(A_{2}, A_{1}, A_{1}\right)+N_{A_{4}}\left(A_{1}^{2}, A_{1}, A_{1}\right)\right) \\
&+5 \cdot\left(N_{D_{4}}\left(A_{2}, A_{1}, A_{1}\right)+N_{D_{4}}\left(A_{1}^{2}, A_{1}, A_{1}\right)\right)=2,850,
\end{aligned}
$$

and the number of solutions of (58) is equal to

$$
\begin{aligned}
n_{1,1,1,1}:=15 \cdot & \left(12 N_{A_{2}}\left(A_{1}, A_{1}\right)\right)+45 \cdot\left(4 N_{A_{3}}\left(A_{1}, A_{1}, A_{1}\right)\right)+5 \cdot\left(6 N_{A_{2}}\left(A_{1}, A_{1}\right)^{2}\right) \\
+ & 18 \cdot N_{A_{4}}\left(A_{1}, A_{1}, A_{1}, A_{1}\right)+5 \cdot N_{D_{4}}\left(A_{1}, A_{1}, A_{1}, A_{1}\right)=6,750 .
\end{aligned}
$$

Editor's Proof

In total, we obtain

$$
\begin{aligned}
1+(45+150+100+75+165+90+15+45+5+18+5) \frac{m}{2} \\
+\left(n_{1,1}+2 n_{2,1}+2 n_{3,1}+n_{2,2}\right)\binom{m / 2}{2}+\left(n_{1,1,1}+3 n_{2,1,1}\right)\binom{m / 2}{3} \\
+n_{1,1,1,1}\binom{m / 2}{4}=\frac{(5 m+4)(3 m+2)(5 m+2)(15 m+4)}{64}
\end{aligned}
$$

elements in $\operatorname{Fix}_{N C^{m}\left(E_{8}\right)}\left(\phi^{p}\right)$, which agrees with the limit in (40).

7 Cyclic Sieving II

In this section we present the second cyclic sieving conjecture due to Bessis and 740 Reiner [10, Conjecture 6.5].

Let $\psi: N C^{m}(W) \rightarrow N C^{m}(W)$ be the map defined by

$$
\begin{equation*}
\left(w_{0} ; w_{1}, \ldots, w_{m}\right) \mapsto\left(c w_{m} c^{-1} ; w_{0}, w_{1}, \ldots, w_{m-1}\right) \tag{59}
\end{equation*}
$$

For $m=1$, we have $w_{0}=c w_{1}^{-1}$, so that this action reduces to the inverse of the 743 Kreweras complement K_{id}^{c} as defined by Armstrong [3, Definition 2.5.3].

It is easy to see that $\psi^{(m+1) h}$ acts as the identity, where h is the Coxeter number 745 of W (see (61) below). By slight abuse of notation as before, let C_{2} be the cyclic ${ }_{746}$ group of order $(m+1) h$ generated by ψ.

Given these definitions, we are now in the position to state the second cyclic 748 sieving conjecture of Bessis and Reiner. By the results of [20] and of this paper, it 749 becomes the following theorem.

Theorem 4. For an irreducible well-generated complex reflection group W and 751 any $m \geq 1$, the triple $\left(N C^{m}(W), \operatorname{Cat}^{m}(W ; q), C_{2}\right)$, where $\mathrm{Cat}^{m}(W ; q)$ is the 752 q-analogue of the Fu β-Catalan number defined in (4), exhibits the cyclic sieving ${ }_{753}$ phenomenon.

By definition of the cyclic sieving phenomenon, we have to prove that

$$
\begin{equation*}
\left|\operatorname{Fix}_{N C^{m}(W)}\left(\psi^{p}\right)\right|=\left.\operatorname{Cat}^{m}(W ; q)\right|_{q=e^{2 \pi i p /(m+1) h}}, \tag{60}
\end{equation*}
$$

for all p in the range $0 \leq p<(m+1) h$.

Editor's Proof

Cyclic Sieving for Generalised Non-crossing Partitions Associated with ...

8 Auxiliary Results II

This section collects several auxiliary results which allow us to reduce the problem of proving Theorem 4, respectively the equivalent statement (60), for the 26759 exceptional groups listed in Sect. 2 to a finite problem. The corresponding lemmas, 760 Lemmas 10-15, are analogues of Lemmas 3-5 and 7-9 in Sect. 5. 761

Let $p=a(m+1)+b, 0 \leq b<m+1$. We have 762

$$
\begin{align*}
& \psi^{p}\left(\left(w_{0} ; w_{1}, \ldots, w_{m}\right)\right) \\
& \qquad=\left(c^{a+1} w_{m-b+1} c^{-a-1} ; c^{a+1} w_{m-b+2} c^{-a-1}, \ldots, c^{a+1} w_{m} c^{-a-1}\right. \\
& \left.c^{a} w_{0} c^{-a}, \ldots, c^{a} w_{m-b} c^{-a}\right) . \tag{61}
\end{align*}
$$

Lemma 10. It suffices to check (60) for p a divisor of $(m+1) h$. More precisely, let 763 p be a divisor of $(m+1) h$, and let k be another positive integer with $\operatorname{gcd}\left(k,\left(m+{ }_{764}\right.\right.$ 1) $h / p)=1$, then we have

$$
\begin{equation*}
\left.\operatorname{Cat}^{m}(W ; q)\right|_{q=e^{2 \pi i p /(m+1) h}}=\left.\operatorname{Cat}^{m}(W ; q)\right|_{q=e^{2 \pi i k p /(m+1) h}} \tag{62}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\operatorname{Fix}_{N C^{m}(W)}\left(\psi^{p}\right)\right|=\left|\operatorname{Fix}_{N C^{m}(W)}\left(\psi^{k p}\right)\right| . \tag{63}
\end{equation*}
$$

Proof. For (63), this follows in the same way as (12) in Lemma 3.
For (62), we must argue differently than in Lemma 3. Let us write $\zeta={ }_{768}$ $e^{2 \pi i p /(m+1) h}$. For a given group W, we write $S_{1}(W)$ for the set of all indices i such 769 that $\zeta^{d_{i}-h}=1$, and we write $S_{2}(W)$ for the set of all indices i such that $\zeta^{d_{i}}=1 .{ }_{770}$ By the rule of de l'Hospital, we have
$\left.\mathrm{Cat}^{m}(W ; q)\right|_{q=e^{2 \pi i p /(m+1) h}}$

$$
= \begin{cases}0 & \text { if }\left|S_{1}(W)\right|>\left|S_{2}(W)\right|, \tag{64}\\ \frac{\prod_{i \in S_{1}(W)}\left(m h+d_{i}\right)}{\prod_{i \in S_{2}(W)} d_{i}} \frac{\prod_{i \notin S_{1}(W)}\left(1-\zeta^{d_{i}-h}\right)}{\prod_{i \notin S_{2}(W)}^{\left(1-\zeta^{d_{i}}\right)},} & \text { if }\left|S_{1}(W)\right|=\left|S_{2}(W)\right| .\end{cases}
$$

Since, by Theorem 3, $\mathrm{Cat}^{m}(W ; q)$ is a polynomial in q, the case $\left|S_{1}(W)\right|<\left|S_{2}(W)\right| 772$ cannot occur. ${ }_{773}$

We claim that, for the case where $\left|S_{1}(W)\right|=\left|S_{2}(W)\right|$, the factors in the quotient 774 of products

$$
\frac{\prod_{i \notin S_{1}(W)}\left(1-\zeta^{d_{i}-h}\right)}{\prod_{i \notin S_{2}(W)}\left(1-\zeta^{d_{i}}\right)}
$$

Editor's Proof

cancel pairwise. If we assume the correctness of the claim, it is obvious that we 777 get the same result if we replace ζ by ζ^{k}, where $\operatorname{gcd}(k,(m+1) h / p)=1$, hence 778 establishing (62).

In order to see that our claim is indeed valid, we proceed in a case-by-case 780 fashion, making appeal to the classification of irreducible well-generated complex 781 reflection groups, which we recalled in Sect. 2. First of all, since $d_{n}=h$, the set 782 $S_{1}(W)$ is always non-empty as it contains the element n. Hence, if we want to have 783 $\left|S_{1}(W)\right|=\left|S_{2}(W)\right|$, the set $S_{2}(W)$ must be non-empty as well. In other words, 784 the integer $(m+1) h / p$ must divide at least one of the degrees $d_{1}, d_{2}, \ldots, d_{n}$. In 785 particular, this implies that, for each fixed reflection group W of exceptional type, 786 only a finite number of values of $(m+1) h / p$ has to be checked. Writing M for 787 $(m+1) h / p$, what needs to be checked is whether the multisets (that is, multiplicities 788 of elements must be taken into account)

$$
\left\{\left(d_{i}-h\right) \bmod M: i \notin S_{1}(W)\right\} \quad \text { and } \quad\left\{d_{i} \bmod M: i \notin S_{2}(W)\right\}
$$

are the same. Since, for a fixed irreducible well-generated complex reflection group, there is only a finite number of possibilities for M, this amounts to a routine verification.
Lemma 11. Let p be a divisor of $(m+1) h$. If p is divisible by $m+1$, then (60) is 791 true.

We leave the proof to the reader as it is completely analogous to the proof of
 Lemma $4 . \quad 794$

Lemma 12. Equation (60) holds for all divisors p of $m+1$.

Proof. We have 796

$$
\left.\mathrm{Cat}^{m}(W ; q)\right|_{q=e^{2 \pi i p /(m+1) h}}= \begin{cases}0 & \text { if } p<m+1 \tag{797}\\ m+1 & \text { if } p=m+1\end{cases}
$$

Here, the first case follows from (64) and the fact that we have $S_{1}(W) \supseteq\{n\}$ and 798 $S_{2}(W)=\emptyset$ if $p \mid(m+1)$ and $p<m+1$.

On the other hand, if $\left(w_{0} ; w_{1}, \ldots, w_{m}\right)$ is fixed by ψ^{p}, then one can apply an argument similar to that in Lemma 5 with any w_{i} taking the role of $w_{1}, 0 \leq i \leq m$. It follows that if $p=m+1$, the set $\operatorname{Fix}_{N C^{m}(W)}\left(\psi^{p}\right)$ consists of the $m+1$ elements ($w_{0} ; w_{1}, \ldots, w_{m}$) obtained by choosing $w_{i}=c$ for a particular i between 0 and m, all other w_{j} 's being equal to ε. If $p<m+1$, then there is no element in $\operatorname{Fix}_{N C^{m}(W)}\left(\psi^{p}\right)$.

Lemma 13. Let W be an irreducible well-generated complex reflection group of 800 rank n, and let $p=m_{1} h_{1}$ be a divisor of $(m+1) h$, where $m+1=m_{1} m_{2}$ and 801 $h=h_{1} h_{2}$. We assume that $\operatorname{gcd}\left(h_{1}, m_{2}\right)=1$. Suppose that Theorem 4 has already 802 been verified for all irreducible well-generated complex reflection groups with rank 803 $<n$. If h_{2} does not divide all degrees d_{i}, then Eq. (60) is satisfied.

Editor's Proof

We leave the proof to the reader as it is completely analogous to the proof of 805 Lemma 7.

Lemma 14. Let W be an irreducible well-generated complex reflection group of 807 rank n, and let $p=m_{1} h_{1}$ be a divisor of $(m+1) h$, where $m+1=m_{1} m_{2}$ and 808 $h=h_{1} h_{2}$. We assume that $\operatorname{gcd}\left(h_{1}, m_{2}\right)=1$. If $m_{2}>n$ then 809

$$
\operatorname{Fix}_{N C^{m}(W)}\left(\psi^{p}\right)=\emptyset
$$

We leave the proof to the reader as it is analogous to the proof of Lemma 8.
Remark 4. By applying the same reasoning as in Remark 3 with Lemmas 7 and 8812 replaced by Lemmas 13 and 14, respectively, it follows that we only need to check 813 (60) for pairs $\left(m_{2}, h_{2}\right)$ satisfying (18) and $m_{2} \leq n$. This reduces the problem to a 814 finite number of choices.

Lemma 15. Let W be an irreducible well-generated complex reflection group of 816 rank n with the property that $d_{i} \mid h$ for $i=1,2, \ldots, n$. Then Theorem 4 is true for 817 this group W.

Proof. Proceeding in a fashion analogous to the beginning of the proof of Lemma 9, we may restrict to the case where $p \mid(m+1) h$ and $(m+1) h / p$ does not divide any of the d_{i} 's. In this case, it follows from (64) and the fact that we have $S_{1}(W) \supseteq$ $\{n\}$ and $S_{2}(W)=\emptyset$ that the right-hand side of (60) equals 0 . Inspection of the 822 classification of all irreducible well-generated complex reflection groups, which we 823 recalled in Sect. 2, reveals that all groups satisfying the hypotheses of the lemma 824 have rank $n \leq 2$. Except for the groups contained in the infinite series $G(d, 1, n)$ and 825 $G(e, e, n)$ for which Theorem 2 has been established in [20], these are the groups 826 $G_{5}, G_{6}, G_{9}, G_{10}, G_{14}, G_{17}, G_{18}, G_{21}$. The verification of (60) can be done in a similar 827 fashion as in the proof of Lemma 9. We illustrate this by going through the case of 828 the group G_{6}. In analogy with the earlier situation, we note that Lemma 14 implies 829 that Eq. (60) holds if $m_{2}>2$, so that in the following arguments we may assume 830 that $m_{2}=2$.

CASE G_{6}. The degrees are 4,12 , and therefore, according to Remark 4, we need 832 only consider the case where $h_{2}=4$ and $m_{2}=2$, that is, $p=3(m+1) / 2$. Then 833 the action of ψ^{p} is given by

$$
\begin{align*}
& \psi^{p}\left(\left(w_{0} ; w_{1}, \ldots, w_{m}\right)\right) \\
& \quad=\left(c^{2} w_{\frac{m+1}{2}} c^{-2} ; c^{2} w_{\frac{m+3}{2}} c^{-2}, \ldots, c^{2} w_{m} c^{-2}, c w_{0} c^{-1}, \ldots, c w_{\frac{m-1}{2}} c^{-1}\right) \tag{65}
\end{align*}
$$

If $\left(w_{0} ; w_{1}, \ldots, w_{m}\right)$ is fixed by ψ^{p}, there must exist an i with $0 \leq i \leq \frac{m-1}{2}$ such that 835 $\ell_{T}\left(w_{i}\right)=1, w_{i} c w_{i} c^{-1}=c$, and all $w_{j}, j \neq i, \frac{m+1}{2}+i$, equal ε. However, with the 836 help of CHEVIE, one verifies that there is no such solution to this equation. Hence, 837 the left-hand side of (60) is equal to 0 , as required.

This completes the proof of the lemma.

9 Exemplification of Case-by-Case Verification of Theorem 4

It remains to verify Theorem 4 for the groups $G_{4}, G_{8}, G_{16}, G_{20}, G_{23}={ }_{840}$ $H_{3}, G_{24}, G_{25}, G_{26}, G_{27}, G_{28}=F_{4}, G_{29}, G_{30}=H_{4}, G_{32}, G_{33}, G_{34}, G_{35}=841$ $E_{6}, G_{36}=E_{7}, G_{37}=E_{8}$. All details can be found in [22, Sect.9]. We content 842 ourselves with discussing the case of the group G_{24}, as this suffices to convey the 843 flavour of the necessary computations. 844
In order to simplify our considerations, it should be observed that the action 845 of ψ (given in (59)) is exactly the same as the action of ϕ (given in (3)) with $m{ }_{846}$ replaced by $m+1$ on the components $w_{1}, w_{2}, \ldots, w_{m+1}$, that is, if we disregard 847 the 0 -th component of the elements of the generalised non-crossing partitions 848 involved. The only difference which arises is that, while the ($m+1$)-tuples 849 $\left(w_{0} ; w_{1}, \ldots, w_{m}\right)$ in (59) must satisfy $w_{0} w_{1} \cdots w_{m}=c$, for $w_{1}, w_{2}, \ldots, w_{m+1}$ in 850 (3) we only must have $w_{1} w_{2} \cdots w_{m+1} \leq_{T} \quad c$. Consequently, we may use the 851 counting results from Sect. 6, except that we have to restrict our attention to those 852 elements $\left(w_{0} ; w_{1}, \ldots, w_{m}, w_{m+1}\right) \in N C^{m+1}(W)$ for which $w_{1} w_{2} \cdots w_{m+1}=c$, or, ${ }_{853}$ equivalently, $w_{0}=\varepsilon$.

9.1 CASE \boldsymbol{G}_{24}

The degrees are $4,6,14$, and hence we have

$$
\operatorname{Cat}^{m}\left(G_{24} ; q\right)=\frac{[14 m+14]_{q}[14 m+6]_{q}[14 m+4]_{q}}{[14]_{q}[6]_{q}[4]_{q}}
$$

$$
857
$$

sss Let ζ be a $14(m+1)$-th root of unity. The following cases on the right-hand side 858 of (60) occur:

$$
\begin{align*}
& \lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(G_{24} ; q\right) \quad=m+1, \quad \text { if } \zeta=\zeta_{14}, \zeta_{7}, \tag{66}\\
& \lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(G_{24} ; q\right)=\frac{7 m+7}{3}, \quad \text { if } \zeta=\zeta_{6}, \zeta_{3}, 3 \mid(m+1), \tag{67}\\
& \lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(G_{24} ; q\right)=\operatorname{Cat}^{m}\left(G_{24}\right), \quad \text { if } \zeta=-1 \text { or } \zeta=1, \tag{68}\\
& \lim _{q \rightarrow \zeta} \operatorname{Cat}^{m}\left(G_{24} ; q\right) \quad=0, \quad \text { otherwise } \tag{69}
\end{align*}
$$

We must now prove that the left-hand side of (60) in each case agrees with 860 the values exhibited in (66)-(69). The only cases not covered by Lemma 11 are 861 the ones in (67) and (69). On the other hand, the only cases left to consider 862 according to Remark 4 are the cases where $h_{2}=1$ and $m_{2}=3, h_{2}=2$ and ${ }_{863}$ $m_{2}=3$, and $h_{2}=m_{2}=2$. These correspond to the choices $p=14(m+1) / 3$, 864

Editor's Proof

$p=7(m+1) / 3$, respectively $p=7(m+1) / 2$. The first two cases belong to (67), 865 while $p=7(m+1) / 2$ belongs to (69).

