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This book is dedicated to the life and 31

scientific contributions of Herbert Saul Wilf. 32
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Calkin-Wilf tree, courtesy of Douglas Zare
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Foreword 1

This volume commemorates and celebrates the life and achievements of an extraor- 2

dinary person, Herb Wilf. The planning of the book started while he was still alive. It 3

was planned to present it to him in person, but unfortunately he passed away before 4

that could happen. While he was brought down by a neuromuscular degenerative 5

disease, he had been active in research until shortly before his death, and this volume 6

even contains a paper he coauthored. 7

Among the most prominent qualities that endeared Herb to his many students 8

and colleagues was his warm personality. Deeply devoted to mathematics, he was an 9

enthusiastic supporter of other researchers, especially of young students struggling 10

to establish themselves. Always generous with suggestions and credit, he delighted 11

when others improved on his own results. He was also very supportive of women 12

mathematicians at a time when they faced high barriers and had an unusually large 13

number of women among his PhD students. 14

Herb Wilf was a superb teacher and writer. His books have had extensive impact 15

on a variety of fields. His many publications with their lucid explanations of 16

abstruse mathematical results give a taste of his abilities as an expositor. He received 17

a variety of teaching prizes, including the Deborah and Franklin Tepper Haimo 18

Award of the Mathematical Association of America, which is given to “teachers 19

of mathematics who have been widely recognized as extraordinarily successful.” 20

He devoted substantial effort to editorial activities, including a stint as the editor in 21

chief of the American Mathematical Monthly, and was a cofounder of the Journal 22

of Algorithms and of the Electronic Journal of Combinatorics. 23

However, Herb was foremost a researcher, driven by the desire to discover the 24

inner workings of the mathematical world, as expressed by Hilbert’s famous quote, 25

“We must know. We will know.” This volume consists of high-quality refereed 26

research contributions by some of his colleagues, students, and collaborators. The 27

origins of this book project were in the conference held on the occasion of Herb’s 28

80th birthday in May 2011. But this is not a conference proceedings, in that many 29

of the papers presented at that meeting are not included and some papers here 30

were not part of the conference program. They are meant as a tribute to Herb 31

ix
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x Foreword

Wilf’s contributions to mathematics and mathematical life. Some are very close 32

to areas he worked in, and some are further apart. But they are all on topics he knew 33

well and cared deeply about. 34

Although all the papers in this volume have some connection to Herb, they 35

touch mostly on the last (although longest) phase of his career that associated 36

with combinatorics. It therefore seems appropriate to say a few words about his 37

development as a mathematician. One of the many notable features of his life was 38

the willingness to undertake new projects and change directions. Thus, in the 1990s, 39

while he was already in his 60s and well established as an author and editor in 40

the traditional print world, he saw the promise of electronic communication and 41

moved to set up the free and completely scholar-operated Electronic Journal of 42

Combinatorics. In the spirit of practicing what he preached, he also arranged for 43

as many of his books as possible to be available for free downloads. In a rare case of 44

a good deed being properly rewarded, he found, contrary to predictions, that sales 45

of print copies of those freely downloadable books increased! This flexibility and 46

willingness to experiment extended to research directions. Even close to the end of 47

his life, he was always open to new ideas and wrote some papers in mathematical 48

biology. But this was just a continuation of a lifelong pattern. 49

The repeated appearance of certain intellectual themes in Herb’s work is 50

illustrated nicely by one of his most famous contributions, namely, the work with 51

Doron Zeilberger on automated proofs of identities. The computational aspect of 52

this research offers a link to the start of Herb’s professional career, which was 53

closely linked to computers. He did direct hands-on programming of some of 54

the first electronic digital computers, in order to implement early optimization 55

algorithms. He then went on to write a PhD thesis on numerical analysis and 56

carry out a substantial research program in that field, including producing books on 57

mathematical models. Later yet he moved on to more theoretical work on complex 58

analysis and inequalities. And then he was smitten by the charms of combinatorics, 59

and this became the main passion for the rest of his life, not that he forgot or 60

abandoned his earlier interests completely. Computers, for example, continued to 61

play a major role in his life. As just one example, in 1975, he and Albert Nijenhuis 62

published Combinatorial Algorithms. It is not used as widely as it used to be, since 63

the methods it contains are incorporated into standard software programs, such as 64

Maple, Matlab, and Mathematica. But for that time, it was a tremendously useful 65

collection that not only explained the methods but provided working code that could 66

be used when needed. Another illustration of his later work drawing on earlier 67

experience is provided by his work on complex analysis, which played a role in 68

his extensive involvement with generating functions in combinatorics. 69

In conclusion, we can say that it is difficult to give a full picture of the many 70

facets of Herb Wilf’s life and work. There will be more formal obituary notices 71

that will cover his contributions in detail. The brief sketch here serves only as an 72

introduction to this collection of papers, original research contributions by some 73

of Herb’s many students, collaborators, and other admirers and beneficiaries, who 74

dedicate their works to his memory. Herb heard presentations of some of these 75
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papers at his 80th birthday conference. What is certain is that he would have loved to 76

read them all and appreciate the advances they represent in penetrating ever deeper 77

into the mysteries of mathematics. 78

Minneapolis, USA Andrew M. Odlyzko 79

March 2013 80
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Preface 1

The Third Waterloo Workshop on Computer Algebra (WWCA 2011, W80) was held 2

May 26–29, 2011 at Wilfrid Laurier University, Waterloo, Canada. 3

The conference was devoted to the 80th birthday of distinguished combinato- 4

rialist Professor Herbert S. Wilf (University of Pennsylvania, USA). Several of 5

Professor Wilf’s books are considered classical; we mention for instance Gener- 6

atingfunctionology, Algorithms and Complexity, A D B . 7

Topics discussed at the workshop were closely related to several research areas 8

in which Herbert Wilf has contributed and influenced. 9

WWCA 2011 was a real celebration of combinatorial mathematics, with some 10

of the most famous combinatorial mathematicians of the world coming together to 11

present their talks. We had more than a 100 participants at the conference. The list 12

of scheduled invited lectures and presentations made at the conference includes: 13

• Herbert Wilf, University of Pennsylvania, USA, “Two exercises in combinatorial 14

biology” 15

• Gert Almkvist, University of Lund, Sweden, “Ramanujan-like formulas for 1
�2 16

and String Theory” 17

• George E. Andrews, Pennsylvania State University, USA, “Partition Function 18

Differences, and Anti-Telescoping” 19

• Miklos Bona, University of Florida, USA, “Permutations as Genome Rearrange- 20

ments” 21

• Rod Canfield, University of Georgia, USA, “The Asymptotic Hadamard Conjec- 22

ture” 23

• Sylvie Corteel, Univ. Paris 7, France, “Enumeration of staircase tableaux” 24

• Aviezri Fraenkel, Weizmann Institute of Science, Israel, “What’s a question to 25

Herb Wilf’s answer?” 26

• Ira Gessel, Brandeis University, USA, “On the WZ method” 27

• Ian Goulden, University of Waterloo, Canada, “Combinatorics and the KP 28

hierarchy” 29

• Ronald Graham, UCSD, USA, “Joint statistics for permutations in Sn and 30

Eulerian numbers” 31

xiii
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• Andrew Granville, Universite de Montreal, Canada, “More combinatorics and 32

less analysis: A different approach to prime numbers” 33

• Curtis Greene, Haverford College, USA, “Some Posets Related to Muirhead’s, 34

Maclaurin’s, and Newton’s Inequalities” 35

• Joan Hutchinson, Macalester College, USA, “Some challenges in list-coloring 36

planar graphs” 37

• David Jackson, University of Waterloo, Canada, “Enumerative aspects of cactus 38

graphs” 39

• Christian Krattenthaler, University of Vienna, Austria, “Cyclic sieving for gener- 40

alised non-crossing partitions associated to complex reflection groups” 41

• Victor H. Moll, Tulane University, USA, “p-adic valuations of sequences: 42

examples in search of a theory” 43

• Andrew Odlyzko, University of Minnesota, USA, “Primes, graphs, and generat- 44

ing functions” 45

• Peter Paule, RISC-Linz, Austria, “Proving strategies of WZ-type for modular 46

forms” 47

• Robin Pemantle, University of Pennsylvania, USA, “Zeros of complex polyno- 48

mials and their derivatives” 49

• Marko Petkovsek, University of Ljubljana, Slovenia, “On enumeration of struc- 50

tures with no forbidden substructures” 51

• Bruce Sagan, Michigan State University, USA, “Mahonian Pairs” 52

• Carla D. Savage, NCSU, USA, “Generalized Lecture Hall Partitions and Eulerian 53

Polynomials” 54

• Jeffrey Shallit, University of Waterloo, Canada, “50 Years of Fine and Wilf” 55

• Richard Stanley, MIT, USA, “Products of Cycles” 56

• John Stembridge, University of Michigan, USA, “A finiteness theorem for 57

W-graphs” 58

• Volker Strehl, Universitaet Erlangen, Germany, “Aspects of a combinatorial 59

annihilation process” 60

• Michelle Wachs, University of Miami, USA, “Unimodality of q-Eulerian Num- 61

bers and p,q-Eulerian Numbers” 62

• Doron Zeilberger, Rutgers University, USA, “Automatic Generation of Theorems 63

and Proofs on Enumerating Consecutive-Wilf classes” 64

• Eugene Zima, Wilfrid Laurier University, Canada, “Synthetic division in the 65

context of indefinite summation” 66

The workshop was financially supported by the Fields Institute and various 67

offices of Wilfrid Laurier University. 68

This book presents a collection of selected formally refereed papers submitted 69

after the workshop. The topics discussed in this book are closely related to Herb’s 70

influential works. Initially it was planned as a celebratory volume. Herb’s sudden 71

death implied that this has now become a book commemorating his contributions to 72

mathematics and computer science. 73

This book would not have been possible without the dedication and hard work of 74

the anonymous referees, who supplied detailed referee reports and helped authors to 75
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improve their papers significantly. Finally, we wish to thank the people at Springer- 76

Verlag, in particular Ruth Allewelt and Martin Peters, for working closely with us 77

and for their dedicated and unwavering support throughout the entire publication 78

process. 79

We feel very fortunate that we were entrusted in the organization of this confer- 80

ence – “unforgettable conference of historical dimension” according to comments 81

of one of the invitees. 82

Waterloo, Canada Ilias S. Kotsireas 83

December 2012 Eugene Zima 84
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A Tribute to Herb Wilf 1

Doron Zeilberger 2

To Herbert Saul Wilf (June 13, 1931–Jan. 7, 2012), in 3

memoriam 4

Herbert Wilf was one of the greatest combinatorialists of our time, but his influence 5

far transcends the boundaries of any specific area. He was way ahead of his 6

time when, as a fresh (28-year-old) PhD, he coedited (with Anthony Ralston) 7

the pioneering book “Mathematical Methods for Digital Computers”; – 3 years 8

later wrote the beautiful classic textbook “Mathematics for the Physical Sciences”; 9

when algorithms just started to pop up everywhere, pioneered (with Don Knuth) 10

the Journal of Algorithms; and when the Internet started, pioneered the Electronic 11

Journal of Combinatorics. Herb also realized the great potential of the Internet for 12

the sharing of knowledge and had several of his classic textbooks available for a free 13

download! 14

Not to mention his great mathematical contributions! 15

Not to mention that he academically fathered 28 (a perfect number!) brilliant 16

combinatorial children, including 8 females (way back when there were very few 17

female PhDs). 18

Many of these brilliant academic children became distinguished academic 19

mathematicians, for example, Fan Chung, Joan Hutchinson, the late Rodica Simion, 20

Felix Lazebnik, and many others. But some of them had brilliant careers elsewhere. 21

These include: 22

• Richard Garfield, of Magic the Gathering fame, one-time teenage idol, and still 23

a household name among gamesters 24

• The Most Rev. Dr. Anthony Mikovsky, Prime Bishop of the Polish National 25

Catholic Church 26

D. Zeilberger (�)AQ1
Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus,
110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA

xvii
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• Alkes Price, an ex-prodigy, who made a bundle in finance and wisely went back 27

to academia and is now a rising star in statistical genetics 28

• Michael Wertheimer, CTO of the National Security Agency from 2005 to 2010 29

The first scientific contribution of Herb Wilf (b. June 13, 1931) was in astronomy. 30

In the Oct. 1945 issue of Sky and Telescope, in an article that reported on readers’ 31

observations of a solar eclipse, one can find the following: “Herbert Wilf of US City, 32

sent in times of the first and last contacts agreeing closely with those predicted for 33

his location. He used a stop watch of known rate set with radio time signals.” 34

After that, Herb focused on mathematics, but his interests ranged far and wide 35

and went through several phases. In a short (probably auto-) biographical footnote 36

for a 1982 American Mathematical Monthly article, it says: 37

His principal research interests have been in analysis: numerical, mathematical, and in the 38

past several years, combinatorical. 39

Herb’s “religious” conversion to combinatorics was already cited by Fan Chung 40

and Joan Hutchinson’s lovely tribute on the occasion of his 65th birthday: In 1965, 41

Gian-Carlo Rota came to the University of Pennsylvania to give a colloquium talk 42

on his then-recent work on Mobius functions and their role in combinatorics. Herb 43

recalled, “That talk was so brilliant and so beautiful that it lifted me right out of my 44

chair and made me a combinatorialist on the spot.” 45

But Herb returned the debt and made me convert to the religion of combinatorics. 46

The bio attached to one of my own articles reads: 47

Doron Zeilberger was born, as a person, on July 2, 1950. He was born, as a 48

mathematician, in 1976, when he got his PhD under the direction of Harry Dym (in 49

analysis). He was born-again, as a combinatorialist, 2 years later, when he read a 50

lovely proof of the so-called Hook-Length Formula (enumerating Standard Young 51

Tableaux) by Curtis Greene, Albert Nijenhuis, and Herb Wilf. He lived happily ever 52

after. 53

I still live happily, and all thanks to Herb (and Albert Nijenhuis and Curtis 54

Greene, now Herb’s beloved son-in-law). 55

Thanks Herb for the great inspiration that you bestowed on me and on so many 56

other people whose lives – both mathematically and personally – you have touched. 57
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Glaisher’s Formulas for 1

�2 and Some 1

Generalizations 2

Gert Almkvist 3

In memory of Herb Wilf 4

Abstract Glaisher’s formulas for
1

�2
are reviewed. Two generalized formulas 5

are proved by using the WZ-method (named after Wilf and Zeilberger). Also an 6

improvement of Fritz Carlson’s theorem (proved in an Appendix by Arne Meurman) 7

is used. 8

Keywords � • Glaisher 9

1 Introduction 10

Ramanujan-like formulas for
1

�2
are rare. Only a dozen genuine (not obtained by 11

“squaring” formulas for
1

�
) formulas are known, most of them due to Guillera. 12

Only five of them are proved, all by Guillera, using the WZ-method. Until I found 13

Wenchang Chu’s paper [2] I did not know of Glaisher’s formulas for
1

�2
from 1905 14

(see [3]). His paper is not easy to read (also literary, the exponents in Quaterly 15

Journal are very small) and I decided to write a self-contained survey. 16

After finding a slight generalization of Glaisher’s formulas and inspired of Levrie’s 17

paper, I was lead to the following two new formulas for
1

�
. 18

G. Almkvist (�)
Institute for Algebraic Meditation, Fogdaröd 208, S-24333 Höör, Sweden
e-mail: gert.almkvist@yahoo.se

I.S. Kotsireas and E.V. Zima (eds.), Advances in Combinatorics,
DOI 10.1007/978-3-642-30979-3 1, © Springer-Verlag Berlin Heidelberg 2013

1

mailto:gert.almkvist@yahoo.se
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Theorem 1. 19

(i)

1X

nD0

.4n C 1/

.n C 1/.n C 2/ : : : .n C k/.2n � 1/.2n � 3/ : : : .2n � .2k � 1//

 
2n

n

!4

256n

D .�1/k 25kC1kŠ4

k � .2k/Š3
1

�2

(ii)

1X

nD0

.4n C 1/

.n C 1/3.n C 2/3: : :.n C k/3.2n � 1/3.2n � 3/3: : :.2n � .2k � 1//3

 
2n

n

!4

256n

D .�1/k 2

3

215kkŠ3.3k/Š

k � .4k/Š3
1

�2

2 Glaisher’s Formulas 20

We will make use of Legendre polynomials Pn.x/, defined by the generating 21

function 22

1p
1 � 2xt C t2

D
1X

nD0

Pn.x/tn
23

They form an orthogonal system with inner product 24

Z 1

�1

Pm.x/Pn.x/dx D ım;n

2

2n C 1
25

Lemma 1.

P 0
nC1.x/ � xP 0

n.x/ D .n C 1/Pn.x/ 26

27

Proof. Differentiate the generating function with respect to x 28
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Glaisher’s Formulas for 1
�2 and Some Generalizations 3

d

dx

1p
1 � 2xt C t2

D t

.1 � 2xt C t2/3=2
D

1X

nD0

P 0
n.x/tn

29

Hence 30

1X

nD0

.P 0
nC1.x/ � xP 0

n.x//tn D 1 � xt

.1 � 2xt C t2/3=2

D d

dt

tp
1 � 2xt C t2

D
1X

nD0

.n C 1/Pn.x/tn ut

Lemma 2.

xP 0
n.x/ � P 0

n�1.x/ D nPn.x/ 31

32

Proof. We have 33

1X

nD0

.xP 0
n.x/ � P 0

n�1.x//tn D xt � t2

.1 � 2xt C t2/3=2
D t

d

dt

1p
1 � 2xt C t2

D
1X

nD0

nPn.x/tn ut

Lemma 3.

P 0
nC1.x/ � P 0

n�1.x/ D .2n C 1/Pn.x/ 34

35

Proof. Add Lemmas 1 and 2. ut
Lemma 4.

Z 1

�1

Pn.x/p
1 � x2

dx D �

 
2m

m

!2

16m
if n D 2m and 0 if n odd. 36

37

Proof. We make the substitution x D cos.'/ and obtain 38

LHS D
Z �

0

Pn.cos.'//d' D 1

2

Z �

��

Pn.cos.'//d' 39
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Then 40

1X

nD0

Pn.cos.'//tn D 1
p

1 � 2t cos.'/ C t2

D 1

.1 � t exp.i'//1=2

1

.1 � t exp.�i'//1=2

D
1X

j;kD0

 
2j

j

! 
2k

k

!
t j Ck

4j Ck
exp.i.j � k/'/

which gives 41

Pn.cos.'// D 1

4n

nX

j D0

 
2j

j

! 
2n � 2j

n � j

!
exp.i.2j � n/'/ 42

Integrating, the only nonzero term is when 2j D n giving 43

1

2

Z �

��

P2j .cos.'//d' D �

 
2j

j

!2

42j
ut 44

Lemma 5.

Z 1

�1

xPn.x/p
1 � x2

dx D �
2m C 1

2m C 2

 
2m

m

!2

16m
if n D 2m C 1 and 0 if n even. 45

46

Proof. We have 47

Z 1

�1

xPn.x/p
1 � x2

dx D 1

2

Z �

��

cos.'/Pn.cos.'//d' 48

and 49

cos.'/Pn.cos.'//

D 1

2 � 4n

nX

j D0

 
2j

j

! 
2n � 2j

n � j

!
fexp.i.2j � n C 1/'/ C exp.i.2j � n � 1/'/g

Integrating, we get a nonzero result only if n D 2m C 1 and j D m or j D m C 1. 50

The result is 51
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1

42mC1

 
2m

m

! 
2m C 2

m C 1

!
ut 52

Proposition 1.

1p
1 � x2

D �

2

1X

nD0

.4n C 1/

 
2n

n

!2

16n
P2n.x/ 53

54

Proof. Expanding 55

1p
1 � x2

D
1X

nD0

cnPn.x/ 56

we get, using the orthogonality of the Legendre polynomials 57

cn D 2n C 1

2

Z 1

�1

Pn.x/p
1 � x2

dx D 4m C 1

2
�

 
2m

m

!2

16m
if n D 2m and 0 otherwise.

ut 58

Remark 1. Putting x D 0 in the generating function we obtain 59

1p
1 C t2

D
1X

mD0

.�1/m

 
2m

m

!

4m
t2m

60

and hence 61

P2m.0/ D .�1/m

 
2m

m

!

4m
and P2m�1.0/ D 0 62

Then putting x D 0 in Proposition 1 implies 63

1X

nD0

.�1/n.4n C 1/

 
2n

n

!3

64n
D 2

�
64
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which was found by Bauer already in 1859 (see [1]). The convergence is very slow, 65

as
1p
n

. 66

Proposition 2.

arcsin.x/ D �

8

1X

nD0

4n C 3

.n C 1/2

 
2n

n

!2

16n
P2nC1.x/ 67

68

Proof. We integrate the formula in Proposition 1. By Lemma 3 we have, assuming 69

that P�1.x/ D 0 70

P2n.x/ D 1

4n C 1
.P 0

2nC1.x/ � P 0
2n�1.x// 71

and 72

Z x

0

P2n.t/dt D 1

4n C 1
.P2nC1.x/ � P2n�1.x// C C 73

where C D 0 since P2nC1.0/ D P2n�1.0/ D 0: We get 74

arcsin.x/ D �

2

1X

nD0

 
2n

n

!2

16n
.P2nC1.x/ � P2n�1.x//

D �

2

1X

nD0

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

 
2n

n

!2

16n
�

 
2n C 2

n C 1

!2

16nC1

9
>>>>>=

>>>>>;

P2nC1.x/

D �

8

1X

nD0

4n C 3

.n C 1/2

 
2n

n

!2

16n
P2nC1.x/ ut

Theorem 2.

1X

nD0

.2n C 1/.4n C 3/

.n C 1/3

 
2n

n

!4

256n
D 32

�2
75

76
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Proof. We have 77

Z 1

�1

xp
1 � x2

arcsin.x/dx D �

8

1X

nD0

4n C 3

.n C 1/2

 
2n

n

!2

16n

Z 1

�1

xp
1 � x2

P2nC1.x/dx 78

Partial integration gives 79

Z 1

�1

xp
1 � x2

arcsin.x/dx D Œ�
p

1 � x2 arcsin.x/�1�1 C
Z 1

�1

p
1 � x2

p
1 � x2

dx D 2 80

and we finish using Lemma 5. ut

Proposition 3.

p
1 � x2 D �

4

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

1 �
1X

nD1

4n C 1

.n C 1/.2n � 1/

 
2n

n

!2

16n
P2n.x/

9
>>>>>=

>>>>>;

81

82

Proof. Assume 83

p
1 � x2 D

1X

nD0

cnPn.x/ 84

Then 85

cn D 2n C 1

2

Z 1

�1

p
1 � x2Pn.x/dx D 2n C 1

4

Z �

��

Pn.cos.'// sin2.'/d'

D 2n C 1

8

Z �

��

Pn.cos.'//.1 � cos.2'//d'

Clearly cn D 0 if n is odd, so let n D 2m: Now we know from the proof of 86

Lemma 4 87

P2m.cos.'// D 1

16m

2mX

j D0

 
2j

j

! 
4m � 2j

2m � j

!
exp.2i.j � m// 88

89
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When integrating we get nonzero terms for j D m, j D m C 1 and j D m � 1: 90

We have c0 D �

4
and for m � 1 91

cm D �

4

4m C 1

16m

8
<

:

 
2m

m

!2

�
 

2m C 2

m C 1

! 
2m � 2

m � 1

!9=

;

D ��

4

4m C 1

.m C 1/.2m � 1/

 
2m

m

!2

16m
ut

Theorem 3.

1X

nD0

4n C 1

.n C 1/.2n � 1/

 
2n

n

!4

256n
D � 8

�2
92

93

Proof. Divide the formula in Proposition 3 by
p

1 � x2 94

1 D �

4

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

1p
1 � x2

�
1X

nD1

4n C 1

.n C 1/.2n � 1/

 
2n

n

!2

16n

P2n.x/p
1 � x2

9
>>>>>=

>>>>>;

95

Integrating from �1 to 1 and using Lemma 4 we are done. ut

Remark 2. The series converges as
1

n3
: 96

Now 97

4n C 1

.2n C 2/.2n � 1/
D 1

2n � 1
C 1

2n C 2
98

and 99
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1

2n

 
2n � 2

n � 1

!4

256n�1
C 1

2n � 1

 
2n

n

!4

256n

D

 
2n

n

!4

256n

�
1

2n � 1
C 1

2n

256n4

16.2n � 1/4

�

D .2n � 1/3 C .2n/3

.2n � 1/4

 
2n

n

!4

256n

and we get 100

1 �
1X

nD1

.2n � 1/3 C .2n/3

.2n � 1/4

 
2n

n

!4

256n
D 4

�2
101

Similarly we can rewrite Theorem 2 as 102

1X

nD1

2n.4n � 1/

.2n � 1/3

 
2n

n

!4

256n
D 4

�2
103

Adding we obtain 104

Theorem 4.

1X

nD0

1 � 4n

.2n � 1/4

 
2n

n

!4

256n
D 8

�2
105

106

Remark 3. Using the Pochhammer symbol this can be written as 107

1X

nD0

.1 � 4n/
.�1=2/4

n

nŠ4
D 8

�2
108

which converges as
1

n5
(not as

1

n6
as Glaisher claims). 109
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Another formula with the same convergence is the following (not in Glaisher): 110

Theorem 5.

1X

nD0

4n C 1

.n C 1/.n C 2/.2n � 1/.2n � 3/

 
2n

n

!4

256n
D 32

27�2
111

112

Proof. Assume 113

.1 � x2/3=2 D
1X

nD0

c2mP2m.x/ 114

Doing as in the proof of Proposition 3 we obtain 115

c2m D 9�

8

4m C 1

.m C 1/.m C 2/.2m � 1/.2m � 3/

 
2m

m

!2

16m
116

Dividing by
p

1 � x2 and integrating from �1 to 1 we find the formula. ut
Remark 4. By expanding .1�x2/.2k�1/=2 , the above result can be generalized to the 117

first formula below. Coming so far I received the paper [4] by Levrie from Zudilin. 118

Using the hints on p. 229 and experimenting a little one finds formula (ii): 119

Theorem 6. 120

(i)

1X

nD0

.4n C 1/

.n C 1/.n C 2/ : : : .n C k/.2n � 1/.2n � 3/ : : : .2n � .2k � 1//

 
2n

n

!4

256n

D .�1/k 25kC1kŠ4

k � .2k/Š3
1

�2

(ii)

1X

nD0

.4n C 1/

.n C 1/3.n C 2/3: : :.n C k/3.2n � 1/3.2n � 3/3: : :.2n � .2k � 1//3

 
2n

n

!4

256n

D .�1/k 2

3

215kkŠ3.3k/Š

k � .4k/Š3
1

�2
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Proof. 121

Proof of (i): 122

The first formula can be written as 123

1X

nD0

G.n; k/ D 2

�2
124

where 125

G.n; k/ D
.�1/kk.4n C 1/

 
2k

k

!2 
2n

n C k

! 
2n

n

!3

162nCk

 
2n

2k

! 126

Zeilberger’s imaginary friend EKHAD (i.e using “WZMethod” in Maple) gives us 127

F.n; k/ D
4.�1/kn3.n � k/

 
2k

k

!2 
2n

n C k

! 
2n

n

!3

162nCk.k C 1/.2k C 1/

 
2n

2k C 2

! 128

such that 129

F.n C 1; k/ � F.n; k/ D G.n; k C 1/ � G.n; k/ 130

Write this as 131

F.n C 1; k/

F.n; k/
� 1 D G.n; k C 1/

F.n; k/
� G.n; k/

F.n; k/

D � .4n C 1/.8n2k C 4nk C 2k C 1/

16n3.n C k C 1/

an algebraic identity which is valid for any complex number k. The usual telescop-

AQ1

132

ing gives for H.z/ D P1
nD0 G.n; z/ 133

H.z C 1/ � H.z/ D
1X

nD0

G.n; z C 1/ �
1X

nD0

G.n; z/

D lim.F.n C 1; z/ � F.0; z/ D 0
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so H.z/ is periodic with period one. We want to use Meurman’s version of Fritz 134

Carlson’s theorem (see the Appendix). We write 135

G.n; z/ D
z cos.�z/.4n C 1/

 
2z

z

!2 
2n

n C z

! 
2n

n

!3

162nCz

 
2n

2z

! 136

First we notice that 137

cos.�z/ D sin.�.
1

2
� z// D �

� .
1

2
� z/� .