In the case that $p=7(m+1) / 3$, the action of ψ^{p} is given by

$$
\begin{aligned}
& \psi^{p}\left(\left(w_{0} ; w_{1}, \ldots, w_{m}\right)\right) \\
& \quad=\left(c^{3} w_{\frac{2 m+2}{}}^{3} c^{-3} ; c^{3} \frac{w_{2 m+5}^{3}}{} c^{-3}, \ldots, c^{3} w_{m} c^{-3}, c^{2} w_{0} c^{-2}, \ldots, c^{2} w_{\frac{2 m-1}{3}} c^{-2}\right) .
\end{aligned}
$$

Hence, for an i with $0 \leq i \leq \frac{m-2}{3}$, we must find an element $w_{i}=t_{1}$, where $t_{1} 868$ satisfies (32), so that we can set $w_{i+\frac{m+1}{3}}=c^{2} t_{1} c^{-2}, w_{i+\frac{2 m+2}{3}}=c^{4} t_{1} c^{-4}$, and all 869 other w_{j} 's equal to ε. We have found seven solutions to the counting problem (32), 870 and each of them gives rise to $(m+1) / 3$ elements in $\operatorname{Fix}_{N C^{m}\left(G_{24}\right)}\left(\psi^{p}\right)$ since the 87 index i ranges from 0 to $(m-2) / 3$.

On the other hand, if $p=14(m+1) / 3$, then the action of ψ^{p} is given by

$$
\begin{aligned}
& \psi^{p}\left(\left(w_{0} ; w_{1}, \ldots, w_{m}\right)\right) \\
& \quad=\left(c^{5} w_{\frac{m+1}{3}} c^{-5} ; c^{5} w_{\frac{m+4}{3}} c^{-5}, \ldots, c^{5} w_{m} c^{-5}, c^{4} w_{0} c^{-4}, \ldots, c^{4} w_{\frac{m-2}{3}} c^{-4}\right)
\end{aligned}
$$

By Lemma 6, every element of $N C(W)$ is fixed under conjugation by c^{7}, and, thus,
the equations for t_{1} in this case are the same as in the previous one where $p=875$ $7(m+1) / 3$.

Hence, in either case, we obtain $7 \frac{m+1}{3}=\frac{7 m+7}{3}$ elements in $\operatorname{Fix}_{N C^{m}\left(G_{24}\right)}\left(\psi^{p}\right)$, which agrees with the limit in (67).

If $p=7(m+1) / 2$, the relevant counting problem is (33). However, no element 879 $\left(w_{0} ; w_{1}, \ldots, w_{m}\right) \in \operatorname{Fix}_{N C^{m}}\left(G_{24}\right)\left(\psi^{p}\right)$ can be produced in this way since the counting problem imposes the restriction that $\ell_{T}\left(w_{0}\right)+\ell_{T}\left(w_{1}\right)+\cdots+\ell_{T}\left(w_{m}\right)$ be even, which contradicts the fact that $\ell_{T}(c)=n=3$. This is in agreement with the limit in (69).

Acknowledgements The authors thank an anonymous referee for a very careful reading of the original manuscript, and for numerous pertinent suggestions which have helped to considerably

References

Editor's Proof

5. C. A. Athanasiadis, Generalized Catalan numbers, Weyl groups and arrangements of hyper- 896 planes, Bull. London Math. Soc. 36 (2004), 294-302. 897
6. C. A. Athanasiadis, On a refinement of the generalized Catalan numbers for Weyl groups, 898 Trans. Amer. Math. Soc. 357 (2005), 179-196. 899
7. D. Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. (4) 36 (2003), 647-683. 900
8. D. Bessis, Finite complex reflection groups are $K(\pi, 1)$, preprint, ar χ iv:math/0610777. 901
9. D. Bessis and R. Corran, Non-crossing partitions of type (e, e, r), Adv. Math. 202 (2006), 902 1-49. 903
10. D. Bessis and V. Reiner, Cyclic sieving and noncrossing partitions for complex reflection 904 groups, Ann. Comb. 15 (2011), 197-222. 905
11. T. Brady and C. Watt, $K(\pi, 1)$'s for Artin groups of finite type, Geom. Dedicata 94 (2002), 906 225-250. 907
12. F. Chapoton, Enumerative properties of generalized associahedra, Séminaire Lotharingien 908 Combin. 51 (2004), Article B51b, 16 pp. 909
13. P. Edelman, Chain enumeration and noncrossing partitions, Discrete Math. 31 (1981), 910 171-180. 911
14. S. Fomin and N. Reading, Generalized cluster complexes and Coxeter combinatorics, Int. 912 Math. Res. Notices 44 (2005), 2709-2757. 913
15. M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, CHEVIE-a system for computing and 914 processing generic character tables for finite groups of Lie type, Appl. Algebra Engrg. Comm. 915 Comput. 7 (1996), 175-210. 916
16. I. Gordon and S. Griffeth, Catalan numbers for complex reflection groups, Amer. J. Math. (to 917 appear). 918
17. J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, 919 Cambridge, 1990. 920
18. C. Krattenthaler, The F-triangle of the generalised cluster complex, in: Topics in Discrete 921 Mathematics, dedicated to Jarik Nešetřil on the occasion of his 60th birthday (M. Klazar, 922 J. Kratochvil, M. Loebl, J. Matoušek, R. Thomas and P. Valtr, eds.), Springer-Verlag, Berlin, 923 New York, 2006, pp. 93-126. 924
19. C. Krattenthaler, The M-triangle of generalised non-crossing partitions for the types E_{7} and 925 E_{8}, Séminaire Lotharingien Combin. 54 (2006), Article B541, 34 pages. 926
20. C. Krattenthaler, Non-crossing partitions on an annulus, in preparation. 927
21. C. Krattenthaler and T. W. Müller, Decomposition numbers for finite Coxeter groups and 928 generalised non-crossing partitions, Trans. Amer. Math. Soc. 362 (2010), 2723-2787. 929
22. C. Krattenthaler and T. W. Müller, Cyclic sieving for generalised non-crossing partitions 930 associated with complex reflection groups of exceptional type-the details, manuscript; 931 arұiv:1001.0030. 932
23. G. Kreweras, Sur les partitions non croisées d'un cycle, Discrete Math. 1 (1972), 333-350. 933
24. G. I. Lehrer and J. Michel, Invariant theory and eigenspaces for unitary reflection groups, 934 C. R. Math. Acad. Sci. Paris 336 (2003), 795-800. 935
25. G. I. Lehrer and D. E. Taylor, Unitary reflection groups, Cambridge University Press, 936 Cambridge, 2009. 937
26. G. Malle and J. Michel, Constructing representations of Hecke algebras for complex reflection 938 groups, LMS J. Comput. Math. 13 (2010), 426-450. 939
27. I. Marin, The cubic Hecke algebra on at most 5 strands, J. Pure Appl. Algebra 216 (2012), 940 2754-2782. 941
28. J. Michel, The GAP-part of the CHEVIE system, GAP 3-package available for download from 942 http://people.math.jussieu.fr/jmichel/chevie/chevie.html. 943
29. P. Orlik and L. Solomon, Unitary reflection groups and cohomology, Invent. Math. 59 (1980), 944 77-94. 945
30. V. Reiner, D. Stanton and D. White, The cyclic sieving phenomenon, J. Combin. Theory Ser. 946 A 108 (2004), 17-50. 947
31. B. Rhoades, Parking structures: Fuss analogs, preprint, ar χ iv:1205.4293. 948

Editor's Proof

32. V. Ripoll, Orbites d'Hurwitz des factorisations primitives d'un élément de Coxeter, J. Algebra 949 323 (2010), 1432-1453.
33. B. E. Sagan, The cyclic sieving phenomenon: a survey, Surveys in combinatorics 2011, London 951
Math. Soc. Lecture Note Ser., vol. 392, Cambridge Univ. Press, Cambridge, 2011, pp. 183-233. 952
34. G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 953
274-304. 954
35. T. A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974), 159-198. 955 955
36. J. R. Stembridge, Some hidden relations involving the ten symmetry classes of plane partitions, 956J. Combin. Theory Ser. A 68 (1994), 372-409.957
37. J. R. Stembridge, Canonical bases and self-evacuating tableaux, Duke Math. J. 82 (1996). 958585-606,959
38. J. R. Stembridge, scoxeter, Maple package for working with root systems and finite Coxetergroups; available at http://www.math.lsa.umich.edu/~jrs.961

Editor's Proof

AUTHOR QUERIES

AQ1. Please provide opening parenthesis for "... or from [1, Theorem 3.1])" in the sentence starting "We begin with several ...".
AQ2. Please cite Ref. [12] in text.

Editor's Proof

Metadata of the chapter that will be visualized online

Chapter Title	Set Partitions with No m-Nesting
Copyright Year	2013
Copyright Holder	Springer-Verlag Berlin Heidelberg
Corresponding Author	Family Name Mishna
	Particle
	Given Name Marni
	Suffix
	Division Department of Mathematics
	Organization Simon Fraser University
	Address Burnaby, BC, Canada
Author	Family Name Yen
	Particle
	Given Name Lily
	Suffix
	Division Department of Mathematics
	Organization Simon Fraser University
	Address Burnaby, BC, Canada
	Division Department of Mathematics and Statistics
	Organization Capilano University
	Address North Vancouver, BC, Canada
Abstract	A partition of f 1 ng has an m -nesting if it contains at least m disjoint blocks, and a subset of 2 m points il , such that i_{1} and j_{1} are in the same block for all $1 \leq 1 \leq m$, but no other pairs are in the same block. In this note we use generating trees to construct the class of partitions with no m-nesting, determine functional equations satisfied by the associated generating functions, and generate enumerative data for $\mathrm{m} \geq 4$.
Keywords (separated by "-")	Set partition - Nesting - Pattern avoidance - Generating tree -Alge-braic kernel method - Coefficient extraction - Enumeration

Set Partitions with No \boldsymbol{m}-Nesting

Marni Mishna and Lily Yen

Abstract

A partition of $\{1, \ldots, n\}$ has an m-nesting if it contains at least m disjoint 3 blocks, and a subset of $2 m$ points $i_{1}<i_{2}<\cdots<i_{m}<j_{m}<j_{m-1}<\cdots<4$ j_{1}, such that i_{l} and j_{l} are in the same block for all $1 \leq l \leq m$, but no other 5 pairs are in the same block. In this note we use generating trees to construct the 6 class of partitions with no m-nesting, determine functional equations satisfied by 7 the associated generating functions, and generate enumerative data for $m \geq 4$. $\quad 8$

Keywords Set partition • Nesting • Pattern avoidance • Generating tree • Alge- 9 braic kernel method - Coefficient extraction \cdot Enumeration

1 Introduction

Graphic representations of set partitions can contain various patterns and shapes. 12 One particular pattern, known as an m-nesting, resembles a rainbow, for example. In 13 this work we address the enumeration of set partitions that avoid m-nestings. These 14 results are in the context of recent studies of other combinatorial objects that avoid 15 similar or related patterns. We are particularly motivated by the study of protein 16 folding [7] where such patterns arise in the molecular bonds and their presence has 17 strong consequences on the geometry of the protein.

Our strategy parallels a recent generating tree approach used by Bousquet-Mélou 19 to enumerate a family of pattern avoiding permutation classes [3]. A novel feature 20

[^17]of this approach is that the length of the label in the generating tree is related to 21 the length of the pattern avoided. Thus, the resulting expressions for generating 22 functions are generic, and expressed in terms of m. The generating tree permits 23 direct access to new enumerative data for set partitions avoiding m-nestings for 24 some $m>4$, and we present the equations as a starting point for further analysis. ${ }^{25}$

1.1 Notation and Definitions

A set partition π of $[n]:=\{1,2,3, \ldots, n\}$, denoted by $\pi \in \Pi_{n}$, is a collection of 27 nonempty and mutually disjoint subsets of [n], called blocks, whose union is [n]. 28 The number of set partitions of $[n]$ into k blocks is denoted $S(n, k)$, and is known ${ }_{29}$ as a Stirling number of the second kind. The total number of partitions of $[n]$ is 30 the Bell number $B_{n}=\sum_{k} S(n, k)$. We represent π by a graph on the vertex set ${ }_{31}$ [n] whose edge set consists of arcs connecting elements of each block in numerical 32 order. Such an edge set is called the standard representation of the partition π, as 33 seen in [6]. For example, the standard representation of

$$
\begin{equation*}
1|2568| 37 \mid 4 \tag{35}
\end{equation*}
$$

is given by the following graph with edge set $\{(2,5),(5,6),(6,8),(3,7)\}$:

With this representation, we can define two classes of patterns: crossings and 38 nestings. An m-crossing of π is a collection of m edges $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{m}, j_{m}\right)$ з9 such that $i_{1}<i_{2}<\cdots<i_{m}<j_{1}<j_{2}<\cdots<j_{m}$. Using the standard 40 representation, an m-crossing is drawn as follows:

Similarly, we define an m-nesting of π to be a collection of m edges $\left(i_{1}, j_{1}\right)$, 43 $\left(i_{2}, j_{2}\right), \ldots,\left(i_{m}, j_{m}\right)$ such that $i_{1}<i_{2}<\cdots<i_{m}<j_{m}<j_{m-1}<\cdots<j_{1}$. This is 44 drawn:

A partition is m-noncrossing if it contains no m-crossing, and it is said to be 47 m-nonnesting if it contains no m-nesting.

Editor's Proof

1.2 Context and Plan

Chen, Deng, Du, Stanley and Yan in [6], and independently Krattenthaler in [8], 50 gave a non-trivial bijective proof that m-noncrossing partitions of $[n]$ are equinumer- 51 ous with m-nonnesting partitions of $[n]$, for all values of m and n. A straightforward 52 bijection with Dyck paths illustrates that 2-noncrossing partitions (or simply, 53 noncrossing partitions) are counted by Catalan numbers. Bousquet-Mélou and Xin 54 in [4] showed that the sequence counting 3-noncrossing partitions is P-recursive, 55 that is, satisfies a linear recurrence relation with polynomial coefficients. Indeed, 56 they determined an explicit recursion, complete with solution and asymptotic 57 analysis. They further conjectured that m-noncrossing partitions are not P-recursive 58 for all $m \geq 4$. Certainly, the limit as m goes to infinity is not D-finite, since Bell 59 numbers are well known not to be P-recursive because of the composed exponentials 60 in the generating function $B(x)=e^{e^{x}-1}$ (see Example 19 of [2]). If it turns out that 61 m-noncrossing partitions do have a D-finite generating function, then we have a 62 very interesting refinement of a non-D-finite class. ${ }^{63}$

Since m-noncrossing partitions of $[n]$ and m-nonnesting partitions of $[n]$ are 64 equinumerous, we study m-nonnesting partitions in this paper and show how to 65 generate the class using generating trees, and how to determine a recursion satisfied 66 by the counting sequence for m-nonnesting partitions. 67

Our approach is an adaptation of Bousquet-Mélou's recent work on the 68 enumeration of permutations with no long monotone subsequence in [3]. She 69 combined the ideas of recursive construction for permutations via generating trees 70 and the algebraic kernel method to determine and solve functional equations with 71 multiple catalytic variables.

In Sect. 2, we employ Bousquet-Mélou's generating tree construction to find 73 functional equations satisfied by the generating functions for set partitions with no 74 m-nesting. The resulting equations, though similar to the equations arising in [3], 75 have a key structural difference which resists a similar treatment of the algebraic 76 kernel method followed by a constant term extraction as used by Bousquet-Mélou 77 in [3]. However, the process does yield the result for nonnesting set partitions 78 counted by the Catalan numbers. We refer interested readers to [9] for the processing 79 of functional equations in the spirit of [3].

Using our constructions we generate new enumerative data for $m>4$, discuss 81 the limiting factors in data generation, and assess the current state of recurrences 82 and explicit forms.

2 Generating Trees and Functional Equations

The generating tree construction for the class of m-nonnesting partitions is based on 85 a standard generating tree description of partitions, and the constraint is incorporated 86 using a vector labelling system. The generating tree construction has an immediate 87 translation to a functional equation with m-variate series.

2.1 A Generating Tree for Set Partitions

Let π be a set partition. Define ne (π) to be the maximal i such that π has an $i-90$ nesting, also called the maximal nesting number of π, and let $\Pi_{n}^{(m)}$ be the set of 91 partitions of $[n]$ for $n \geq 0$ (where $n=0$ means the empty partition) with ne $(\pi) \leq 92$ m, thus $(m+1)$-nonnesting. We define the union $\Pi^{(m)}=\cup_{n} \Pi_{n}^{(m)}$. $\quad 93$

Note that an arc over a fixed point is not a 2-nesting, but a 1-nesting: 94

We next describe how to generate all set partitions via generating trees in the 96 fashion of [2]. First, order the blocks of a given partition, π, by the maximal element 97 of each block in descending order.

Example 1. The first block of $1|2568| 37 \mid 4$ is 2568 ; the second block is 37 ; the 99 third block is singleton 4 ; and 1 is the last block. Using the standard representation, 100

we number the blocks in descending order (from the right to the left) according to 102 the maximal element in each block (that is, the rightmost vertex of each block).

With the order of blocks thus defined, we warm up by generating all set partitions without nesting restriction first. Figure 1 contains the generating tree for all set 105 partitions, in addition to the generating tree for the number of children of each node 106 from the tree of set partitions to indicate how enumeration can be facilitated.

1. Begin with \varnothing as the top node of the tree. It has only one child, so the 108 corresponding node in the tree for the number of children is labelled 1 .
2. To produce the $n+1$ st level of nodes, take each set partition at the nth level, and

Summarizing the description above in the notation of [2], we recall that the rewriting rule of a generating tree is denoted by:

$$
\left[\left(s_{0}\right),\left\{(k) \rightarrow\left(e_{1, k}\right)\left(e_{2, k}\right) \ldots\left(e_{k, k}\right)\right\}\right],
$$

where s_{0} denotes the degree of the root, and for any node labelled k, that is, with k descendants, the label of each descendent is given by $\left(e_{j, k}\right)$ for $1 \leq j \leq k$. Thus, ${ }_{117}$

Editor's Proof

Set Partitions with No m-Nesting

Fig. 1 Generating tree for set partitions and its corresponding generating tree of the number of children

the class of set partitions has a generating tree of labels given by $[(1):(k) \rightarrow 118$ $\left.(k+1)(k)^{k-1}\right]$.

2.2 A Vector Label to Track Nestings

The generating tree of set partitions generates all set partitions π graded by n, the ${ }_{121}$ size of π, but it does not keep track of nesting numbers. Also note that the number

Fix m. In order to keep track of nesting numbers, we need to define the label of 125 $\pi \in \Pi^{(m)}$. To identify the position of a nesting, we consider the relative position126 of the smallest vertex incident to the nesting. Thus, the rightmost j-nesting is the ${ }_{127}$ set of j edges forming a j-nesting pattern such that its minimal incident vertex is128 greater than, or equal to the minimal vertex incident to all the other j-nestings. If 129 one vertex is common to two j-nestings, we consider the second smallest incident vertex, and so on. Roughly, our labels keep track of the number of blocks to the ${ }^{13}$ right of a j-nesting that might potentially become a j-nesting based on how the
next edge is added. Any edge added that affect nestings to the left of the right most j -nesting, will necessarily create a $j+1$ nesting because it will create an arc overtop of the rightmost j-nesting.
Definition 1. Define the label of a partition, $L(\pi)=\left(a_{1}(\pi), a_{2}(\pi), \ldots, a_{m}(\pi)\right),{ }_{136}$ or in short, $L(\pi)=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ as follows. For $1 \leq j \leq m$, 137

$$
a_{j}(\pi)=\left\{\begin{array}{ll}
1+\text { number of blocks in } \pi, & \text { if } \pi \text { is } j \text {-nonnesting, } \\
1+\text { number of blocks ending to the right of } \\
\text { the smallest vertex in the rightmost } j \text {-nesting }
\end{array}\right. \text { otherwise. }
$$

Example 2. To continue the example, let $\pi=1|2568| 37 \mid 4$ and suppose $m=3$. ${ }^{139}$ Then $L(1|2568| 37 \mid 4)=(3,4,5)$ for the following reasons. The rightmost 140

1 -nesting is the edge with largest vertex endpoint: $(6,8)$. Hence, $a_{1}(\pi)=3$ because 141 blocks 1 and 2 end to the right of vertex 6 . The rightmost 2-nesting is the set of 142 edges $\{(5,6),(3,7)\}$ hence $a_{2}(\pi)=4$ because 3 blocks end to the right of vertex ${ }_{143}$ 3. Finally, $a_{3}(\pi)=5$ because the diagram has no 3-nesting, and is comprised of 4144 blocks. Note that in this convention, the empty set partition has label $(1,1, \ldots, 1), 145$ since it has no nestings and no blocks. 146

A set partition in $\Pi^{(m)}$ always has a_{m} children. This is one more than the number ${ }_{147}$ of blocks, if there is no m-nesting (and hence there is no risk that adding an edge will 148 create an $m+1$-nesting). Otherwise, it indicates more than the number of blocks 149 to which you can add an edge without creating an $m+1$-nesting. The label of a 150 set partition is sufficient to derive the label of each of its children, and this process 151 is described in the next proposition. Also, remark that the label is a non-decreasing 152 sequence, since the rightmost j-nesting either contains the rightmost $j-1$ nesting ${ }_{153}$ or is to the left of it.

Proposition 1 (Labels of children). Let π be in $\Pi_{n}^{(m)}$, the set of set partitions on ${ }_{155}$ $[n]$ avoiding $m+1$-nestings, and suppose the label of π is $L(\pi)=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$. ${ }_{156}$ Then, the labels of the a_{m} set partitions of $\Pi_{n+1}^{(m)}$ obtained by recursive construction 157 via the generating tree are 158

Proof. By careful inspection.
Example 3. Consider the following partition from $\Pi_{8}^{(3)}$. The reader can refer to 162 its arc diagram in Example 1 which shows that it is 3-nonnesting, thus also

Editor's Proof

Set Partitions with No m-Nesting

4-nonnesting. The partition $1|2568| 37 \mid 4$ with label $(3,4,5)$ has five children and 163 their respective labels are:

$$
\begin{array}{cc}
\pi & L(\pi) \\
1|2568| 37|4| 9(4,5,6) \\
1|25689| 37 \mid 4 & (2,4,5) \\
1|2568| 379 \mid 4 & (3,4,5) \\
1|2568| 37 \mid 49(4,4,5) \\
19|2568| 37 \mid 4(4,5,5)
\end{array}
$$

Example 4. As we mentioned before, 2-nonnesting set partitions are counted by 166 Catalan numbers. The generating tree construction given in Proposition 1 restricted 167 to this case is given by

$$
[(1):(k) \rightarrow(k+1)(2)(3) \ldots(k)],
$$

which is the same construction for Catalan numbers given in [2]. The generating

2.3 A Functional Equation for the Generating Function

The simple structure of the labels in Proposition 1 permits a direct translation from
Let us define $\tilde{F}\left(u_{1}, u_{2}, \ldots, u_{m} ; t\right)$ to be the ordinary generating function of partitions in $\Pi^{(m)}$ counted by the statistics $a_{1}, a_{2}, \ldots, a_{m}$ and by size,

$$
\begin{aligned}
\tilde{F}\left(u_{1}, u_{2}, \ldots, u_{m} ; t\right) & :=\sum_{\pi \in \Pi^{(m)}} u_{1}^{a_{1}(\pi)} u_{2}^{a_{2}(\pi)} \ldots u_{m}^{a_{m}(\pi)} t^{|\pi|} \\
& =\sum_{a_{1}, a_{2}, \ldots, a_{m}} \tilde{F}_{\mathbf{a}}(t) u_{1}^{a_{1}} u_{2}^{a_{2}} \ldots u_{m}^{a_{m}},
\end{aligned}
$$

where $\tilde{F}_{\mathbf{a}}(t)$ is the size generating function for the set partitions of $\Pi^{(m)}$ with the 179 label $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$. For example, when $m=2$,
$\tilde{F}(\mathbf{u} ; t)=u_{1} u_{2}+u_{1}{ }^{2} u_{2}{ }^{2} t+\left(u_{1}{ }^{3} u_{2}{ }^{3}+u_{1}{ }^{2} u_{2}{ }^{2}\right) t^{2}+\left(u_{1}{ }^{4} u_{2}{ }^{4}+2 u_{1}{ }^{3} u_{2}{ }^{3}+u_{1}{ }^{2} u_{2}{ }^{2}+u_{1}{ }^{2} u_{2}{ }^{3}\right) t^{3}+\ldots$

Editor's Proof

$$
\begin{aligned}
\tilde{F}\left(u_{1}, \ldots, u_{m} ; t\right) & =u_{1} u_{2} \ldots u_{m}+t u_{1} u_{2} \ldots u_{m} \tilde{F}\left(u_{1}, u_{2}, \ldots, u_{m} ; t\right) \\
& +t \sum_{a_{1}, a_{2}, \ldots, a_{m}} \tilde{F}_{\mathbf{a}}(t) u_{2}^{a_{2}} u_{3}^{a_{3}} \ldots u_{m}^{a_{m}} \sum_{\alpha=2}^{a_{1}} u_{1}^{\alpha} \\
& +t \sum_{a_{1}, a_{2}, \ldots, a_{m}} \tilde{F}_{\mathbf{a}}(t) \sum_{j=2}^{m} \sum_{\alpha=a_{j-1}+1}^{a_{j}} u_{1}^{a_{1}+1} u_{2}^{a_{2}+1} \ldots u_{j-1}^{a_{j-1}+1} u_{j}^{\alpha} u_{j+1}^{a_{j+1}} \ldots u_{m}^{a_{m}} .
\end{aligned}
$$

We can simplify the expression using the finite geometric series sum formula to 185 rewrite this as the following expression.
Proposition 2. The ordinary generating function of partitions in $\Pi^{(m)}$ counted 187 by the statistics $a_{1}, a_{2}, \ldots, a_{m}$ and by size, denoted $\tilde{F}\left(u_{1}, u_{2}, \ldots, u_{m} ; t\right)$, or 188 simply $\tilde{F}(\mathbf{u} ; t)$ satisfies the following functional equation:

$$
\begin{align*}
& \tilde{F}(\mathbf{u} ; t)=u_{1} \ldots u_{m}+t u_{1} u_{2} \ldots u_{m} \tilde{F}(\mathbf{u} ; t) \\
& \quad+t u_{1}\left(\frac{\tilde{F}(\mathbf{u} ; t)-u_{1} \tilde{F}\left(1, u_{2}, \ldots, u_{m} ; t\right)}{u_{1}-1}\right) \\
& +t \sum_{j=2}^{m} u_{1} u_{2} \ldots u_{j}\left(\frac{\tilde{F}(\mathbf{u} ; t)-\tilde{F}\left(u_{1}, \ldots, u_{j-2}, u_{j-1} u_{j}, 1, u_{j+1}, \ldots, u_{m} ; t\right)}{u_{j}-1}\right) . \tag{1}
\end{align*}
$$

3 Computing Series Expansions

Notice that in Eq. (1), if one has a series expansion of $\bar{F}(\mathbf{u} ; t)$ correct up to t^{k}, then 191 substituting this series into RHS of Eq. (1) yields the series expansion of \bar{F} correct to t^{k+1} because the RHS of Eq. (1) contains a term free of t; otherwise, the degree ${ }_{193}$ of t is increased by 1 . We have iterated Eq. (1) to get enumerative data for up to 194 $m=9$.

For 3-nonnesting set partitions, an average laptop running Maple 15 can produce 196 70 terms in a reasonable time (less than 24 h). For $m=4$, only 38 terms; $m=5,27197$ terms; $m=6,20$ terms; $m=7,16$ terms, $m=8,12$ terms; and finally $m=9,12198$ terms. The limitation seems memory space due to the growing complication in the 199 AQ1 functional equation when m gets larger (Table 1).

4 Conclusion

The generating tree approach permits a direct translation to a functional equation 202 involving an arbitrary number of catalytic variables satisfied by set partitions 203 avoiding $m+1$-nestings for any positive integer m. We avoid passing through 204

Editor's Proof

m	OEIS \#	n													
		1	2	3	4	5	6	7	8	9	$10 \quad 11$	12	13	14	15
1	A000108	1	2	5	14	42	132	429	1,430	4,862	16,796 58,786	208,012	742,900	2,674,440	9,694,845
2	A108304	1	2	5	15	52	202	859	3,930	19,095	97,566 520,257	2,877,834	16,434,105	96,505,490	580,864,901
3	A108305	1	2	5	15	52	203	877	4,139	21,119	115,495 671,969	4,132,936	26,723,063	180,775,027	1,274,056,792
4	A192126	1	2	5	15	52	203	877	4,140	21,147	115,974 678,530	4,212,654	27,627,153	190,624,976	1,378,972,826
5	A192127	1	2	5	15	52	203	877	4,140	21,147	115,975 678,570	4,213,596	27,644,383	190,897,649	1,382,919,174
6	A192128	1	2	5	15	52	203	877	4,140	21,147	115,975 678,570	4,213,597	27,644,437	190,899,321	1,382,958,475

vacillating lattice walks or tableaux. The functional equation can be iterated to 205
generate series data for $m+1$-nonnesting set partitions, but ideally we would like 206
to solve the equations, or find some other format from which more information 207
can be obtained. For example, perhaps under further scrutiny one can decide if the 208
generating functions are D -finite or not. 209
One possible route to a proof of non-D-finiteness is to use our expressions to 210
determine bounds on the order and the coefficient degrees of the minimal differential 211
equation satisfied by the generating function. Though a tantalizingly simple idea, the 212
limitation is the lack of series data for large m. 213
The generating tree studied is for $m+1$-nonnesting set partitions. The authors 214
have tried to study a generating tree for $m+1$-noncrossing set partitions in the 215
hope of reproving the result of Chen et al. in [6] by tree isomorphism. However, the 216
authors were unable to generate $m+1$-noncrossing set partitions. 217
Finally, our generating tree approach is limited only to the non-enhanced case. 218
For a more general treatment of the subject involving enhanced set partitions and 219
permutations, both enhanced and non-enhanced, we refer the reader to [5] by Burrill, 220
Elizalde, Mishna, and Yen. 221
Acknowledgements We are grateful to an anonymous referee for many constructive suggestions, 222
to Mireille Bousquet-Mélou for her suggestions, and to Mogens Lemvig Hansen for his tireless 223
generation of numbers with Maple. The first author is partially supported by an Natural Sciences 224
and Engineering Research Council of Canada Discovery Grant. 225
References226

1. OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, (2011), published 227
electronically at http://oeis.org. 228
2. Cyril Banderier, Mireille Bousquet-Mélou, Alain Denise, Philippe Flajolet, Danièle Gardy, and 229
Dominique Gouyou-Beauchamps, Generating functions for generating trees, Discrete Math. 230
(2002), 29-55. 231
3. Mireille Bousquet-Mélou, Counting permutations with no long monotone subsequence via 232
generating trees, J. Alg. Combin. 33 (2011), no. 4, 571-608. 233
4. Mireille Bousquet-Mélou and Guoce Xin, On partitions avoiding 3-crossings, Séminaire 234
Lotharingien de Combinatoire (2006), 1-21. 235
5. Sophie Burrill, Sergi Elizalde, Marni Mishna, and Lily Yen, A generating tree approach to k 236
non-nesting partitions and permutations, DMTCS Proceedings, 24th International Conference 237
on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), Nagoya Japan (2012). 238
6. William Y. C. Chen, Eva Y. P. Deng, Rosena R. X. Du, Richard P. Stanley, and Catherine H. 239
Yan, Crossings and nestings of matchings and partitions, Trans. Amer. Math. Soc. (2007), 240
1555-1575. 241
7. William Y. C. Chen, Hillary S. W. Han, and Christian M. Reidys, Random k-noncrossing RNA 242 structures, Proc. Natl. Acad. Sci. USA 106 (2009), no. 52, 22061-22066. 243
8. Christian Krattenthaler, Growth diagrams, and increasing and decreasing chains in fillings of 244 Ferrers shapes, Adv. Appl. Math. 37 (2006), 404-431. 245
9. Marni Mishna and Lily Yen, Set partitions with no k-nesting, Preprint, arXiv:1106.5036 (2011). 246

Editor's Proof

AUTHOR QUERY

AQ1. Please check if inserted citation for "Table 1" is okay.

Editor's Proof

Metadata of the chapter that will be visualized online

Chapter Title	The Distribution of Zeros of the Derivative of a Random Polynomial
Copyright Year	2013
Copyright Holder	Springer-Verlag Berlin Heidelberg
Corresponding Author	Family Name Pemantle
	Particle
	Given Name Robin
	Suffix
	Division Department of Mathematics
	Organization University of Pennsylvania
	Address 209 S. 33rd Street, Philadelphia, PA, 19104, USA
Author	Family Name Rivin
	Particle
	Given Name Igor
	Suffix
	Division Department of Mathematics
	Organization Temple University
	Address 1805 North Broad St, Philadelphia, PA, 19122, USA
Abstract	In this note we initiate the probabilistic study of the critical points of polynomials of large degree with a given distribution of roots. Namely, let f be a polynomial of degree n whose zeros are chosen IID from a probability measure μ on $\#$. We conjecture that the zero set of f ' always converges in distribution to μ as $n \rightarrow \infty$. We prove this for measures with finite one-dimensional energy. When μ is uniform on the unit circle this condition fails. In this special case the zero set of f converges in distribution to that of the IID Gaussian random power series, a well known determinantal point process.
Keywords (separated by "-")	Gauss-Lucas theorem - Gaussian series - Critical points - Random polynomials

The Distribution of Zeros of the Derivative of a Random Polynomial

Robin Pemantle and Igor Rivin

Abstract

In this note we initiate the probabilistic study of the critical points of 4 polynomials of large degree with a given distribution of roots. Namely, let f be a 5 polynomial of degree n whose zeros are chosen IID from a probability measure μ 6 on \mathbb{C}. We conjecture that the zero set of f^{\prime} always converges in distribution to μ as 7 $n \rightarrow \infty$. We prove this for measures with finite one-dimensional energy. When $\mu 8$ is uniform on the unit circle this condition fails. In this special case the zero set of 9 f^{\prime} converges in distribution to that of the IID Gaussian random power series, a well 10 known determinantal point process.

Keywords Gauss-Lucas theorem - Gaussian series - Critical points • Random 12 polynomials

1 Introduction

Since Gauss, there has been considerable interest in the location of the critical points 15 (zeros of the derivative) of polynomials whose zeros were known - Gauss noted that 16 these critical points were points of equilibrium of the electrical field whose charges 17 were placed at the zeros of the polynomial, and this immediately leads to the proof 18 of the well-known Gauss-Lucas Theorem, which states that the critical points of a 19 polynomial f lie in the convex hull of the zeros of f (see, e.g. [18, Theorem 6.1]). 20

[^18]
Editor's Proof

There are too many refinements of this result to state. A partial list (of which several 21 have precisely the same title!) is as follows: $[1,3,5-9,12,14,16,17,19,20,22-26]) .22$ Among these, we mention two extensions that are easy to state. ${ }_{23}$

- Jensen's theorem: if $p(z)$ has real coefficients, then the non-real critical points of 24 p lie in the union of the "Jensen Disks", where a Jensen disk J is a disk one of 25 whose diameters is the segment joining a pair of conjugate (non-real) roots of $p .26$
- Marden's theorem: Suppose the zeroes z_{1}, z_{2}, and z_{3} of a third-degree polynomial 27 $p(z)$ are non-collinear. There is a unique ellipse inscribed in the triangle with 28 vertices z_{1}, z_{2}, z_{3} and tangent to the sides at their midpoints: the Steiner inellipse. 29 The foci of that ellipse are the zeroes of the derivative $p^{\prime}(z)$. 30

There has not been any probabilistic study of critical points (despite the obvious 31 statistical physics connection) from this viewpoint. There has been a very extensive 32 study of random polynomials (some of it quoted further down in this paper), but ${ }_{33}$ generally this has meant some distribution on the coefficients of the polynomial, 34 and not its roots [4]. Let us now define our problem: ${ }_{35}$

Let μ be a probability measure on the complex numbers. Let $\left\{X_{n}: n \geq 0\right\} 36$ be random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ that are IID with common ${ }_{37}$ distribution μ. Let

$$
\begin{equation*}
f_{n}(z):=\prod_{j=1}^{n}\left(z-X_{j}\right) \tag{39}
\end{equation*}
$$

be the random polynomial whose roots are X_{1}, \ldots, X_{n}. For any polynomial f we 40 let $Z(f)$ denote the empirical distribution of the roots of f, for example, $Z\left(f_{n}\right)=41$ $\frac{1}{n} \sum_{j=1}^{n} \delta_{X_{j}}$.

The question we address in this paper is: 43
Question 1.1. When are the zeros of f_{n}^{\prime} stochastically similar to the zeros of f_{n} ?
Some examples show why we expect this.
Example 1.1. Suppose μ concentrates on real numbers. Then f_{n} has all real zeros 46 and the zeros of f_{n}^{\prime} interlace the zeros of f_{n}. It is immediate from this that the 47 empirical distribution of the zeros of f_{n}^{\prime} converges to μ as $n \rightarrow \infty$. The same is 48 true when μ is concentrated on any affine line in the complex plane: interlacing 49 holds and implies convergence of the zeros of f_{n}^{\prime} to $\mu .{ }^{1}$ Once the support of μ is not 50 contained in an affine subspace, however, the best we can say geometrically about 51 the roots of f_{n}^{\prime} is that they are contained in the convex hull of the roots of f_{n}; this is 52 the Gauss-Lucas Theorem.

[^19]
Editor's Proof

Fig. 1 Critical points of a polynomial whose roots are uniformly sampled inside the unit disk

Example 1.2. Suppose the measure μ is atomic. If $\mu(a)=p>0$ then the ${ }_{54}$ multiplicity of a as a zero of f_{n} is $n(p+o(1))$. The mulitplicity of a as a zero of $f_{n}^{\prime} 55$ is one less than the multplicity as a zero of f_{n}, hence also $n(p+o(1))$. This is true 56 for each of the countably many atoms, whence it follows again that the empirical 57 distribution of the zeros of f_{n}^{\prime} converges to μ.