1

2
C z/

138

and 139

.2z/Š

zŠ
D 2� .2z/

� .z/
D 4z

p
�

� .z C 1

2
/ 140

Consider 141

z cos.�z/

 
2z

z

!2 
2n

n C z

!

16z

 
2n

2z

!

D 8�z

zŠ16z� .
1

2
� z/� .

1

2
C z/.z C n/Š

�
� .2z/

� .z/

� 3
� .2n � 2z/

� .n � z/

D
4n� .z C 1

2
/2� .

1

2
� z C n/

�� .z/� .
1

2
� z/� .1 C z C n/

Since H.z/ has period one, we can assume that 1 � <.z/ � 2. Let z D x C iy. Then 142

we have 143

j� .x C iy/j � p
2� jyjx�1=2 exp.��

2
jyj/ 144

and 145
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ˇ̌
ˇ̌
ˇ̌
ˇ

� .
1

2
� z C n/

� .1 C z C n/

ˇ̌
ˇ̌
ˇ̌
ˇ

� 1

n1=2C2x
� 1

n5=2
for large n 146

Furthermore 147

ˇ̌
ˇ̌
ˇ̌
ˇ

� .z C 1

2
/2

� .z/� .
1

2
� z/

ˇ̌
ˇ̌
ˇ̌
ˇ

� jyj2xC1=2 � jyj9=2
148

We have for large n 149

.4n C 1/

 
2n

n

!3

162n
� 4n

4n.�n/3=2
150

Collecting the evidence we obtain 151

jG.n; z/j � 4n

�

1

n5=2

4

4n.�/3=2n1=2
jyj9=2 � 2 jyj9=2

�5=2

1

n3
152

and 153

jH.z/j � 2 jyj9=2

�5=2
&.3/ D O.exp.c jyj// 154

for any positive c < 2�; so H.z/ D A, a constant by Meurman’s Theorem. 155

To determine the constant A we put z D 1

2
. We find G.0; z/ ! 2

�2
when z ! 1

2
, 156

while G.n;
1

2
/ D 0 for n > 0: 157

Proof of (ii): 158

Here we have 159

G.n; k/ D
.�1/kk.4n C 1/

 
2k

k

!2 
4k

2k

!3 
2n

n C k

!3 
2n

n

!

162nC3k

 
3k

k

! 
2n

2k

!3
160

and 161
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F.n; k/ D 1

8

.�1/kn.n � k/3

 
2k

k

!2 
4k

2k

!3 
2n

n C k

!3 
2n

n

!
P.n; k/

162nC3k.k C 1/4.2k C 1/4

 
3k C 3

k C 1

! 
2n

2k C 2

!3
162

where 163

P.n; k/ D 64n3.n � 1/.3k C 1/.3k C 2/ � 8n2.3k C 2/.80k3 C 72k2 C 12k � 1/

C4n.2k C 1/.3k C 2/.40k2C 16k C 1/ C .2k C 1/2.592k4C 752k3C 300k2C 48k C 3/

164

As before we check 165

F.n C 1; k/ � F.n; k/ D G.n; k C 1/ � G.n; k/ 166

To use Meurman’s theorem we write 167

G.n; z/ D
z cos3.�z/.4n C 1/

 
2z

z

!2 
4z

2z

!3 
2n

n C z

!3 
2n

n

!

162nC3z

 
3z

z

! 
2n

2z

!3
168

We consider 169

z cos3.�z/

 
2z

z

!2 
4z

2z

!3 
2n

n C z

!3

163z

 
3z

z

! 
2n

2z

!3

D 43n

3�2

� .z C 1

2
/� .2z C 1

2
/3

z� .z/� .3z/� .
1

2
� z/3

8
<̂

:̂

� .n C 1

2
� z/

� .n C 1 C z/

9
>=

>;

3

Now for 1 � <.z/ � 2 we have 170

ˇ̌
ˇ̌
ˇ̌
ˇ

� .z C 1

2
/� .2z C 1

2
/3

z� .z/� .3z/� .
1

2
� z/3

ˇ̌
ˇ̌
ˇ̌
ˇ

� jyj6xC1 � jyj13
171
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Furthermore 172

ˇ̌
ˇ̌
ˇ̌
ˇ

� .
1

2
� z C n/3

� .1 C z C n/3

ˇ̌
ˇ̌
ˇ̌
ˇ

� 1

n3=2C6x
� 1

n15=2
for large n 173

We have 174

.4n C 1/

 
2n

n

!

162n
� 4n

43n.�n/1=2
175

We obtain 176

jG.n; z/j � 43n

3�2

1

n15=2

4n

43n.�/1=2n1=2
jyj13 � 4 jyj13

3�5=2

1

n7
177

and 178

jH.z/j � 4 jyj13

3�5=2
&.7/ D O.exp.c jyj// 179

for any positive c < 2� . Hence H.z/ is constant. As above we find G.0; z/ ! 2

3�2

when z ! 1

2
, while G.n;

1

2
/ D 0 for n > 0. ut

Remark 5. For n < k we must replace

 
2n

n C k

!

 
2n

2k

! with .�1/k�n

 
2k

n C k

!

 
2k � 2n

k � n

! and we 180

obtain the formulas 181

(i)

.�1/kk

 
2k

k

!2

16k

�

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

k�1X

nD0

.�1/k�n.4n C 1/

 
2k

n C k

! 
2n

n

!3

162n

 
2k � 2n

k � n

! C
1X

nDk

.4n C 1/

 
2n

n C k

! 
2n

n

!3

162n

 
2n

2k

!

9
>>>>>=

>>>>>;

D 2

�2
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(ii)

.�1/kk

 
2k

k

!2 
4k

2k

!3

163k

 
3k

k

!

�

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

k�1X

nD0

.�1/k�n.4n C 1/

 
2k

n C k

!3 
2n

n

!

162n

 
2k � 2n

k � n

!3
C

1X

nDk

.4n C 1/

 
2n

n C k

!3 
2n

n

!

162n

 
2n

2k

!3

9
>>>>>=

>>>>>;

D 2

3�2

Remark 6. By using “WZMethod” in Maple on F.n; k C n/ in the proof of 182

Conjecture (i) we get an enormous expression, which after putting k D 0 183

simplifies to 184

1X

nD0

.�1/n

 
2n

n

!5

.20n2 C 8n C 1/
1

212n
D 8

�2
185

which is Guillera’s first formula for
1

�2
. Similarly for F.n; k C 2n/ we obtain 186

1X

nD0

.�1/n

 
2n

n

!3 
4n

2n

!3

 
3n

n

! 1376n4 C 1808n3 C 784n2 C 138n C 9

.3n C 1/.3n C 2/

1

216n
D 32

�2
187

In Maple’s answer occur expressions like

 
2n

4n

!
which need interpretation. Hereby 188

one needs the following expansions to turn the binomial coefficients “upside down” 189

 
2.n C "/

4.n C "/

!
D 1

n

 
4n

2n

!" C O."2/ 190

191

 
2.n C "/

3.n C "/

!
D .�1/n

n

 
3n

2n

!" C O."2/ 192



UNCORRECTED
PROOF

Glaisher’s Formulas for 1
�2 and Some Generalizations 17

 
2.n C "/

4.n C "/ C 2

!
D 1

.n C 1/

 
4n C 2

2n

!" C O."2/ 193

194

 
2.n C "/ C 2

4.n C "/ C 6

!
D 1

.n C 2/

 
4n C 6

2n C 2

!" C O."2/ 195

Finally for F.n; k C 3n/ we get 196

1X

nD0

.�1/n

 
2n

n

!3 
6n

3n

!2 
6n

2n

!

 
4n

2n

! P.n/

.3n C 1/.3n C 2/.4n C 1/2.4n C 3/2

1

220n
D 256

�2
197

where 198

P.n/ D 4038912n8 C 13296384n7 C 18184448n6 C 13423232n5

C5828864n4 C 1523184n3 C 234144n2 C 19440n C 675

199

Conjecture. 200

(a) If p > k is a prime then 201

.�1/kk

 
2k

k

!2

16k
�

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

k�1X

nD0

.�1/k�n.4n C 1/

 
2k

n C k

! 
2n

n

!3

162n

 
2k � 2n

k � n

!

C
p�1X

nDk

.4n C 1/

 
2n

n C k

! 
2n

n

!3

162n

 
2n

2k

!

9
>>>>>=

>>>>>;

� 0 mod p3

202
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(b) If p > 7 is prime then 203

p�1X

nD0

.�1/n

 
2n

n

!5
.2n C 1/2

.n C 1/2
.40n3 C 84n2 C 54n C 9/

1

212n
� 8p2 mod p3

204

3 Consequences of Levrie’s Work 205

Levrie’s Theorem 7 in [4] can be proved by using the WZ-pair 206

G.n; k/ D
.4n C 1/k

 
2k

k

!2 
4k

2k

! 
2n

n

!2 
2n

n C k

!2

162nC2k

 
2n

2k

!2
207

208

F.n; k/ D �
n2.�8n2 C 4n C 16k2 C 10k C 1/

 
2k

k

!2 
4k

2k

! 
2n

n

!2 
2n

n C k

!2

2 � 162nC2k.2n � 2k � 1/2

 
2n

2k

!2
209

Using the “WZMethod” on F.n; k C n/ and putting k D 0 we have a new proof of 210

Guillera’s formula 211

1X

nD0

 
2n

n

!4 
4n

2n

!
120n2 C 34n C 3

216n
D 32

�2
212

Similarly for F.n; k C 2n/ we get 213

1X

nD0

 
2n

n

!2 
4n

2n

!4 
8n

4n

!

 
3n

n

!2

P.n/

.2n C 1/.3n C 1/2.3n C 2/2

1

224n
D 1;024

�2
214

where 215

P.n/ D 968704n7 C 2683904n6 C 3013376n5 C 1758208n4

C568224n3 C 100200n2 C 8844n C 315:
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Appendix 224

A Periodic Version of Fritz Carlson’s Theorem 225

Arne Meurman1
226

When using the WZ-method one often needs Fritz Carlson’s theorem (see e.g. [1]) 227

to find the value of a constant. Usually the function H.z/ which one wants to prove 228

constant is periodic, H.zC1/ D H.z/. The following theorem uses the full strength 229

of the periodicity and also improves the size of the constant in the growth condition 230

to c < 2� . 231

Theorem. Let H.z/ be an entire function such that H.z C 1/ D H.z/ and there is 232

c 2 R such that c < 2� and 233

H.z/ D O.exp.c jIm.z/j// 234

for z 2 C. Then H.z/ is constant. 235

Proof. Replacing H.z/ by H.z/ � H.0/ we may assume that H.k/ D 0 for all 236

k 2 Z. Then H.z/ is divisible by e2�iz � 1 in the sense that 237

H.z/ D .e2�iz � 1/H1.z/ 238

with H1 entire. As H1 is also periodic with period 1 we can express H1.z/ D 239

h.e2�iz/ with h analytic in the punctured plane C n f0g. Expanding h in a Laurent 240

series we obtain 241

H.z/ D .e2�iz � 1/

1X

nD�1
ane2�inz: 242

The coefficients satisfy 243

an D
Z aC1Cyi

aCyi

H.z/

.e2�iz � 1/e2�inz
d z 244

for any a; y 2 R. For n < 0 we let y ! C1 and the assumed estimate on jH.z/j 245

gives 246

an D lim
y!C1

Z aC1Cyi

aCyi

H.z/

.e2�iz � 1/e2�inz
d z D 0: 247

248

1Department of Mathematics, Lund University, Box 118, SE-221 00 Lund, Sweden,
arnem@maths.lth.se

mailto:arnem@maths.lth.se
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For n � 0 we let y ! �1 and obtain 249

an D lim
y!�1

Z aC1Cyi

aCyi

H.z/

.e2�iz � 1/e2�inz
d z D 0: 250

Hence H.z/ � 0. ut

Reference 251

1. G. E. Andrews, R. Askey, R. Roy, Special functions, Cambridge University Press, Cambridge, 252

1999. 253
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Properties and Wilf’s Conjecture 2

Tewodros Amdeberhan, Valerio De Angelis, and Victor H. Moll 3

Abstract The 2-adic valuations of Bell and complementary Bell numbers are 4

determined. The complementary Bell numbers are known to be zero at n D 2 5

and H. S. Wilf conjectured that this is the only case where vanishing occurs. 6

N. C. Alexander and J. An proved (independently) that there are at most two indices 7

where this happens. This paper presents yet an alternative proof of the latter. 8

Keywords Valuations • Bell numbers • Complementary Bell numbers • 9

Closed-form summation • Wilf’s conjecture 10

1 Introduction 11

The Stirling numbers of the second kind S.n; k/, defined for n 2 N and 0 � k � n, 12

count the number of ways to partition a set of n elements into exactly k nonempty 13

subsets (blocks). The Bell numbers 14

B.n/ D
nX

kD0

S.n; k/ (1)
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count all such partitions independent of size and the complementary Bell numbers 15

QB.n/ D
nX

kD0

.�1/kS.n; k/ (2)

takes the parity of the number of blocks into account. The exponential generating 16

functions are given by 17

1X

nD0

Bn

xn

nŠ
D exp.exp.x/ � 1/ and

1X

nD0

QB.n/
xn

nŠ
D exp.1 � exp.x//: (3)

In this paper we consider arithmetical properties of the Bell and complementary 18

Bell numbers. The results described here are part of a general program to describe 19

properties of p-adic valuations of classical sequences. The example of Stirling 20

numbers is described in [3], the ASM numbers that count the number of alternating 21

sign matrices appear in [15] and a not-so-classical sequence appearing in the 22

evaluation of a rational integral is described in [2, 10]. On the other hand, much 23

of our interest in the valuations of the complementary Bell numbers is motivated by 24

Wilf 0s conjecture W QB.n/ D 0 only for n D 2:

The guiding strategy for us is this: if we manage to prove that �2. QB.n// is finite 25

for n > 2, the non-vanishing result will follow. The authors [4] have succeeded in 26

employing this method to prove that the sequence 27

xn D n C xn�1

1 � nxn�1

; starting at x1 D 1 (4)

only vanishes at n D 3. The more natural question that xn 62 Z for n > 5 remains 28

open. 29

The following notation is adopted throughout this paper: for n 2 N and a prime 30

p, the p-adic valuation of n, denoted by �p.n/, is the largest power of p that 31

divides n. The value �p.0/ D C1 is consistent with the fact that any power of 32

p divides 0. As an example, the complementary Bell number QB.14/ D 110;176 33

factors as 25 � 11 � 313; therefore �2. QB.14// D 5 and �3. QB.14// D 0. Legendre [9] 34

established the formula 35

�p.nŠ/ D n � sp.n/

p � 1
(5)

where sp.n/ is the sum of the digits of n in base p. 36
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The exponential generating function (3) and the series representation 37

QB.n/ D e

1X

rD0

.�1/r rn

rŠ
; (6)

as well as elementary properties of the complementary Bell numbers are presented 38

in [16]. The numbers QB.n/ also appear in the literature as the Uppuluri-Carpenter 39

numbers. Subbarao and Verma [14] established the asymptotic growth of QB.n/, 40

showing that 41

lim sup
n!1

log j QB.n/j
n log n

D 1: (7)

The non-vanishing of QB.n/ has been considered by M. Klazar [7, 8] in the 42

context of partitions and by M. R. Murty [11] in reference to p-adic irrationality. 43

Y. Yang [17] established the result jfn � x W QB.n/ D 0gj D O.x2=3/ and 44

De Wannemacker [13] proved that if n 6� 2; 2;944;838 .mod 3 � 220/, then 45

QB.n/ ¤ 0. The main result of [13] is that QB.n/ D 0 has at most two solutions. This 46

has been achieved by different techniques by N. C. Alexander [1] and Junkyu An [5]. 47

Our interest in the non-vanishing questions comes from the theory of summation in 48

finite terms. 49

The methods developed by R. Gosper show that the finite sum 50

nX

kD1

kŠ (8)

does not admit a closed-form expression as a hypergeometric function of n. The 51

identity 52

n�1X

kD1

kakŠ D
aX

`D1

.�1/`Car`.a/ C .�1/aC1 QB.a C 1/

n�1X

kD0

kŠ (9)

where 53

r`.a/ D S.a C 1; ` C 1/

`�1X

iD0

..n C i/Š � i Š/ ; (10)

shows that a positive verification of Wilf’s conjecture implies that the elementary 54

identity 55

nX

kD1

kkŠ D .n C 1/Š � 1 (11)
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is unique in this category. M. Petkovsek, H. S. Wilf and D. Zeilberger [12] is the 56

standard reference for issues involving closed-form summation. The details for (9) 57

are provided in [6]. 58

Section 2 presents a family of polynomials that play a crucial role in the study 59

of the 2-adic valuations of Bell numbers given in Sect. 3. The main arguments 60

presented here are based on the representation of the polynomials introduced in 61

Sect. 2 in terms of rising and falling factorials. This is discussed in Sect. 4. An 62

alternative proof of the analytic expressions for the valuations of regular Bell 63

numbers is presented in Sect. 5. This serves as a motivating example for the more 64

difficult case of the 2-adic valuations of complementary Bell numbers. Experimental 65

data on these valuations are presented in Sect. 6. The data suggests that only those 66

indices congruent to 2 modulo 3 need to be considered. The study of this case begins 67

in Sect. 7, where these valuations are determined for all but two classes modulo 24. 68

The two remaining classes require the introduction of an infinite matrix. This is done 69

in Sect. 8. The two remaining classes are analyzed in Sects. 9 and 10, respectively. 70

The final section presents the exponential generating functions of the two classes of 71

polynomials employed in this work, and some open problems. 72

2 An Auxiliary Family of Polynomials 73

The recurrence for the Stirling numbers of second kind 74

S.n C 1; k/ D S.n; k � 1/ C kS.n; k/ (12)

is summed over 0 � k � n C 1 to produce 75

nC1X

kD0

S.n C 1; k/ D
nX

kD0

.k C 1/S.n; k/ (13)

using the vanishing of S.n; k/ for k < 0 or k > n. Iteration of this procedure leads 76

to the next result. 77

Lemma 1. The family of polynomials �j .k/, defined by 78

�j C1.k/ D k�j .k/ C �j .k C 1/; (14)

�0.k/ D 1; (15)

satisfy 79

B.n C j / D
nCjX

kD0

S.n C j; k/ D
nX

kD0

�j .k/S.n; k/; (16)

for all n; j � 0. 80
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Proof. The proof is by induction on j . The inductive step gives 81

.nC1/CjX

kD0

S..n C 1/ C j; k/ D
nC1X

kD0

�j .k/S.n C 1; k/: (17)

The recurrence (12) and (14) yield the result. ut
Note. The polynomials �j .k/ have positive integer coefficients and the first few 82

are given by 83

�0.k/ D 1

�1.k/ D k C 1

�2.k/ D k2 C 2k C 2

�3.k/ D k3 C 3k2 C 6k C 5:

The degree of �j is j , so the family Zm WD f�j W 0 � j � mg forms a basis for 84

the space of polynomials of degree at most m. 85

The special polynomial 86

�12.k/ D k12 C 12k11 C 132k10 C 1100k9 C 7425k8 C 41184k7 (18)

C187572k6 C 694584k5 C 2049300k4 C 4652340k3

C7654350k2 C 8142840k C 4;213;597

plays a crucial role in the study of 2-adic valuation of Bell numbers discussed in 87

Sect. 3. 88

3 The 2-adic Valuation of Bell Numbers 89

In this section we determine the 2-adic valuation of the Bell numbers. The data 90

presented in Fig. 1 suggests examining this valuation according to the equivalence 91

classes modulo 12. 92

Theorem 1. The 2-adic valuation of the Bell numbers satisfy 93

�2.B.n// D 0 if n � 0; 1 .mod 3/: (19)

In the missing case, n � 2 .mod 3/, the sequence �2.B.3n C 2// is a periodic 94

function of period 4. The repeating values are f1; 2; 2; 1g. In particular, the 2-adic 95

valuation of the Bell numbers is completely determined modulo 12. In detail, 96
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10 20 30 40 50 60

1

2Fig. 1 The 2-adic valuation
of Bell numbers

�2.B.12n C j // D

8
ˆ̂<

ˆ̂:

0 if j � 0; 1 3; 4; 6; 7; 9; 10 .mod 12/I
1 if j � 2; 11 .mod 12/I
2 if j � 5; 8 .mod 12/:

(20)

The proof of the theorem starts with a congruence for the Bell numbers. 97

Lemma 2. The Bell numbers satisfy 98

B.n C 24/ � B.n/ .mod 8/: (21)

Proof. The identity (16) gives 99

nC12X

kD0

S.n C 12; k/ D
nX

kD0

�12.k/S.n; k/: (22)

The polynomial �12.k/ given in (18) is now expressed in terms of the basis of rising 100

factorials 101

.k/Œm� WD k.k C 1/.k C 2/ � � � .k C m � 1/; m 2 N; with .k/Œ0� D 1: (23)

A direct calculation shows that 102

�12.k/ �
12X

mD0

am.k/Œm� (24)

with a0 D 421;359 � 5; a1 D 3;633;280 � 0; a2 D 1;563;508 � 4; and a3 D 103

414;920 � 0 .mod 8/. Also, for m � 4, we have .k/m � 0 .mod 8/. Thus 104

�12.k/ � 5 C 4k.k C 1/ � 5 .mod 8/: (25)
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20 40 60 80 100 120 140

1

2

3

4

Fig. 2 The 3-adic valuation of Bell numbers

Now (22) produces 105

nC12X

kD0

S.n C 12; k/ � 5

nX

kD0

S.n; k/ .mod 8/; (26)

that is, B.n C 12/ � 5B.n/ .mod 8/. Repeating this yields B.n C 24/ � 5B.n C
12/ � 25B.n/ � B.n/ .mod 8/. ut

The result of the theorem now follows from computing of the first 24 Bell 106

numbers modulo 8 to obtain the pattern asserted in the theorem. 107

Remark 1. The p-adic valuation of Bell numbers for primes p ¤ 2 exhibit some 108

patterns. Figure 2 shows the case p D 3. 109

Experimental observations show that, if j 6� 2 .mod 3/, then 110

�3.B12nC13j / D �3.B12n/; for n � 0: (27)

In other words, up to a shift, the valuations �3.B12nCj / are independent of j . 111

4 A Representation in Two Bases 112

The set 113

Zm D f�j .k/ W 0 � j � mg (28)

is a basis of the vector space of polynomials of degree at most m. This section 114

explores the representation of this basis in terms of the usual rising factorials, 115
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defined by 116

.k/Œr� WD k.k C 1/.k C 2/ � � � .k C r � 1/ for r > 0; (29)

.k/Œ0� WD 1;

and the falling factorials, given by 117

.k/r WD k.k � 1/.k � 2/ � � � .k � r C 1/ for r > 0; (30)

.k/0 WD 1;

Definition 1. The coefficients of �n.r/ with respect to these bases are denoted 118

�j .k/ D
jX

rD0

aj .r/.k/Œr� and �j .k/ D
jX

rD0

dj .r/.k/r : (31)

These coefficients are stored in the vectors 119

aj WD �
aj .0/; aj .1/; � � � � and dj WD �

dj .0/; dj .1/; � � � � (32)

where aj .r/ D dj .r/ D 0 for r > j . 120

Certain properties of .k/r and .k/Œr� required in the analysis of the 2-adic 121

valuations are stated below. 122

Lemma 3. The rising factorial symbol satisfies 123

.k � 1/Œr� D .k/Œr� � r.k/Œr�1�

k.k/Œr� D .k/ŒrC1� � r.k/Œr�:

The corresponding relations for the falling factorials are 124

.k C 1/r D .k/r C r.k/r�1

k.k/r D .k/rC1 C r.k/r :

The next step is to transform the recurrence for �j in (14) into recurrences for 125

the coefficients aj .r/ and dj .r/. 126

Proposition 1. The coefficients aj .r/ in Definition 1 satisfy 127

aj C1.r/� .r C1/aj C1.r C1/ D aj .r �1/�2raj .r/C .r C1/2aj .r C1/; (33)

with the assumptions that aj .r/ D 0 if r < 0 or r > j . 128
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Proof. This follows directly from the recurrence for �j and the properties described
in Lemma 3. ut
Note. The recurrences for the coefficients aj can be written using the (infinite) 129

matrices 130

M D .mij /i; j �0 and N D .nij /i; j �0 (34)

with 131

mij D

8
ˆ̂<

ˆ̂:

1 if i D j I
�.i C 1/ if i D j � 1I
0 otherwise;

and nij D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

1 if i D j C 1I
�2.i � 1/ if i D j I
i 2 if i D j � 1I
0 otherwise;

in the form 132

MajC1 D Naj: (35)

The analogue of Proposition 1 for falling factorials is stated next. 133

Proposition 2. The coefficients dj .r/ in (1) satisfy 134

dj C1.r/ D dj .r � 1/ C .r C 1/dj .r/ C .r C 1/dj .r C 1/; (36)

with the assumptions that dj .r/ D 0 if r < 0 or r > j . 135

Note. The recurrence for dj is now written using T D .tij /i; j �0, where 136

tij D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

i C 1 if i D j I
i if i D j � 1I
1 if i D j C 1I
0 otherwise;

in the form 137

djC1 D Tdj: (37)

5 An Alternative Approach to Valuation of Bell Numbers 138

This section presents an alternative proof of the congruence (2) based on the 139

results of Sect. 4. Recall that this congruence provides complete structure of the 140

2-adic valuation of the Bell numbers. The ideas introduced here provide a partial 141

description of the 2-adic valuations of complementary Bell numbers. 142
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The first step is to identify the Bell numbers as the first entry of the vectors aj 143

and dj . 144

Lemma 4. The Bell numbers are given by 145

B.j / D �j .0/ D aj .0/ D dj .0/: (38)

Proof. Let n D 0 in the identity (16) to obtain B.j / D �j .0/. The other two
expressions for the Bell numbers B.j / are obtained by letting k D 0 in (31). ut

The congruence for the Bell numbers now arises from the analysis of the relations 146

(35) and (37) modulo 8. The key statement is provided next. 147

Lemma 5. If k 2 N and r � 4, then 148

.k/Œr� � .k/r � 0 .mod 8/: (39)

Proof. Among any set of four consecutive integers there is one that is a multiple of
2 and a different one that is a multiple of 4. ut

The system (35) now reduces to 149

2
664

1 �1 0 0

0 1 �2 0

0 0 1 �3

0 0 0 1

3
775

2
664

aj C1.0/

aj C1.1/

aj C1.2/

aj C1.3/

3
775 D

2
664

0 1 0 0

1 �2 4 0

0 1 �4 9

0 0 1 �6

3
775

2
664

aj .0/

aj .1/

aj .2/

aj .3/

3
775 :