Atomic measures are weakly dense in the space of all measures. Sufficient 59 continuity of the roots of f^{\prime} with respect to the roots of f would therefore imply 60 that the zeros of f_{n}^{\prime} always converge in distribution to μ as $n \rightarrow \infty$. In fact we 61 conjecture this to be true.

Example 1.3. Our first experimental example has the roots of f uniformly ${ }^{63}$ distributed in the unit disk. In the figure, we sample 300 points from the uniform 64 distribution in the disk, and plot the critical points (see Fig. 1). The reader may or 65 may not be convinced that the critical points are uniformly distributed.

Example 1.4. Our second example takes polynomials with roots uniformly 67 distributed on the unit circle, and computes the critical points. In Fig. 2 we do 68 this with a sample of size 300 . One sees that the convergence is rather quick.

Remark 1. The figures were produced with Mathematica. However, the reader 70 wishing to try this at home should increase precision because Mathematica 71 (and Maple, Matlab and R) do not use the best method of computing zeros of 72 polynomials.

Editor's Proof

Fig. 2 Critical points of polynomial whose roots are uniformly sampled on the unit circle

Conjecture 1. For any μ, as $n \rightarrow \infty, \mathcal{Z}\left(f^{\prime}\right)$ converges weakly to μ.
There may indeed be such a continuity argument, though the following coun- 75 terexample shows that one would at least need to rule out some exceptional sets of 76 low probability. Suppose that $f(z)=z^{n}-1$. As $n \rightarrow \infty$, the distribution of the 77 roots of f converge weakly to the uniform distribution on the unit circle. The roots 78 of f_{n}^{\prime} however are all concentrated at the origin. If one moves one of the n roots of 79 f_{n} along the unit circle, until it meets the next root, a distance of order $1 / n$, then 80 one root of f_{n}^{\prime} zooms from the origin out to the unit circle. This shows that small 81 perturbations in the roots of f can lead to large perturbations in the roots of f^{\prime}. It 82 seems possible, though, that this is only true for a "small" set of "bad" functions f. ${ }^{83}$

1.1 A Little History

This circle of questions was first raised in discussions between one of us (IR) and the 85 late Oded Schramm, when IR was visiting at Microsoft Research for the auspicious 86 week of $9 / 11 / 2001$. Schramm and IR had some ideas on how to approach the 87 questions, but were somewhat stuck. There was always an intent to return to these 88 questions, but Schramm's passing in September 2008 threw the plans into chaos. 89 We (RP and IR) hope we can do justice to Oded's memory.

Editor's Proof

These questions are reminscent of questions of the kind often raised by Herb 91 Wilf, that sound simple but are not. This work was first presented at a conference in 92 Herb's honor and we hope it serves as a fitting tribute to Herb as well. ${ }_{93}$

2 Results and Notations

Our goal in this paper is to prove cases of Conjecture 1.
Definition 2. We definite the p-energy of μ to be

$$
\mathcal{E}_{p}(\mu):=\left(\iint \frac{1}{|z-w|^{p}} d \mu(z) d \mu(w)\right)^{1 / p}
$$97

Since in the sequel we will only be using the 1-energy, we will write \mathcal{E} for \mathcal{E}_{1}. ${ }_{98}$
By Fubini's Theorem, when μ has finite 1-energy, the function V_{μ} defined by

$$
\begin{equation*}
V_{\mu}(z):=\int \frac{1}{z-w} d \mu(w) \tag{100}
\end{equation*}
$$

is well defined and in $L^{1}(\mu)$.
Remark 2. The potential function V_{μ} is sometimes called the Cauchy transform of 102 the measure μ. Commonly it is implied that μ is supported on \mathbb{R} or on the boundary 103 of a region over which z varies, but this need not be the case and is not the case for 104 us (except in Theorem 2).

Theorem 1. Suppose μ has finite 1-energy and that

$$
\begin{equation*}
\mu\left\{z: V_{\mu}(z)=0\right\}=0 \tag{1}
\end{equation*}
$$

Then $\mathcal{Z}\left(f_{n}^{\prime}\right)$ converges in distribution to μ as $n \rightarrow \infty$. 107

A natural set of examples of μ with finite 1 -energy is provided by the following 108 observation:

Observation 1. Suppose $\Omega \subset \mathbb{C}$ has Hausdorff dimension greater than one, and $\mu 110$ is in the measure class of the Hausdorff measure on Ω. Then μ has finite 1-energy. 111

Proof. This is essentially the content of [11][Theorem 4.13(b)].
In particular, if μ is uniform in an open subset (with compact closure) of \mathbb{C}, its 112 1-energy is finite.

A natural special case to which Theorem 1 does not apply is when μ is uniform 114 on the unit circle; here the 1-energy is just barely infinite.

Theorem 2. If μ is uniform on the unit circle then $Z\left(f_{n}\right)$ converges to the unit circle 116 in probability.

Editor's Proof

This result is somewhat weak because we do not prove $\mathcal{Z}\left(f_{n}\right)$ has a limit in distribution, only that all subsequential limits are supported on the unit circle. By the Gauss-Lucas Theorem, all roots of f_{n} have modulus less than 1 , so the convergence to μ is from the inside. Weak convergence to μ implies that only $o(n)$ points can be at distance $\Theta(1)$ inside the cirle; the number of such points turns out to be $\Theta(1)$. Indeed quite a bit can be said about the small outliers. For $0<\rho<1$, define $B_{\rho}:=\{z:|z| \leq \rho\}$. The following result, which implies Theorem 2, is based on a very pretty result of Peres and Virag [21, Theorems 1 and 2] which we will quote in due course.

Theorem 3. For any $\rho \in(0,1)$, as $n \rightarrow \infty$, the set $Z\left(g_{n}\right) \cap B_{\rho}$ of zeros of g_{n} on B_{ρ} converges in distribution to a determinantal point process on B_{ρ} with the so-called 128 Bergmann kernel $\pi^{-1}\left(1-z_{i} \overline{z_{j}}\right)^{2}$. The number $N(\rho)$ of zeros is distributed as the sum of independent Bernoullis with means $\rho^{2 k}, 1 \leq k<\infty$.

2.1 Distance Functions on the Space of Probability Measures

If μ and v are probability measures on a separable metric space S, then the
Prohorov ${ }^{2}$ distance $|\mu-\nu|_{P}$ is defined to be the least ϵ such that for every set $A, \mu(A) \leq v\left(A^{\epsilon}\right)+\epsilon$ and $v(A) \leq \mu\left(A^{\epsilon}\right)+\epsilon$. Here, A^{ϵ} is the set of all points within distance ϵ of some point of A. The Prohorov metric metrizes convergence in distribution. We view collections of points in \mathbb{C} (e.g., the zeros of f_{n}) as probability135 measures on \mathbb{C}, therefore the Prohorov metric serves to metrize convergence of zero sets. The space of probability measures on S, denoted $\mathcal{P}(S)$, is itself a separable metric space, therefore one can define the Prohorov metric on $\mathcal{P}(S)$, and this metrizes convergence of laws of random zero sets.

The Ky Fan metric on random variables on a fixed probability space will be of some use as well. Defined by $K(X, Y)=\inf \{\epsilon: \mathbb{P}(d(X, Y)>\epsilon)<\epsilon\}$, this metrizes convergence in probability. The two metrics are related (this is Strassen's Theorem):

$$
\begin{equation*}
|\mu-\nu|_{P}=\inf \{K(X, Y): X \sim \mu, Y \sim \nu\} . \tag{2}
\end{equation*}
$$

A good reference for the facts mentioned above is available on line [13]. We 145 will make use of Rouché's Theorem. There are a number of formulations, of 146 which the most elementary is probably the following statement proved as Theorem 147 10.10 in [2].

Theorem 4 (Rouché). If f and g are analytic on a topological disk, B, and $|g|<149$ $|f|$ on ∂B, then f and $f+g$ have the same number of zeros on B.

[^20]
Editor's Proof

3 Proof of Theorem 1

We begin by stating some lemmas. The first is nearly a triviality.
Lemma 1. Suppose μ has finite 1-energy. Then
(i)

$$
t \cdot \mathbb{P}\left(\left|X_{0}-X_{1}\right| \leq \frac{1}{t}\right) \rightarrow 0
$$

(ii) for any $C>0$,

$$
\mathbb{P}\left(\min _{1 \leq j \leq n}\left|X_{j}-X_{n+1}\right| \leq \frac{C}{n}\right) \rightarrow 0 ;
$$

Proof. For part (i) observe that $\lim \sup t \cdot \mathbb{P}\left(\left|X_{0}-X_{1}\right| \leq 1 / t\right) \leq 2 \lim \sup 2^{j} \cdot{ }_{157}$ $\mathbb{P}\left(\left|X_{0}-X_{1}\right| \leq 2^{-j}\right)$ as t goes over reals and j goes over integers. We then have ${ }_{158}$

$$
\begin{aligned}
\infty & >\varepsilon(\mu) \\
& =\mathbb{E} \frac{1}{\left|X_{0}-X_{1}\right|} \\
& \geq \frac{1}{2} \mathbb{E} \sum_{j \in \mathbb{Z}} 2^{j} \mathbf{1}_{\left|X_{0}-X_{1}\right| \leq 2^{-j}} \\
& =\frac{1}{2} \sum_{j} 2^{j} \mathbb{P}\left(\left|X_{0}-X_{1}\right| \leq 2^{-j}\right)
\end{aligned}
$$

and from the finiteness of the last sum it follows that the summand goes to zero. Part (ii) follows from part (i) upon observing, by symmetry, that

$$
\mathbb{P}\left(\min _{1 \leq j \leq n}\left|X_{j}-X_{n+1}\right| \leq \frac{C}{n}\right) \leq n \mathbb{P}\left(\left|X_{0}-X_{1}\right| \leq \frac{C}{n}\right) .
$$

Define the nth empirical potential function $V_{\mu, n}$ by

$$
V_{\mu, n}(z):=\frac{1}{n} \sum_{j=1}^{n} \frac{1}{z-X_{j}}
$$

which is also the integral in w of $1 /(z-w)$ against the measure $\mathcal{Z}\left(f_{n}\right)$. Our next 164 lemma bounds $V_{\mu, n}^{\prime}(z)$ on the disk $B:=B_{C / n}\left(X_{n+1}\right)$.

Lemma 2. For all $\epsilon>0$,

$$
\begin{equation*}
\mathbb{P}\left(\sup _{z \in B}\left|V_{\mu, n}^{\prime}(z)\right| \geq \epsilon n\right) \rightarrow 0 \tag{167}
\end{equation*}
$$

as $n \rightarrow \infty$.
Proof. Let G_{n} denote the event that $\min _{1 \leq j \leq n}\left|X_{j}-X_{n+1}\right|>2 C / n$. Let $S_{n}:=169$ $\sup _{z \in B}\left|V_{\mu, n}^{\prime}(z)\right|$. We will show that

$$
\begin{equation*}
\mathbb{E} S_{n} \mathbf{1}_{G_{n}}=o(n) \tag{3}
\end{equation*}
$$

as $n \rightarrow \infty$. By Markov's inequality, this implies that $\mathbb{P}\left(S_{n} \mathbf{1}_{G_{n}} \geq \epsilon n\right) \rightarrow 0$ for all $\epsilon>0$ as $n \rightarrow \infty$. By part (ii) of Lemma 1 we know that $\mathbb{P}\left(G_{n}\right) \rightarrow 1$, which then 172 establishes that $\mathbb{P}\left(S_{n} \geq \epsilon n\right) \rightarrow 0$, proving the lemma.

In order to show (3) we begin with

$$
\begin{equation*}
\left|V_{\mu, n}^{\prime}(z)\right|=\left|\frac{1}{n} \sum_{j=1}^{n} \frac{-1}{\left(z-X_{j}\right)^{2}}\right| \leq \frac{1}{n} \sum_{j=1}^{n} \frac{1}{\left|z-X_{j}\right|^{2}} \tag{175}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
S_{n} \mathbf{1}_{G_{n}} \leq \frac{1}{n} \sum_{j=1}^{n} \frac{1}{\left(\left|X_{n+1}-X_{j}\right|-C / n\right)^{2}} \mathbf{1}_{G_{n}} \leq \frac{1}{n} \sum_{j=1}^{n} \frac{4}{\left|X_{n+1}-X_{j}\right|^{2}} \mathbf{1}_{G_{n}}, \tag{4}
\end{equation*}
$$

where we have used the triangle inequality, thus:

$$
\left|z-X_{j}\right|=\left|\left(z-X_{n+1}\right)+\left(x_{n+1}-X_{j}\right)\right| \geq\left|X_{n+1}-X_{j}\right|-\left|z-X_{n+1}\right| .
$$

Since we are in B, we know that $\left|z-X_{n+1}\right| \leq C / n$, and since we are in G_{n}, we 179 know that $C / n<\left|X_{n+1}-X_{j}\right| / 2$.

Because S_{n} is the supremum of an average of n summands and the summands are 181 exchangeable, the expectation of $S_{n} \mathbf{1}_{G_{n}}$ is bounded from above by the expectation 182 of one summand. Referring to (4), and using the fact that G_{n} is contained in the 183 event that $\left|X_{n+1}-X_{1}\right|>2 C / n$, this gives

$$
\mathbb{E} S_{n} \mathbf{1}_{G_{n}} \leq \mathbb{E} \frac{4}{\left|X_{n+1}-X_{1}\right|^{2}} \mathbf{1}_{\left|X_{n+1}-X_{1}\right| \geq 2 C / n}
$$

A standard inequality for nonnegative variables (integrate by parts) is

$$
\mathbb{E} W^{2} \mathbf{1}_{W \leq t} \leq \int_{0}^{t} 2 s \mathbb{P}(W \geq s) d s
$$

Editor's Proof

When applied to $W=\left|X_{n+1}-X_{1}\right|^{-1}$ and $t=n /(2 C)$, this yields

$$
\mathbb{E} S_{n} \mathbf{1}_{G_{n}} \leq \int_{0}^{n /(2 C)} 2 s \mathbb{P}\left(\frac{1}{\left|X_{0}-X_{1}\right|}>s\right) d s
$$

The integrand goes to zero as $n \rightarrow \infty$ by part (i) of Lemma 1. It follows that the integral is $o(n)$, proving the lemma.

Define the lower modulus of V to distance C / n by

$$
\underline{V}_{n}^{C}(z):=\inf _{w:|w-z| \leq C / n}\left|V_{\mu, n}(w)\right| .
$$

This depends on the argument μ as well as C and n but we omit this from the 192 notation.

Lemma 3. Assume μ has finite 1-energy. Then as $n \rightarrow \infty$, the random variable 194 $\underline{V}_{n}^{C}\left(X_{n+1}\right)$ converges in probability, and hence in distribution, to $\left|V_{\mu}\left(X_{n+1}\right)\right|$.

In the sequel we will need the Glivenko-Cantelli Theorem [10, Theorem 1.7.4]. Let $X_{1}, \ldots, X_{n}, \ldots$ be independent, identitically distributed random variables in \mathbb{R} with common cumulative distribution function F. The empirical distribution 198 function F_{n} for X_{1}, \ldots, X_{n} is defined by

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{(-\infty, x]}\left(X_{i}\right),
$$

where I_{C} is the indicator function of the set C. For every fixed $x, F_{n}(x)$ is a 201 sequence of random variables, which converges to $F(x)$ almost surely by the 202 strong law of large numbers. Glivenko-Cantelli Theorem strengthen this by proving 203 uniform convergence of F_{n} to F.

Theorem 5 (Glivenko-Cantelli).

$$
\left\|F_{n}-F\right\|_{\infty}=\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right| \longrightarrow 0 \quad \text { almost surely. }
$$

Corollary 1. Let f be a bounded continuous function on \mathbb{R}. Then

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f d F_{n}=\int_{\mathbb{R}} f d F, \quad \text { almost surely }
$$

Another immediate Corollary is:
Corollary 2. With notation as in the statement of Theorem 5, the Prohorov distance 211 between F_{n} and F converges to zero almost surely.

Editor's Proof

Proof of Lemma 3. It is equivalent to show that $\underline{V}_{n}^{C}-\left|V_{\mu}\left(X_{n+1}\right)\right| \rightarrow 0$ in 213 probability, for which it sufficient to show

$$
\begin{equation*}
\sup _{u \in B}\left|V_{\mu, n}(u)-V_{\mu}\left(X_{n+1}\right)\right| \rightarrow 0 \tag{5}
\end{equation*}
$$

in probability. This will be shown by proving the following two statements:

$$
\begin{align*}
\sup _{u \in B}\left|V_{\mu, n}(u)-V_{\mu, n}\left(X_{n+1}\right)\right| & \rightarrow 0 \text { in probability } \tag{6}\\
\left|V_{\mu, n}\left(X_{n+1}\right)-V_{\mu}\left(X_{n+1}\right)\right| & \rightarrow 0 \text { in probability } \tag{7}
\end{align*}
$$

The left-hand side of (6) is bounded above by $(C / n) \sup _{u \in B}\left|V_{\mu, n}^{\prime}(u)\right|$. By Lemma 2, for any $\epsilon>0$, the probability of this exceeding $C \epsilon$ goes to zero as $n \rightarrow \infty$. This 217 establishes (6).

For (7) we observe, using Dominated Convergence, that under the finite 1-energy 219 condition,

$$
\begin{equation*}
\mathcal{E}^{K}(\mu):=\iint \frac{1}{|z-w|} \mathbf{1}_{|z-w|^{-1} \geq K} d \mu(z) d \mu(w) \rightarrow 0 \tag{221}
\end{equation*}
$$

as $K \rightarrow \infty$. Define $\phi^{K, z}$ by

$$
\begin{equation*}
\phi^{K, z}(w)=\frac{1}{z-w} \frac{|z-w|}{\max \{|z-w|, 1 / K\}} \tag{223}
\end{equation*}
$$

in other words, it agrees with $1 /(z-w)$ except that we multiply by a nonegative real

$$
\left|\phi^{K, z}(w)-\frac{1}{|z-w|}\right| \leq \frac{1}{|z-w|} \mathbf{1}_{|z-w|^{-1} \geq K}
$$

so that

$$
\begin{equation*}
\iint\left|\phi^{K, z}(w)-\frac{1}{|z-w|}\right| d \mu(z) d \mu(w) \leq \varepsilon^{K}(\mu) \rightarrow 0 . \tag{8}
\end{equation*}
$$

We now introduce the truncated potential and truncated empirical potential with 228 respect to $\phi^{K, z}$:

$$
\begin{aligned}
V_{\mu}^{K}(z) & :=\int \phi^{K, z}(w) d \mu(w) \\
V_{\mu, n}^{K}(z) & :=\int \phi^{K, z}(w) d z\left(f_{n}\right)(w)
\end{aligned}
$$

Editor's Proof

We claim that

$$
\begin{equation*}
\mathbb{E}\left|V_{\mu}^{K}\left(X_{n+1}\right)-V_{\mu}\left(X_{n+1}\right)\right| \leq \mathcal{E}^{K}(\mu) \tag{9}
\end{equation*}
$$

Indeed,

$$
V_{\mu}\left(X_{n+1}\right)-V_{\mu}^{K}\left(X_{n+1}\right)=\int\left(\frac{1}{z-X_{n+1}}-\phi^{K, z}\left(X_{n+1}\right)\right) d \mu(z)
$$

so taking an absolute value inside the integral, then integrating against the law of independent of X_{n+1}, therefore the same argument proves

$$
\begin{equation*}
\mathbb{E}\left|V_{\mu, n}^{K}\left(X_{n+1}\right)-V_{\mu, n}\left(X_{n+1}\right)\right| \leq \mathcal{E}^{K}(\mu) \tag{10}
\end{equation*}
$$

independent of the value of n.
We now have two thirds of what we need for the triangle inequality. That is, to show (7) we will show that the following three expressions may all be made smaller than ϵ with probability $1-\epsilon$.

$$
\begin{aligned}
& V_{\mu, n}\left(X_{n+1}\right)-V_{\mu, n}^{K}\left(X_{n+1}\right) \\
& V_{\mu, n}^{K}\left(X_{n+1}\right)-V_{\mu}^{K}\left(X_{n+1}\right) \\
& V_{\mu}^{K}\left(X_{n+1}\right)-V_{\mu}\left(X_{n+1}\right)
\end{aligned}
$$

Choosing K large enough so that $\mathcal{E}^{K}(\mu)<\epsilon^{2}$, this follows for the third of these follows by (9) and for the first of these by (10). Fixing this value of K, we turn to the middle expression. The function $\phi^{K, z}$ is bounded and continuous. By the Corollary 1 to the Glivenko-Cantelli Theorem 5, the empirical law $\mathcal{Z}\left(f_{n}\right)$ converges weakly to μ, meaning that the integral of any bounded continuous function ϕ against $z\left(f_{n}\right)$ converges in probability to the integral of ϕ against μ. Setting $\phi:=\phi^{K, z}$ and $z:=X_{n+1}$ proves that $V_{\mu, n}^{K}\left(X_{n+1}\right)-V_{\mu}^{K}\left(X_{n+1}\right)$ goes to zero in probability, establishing the middle statement (it is in fact true conditionally on X_{n+1}) and concluding the proof.
Proof of Theorem 1. Suppose that $\underline{V}_{n}^{C}\left(X_{n+1}\right)>1 / C$. Then for all w with $\mid w-{ }_{240}$ $X_{n+1} \mid \leq C / n$, we have

$$
f_{n}^{\prime}(w)=\sum_{j=1}^{n} \frac{1}{w-X_{j}}=n V_{\mu, n}(w) \geq \frac{n}{C}
$$

Editor's Proof

and hence

$$
\left|f_{n}^{\prime}(w)\right|=n\left|V_{\mu, n}(w)\right| \geq n \underline{V}_{n}^{C}\left(X_{n+1}\right) \geq \frac{n}{C}
$$

To apply Rouché's Theorem to the functions $1 / f_{n}^{\prime}$ and $z-X_{n+1}$ on the disk $B:={ }_{246}$ $B_{C / n}\left(X_{n+1}\right)$ we note that $\left|1 / f_{n}^{\prime}\right|<C / n=\left|z-X_{n+1}\right|$ on ∂B and hence that 247 the sum has precisely one zero in B, call it a_{n+1}. Taking reciprocals we see that a_{n+1} is also the unique value in $z \in B$ for which $f_{n}^{\prime}(z)=-1 /\left(z-X_{n+1}\right)$. But 249 $f_{n}^{\prime}(z)+1 /\left(z-X_{n+1}\right)=f_{n+1}^{\prime}(z)$, whence f_{n+1}^{\prime} has the unique zero a_{n+1} on B. ${ }^{250}$

Now fix any $\delta>0$. Using the hypothesis that $\mu\left\{z: V_{\mu}(z)=0\right\}=0$, we pick a ${ }_{25}$ $C>0$ such that $\mathbb{P}\left(\left|V_{\mu}\left(X_{n+1}\right)\right| \leq 2 / C\right) \leq \delta / 2$. By Lemma 3, there is an n_{0} such that for all $n \geq n_{0}$,

$$
\mathbb{P}\left(\underline{V}^{C}\left(X_{n+1}\right) \leq \frac{1}{C}\right) \leq \delta .
$$

It follows that the probability that f_{n+1}^{\prime} has a unique zero a_{n+1} in B is at least $1-\delta$ for $n \geq n_{0}$. By symmetry, we see that for each j, the probability is also at least $1-\delta$ that f_{n+1}^{\prime} has a unique zero, call it a_{j}, in the ball of radius C / n centered at X_{j}; equivalently, the expected number of $j \leq n+1$ for which there is not a unique zero of f_{n+1}^{\prime} in $B_{C / n}\left(X_{j}\right)$ is at most δn for $n \geq n_{0}$.

Define x_{j} to equal a_{j} if f_{n+1}^{\prime} has a unique root in $B_{C / n}\left(X_{j}\right)$ and the minimum distance from X_{j} to any X_{i} with $i \leq n+1$ and $i \neq j$ is at least $2 C / n$. By convention, we define x_{j} to be the symbol Δ if either of these conditions fails. The values x_{j} other than Δ are distinct roots of f_{n+1}^{\prime} and each such value is within distance C / n of a different root of f_{n+1}. Using part (ii) of Lemma 1 we see that the expected number of j for which $x_{j}=\Delta$ is $o(n)$. It follows that $\mathbb{P}\left(\left|z\left(f_{n+1}\right)-\mathcal{Z}\left(f_{n+1}^{\prime}\right)\right|_{P} \geq 2 \delta\right) \rightarrow 0$ as $n \rightarrow \infty$. But also the Prohorov distance between $\mathcal{Z}\left(f_{n+1}\right)$ and μ converges to zero by Corollary 2 . The Prohorov distance metrizes convergence in distribution and $\delta>0$ was arbitrary, so the theorem is proved.

4 Proof of Remaining Theorems

Let $\mathcal{G}:=\sum_{j=0}^{\infty} Y_{j} z^{j}$ denote the standard complex Gaussian power series where ${ }^{261}$ $\left\{Y_{j}(\omega)\right\}$ are IID standard complex normals. The results we require from [21] are as 262 follows.

Proposition 1 ([21]). The set of zeros of \mathcal{G} in the unit disk is a determinantal point 264 process with joint intensities

$$
p\left(z_{1}, \ldots, z_{n}\right)=\pi^{-n} \operatorname{det}\left[\frac{1}{\left(1-z_{i} \bar{z}_{j}\right)^{2}}\right] .
$$

Editor's Proof

The number $N(\rho)$ of zeros of \mathcal{G} on B_{ρ} is distributed as the sum of independent 267 Bernoullis with means $\rho^{2 k}, 1 \leq k<\infty$.

To use these results we broaden them to random series whose coefficients are 269 nearly IID Gaussian.

Lemma 4. Let $\left\{g_{n}:=\sum_{r=0}^{\infty} a_{n r} z^{r}\right\}$ be a sequence of power series. Suppose
(i) For each k, the k-tuple $\left(a_{n, 1}, \ldots, a_{n, k}\right)$ converges weakly as $n \rightarrow \infty$ to a 272 k-tuple of IID standard complex normals; $\quad 273$
(ii) $\mathbb{E}\left|a_{n r}\right| \leq 1$ for all n and r. $\quad 274$

Then on each disk B_{ρ}, the set $\mathcal{Z}\left(g_{i}\right) \cap B_{\rho}$ converges weakly to $\mathcal{Z}(\mathcal{G}) \cap \rho . \quad 275$
Proof. Throughout the proof we fix $\rho \in(0,1)$ and denote $B:=B_{\rho}$. Suppose an 276 analytic function h has no zeros on ∂B. Denote by $\|g-h\|_{B}$ the sup norm on 277 functions restricted to B. Note that if $h_{n} \rightarrow h$ uniformly on B then $\mathcal{z}\left(h_{n}\right) \cap B \rightarrow{ }_{278}$ $z(h) \cap B$ in the weak topology on probability measures on B, provided that h has 279 no zero on ∂B. We apply this with $h=\mathcal{G}:=\sum_{j=0}^{\infty} Y_{j} z^{j}$ where $\left\{Y_{j}(\omega)\right\}$ are IID 280 standard complex normals. For almost every $\omega, h(\omega)$ has no zeros on ∂B. Hence 281 given $\epsilon>0$ there is almost surely a $\delta(\omega)>0$ such that $\|g-\mathcal{G}\|_{B}<\delta$ implies 282 $|\mathcal{Z}(g)-\mathcal{Z}(\mathcal{G})|_{P}<\epsilon$. Pick $\delta_{0}(\epsilon)$ small enough so that $\mathbb{P}\left(\delta(\omega) \leq \delta_{0}\right)<\epsilon / 3$; thus 283 $\|g-\mathcal{G}\|_{B}<\delta_{0}$ implies $|\mathcal{Z}(g)-\mathcal{Z}(\mathcal{G})|<\epsilon$ for all \mathcal{G} outside a set of measure at most 284 $\epsilon / 3$.

By hypothesis (ii),

$$
\mathbb{E}\left|\sum_{r=k+1}^{\infty} a_{n r} z^{r}\right| \leq \frac{\rho^{k+1}}{1-\rho}
$$

Thus, given $\epsilon>0$, once k is large enough so that $\rho^{k+1} /(1-\rho)<\epsilon \delta_{0}(\epsilon) / 6$, we 288 see that

$$
\mathbb{P}\left(\left|\sum_{r=k+1}^{\infty} a_{n r} z^{r}\right| \geq \frac{\delta_{0}(\epsilon)}{2}\right) \leq \frac{\epsilon}{3}
$$

For such a $k(\epsilon)$ also $\left|\sum_{r=k+1}^{\infty} Y_{r} z^{r}\right| \leq \epsilon / 3$. By hypothesis (i), given $\epsilon>0$ and 291 the corresponding $\delta(\epsilon)$ and $k(\epsilon)$, we may choose n_{0} such that $n \geq n_{0}$ implies 292 that the law of $\left(a_{n 1}, \ldots, a_{n k}\right)$ is within $\min \left\{\epsilon / 3, \delta_{0}(\epsilon) /(2 k)\right\}$ of the product of $k 293$ IID standard complex normals in the Prohorov metric. By the equivalence of the 294 Prohorov metric to the minimal Ky Fan metric, there is a pair of random variables 295 \tilde{g} and \tilde{h} such that $\tilde{g} \sim g_{n}$ and $\tilde{h} \sim \mathcal{G}$ and, except on a set of of measure $\epsilon / 3$, each of 296 the first k coefficients of \tilde{g} is within $\delta_{0} /(2 k)$ of the corresponding coefficient of $\mathcal{G} .297$ By the choice of $k(\epsilon)$, we then have 298

$$
\mathbb{P}\left(\|\tilde{g}-\tilde{h}\|_{B} \geq \delta_{0}\right) \leq \frac{2 \epsilon}{3}
$$

Editor's Proof

By the choice of δ_{0}, this implies that

$$
\mathbb{P}\left(|z(\tilde{g})-\mathcal{Z}(\tilde{h})|_{P} \geq \epsilon\right)<\epsilon .
$$

Because $\tilde{g} \sim g_{n}$ and $\tilde{h} \sim \mathcal{G}$, we see that the law of $\mathcal{Z}\left(g_{n}\right) \cap B$ and the law of $\mathcal{Z}(\mathcal{G}) \cap B$ are within ϵ in the Prohorov metric on laws on measures. Because $\epsilon>0$ was arbitrary, we see that the law of $\mathcal{Z}\left(g_{n}\right) \cap B$ converges to the law of $\mathcal{Z}(\mathcal{G}) \cap B$.

Proof of Theorem 3. Let $\rho<1$ be fixed for the duration of this argument and denote $B:=B_{\rho}$. Let

$$
g_{n}(z):=\frac{f_{n}^{\prime}(z)}{f(z)}=\sum_{j=1}^{n} \frac{1}{z-X_{j}}
$$

Because $\left|X_{j}\right|=1$, the rational function $1 /\left(z-X_{j}\right)=-X_{j}^{-1} /\left(1-X_{j}^{-1} z\right)$ is analytic on the open unit disk and represented there by the power series $-\sum_{r=0}^{\infty} X_{j}^{-r-1} z^{r}$. It 306 follows that $-g_{n} / \sqrt{n}$ is analytic on the open unit disk and represented there by the 3 power series $-g_{n}(z) / \sqrt{n}=\sum_{r=0}^{\infty} a_{n r} z^{r}$ where

$$
a_{n r}=n^{-1 / 2} \sum_{j=1}^{n} X_{j}^{-r-1}
$$

The function $-g_{n} / \sqrt{n}$ has the same zeros on B as does f_{n}^{\prime}, the normalization by $-1 / \sqrt{n}$ being inserted as a convenience for what is about to come.

We will apply Lemma 4 to the sequence $\left\{g_{n}\right\}$. The coefficients $a_{n j}$ are normalized power sums of the variables $\left\{X_{j}\right\}$. For each $r \geq 0$ and each j, the variable X_{j}^{-r-1} is uniformly distributed on the unit circle. It follows that $\mathbb{E} a_{n r}=0$ and that $\mathbb{E} a_{n r} \overline{a_{n r}}=n^{-1} \sum_{i j} X_{i}^{-r-1}{\overline{X_{j}}}^{-r-1}=n^{-1} \sum_{i j} \delta_{i j}=1$. In particular, $\mathbb{E}\left|a_{n r}\right| \leq$ $\left(\mathbb{E}\left|a_{n r}\right|^{2}\right)^{1 / 2}=1$, satisfying the second hypothesis of Lemma 4. For the first hypothesis, fix k, let $\theta_{j}=\operatorname{Arg}\left(X_{j}\right)$, and let $\mathbf{v}^{(j)}$ denote the $(2 k)$-vector $\left(\cos \left(\theta_{j}\right)\right.$, $\left.-\sin \left(\theta_{j}\right), \cos \left(2 \theta_{j}\right),-\sin \left(2 \theta_{j}\right), \ldots, \cos \left(k \theta_{j}\right),-\sin \left(k \theta_{j}\right)\right)$; in other words, $\mathbf{v}^{(j)}$ is the complex k-vector $\left(X_{j}^{-1}, X_{j}^{-2}, \ldots, X_{j}^{-k}\right)$ viewed as a real ($\left.2 k\right)$-vector. For each $1 \leq s, t \leq 2 k$ we have $\mathbb{E} \mathbf{v}_{s}^{(j)} \mathbf{v}_{t}^{(j)}=(1 / 2) \delta_{i j}$. Also the vectors $\left\{\mathbf{v}^{(j)}\right\}$ are independent as j varies. It follows from the multivariate central limit theorem (see, e.g., [10, Theorem 2.9.6]) that $\mathbf{u}^{(n)}:=n^{-1 / 2} \sum_{j=1}^{n} \mathbf{v}^{(j)}$ converges to $1 / \sqrt{2}$ times a standard $(2 k)$-variate normal. For $1 \leq r \leq k$, the coefficient $a_{n r}$ is equal to $\mathbf{u}_{2 r-1}^{(n)}+i \mathbf{u}_{2 r}^{(n)}$. Thus $\left\{a_{n r}: 1 \leq r \leq k\right\}$ converges in distribution as $n \rightarrow \infty$ to a k-tuple of IID standard complex normals. The hypotheses of Lemma 4 being verified, the theorem now follows from Proposition 1.

Editor's Proof

References

1. Abdul Aziz. On the zeros of a polynomial and its derivative. Bull. Austral. Math. Soc., 31331(2):245-255, 1985.
2. J. Bak and D. Newman. Complex Analysis. undergraduate Texts in Mathematics. Springer- 315 Verlag, Berlin, 1982.
3. Hubert E. Bray. On the Zeros of a Polynomial and of Its Derivative. Amer. J. Math., 53(4):864- 317 872, 1931 . 318
4. A. Bharucha-Reid and M. Sambandham. Random Polynomials. Academic Press, Orlando, FL, 319 $1986 . \quad 320$
5. Branko Ćurgus and Vania Mascioni. A contraction of the Lucas polygon. Proc. Amer. Math. 321 Soc., 132(10):2973-2981 (electronic), 2004.
6. N. G. de Bruijn. On the zeros of a polynomial and of its derivative. Nederl. Akad. Wetensch., 323 Proc., 49:1037-1044 = Indagationes Math. 8, 635-642 (1946), 1946.
7. N. G. de Bruijn and T. A. Springer. On the zeros of a polynomial and of its derivative. II. 325 Nederl. Akad. Wetensch., Proc., 50:264-270 = Indagationes Math. 9, 458-464 (1947), 1947. 326
8. Dimitar K. Dimitrov. A refinement of the Gauss-Lucas theorem. Proc. Amer. Math. Soc., 327 126(7):2065-2070, 1998. 328
9. Janusz Dronka. On the zeros of a polynomial and its derivative. Zeszyty Nauk. Politech. 329 Rzeszowskiej Mat. Fiz., (9):33-36, 1989.
10. R. Durrett. Probability: Theory and Examples. Duxbury Press, Belmont, CA, third edition, 331 $2004 . \quad 332$
11. Kenneth Falconer. Fractal geometry. John Wiley \& Sons Inc., Hoboken, NJ, second edition, 333 2003. Mathematical foundations and applications. 334
12. A. W. Goodman, Q. I. Rahman, and J. S. Ratti. On the zeros of a polynomial and its derivative. 335 Proc. Amer. Math. Soc., 21:273-274, 1969. 336
13. Andreas Hofinger. The metrics of Prokhorov and Ky Fan for assessing uncertainty in inverse 337 problems. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 215:107-125 (2007), 2006. 338
14. André Joyal. On the zeros of a polynomial and its derivative. J. Math. Anal. Appl., 26:315-317, 339 1969.
15. N.L. Komarova and I. Rivin. Harmonic mean, random polynomials and stochastic matrices. 341 Advances in Applied Mathematics, 31(2):501-526, 2003.
16. K. Mahler. On the zeros of the derivative of a polynomial. Proc. Roy. Soc. Ser. A, 264:145-154, 343 1961.
17. S. M. Malamud. Inverse spectral problem for normal matrices and the Gauss-Lucas theorem. 345 Trans. Amer. Math. Soc., 357(10):4043-4064 (electronic), 2005.
18. M. Marden. Geometry of Polynomials, volume 3 of Mathematical Surveys and Monographs. 347 AMS, 1949. 348
19. M. Marden. Conjectures on the critical points of a polynomial. Amer. Math. Monthly, 349 90(4):267-276, 1983.
20. Piotr Pawlowski. On the zeros of a polynomial and its derivatives. Trans. Amer. Math. Soc., 351 350(11):4461-4472, 1998.
21. Y. Peres and B. Virag. Zeros of the i.i.d. Gaussian power series: a conformally invariant 353 determinantal process. Acta Math., 194:1-35, 2005.
22. Q. I. Rahman. On the zeros of a polynomial and its derivative. Pacific J. Math., 41:525-528, 355 1972. 356
23. Bl. Sendov. Hausdorff geometry of polynomials. East J. Approx., 7(2):123-178, 2001.
24. Bl. Sendov. New conjectures in the Hausdorff geometry of polynomials. East J. Approx., 358 16(2):179-192, $2010 . \quad 359$
25. È. A. Storozhenko. On a problem of Mahler on the zeros of a polynomial and its derivative. 360 Mat. Sb., 187(5):111-120, 1996.
26. Q. M. Tariq. On the zeros of a polynomial and its derivative. II. J. Univ. Kuwait Sci., 13(2):151- 362 156, 1986.