Inverting the matrix on the left and taking entries modulo 8 leads to 150

a.4/

jC1 � X4a.4/

j .mod 8/ (40)

where a.4/

j represents the first four entries of the coefficient vector aj and 151

X4 D

2
664

1 1 2 6

1 0 2 6

0 1 7 7

0 0 1 2

3
775 :

Now observe that 152

a.4/

jC2 � X4a.4/

jC1 � X2
4 a.4/

j .mod 8/ (41)
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and this extends to 153

a.4/

jCs � Xs
4a.4/

j .mod 8/ (42)

for any s 2 N. 154

Lemma 6. The matrix X satisfies X24 � I .mod 8/: 155

Proof. Direct (symbolic) calculation. ut
The Bell number B.j / is the first entry of the vector a.4/

j . Then considering the 156

first entry in the relation 157

a.4/

jC24 � X24
4 a.4/

j .mod 8/ (43)

gives the congruence B.j C 24/ � B.j / .mod 8/. 158

Note. The corresponding relation for the coefficient vector dj is simpler: the 159

system (37) reduces to 160

2

664

dj C1.0/

dj C1.1/

dj C1.2/

dj C1.3/

3

775 � T4 �

2

664

dj .0/

dj .1/

dj .2/

dj .3/

3

775 .mod 8/ (44)

where 161

T4 D

2

664

1 1 0 0

1 2 2 0

0 1 3 3

0 0 1 4

3

775 : (45)

The matrix T4 also satisfies T 24
4 � I .mod 8/ and the argument proceeds as before. 162

6 Some Experimental Data on �2. QB.n// 163

This section discusses the 2-adic valuations of the complementary Bell numbers 164

QB.n/. The data is depicted in Fig. 3 in the range 3 � n � 1;000. 165

This discussion begins with some empirical data from the sequence �2. QB.n//. 166

For 3 � n � 30, the list is 167

f0; 0; 1; 0; 0; 1; 0; 0; 2; 0; 0; 5; 0; 0; 1; 0; 0; 1; 0; 0; 2; 0; 0; 5; 0; 0; 1; 0g:
(46)
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100 200 300 400 500

2

4

6

8

10

Fig. 3 The 2-adic valuation
of the complementary Bell
numbers

This suggests that �2. QB.n// D 0 if n 6� 2 .mod 3/: The list of values of 168

�2. QB.3n C 2// is 169

f1; 1; 2; 5; 1; 1; 2; 5; 1; 1; 2; 7; 1; 1; 2; 6; 1; 1; 2; 5; 1; 1; 2; 5; 1; 1; 2; 6; 1; 1g
170

and the patterns f1; 1; 2; �g suggests considering the sequence �2. QB.n// for n 171

modulo 12. The values n � 2 .mod 3/ split into classes 2; 5; 8 and 11 modulo 172

12. The data suggests 173

�2. QB.12n C 5// D 1; �2. QB.12n C 8// D 1; �2. QB.12n C 11// D 2;

while the class n � 2 .mod 1/2 does not exhibit such a pattern. 174

The first step in the analysis of 2-adic valuations of QB.n/ is to present some 175

elementary congruences to establish that both QB.3n/ and QB.3nC1/ are always odd 176

integers. The proof relies on the recurrence 177

QB.n/ D �
n�1X

kD0

 
n � 1

k

!
QB.k/; for n � 1 and QB.0/ D 1: (47)

Proposition 3. The complementary Bell numbers QB.n/ satisfy 178

QB.3n/ � QB.3n C 1/ � 1; and QB.3n C 2/ � 0 .mod 2/: (48)

Proof. Proceed by induction. The recurrence (47) yields 179

� QB.3n/ D
3n�1X

kD0

 
3n � 1

k

!
QB.k/: (49)
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Fig. 4 The 2-adic valuation
of QB.3n C 2/

Splitting the sum as 180

� QB.3n/ D
n�1X

kD0

 
3n � 1

3k

!
QB.3k/ C

n�1X

kD0

 
3n � 1

3k C 1

!
QB.3k C 1/ C

n�1X

kD0

 
3n � 1

3k C 2

!
QB.3k C 2/

181

and using the inductive hypothesis gives 182

� QB.3n/ �
n�1X

kD0

 
3n � 1

3k

!
C

n�1X

kD0

 
3n � 1

3k C 1

!
.mod 2/: (50)

The two sums appearing in the previous line add up to 183

23n�1 �
n�1X

kD0

 
3n � 1

3k C 2

!
: (51)

The result now follows from the identity 184

n�1X

kD0

 
3n � 1

3k C 2

!
D 23n�1 C .�1/n

3
: (52)

Both sides satisfies the recurrence xnC2 �7xnC1 �8xn D 0 and have the same initial
conditions x1 D 1 and x2 D 11. ut

Proposition 3 shows that 185

�2. QB.3n// D �2. QB.3n C 1// D 0; (53)

leaving the case �2. QB.3n C 2// for discussion. This is presented in Sect. 7. Figure 4 186

shows the data for this sequence and its erratic behavior can be seen from the graph. 187
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7 The 2-Adic Valuation of QB.3n C 2/ 188

The results from the previous section show that QB.3n/ and QB.3n C 1/ are odd 189

integers and QB.3n C 2/ is an even integer. This section explores the value of the 190

sequence �2. QB.3nC2//. The family of polynomials f�j .k/ W j � 0g play the same 191

role as �j .k/ did for the regular Bell numbers B.n/. 192

Lemma 7. The family of polynomials �j .k/, defined by 193

�j C1.k/ D k�j .k/ � �j .k C 1/; (54)

�0.k/ D 1;

satisfy 194

QB.n C j / D
nCjX

kD0

.�1/kS.n C j; k/ D
nX

kD0

.�1/k�j .k/S.n; k/; (55)

for all n; j � 0. 195

Proof. Use the recurrence (54) and proceed as in the proof of Lemma 1. ut
Corollary 1. The evaluation QB.j / D �j .0/ is valid for j 2 N. 196

The recursions for the falling factorials, given in Proposition 3, yields an 197

evaluation of QB.n/ in terms of the powers of an infinite matrix. 198

Note. The .i; j /-entry of a matrix A is denoted by A.i; j /. This notation is used to 199

prevent confusion with the presence of a variety of subindices. 200

Theorem 2. Let P D P.r; s/; r; s � 0 be the infinite matrix defined by 201

P.r C1; r/ D 1; P.r; r/ D r �1; P.r; r C1/ D �r �1; P.r; s/ D 0 for jr �sj > 1

(56)

or 202

P D

0
BBBBBBBBBB@

�1 �1 0 0 0 0 � � �
1 0 �2 0 0 0 � � �
0 1 1 �3 0 0 � � �
0 0 1 2 �4 0 � � �
0 0 0 1 3 �5 � � �
0 0 0 0 1 4 � � �
:::

:::
:::

:::
:::

:::
: : :

1
CCCCCCCCCCA

: (57)
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Then 203

QB.n/ D P n.0; 0/: (58)

Proof. The first step is to express the polynomials �n.x/ in terms of the falling 204

factorial: 205

�n.k/ D
nX

rD0

cn.r/.k/r : (59)

The recurrence relation in Lemma 7 shows that cn.r/ are integers with c0.0/ D 1, 206

c0.r/ D 0 for r > 0 and cn.r/ D 0 if r > n. Moreover, this recurrence may be 207

expressed as 208

cnC1 D P cn; (60)

with P defined in (57) and cn is the vector .cn.r/ W r � 0/. 209

Note that powers of P can be computed with a finite number of operations: each 210

row or column has only finitely many non-zero entries. Iterating (60) gives 211

cn.r/ D P n.r; 0/; r � 0: (61)

The result now follows from Corollary 1 and cn.0/ D �n.0/. ut
The next lemma contains a precise description of the fact that the falling factorial 212

.k/r is divisible by a large power of 2. This is a fundamental tool in the analysis of 213

the 2-adic valuation of QB.n/. 214

Lemma 8. For each m � 0 and k � 1, the congruence 215

.k/r � 0 .mod 22m�1/ holds for all r � 2m: (62)

Proof. Since .k/r divides .k/j for j � r , it may be assumed that r D 2m. Now
observe that .k/r=rŠ D �

k
r

�
, thus �2..k/r / � �2.rŠ/. For r D 2m, Legendre’s formula

(5) gives the value �2.rŠ/ D 2m � s2.2
m/ D 2m � 1. ut

Now we exploit the previous lemma to derive congruences for QB.n/ modulo a 216

large power of 2. The first step is to show a result analogous to Theorem 2, with 217

P replaced by a 2m � 2m matrix, provided the computations are conducted modulo 218

22m�1. Proposition 4 is not necessary for the results that follow it, but it is of interest 219

because it allows us to express QB.n/ as the top left entry of the power of a finite 220

matrix (with size depending on n). 221

Proposition 4. Let P Œn� be the n � n matrix defined by 222

P Œn�.r; s/ D P.r; s/; 0 � r; s � n � 1: (63)
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For each n � 1 and i � 1, 223

.P Œn�/i .r; s/ D P i .r; s/ for 0 � r; s � n � 1; r C s C i � 2n � 1: 224

Proof. Fix n � 1 and proceed by induction on i . The statement is clearly true for 225

i D 1. Assume that r C s C i C 1 � 2n � 1, then the claim follows by computing 226

.P Œn�/iC1 .r; s/ D
n�1X

tD0

.P Œn�/i .r; t/P Œn�.t; s/: (64)

ut
Corollary 2. For i � 2n � 1, the complementary Bell number is given by 227

QB.i/ D .P Œn�/i : (65)

For m � 1 fixed, denote P Œ2m� by Pm. This is a matrix of size 2m � 2m, indexed 228

by f0; 1; : : : ; 2m � 1g. Lemma 8 gives 229

�n.k/ �
2m�1X

rD0

cn.r/.k/r .mod 22m�1/; n � 1; k � 0; (66)

and then the same argument as before gives 230

cn.r/ � P n
m.r; 0/ .mod 22m�1/; for 0 � r � 2m � 1; n � 1: (67)

The next proposition summarizes the discussion. 231

Proposition 5. For n 2 N, 232

QB.n/ � P n
m.0; 0/ .mod 22m�1/: (68)

Corollary 3. The complementary Bell numbers satisfy 233

QB.n C j / �
2m�1X

rD0

P j
m.0; r/P n

m.r; 0/ .mod 22m�1/; n � 1; j � 0: (69)

Proof. This is simply the identity P
nCj
m D P n

m � P
j
m . ut

Proposition 6. The following table gives the values of QB.24n C j / modulo 8 for 234

0 � j � 23: 235
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j QB.24n C j / mod 8

0 1

1 7

2 0

3 1

4 1

5 6

6 7

7 7

8 2

9 3

10 5

11 4

j QB.24n C j / mod 8

12 5

13 3

14 0

15 5

16 5

17 6

18 3

19 3

20 2

21 7

22 1

23 4

236

Proof. Choose m D 2, and check that P 24
2 � I .mod 8/. Corollary 3 gives 237

QB.24n C j / �
3X

rD0

P
j
2 .0; r/P 24n

2 .r; 0/ � P
j
2 .0; 0/ � QB.j / .mod 8/: (70)

Therefore the value of QB.j / modulo 8 is a periodic function with period 24.
The result follows by computing the values QB.j / for 0 � j � 23. ut
Corollary 4. Assume j 6� 2; 14 .mod 24/. Then 238

�2. QB.j // D

8
ˆ̂<

ˆ̂:

1 if j � 5; 8; 17; 20 .mod 24/I
2 if j � 11; 23 .mod 24/I
0 otherwise:

(71)

Corollary 5. Assume j 6� 2; 14 .mod 24/. Then QB.j / ¤ 0. 239

The remaining sections discuss the more difficult cases n � 2 and n � 14 240

.mod 24/. 241

8 The Top-Left Block of Powers of the Matrix Pm 242

The analysis of the 2-adic valuation of QB.n/ employs the sequence of matrices 243

appearing in the top-left block of powers of the matrix Pm. This section describes 244

properties of this sequence. 245

A convention on their block structure is presented next: 246

let n 2 N and i; j integers with 1 � i; j � n � 1. For an n � n matrix Q and an 247

i � j matrix A, the block structure is 248
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Q D
�

A B

C D

�
: (72)

Since the size of the top left corner determines the rest, the notation 249

Q D
0

@
i�j‚…„ƒ
A B

C D

1

A 250

will be used to specify the size of all blocks when necessary. The default convention 251

is that whenever a 2m � 2m matrix is written in block form

�
A B

C D

�
, it will be 252

understood that the blocks are of size 2m�1 � 2m�1. 253

The next lemma is the essential part of the argument for the 2-adic analysis of 254

QB.n/. The proof is a simple check with the definitions. 255

Definition 2. For each m � 0, define 2m � 2m matrices Bm, Dm, Vm inductively as 256

follows: B0 D �1; D0 D 1; V0 D 1, 257

BmC1 D
�

0 0

Bm 0

�
; DmC1 D

�
Dm Bm

0 Dm

�
; VmC1 D

�
0 Vm

0 0

�
; 258

where all blocks are 2m � 2m matrices. 259

Recall the Pm is the 2m � 2m matrix obtained from the top left corner of the 260

infinite matrix P defined in (57). 261

Lemma 9. The matrices Pm satisfy the recurrence 262

PmC1 D
�

Pm 0

Vm Pm

�
C 2m

�
0 Bm

0 Dm

�
: 263

The first point in the analysis is to show that, for every power of Pm, the top half 264

of the last column is zero modulo a large power of 2. 265

Lemma 10. For all m � 1, n � 1, and 0 � i � 2m � 1, the inequality 266

�2

�
P n

m.i; 2m � 1/
� � 2m � m � 1 � �2.i Š/: (73)

holds. 267

Proof. The right-hand side vanishes for m D 1. Fix m � 2. If n D 1, the last column 268

of Pm has 2m � 2 zeros at the beginning and its last two entries are �.2m � 1/ and 269

2m � 2. Therefore, �2 .Pm.i; 2m � 1// D 1 for 0 � i � 2m � 3, and 270

�2 .Pm.2m � 2; 2m � 1// D �2.�.2m � 1// D 0;

�2 .Pm.2m � 1; 2m � 1// D �2.2
m � 2/ D 1:
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Legendre’s formula (5) shows that the right-hand side of (73) is 2m�m�1�iCs2.i/, 271

so it vanishes for i D 2m � 2 and i D 2m � 1. This proves the case for n D 1. 272

The inductive step is presented next: 273

P nC1
m .i; 2m � 1/ D

2m�1X

j D0

Pm.i; j /P n
m.j; 2m � 1/

D Pm.i; i � 1/P n
m.i � 1; 2m � 1/ C Pm.i; i/P n

m.i; 2m � 1/

CPm.i; i C 1/P n
m.i C 1; 2m � 1/

D P n
m.i � 1; 2m � 1/ C .i � 1/P n

m.i; 2m � 1/ � .i C 1/P n
m.i C 1; 2m � 1/:

274

Observe that the three terms on the last line are elements of the last column of the 275

matrix P n
m. The inductive argument provides a lower bound on the power of 2 that 276

divides these integers. Therefore, there are integers q1; q2; q3 such that 277

P n C 1
m .i; 2m � 1/ D 22m�m�1

�
2��2..i�1/Š/q1 C 2�2.i � 1/ � �2.iŠ/q2 � 2�2.i C 1/ � �2..i C 1/Š/q3

�
:

278

It follows that 279

�2

�
P nC1

m .i; 2m � 1/
� �

2m � m � 1 C minf��2..i � 1/Š/; �2.i � 1/ � �2.i Š/; �2.i C 1/ � �2..i C 1/Š/g:
(74)

Now use �2.i C 1/ � �2..i C 1/Š/ D ��2.i Š/ and ��2..i � 1/Š/ � ��2.i Š/, to verify
that the minimum on the right is ��2.i Š/. This completes the argument. ut

The next step is to describe the relation of the matrix Pm (of size 2m�2m) to PmC1 280

(of size 2mC1 �2mC1). The additional block matrices appearing in this transition are 281

defined recursively: 282

Fix m � 0, define 2m � 2m matrices Vm;n; Am;n; Bm;n; Cm;n; Dm;n inductively by 283

Vm;1 D Vm; Vm;nC1 D Vm;nPm C P m
m Vm;n

Bm;1 D Bm; Bm;nC1 D P n
mBm C Bm;nPm

Am;1 D 0; Am;nC1 D Am;nPm C Bm;nVm

Dm;1 D Dm; Dm;nC1 D Vm;nBm C P n
mDm C Dm;nPm

Cm;1 D 0; Cm;nC1 D Cm;nPm C Dm;nVm

284

The relation between Pm and PmC1 is stated next. 285
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Lemma 11. For each n � 1, the congruence 286

P n
mC1 �

�
P n

m 0

Vm;n P n
m

�
C 2m

�
Am;n Bm;n

Cm;n Dm;n

�
.mod 22m/ (75)

holds. 287

Proof. The result is clear for n D 1. Computing P nC1
mC1 D P n

mC1PmC1, it follows 288

that 289

P nC1
mC1 �

�
P n

m C 2mAm;n 2mBm;n

Vm;n C 2mCm;n P n
m C 2mDm;n

��
P n

m 2mBm

Vm;n P n
m C 2mDm

�

�
�

P nC1
m 0

Vm;nPm C P n
mVm P nC1

m

�

C 2m

�
Am;nPm C Bm;nVm P n

mBm C Bm;nPm

Cm;nPm C Dm;nVm Vm;nBm C P n
mDm C Dm;nPm

�
.mod 22m/:

The recurrence for the matrices A; B; C; D and V are designed to complete the
inductive step. ut
Corollary 6.

Vm;2n � Vm;nP n
m C P n

mVm;n .mod 22m/ (76)

Proof. This follows from Lemma 11 by computing P 2n
mC1 D P n

mC1P
n
mC1. ut

The next lemma shows some operational rules for the matrices A; B introduced 290

above. The symbol � indicates an unspecified integer or matrix. 291

Lemma 12. (a) For any 2m � 2m matrix M.i; j / and arbitrary i 2 N, we have 292

.MBm/.i; 0/ D �M.i; 2m � 1/:

(b) For m � 2 and n � 1, both Bm;n and Am;n have the form 293

�
0 0

� �
�

.mod 22m�1�1/

Proof. Part (a) follows directly from the definition of Bm. Part (b) is established by 294

induction. The statement holds for Bm;1. Now observe that 295

.P n
mBm/.i; 0/ D �P n

m.i; 2m � 1/ � 0 .mod 22m�1�1/ for 0 � i � 2m�1 � 1;
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by part (a) and Lemma 10. The induction hypothesis implies that 296

Bm;n �
�

0 0

� �
�

.mod 22m�1�1/;

and this leads to 297

Bm;nC1 D P n
mBm C Bm;nPm �

�
0 0

� �
�

.mod 22m�1�1/:

A similar argument shows that 298

Am;nC1 D Am;nPm C Bm;nVm �
�

0 0

� �
�

.mod 22m�1�1/: ut

The next results describe the powers of Pm considered modulo 2i . This leads to 299

explicit formula for the 2-adic valuation of QB.n/. 300

Notation: dm D 3 � 2m. 301

Proposition 7. For all m � 1, 302

P dm
m � I .mod 4/; and Vm;dm � 0 .mod 2/:

Proof. For m D 1, a direct calculation shows that P 3
1 D I and so P

d1

1 D P 6
1 D I . 303

Also, 304

V1;2 � V1P1 C P1V1 �
�

1 1

0 1

�
.mod 2/; 305

306

V1;3 � V1;2P1 C P 2
1 V1 �

�
0 1

1 1

�
.mod 2/; 307

and this produces 308

V1;d1 D V1;6 � V1;3P 3
1 C P 3

1 V1;3 �
�

0 0

0 0

�
.mod 2/: 309

Assume now P dm
m � I .mod 4/ and Vm;dm � 0 .mod 2/. For simplicity, drop the 310

subscripts in the matrices. Lemma 11 gives 311

P
dm

mC1 �
�

P 0

V P

�
�
�

I 0

V I

�
.mod 4/ 312
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and 313

P
dmC1

mC1 D
�
P

dm

mC1

	2 �
�

I 0

V I

��
I 0

V I

�
�
�

I 0

2V I

�
�
�

I 0

0 I

�
.mod 4/: 314

Using the notation 315

VmC1;dm D
�

X Y

Z W

�
316

it follows that 317

VmC1;dmC1
D VmC1;2dm � VmC1;dmP

dm

mC1 C P
dm

mC1VmC1;dm

�
�

X Y

Z W

��
P 0

V P

�
C
�

P 0

V P

��
X Y

Z W

�

�
�

X Y

Z W

��
I 0

V I

�
C
�

I 0

V I

��
X Y

Z W

�

�
�

X C Y V Y

Z C W V W

�
C
�

X Y

VX C Z V Y C W

�

�
�

2X C Y V 2Y

2Z C W V C VX V Y C 2W

�
�
�

0 0

0 0

�
.mod 2/: ut

The next proposition provides the structure of P dm
m modulo 2mC3, for m � 4. 318

Introduce the notation 319

Q D

0

BB@

1 2 6 0

6 1 0 6

3 4 5 4

0 1 4 3

1

CCA 320

and define recursively for m � 4 the 4 � .2m � 4/ matrices Rm by 321

R4 D

0
BB@

1 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

1
CCA ;

RmC1 D �
Rm 0

�
:

Notation: q.�/ indicates a matrix or number that is a multiple of q. 322
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Proposition 8. Let m � 4. Then 323

4 � 4‚…„ƒ

P dm
m � I C

�
2mQ 2mC2Rm

4.�/ 4.�/

�
.mod 2mC3/:

324

Proof. The claim holds for m D 4 by simple task: evaluate P 48
4 modulo 27. Keep in 325

mind that P4 is a 16 � 16 matrix. 326

Assume the claim holds for m. Observe that 2m � mC4 for m � 4, therefore the 327

congruence modulo 22m of Lemma 11 can be replaced with a congruence modulo 328

2mC4. Write V D
�

X Y

Z W

�
to obtain 329

P
dm

mC1 �
�

P 0

V P

�
C 2m

�
A B

C D

�

�

0

BB@

I C 2mQ 2mC2R 0 0

4.�/ I C 4.�/ 2m.�/ 2m.�/

X C 2m.�/ Y C 2m.�/ I C 2m.�/ 2m.�/

Z C 2m.�/ W C 2m.�/ 4.�/ I C 4.�/

1

CCA .mod 2mC4/:

Squaring this matrix gives 330

P
dmC1

mC1 �

0
BB@

I C 2mC1Q 2mC3R 0 0

4.�/ I C 4.�/ 4.�/ 4.�/

2X C 4.�/ 2Y C 4.�/ I C 4.�/ 4.�/

2Z C 4.�/ 2W C 4.�/ 4.�/ I C 4.�/

1
CCA .mod 2mC4/: 331

The previous proposition shows that V D
�

X Y

Z W

�
� 0 .mod 2/, therefore 332

P
dmC1

mC1 � I C
�

2mC1Q 2mC3RmC1

4.�/ 4.�/

�
.mod 2mC4/: 333

This completes the induction argument. ut
The next corollary is employed in the next section to establish the 2-adic 334

valuation of complementary Bell numbers. 335
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Corollary 7. For each n � 1, 336

4 � 4‚…„ƒ

P ndm
m � I C n

�
2mQ 2mC2Rm

4.�/ 4.�/

�
.mod 2mC3/:

337

Proof. The result follows immediately from Proposition 8 and the binomial
theorem. ut

9 The Case n � 2 .mod 24/ 338

The 2-adic valuations for the complementary Bell numbers QB.n/ are given in 339

Corollary 4 for j 6� 2; 14 .mod 24/. This section determines the case j � 2. 340

The main result is: 341

Theorem 3. For n 2 N, 342

�2

� QB.24n C 2/
� D 5 C �2.n/: 343

Proof. Write n D 2mq with q odd. Corollary 3 and Proposition 8 give 344

QB.24n C 2/ D QB.3 � 2mC3q C 2/ �
2mC3�1X

rD0

P
qdmC3

mC3 .0; r/P 2
mC3.r; 0/

� P
qdmC3

mC3 .0; 0/P 2
mC3.0; 0/ C P

qdmC3

mC3 .0; 1/P 2
mC3.1; 0/

CP
qdmC3

mC3 .0; 2/P 2
mC3.2; 0/

� .1 C 2mC3q/.0/ � q2mC4 C 6q2mC3

� q2mC5 � 2mC5 .mod 2mC6/:

The expression for the valuation �2

� QB.24n C 2/
�

follows immediately. ut
The tree shown in Fig. 5 summarizes the information derived so far on the 345

2-adic valuation of QB.n/. The top three edges of the tree correspond to the 346

residue class of n .mod 3/. The number by the side of the edge (if present) 347

gives the (constant) 2-adic valuation of QB.n/ for that residue class. For example 348

�2. QB.3n C 1// D 0. If there is no number next to the edge, the 2-adic valuation is 349

not constant for that residue class, so n needs to be split further. The split at each 350

stage is conducted by replacing the index n of the sequence by 2n and 2n C 1. 351

For example, the sequence �2. QB.12n C 2// is not constant so it generates the two 352

new sequences �2. QB.24n C 2// and �2. QB.24n C 14//. Constant sequences include 353
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Fig. 5 The 2-adic valuation of QB.24n C 2/

�2. QB.12n C 8// D �2. QB.12n C 5// D 1 and �2. QB.12n C 11// D 2. The main 354

theorem of this section shows that the infinite branch on the left, coming from the 355

splitting of 24n C 2, has a well-determined structure. The other infinite branch, 356

corresponding to 24n C 14, does not exhibit such a regular pattern. This is the topic 357

of the next section. 358

10 The Case n � 14 .mod 24/ 359

This section discusses the last missing case in the 2-adic valuations of QB.n/. The 360

main result of this section is: 361

Theorem 4. There is at most one integer n > 2 such that QB.n/ D 0. 362

Outline of the proof. The proof consists of a sequence of steps. ut
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Step 1. Define two sequences fxm; ymg recursively via 363

ymC1 D

8
ˆ̂<

ˆ̂:

ym if �2. QB.xm// > m C 5I

ym C 2m if �2. QB.xm// � m C 5I

xmC1 D 24ymC1 C 14:

Step 2. Let ym D
mX

iD0

sm;i 2
i and let si D lim

m!1 sm;i and define s D 364

.s0; s1; s2; � � � /. 365

Step 3. For n 2 N let n D
X

k

bk.n/2k be its binary expansion. Let 366

!.n/ D
(

first index k such that bk.n/ ¤ sk I
1 otherwise.