Editor's Proof

Metadata of the chapter that will be visualized online

Chapter Title	On the Distribution of Small Denominators in the Farey Series of Order N	
Copyright Year	2013	Stewart
Copyright Holder	Springer-Verlag Berlin Heidelberg	
Corresponding Author	Family Name Particle	
	Given Name	
	Suffix	
	Division Organization	Department of Pure Mathematics
	Address	University of Waterloo
Abstract	Let N be a positive integer. The Farey series of order N is the sequence of rationals h / k with h and k coprime and $1 \leq h \leq k \leq \mathrm{N}$ arranged in increasing order between 0 and 1, see $[1]$.	

On the Distribution of Small Denominators , in the Farey Series of Order N

C.L. Stewart*

1 Introduction

Let N be a positive integer. The Farey series of order N is the sequence of rationals 6 h / k with h and k coprime and $1 \leq h \leq k \leq N$ arranged in increasing order 7 between 0 and 1 , see [1]. There are $\varphi(k)$ rationals with denominator k in F_{N} and 8 thus the number of terms in F_{N} is R where

$$
\begin{equation*}
R=R(N)=\varphi(1)+\varphi(2)+\cdots+\varphi(N)=\frac{3}{\pi^{2}} N^{2}+O(N \log N) \tag{1}
\end{equation*}
$$

(see Theorem 330 of [3]). Let

$$
\begin{equation*}
S(N)=\sum_{i=1}^{N} q_{i} \tag{11}
\end{equation*}
$$

where q_{i} denotes the smallest denominator possessed by a rational from F_{N} which 1 lies in the interval $\left(\frac{i-1}{N}, \frac{i}{N}\right.$]. In [4] Kruyswijk and Meijer proved that

$$
\begin{equation*}
N^{3 / 2} \ll S(N) \ll N^{3 / 2} \tag{2}
\end{equation*}
$$

[^21]and they remarked that the function $S(N)$ is connected with a problem in 14 combinatorial group theory. In particular, C. Schaap proved that for any prime $p, 15$ $S(p)=p^{2}-p+1-L(p)$ where $L=L(p)$ is the largest integer for which there 16 is a sequence of integers a_{1}, \ldots, a_{L} with $1 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{L} \leq p-1$ for 17 which $a_{1}+\cdots+a_{j} \not \equiv 0(\bmod p)$ for $1 \leq j \leq L$. An examination of Kruyswijk 18 and Meijer's proof shows that the implied constants in (2) may be made explicit 19 and that $\frac{1}{\pi^{2}} N^{3 / 2}<S(N)<96 N^{3 / 2}$ for N sufficiently large. They conjectured 20 that $\lim _{N \rightarrow \infty} S(N) / N^{3 / 2}$ exists and is equal to $\left(\frac{4}{\pi}\right)^{2}=1.62 \ldots$ Numerical 21 work seems to be in agreement with this conjecture. In the report [5] we gave an 22 alternative proof of (2) and in fact showed that
$$
1.20 N^{3 / 2}<S(N)<2.33 N^{3 / 2}
$$
for N sufficiently large. We are now able to refine this estimate.
Theorem 1. For N sufficiently large
$$
1.35 N^{3 / 2}<S(N)<2.04 N^{3 / 2}
$$

Our proof of Theorem 1 depends on two results of R.R. Hall [2] on the 26 distribution and the second moments of gaps in the Farey series.

2 Preliminary Lemmas

Let N be a positive integer and let $F_{\hat{N}}=\left\{x_{1}, \ldots, x_{R}\right\}$ where $0<x_{1}<\cdots<x_{R}=29$ 1. Put $\ell_{1}=x_{1}$ and $\ell_{r}=x_{r}-x_{r-1}$ for $r=2, \ldots, R$ so that the ℓ_{i} 's correspond to 30 gaps in the Farey series with the points 0 and 1 identified.

Lemma 1. There is a positive number C_{0} such that for $N \geq 2$,

$$
\sum_{r=1}^{R} \ell_{r}^{2}<\left(C_{0} \log N\right) / N^{2}
$$

Proof. This follows from Theorem 1 of [2].
For each positive real number t and each positive integer N we define $\sigma_{N}(t)$ to ${ }_{33}$ be the number of gaps ℓ_{r} for which $\ell_{r}>t / N^{2}$. Thus

$$
\sigma_{N}(t)=\sum_{\substack{r=1 \\ t<N^{2} \ell_{r}}}^{R} 1
$$

We also define $\delta_{N}(t)$ by

$$
\delta_{N}(t)=\sigma_{N}(t) / R(N)
$$

Editor's Proof

Then $\delta_{N}(t)$ is a distribution function and Hall [2] proves that $\delta_{N}(t)$ tends to a limit 37 as N tends to infinity.

Lemma 2. If $4 \leq t \leq N$ and $w=w(t)$ is the smaller root of the equation $w^{2}=39$ $t(w-1)$ then

$$
\begin{equation*}
\delta_{N}(t)=2 t^{-1}(1-w+2 \log w)+O\left(t^{-1} N^{-1} \log N+N^{-3 / 2}\right) \tag{41}
\end{equation*}
$$

If $1 \leq t \leq 4$ then

$$
\delta_{N}(t)=2 t^{-1}\left(1+\log t-\frac{t}{2}\right)+O\left(N^{-1} \log N\right)
$$

Proof. The first assertion follows from Theorem 4 of [2] together with (1). The second assertion follows from (1.2) of [2].

Let us define $f(t)$ for $1 \leq t$ by

$$
f(t)= \begin{cases}2\left(1+\log t-\frac{t}{2}\right) & \text { for } 1 \leq t \leq 4 \tag{3}\\ 2(1-w+2 \log w) & \text { for } 4<t\end{cases}
$$

where

$$
w=\frac{t}{2}\left(1-\left(1-\frac{4}{t}\right)^{1 / 2}\right) \quad \text { for } 4<t
$$

Observe that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} f(t) /(2 / t)=1 \tag{4}
\end{equation*}
$$

Lemma 3. For $4 \leq t \leq N$ we have

$$
\begin{equation*}
\sigma_{N}(t) \leq \frac{24(2 \log 2-1)}{\pi^{2}}\left(\frac{N}{t}\right)^{2}+O\left(\frac{N}{t} \log N+N^{1 / 2}\right) \tag{49}
\end{equation*}
$$

Proof. Since $\sigma_{N}(t)=R(N) \delta_{N}(t)$ it suffices, by (1) and Lemma 2 to show that for 50 $t \geq 4, g(t)$ is a decreasing function of t where

$$
\begin{equation*}
g(t)=t(2 \log w(t)-(w(t)-1)) . \tag{52}
\end{equation*}
$$

Since

$$
w(t)=\left(t-t(1-4 / t)^{1 / 2}\right) / 2
$$

Editor's Proof

we find that

$$
g^{\prime}(t)=2 \log w-(w-1)+((2 / w)-1) t w^{\prime}(t)
$$

so

$$
g^{\prime}(t)=2 \log w-2 w+2
$$

On observing that $\log (1+x) \leq x$ for $x \geq 0$ and putting $x=w-1$ we conclude 57 that

$$
g^{\prime}(t) \leq 2(w-1)-2 w+2=0
$$

whenever $w \geq 1$. Since, for $t>4$,

$$
w(t)=1+\frac{1}{t}+\frac{2}{t^{2}}+\cdots+\frac{c_{n}}{t^{n}}+\cdots
$$

where the c_{n} are positive numbers we see that $w>1$ for $t>4$ hence for $t \geq 4$. Thus $g(t)$ is a decreasing function of t as required.

3 Further Preliminaries

For each positive integer M we define $\theta(M)$ to be the number of q_{i} 's in the sum 61 giving $S(N)$ which are larger than M. Thus

$$
\theta(M)=\sum_{\substack{i=1 \\ q_{i}>M}}^{N} 1
$$

For positive integers j and M let $\psi(j)\left(=\psi_{M}(j)\right)$ denote the number of gaps $\ell_{r}{ }_{63}$ in F_{M} of size larger than $\frac{j}{N}$. Accordingly we have

$$
\psi(j)=\sum_{\substack{r=1 \\ \ell_{r}>\frac{j}{N}}}^{R(M)} 1
$$

A gap ℓ_{r} in F_{M} with $\ell_{r} \leq \frac{j+1}{N}$ properly contains at most j intervals $\left(\frac{h-1}{N}, \frac{h}{N}\right]$ with 65 $1 \leq h \leq N . \theta(M)$ is the total number of intervals $\left(\frac{h-1}{N}, \frac{h}{N}\right]$ which are properly 66 contained in gaps of F_{M}. Thus

$$
\theta(M) \leq \psi(1)+\psi(2)+\cdots .
$$

Similarly a gap ℓ_{r} in F_{M} with $\ell_{r}>\frac{j+1}{N}$ properly contains at least j intervals of the 68 form $\left(\frac{h-1}{N}, \frac{h}{N}\right]$. Therefore

Editor's Proof

$$
\begin{equation*}
\psi(2)+\psi(3)+\cdots \leq \theta(M) \tag{70}
\end{equation*}
$$

Since $\psi(j)=\sigma_{M}\left(\frac{j M^{2}}{N}\right)$, it follows that

$$
\begin{equation*}
\sum_{j=2}^{v} \sigma_{M}\left(\frac{j M^{2}}{N}\right) \leq \theta(M) \leq \sum_{j=1}^{v} \sigma_{M}\left(\frac{j M^{2}}{N}\right) \tag{5}
\end{equation*}
$$

where $v(=v(M))$ satisfies

$$
\begin{equation*}
v<\frac{N}{M} \leq v+1 \tag{6}
\end{equation*}
$$

Let u_{1} be the number of rationals $\frac{h}{k}$ with $(h, k)=1$ and $1 \leq h \leq k \leq \sqrt{N}$. ${ }^{73}$ Then by (1)

$$
\begin{equation*}
u_{1}=\frac{3}{\pi^{2}} N+O\left(N^{1 / 2} \log N\right) \tag{7}
\end{equation*}
$$

and the sum S_{1} of the denominators of these rationals is

$$
S_{1}=\sum_{k \leq \sqrt{N}} k \varphi(k)
$$

By Abel summation and (1) we find that

$$
\begin{equation*}
S_{1}=\frac{2}{\pi^{2}} N^{3 / 2}+O(N \log N) \tag{8}
\end{equation*}
$$

Observe that if q is an integer with $1 \leq q \leq \sqrt{N}$ then each rational p / q with $p{ }_{78}$ positive and coprime with q contributes a term q to $S(N)$. Thus S_{1} is the sum of the 79 u_{1} smallest terms in the sum giving $S(N)$. Put

$$
\begin{equation*}
u_{2}=N-u_{1} \tag{9}
\end{equation*}
$$

and let S_{2} be the sum of the u_{2} largest q 's which appear in the sum for $S(N)$. Then

$$
\begin{equation*}
S(N)=S_{1}+S_{2} . \tag{10}
\end{equation*}
$$

4 The Upper Bound in Theorem 1

In order to establish an upper bound for $S(N)$ we shall establish an upper bound for 83 S_{2} and then appeal to (8) and (10).

Editor's Proof

For any positive integer M with $M \leq N$ we have

$$
\begin{equation*}
S_{2} \leq M u_{2}+\theta(M)+\theta(M+1)+\cdots+\theta(N) . \tag{11}
\end{equation*}
$$

Put $\lambda=1.38$ and $M_{1}=\left[\lambda N^{1 / 2}\right]$. Since $\lambda\left(1-3 / \pi^{2}\right)<0.96054$ and $\theta\left(M_{1}\right) \leq N$, 86 it follows from (7), (9) and (11) that

$$
\begin{equation*}
S_{2}<0.96054 N^{3 / 2}+\theta\left(M_{1}+1\right)+\theta\left(M_{1}+2\right)+\cdots+\theta(N) \tag{12}
\end{equation*}
$$

for N sufficiently large. Next, put
88

$$
\begin{equation*}
S_{3}=\sum_{M_{1}<M<N^{3 / 5}} \theta(M) \quad \text { and } \quad S_{4}=\sum_{N^{3 / 5} \leq M \leq N} \theta(M) \tag{89}
\end{equation*}
$$

Thus, by (12),

$$
\begin{equation*}
S_{2}<0.96054 N^{3 / 2}+S_{3}+S_{4} \tag{13}
\end{equation*}
$$

Let us first estimate S_{4}. To that end recall that $\theta(M)$ is the number of q_{i} 's in the 91 sum $S(N)$ which are larger than M. Thus there are $\theta(M)$ intervals $\left(\frac{j-1}{N}, \frac{j}{N}\right]$ which 92 contain no element of F_{M}. In particular there must exist differences $\ell_{r_{1}}, \ldots, \ell_{r_{s}}$ in 93 F_{M} for which we can find positive integers k_{1}, \ldots, k_{s} with $\ell_{r_{i}} \geq k_{i} / N$ for $i=94$ $1, \ldots, s$ and such that $k_{1}+\cdots+k_{s} \geq \theta(M)$. Thus we certainly have

$$
\begin{equation*}
\sum_{i=1}^{s} \ell_{r_{i}}^{2} \geq \frac{\theta(M)}{N^{2}} \tag{14}
\end{equation*}
$$

On the other hand, by Lemma 1,

$$
\begin{equation*}
\sum_{r=1}^{R(M)} \ell_{r}^{2}<C_{0} M^{-2} \log M . \tag{15}
\end{equation*}
$$

A comparison of (14) and (15) reveals that

$$
\theta(M)<C_{0} \frac{N^{2}}{M^{2}} \log M
$$

For $N^{3 / 5} \leq M \leq N$ we have $\log M \leq \log N$ hence

$$
\begin{equation*}
\sum_{N^{3 / 5} \leq M \leq N} \theta(M)<C_{0} N^{2} \log N \int_{N^{3 / 5}-1}^{N} \frac{d M}{M^{2}} \tag{100}
\end{equation*}
$$

$$
\begin{equation*}
S_{4}<2 C_{0} N^{7 / 5} \log N \tag{16}
\end{equation*}
$$

Editor's Proof

Next we estimate S_{3}. By (5)

$$
\begin{equation*}
S_{3}=\sum_{M_{1}<M<N^{3 / 5}} \theta(M) \leq \sum_{M_{1}<M<N^{3 / 5}} \sum_{j=1}^{v} \sigma_{M}\left(\frac{j M^{2}}{N}\right) . \tag{17}
\end{equation*}
$$

For $M<N^{3 / 5}$ we see from (6) that $v+1$ is at least $N^{2 / 5}$, which in turn exceeds 10^{4} for N sufficiently large. Then, by Lemma 3,

$$
\begin{align*}
\sum_{M_{1}<M<N^{3 / 5}} \sum_{10^{4}<j \leq v} \sigma_{M}\left(\frac{j M^{2}}{N}\right) & <\sum_{M_{1}<M<N^{3 / 5}} \frac{N^{2}}{M^{2}} \sum_{10^{4}<j<\infty}\left(\frac{1}{j}\right)^{2} \\
& <10^{-4} N^{2} \sum_{M_{1}<M<N^{3 / 5}} \frac{1}{M^{2}} \\
& <10^{-4} N^{3 / 2}, \tag{18}
\end{align*}
$$

for N sufficiently large. Accordingly by (17) and (18)

$$
\begin{equation*}
S_{3}<10^{-4} N^{3 / 2}+\sum_{M_{1} \leqslant M<N^{3 / 5}} \sum_{j=1}^{10^{4}} \sigma_{M}\left(\frac{j M^{2}}{N}\right) . \tag{19}
\end{equation*}
$$

Let $\varepsilon>0$. For N sufficiently large in terms of ε

$$
R(M)<\left(\frac{3}{\pi^{2}}+\varepsilon\right) M^{2}
$$

hence

$$
\sigma_{M}\left(\frac{j M^{2}}{N}\right)=R(M) \delta_{M}\left(\frac{j M^{2}}{N}\right)<\left(\frac{3}{\pi^{2}}+\varepsilon\right) M^{2} \delta_{M}\left(\frac{j M^{2}}{N}\right)
$$

and so

$$
\begin{equation*}
\sigma_{M}\left(\frac{j M^{2}}{N}\right)<\left(\frac{3}{\pi^{2}}+\varepsilon\right) \frac{N}{j}\left(\frac{j M^{2}}{N} \delta_{M}\left(\frac{j M^{2}}{N}\right)\right) . \tag{20}
\end{equation*}
$$

It follows from Lemma 2 and (3) that for $j \leq 10^{4}$ and $M \leq N^{3 / 5}$

$$
\frac{j M^{2}}{N} \delta_{M}\left(\frac{j M^{2}}{N}\right)=f\left(\frac{j M^{2}}{N}\right)+O\left(\frac{\log N}{N}\right)
$$

Editor's Proof

282

Thus, by (4), for N sufficiently large in terms of ε

$$
\begin{equation*}
\frac{j M^{2}}{N} \delta_{M}\left(\frac{j M^{2}}{N}\right)<(1+\varepsilon) f\left(\frac{j M^{2}}{N}\right) \tag{21}
\end{equation*}
$$

For each integer j with $1 \leq j \leq 10^{4}$ we find from (20) and (21) that

$$
\begin{equation*}
\sum_{M_{1}<M<N^{3 / 5}} \sigma_{M}\left(\frac{j M^{2}}{N}\right)<\left(\frac{3}{\pi^{2}}+\varepsilon\right)(1+\varepsilon) \frac{N}{j} \sum_{M_{1}<M<N^{3 / 5}} f\left(\frac{j M^{2}}{N}\right) . \tag{22}
\end{equation*}
$$

The function f is continuous and it is increasing on $(1,4)$ and decreasing on $(4, \infty)$.

$$
\begin{aligned}
& \sum_{M_{1}<M<N^{3 / 5}} f\left(\frac{j M^{2}}{N}\right) \\
& \quad<\left(\sum_{1 \leq k<\left(N^{3 / 5}-M_{1}\right) /[\Delta \sqrt{N}]} f\left(\frac{j\left(M_{1}+k[\Delta \sqrt{N}]\right)^{2}}{N}\right)[\Delta \sqrt{N}]\right)+O\left(\frac{\sqrt{N}}{\log N}\right)
\end{aligned}
$$

which is, for N sufficiently large,

$$
<\left(\sum_{1 \leq k<N^{1 / 5}} f\left(\frac{j(\lambda \sqrt{N}+O(1)+k(\Delta \sqrt{N}+O(1)))^{2}}{N}\right)(\Delta \sqrt{N}+O(1))\right)+O\left(\frac{\sqrt{N}}{\log N}\right)
$$

Therefore, for N sufficiently large in terms of ε,

$$
\begin{align*}
\sum_{M_{1}<M<N^{3 / 5}} f\left(\frac{j M^{2}}{N}\right) & <(1+\varepsilon) N^{1 / 2} \sum_{1 \leq k<N^{1 / 5}} f\left(j(\lambda+k \Delta)^{2}+O\left(k^{2} N^{-1 / 2}\right)\right) \cdot \Delta \\
& <(1+\varepsilon)^{2} N^{1 / 2} \int_{\lambda}^{\infty} f\left(j t^{2}\right) d t . \tag{23}
\end{align*}
$$

Thus, by (22) and (23),

$$
\begin{align*}
& \sum_{j=1}^{10^{4}} \sum_{M_{1}<M<N^{3 / 5}} \sigma_{M}\left(\frac{j M^{2}}{N}\right) \tag{24}\\
& \quad<\left(\frac{3}{\pi^{2}}+\varepsilon\right)(1+\varepsilon)^{3} N^{3 / 2} \sum_{j=1}^{10^{4}} \frac{1}{j} \int_{\lambda}^{\infty} f\left(j t^{2}\right) d t .
\end{align*}
$$

Editor's Proof

Evaluating with MAPLE we find that

$$
\begin{equation*}
\sum_{j=1}^{10^{4}} \frac{1}{j} \int_{\lambda}^{\infty} f\left(j t^{2}\right) d t<2.8640 \tag{25}
\end{equation*}
$$

Therefore, by (24) and (25), for N sufficiently large,

$$
\begin{equation*}
\sum_{j=1}^{10^{4}} \sum_{M_{1}<M<N^{3 / 5}} \sigma_{M}\left(\frac{j M^{2}}{N}\right)<0.8706 N^{3 / 2} \tag{26}
\end{equation*}
$$

By (19) and (26)

$$
\begin{equation*}
S_{3}<0.8707 N^{3 / 2} \tag{27}
\end{equation*}
$$

for N sufficiently large. Further, by (13), (16) and (27),

$$
S_{2}<1.8313 N^{3 / 2}
$$

for N sufficiently large. Our result now follows from (8) and (10).

5 The Lower Bound in Theorem 1

The value of the smallest q_{i} in S_{2} exceeds \sqrt{N} and so

$$
S_{2} \geq[\sqrt{N}] u_{2}+\theta([\sqrt{N}])+\theta([\sqrt{N}]+1)+\cdots+\theta(N)
$$

hence, by (7) and (9),

$$
\begin{equation*}
S_{2} \geq\left(1-\frac{3}{\pi^{2}}\right) N^{3 / 2}+O(N \log N)+\theta([\sqrt{N}])+\cdots+\theta(N) \tag{28}
\end{equation*}
$$

Certainly

$$
\theta([\sqrt{N}])+\cdots+\theta(N) \geq \sum_{N^{1 / 2}<M<N^{3 / 5}} \theta(M)
$$

and for M with $M<N^{3 / 5}$ we see from (6) that $v+1$ is at least $N^{2 / 5}$. Therefore, ${ }_{129}$ by (5), for N sufficiently large

$$
\sum_{N^{1 / 2}<M<N^{3 / 5}} \theta(M)>\sum_{N^{1 / 2}<M<N^{3 / 5}} \sum_{j=2}^{10^{4}} \sigma_{M}\left(\frac{j M^{2}}{N}\right)
$$

Editor's Proof

and so, by (28),

$$
\begin{equation*}
S_{2}>\left(1-\frac{3}{\pi^{2}}\right) N^{3 / 2}+O(N \log N)+\sum_{j=2}^{10^{4}} \sum_{N^{1 / 2}<M<N^{3 / 5}} \sigma_{M}\left(\frac{j M^{2}}{N}\right) \tag{29}
\end{equation*}
$$

We shall now estimate the double sum in (29). Let $\varepsilon>0$. For N sufficiently large ${ }_{133}$ in terms of ε

$$
R(M)>\left(\frac{3}{\pi^{2}}-\varepsilon\right) M^{2}
$$

hence

$$
\sigma_{M}\left(\frac{j M^{2}}{N}\right)=R(M) \delta_{M}\left(\frac{j M^{2}}{N}\right)>\left(\frac{3}{\pi^{2}}-\varepsilon\right) M^{2} \delta_{M}\left(\frac{j M^{2}}{N}\right)
$$

and so
137

$$
\begin{equation*}
\sigma_{M}\left(\frac{j M^{2}}{N}\right)>\left(\frac{3}{\pi^{2}}-\varepsilon\right) \frac{N}{j}\left(\frac{j M^{2}}{N} \delta_{M}\left(\frac{j M^{2}}{N}\right)\right) \tag{30}
\end{equation*}
$$

It follows from Lemma 2 and (3) that for $j \leq 10^{4}$ and $M \leq N^{3 / 5}$

$$
\begin{equation*}
\frac{j M^{2}}{N} \delta_{M}\left(\frac{j M^{2}}{N}\right)=f\left(\frac{j M^{2}}{N}\right)+O\left(\frac{\log N}{N}\right) \tag{139}
\end{equation*}
$$

Thus, by (4), for N sufficiently large in terms of ε

$$
\begin{equation*}
\frac{j M^{2}}{N} \delta_{M}\left(\frac{j M^{2}}{N}\right)>(1-\varepsilon) f\left(\frac{j M^{2}}{N}\right) . \tag{31}
\end{equation*}
$$

For each integer j with $2 \leq j \leq 10^{4}$ we find from (30) and (31) that

$$
\begin{align*}
\sum_{N^{1 / 2}<M<N^{3 / 5}} & \sigma_{M}\left(\frac{j M^{2}}{N}\right) \tag{32}\\
& >\left(\frac{3}{\pi^{2}}-\varepsilon\right)(1-\varepsilon) \frac{N}{j} \sum_{N^{1 / 2}<M<N^{3 / 5}} f\left(\frac{j M^{2}}{N}\right)
\end{align*}
$$

The function f is continuous and it is increasing on $(1,4)$ and decreasing on 142 $(4, \infty)$. Accordingly, with $\Delta=1 / \log N$, we have

Editor's Proof

$$
\begin{aligned}
& \sum_{N^{1 / 2}<M<N^{3 / 5}} f\left(\frac{j M^{2}}{N}\right) \\
& \quad \geq\left(\sum_{1 \leq k<\left(N^{3 / 5}-N^{1 / 2}\right) /[\Delta \sqrt{N}]} f\left(\frac{j([\sqrt{N}]+k[\Delta \sqrt{N}])^{2}}{N}\right)[\Delta \sqrt{N}]\right)+O\left(\frac{\sqrt{N}}{\log N}\right)
\end{aligned}
$$

144
which is, for N sufficiently large,
$\geq\left(\sum_{1 \leq k<N^{1 / 10}} f\left(\frac{j(\sqrt{N}+O(1)+k(\Delta \sqrt{N}+O(1)))^{2}}{N}\right)(\Delta \sqrt{N}+O(1))\right)+O\left(\frac{\sqrt{N}}{\log N}\right)$.
Therefore, for N sufficiently large in terms of ε,

$$
\begin{align*}
\sum_{N^{1 / 2}<M<N^{3 / 5}} f\left(\frac{j M^{2}}{N}\right) & >(1-\varepsilon) N^{1 / 2} \sum_{1 \leq k<N^{1 / 10}} f\left(j(1+k \Delta)^{2}+O\left(k^{2} N^{-1 / 2}\right)\right) \cdot \Delta \\
& >(1-\varepsilon)^{2} N^{1 / 2} \int_{1}^{\infty} f\left(j t^{2}\right) d t . \tag{33}
\end{align*}
$$

Thus, by (32) and (33),

$$
\begin{align*}
& \sum_{j=2}^{10^{4}} \cdot \sum_{N^{1 / 2}<M<N^{3 / 5}} \sigma_{m}\left(\frac{j M^{2}}{N}\right) \\
& \quad>\left(\frac{3}{\pi^{2}}-\varepsilon\right)(1-\varepsilon)^{3} N^{3 / 2} \sum_{j=2}^{10^{4}} \frac{1}{j} \int_{1}^{\infty} f\left(j t^{2}\right) d t \tag{34}
\end{align*}
$$

Evaluating with MAPLE we find that

$$
\begin{equation*}
\sum_{j=2}^{10^{4}} \frac{1}{j} \int_{1}^{\infty} f\left(j t^{2}\right) d t>1.5098 \tag{35}
\end{equation*}
$$

Therefore by (34) and (35), for N sufficiently large

$$
\begin{equation*}
\sum_{j=2}^{10^{4}} \sum_{N^{1 / 2}<M<N^{3 / 5}} \sigma_{M}\left(\frac{j M^{2}}{N}\right)>0.4589 N^{3 / 2} \tag{36}
\end{equation*}
$$

Editor's Proof

286
By (8), (10), (29) and (36) we see that 151
$S(N)>\left(1-\frac{1}{\pi^{2}}+0.458\right) N^{3 / 2}>1.35 N^{3 / 2}$ 152
for N sufficiently large and the result now follows. 153
References 154

1. C. Cobeli, A. Zaharescu, The Haros-Farey sequence at two hundred years, a survey, Acta 155
Universitatis Apulensis 5 (2003), 1-38. 156
2. R.R. Hall, A note on the Farey series, J. London Math. Soc. 2 (1970), 139-148. 157
3. G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, $\mathrm{e}^{\text {th }}$ ed., Oxford, 1979. 158
4. D. Kruyswijk, H.G. Meijer, On small denominators and Farey sequences, Indagtiones Math. 39 159 (1977), 332-337. 160
5. C.L. Stewart, On a sum associated with the Farey series, Report ZW88, Mathematisch Centrum 161 (1976), 1-11. 162

Editor's Proof

Metadata of the chapter that will be visualized online

Chapter Title	Lost in Translation
Copyright Year	2013
Copyright Holder	Springer-Verlag Berlin Heidelberg
Corresponding Author	Family Name Zudilin
	Particle
	Given Name Wadim
	Suffix
	$\begin{array}{ll}\text { Organization } & \begin{array}{l}\text { School of Mathematical and Physical } \\ \text { Sciences, The University of Newcastle }\end{array}\end{array}$
	Address Callaghan, NSW 2308, Australia
Abstract	We explain the use and set grounds about applicability of algebraic transformations of arithmetic hypergeometric series for proving Ramanujan's for- mulae for $1 / \pi$ and their generalisations
Keywords (separated by "-")	π - Ramanujan - Arithmetic hypergeometric series - Algebraic trans-formation - Modular function

Lost in Translation

Wadim Zudilin*

Abstract

We explain the use and set grounds about applicability of algebraic 4 transformations of arithmetic hypergeometric series for proving Ramanujan's for- 5 mulae for $1 / \pi$ and their generalisations.

Keywords π • Ramanujan • Arithmetic hypergeometric series • Algebraic trans- 7 formation - Modular function

The principal goal of this note is to set some grounds about applicability of algebraic 9 transformations of (arithmetic) hypergeometric series for proving Ramanujan's for- 10 mulae for $1 / \pi$ and their numerous generalisations. The technique was successfully 11 used in quite different situations [7, 16, 18-20] and was dubbed as 'translation 12 method' by J. Guillera, although the name does not give any clue about the method 13 itself. In theory, one could think of the method as a way to reduce (rather than 14 translate) the identity in question to a simpler one, but the simpler identity may 15 be much more involved than the original in many perspectives. (Also, "Lost in 16 reduction" sounds menacingly.)

[^22]Consider the following problem: Show that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(4 n)!}{n!^{4}}(3+40 n) \cdot \frac{1}{28^{4 n}}=\frac{49}{3 \sqrt{3} \pi} \tag{1}
\end{equation*}
$$

Step 0. It comes as a useful rule: prior to any attempts to prove an identity 19 verify it numerically. The convergence of the series on the left-hand side of (1) 20 is reasonably fast (more than three decimal places per term), so you shortly 21 convince yourself that the both sides are

$$
3.001679541740867825117222046370611403163548615329487998574326
$$

Step 1. Series of the type given in (1) should be quite special. With a little search ${ }_{2}^{24}$ you identify

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(4 n)!}{n!^{4}}\left(\frac{x}{256}\right)^{n}={ }_{3} F_{2}\left(\frac{1}{4}, \frac{1}{2}, \left.\frac{3}{4} \right\rvert\, x\right)=\sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}\right)_{n}\left(\frac{1}{2}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}(1)_{n}} \frac{x^{n}}{n!} \tag{2}
\end{equation*}
$$

a hypergeometric series, where the notation (a) ${ }_{n}$ (Pochhammer's symbol or 27 shifted factorial) stands for $\Gamma(a+n) / \Gamma(a)=a(a+1) \cdots(a+n-1) .28$ A generalised hypergeometric series

$$
{ }_{m} F_{m-1}\left(\left.\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{m} \\
b_{2}, \ldots, b_{m}
\end{array} \right\rvert\, x\right):=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n} \cdots\left(a_{m}\right)_{n}}{\left(b_{2}\right)_{n} \cdots\left(b_{m}\right)_{n}} \frac{x^{n}}{n!}
$$

is an object of intensive study since Euler [2,17]; one of its important properties 30 is the linear differential equation

$$
\begin{equation*}
\left(\left(x \frac{\mathrm{~d}}{\mathrm{~d} x}\right) \prod_{j=2}^{m}\left(x \frac{\mathrm{~d}}{\mathrm{~d} x}+b_{j}-1\right)-x \prod_{j=1}^{m}\left(x \frac{\mathrm{~d}}{\mathrm{~d} x}+a_{j}\right)\right) F=0 \tag{3}
\end{equation*}
$$

satisfied by the series. The required identity (1) can be therefore transformed to 32 the more conceptual form

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}\right)_{n}\left(\frac{1}{2}\right)_{n}\left(\frac{3}{4}\right)_{n}}{n!^{3}} \frac{3+40 n}{7^{4 n}}=\left.\left(3+40 x \frac{\mathrm{~d}}{\mathrm{~d} x}\right){ }_{3} F_{2}\left(\frac{1}{4}, \frac{1}{2}, \left.\frac{3}{4} \right\rvert\, x\right)\right|_{x=1 / 7^{4}}=\frac{49}{3 \sqrt{3} \pi} \tag{4}
\end{equation*}
$$

Step 2. Convince yourself that identities of the wanted type are known in the 34 literature. In fact, they are known for almost a century after Ramanujan's 35 publication [15]; identity (1) is Eq. (42) there. Ramanujan did not indicate how 36 he arrived at his series but left some hints that these series belong to what is 37 now known as 'the theories of elliptic functions to alternative bases'. The first
proofs of Ramanujan's identities and their generalisations were given by the 39 Borweins [5] and Chudnovskys [8]. Those proofs are however too lengthy to 40 be included here. Note that Ramanujan's list in [15] does not include the slowly 41 convergent example 42

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}}{n!^{3}}(1+4 n)(-1)^{n}=\left.\left(1+4 x \frac{\mathrm{~d}}{\mathrm{~d} x}\right){ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \tag{5}\\
1,1
\end{array} \right\rvert\, x\right)\right|_{x=-1}=\frac{2}{\pi}
$$

which was shown to be true by G. Bauer [3] already in 1859. Bauer's proof 43 makes no reference to sophisticated theories and is much shorter, although 44 does not seem to be generalisable to the other entries from [15]. In fact, 45 D. Zeilberger assisted by his automatic collaborator S. B. Ekhad [9] came up 46 in 1994 with a short proof of (5) verifiable by a computer. The key is a use 47 of a simple telescoping argument (this part is completely automated by the 48 great Wilf-Zeilberger (WZ) machinery [14]) and an advanced theorem due to 49 Carlson [2, Chap. V]; the proof is reproduced in [21]. Quite recently, J. Guillera 50 advocated [10-13] the method from [9] and significantly extended the outcomes; 51 he showed, for example, that many other Ramanujan's identities for $1 / \pi$ can be 52 proven completely automatically. Note however that (1) is one of 'WZ resistant' ${ }_{53}$ identities. To overcome this technical difficulty, below we reduce the identity 54 to the simpler one (5). (There is no warranty, of course, for (5) to exist. The 55 comments below address this issue up to a certain point.) 56
Step 3. Use your favourite computer algebra system (CAS) to verify the hyperge- 57 ometric identity

$$
{ }_{3} F_{2}\left(\left.\frac{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}}{1,1} \right\rvert\, x\right)=r \cdot{ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{4}, \frac{1}{2}, \frac{3}{4} \tag{6}\\
1,1
\end{array} \right\rvert\, y\right)
$$

where $y=y(x)=-\frac{1}{1,024} x^{3}+O\left(x^{4}\right)$ and $r=r(x)=1+\frac{1}{8} x+\frac{27}{512} x^{2}+O\left(x^{3}\right){ }_{59}$ are algebraic functions determined by the equations

60

$$
\begin{aligned}
& \begin{aligned}
&\left(x^{2}-194 x+1\right)^{4} y^{4} \\
& \quad+16\left(4833 x^{6}+2029050 x^{5}+47902255 x^{4}-92794388 x^{3}\right. \\
& \quad\left.+47902255 x^{2}+2029050 x+4833\right) x y^{3} \\
& 96\left(3328 x^{6}-623745 x^{5}+3837060 x^{4}-6470150 x^{3}\right. \\
& \quad\left.+3837060 x^{2}-623745 x+3328\right) x y^{2} \\
&+ 256\left(1024 x^{6}-1152 x^{5}+225 x^{4}-2 x^{3}+225 x^{2}-1152 x+1024\right) x y+256 x^{4}=0
\end{aligned}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(x^{2}-194 x+1\right)^{2} r^{8}+4\left(61 x^{2}+25798 x+61\right)(x-1) r^{6} \\
& \quad+486\left(41 x^{2}-658 x+41\right) r^{4}+551124(x-1) r^{2}+531,441=0
\end{aligned}
$$

To do this you (and your CAS) are expected to use the linear differential 62 equations (3) for the involved hypergeometric functions and generate any-order 63 derivatives of y and r with respect to x by appealing to the implicit functional 64 equations. To summarise, you have to check that both sides of (6) satisfy the same 65 (third order) linear differential equation in x with algebraic function coefficients 66 and then compare the first few coefficients in the expansions in powers of $x .67$ Note that $x=-1$ corresponds to $y=1 / 7^{4}$ (cf. (5) vs. (4)), and this is the reason 68 behind considering the sophisticated functional identity (6).
The task on this step does not look humanly pleasant, and there is a (casual) trick 70 to verify (6) by parameterising x, y and r :

$$
\begin{gathered}
x=-\frac{4 p(1-p)(1+p)^{3}(2-p)^{3}}{(1-2 p)^{6}}, \quad y=\frac{16 p^{3}(1-p)^{3}(1+p)(2-p)(1-2 p)^{2}}{\left(1-2 p+4 p^{3}-2 p^{4}\right)^{4}}, \\
r=\frac{(1-2 p)^{3}}{1-2 p+4 p^{3}-2 p^{4}} .
\end{gathered}
$$

Choosing $p=(1-\sqrt{45-18 \sqrt{6}}) / 2$ we obtain $x=-1$ and $y=1 / 7^{4}$. (The ${ }^{73}$ modular reasons behind this parametrisation can be found in [4, Lemma 5.5 on 74 p. 111] where our p is the negative of the p there.) ${ }_{75}$

Step 4. By differentiating identity (6) with respect to x and combining the result 76 with (6) itself we see that

$$
\left(a+b x \frac{\mathrm{~d}}{\mathrm{~d} x}\right) 3 F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \tag{7}\\
1,1
\end{array} \right\rvert\, x\right)=\left(a+b x \frac{\mathrm{~d} r}{\mathrm{~d} x}+b \frac{r x}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x} \cdot y \frac{\mathrm{~d}}{\mathrm{~d} y}\right) \cdot{ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{4}, \frac{1}{2}, \frac{3}{4} \\
1,1
\end{array} \right\rvert\, y\right)
$$

again, the derivatives $\mathrm{d} y / \mathrm{d} x$ and $\mathrm{d} r / \mathrm{d} x$ are read from the implicit functional 79 equations. An alternative (but simpler) way is using the parametrisations $x(p)$, 80 $y(p)$ and $r(p)$. Taking $a=1, b=4$ and $x=-1$ in (7) you recognise the 81 left-hand side as the familiar Bauer's (WZ easy) identity (5), while the right-hand 82 side is nothing but the series in (4).