(77)

Then !.n/ < 1 unless s has ony finitely many ones and s is the binary expansion 367

of n. If such n exists, it is called exceptional. 368

Step 4. The 2-adic valuation of QB.24n C 14/ is given by 369

�2. QB.24n C 14// D !.n/ C 5: (78)

In particular QB.n/ D 0 only if n is exceptional. This concludes the proof of the 370

theorem. 371

Proof of Theorem 4. The r-th entry of the top row of P
j
m needs to be expressed as

a linear combination of QB.j C i/ .mod 22m�1/, 0 � i � r . This is the content of
the next lemma. ut
Lemma 13. Define br.i/ recursively by 372

b0.0/ D 1;

brC1.i/ D br.i � 1/ C .1 � r/br.i/ C rbr�1.i/; 0 � i � r

br .i/ D 0 for i < 0 or i > r:

Then for each m � 1, j � 1, and 0 � r � 2m � 1, we have 373

P j
m.0; r/ �

rX

iD0

br .i/ QB.j C i/ .mod 22m�1/: 374
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Proof. The proof is by induction on r . If r D 0, the statement is Proposition 5. 375

Assuming the statement for r , it follows that 376

P j C1
m .0; r/ �

rX

iD0

br.i/ QB.j C 1 C i/ .mod 22m�1/ 377

and also 378

P j C1
m .0; r/ D P j

m.0; r � 1/Pm.r � 1; r/ C P j
m.0; r/Pm.r; r/

C P j
m.0; r C 1/Pm.r C 1; r/

D �rP j
m.0; r � 1/ C .r � 1/P j

m.0; r/ C P j
m.0; r C 1/:

Comparing the two expressions and using induction, P
j
m.0; r C 1/ is expressed as a

linear combination of QB.j C i/, 0 � i � r , with coefficients as in the right side of
the equation defining brC1.i/. ut

Extensive calculations suggest that �2. QB.24n C 14// is always at least 5, and it 379

is rather irregular. After examining the experimental data, we were led to define the 380

following sequences. 381

Define xm, ym inductively by: 382

y0 D 0; x0 D 24y0 C 14; 383

and if xm, ym have been defined, set 384

ymC1 D



ym if �2

� QB.xm/
�

> m C 5

2m C ym if �2

� QB.xm/
� � m C 5

; xmC1 D 24ymC1 C 14: 385

This is the statement of Step 1. 386

The next table gives the first few values of ym and xm. 387

m 0 1 2 3 4 5 6 7 8 9 10

ym 0 1 1 5 13 13 13 77 77 333 845

xm 14 38 38 134 326 326 326 1;862 1;862 8;006 20;294

388

The next lemma provides a lower bound for the 2-adic valuation of the 389

subsequence of complementary Bell numbers indexed by xm. 390

Lemma 14. For m 2 N, �2. QB.xm// � m C 5. 391
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Proof. The proof employs the values of br.i/ for 0 � r � 2. These are given in 392

Lemma 13 for r D 0; 1; 2. It turns out that b1.0/ D b1.1/ D b2.0/ D b2.1/ D 393

b2.2/ D 1: (In case one wonders here if all non-zero terms of br.i/ are 1, this is not 394

true for r � 3). 395

Direct calculation shows that �2. QB.x0// D �2. QB.14// D 5, and �2. QB.x1// D 396

�2. QB.38// D 7. Therefore the statement holds for m D 0; 1. Assume the result for 397

m � 1. Therefore �2. QB.xm// � m C 5. If �2. QB.xm// > m C 5, then by definition 398

xmC1 D xm, and it follows that �2. QB.xmC1// � m C 6. On the other hand, if 399

�2. QB.xm// D m C5, write QB.xm/ D 2mC5q, with q is odd. Then ymC1 D 2m Cym, 400

and xmC1 D 24.2mCym/C14 D 3 �2mC3Cxm. Corollary 3 (with n D 3 �2mC3; j D 401

xm, and m replaced by mC3) and Proposition 8 (with m replaced by mC3), produce 402

QB.xmC1/ D QB.3 � 2mC3 C xm/ �
2mC3�1X

rD0

P
xm
mC3.0; r/P

dmC3

mC3 .r; 0/ .mod 22mC3�1/

� .1 C 2mC3/P
xm
mC3.0; 0/ C 6 � 2mC3P

xm
mC3.0; 1/ C 3 � 2mC3P

xm
mC3.0; 2/

C
2mC3�1X

rD4

P
xm
mC3.0; r/P

dmC3

mC3 .r; 0/ .mod 2mC6/:

403

Proposition 8 shows that the first term in the last sum is divisible by 2mC5 and the 404

second term is divisible by 4. Then, Lemma 13 yields 405

QB .xmC1/ � .1 C 2mC3/ QB .xm/ C 3 � 2mC4
� QB .xm/ C QB .xm C 1/

�

C3 � 2mC3
� QB .xm/ C QB .xm C 1/ C QB .xm C 2/

�
.mod 2mC6/:

406

Since xm C 1 � 15 and xm C 2 � 16 .mod 24/, Proposition 6 shows that 407

QB .xm C 1/ � QB .xm C 2/ � 5 .mod 8/. So we find 408

QB .xmC1/ � .1 C 2mC3/2mC5q C 3 � 2mC4
�
2mC5q C 5 C 8.�/

�

C 3 � 2mC3
�
2mC5q C 5 C 8.�/ C 5 C 8.�/

�

� 2mC5q C 15 � 2mC4 C 15 � 2mC3 C 15 � 2mC3

� 2mC5q C 15 � 2mC5 � .q C 15/2mC5 � 0 .mod 2mC6/:

This completes the inductive step. ut
Lemma 15. The binary expansion of ym has the form 409

ym D
mX

iD0

sm;i 2
i (79)

and si D lim
m!1 sm;i exists. 410
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Proof. By construction ym � 2m � 1, showing that the binary expansion of ym ends
at 2m�1. Moreover, the binary expansion of ymC1 is the same as that of ym with
possibly and extra leading 1. This confirms the existence of the limit si . ut
Note. Step 2 concludes by defining s D .s0; s1; : : :/ D .1; 0; 1; 1; 0; 0; 1; 0; 1; 1; : : :/. 411

Theorem 5. Let n be a positive integer with binary expansion n D P
k bk2k , and 412

let !.n/ be the first index for which bk ¤ sk . If no such index exists, let !.n/ D 1. 413

Then 414

�2. QB.24n C 14// D !.n/ C 5: 415

Note. As discussed in Step 3, there is at most one index n > 2 for which !.n/ D 1. 416

This happens when s, defined above, has finitely many ones. In this situation, s is 417

the binary expansion of this exceptional index. The conjecture of Wilf states that 418

this situation does not happen. 419

Proof. The notation m D !.n/ is employed in the proof. If m D 1, then QB.24n C 420

14/ D 0 and the formula holds. Suppose now that m ¤ 1. Then there is p 2 N 421

such that 24n C 14 D 3 � 2mC3p C xm: 422

Write QB.xm/ D 2mC5Ciq, with q odd and i � 0. Then, as in the previous proof 423

(and also using Lemma 7), it follows that 424

QB.24n C 14/ D QB �
3 � 2mC3p C xm

�

� .1 C 2mC3p/2mC5Ci q C 3p � 2mC4
�
2mC5Ciq C 5 C 8.�/

�

C 3p � 2mC3
�
2mC5Ci q C 5 C 8.�/ C 5 C 8.�/

�

� 2mC5Ciq C 15p � 2mC4 C 15p � 2mC3 C 15p � 2mC3

� 2mC5Ciq C 15p � 2mC5 � 2mC5.2iq C 15p/ .mod 2mC6/:

If i D 0, then sm D 1, and p must be even (because this is where n and s disagree).
Thus the quantity in parentheses on the last line is odd, and �2. QB.24n C 14// D
m C 5. If i > 0, then sm D 0, and p must be odd and, as in the previous case, the
quantity in parentheses is odd. The result follows from here. ut
Note. The tree shown in Fig. 6 updates Fig. 5 by including the 2-adic valuation of 425

QB.24n C 14/. It is a curious fact that �2. QB.n// takes on all non-negative values 426

except 3 and 4. 427

Final comment. It remains to decide if the exceptional case exists. If it does 428

not, then QB.n/ ¤ 0 for n > 2, Wilf’s conjecture is true and the sequence 429

�2. QB.24n C 14// is unbounded. If this exceptional index exists, then it is unique. 430

Observe that the exceptional case exists if and only if the sequence xm is eventually 431

constant. 432
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Fig. 6 The 2-adic valuation of QB.24n C 14/
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11 Two Classes of Polynomials 434

Two families of polynomials have been considered in Lemmas 1 and 7: �0.x/ � 435

1; �0.x/ � 1, and 436

�j C1.x/ D x�j .x/ C �j .x C 1/I for n � 0I (80)

�j C1.x/ D x�j .x/ � �j .x C 1/I for n � 0: (81)

The corresponding exponential generating functions are provided below. 437

Lemma 16. The polynomials �j and �j have generating functions given by 438

1X

j D0

zj

j Š
�j .x/ D exz�1Cez

and
1X

j D0

zj

j Š
�j .x/ D exzC1�ez

: (82)

Proof. Let F.x; z/ D
X

j �0

zj

j Š
�j .x/ and G.x; z/ D exz�1Cez

. Multiplying the 439

polynomial recurrence through by zj =j Š yields 440

�j C1.x/
zj

j Š
D x�j .x/

zj

j Š
C �j .x C 1/

zn

j Š
: 441

Now sum over all non-negative integers j to find 442

@

@z
F.x; z/ D xF.x; z/ C F.x C 1; z/: (83)

Since G.x C 1; z/ D ezG.x; z/, it follows 443

@

@z
G.x; z/ D G.x; z/.x C ez/ D xG.x; z/ C G.x C 1; z/: (84)

On the other hand, F.x; 0/ D �0.x/ D 1 D G.x; 0/. Therefore, F.x; z/ D G.x; z/.
The same argument verifies the second assertion of the lemma. The proof is
complete. ut
Corollary 8. The polynomials �j and �j satisfy 444

�j .0/ D B.j / and �j .0/ D QB.j /: (85)

Corollary 9. There are double-indexed exponential generating functions for 445

�j .n/, �j .n/: 446

X

j;n�0

�j .n/
zj yn

j ŠnŠ
D e�1C.yC1/ez

;
X

j;n�0

�j .n/
zj yn

j ŠnŠ
D e�1C.y�1/ez

: 447
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Proof. Direct computation shows 448

X

j;n

�j .n/
zj yn

j ŠnŠ
D
X

n

enz�1Cez yn

nŠ
D e�1Cez X

n

.yez/n

nŠ
(86)

with a similar argument for �j . ut
Corollary 10. The polynomials �j .x/; �j .x/ are binomial convolutions of Bell 449

numbers, 450

�j .x/ D
X

r

 
j

r

!
B.r/xj �r ; �j .x/ D

X

r

 
j

r

!
QB.r/xj �r : 451

Proof. This follows directly from 452

X

j �0

�j .x/
zj

j Š
D eez�1exz D

X

k�0

B.k/
zk

kŠ
�
X

n�0

xn zn

nŠ
(87)

and a similar argument for �j . ut
Corollary 11. The family of polynomials �j .x/ have a missing strip of coeffi- 453

cients, i.e. 454

Œxj �2��j .x/ D 0: 455

Proof. Follows from Corollary 10 and QB.2/ D 0. ut
Define the functions e.k/.x/ inductively, as follows: 456

e.x/ D e.1/.x/ D 1 � ex

e.kC1/.x/ D e.e.k/.x//:

These are called super-exponentials. For example, 457

e.2/.x/ D 1 � e1�ex

and e.3/.x/ D 1 � e1�e1�ex

: 458

Introduce the super-complementary Bell numbers, QB.k/.n/, according to 459

X

n�0

QB.k/.n/
xn

nŠ
D 1 � e.kC1/.x/: (88)

The usual complementary Bell numbers QB.n/ become QB.1/.n/ due to the relation 460

X

n

QB.n/
xn

nŠ
D e1�ex D 1 � e.2/.x/: (89)
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The next conjecture is a natural extension of Wilf’s original question. 461

Conjecture 1. Let k 2 N be odd. Then QB.k/.n/ D 0 if and only if n D 2. For k 2 N 462

even and k ¤ 2, it is conjectured that QB.k/.n/ ¤ 0. The case k D 2 is peculiar: the 463

corresponding conjecture is that QB.2/.n/ D 0 if and only if n D 3. 464

Combinatorial meanings: B
.1/
1 .n/ D number of set partitions of f1; : : : ; ng with 465

an even number of parts, minus the number of such partitions with an odd number 466

of parts; B
.2/
1 .n/ D number of set partitions of f1; : : : ; ng with an even number 467

of parts, minus the number of such partitions with an odd number of parts, and 468

then repeating this process for each block. Similar number of chain reactions yield 469

B
.k/
1 .n/. For instance, 470

QB.2/.n/ D
nX

j D0

.�1/j S.n; j / QB.j /: (90)

Illustrative example. Take n D 3, and partition the set f1; 2; 3g. For k D 1: 471

f1; 2; 3g; for k D 2: f1; f2; 3gg; f2; f1; 3gg; f3; f1; 2gg; for k D 3: ff1g; f2g; f3gg. In 472

the next step, partition blocks as follows. When k D 1: f1; 2; 3g is its own partition 473

as a 1-element set; when k D 2, partition each of f1; f2; 3gg, f2; f1; 3gg, f3; f1; 2gg 474

as 2-element sets; when k D 3, partition ff1g,f2g,f3gg as a 3-element set. The 475

resulting collection looks like this: 476

f1; 2; 3g;
f1; f2; 3gg;
ff1g; ff2; 3ggg;
f2; f1; 3gg;
ff2g; ff1; 3ggg;
f3; f1; 2gg;
ff3g; ff1; 2ggg;
ff1g; f2g; f3gg;
ff1g; ff2g; f3ggg;
ff2g; ff1g; f3ggg;
ff3g; ff1g; f2ggg;
ff1g; ff2gg; ff3ggg:
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1 Introduction 10

In 1886, J. J. Sylvester [17] posed a couple of problems in the Educational Times 11

that are precursors to the study undertaken here. We reproduce the problems in their 12

entirety:AQ1 13

Definition. If, in any arrangement of integers, each of the numbers 1; 2; 3; : : : up to any odd 14

number (unity inclusive), say 2i � 1, occurs once or any odd number of times, but the even 15
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to be flushed; if such kind of sequence does not occur, it is said to be unflushed. 17
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Ex.gr.: The total partitions of 7 are 21

7; 6, 1; 5,2; 5, 1, 1; 4, 3; 4, 2, 1; 4, 1, 1, 1; 3, 3, 1; 3, 2, 2; 3, 2, 1, 1; 2, 2, 2, 1; 3, 1, 1, 1, 22

1; 2, 2, 1, 1, 1; 2, 1, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1, 1. 23

Of these, 6, 1; 4, 1, 1, 1; 3, 3, 1; 2, 2, 1, 1, 1; 1, 1, 1, 1, 1, 1, 1 alone are flushed. Of 24

the remaining unflushed partitions, five contain an odd number of parts, and five an even 25

number. 26

Again, the total partitions of 6 are 27

6; 5, 1; 4, 2; 4, 1, 1; 3, 3; 3, 2, 1; 2, 2, 2; 3, 1, 1, 1; 2, 2, 1, 1; 2, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1; 28

of which 5, 1; 3, 2, 1; 3, 1, 1, 1 alone are flushed. Of the remainder, four contain an odd 29

and four an even number of parts. 30

N.B.—This transcendental theorem compares singularly with the well-known alge- 31

braical one, that the total number of the permuted partitions of a number with an odd 32

number of parts is equal to the same of the same with an even number. 33

2. Required to prove that the same proposition holds when any odd number is partitioned 34

without repetitions in every possible way. 35

Sylvester did not publish solutions to these problems. In 1970, solutions to both 36

problems were published [1] and the generating function for flushed partitions 37

(corrected) was revealed as 38

1X

nD1
qn.3n�1/=2.1 � qn/

.qI q/1 ; 39

where 40

.AI q/n D .1 �A/.1 � Aq/ � � � .1 � Aqn�1/: 41

The solutions of Sylvester’s problems involved generating functions. It is com- 42

pletely unknown whether this was Sylvester’s approach and how he came upon 43

flushed partitions in the first place. 44

Sylvester’s flushed partitions suggest a more extensive study of partitions subject 45

to variations on the following three constraints which we shall call the Sylvester 46

constraints: 47

1. Some of the smaller parts are required to appear a specified number of times 48

(e.g. in the case of flushed partitions, an odd number of times). 49

2. Immediately following the parts considered in (1) there may be one or two 50

special parts (e.g. in the case of flushed partitions, the first integer appearing 51

an even number of times is even). 52

3. The larger parts are constrained differently if at all (e.g. in the case of flushed 53

partitions there are no constraints). 54

In the subsequent decades of the twentieth century, N. J. Fine appears to have 55

been the only one to consider questions of this type. In lectures at Penn State, he 56

observed that the conjugates of partitions into distinct parts are “partitions without 57

gaps,” i.e. partitions in which every integer smaller than the largest part is also a 58

part. For example, here are the partitions of 6 into distinct parts paired with their 59

conjugates: 60
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6 1C 1C 1C 1C 1C 1

5C 1 2C 1C 1C 1C 1

4C 2 2C 2C 1C 1

3C 2C 1 3C 2C 1

Fine also noted in his book [7, p. 57] (see also [18]) that in one of Ramanujan’s 61

third order mock theta functions 62

 .q/ WD
1X

nD0

qn
2

.qI q2/n

D
1X

nD0
ˇ.n/qn;

the coefficient ˇ.n/ is the number of partitions of n into odd parts where each odd 63

integer smaller than the largest part must also be a part. 64

In 2009, the theme initiated by Sylvester was further developed in a paper titled 65

“Partitions with initial repetitions” [5]. 66

Definition 1. A partition with initial k-repetitions is a partition in which if any j 67

appears at least k times as a part, then each positive integer less than j appears k 68

times as a part. 69

As noted in [5, Theorem 1], partitions with initial k-repetitions fit naturally into 70

an expanded version of the Glaisher/Euler theorem [2, Corollary 1.3, p. 6]. 71

Theorem 1. The number of partitions of n with initial k-repetitions equals the 72

number of partitions of n into parts not divisible by 2k and also equals the number 73

of partitions of n in which no part is repeated more than 2k � 1 times. 74

This idea was further developed in [5] and sets the stage for the results in this 75

paper. 76

Definition 2. Let Fe.n/ (resp. Fo.n/) denote the number of partitions of n in which 77

no odd (resp. no even) parts are repeated and no odd part (resp. even part) is smaller 78

than a repeated even part (resp. odd part), and if an even (resp. odd) part is repeated 79

then each smaller even (resp. odd) positive integer is also a repeated part. 80

Theorem 2. Fe.n/ equals the number of partitions of n into parts 6� 0;˙2 81

.mod 7/. 82

This result follows immediately from the second Rogers-Selberg identity 83

[16, p. 155, Eq. (32)] 84

1X

nD0

q2n
2C2n.�q2nC1I q/1
.q2I q2/n D

1Y

nD1
n 6�0˙2 .mod 7/

1

1 � qn : 85
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Theorem 3.
1X

nD0
Fo.n/q

n D .�qI q/1f .q2/, where f .q/ is one of Ramanujan’s 86

seventh order mock theta functions [14, p. 355] 87

f .q/ D
1X

nD1

qn
2

.qnI q/n : 88

Our object in this paper is to apply the Sylvester constraints to various other 89

Rogers-Ramanujan type identities found by Slater [16], (cf. [14, Appendix A]). In 90

each instance odds and evens will be subject to different restrictions. Interchanging 91

the roles of odds and evens (as was done in passing from Theorems 2 to 3) has 92

an interesting outcome. Sometimes mock theta functions (cf. [18]) arise (cf. (7), 93

(8) and Sect. 4), and sometimes other Rogers-Ramanujan type identities arise 94

(cf. Sect. 3). 95

In Sect. 2, we analyze two theorems that were originally found by F. H. Jackson 96

and are listed as identities (38) and (39) in Slater [16]. In this case the 97

exchange of the roles of odds and evens yields two of the mock theta functions 98

listed in [6]. 99

In Sect. 3, we begin with Slater’s identity (119) [16, p. 165]. In this case, 100

the reversed roles of odds and evens leads to a result equivalent to Slater’s (81) 101

[16, p. 160]. 102

In Sect. 4, events take a surprising turn. We begin with Slater’s (44) and (46) 103

[16, p. 156]. Each of these makes condition (2) of the Sylvester constraints rather 104

cumbersome. So the terms of the series in (44) and (46) are slightly altered to 105

streamline condition (2). The result is new Hecke-type series, and the odd even 106

reversal yields a further instance. 107

Finally in Sect. 5, we start with Slater’s (53). This requires us to move from 108

odd-even (or modulus 2) conditions to modulus 4 conditions. In this case, the role 109

reversal takes us from Slater’s (53) to Slater’s (55). 110

Section 6 is the conclusion where we discuss a variety of potential projects 111

foreshadowed by this paper. 112

2 Identities of Modulus 8 113

Of course, there are two famous modulus 8, Rogers-Ramanujan identities. They are 114

due to Lucy Slater [14, Eqs. (36) and (34)]: 115

1X

nD0

.�qI q2/nqn2
.q2I q2/n D

1Y

nD1
n�1;4;7 .mod 8/

1

1 � qn ; (1)
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and 116

1X

nD0

.�qI q2/nqn2C2n
.q2I q2/n D

1Y

nD1
n�3;4;5 .mod 8/

1

1 � qn : (2)

Although Slater first obtained these results in her Ph.D. thesis in the late 1940s, 117

they have become known as the Göllnitz-Gordon identities because in the early 118

1960s both H. Göllnitz [9] and B. Gordon [10] discovered their partition theoretic 119

interpretation. 120

As A. Sills notes in [15, p. 103], F. H. Jackson [11] found, and Slater 121

[16, Eqs. (39) and (38)] re-found closely related results which we now consider 122

in slightly altered form: 123

1X

nD0

q2n
2
.�q2nC1I q2/1
.q2I q2/n D

1Y

nD1
n�1;4;7 .mod 8/

1

1 � qn ; (3)

and 124

1X

nD0

q2n
2C2n.�q2nC3I q2/1

.q2I q2/n D
1Y

nD1
n�3;4;5 .mod 8/

1

1 � qn : (4)

Let us rewrite these series in a form where the partition theoretic interpretation 125

is obvious. 126

1X

nD0

q2C2C4C4C���C.2n�2/C.2n�2/C2n.1C q2nC1/.1C q2nC3/.1C q2nC5/ � � �
.1 � q2/.1� q4/ � � � .1 � q2n/

D
1Y

nD1
n�1;4;7 .mod 8/

1

1 � qn ; (5)

127

1X

nD0

q2C2C4C4C���C2nC2n.1C q2nC3/.1C q2nC5/.1C q2nC7/ � � �
.1 � q2/.1 � q4/ � � � .1 � q2n/

D
1Y

nD1
n�3;4;5 .mod 8/

1

1 � qn : (6)

The standard methods for generating partitions from q-series and products 128

[2, Chap. 1] allows us to interpret (5) and (6) as follows. 129
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Theorem 4. Let G1.n/ denote the number of partitions of n into parts � 1; 4 or 7 130

.mod 8/. Let R1.n/ denote the number of partitions of n in which, (i) odd parts are 131

distinct and each is larger than any even part, and (ii) all even integers less than the 132

largest even part appears at least twice. Then for each n � 0, 133

G1.n/ D R1.n/: 134

For example, the 12 partitions enumerated by G1.15/ are 15, 12 C 1 C 1 C 1, 135

9C 4C 1C 1, 9C 1C 1C � � � C 1, 7C 7C 1, 7C 4C 4, 7C 4C 1C 1C 1C 1, 136

7C1C1C� � �C1, 4C4C4C1C1C1, 4C4C1C1C� � �C1, 4C1C1C� � �C1, 137

1 C 1 C � � � C 1, and the 12 partitions enumerated by R1.15/ are 15, 11 C 3 C 1, 138

9 C 5 C 1, 7 C 5 C 3, 13 C 2, 11 C 2 C 2, 9 C 2 C 2 C 2, 7 C 2 C 2 C 2 C 2, 139

5C 2C 2C 2C 2C 2, 3C 2C 2C � � � C 2, 7C 4C 2C 2, 5C 4C 2C 2C 2. 140

Theorem 5. Let G2.n/ denote the number of partitions of n into parts � 3, 4, or 141

5 .mod 8/. Let R2.n/ denote the number of partitions of n in which, (i) odd parts 142

are distinct, greater than 1, and each is larger than the largest evenC2, and (ii) all 143

even integers up to and including the largest even part appear at least twice. Then 144

for each n � 0 145

G2.n/ D R2.n/: 146

For example, the 7 partitions enumerate by G2.16/ are 13 C 3, 12C 4, 11 C 5, 147

5C 5C 3C 3, 5C 4C 4C 3, 4C 4C 4C 4, 4C 3C 3C 3, and the 7 partitions 148

enumerated byR2.16/ are 13C3, 11C5, 9C7, 7C5C2C2, 4C4C2C2C2C2, 149

4C 4C 4C 2C 2, 2C 2C � � � C 2. 150

Now let us reverse the roles played by the evens and odds. The resulting 151

counterpart of (5) is 152

X

n�1

q1C1C3C3C���C.2n�3/C.2n�3/C.2n�1/.�q2nI q2/1
.qI q2/n D q

X

n�0

q2n
2
C2n.�q2nC2I q2/1
.qI q2/nC1

D q.�q2I q2/1
1X

nD0

q2n
2
C2n

.qI �q/2nC1

WD q.�q2I q2/1G1.q/; (7)

153

where [6] 154

G1.�q/ D
1X

nD0

q2n
2
C2n

.�qI q/2nC1

D 1

.q2I q2/1
1X

nD0

q4n
2
�3n.q14nC7 � 1/

nX

jD�n

.�1/j q�j 2 :
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The latter is the now familiar form of a Hecke-type series involving an indefinite 155

quadratic form (see also [6, Eq. (1.15)]). 156

The resulting counterpart of (6) is 157

X

n�1

q1C1C3C3C���C.2n�1/C.2n�1/.�q2nC2I q2/1
.qI q2/n D

X

n�0

q2n
2
.�q2nC2I q2/1
.qI q2/n

D .�q2I q2/1
1X

nD0

q2n
2

.qI �q/2n
D .�q2I q2/1G2.q/; (8)

where [6, Eq. (1.14)] 158

G2.�q/ D
1X

nD0

q2n
2

.�qI q/2n

D 1

.q2I q2/1
1X

nD0

q4n
2
Cn.1 � q6nC3/

nX

jD�n

.�1/j q�j 2 :

Thus, as was mentioned in the Introduction, the even-odd reversal transformed 159

the related generating functions from classical theta functions into mock theta 160

functions. 161

3 Identities of Modulus 28 162

Suppose now we allow some mixing of odds and evens in our Sylvester constraints. 163

Let us turn to identity (119) in Slater’s [16, p. 165] which we write as follows: 164

1X

nD0

q1C3C���C.2nC1/.�q2nC2I q2/1
.qI q/2nC1

D q

1Y

nD1
n6�0;˙4;˙5;˙9;14 .mod 28/

1

1 � qn : (9)

We directly deduce from this the following partition identity. 165

Theorem 6. Let H1.n/ denote the number of partitions of n into parts 6� 0;˙4;˙5, 166

˙9; 14 .mod 28/. Let S1.n/ denote the number of partitions of n in which odd parts do 167

appear and without gaps while the evens larger than the largest odd part are distinct. Then 168

for n � 1 169

H1.n� 1/ D S1.n/: 170

For example, the 18 partitions enumerated by H1.9/ are 8C 1, 7C 2, 7C 1C 1, 171

6C3, 6C2C1, 6C1C1C1, 3C3C3, 3C3C2C1, 3C3C1C1C1, 3C2C2C2, 172
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3C2C2C1C1, 3C2C1C1C1C1, 3C1C� � �C1, 2C2C2C2C1, 2C2C1C1C1, 173

2C 2C 1C 1C 1C 1C 1, 2C 1C 1C � � � C 1, 1C 1C � � � C 1, and the 18 partitions 174

enumerated by S1.10/ are 8 C 1 C 1, 6 C 3 C 1, 6 C 2 C 1 C 1, 6 C 1 C 1 C 1 C 1, 175

5C 3C 1C 1, 4C 3C 2C 1, 4C 3C 1C 1C 1, 4C 2C 1C 1C 1C 1, 3C 3C 3C 1, 176

4 C 1 C 1 C � � � C 1, 3 C 3 C 2 C 1 C 1, 3 C 3 C 1 C 1 C 1 C 1, 3 C 2 C 2 C 2 C 1, 177

3C 2C 2C 1C 1C 1, 3C 2C 1C 1C � � � C 1, 3C 1C 1C � � � C 1, 2C 1C 1C � � � C 1, 178

1C 1C � � � C 1. 179

When we now reverse the roles of evens and odds, we find that, instead of a mock 180

theta function arising, we obtain another identity of Slater’s [16]. Thus 181

1X

nD0

q2C4C���C2n.�q2nC1I q2/1
.qI q/2n D .�qI q2/1

1X

nD0

qn
2
Cn

.qI q/2n.�qI q2/n

D .�qI q2/1
1X

nD0

qn
2
Cn

.q2I q2/n.q2I q4/n

D
1Y

nD1
n6�0;˙2;˙10;˙12;14 .mod 28/

1

1� qn ;

by Slater [16, p. 160, Eq. (81)]. 182

This result is then directly interpretable in the following theorem. 183

Theorem 7. Let H2.n/ denote the number of partitions of n into parts 6� 0;˙2, 184

˙10;˙12; 14 .mod 28/. Let S2.n/ denote the number of partitions of n in which even 185

parts appear without gaps and the odd parts larger than the largest even part are distinct. 186

Then 187

H2.n/ D S2.n/: 188

For example, the 15 partitions enumerated byH2.9/ are 9, 8C 1, 7C 1C 1, 6C 3, 189

6C1C1C1, 5C4, 5C3C1, 5C1C1C1C1, 4C4C1, 4C3C1C1, 4C1C1C� � �C1, 190

3C 3C 3, 3C 3C 1C 1C 1, 3C 1C 1C � � � C 1, 1C 1C � � � C 1, and the 15 partitions 191

enumerated by S2.9/ are 9, 7 C 2, 5 C 3 C 1, 5 C 2 C 2, 5 C 2 C 1 C 1, 4 C 3 C 2, 192

4C2C1C1C1, 4C2C2C1, 3C2C2C2, 3C2C2C1C1, 3C2C1C1C1C1, 193

2C 2C 2C 2C 1, 2C 2C 2C 1C 1C 1, 2C 2C 1C 1C � � � C 1, 2C 1C 1C � � � C 1. 194

4 Identities Stemming from Modulus 20 195

As is apparent by now, each section of this paper is devoted to some different 196

outcome when extending Sylvester’s three conditions to the interpretation of 197

Slater’s identities. In this section we begin with two of Slater’s formulas that, 198

upon inspection, suggest rather cumbersome partition identities. The modifications 199

necessary to reduce the awkwardness again lead us to mock theta functions. 200
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The identities in question are Slater’s (44) and (46) [16, p. 156] slightly rewritten: 201

X

n�0

q1C1C2C3C3C���C.2n�1/C.2n�1/C2nC.2nC1/ .�q2nC3I q2/1
.q/2nC1

D q

1Y

nD1
n6�0;˙2;˙4;˙6;10 .mod 20/

1

1� qn
: (10)

and 202

X

n�0

q1C1C2C3C3C���C.2n�3/C.2n�3/C.2n�2/C.2n�1/C2n .�q2nC1I q2/1
.q/2n

D q

1Y

nD1
n6�0;˙2;˙6;˙8;10 .mod 20/

1

1� qn
: (11)

One can interpret (10) and (11) in the Sylvester manner, but, in doing so, 203

condition (2) in the Sylvester constraints becomes quite complicated. 204

So instead we consider closely related series where the interpretations are more 205

natural. Let 206

X

n�0

J1.n/q
n WD

X

n�0

q1C1C2C3C3C4C���C.2n�1/C.2n�1/C2n.�q2nC1I q2/1
.q/2n

D
X

n�0

q3n
2
Cn.�q2nC1I q2/1

.q/2n
: (12)

and 207

X

n�0

J2.n/q
n WD

X

n�0

q1C1C2C3C3C4C���C2nC.2nC1/C.2nC1/.�q2nC3I q2/1
.q/2nC1

D
X

n�0

q3n
2
C5nC2.�q2nC3I q2/1

.q/2nC1

: (13)

Now J1.n/ and J2.n/ may be viewed as enumerating partitions that mix “parti- 208

tions with initial 2-repetitions” with “partitions without gaps.” 209

Namely, J1.n/ is the number of partitions of n in which (1) all odd integers 210

smaller than the largest even part appear at least twice, (2) even parts appear without 211

gaps, and (3) odd parts larger than the largest even part are distinct. 212

The formulation of J2.n/ is even more straightforward. J2.n/ is the number of 213

partitions of n in which (1) each odd integer smaller than a repeated odd part is a 214

repeated odd part and (2) every even integer smaller than the largest repreated odd 215

part is a part, and (3) there are no other even parts. 216
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Theorem 8.

X

n�0

J1.n/q
n D 1

 .�q/
1X

nD0

q4n
2
C2n.1 � q4nC2/

b
n
2

cX

jD�b
n
2 c

.�1/j q�6j 2C2j (14)

and 217

X

n�0

J2.n/q
n D q2

 .�q/
1X

nD0

q4n
2
C6n.1� q4nC4/

b
nC1
2 cX

jD�b
n
2

c

.�1/j q�6j 2C2j (15)

where 218

 .q/ WD
1X

nD0

qn.nC1/=2: (16)

Proof. Using representations (12) and (13) we see that (14) and (15) are equivalent to 219

the following assertions: 220

1X

nD0

q3n
2
Cn

.q2I q2/n.q2I q4/n D 1

.q2I q2/1
1X

nD0

q4n
2
C2n.1 � q4nC2/

X

j2j j�n

.�1/j q�6j 2C2j

(17)
and 221

1X

nD0

q3n
2
C5n

.q2I q2/n.q2I q4/nC1

D 1

.q2I q2/1
1X

nD0

q4n
2
C6n.1� q4nC4/

X

�n�2j�nC1

.�1/j q�6j 2C2j : (18)

Identities (17) and (18) may be reduced to Bailey pair identities following the use of 222

the strong form of Bailey’s Lemma [3, p. 270]. In the case of (17) we replace q by q2 in 223

Bailey’s Lemma and set a D q2. In the case of (18) we replace q by q2 in Bailey’s Lemma 224

and set a D 1. If we then invoke the weak form of Bailey’s Lemma [4, p. 27, Eq. (3.33)] 225

we see that (17) and (18) are equivalent to the assertions (27) and (28) below. 226

Let 227

a1.n; q/ D
nX

jD0

.q�nI q/j .qnC1I q/j q.jC1
2 /

.qI q/j .qI q2/j ; (19)

a2.n; q/ D
nX

jD1

.q�nI q/j .qnI q/j q.jC1
2 /

.qI q/j�1.qI q2/j ; (20)

a3.n; q/ D
nX

jD0

.q�nI q/j .qnI q/j q.jC1
2 /

.qI q/j .qI q2/j : (21)
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Our proof relies on proving the following three identities. This in the spirit of the 228

method developed at length in [6]. 229

a1.n; q/C qna1.n� 1; q/ D .1C qn/a3.n; q/; (22)

qna2.n; q/ � .1 � qn/a1.n; q/ D �.1 � qn/a3.n; q/; (23)

a3.n; q/ D
(
0 if n is odd

.�1/�q��2 if n D 2�:
(24)

First we prove (22). 230

a1.n; q/C qna1.n � 1; q/ D
nX

jD0

.q�nC1I q/j�1.q
nC1I q/j�1q

.jC1
2 /

.qI q/j .qI q2/j

�
n
.1 � q�n/.1 � qnCj /C qn.1� q�nCj /.1� qn/

o

D .1C qn/

nX

jD0

.q�nI q/j .qnI q/j q.jC1
2 /

.qI q/j .qI q2/j
D .1C qn/a3.n; q/:

Next we treat (23).AQ2 231

a2.n; q/ � .1 � qn/a1.n; q/ D
X

j�0

.q�nI q/j .qnI q/j q.jC1
2 /

.qI q/j .qI q2/j
�
.1 � qj / � .1� qnCj

�

D �.1 � qn/
X

j�0

.q�nI q/j .qnI q/j q.jC1
2 /Cj

.qI q/j .qI q2/j

D �.1 � qn/
X

j�0

.q�nI q/j .qnI q/j q.jC1
2 /
�
1 � .1� qj /�

.qI q/j .qI q2/j
D �.1 � qn/a3.n; q/C .1� qn/a2.n; q/;

which is equivalent to (23). 232

Finally we move to (24) using the notation of [8, p. 4] and invoking [8, p. 242, 233

Eq. III.13]. 234

a3.n; q/ D lim
�!03

�2

 
q�n; qn;� q

�
I q; �

q
1
2 ;�q 1

2

!

D 1

.�q 1
2 I q/n

lim
�!03

�2

 
q�n;� q

�
; q

1
2�nI q; q

q
1
2 ;

q
3
2�n

�

!
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D 1

.�q 1
2 I q/n 2

�1

 
q�n; q

1
2

�nI q;�q 1
2

Cn

q
1
2

!

D
(
0 if n is odd

.�1/�q��2 if n D 2�;

235

where the final line follows from the q-analog of Kummer’s theorem [8, p. 236, Eq. (II.9)]. 236

From (22) to (24) it is clear that each of a1.n; q/, a2.n; q/ and a3.n; q/ is recursively 237

defined as a Laurent polynomial in q. It is then a straightforward matter to show via 238

mathematical induction that 239

a1.n; q/ D

8
ˆ̂<

ˆ̂:

�qna1.n � 1; q/ if n odd

q.
nC1
2 /

�X

jD��

.�1/j q�j.3jC1/ if n D 2�:
(25)

a2.n; q/ D .1 � qn/.�1/nq.n2/
b
n�1
2 cX

jD�b
n
2 c

.�1/j q�j.3jC1/: (26)

Equating (19) and (25) are equivalent to the assertion that 240

8
<

:
˛n D .�1/nqn

2
�n.1�q4nC2/

.1�q2/
a1.n; q

2/

ˇn D qn
2

�n

.q2Iq2/n.q2Iq4/n

(27)

are a Bailey pair (where q ! q2 and a D q2) (see [3] especially Bailey’s Lemma 241

on page 270 and Eq. (4.1) on page 278). We note that this Bailey pair can also be 242

deduced from the more general Bailey pair given by Lovejoy [12, p. 1510, Eqs. (2.4) 243

and (2.5)]. We may now insert this Bailey pair into the weak form of Bailey’s Lemma 244

[4, p. 27, Eq. (3.33)] with q ! q2, a D q2], and then (25) and simplification 245

yields (17). 246

Equations (20) and (26) are equivalent to the assertion that 247

8
<

:
˛n D .�1/nqn2�n.1C q2n/a2.n; q/

ˇn D qn
2

�n.1�q2n/

.q2Iq2/n.q2Iq4/n

(28)

are a Bailey pair (with q ! q2, a D 1) [3, pp. 270 and 278]. We may now insert this 248

Bailey pair into the weak form of Bailey’s Lemma [4, p. 27, Eq. (3.33) with q ! q2, 249

a D 1]; then (26) and simplification yields (18). ut 250

Notice that our starting position in this section, namely (12) and (13) (inspired 251

by (10) and (11)) landed us in the world of Hecke-type series immediately. So what 252

will happen when we reverse the roles of evens and odds? We define 253
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X

n�0

K1.n/q
n WD

X

n�0

q1C2C2C3C4C4C���C2nC2nC.2nC1/.�q2nC2I q2/1
.q/2nC1

D
X

n�0

q3n
2
C4nC1.�q2nC2I q2/1

.q/2nC1

; (29)

and 254

X

n�0

K2.n/q
n WD

X

n�0

q1C2C2C3C���C2nC2n.�q2nC2I q2/1
.q/2n

D
X

n�0

q3n
2
C2n.�q2nC2I q2/1

.q/2n
: (30)

We shall not formally provide the partition-theoretic interpretations of K1.n/ and 255

K2.n/ because they are identical with those of J1.n/ and J2.n/ respectively where 256

the roles of odds and evens have been exchanged. 257

Theorem 9.

X

n�0

K1.n/.�q/n D 1

.�qI q2/1.q2I q5/1.q3I q5/1 �
1X

nD0

K2.n/.�q/n; (31)

and 258

X

n�0

K2.n/q
n D 1

�.�q2/
X

n�0

q4n
2
C2n.1 � q4nC2/

nX

jD�n

.�1/j .�q/�j.3j�1/=2; (32)

with �.q/ D
1X

nD�1

qn
2

. 259

Proof. Using representations (29) and (30) we see that (31) and (32) are equivalent to 260

the following assertions. 261

X

n�0

q3n
2
C4nC1

.qI q/2nC1.�q2I q2/n

D 1

.q2I q2/1

 
1X

nD�1

.�1/n.�q/n.5nC3/=2

!
�

1X

nD0

q3n
2
C2n

.qI q/2n.�q2I q2/n : (33)

X

n�0

q3n
2
C2n

.qI q/2n.�q2I q2/n

D 1

.q2I q2/1
1X

nD0

q4n
2
C2n.1� q4nC2/

nX

jD�n

.�1/j .�q/�j.3j�1/=2: (34)
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Identities (33) and (34) may be reduced to Bailey pair identities following the use of 262

the strong form of Bailey’s Lemma [3, p. 270]. For both (33) and (34) we replace q by q2 263

in Bailey’s Lemma and set a D q2. If we then invoke the weak form of Bailey’s Lemma 264

[4, p. 27, Eq. (3.33)] we see (33) and (34) are equivalent to the assertions (45) and (46) 265

below. 266

Let 267

A1.n; q/ D
nX

jD0

.q�2nI q2/j .q2nC2I q2/j qj 2C4jC1

.qI q/2jC1.�q2I q2/j ; (35)

A2.n; q/ D
nX

jD0

.q�2nI q2/j .q2nC2I q2/j qj 2C2j

.qI q/2j .�q2I q2/j ; (36)

A3.n; q/ D
nX

jD0

.q�2nI q2/j .q2nC2I q2/j qj 2C2j

.qI q/2jC1.�q2I q2/j ; (37)

A4.n; q/ D
nX

jD0

.q�2nI q2/j .q2nI q2/j qj 2C2j

.qI q/2j .�q2I q2/j : (38)

Our proof requires the following identities. 268

A3.n; q/ � A1.n; q/ D A2.n; q/; (39)

A2.n; q/C q2nA2.n� 1; q/ D .1C q2n/A4.n; q/; (40)

A3.n; q/ D .�q/�.n2/
1 � q2nC1

; (41)

A4.n; q/ D .�q/�.n2/ .1C .�q/n/
1C q2n

: (42)

First we prove (39). 269

A3.n; q/ � A1.n; q/ D
nX

jD0

.q�2nI q2/j .q2nC2I q2/j qj 2C2j .1� q2jC1/

.qI q/2jC1.�q2I q2/j

D
nX

jD0

.q�2nI q2/j .q2nC2I q2/j qj 2C2j

.qI q/2j .�q2I q2/j D A2.n; q/:

Next comes (40). 270

A2.n; q/C q2nA2.n � 1; q/

D
X

j�0

.q�2nC2I q2/j�1.q
2nC2I q2/j�1q

j 2C2j

.qI q/2j .�q2I q2/j
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�
n
.1� q2n/.1� q2nC2j /C q2n.1 � q�2nC2j /.1 � q2n/

o

D .1C q2n/
X

j�0

.q�2nI q2/j .q2nI q2/j qj 2C2j

.qI q/2j .�q2I q2/j
271

Now we treat (41) using the notation of [8, p. 4]. 272

A3.n; q/ D 1

1 � q lim
�!03

�2

 
q�2n; q2nC2;� q

�
I q2; q2�

q3;�q2
!

D 1

.qI q2/nC1

lim
�!03

�2

 
q�2n;� q

�
;�q�2nI q2; q2

�q2;� q2n

�

!

by Gasper and Rahman [8, p. 242, Eq. (III.13)]

D 1

.qI q2/nC1 2

�1

 
q�2n;�q2nI q2; q2nC3

�q2
!

D 1

.qI q2/nC1

nX

jD0

.q�4nI q4/j q.2nC3/j

.q4I q4/j

D .q3�2nI q4/n
.qI q2/nC1

D .�q/�.n2/
1 � q2nC1

;

where the penultimate assertion follows from [8, p. 236, Eq. (II.7)]. 273

Finally we treat the fourth identity (42). 274

A4.n; q/ D lim
�!03

�2

 
q�2n; q2n;� q

�
I q2; q2�

�q2; q

!

D 1

.qI q2/n 2
�1

 
q�2n;�q2�2nI q2; q1C2n

�q2
!

by Gasper and Rahman [8, p. 241, Eq. (III.9)]

D 1

.qI q2/n
nX

jD0

.q4�4nI q4/j�1.1 � q�2n/.1C q�2nC2j /qj.1C2n/

.q4I q4/j

D 1

.qI q2/n.1C q�2n/

nX

jD0

.q�4nI q4/j
.q4I q4/j

�
qj.1C2n/ C q�2nCj.3C2n/

�

D q2n

.qI q2/n.1C q2n/

�
.q1�2nI q4/n C .q3�2nI q4/n

�
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D .�q/�.n2/.�q/n
1C q2n

C .�q/�.n2/
1C q2n

D .�q/�.n2/ .1C .�q/n/
1C q2n

;

as desired. 275

From (39) to (42), it follows by mathematical induction that 276

A1.n; q/ D �qn2Cn.�1/n
nX

jD�n

.�1/j .�q/�j.3j�1/=2 C .�q/� n.n�1/
2

1 � q2nC1
; (43)

A2.n; q/ D .�1/nqn2Cn

nX

jD�n

.�1/j .�q/�j.3j�1/=2: (44)

Let us treat (32) or rather its equivalent formulation (34) first. Identity (44) is 277

equivalent to the assertion that 278

8
ˆ̂<

ˆ̂:

˛0

n D q2n
2
.1�q4nC2/

.1�q2/

nX

jD�n

.�1/j .�q/�j.3j�1/=2

ˇ0

n D qn
2

.qIq/2n.�q2Iq2/n

(45)

are a Bailey pair (where q ! q2 and a D q2). It should be noted that this Bailey pair 279

was found earlier by A. Patkowski in [13]. Inserting this Bailey pair into the weak form of 280

Bailey’s Lemma, we obtain (34) by invoking (44) and simplifying. 281

As for (31), or rather its equivalent formulation (33), we see from (43) and (44) that 282

8
<

:
˛00

n D �˛0

n C .�1/n.�q/.
n
2/.1Cq2nC1/

.1�q2/

ˇ00

n D qn
2

C2nC1

.qIq/2nC1.�q2Iq2/n

(46)

form a Bailey pair. Furthermore 283

X

n�0

K1.n/q
n D

1X

nD0

q2n
2
C2nˇ00

n

D 1

.q4I q2/1
1X

nD0

q2n
2
C2n˛00

n

D 1

.q4I q2/1
1X

nD0

q2n
2
C2n

 
�˛0

n C .�1/n.�q/.n2/.1C q2nC1/

1 � q2
!

D �
X

n�0

K2.n/q
n C 1

.q2I q2/1
1X

nD�1

.�1/n.�q/ 5n22 C
3n
2 ;
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and invoking Jacobi’s triple product identity [2, Theorem 2.8, p. 21], we see that (33) is
established. ut

5 Identities of Modulus 12 284

As is obvious by now, we are choosing a variety of examples from Slater’s 285

compendium to illustrate the variety that arises when we mix parity with the 286

Sylvester constraints. We close our presentation with a move beyond parity to 287

conditions modulo 4. 288

Recall that evenly even numbers are numbers divisible by 4 while oddly even 289

numbers are numbers congruent to 2 modulo 4. 290

We shall examine Slater’s (53) and (55) [16, p. 157]. 291

Y

nD1
n�˙1;˙3;˙4 .mod 12/

1

1 � qn D
X

n�0

q4n
2

.q4I q4/2n.q4nC1I q2/1 (47)

D 1

.qI q2/1 C q2C2

.1� q2C2/.1 � q4C4/.q5I q2/1

C q2C2C6C6

.1 � q2C2/.1� q4C4/.1 � q6C6/.1� q8C8/.q9I q2/1
C � � �

and 292

Y

nD1
n�˙3;˙4;˙5 .mod 12/

1

1� qn (48)

D
X

n�0

q4n
2
C4n

.q4I q4/2nC1.q4nC3I q2/1

D 1

.1� q2C2/.q3I q2/1 C q4C4

.1 � q2C2/.1� q4C4/.1� q6C6/.q7I q2/1

C q4C4C8C8

.1 � q2C2/.1� q4C4/.1� q6C6/.1� q8C8/.1� q10C10/.q11I q2/1
C � � � :

In both (47) and (48), the extended final forms are given so that the following 293

theorems are immediately interpreted from these forms. 294

Theorem 10. Let L1.n/ denote the number of partitions of n into parts that are � 295

˙1;˙3;˙4 .mod 12/. Let T1.n/ denote the number of partitions of n in which (1) all 296
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even parts must appear an even number of times, (2) each oddly even integer not exceeding 297

the largest even part must appear, (3) each odd part is at least 3 greater than each oddly 298

even part. Then for n � 0, 299

L1.n/ D T1.n/: 300

For example, the 20 partitions enumerated by T1.13/ are 13, 11C1C1, 9C3C1, 301

9C2C2, 9C1C1C1C1, 7C5C1, 7C3C3, 7C3C1C1C1, 7C1C1C � � � C1, 302

5C 5C 3, 5C 5C 1C 1C 1, 5C 3C 3C 1C 1, 5C 3C 1C � � � C 1, 5C 2C 2C � � � C 2, 303

5C1C1C � � � C1, 3C3C3C3C1, 3C3C3C1C1C1C1, 3C3C1C1C � � � C1, 304

3 C 1 C 1 C � � � C 1, 1 C 1 C � � � C 1, and the 20 partitions enumerated by L1.13/ 305

are 13, 11 C 1 C 1, 9 C 4, 9 C 3 C 1, 9 C 1 C 1 C 1 C 1, 8 C 4 C 1, 8 C 3 C 1 C 1, 306

8C1C1C� � �C1, 4C4C4C1, 4C4C3C1C1, 4C4C1C1C� � �C1, 4C3C3C3, 307

4C 3C 3C 1C 1C 1, 4C 3C 1C 1C � � � C 1, 4C 1C 1C � � � C 1, 3C 3C 3C 3C 1, 308

3C 3C 3C 1C 1C 1C 1, 3C 3C 1C 1C � � � C 1, 3C 1C 1C � � � C 1, 1C 1C � � � C 1, 309

Theorem 11. Let L2.n/ denote the number of partitions of n into parts that are � 310

˙3;˙4;˙5 .mod 12/. Let T2.n/ denote the number of partitions of n in which (1) 311

all even parts must appear an even number of times, (2) each evenly even integer not 312

exceeding the largest even part must appear as a part, (3) each odd part is larger than 1 313

and at least 3 larger than the largest evenly even part. Then for n � 0, 314

L2.n/ D T2.n/:

For example the 10 partitions enumerated by L2.15/ are 15, 9 C 3 C 3, 8 C 7, 315

8C4C3, 7C5C3, 7C4C4, 5C5C5, 5C4C3C3, 4C4C4C3, 3C3C3C3C3, 316

and the 10 partitions enumerated by T2.15/ are 15, 11C 2C 2, 9C 3C 3, 7C 5C 3, 317

7 C 4 C 4, 7 C 2 C 2 C 2 C 2, 5 C 5 C 5, 5 C 3 C 3 C 2 C 2, 3 C 3 C 3 C 3 C 3, 318

3C 2C 2C � � � C 2. 319

6 Conclusion 320

This paper is in no way meant to be exhaustive. Indeed we have chosen a handful 321

of Slater’s identities for consideration. The examples were chosen to illustrate the 322

variety of possible outcomes. 323

There are many further formulas in Slater’s paper [16] that can be interpreted 324

using the approach we have developed. Indeed this can be done for the original 325

Rogers-Ramanujan identities [14, pp. 133–134 (14)–(18)] and also for variants 326

on the Rogers-Ramanujan identities (cf. Slater’s (15), (16), (19), (20) and (25)). 327

Others like the modulus 6 results (Slater’s (22)–(30)) are either quite classical 328

(e.g. (23) is effectively due to Euler) or seem to require some alternative analysis. 329

The identities with modulus 27 (Slater’s (88)–(93)) seem quite distant from these 330

developments as do those identities like (97), or (101)–(112), or (125)–(130) that 331

apparently are not reducible to a single product. 332
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It would certainly be interesting to determine if there is an alternative to 333

Sylvester’s constraints that leads to explanations of further Slater identities that 334

could not be treated here. 335

It is interesting to note that in each case where a Slater identity was modified 336

to fit the Sylvester paradigm, the resulting infinite product was always of the nicest 337

form imaginable, namely 338

1Y

nD1

0

1

1 � qn 339

where the 0 indicates only that the n are restricted to a specified set of arithmetic 340

progressions. 341

Finally the relation of (33) to the original Rogers-Ramanujan function is striking. 342

Indeed one can provide an alternative proof of (33) by adding together the left-hand 343

sides of (33) and (34) and proving (slightly non-trivially) that the result is, in fact, 344

Slater’s (15) [16, p. 153] with q replaced by �q. 345

In fact, it is possible to prove that, instead of (33), 346

1X

nD0

q3n
2
C4nC1

.qI q/2nC1.�q2I q2/n

D 1

.q2I q2/1
1X

nD0

q4n
2
�2n.1 � q12nC6/

nX

jD�n

.�1/j .�q/�j.3j�1/=2: (49)

In addition 347

1X

nD0

q3n
2

.qI q/2n.�q2I q2/n

D 1

.q2I q2/1
1X

nD0

q4n
2

.1 � q8nC4/

nX

jD�n

.�1/j .�q/�j.3j�1/=2: (50)

If we denote the left-hand side of (50) by T .q/, then Slater’s (19) [16, p. 154] 348

asserts 349

T .�q/ D .q2I q5/1.q3I q5/1.q5I q5/1
.q2I q2/1 (51)

Identities of this nature combined with the results in Sect. 4 suggest a variety of new 350

Hecke-type series results related to the Rogers-Ramanujan identities. 351

I want to thank J. Lovejoy, A. Patkowski and A. Sills for comments and 352

corrections of an earlier version of this paper. 353



UNCORRECTED
PROOF

76 G.E. Andrews

References 354

1. G. E. Andrews, On a partition problem of J. J. Sylvester, J. London Math. Soc.(2), 2 (1970), 355

571–576. 356

2. G. E. Andrews, The Theory of Partitions, Encycl. Math and Its Appl., Addison-Wesley, 357

Reading, 1976. Reissued: Cambridge Univ. Press, 1998. 358

3. G. E. Andrews, Multiple series Rogers-Ramaujan type identities, Pac. J. Math., 114 (1984), 359

267–283. 360

4. G. E. Andrews, q-Series: Their Development. . . , C.B.M.S. Regional Conf. Series in Math., 361

No. 66, Amer. Math. Soc., Providence, 1986. 362

5. G. E. Andrews, Partitions with initial repetitions, Acta Math. Sinica, English Series, 25 (2009), 363

1437–1442. 364

6. G. E. Andrews, q-Othogonal polynomials, Rogers-Ramanujan identities, and mock theta 365

functions, (to appear). 366

7. N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., Providence, 367

1988. 368

8. G. Gasper and M. Rahman, Basic Hypergeometric Series, Encycl. Math. and Its Appl., Vol. 35, 369

1990, Cambrige University Press, Cambridge. 370
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1 Introduction 13

The purpose of this note is to show how combinatorial arguments can produce 14

nontrivial identities between hypergeometric q-series in two variables. This will be 15

illustrated by using as examples 16

1. The major index of a binary word 17

2. The Durfee square size of an integer partition 18

3. The number of inversions in a binary word 19

4. The number of descents in a binary word 20

5. The sum of the positions of the 0’s in a bitstring 21

6. “Lecture hall” statistics on words. 22

Let w be a word of length n over the alphabet f0; 1g (a binary word). By the 23

major index of w we mean the sum of those indices j , 1 � j � n � 1, for which 24

wj > wjC1, i.e., for which wj D 1 and wjC1 D 0. Let f .n;m/ denote the number 25

of binary words of length n whose major index is m (f .0; 0/ D 1). In Sects. 2 26

and 3, we find the generating function F.x; q/ D P
n;m f .n;m/x

nqm in various 27

ways, compare it to the known Mahonian form of this function, and thereby obtain 28

an interesting chain of seven equalities, namely 29

F.x; q/ Ddef
X

n;m�0
f .n;m/xnqm (1)

D
X

n;k�0

"
n

k

#

q

xn (2)

D
X

n�0

xn

.xI q/nC1
(3)

D �1C
X

j�0
.1C .1 � 2x/qj /

 
xj q.

j
2/

.xI q/jC1

!2

(4)

D
X

j�0

 
xj qj

2=2

.x; q/jC1

!2

(5)

D 1C
X

j�0

xjC1.1C qj /

.xI q/jC1
(6)

D 1C 2x C .3C q/x2 C .4C 2q C 2q2/x3 C : : : : (7)

in which the Œ �q’s are the Gaussian binomial coefficients. 30
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In Sect. 2.5 we highlight the connections between F.x; q/ and some third order 31

mock theta functions. 32

Section 4 deals with words over larger alphabets. In Sect. 5, a related identity 33

is derived by considering the positions of 0’s in a bitstring. In Sect. 6 we look at 34

identities arising from some novel statistics on words. In Sect. 7, we consider the 35

process of deriving the generating function F.x; q/ D P
n;k�0 t.n; k/xnqk when a 36

nice product form for the q-series
P

k�0 t.n; k/qk is known. We show in this case 37

how F.x; q/ can be expressed in terms of statistics on words. 38

2 The Equivalence of (1) Through (5) 39

For a binary word w of length n, the blocks of w are the maximal contiguous 40

subwords whose letters are all the same. The word w D 11011000, for example, 41

contains four blocks, namely 11, 0, 11, 000, of lengths 2, 1, 2, 3. The major index 42

of w is then the sum of the indices of the final letters of the blocks of 1’s, excepting 43

only a terminal block of 1’s. The word w above has major index 2 C 5 D 7. 44

2.1 Proof of (1) D (2) 45

This follows from MacMahon’s result [8] that 46

"
n

k

#

q

D
X

w

gmaj.w/; 47

where the sum is over all binary words w with k ones and n� k zeroes. We refer to 48

(2) as the Mahonian form of F.x; q/. 49

2.2 Proof of (3) 50

2.2.1 Via Generatingfunctionology 51

The q-binomial coefficients satisfy the recurrence 52

"
nC 1

k

#

q

D qk

"
n

k

#

q

C
"

n

k � 1

#

q

.n � 0/: 53
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Let’s find their vertical generating function 54

�k.t/ Ddef
X

n�0
tn

"
n

k

#

q

.k D 0; 1; 2; : : : /: 55

We find that 56

.1 � tqk/�k.t/ D t�k�1.t/ .k � 1I�0.t/ D 1=.1� t//; 57

and therefore 58

�k.t/ D tk

Qk
jD0.1 � tqj / .k D 0; 1; 2; : : : /: 59

Next, the horizontal generating function (D the Gaussian polynomial) 60

 n.x/ Ddef
X

k�0

"
n

k

#

q

xk 61

satisfies 62

 nC1.x/ D  n.qx/C x n.x/ .n � 0I 0 D 1/: 63

If we introduce the two variable generating function ˚.t; x/ D P
n;k�0

�
n
k

�
q
tnxk , 64

then we find that 65

˚.t; x/.1 � xt/ D t˚.t; qx/C 1; 66

which leads to 67

˚.t; x/ Ddef
X

n;k�0

"
n

k

#

q

tnxk D
X

n�0

tn
Qn
jD0.1 � qj xt/ ; 68

as required. 69

2.2.2 Via q-Series 70

In [2, Theorem 3.3], (3) is derived from (2) using Cauchy’s Theorem [2, Theo- 71

rem 2.1]: 72

X

k�0

.aI q/kxk
.qI q/k D

1Y

kD0

.1 � axqk/

.1 � xqk/
;
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with a D qnC1, after setting n D nC k in (2). In the process we have 73

X

k�0

"
nC k

k

#

q

xk D
1Y

kD0

.1 � xqkCnC1/
.1 � xqk/ D 1

.xI q/nC1
; (8)

the q-binomial theorem. 74

2.3 Proof of (1) D (4) 75

To solve the word problem posed in Sect. 1, we split it into four cases, namely 76

words with an even (resp. odd) number of blocks, the first of which is a block of 1’s 77

(resp. 0’s). We will show all steps of the solution for the first case, and then merely 78

exhibit the results for the other three cases. 79

Let’s do the case of words w, of length n, which have an even number, 2k, say, 80

of blocks, the first of which is a block of 1’s, and suppose that the lengths of these 81

blocks are a1; a2; : : : ; a2k (all ai � 1). Such a word has descents at the indices 82

a1; a1 C a2 C a3; : : : ; a1 C a2 C � � � C a2k�1, so its major index is 83

maj.w/ D ka1 C .k � 1/a2 C .k � 1/a3 C � � � C a2k�2 C a2k�1

D
2k�1X

jD1
a2k�j

�
j

2

�

:

Let Blocks.w/ be the number of blocks of w. It follows that the contribution of 84

all the words whose form is that of the first of the four cases is 85

F1.x; q; t/ D
X

xjwjqmaj .w/tBlocks.w/

D
X

k�1

X

a1;:::;a2k�1
x
P2k
jD1 aj q

P2k�1
jD1 a2k�j dj=2et2k

D
1X

kD1

x2kqk
2
t2k

.1� x/.1 � xqk/Qk�1
jD1.1 � xqj /2

D x2t2q C x3
�
t2q2 C t2q

�C x4
�
t4q4 C t2q3 C t2q2 C t2q

�C : : : :

Similarly, in the second case, where the number of blocks is even but the first 86

block consists of 0’s, we have 87
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F2.x; q; t/ D
X

xjwjqmaj.w/tBlocks.w/

D
X

k�1

X

a1;:::;a2k�1
x
P2k
jD1 aj q

P2k�1
jD2 a2k�j d.j�1/=2et2k

D
X

k�1

x2kqk.k�1/t2k
Qk�1
jD0.1 � xqj /2

D t2x2 C 2t2x3 C x4.3t2 C t4q2/C x5.4t2 C 2t4q2 C 2t4q3/C : : :

In the third case the number of blocks is odd, say 2k C 1, with k � 0, and the 88

first block is all 1’s. The major index of such a word is 89

maj.w/ D
2k�1X

jD1
a2k�j

�
j

2

�

: 90

Thus, 91

F3.x; q; t/ D
X

xjwjqmaj.w/tBlocks.w/

D
X

k�0

X

a1;:::;a2kC1�1
x
P2kC1
jD1 aj q

P2k�1
jD1 a2k�j dj=2et2kC1

D
X

k�0

x2kC1qk2 t2kC1

.1� xqk/
Qk�1
jD0.1 � xqj /2

D tx C tx2 C x3
�
qt3 C t

�C x4
�
q2t3 C 2qt3 C t

�

Cx5 �q4t5 C q3t3 C 2q2t3 C 3qt3 C t
�C : : :

Finally, if there are 2k C 1 blocks in the word w and the first block is all 0’s, the 92

major index is 93

maj.w/ D
2k�1X

jD0
a2k�j

�
j C 1

2

�

; 94

so 95

F4.x; q; t/ D
X

xjwjqmaj.w/tBlocks.w/

D
X

k�0
x
P2kC1
jD1 aj q

P2k�1
jD0 a2k�j

l
jC1
2

m

t2kC1
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D .1� x/
X

k�0

x2kC1qk.kC1/t2kC1
Qk
jD0.1 � xqj /2

D tx C tx2 C x3
�
t3y2 C t

�C x4
�
2t3y3 C t3y2 C t

�

Cx5 �t5y6 C 3t3y4 C 2t3y3 C t3y2 C t
�C : : : :

96

Now we compute the desired generating function F.x; q; t/ as 97

F.x; q; t/ D 1C
4X

iD1
Fi .x; q; t/ 98

in which the Fi are explicitly shown above. If we put t D 1 we find that 99

X
xjwjqmaj.w/ D 1C 2x C x2.q C 3/C x3

�
2q2 C 2q C 4

�

Cx4 �q4 C 3q3 C 4q2 C 3q C 5
�

Cx5 �2q6 C 2q5 C 6q4 C 6q3 C 6q2 C 4q C 6
�C : : :

Observe that if we put q WD 1, the coefficient of each xn is indeed 2n. 100

On the other hand, the maj statistic is well known to be Mahonian, which implies 101

that its distribution function is 102

X

w

xjwjqmaj.w/ D
X

n;k

"
n

k

#

q

xn; 103

in which the
�
n
k

�
q

are the usual Gaussian polynomials. 104

It follows that 105

X

n;k�0

"
n

k

#

q

xn D 1C F1.x; q; 1/C F2.x; q; 1/C F3.x; q; 1/C F4.x; q; 1/

D 1C
1X

kD1

x2kqk
2

.1 � x/.1� xqk/
Qk�1
jD1.1 � xqj /2

C
X

k�1

x2kqk.k�1/
Qk�1
jD0.1 � xqj /2

C
X

k�0

x2kC1qk2

.1 � xqk/
Qk�1
jD0.1 � xqj /2

C .1 � x/
X

k�0

x2kC1qk.kC1/
Qk
jD0.1 � xqj /2

D 1C
X

k�1

x2kqk
2

.xI q/2
k

�
1 � x
1 � xqk

C 1

qk
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C
X

k�0

x2kC1qk2

.xI q/2
k

 
1

1 � xqk
C .1 � x/qk
.1 � xqk/2

!

D �1C
X

k�0

.1C .1 � 2x/qk/

.1� xqk/2

 
xkq.

k
2/

.xI q/k

!2

;

106

as claimed. 107

2.4 Proof of (5) 108

We prove (5) in four different ways. 109

2.4.1 Equivalence of (3) and (5) Using the Rogers-Fine Identity 110

The Rogers-Fine identity is [5], [4, p. 223]: 111

1X

nD0

.˛I q/n

.ˇI q/n �
n D

1X

nD0

.˛I q/n.˛�q=ˇI q/nˇn�nqn2�n.1 � ˛�q2n/

.ˇI q/n.� I q/nC1
: (9)

Setting ˛ D 0, � D x, and ˇ D xq in (9) gives 112

1X

nD0

1

.xqI q/n x
n D

1X

nD0

x2nqn
2

.xqI q/n.xI q/nC1
:

Multiply through by 1=.1� x/ and use the equivalence of (1) and (3) to conclude 113

F.x; q/ D
1X

nD0

xn

.xI q/nC1
D

1X

nD0

 
xnqn

2=2

.xI q/nC1

!2

: 114

In this form the generating function appears quite similar to, but not identical with 115

(4), though it is of course identical. Consequently, by comparing the two forms, we 116

see that we have proved the small identity 117

X

k�0

 
xkq.

k
2/

.x; q/kC1

!2

.1 � 2xqk/ D 1: 118

We show in the following subsection how to transform (4) into (5). 119
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2.4.2 Direct Proof of (4) D (5) 120

We would like to prove: 121

�1C
X

k�0
.1C .1 � 2x/qk/

 
xkq.

k
2/

.xI q/kC1

!2

D
X

k�0

 
xkqk

2=2

.x; q/kC1

!2

:

Using the fact that 122

1C .1 � 2x/qk D �x2q2k C .1 � xqk/.1 � xqk/C qk;

we can transform as follows: 123

�1C
X

k�0

.1C .1 � 2x/qk/
 

xkq.
k
2/

.xI q/kC1

!2

D �1 �
X

k�0

x2kC2qk
2
Ck

.xI q/2
kC1

C
X

k�0

x2kqk
2
�k

.xI q/2k
C
X

k�0

x2kqk
2

.xI q/2
kC1

D �1 �
X

k�1

x2kqk
2
�k

.xI q/2k
C
X

k�0

x2kqk
2
�k

.xI q/2k
C
X

k�0

x2kqk
2

.xI q/2
kC1

D
X

k�0

x2kqk
2

.xI q/2
kC1

124

2.4.3 Equivalence of (1) and (5) by Recurrence 125

As an alternative, we can derive (5) directly from the definition of F.x; q/ in terms 126

of binary words. 127

Lemma 1. Let f .n;m/ denote the number of binary words of length nwhose major 128

index is m. Then 129

f .n;m/ D 2f .n� 1;m/�f .n� 2;m/Cf .n� 2;m�nC 1/ .n � 2Im � 0/

(10)

with initial conditions f .0;m/ D ım;0, f .1;m/ D 2ım;0. 130

Proof. Let S.n;m/ be the set of binary words of length n with major index m, so 131

that f .n;m/ D jS.n;m/j. Let “�” denote concatenation of words and observe that 132
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maj.w � 1/ D maj.w/;

maj.w � 10/ D maj.w/C jw � 1j;
maj.w � 00/ D maj.w � 0/:

Thus 133

w � 1 2 S.n;m/ $ w 2 S.n � 1;m/;
w � 10 2 S.n;m/ $ w 2 S.n � 2;m � .n � 1//;

w � 00 2 S.n;m/ $ w � 0 2 S.n� 1;m/� S.n� 2;m/ � 1:

Since every element of S.n;m/ falls into exactly one of the cases above, the result
follows. ut

As in (1), we define the generating function F.x; q/ D P
n;m�0 f .n;m/xnqm: 134

Next we multiply each of the four terms in (10) by xnqm and sum over n � 2 and 135

m � 0. 136

The first term yields F.x; q/ � 2x � 1, the second gives 2x.F.x; q/ � 1/, the 137

third becomes x2F.x; q/, and the fourth yields x2qF.xq; q/. Therefore we have the 138

functional equation 139

F.x; q/ D 1C x2qF.xq; q/

.1 � x/2
; 140

whose solution is 141

F.x; q/ D
X

j�0

x2j qj
2

Qj

`D0.1 � xq`/2 : 142

2.4.4 Equivalence of (2) and (5) via Partitions 143

We can also give a direct proof of the identity 144

X

n;k�0

"
n

k

#

q

xn D
X

j�0

x2j qj
2

..xI q/jC1/2
; 145

using partitions. We’ll see the value of this after we look at inversions in Sect. 3. 146

We show that both sides count, for every pair .a; b/, the number of partitions � in 147

an a� b box, where q keeps track of j�j D �1 C�2 C : : :C�a and x keeps track of 148

aCb. The left-hand side counts all the partitions for fixed .a; b/ and then sums over 149
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all .a; b/. The right-hand side counts all the partitions with Durfee square size j , 150

for every .j C s/ � .j C t/ box containing them, and then sums over all j . 151

Let P.a; b/ be the set of partitions whose Ferrers diagram fit in an a�b box. Let 152

D.�/ denote the size of the Durfee square of �. The argument above actually shows 153

that 154

X

a;b;�0

X

�2P.a;b/
q�xaCbzD.�/ D

X

j�0

x2j qj
2

..xI q/jC1/2
zj : 155

We’ll return to this at the end of Sect. 3. 156

2.5 Mock Theta Functions 157

It was observed in [3] that there is a connection between F.x; q/, defined by (1)– 158

(7), and the following two of Ramanujan’s third order mock theta functions ([11], 159

cf. p. 62): 160

f .q/ D
X

j�0

qj
2

.�q; q/2j
I (11)

!.q/ D
X

j�0

q2j
2C2j

.q; q2/2jC1
: (12)

Specifically, appealing to (5), note that 161

F.�1; q/ D f .q/=4I (13)

F.q; q2/ D !.q/: (14)

One of the goals of the paper [3] was to develop a methodology for interpreting 162

q-series identities in terms of families of partitions, via an appropriate statistic. 163

After deriving the equivalence of (5) and (3), the appropriate partition statistic was 164

revealed for interpreting F.x; q/: 165

F.x; q/

1 � x D
X

�

qj�jx�.x/; 166

where the sum is over all partitions, �, and the statistic �.�/ is the sum of the 167

number of parts of � and the largest part of �. Note that this is equivalent to the 168

interpretation of F.x; q/ in the preceding subsection. This was then combined with 169

the observations (13) and (14) to interpret the mock theta functions (11) and (12) as 170

generating functions for certain families of partitions. 171
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In view of (1), (13), and (14), we see that the mock theta functions (11) and (12) 172

can be interpreted in terms of statistics on binary words as: 173

f .q/ D
X

w

.�1/jwjqmaj I

!.q/ D
X

w

qjwjC2maj ;

where the sum is over all binary words w and jwj denotes the length of w. 174

3 An “Inversions” View of (5) and (6) 175

We obtain another identity by carrying out the same sort of analysis on the inversions 176

of a word, rather than the major index. An inversion in a word w is a pair .i; j / such 177

that i < j but wi > wj and inv.w/ is the number of inversions in w. The statistic 178

inv is also Mahonian on binary words [8], so its distribution is given by (2). 179

3.1 Proof of (6) 180

Let f .n; k;m/ be the number of binary strings of length n, containing exactly k 1’s, 181

and with m inversions. Then evidently 182

f .n; k;m/ D f .n � 1; k � 1;m/C f .n � 1; k;m � k/; 183

for n � 2, with f .1; k;m/ D ık;0ım;0Cık;1ım;0. If we define the generating function 184

F.x; y; z/ D P
n�1;k�0;m�0 f .n; k;m/xnykzm, then we find the functional equation 185

F.x; y; z/ D x.1C y/C xF.x; yz; z/

1 � xy
; 186

whose solution is 187

F.x; y; z/ D
X

m�1

xm.1C yzm�1/
Qm�1
jD0.1 � xyzj /

: 188

We can now set y D 1 and find that the number of binary words of length n with m 189

inversions is equal to the coefficient of xnqm in 190

X

m�0

xmC1.1C qm/

.xI q/mC1
D 2x C .3C q/x2 C .4C 2q C 2q2/x3 C : : : : 191
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3.2 The Equivalence of (5) and (6) 192

Let g.n;m/ be the number of binary words of length n with m inversions. 193

The previous subsection showed that (6) is the generating function for 194P
n�0;m�0 g.n;m/xnqm. 195

Because of the equidistribution of maj and inv, g.n;m/ D f .n;m/, for f .n;m/ 196

defined in Sect. 1. But supposing we didn’t know that, we show that g.n;m/ satisfies 197

the same recurrence as f .n;m/ in Lemma 1 of Sect. 2.4.3, and therefore it has the 198

same functional equation, whose solution was shown there to be (5). 199

Claim. We have the recurrence 200

g.n;m/ D 2g.n�1;m/�g.n�2;m/Cg.n�2;m�nC1/ .n � 2Im � 0/ (15)

with initial data g.0;m/ D ım;0, g.1;m/ D 2ım;0. 201

Proof. Let R.n;m/ be the set of binary words of length n withm inversions, so that 202

g.n;m/ D jR.n;m/j. Observe that 203

inv.1 � w � 0/ D inv.w/C jwj C 1;

inv.0 � w/ D inv.w/;

inv.w � 1/ D inv.w/

Words of the form 0 � w � 1 fall into both of the last two classes above and all other 204

words fall into exactly one of the three classes above. So, 205

jR.n;m/j D j1�R.n�2;m�.n�1//�0jCj0�R.n�1;m/jCjR.n�1;m/�1j�j0�R.n�2;m/�1j; 206

and the recurrence follows. ut

3.3 Revisiting (5) 207

Recall the notation P.a; b/, D.�/, and j�j from Sect. 2.4.4 on partitions. View a 208

binary word as a lattice path, where “1” is an east step and “0” is a north step. 209

Then a binary word w with a 0’s and b 1’s forms the lower boundary of a partition 210

� 2 P.a; b/. It is not hard to check that 211

inv.w/ D j�j; 212

But also, the Durfee square size, D.�/, is interesting, in the following way. 213

Let � be Foata’s “second fundamental transformation” on words [6]. When 214

restricted to binary words w, �.w/ is a permutation of w, with 215

maj.w/ D inv.�.w//;
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and � proves bijectively that for any a; b, maj and inv have the same distribution 216

over the binary words with a 0’s and b 1’s, 217

Furthermore, if � is the partition defined by the lattice path associated with �.w/, 218

then it was shown in [9] that 219

des.w/ D D.�/;

where des.w/ is the number of descents of w. Thus, .maj; des/ and .inv;D/ have the 220

same joint distribution. 221

We can combine these observations with the identity from the end of Sect. 2.2.4: 222

X

a;b;�0

X

�2P.a;b/
q�xaCbzD.�/ D

X

j�0

x2j qj
2

..xI q/jC1/2
zj 223

to get 224

X

j�0

x2j qj
2

..xI q/jC1/2
zj D

X

a;b;�0

X

�2P.a;b/
q�xaCbzD.�/

D
X

w

qinv.w/xjwjzD.�.w//

D
X

w

qmaj.w/xjwjzdes.w/:

So, “des” is something like the “Blocks” statistic used in Sect. 2.3. However, observe 225

that “des” gives rise to (5), whereas “Blocks” gives rise to (4). 226

4 Larger Alphabets 227

The above results were all obtained by studying binary words. Now let’s look at 228

words over the M -letter alphabet ŒM � D f0; 1; 2; : : : ;M � 1g. 229

Let f .k0; k1; : : : ; kM�1I�/ denote the number of words over ŒM � that contain 230

exactly k0 0’s, k1 1’s,. . . ,kM�1 M � 1’s, and which have major index �. Of course 231

the length of such a word is N D P
i ki . It is known that major index is Mahonian 232

on this set of words [8] and therefore its distribution is given by the q-multinomial 233

coefficient 234

X

��0
f .k0; k1; : : : ; kM�1I�/q� D

"
N

k0; k1; : : : ; kM�1

#

q

: 235
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See Sloane’s sequences A129529, A129531 for the cases M D 3; 4. So, if ŒM �� 236

denotes the set of all words over ŒM �, 237

F.x; q/ D
X

w2ŒM ��

qmaj.w/xjwj D
X

N�0

X

k0C���CkM�1DN

"
N

k0; k1; : : : ; kM�1

#

q

xN :

(16)

Rewriting the last expression and applying (8), we find 238

F.x; q/ 239

D
X

k0;k1;:::;kM�1�0

"
k0 C � � � C kM�1
k0; : : : ; kM�1

#

q

xk0C���CkM�1

D
X

k0;k1;:::;kM�2�0

"
k0 C � � � C kM�2
k0; : : : ; kM�2

#

q

xk0C���CkM�2
X

kM�1�0

"
k0 C � � � C kM�1

kM�1

#

q

xkM�1

D
X

k0;k1;:::;kM�2�0

"
k0 C � � � C kM�2
k0; : : : ; kM�2

#

q

xk0C���CkM�2

.xIq/k0C���CkM�2

:

240

241

This generalizes the equivalence of (2) and (3) which is the M D 2 case. 242

We will consider a variation and get a q-difference equation. 243

Let fi .k0; k1; : : : ; kM�1I�/ denote the number of words over ŒM � that contain 244

exactly k0 0’s, k1 1’s,. . . ,kM�1 M � 1’s, and which have major index �, and whose 245

last letter is i (i D 0; : : : ;M � 1). 246

Of these fi .k0; k1; : : : ; kM�1I�/ words, the number whose penultimate letter is 247

j is 248

(
fj .k0; k1; : : : ; ki � 1; : : : ; kM�1I� � .N � 1//; if j > i ,

fj .k0; k1; : : : ; ki � 1; : : : ; kM�1I�/; if j � i .

Consequently, for i D 0 : : : ;M � 1, we have 249

fi .k0; k1; : : : ; kM�1I�/ D
X

j>i

fj .k0; k1; : : : ; ki � 1; : : : ; kM�1I� � .N � 1//

C
X

j�i
fj .k0; k1; : : : ; ki � 1; : : : ; kM�1I�/:

Now sum both sides over all k such that k0 C � � � C kM�1 D N , and write Fi .N;�/ 250

for
P

k0C���CkM�1DN fi .k0; k1; : : : ; kM�1I�/. We obtain 251

Fi .N;�/ D
X

j>i

Fj .N � 1; � �N C 1/C
X

j�i
Fj .N � 1; �/; 252

253



UNCORRECTED
PROOF

92 G.E. Andrews et al.

with Fi .1; �/ D Mı�;0. In terms of the generating functions 254

˚N;i D
X

�

Fi .N;�/q
�; 255

we find that 256

˚N;i D qN�1X

j>i

˚N�1;j C
X

j�i
˚N�1;j ; 257

with ˚1;i D 1 for all i D 0; : : : ;M � 1. 258

Finally, if ˚i.x; q/ D P
N�1 ˚N;i xN , we find that 259

˚i.x; q/ D x C x
X

j>i

˚j .qx; q/C x
X

j�i
˚j .x; q/: .i D 0; 1; : : : ;M � 1/ 260

5 A Related Identity Based on the Positions 261

of 0’s in Bitstrings 262

If w is a binary string of length n, let �.w/ be the sum of the positions that contain 263

0 bits, the positions being labeled 1; 2; : : : ; n. Thus f .10101/ D 2 C 4 D 6. We 264

consider the generating function 265

F.x; q/ D
X

w

xjwjq�.w/; 266

the sum extending over all binary words of all lengths. 267

If we let T .n; k/ denote the number of words of length n for which �.w/ D k, 268

then we have the obvious recurrence T .n; k/ D T .n�1; k/CT .n�1; k�n/. This 269

leads, in the usual way, to the functional equation 270

F.x; q/ D 1C xqF.xq; q/

1 � x ; (17)

which in turn leads, by iteration, to the explicit expression 271

F.x; q/ D
X

j�0

xj q.
jC1
2 /

.xI q/jC1
: (18)

On the other hand it is easy to see that 272

X

k

T .n; k/qk D
nY

`D1
.1C q`/; (19)
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since each position ` in w can either be 1, which contributes ` to �.w/, or 0, which 273

contributes nothing. Thus, we have the identity 274

X

j�0

xj q.
jC1
2 /

.xI q/jC1
D
X

n�0
xn

nY

`D1
.1C q`/: (20)

Note that (20) is a specialization of Heine’s second transformation (Eq. III.2 in 275

Appendix III of [7] with a D �q, b D q, c D 0, z D x). 276

5.1 A Partition Theory View 277

We can interpret the identity (20) in terms of partitions. 278

We claim that both sides of the identity count all pairs .�; n/where � is a partition 279

into distinct parts and n is greater than or equal to the largest part of �. 280

On the right-hand side,
Qn
`D1.1 C q`/ is the generating function for partitions 281

into distinct parts, the largest of which is � n. So, the right-hand side counts all 282

pairs .�; n/ where � is a partition into distinct parts and n is greater than or equal to 283

the largest part of �, as claimed. 284

The left-hand side counts the same quantity by summing over all j the terms 285

xnqj�j for all pairs .�; n/ where � is a partition into j positive distinct parts, the 286

largest of which is � n. To see this, If � is a partition into j distinct positive parts, 287

then subtracting the staircase partition .j; j �1; : : : ; 1/ from � subtracts
�
jC1
2

�
from 288

the q-weight of � and subtracts j from the largest part of �, leaving an ordinary 289

partition �0 with at most j parts. Such �0 are counted in the left-hand-side of (20) by 290

1=.xI q/jC1, where x keeps track of the size of the largest part of �0 plus an excess 291

corresponding to the number of times the “0” part is selected as the 1=.1�x/ factor 292

in the product. 293

5.2 A Generalization 294

Let w be a word over the K letter alphabet f0; 1; : : : ; K � 1g and let 295

�.w/ D
nX

iD1
iwi : 296

We have �.10101/ D 1C 3C 5 D 9 and �.120301/ D 1C 4C 12C 6 D 23. We 297

consider the generating function 298

F.x; q/ D
X

w

xjwjq�.w/; 299

the sum extending over all K-ary words of all lengths. 300
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If we let T .n; k/ denote the number of words of length n for which �.w/ D k, 301

then we have the obvious recurrence 302

T .n; k/ D
K�1X

iD0
T .n� 1; k � in/: .n � 1IT .0; k/ D ık;0/: 303

If we take our generating function in the form F.x; q/ D P
k;n�0 T .n; k/xnqk , this 304

leads, in the usual way, to the functional equation 305

F.x; q/ D 1

1 � x
C x

1 � x

K�1X

iD1
qiF .xqi ; q/; (21)

In the binary case (K D 2), this agrees with (17), which has the explicit expression 306

(18). 307

On the other hand, since a j in position ` contributes j` to �.w/, so 308

X

k

T .n; k/qk D
nY

`D1
.1C q` C q2` C � � � C q.K�1/`/ D

nY

`D1

1 � qK`
1 � q` ; (22)

and in the case K D 2 we have another view of the identity (20). 309

We would like an explicit solution to the functional equation (21) for K > 2, 310

analogous to (20). Recall that (20) was a special case of Heine’s second transfor- 311

mation. There is no analog of Heine’s second transformation for K > 2. However, 312

there is an analog of the first Heine transformation that can be applied. We make use 313

of the following, which is Lemma 1 from [1]: 314

X

n�0

tn.aI qk/n.bI q/kn
.qk I qk/n.cI q/kn D .bI q/1.at I qk/1

.cI q/1.t I qk/1
X

n�0

bn.c=bI q/n.t I qk/n
.qI q/n.at I qk/n : (23)

Setting a D c D 0, b D x, k D K , and t D qk in (23) gives 315

F.x; q/ D
X

n�0

xn.qK I qK/n
.qI q/n D .qK I qK/1

.xI q/1
X

n�0

qKn.xI q/Kn
.qK I qK/n : 316

6 “Lecture Hall” Statistics on Words 317

The following statistics arose in [10] in a more general context, but we specialize 318

them here to words. For a K-ary word w of length n, define the following statistics: 319

ASC.w/ D fi j i D 0 and w1 > 0 or 1 � i < n and wi < wiC1gI
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asc.w/ D jASC.w/jI
lhp.w/ D �.w1 C w2 C � � � C wn/C

X

i2ASC.w/

K.n � i/I

320

It follows from Theorem 5 in [10] that 321

X

t�0

X

�2P.n;Kt/
qj�jxt D

P
w2ŒK�n qlhp.w/xasc.w/

Qn
iD0.1� xqKi /

; 322

where ŒK� D f0; 1; : : : ; K � 1g. 323

As observed in [10], the inner sum on the left is a q-binomial coefficient, so we 324

get the identity: 325

X

t�0

"
nCKt

n

#

q

xt D
P

w2ŒK�n qlhp.w/xasc.w/

Qn
iD0.1 � xqKi /

: 326

Multiplying both sides by (1 � x/ and then setting x D 1 gives 327

X

t�0

0

@

"
nCKt

n

#

q

�
"
nCK.t � 1/

n

#

q

1

A D
P

w2ŒK�n qlhp.w/

.qI q/n : 328

The left-hand side above is just 1=.qI q/n, the generating function for partitions into 329

at most n parts. So, simplifying, 330

X

w2ŒK�n
qlhp.w/ D

nY

`D1
.1C q` C q2` C � � � C q.K�1/`/; 331

the same distribution as
P

i iwi from Sect. 5.2 (!) We don’t have any nice combina- 332

torial explanation for this yet. 333

Experiments indicate that when K D 2, we can actually get the following 334

refinement: 335

X

t�0

nX

iD0

"
nC t � i

t

#

q2

"
t � 1C i

t � 1

#

q2

.qz/ixt D
P

w2Œ2�n qlhp.w/xasc.w/zw1Cw2C���Cwn

Qn
iD0.1 � xq2i / :

(24)

To prove this, from the bijective proof of Theorem 5 in [10], it would suffice to verify 336

that the innermost summand on the left is the generating function for partitions in 337

an n by 2t box with i odd parts. This was done for us by Christian Krattenthaler as 338

follows, thereby proving (24): 339
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The q-binomial coefficient
�
nCt�i
n�i

�
q2

is the generating function for partitions consisting of 340

n� i even parts, all of which are at most 2t . On the other hand, the q-binomial coefficient 341�
t�1Ci

i

�
is the generating function for partitions consisting of i even parts, all of which are 342

at most 2t � 2. Now add 1 to each of the i latter parts. Thereby you get i odd parts, all 343

of which at most 2t . (This gives a contribution of qi in the generating function.) Finally 344

shuffle the odd and even parts. 345

7 The Generating Function of the Terms 346

of a Closed Form q-Series 347

In trying to find the solution to a combinatorial problem, one often goes through 348

the procedure of finding a recurrence, then a functional equation for the generating 349

function, then by iteration, the solution of that functional equation, and then, with 350

some luck, a nice product form for the coefficients that are of interest. 351

Here, let’s invert that process. Suppose we have a sequence t.n; k/which satisfies 352

X

k�0
t.n; k/qk D

nY

jD1

a.qj /

b.qj /
; 353

where a.t/; b.t/ are fixed polynomials in t . In other words, we suppose that the 354

sum on the left is a q-hypergeometric term in n. What we would like to know is the 355

generating function 356

F.x; q/ D
X

n;k

t.n; k/xnqk: 357

To do this, put f .n/ D P
k�0 t.n; k/qk , and then we have 358

b.qn/f .n/ D a.qn/f .n � 1/: .n � 1If .0/ D 1/ (25)

To simplify the appearance of the following results, let R be the operator that 359

transforms x to xq, i.e., Rf .x/ D f .xq/, and suppose our polynomials a; b are 360

a.t/ D P
aj t

j and b.t/ D P
j bj t

j . Further, take the generating function in the 361

form 362

F.x; q/ D
X

n;k�0
t.n; k/xnqk: 363

Now multiply (25) by xn and sum over n � 1, to find that 364

.b.R/ � xa.qR//F.x; q/ D 1 (26)

is the functional equation of the generating function. 365



UNCORRECTED
PROOF

Hypergeometric Identities Associated with Statistics on Words 97

7.1 Examples 366

Example 1. In the case (19) above we have a.t/ D 1 C t and b.t/ D 1. The 367

functional equation (26) now reads as 368

.1 � x.1C qR//F.x; q/ D 1 D .1 � x/F.x; q/ � xqF.xq; q/; 369

in agreement with (17). 370

Example 2. Consider the case of the statistic �.w/ of Sect. 5.2 on K-ary words 371

when K D 3. (This has the same distribution as the statistic lhp from Sect. 6.) Here 372

we have from (22) that a.t/ D 1 C t C t2 and b.t/ D 1. The functional equation 373

(26) takes the form F.x; q/ D 1C x.F.x; q/C qF.xq; q/C q2F.xq2; q//, i.e., 374

F.x; q/ D 1

1 � x

�
1C xqF.xq; q/C xq2F.xq2; q/

�
; (27)

in agreement with (21). We see by iteration that the solution of this equation is going 375

to be a sum of terms of the form 376

q˛xˇ

QnC1
iD1 .1 � xqsi /

; (28)

for some collection of ˛, ˇ, si to be defined. We want to identify exactly which 377

terms occur. The set T of such terms is defined inductively by the two rules 378

.i/
1

1 � x 2 T I 379

and 380

.ii/ if
q˛xˇ

QnC1
iD1 .1 � xqsi /

2 T; 381

then both of the following terms must be in T : 382

q˛CˇC1xˇC1

.1 � x/QnC1
iD1 .1 � xqsiC1/

and
q˛C2ˇC2xˇC1

.1 � x/QnC1
iD1 .1 � xqsiC2/

: 383

It is now straightforward to verify that the inductive rules define T to be: 384

T D
n q�.w/xjwj
QjwjC1
iD1 .1 � xqwiC���Cw

jwj/

ˇ
ˇ
ˇ w 2 f1; 2g�

o
: 385
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The generating function is now 386

F.x; q/ D
X

w2f1;2g�

q�.w/xjwj
QjwjC1
iD1 .1 � xqwiC���Cw

jwj/
: 387

Consequently we have the identity 388

X

w2f1;2g�

q�.w/xjwj
QjwjC1
iD1 .1 � xqwiC���Cw

jwj/
D
X

n�0
xn

nY

jD1
.1C qj C q2j /: (29)

We’re going to tweak the left side of (29) in the hope of making it prettier. 389

First we change the alphabet from f1; 2g to f0; 1g, just because it’s friendlier. To 390

do that, define new variables fvigniD1 by vi D wi �1 .i D 1; : : : ; n/, where n D jwj. 391

Then the gf becomes 392

X

v2f0;1g�

q�.w/xjvj
QjvjC1
iD1 .1 � xqwiC���Cwn/

; 393

where we have temporarily used some v’s and some w’s. 394

Now introduce yet another set of variables, namely 395

ui D wi C � � � C wn D vi C � � � C vn C n � i C 1 .i D 1; : : : ; n/: 396

Then we have 397

�.w/ D
nX

iD1

iwi D .w1C� � �Cwn/C.w2C� � �Cwn/C� � �Cwn D u1C� � �Cun D ˙.u/; 398

399

say. The generating function now reads as 400

X

u

q˙.u/xjuj
QjujC1
iD1 .1 � xqui /

401

which is now entirely in terms of the ui ’s, but we need to clarify the set of vectors u 402

over which the outer summation extends. 403

Say that a sequence fti gnC1
iD1 of nonnegative integers is slowly decreasing if 404

tnC1 D 0, and we have ti � tiC1 D 1 or 2 for all i D 1; : : : ; n. Then the outer 405

sum above runs over all slowly decreasing sequences of all lengths, i.e., it is 406

X

u2sd

q˙.u/xjuj�1
Qjuj
iD1.1� xqui /

: 407
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where sd is the set of all slowly decreasing sequences,˙.u/ is the sum of the entries 408

of u, and juj is the length of u (including the mandatory 0 at the end). 409

7.2 A Generalization 410

In the same way we derived (29), we can use the functional equation (26) to derive 411

the following general result. 412

Suppose t.n; k/ satisfies 413

X

k�0
t.n; k/qk D

nY

jD1

a.qj /

b.qj /
; 414

where a.t/; b.t/ are fixed polynomials in t , a.t/ D PK�1
tD0 ai t i , and b.t/ D 415

PK�1
tD0 bi t i . Then 416

F.x; q/ D
X

n;k

t.n; k/xnqk D
X

w2f1;2;:::;K�1g�

Qjwj
iD1.awi xq

iwi � bwi /
QjwjC1
iD1 .b0 � a0xq

wiC���Cw
jwj/
: 417

This shows how the statistics iwi on words arise naturally in q-series, with the 418

special case of �.w/ appearing when the polynomial b is constant. 419
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for a de Bruijn Process 2

Arvind Ayyer and Volker Strehl 3

Dedicated to the memory of Herbert S. Wilf. 4

Abstract We define a de Bruijn process with parameters n and L as a certain 5

continuous-time Markov chain on the de Bruijn graph with words of length L over 6

an n-letter alphabet as vertices. We determine explicitly its steady state distribution 7

and its characteristic polynomial, which turns out to decompose into linear factors. 8

In addition, we examine the stationary state of two specializations in detail. In 9

the first one, the de Bruijn-Bernoulli process, this is a product measure. In the 10

second one, the Skin-deep de Bruin process, the distribution has constant density 11

but nontrivial correlation functions. The two point correlation function is determined 12

using generating function techniques. 13

1 Introduction 14

A de Bruijn sequence (or cycle) over an alphabet of n letters and of order L is a 15

cyclic word of length nL such that every possible word of length L over the alphabet 16

appears once and exactly once. The existence of such sequences and their counting 17

was first given by Camille Flye Sainte-Marie in 1894 for the case n D 2, see [10] 18

and the acknowledgement by de Bruijn[8], although the earliest known example 19

comes from the Sanskrit prosodist Pingala’s Chandah Shaastra (some time between 20

the second century BCE and the fourth century CE [15, 25]). This example is for 21
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n D 2 and L D 3 essentially contains the word 0111010001 as a mnemonic for 22

a rule in Sanskrit grammar. Omitting the last two letters (since they are repeating 23

the first two) gives a de Bruijn cycle. Methods for constructing de Bruijn cycles are 24

discussed by Knuth [14]. 25

The number of de Bruijn cycles for alphabet size n D 2 was (re-)proven to 26

be 22L�1�L by de Bruijn [7], hence the name. The generalization to arbitrary 27

alphabet size n was first proven to be nŠn
L�1 � n�L by de Bruijn and van Aardenne- 28

Ehrenfest. This result can be seen as an application of the famous BEST-theorem 29

[22–24], which relates the counting of Eulerian tours in digraphs to the evaluation 30

of a Kirchhoff (spanning-tree counting) determinant. The relevant determinant 31

evaluation for the case of de Bruijn graphs (see below) is due to Dawson and Good 32

[6], see also [13]. 33

The (directed) de Bruijn graph Gn;L is defined over an alphabet ˙ of cardinality 34

n. Its vertices are the words of u D u1u2 : : : uL 2 �L, and there is an directed edge 35

or arc between any two nodes u D u1u2 : : : uL and v D v1v2 : : : vL if and only if 36

t.u/ D u2 : : : un D v1 : : : vn�1 D h.v/, where h.v/ (t.u/ resp.) stands for the head 37

of v (tail of u, resp.). This arc is naturally labeled by the word w D u:vL D u1:v, 38

so that h.w/ D u and t.v/ D v. It is intuitively clear that Eulerian tours in the de 39

Bruijn graph Gn;L correspond to de Bruijn cycles for words over ˙ of length LC1. 40

de Bruijn graphs and cycles have applications in several fields, e.g. in networking 41

[12] and bioinformatics [17]. For an introduction to de Bruijn graphs, see e.g. [18]. 42

In this article we will study a natural continuous-time Markov chain on Gn;L
43

which exhibits a very rich algebraic structure. The transition probabilities are not 44

uniform since they depend on the structure of the vertices as words, and they are 45

symbolic in the sense that variables are attached to the edges as weights. We have 46

not found this in the literature, although there are studies of the uniform random 47

walk on the de Bruijn graph [9]. The hitting times [5] and covering times [16] of 48

this random walk have been studied, as has the structure of the covariance matrix for 49

the alphabet of size n D 2 [2] and in general [1]. The spectrum for the undirected 50

de Bruijn graph has been found by Strok [21]. We have also found a similar Markov 51

chain whose spectrum is completely determined in the context of cryptography [11]. 52

After describing our model on Gn;L for a de Bruijn process in detail in the next 53

section, we will determine its stationary distribution in Sect. 3 and its spectrum in 54

Sect. 4. In the last section we discuss two special cases, the de Bruijn-Bernoulli 55

process and the Skin-deep de Bruijn process. 56

2 The Model 57

We take the de Bruijn graph Gn;L as defined above. As alphabet we may take 58

˙ D ˙n D f1; 2; : : : ; ng. Matrices will then be indexed by words over ˙n taken in 59

lexicographical order. Since the alphabet size n will be fixed throughout the article, 60

we will occasionally drop n as super- or subscript if there is no danger of ambiguity. 61
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From each vertex u D u1u2 : : : uL 2 ˙L there are n directed edges in Gn;L
62

joining u with the vertices u2u3 : : : un:a D t.u/:a for a 2 ˙ . 63

We now give weights to the edges of the graph Gn;L. Let X D fxa;k I a 2 ˙ , 64

k � 1g be the set of weights, to be thought of as formal variables. We will work 65

over ˙C, the set of all nonempty words over the alphabet ˙ (of size n). An a-block 66

is a word u 2 ˙C which is the repetition of the single letter a so that u D ak for 67

some a 2 ˙ and k � 1. Obviously, every word u has a unique decomposition into 68

blocks of maximal length, 69

u D b.1/b.2/ � � � b.m/; (1)

where each factor b.i/ is a block so that any two neighboring factors are blocks 70

of distinct letters. This is the canonical block factorization of u with a minimum 71

number of block-factors. 72

We now define the function ˇ W ˙C ! X as follows: 73

– For a block ak we set ˇ.ak/ D xa;k ; 74

– For u 2 ˙C with canonical block factorization (1) we set ˇ.u/ D ˇ.b.m//, 75

i.e., the ˇ-value of the last block of u. 76

An edge from vertex u 2 ˙L to vertex v 2 ˙L, so that h.v/ D t.u/ with v D 77

t.u/:a, say, will then be given the weight ˇ.v/. This means that 78

ˇ.v/ D

8
ˆ̂
<

ˆ̂
:

xa;L if ˇ.u/ D xa;L;

xa;kC1 if ˇ.u/ D xa;k with k < L;

xa;1 if ˇ.u/ D xb;k for some b ¤ a:

(2)

Our de Bruijn process will be a continuous time Markov chain derived from 79

the Markov chain represented by the directed de Bruijn graph Gn;L with edge 80

weights as defined above. The transition rates are ˇ.v/ for transitions represented 81

by edges ending in v. We note that these rates can be taken just as variables and not 82

necessarily probabilities. Similarly, expectation values of random variables in this 83

process will be functions in these variables. 84

The simplest nontrivial example occurs when n D L D 2. There are four 85

configurations and the relevant edges are given in the Fig. 1. 86

Before stating our notation for the transition matrix of a continuous-time Markov 87

chain, our de Bruijn process, we need a general notion. 88

Definition 1. For any k � k matrix M , let rM denote the matrix where the sum of 89

each column is subtracted from the corresponding diagonal element, 90

rM D M � diag.1k � M /; (3)

where 1k denotes the all-one row vector of length k and diag.m1; : : : ; mk/ is a 91

diagonal matrix with entries m1; : : : ; mk on the diagonal. 92
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Fig. 1 An example of a de
Bruijn graph in two letters
and words of length 2

In graph theoretic terms rM is the (negative of) the Kirchhoff matrix or 93

Laplacian matrix of G, if M is the weighted adjacency matrix of a directed graph G. 94

In case M is a matrix representing transitions of a Markov chain, the column 95

(or right) eigenvector of rM for eigenvalue zero properly normalized gives the 96

stationary probability distribution of the continuous-time Markov chain. 97

We note that the graphs Gn;L are both irreducible and recurrent, so that the 98

stationary distribution is unique (up to normalization). We will use M n;L to denote 99

the transition matrix of our Markov chain, 100

M n;L
v;u D rate.u ! v/ D ˇ.v/: (4)

rM n;L is then precisely the transition matrix, 101

rM n;L
v;u D

8
ˆ̂
<

ˆ̂
:

ˇ.v/ for u ¤ v;

�
X

w2˙L

u¤w

ˇ.w/ for u D v: (5)

For the example in Fig. 1, with lexicographic ordering of the states, 102

rM 2;2 D

0

B
B
@

�x2;1 0 x1;2 0

x2;1 �x1;1 � x2;2 x2;1 0

0 x1;1 �x1;2 � x2;1 x1;1

0 x2;2 0 �x1;1

1

C
C
A : (6)

103
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The stationary distribution is given by probabilities of words, which are to be taken 104

as rational functions in the variables xa;t . It is the column vector with eigenvalue 105

zero, which after normalization is then given by 106

PrŒ1; 1� D x1;1x1;2

.x1;2 C x2;1/ .x1;1 C x2;1/
; PrŒ1; 2� D x2;1x1;1

.x1;1 C x2;2/ .x1;1 C x2;1/
;

PrŒ2; 1� D x2;1x1;1

.x1;2 C x2;1/ .x1;1 C x2;1/
; PrŒ2; 2� D x2;2x2;1

.x1;1 C x2;2/ .x1;1 C x2;1/
:

(7)

Notice that the probabilities consist of a product of two monomials in the numerator 107

and two factors in the denominator, and that each factor contains two terms. Also, 108

notice that not all the denominators are the same, otherwise the steady state would 109

be a true product measure. Of course, the sums of these probabilities is 1, which is 110

not completely obvious. 111

It is also interesting to note that the eigenvalues of rM 2;2 are linear in the 112

variables. Other than zero, the eigenvalues are given by 113

� x1;1 � x2;2; �x1;1 � x2;1; and � x1;2 � x2;1: (8)

Another way of saying this is that the characteristic polynomial of the transition 114

matrix factorizes into linear parts. 115

3 Stationary Distribution 116

In this section we determine an explicit expression for the steady state distribution 117

of the de Bruijn process on Gn;L. Before we do that we will have to set down some 118

notation. 119

For convenience, we introduce operators which denote the transitions of our 120

Markov chain. Let @a be the operator that adds the letter a to the end of a word 121

and removes the first letter, 122

@a W u 7! t.u/:a: (9)

With ˇ as introduced we introduce the shorthand notation 123

ˇa;m D
X

b2˙

ˇ.@b am/ D xa;m C
X

b2˙;b¤a

xb;1: (10)

Note that ˇa;1 D P
b2˙ xb;1 does not depend on a. We now define the valuation 124

�.u/ for u 2 ˙C as 125

�.u/ D ˇ.u/
P

a2˙ ˇ.@au/
: (11)
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Note that the restriction of � on the alphabet ˙ is (formally) a probability 126

distribution. Finally, we define the valuation N�, also on ˙C, as 127

N�.u/ D
LY

iD1

�.u1u2 : : : ui / D �.u1/�.u1u2/ � � � �.u1u2 : : : uL/; (12)

if u D u1u2 : : : uL. The following result is the key to understanding the stationary 128

distribution. 129

Proposition 1. For all u 2 ˙C, 130

X

a2˙

N�.a:u/ D N�.u/: (13)

Proof. As in (1), let us write w in block factorized form: 131

u D b.1/b.2/ � � � b.m/ D Qu:b.m/; (14)

where Qu D b.1/ : : : b.m�1/ if m > 1, and Qu is the empty word if m D 1. 132

If b.m/ D ak , then 133

�.u/ D

8
ˆ̂
<

ˆ̂
:

xa;k

ˇa;k

if m D 1; i.e., if u is a block;

xa;k

ˇa;kC1

if m > 1;

(15)

and thus 134

N�.u/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

kY

j D1

xa;j

ˇa;j

if m D 1; i.e., if u is a block;

N�.Qu/ �
kY

j D1

xa;j

ˇa;j C1

if m > 1:

(16)

We will define another valuation on ˙C closely related to N�, which we call N�. 135

Referring to the factorization (14) we put 136

N�.u/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

kY

j D1

xa;j

ˇa;j C1

if m D 1; i.e., if u D ak is a block;

mY

lD1

N�.u.l// if m > 1:

(17)
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This new valuation is related to N� by the following properties: 137

– For blocks u D ak we have 138

N�.ak/ D ˇa;1

ˇa;kC1

N�.ak/; (18)

– For u with factorization (14) we have 139

N�.u/ D N�.Qu/ � N�.b.m//; (19)

– Which, by the obvious induction, implies 140

N�.u/ D N�.b.1// �
mY

lD2

N�.b.l//: (20)

We are now in a position to prove identity (13). First consider the case where 141

u D ak is a block. 142

X

b2˙

N�.b � ak/ D N�.akC1/ C
X

b¤a

N�.b � ak/

D xa;kC1

ˇa;kC1

N�.ak/ C
X

b¤a

N�.b/ � N�.ak/

D xa;kC1

ˇa;kC1

N�.ak/ C
X

b¤a

xb;1

ˇa;1

N�.ak/

D
0

@
xa;kC1

ˇa;kC1

C
X

b¤a

xb;1

ˇa;kC1

1

A N�.ak/

D N�.ak/;

(21)

where we used (18) in the last-but-one step. 143

The general case is then proven by a simple induction on m. 144

X

a2˙

N�.a:b.1/b.2/ : : : b.m// D
X

a2˙

N�.a:b.1/b.2/ : : : b.m�1// � N�.b.m//

D N�.b.1/b.2/ : : : b.m�1// � N�.b.m//

D N�.b.1/b.2/ : : : b.m//;

(22)

where we have used property (19) of N� in the last step. ut
As a consequence of Proposition 1, we have the following result, which is an 145

easy exercise in induction. The case L D 1 was already mentioned immediately 146

after (11). 147
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Corollary 2. For any fixed length L of words over the alphabet ˙ , 148

X

w2˙L

N�.w/ D 1: (23)

Therefore, the column vector N�n;L D Œ N�.u/�u2˙L can be a seen as a formal 149

probability distribution on ˙L. We now look at the transition matrix M n;L more 150

closely. 151

M n;L
v;u D ıh.v/Dt .u/ ˇ.v/: (24)

where ıx is the indicator function for x, i.e., it is 1 if the statement x is true and 152

0 otherwise. Thus the matrix M n;L is very sparse. It has just n non-zero entries 153

per row and per column. More precisely, the row indexed by v has the entry ˇ.v/ 154

for the n@-preimages of v, and the column indexed by u contains ˇ.@au/ as the 155

only nonzero entries. In particular, the column sum for the column indexed by u is 156
P

a2˙ ˇ.@a.u//. Define the diagonal matrix �n;L as one with precisely these column 157

sums as entries, i.e. 158

�n;L
v;u D

( P
a2˙ ˇ.@au/ v D u;

0 otherwise:
(25)

Theorem 3. The vector N�n;L is the stationary vector for the de Bruijn process on 159

Gn;L, i.e., 160

M n;L N�n;L D �n;L N�n;L: (26)

Proof. Consider the row corresponding to word v D v1v2 : : : vL�1vL D h.v/:vL in 161

the equation 162

M � D � �: (27)

On the l.h.s. of (27) we have to consider the summation
P

u2˙L Mv;u �.u/, where 163

only those u 2 ˙L with t.u/:vL D v contribute. This latter condition can be written 164

as u D b:h.v/ for some b 2 ˙ , so that this summation can be written as 165

X

u2˙L

Mv;u �.u/ D
X

b2˙

Mv;b:h.v/ �.b:h.v//

D ˇ.v/
X

b2˙

�.b:h.v// D ˇ.v/ �.h.v//;

(28)

where the last equality follows from Lemma 6. 166
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On the r.h.s. of (27) we have for the row entry corresponding to the word v: 167

�v;v �.v/ D
X

a2˙

ˇ.@av/ �.v/

D
X

a2˙

ˇ.@av/ � �.h.v// �.v/ D ˇ.v/ �.h.v//
(29)

in view of the inductive definition of � in (12) and the definition of � in (11). ut
Let Zn;L denote the common denominator of the stationary probabilities of 168

configurations. This is often called, with some abuse of terminology, the partition 169

function [4]. The abuse comes from the fact that this terminology is strictly 170

applicable in the sense of statistical mechanics while considering Markov chains 171

only when they are reversible. The de Bruijn process definitely does not fall into 172

this category. Since the probabilities are given by products of � in (12), one arrives 173

at the following product formula. 174

Corollary 4. The partition function of the de Bruijn process on Gn;L is given by 175

Zn;L D ˇ1;1 �
L�1Y

mD2

nY

aD1

ˇa;m: (30)

Physicists are often interested in properties of the stationary distribution rather 176

than the full distribution itself. One natural quantity of interest in this context is the 177

so-called density distribution of a particular letter, say a, in the alphabet. In other 178

words, they would like to know, for example, how likely it is that a is present at the 179

first site rather than the last site. We can make this precise by defining occupation 180

variables. Let �a;i denote the occupation variable of species a at site i : it is a random 181

variable which is 1 when site i is occupied by a and zero otherwise. We define 182

the probability in the stationary distribution by the symbol h � i. Then h �a;i i 183

gives the density of a at site i . Similarly, one can ask for joint distributions, such as 184

h �a;i �b;j i, which is the probability that site i is occupied by a and simultaneously 185

that site j is occupied by b. Such joint distributions are known as correlation 186

functions. 187

We will not be able to obtain detailed information about arbitrary correlation 188

functions in full generality, but there is one case in which we can easily give the 189

answer. This is the correlation function for any letters ak; : : : ; a2; a1 at the last k 190

sites. 191

Corollary 5. Let u D ak : : : a2a1. Then 192

h�ak;L�kC1 � � � �a2;L�1�a1;Li D N�.u/: (31)
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Proof. By definition of the stationary state, 193

h�ak;L�kC1 � � � �a2;L�1�a1;Li D
X

v2˙L�k

N�.v:u/: (32)

Using Proposition 1 repeatedly L � k times, we arrive at the desired result. ut
In particular, Corollary 5 says that the density of species a at the last site is simply 194

h�a;Li D xa;1

ˇa;1

: (33)

Formulas for densities at other locations are much more complicated. It would be 195

interesting to find a uniform formula for the density of species a at site k. 196

4 Characteristic Polynomial of rM n;L
197

We will prove a formula for the characteristic polynomial of rM n;L in the following. 198

In particular, we will show that it factorizes completely into linear parts. In order 199

to do so, we need to understand the structure of the transition matrices better. We 200

denote by �.M I 	/ the characteristic polynomial of a matrix M in the variable 	. 201

To begin with, let us recall from the previous section that the transition matrices 202

M n;L, taken as mappings defined on row and column indices, are defined by 203

M n;L W ˙L
n � ˙L

n ! X W .v; u/ 7! ıh.v/Dt .u/ � ˇ.v/: (34)

Lemma 6. The matrix M n;L can be written as 204

M n;L D �
An;L j An;L j : : : j An;L

�
.n copies of An;L/; (35)

where An;L is a matrix of size nL � nL�1 given by 205

An;L W ˙n;L � ˙n;L�1 ! X [ f0g W .v; u/ 7! ıh.v/Du � ˇ.v/: (36)

We have 206

An;1 D

2

6
6
6
4

x1;1

x2;1

:::

xn;1

3

7
7
7
5

; An;L D

2

6
6
6
4

A
n;L�1
1 0n;L�1 � � � 0n;L�1

0n;L�1 A
n;L�1
2 � � � 0n;L�1

:::
:::

: : :
:::

0n;L�1 0n;L�1 � � � An;L�1
n

3

7
7
7
5

D

2

6
6
6
4

B
n;L�1
1

B
n;L�1
2

:::

Bn;L�1
n

3

7
7
7
5

; (37)

where A
n;L�1
k is like An;L�1, but with xk;L�1 replaced by xk;L, and where 0n;L�1 is 207

the zero matrix of size nL�1 � nL�2. The matrices Bn;L�1
a are square matrices of 208

size nL�1 � nL�1, where for each a 2 ˙ the matrix Bn;L
a is defined by 209
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Bn;L
a W ˙L � ˙L ! X [ f0g W .v; u/ 7! ıa:h.v/Du � ˇ.a:v/: (38)

With these matrices at hand we can finally define the matrix Bn;L D P
a2˙ Bn;L

a of 210

size nL � nL, so that 211

Bn;L W ˙L � ˙L ! X [ f0g W .v; u/ 7! ıh.v/Dt .u/ � ˇ.u1:v/: (39)

Lemma 7. M n;L � Bn;L is a diagonal matrix. 212

Proof. We have 213

M n;L.v; u/ ¤ Bn;L.v; u/ , h.v/ D t.u/ and ˇ.u1:v/ ¤ ˇ.v/ (40)

But ˇ.u1:v/ ¤ ˇ.v/ can only happen if the last block of u1:v is different from the 214

last block of v, which only happens if v itself is a block, v D aL, and u1 D a, in 215

which case ˇ.v/ D xa;L and ˇ.u1:v/ D xa;LC1. So we have 216

.Bn;L � M n;L/.v; u/ D
(

xa;LC1 � xa;L if v D u D aL;

0 otherwise.
(41)

ut
We state as an equivalent assertion: 217

Corollary 8. For the Kirchhoff matrices of M n;L and Bn;L we have equality: 218

rM n;L Dr Bn;L: (42)

We now prove a very general result about the characteristic polynomial of a 219

matrix with a certain kind of block structure. This will be the key to finding the 220

characteristic polynomial of our transition matrices. 221

Lemma 9. Let P1; : : : ; Pm; Q be any k � k matrices, P D P1 C � � � C Pm and 222

R D

2

6
6
6
4

P1 C Q P1 � � � P1

P2 P2 C Q � � � P2

:::
:::

: : :
:::

Pm Pm � � � Pm C Q

3

7
7
7
5

: (43)

Then 223

�.RI 	/ D �.QI 	/m�1 � �.P C QI 	/: (44)

Proof. Multiply R by the block lower-triangular matrix of unit determinant shown 224

to get 225
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R �

2

6
6
6
6
6
4

1 0 0 � � � 0

�1 1 0 � � � 0

0 �1 1 � � � 0
:::

:::
:::

: : :

0 0 0 � � � 1

3

7
7
7
7
7
5

D

2

6
6
6
6
6
4

Q 0 0 � � � P1

�Q Q 0 � � � P2

0 �Q Q � � � P3

:::
:::

:::
: : :

:::

0 0 0 � � � Pm C Q

3

7
7
7
7
7
5

(45)

which has the same determinant as R. Now perform the block row operations which 226

replace row j by the sum of rows 1 through j to get 227

2

6
6
6
6
6
4

Q 0 0 � � � P1

0 Q 0 � � � P1 C P2

0 0 Q � � � P1 C P1 C P3

:::
:::

:::
: : :

:::

0 0 0 � � � P C Q

3

7
7
7
7
7
5

(46)

Since this is now a block upper triangular matrix, the characteristic polynomials is
the product of those of the diagonal blocks. ut

We will now apply this lemma to the block matrix 228

rM n;LC1 D

2

6
6
6
4

B
n;L
1 � Dn;L B

n;L
1 : : : B

n;L
1

B
n;L
2 B

n;L
2 � Dn;L : : : B

n;L
2

:::
:::

: : :
:::

Bn;L
n Bn;L

n : : : Bn;L
n � Dn;L

3

7
7
7
5

(47)

where Dn;L is the .nL � nL/-diagonal matrix with the column sums of An;LC1 on 229

the main diagonal. 230

Proposition 10. The characteristic polynomials �.rM n;LI z/ satisfy the recursion 231

�.rM n;LC1I z/ D �.�Dn;LI z/n�1 � �.rM n;LI z/: (48)

Proof. From Corollary 8, Lemma 9, and the easily checked fact rBn;L D Bn;L � 232

Dn;L we get: 233

�.rM n;LC1I 	/ D �.�Dn;LI 	/n�1 � �.
P

a2˙ Bn;L
a � Dn;LI 	/

D �.�Dn;LI 	/n�1 � �.Bn;L � Dn;LI 	/

D �.�Dn;LI 	/n�1 � �.rBn;LI 	/

D �.�Dn;LI 	/n�1 � �.rM n;LI 	/:

(49)

ut
As a final step, we need a formula for �.�Dn;L; 	/. 234
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Lemma 11. The characteristic polynomial of �Dn;L is given by 235

�.�Dn;L; 	/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

	 C ˇ1;1 if L D 0;

LY

mD2

Y

a2˙

.	 C ˇa;m/.n�1/nL�m Y

a2˙

.	 C ˇa;LC1/ if L > 0:

(50)

Proof. The case L D 0 follows directly from the definition of An;1 in (37). For 236

general L, recall that An;LC1 contains n copies of An;L with one factor containing 237

xa;L removed and one factor containing xa;LC1 added instead, for each a 2 ˙ . Thus, 238

�.�Dn;L; 	/ D �
�.�Dn;L�1; 	/

�n �
Y

a2˙

�
	 C ˇa;LC1

	 C ˇa;L

�

; (51)

which proves the result. ut
We can now put everything together and get from Proposition 10, Lemma 11 and 239

checking the initial case for L D 1: 240

Theorem 12. The characteristic polynomial of the de Bruijn process on Gn;K is 241

given by 242

�.rM n;LI 	/ D 	 .	 C ˇ1;1/
n�1 �

LY

mD2

Y

a2˙

.	 C ˇa;m/.n�1/nL�m

: (52)

5 Special Cases 243

We now consider special cases of the rates where something interesting happens in 244

the de Bruijn process. 245

5.1 The de Bruijn-Bernoulli Process 246

There turns out to be a special case of the rates xa;j for which the stationary 247

distribution is a Bernoulli measure. That is to say, the probability of finding species 248

a at site i in stationarity is independent, not only of any other site, but also of i itself. 249

This is not obvious because the dynamics at any given site is certainly a priori not 250

independent from what happens at any other site. Since the measure is so simple, all 251

correlation functions are trivial. We denote the single site measure in (11) for this 252

specialized process to be �y , and the stationary measure (12) as N�y . 253
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Corollary 13. Under the choice of rates xa;j D ya independent of j , the stationary 254

distribution of the Markov chain with transition matrix rM n;L is Bernoulli with 255

density 256

�a D ya
P

b2˙ yb

: (53)

Proof. The choice of rates simply mean that species a is added with a rate 257

independent of the current configuration. From (11), it follows that for u D 258

u1u2 : : : uL, 259

�y.u/ D yuLP
b2˙ yb

D �uL; (54)

and using the definition of the stationary distribution N� in (12), 260

N�y.u/ D
LY

iD1

�ui ; (55)

which is exactly the definition of a Bernoulli distribution. ut

5.2 The Skin-Deep de Bruijn Process 261

Another tractable version of the de Bruijn process is one where the rate for 262

transforming the word u D u1u2 : : : uL into @au D t.u/:a D u2 : : : uL:a for a 2 ˙ 263

only depends on the occupation of the last site, uL. Hence, the rates are only skin- 264

deep. An additional simplification comes by choosing the rate to be x when a D uL 265

and 1 otherwise. Namely, 266

xa;j D
(

x for j D 1;

1 for j > 1:
(56)

We first summarize the results. It turns out that any letter in the alphabet is equally 267

likely to be at any site in the skin-deep de Bruijn process. This is an enormous 268

simplification compared to the original process where we do not have a general 269

formula for the density. Further, we have the property that all correlation functions 270

are independent of the length of the words. This is not obvious because the Markov 271

chain on words of length L is not reducible in any obvious way to the one on words 272

of length L � 1. This property is quite rare and very few examples are known of 273

such families of Markov chains. One such example is the asymmetric annihilation 274

process [3]. 275
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The intuition is as follows. By choosing x � 1 one prefers to add the same letter 276

as uL, and similarly, for x � 1, one prefers to add any letter in ˙ other than uL. 277

Of course, x D 1 corresponds to the uniform distribution. Therefore, one expects 278

the average word to be qualitatively different in these two cases. In the former case, 279

one expects the average word to be the same letter repeated L times, whereas in the 280

latter case, one would expect no two neighboring letters to be the same on average. 281

Our final result, a simple formula for the two-point correlation function, exemplifies 282

the different in these two cases. 283

We begin with a formula for the stationary distribution, which we will denote in 284

this specialization by N�x . We will always work with the alphabet ˙ on n letters. 285

Lemma 14. The stationary probability for a word u D u1u2 : : : uL 2 ˙L is 286

given by 287

N�x.u/ D x
.u/�1

n.1 C .n � 1/x/L�1
; (57)

where 
.u/ is the number of blocks of u. 288

Proof. Analogous to the notation for the stationary distribution, we denote the block 289

function by ˇx . From the definition of the model, 290

ˇx.ak/ D
(

x if k D 1;

1 if k > 1:
(58)

and thus, for any word u the value ˇx.u/ is x if the length of the last block in its 291

block decomposition is 1, and is 1 otherwise. The denominator in (57) is easily 292

explained. For any word u of length L, 293

X

a2˙

ˇx.t.u/:a/ D
(

1 C .n � 1/x L > 1;

nx L D 1;
(59)

because for all but one letter in ˙ , the size of the last block in t.u/:a is going to be 294

1. The only exception to this argument is, L D 1, when t.u/ is empty. From (12), 295

we get 296

N�x.u/ D ˇx.u1/ˇx.u1u2/ � � � ˇx.u1 : : : uL/

nx.1 C .n � 1/x/L�1
: (60)

The numerator is x
.u/, since we pick up a factor of x every time a new block starts.
One factor x is cancelled because ˇx.u1/ D x. ut

The formula for the density is essentially an argument about the symmetry of the 297

de Bruijn graph Gn;L. 298
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Corollary 15. The probability in the stationary state of Gn;L that site i is occupied 299

by letter a is uniform, i.e., for any i s.th. 1 � i � L we have 300

h�a;i i D 1

n
.a 2 ˙/: (61)

Proof. Indeed, by Lemma 14 the stationary distribution N�x is invariant under any
permutation of the letters of the alphabet ˙ . Hence h�a;i i does not depend on a 2 ˙

and we have uniformity. ut
Since the de Bruijn-Bernoulli process has a product measure, the density of a at 301

site i is also independent of i , but the density is not uniform since it is given by �a 302

(53). The behavior of higher correlation functions here is more complicated than the 303

de Bruijn-Bernoulli process. There is, however, one aspect in which it resembles the 304

former, namely: 305

Lemma 16. Correlation functions of Gn;L in this model are independent of the 306

length L of the words and they are shift-invariant. 307

Proof. We can represent an arbitrary correlation function in the de Bruijn graph 308

Gn;L as 309

h�a1;i1 � � � �ak;ik iL D
X

w.0/;:::;w.k/

N�x.w.0/a1w.1/ : : : w.k�1/akw.k//; (62)

where we have sites 1 � i1 < i2 < : : : < ik � L and letters a1; a2; : : : ; ak 2 ˙ , 310

and where the sum runs over all .w.0/; w.1/; : : : ; w.k// with w.j / 2 ˙isC1�is�1 for 311

s 2 f0; : : : ; kg, and where we put i0 D 0 and ikC1 D L C 1. Now note that we have 312

from Proposition 1 for any u 2 ˙k
313

X

w2˙L

N�x.w:u/ D N�x.u/: (63)

Since N�x , as given in Lemma 14, is also invariant under reversal of words, we 314

also have 315

X

w2˙L

N�x.u:w/ D N�x.u/: (64)

As a consequence, we can forget about the outermost summations in (62) and get 316

h�a1;i1 � � � �ak;ik iL D
X

w.1/;:::;w.k�1/

N�x.a1w.1/ : : : w.k�1/ak/ D h�a1;j1 � � � �ak;jk iik�i1C1; (65)
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where js D is � i1 C 1 .1 � s � k/. Shift-invariance in the sense that 317

h�a1;i1 � � � �ak;ik iL D h�a1;i1C1 � � � �ak;ikC1iL (66)

is an immediate consequence. ut
We now proceed to compute the two-point correlation function. This is an easy 318

exercise in generating functions for words according to the number of blocks. The 319

technique is known as “transfer-matrix method”, see, e.g., Sect. 4.7 in [20]. 320

For a; b 2 ˙ and k � 1 we define the generating polynomial in the variable x 321

˛n;k.a; bI x/ D
X

w2a:˙k�1:b

x
.w/�1; (67)

where, as before, 
.w/ denotes the number of blocks in the block factorization of 322

w 2 ˙C (so that 
.w/ � 1 is the number of pairs of adjacent distinct letters in w). 323

Note that 324

˛n;1.a; bI x/ D
(

1 if a D b;

x if a ¤ b:
(68)

The following statement is folklore: 325

Lemma 17. Let In denote the identity matrix and Jn denote the all-one matrix, 326

both of size n � n, and let Kn.s; t/ WD s � In C t � Jn for parameters s; t . Then 327

Kn.s; t/�1 D 1

s.s C nt/
Kn.s C nt; �t/: (69)

Indeed, this is a very special case of what is known as the Sherman-Morrison 328

formula, see [19, 26]. 329

Consider now the matrix 330

An.x/ WD Œ ˛n;1.a; bI x/ �a;b2˙ D .1 � x/ � In C x � Jn D Kn.1 � x; x/ (70)

which encodes transition in the alphabet ˙ . Then, for k � 1, An.x/k is an .n � n/- 331

matrix which in position .a; b/ contains the generating polynomial ˛n;k.a; bI x/: 332

An.x/k D Œ ˛n;k.a; bI x/ �a:b2˙ : (71)

We can get generating functions by summing the geometric series and using 333

Lemma 17: 334
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X

k�0

An.x/kzk D .In � z � An.x//�1

D Kn.1 � z C xz; �xz/�1 (72)

D Kn.1 � z � .n � 1/xz; xz/

.1 � z C xz/.1 � z � .n � 1/xz/
;

which means that for any two distinct letters a; b 2 ˙ : 335

X

k�0

˛n;k.a; aI x/ zk D 1 � z � .n � 2/xz

.1 � z C xz/.1 � z � .n � 1/xz/

D 1

n

1

1 � z � .n � 1/ xz
C n � 1

n

1

1 � z C xz
;

X

k�1

˛n;k.a; bI x/ zk D xz

.1 � z C xz/.1 � z � .n � 1/xz/

D 1

n

1

1 � z � .n � 1/ xz
� 1

n

1

1 � z C xz
;

(73)

or equivalently, 336

˛n;k.a; aI x/ D 1

n

�
.1 � .n � 1/x/k C .n � 1/.1 � x/k

�
;

˛n;k.a; bI x/ D 1

n

�
.1 � .n � 1/x/k � .1 � x/k

�
:

(74)

We thus arrive at expressions for the two-point correlation functions: 337

Proposition 18. For a; b 2 ˙ with a ¤ b and 1 � i < j � L, 338

h�a;i �a;j i D 1

n2
C n � 1

n2

�
1 � x

1 C .n � 1/x

�j �i

;

h�a;i �b;j i D 1

n2
� 1

n2

�
1 � x

1 C .n � 1/x

�j �i

:

(75)

Proof. By Lemma 16 we may assume i D 1 and j D L. Comparing Lemma 14 339

with the definition of the ˛n;k.a; bI x/ in (67) we see that for a; b 2 ˙ : 340

h�a;1�b;Li D ˛n;L�1.a; bI x/

n.1 C .n � 1/x/L�1
; (76)

so that the assertion follows from 74. ut
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The formula (75) is quite interesting because the first term, 1=n2, has a 341

significance. From the formula for the density in Corollary 15, we get 342

h�a;1�a;Li � h�a;1ih�a;Li D n � 1

n2

�
1 � x

1 C .n � 1/x

�L�1

: (77)

The object on the left hand side is called the truncated two point correlation function 343

in the physics literature, and its value is an indication of how far the stationary 344

distribution is from a product measure. In the case of a product measure, the right 345

hand side would be zero. Setting 346

˛ D 1 � x

1 C .n � 1/x
; (78)

we see that j˛j � 1, and so the truncated correlation function goes exponentially to 347

zero as L ! 1. Thus, the stationary measure N�x behaves like a product measure 348

if we do not look for observables which are close to each other. We can use (77) to 349

understand one of the differences between the values x < 1 and x > 1, namely in 350

the way this quantity converges. In the former case, the convergence is monotonic, 351

and in the latter, oscillatory. 352
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the algorithms that enable the computer to “do research” by deriving, all by 21

itself, functional equations for the generating functions that enable polynomial-time 22
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enumeration for any set of patterns. In the case of ELIZALDE (the “negative” 23

approach), these functional equations can be sometimes (automatically!) simplified, 24

and imply “explicit” formulas, that previously were derived by humans using ad-hoc 25

methods. We also get lots of new “explicit” results, beyond the scope of humans, but 26

we have to admit that we still need humans to handle “infinite families” of patterns, 27

but this too, no doubt, will soon be automatable, and we leave this as a challenge to 28

the (human and/or computer) reader. 29

Consecutive Pattern Avoidance 30

Inspired by the very active research in pattern-avoidance, pioneered by Herb 31

Wilf, Rodica Simion, Frank Schmidt, Richard Stanley, Don Knuth and others, 32

Sergi Elizalde, in his PhD thesis (written under the direction of Richard Stanley) 33

introduced the study of permutations avoiding consecutive patterns. 34

Recall that an n-permutation is a sequence of integers � D �1 : : : �n of length 35

n where each integer in f1; : : : ; ng appears exactly once. It is well-known and very 36

easy to see (today!) that the number of n-permutations is nŠ WD Qn
iD1 i . 37

The reduction of a list of different (integer or real) numbers (or members of 38

any totally ordered set) Œi1; i2; : : : ; ik�, to be denoted by R.Œi1; i2; : : : ; ik�/, is the 39

permutation of f1; 2; : : : ; kg that preserves the relative rankings of the entries. In 40

other words, pi < pj iff qi < qj . For example the reduction of Œ4; 2; 7; 5� is 41

Œ2; 1; 4; 3� and the reduction of Œ�; e; �; �� is Œ4; 3; 1; 2�. 42

Fixing a pattern p D Œp1; : : : ; pk�, a permutation � D Œ�1; : : : ; �n� avoids the 43

consecutive pattern p if for all i , 1 � i � n � k C 1, the reduction of the list 44

Œ�i ; �iC1; : : : ; �iCk�1� is not p. More generally a permutation � avoids a set of 45

patterns P if it avoids each and every pattern p 2 P. 46

The central problem is to answer the question: “Given a pattern or a set of 47

patterns, find a ‘formula’, or at least an efficient algorithm (in the sense of Wilf 48

[12]), that inputs a positive integer n and outputs the number of permutations of 49

length n that avoid that pattern (or set of patterns)”. 50

Human Research 51

After the pioneering work of Elizalde and Noy [4], quite a few people contributed 52

significantly, including Anders Claesson, Toufik Mansour, Sergey Kitaev, Anthony 53

Mendes, Jeff Remmel, and more recently, Vladimir Dotsenko, Anton Khoroshkin 54

and Boris Shapiro. Also recently we witnessed the beautiful resolution of the 55

Warlimont conjecture by Richard Ehrenborg, Sergey Kitaev, and Peter Perry [3]. 56

The latter paper also contains extensive references. 57
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Recommended Reading 58

While the present article tries to be self-contained, the readers would get more out 59

of it if they are familiar with [13]. Other applications of the umbral transfer matrix 60

method were given in [5, 14–16]. 61

The Positive Approach vs. the Negative Approach 62

We will present two complementary approaches to the enumeration of consecutive- 63

Wilf classes, both using the Umbral transfer matrix method. The positive approach 64

works better when you have many patterns, and the negative approach works better 65

when there are only a few, and works best when there is only one pattern to avoid. 66

Outline of the Positive Approach 67

Instead of dealing with avoidance (the number of permutations that have zero 68

occurrences of the given pattern(s)) we will deal with the more general problem of 69

enumerating the number of permutations that have specified numbers of occurrences 70

of any pattern of length k. 71

Fix a positive integer k, and let ftp W p 2 Skg be kŠ commuting indeterminates 72

(alias variables). Define the weight of an n-permutation � D Œ�1; : : : ; �n�, to be 73

denoted by w.�/, by: 74

w.Œ�1; : : : ; �n�/ WD
n�kC1Y

iD1

tR.Œ�i ;�iC1;:::;�iCk�1�/: 75

For example, with k D 3, 76

w.Œ2; 5; 1; 4; 6; 3�/ WD tR.Œ2;5;1�/tR.Œ5;1;4�/tR.Œ1;4;6�/tR.Œ4;6;3�/ D
D t231t312t123t231 D t123t2

231t312:
77

We are interested in an efficient algorithm for computing the sequence of polynomi- 78

als in kŠ variables 79

Pn.t1:::k; : : : ; tk:::1/ WD
X

�2Sn

w.�/; 80

or equivalently, as many terms as desired in the formal power series 81

Fk.ftp; p 2 SkgI z/ D
1X

nD0

Pnzn: 82
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Note that once we have computed the Pn (or Fk), we can answer any question 83

about pattern avoidance by specializing the t’s. For example to get the number of 84

n-permutations avoiding the single pattern p, of length k, first compute Pn, and then 85

plug-in tp D 0 and all the other t’s to be 1. If you want the number of n-permutations 86

avoiding the set of patterns P (all of the same length k), set tp D 0 for all p 2 P and 87

the other t’s to be 1. As we shall soon see, we will generate functional equations for 88

Fk , featuring the ftpg and of course it would be much more efficient to specialize the 89

tp’s to the numerical values already in the functional equations, rather than crank-out 90

the much more complicated Pn.ftpg/’s and then do the plugging-in. 91

First let’s recall one of the many proofs that the number of n-permutations, let’s 92

denote it by a.n/, satisfies the recurrence 93

a.n C 1/ D .n C 1/a.n/: 94

Given a typical member of Sn, let’s call it � D �1 : : : �n, it can be continued in nC1 95

ways, by deciding on �nC1. If �nC1 D i , then we have to “make room” for the new 96

entry by incrementing by 1 all entries � i , and then append i . This gives a bijection 97

between Sn � Œ1; n C 1� and SnC1 and taking cardinalities yields the recurrence. Of 98

course a.0/ D 1, and “solving” this recurrence yields a.n/ D nŠ. Of course this 99

solving is “cheating”, since nŠ is just shorthand for the solution of this recurrence 100

subject to the initial condition a.0/ D 1, but from now on it is considered “closed 101

form” (just by convention!). 102

When we do weighted counting with respect to the weight w with a given pattern- 103

length k, we have to keep track of the last k � 1 entries of �: 104

Œ�n�kC2 : : : �n�; 105

and when we append �nC1 D i , the new permutation (let a0 D a if a < i and 106

a0 D a C 1 if a � i ) 107

: : : � 0
n�kC2 : : : � 0

ni; 108

has “gained” a factor of tRŒ� 0
n�kC2:::� 0

ni � to its weight. 109

This calls for the finite-state method, alas, the “alphabet” is indefinitely large, so 110

we need the umbral transfer-matrix method. 111

We introduce k � 1 “catalytic” variables x1; x2; : : : ; xk�1, as well as a variable 112

z to keep track of the size of the permutation, and .k � 1/Š “linear” state variables 113

AŒq� for each q 2 Sk�1, to tell us the state that the permutation is in. Define the 114

generalized weight w0.�/ of a permutation � 2 Sn to be: 115

w0.