Comments. The story exposed above is general enough to be used in other situations 84 for proving some other formulae for $1 / \pi$. The setup can be as follows. Assume we 85 already have an identity

$$
\begin{equation*}
\left.\left(a+b x \frac{\mathrm{~d}}{\mathrm{~d} x}\right) F(x)\right|_{x=x_{0}}=\mu \tag{87}
\end{equation*}
$$

where a, b, x_{0} and μ are certain (simple or at least arithmetically significant) 88 numbers, and $F(x)$ is an (arithmetic) series. Furthermore, assume we have a 89 transformation $F(x)=r G(y)$ with $r=r(x)$ and $y=y(x)$ differentiable at 90 $x=x_{0}$. Then

$$
\begin{equation*}
\left.\left(\hat{a}+\hat{b} y \frac{\mathrm{~d}}{\mathrm{~d} y}\right) G(y)\right|_{y=y_{0}}=\mu \tag{92}
\end{equation*}
$$

Editor's Proof

Lost in Translation
where

$$
\begin{equation*}
\hat{a}=a+\left.b x \frac{\mathrm{~d} r}{\mathrm{~d} x}\right|_{x=x_{0}}, \quad \hat{b}=\left.b \frac{r x}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}\right|_{x=x_{0}}, \quad \text { and } \quad y=y_{0} \tag{94}
\end{equation*}
$$

There is, of course, no magic in this result: it is just the standard 'chain rule'. 95
The applicability of this simple argument heavily rests on existence of trans- 96 formations like (6). This in turn is based on the modular origin [5, 6, 8, 21] of 97 Ramanujan's identities for $1 / \pi$: any such identity can be written in the form

$$
\begin{equation*}
\left.\left(a+b x \frac{\mathrm{~d}}{\mathrm{~d} x}\right) F(x)\right|_{x=x_{0}}=\frac{c}{\pi}, \quad a, b, c, x_{0} \in \overline{\mathbb{Q}} \tag{8}
\end{equation*}
$$

where $F(x)$ is an arithmetic hypergeometric series [23] satisfying a third order 99 linear differential equation. In other words, for a certain modular function $x=x(\tau) 100$ (not uniquely defined!) the function $F(x(\tau)$) is a modular form of weight 2. The 101 theory of modular forms provides us with the knowledge that any two modular 102 forms are algebraically dependent; thus, whenever we have another arithmetic 103 hypergeometric series $G(y)$ and a related modular parametrisation $y=y(\tau)$, 104 the modular functions $y(\tau)$ and $G(y(\tau)) / F(x(\tau))$ are algebraic over $\mathbb{Q}[x(\tau)]$. 105 Another warrants of the theory is an algebraic dependence over \mathbb{Q} of $x(\tau)$ and 106 $x((A \tau+B) /(C \tau+D))$ for any $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S L_{2}(\mathbb{Q})$. On the other hand, there is no 107 other source known for such algebraic dependency; the functions $x(\tau)$ and $x(A \tau), 108$ $A>0$, are algebraically dependent if and only if A is rational.

The above arithmetic constraints impose the natural restriction on τ_{0} from the 110 upper half-plane $\operatorname{Re} \tau>0$ to satisfy $x\left(\tau_{0}\right)=x_{0}$ in (8). Namely, τ_{0} is an 111 (imaginary) quadratic irrationality, $\tau_{0} \in \mathbb{Q}[\sqrt{-d}]$ for some positive integer d. But 112 then $\left(A \tau_{0}+B\right) /\left(C \tau_{0}+D\right)$ belongs to the same quadratic extension of \mathbb{Q} for any 113 $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in S L_{2}(\mathbb{Q})$, so whatever transformation $F(x)=r G(y)$ (of modular origin) 114 we use, the modular arguments of $x(\tau)$ and $y(\tau)$ have to be tied by an $S L_{2}(\mathbb{Q}) 115$ linear-fractional transform. In the examples (4) and (5) we have both arguments 116 belonging to $\mathbb{Q}[\sqrt{-2}]$, therefore an algebraic transformation must exist, and this is 117 confirmed by (6) mapping the corresponding $x\left(\tau_{0}\right)=-1$ into $y\left(3 \tau_{0}\right)=1 / 7^{4}$ where 118 $\tau_{0}=(1+\sqrt{-2}) / 2$. There is however no way known to 'translate' identities (4) 119 and (5) to either

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{3}}{n!^{3}}(1+6 n) \frac{1}{4^{n}}=\frac{4}{\pi}
$$

or

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{6}\right)_{n}\left(\frac{1}{2}\right)_{n}\left(\frac{5}{6}\right)_{n}}{n!^{3}}(13,591,409+545140134 n) \cdot \frac{(-1)^{n}}{53,360^{3 n+2}}=\frac{3}{2 \sqrt{10005} \pi}
$$

as the corresponding modular arguments lie in the fields $\mathbb{Q}[\sqrt{-3}]$ and $\mathbb{Q}[\sqrt{-163}]$, respectively. We refer the interested reader to [6] for exhausting lists of 'rational' (in 123 the sense of x_{0}) identities which express $1 / \pi$ by means of general hypergeometrictype series; the details of the modular machinery are greatly explained there.

In a sense, to make the 'translation method' work we first should carefully examine the underlying modular parametrisations. On the other hand, there are situations when we know (or can produce [1]) the algebraic transformations without having modularity at all. These are particularly useful in the context of similar formulae for $1 / \pi^{2}$ recently discovered by Guillera [10, 11, 13].

There is a p-adic counterpart of the Ramanujan-type identities for $1 / \pi$ and $1 / \pi^{2}{ }^{131}$ which we review in [22]. It seems likely that the algebraic transformation machinery 132 is generalisable to those situations as well but, for the moment, no single example ${ }_{13}$ of this is known.

Acknowledgements I would like to thank Shaun Cooper for his useful suggestions which helped me to improve on an earlier draft of this note. Special thanks go to the anonymous referee for his/her indication of several places which required extra clarifications.

References

1. G. Almkvist, D. van Straten and W. Zudilin, Generalizations of Clausen's formula and 139
algebraic transformations of Calabi-Yau differential equations, Proc. Edinburgh Math. Soc. 140
54 (2011), 273-295. 141
2. W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Math. 32 (Cambridge 142
Univ. Press, Cambridge 1935); 2nd reprinted ed. (Stechert-Hafner, New York-London 1964). 143
3. G. Bauer, Von den Coefficienten der Reihen von Kugelfunctionen einer Variablen, J. Reine 144
Angew. Math. 56 (1859), 101-121. 145
4. B. C. Berndt, Ramanujan's Notebooks, Part V (Springer, New York 1998). 146
5. J. M. Borwein and P. B. Borwein, Pi and the AGM (Wiley, New York 1987). 147
6. H. H. Chan and S. Cooper, Rational analogues of Ramanujan's series for $1 / \pi$, Math. Proc. 148
Cambridge Philos. Soc. (2012), 23 pp. (to appear); DOI 10.1017/S0305004112000254. 149
7. H. H. Chan and W. Zudilin, New representations for Apéry-like sequences, Mathematika 56 150
(2010), 107-117. 151
8. D. V. Chudnovsky and G. V. Chudnovsky, Approximations and complex multiplication accord-
ing to Ramanujan, in Ramanujan revisited (Urbana-Champaign, IL 1987) (Academic Press, 152
Boston, MA 1988), pp. 375-472. 154
9. S. B. Ekhad and D. Zeilberger, A WZ proof of Ramanujan's formula for π, in Geometry, 155
Analysis, and Mechanics, J. M. Rassias (ed.) (World Scientific, Singapore 1994), pp. 107-108. 156 156
10. J. Guillera, Some binomial series obtained by the WZ-method, Adv. in Appl. Math. 29 (2002), 157599-603.158
11. J. Guillera, Generators of some Ramanujan formulas, Ramanujan J. 11 (2006), 41-48. 159
12. J. Guillera, On WZ-pairs which prove Ramanujan series, Ramanujan J. 22 (2010), 249-259. 160
13. J. Guillera, A new Ramanujan-like series for $1 / \pi^{2}$, Ramanujan J. 26 (2011), 369-374. 161
14. M. Petkovšek, H. S. Wilf and D. Zeilberger, $A=B$ (A. K. Peters, Wellesley, MA 1997). 162
15. S. Ramanujan, Modular equations and approximations to π, Quart. J. Math. (Oxford) 45 163(1914), 350-372.164

Editor's Proof

16. M. D. Rogers, New ${ }_{5} F_{4}$ hypergeometric transformations, three-variable Mahler measures, and 165 formulas for $1 / \pi$, Ramanujan J. 18 (2009), 327-340.
166
17. L. J. Slater, Generalized hypergeometric functions (Cambridge Univ. Press, Cambridge 1966). 167
18. J. Wan and W. Zudilin, Generating functions of Legendre polynomials: A tribute to Fred 168 Brafman, J. Approximation Theory 164 (2012), 488-503. 169
19. W. Zudilin, Quadratic transformations and Guillera's formulas for $1 / \pi^{2}$, Math. Notes 81170 (2007), 297-301. 171
20. W. Zudilin, More Ramanujan-type formulae for $1 / \pi^{2}$, Russian Math. Surveys 62 (2007), 172 634-636. 173
21. W. Zudilin, Ramanujan-type formulae for $1 / \pi$: A second wind?, in Modular forms and string 174 duality (Banff, June 3-8, 2006), N. Yui et al. (eds.), Fields Inst. Commun. Ser. 54 (Amer. Math. 175 Soc., Providence, RI 2008), 179-188.
22. W. Zudilin, Ramanujan-type supercongruences, J. Number Theory 129 (2009), 1848-1857. 177
23. W. Zudilin, Arithmetic hypergeometric series, Russian Math. Surveys 66 (2011), 369-420.

[^0]: G. Almkvist (\triangle)

 Institute for Algebraic Meditation, Fogdaröd 208, S-24333 Höör, Sweden
 e-mail: gert.almkvist@yahoo.se

[^1]: ${ }^{1}$ Department of Mathematics, Lund University, Box 118, SE-221 00 Lund, Sweden, arnem@maths.lth.se

[^2]: T. Amdeberhan (\triangle) • V.H. Moll

 Department of Mathematics, Tulane University, New Orleans, LA 70118, USA
 e-mail: tamdeberhan@math.tulane.edu; vhm@math.tulane.edu
 V. De Angelis

 Department of Mathematics, Xavier University of Louisiana, New Orleans, LA 70125, USA
 e-mail: vdeangel@xula.edu

[^3]: *Partially supported by National Science Foundation Grant DMS-0801184
 G.E. Andrews (\boxtimes)

 Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA
 e-mail: andrews@math.psu.edu

[^4]: *Partially supported in part by National Security Agency Grant H98230-12-0205
 G.E. Andrews (\triangle)

 Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA
 e-mail: andrews@math.psu.edu
 C.D. Savage

 Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206, USA
 e-mail: savage@csc.ncsu.edu
 H.S. Wilf

 Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395, USA
 e-mail: wilf@math.upenn.edu

[^5]: A. Ayyer (\triangle)

 Department of Mathematics, University of California, Davis, CA 95616, USA
 e-mail: ayyer@math.ucdavis.edu
 V. Strehl

 Department of Computer Science, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
 e-mail: strehl@informatik.uni-erlangen.de

[^6]: A. Baxter (\triangle) • B. Nakamura • D. Zeilberger

 Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA
 e-mail: baxter@math.rutgers.edu; bnaka@math.rutgers.edu; zeilberg@math.rutgers.edu

[^7]: W. Chu (\boxtimes)

 Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Via provinciale per Arnesano P. O. Box 193, 73100 Lecce, Italy
 e-mail: chu.wenchang@unisalento.it
 R.R. Zhou

 School of Mathematical Sciences, Dalian University of Technology, 116024 Dalian, P. R. China
 e-mail: zhouruiwx1983@yahoo.cn

[^8]: S.B. Ekhad • D. Zeilberger (■)

 Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA
 e-mail: zeilberg @ math.rutgers.edu

[^9]: A.S. Fraenkel (凶)

 Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
 e-mail: fraenkel@wisdom.weizmann.ac.il

[^10]: ${ }^{1}$ They can equivalently be modeled as games played on a collection of nonnegative integers, which are reduced by the players to 0 according to the game rules.

[^11]: J. Guillera (\boxtimes)

 Avda. Cesáreo Alierta, 31, Zaragoza, Spain
 e-mail: jguillera@gmail.com

[^12]: A. Knopfmacher (\triangle) • A.O. Munagi

 University of the Witwatersrand, Johannesburg, South Africa
 e-mail: Arnold.Knopfmacher@wits.ac.za; Augustine.Munagi@wits.ac.za

[^13]: *Research partially supported by the Austrian Science Foundation FWF, grants Z130-N13 and S9607-N13, the latter in the framework of the National Research Network "Analytic Combinatorics and Probabilistic Number Theory".
 ${ }^{\dagger}$ Research supported by the Austrian Science Foundation FWF, Lise Meitner grant M1201-N13.
 C. Krattenthaler (\triangle)

 Fakultät für Mathematik, Universität Wien, Nordbergstraß e 15, A-1090 Vienna, Austria
 e-mail: Christian.Krattenthaler@univie.ac.at
 T.W. Müller

 School of Mathematical Sciences, Queen Mary \& Westfield College, University of London, Mile End Road, London E1 4NS, UK
 e-mail: T.W.Muller@qmul.ac.uk

[^14]: ${ }^{1}$ We refer to [25, Definition 1.29] for the precise definition of "rank." Roughly speaking, the rank of a complex reflection group W is the minimal n such that W can be realized as reflection group on \mathbb{C}^{n}.

[^15]: ${ }^{2}$ An element of an irreducible well-generated complex reflection group W of rank n is called a Coxeter element if it is regular in the sense of Springer [35] (see also [25, Definition 11.21]) and of order d_{n}. An element of W is called regular if it has an eigenvector which lies in no reflecting hyperplane of a reflection of W. It follows from an observation of Lehrer and Springer, proved uniformly by Lehrer and Michel [24] (see [25, Theorem 11.28]), that there is always a regular element of order d_{n} in an irreducible well-generated complex reflection group W of rank n. More generally, if a well-generated complex reflection group W decomposes as $W \cong W_{1} \times W_{2} \times \cdots \times W_{k}$, where the W_{i} 's are irreducible, then a Coxeter element of W is an element of the form $c=$ $c_{1} c_{2} \cdots c_{k}$, where c_{i} is a Coxeter element of $W_{i}, i=1,2, \ldots, k$. If W is a real reflection group, that is, if all generators in T have order 2, then the notion of generalised Coxeter element given above reduces to that of a Coxeter element in the classical sense (cf. [17, Sect.3.16]).

[^16]: ${ }^{3}$ The uniqueness can be argued as follows: suppose that c_{i} were a Coxeter element in two parabolic subgroups of W, say U_{1} and U_{2}. Then it must also be a Coxeter element in the intersection $U_{1} \cap U_{2}$. On the other hand, the absolute length of a Coxeter element of a complex reflection group U is always equal to $\operatorname{rk}(U)$, the rank of U. (This follows from the fact that, for each element u of U, we have $\ell_{T}(u)=\operatorname{codim}(\operatorname{ker}(u-\mathrm{id}))$, with id denoting the identity element in U; see e.g. [32, Proposition 1.3]). We conclude that $\ell_{T}\left(c_{i}\right)=\operatorname{rk}\left(U_{1}\right)=\operatorname{rk}\left(U_{2}\right)=\operatorname{rk}\left(U_{1} \cap U_{2}\right)$, This implies that $U_{1}=U_{2}$.

[^17]: M. Mishna (\triangle)

 Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
 e-mail: mmishna@sfu.ca
 L. Yen

 Department of Mathematics and Statistics, Capilano University, North Vancouver, BC, Canada
 Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
 e-mail: lyen@capilanou.ca

[^18]: R. Pemantle (\boxtimes)

 Department of Mathematics, University of Pennsylvania, 209 S. 33rd Street, Philadelphia, PA 19104, USA
 e-mail: pemantle@math.upenn.edu
 I. Rivin

 Department of Mathematics, Temple University, 1805 North Broad St, Philadelphia, PA 19122, USA
 e-mail: rivin@math.temple.edu

[^19]: ${ }^{1}$ Even in this case there are interesting probabilistic questions concerning the distribution of critical points of f_{n} close to the edge of the support of μ, see [15]

[^20]: ${ }^{2}$ Also known as the Prokhorov and the Lévy-Pro(k)horov distance

[^21]: *Research supported in part by the Canada Research Chairs Program and by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada.

 ## C.L. Stewart (\boxtimes)

 Department of Pure Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
 e-mail: cstewart@uwaterloo.ca

[^22]: *This work is supported by the Australian Research Council.
 W. Zudilin (\boxtimes)

 School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
 e-mail: wzudilin@gmail.com

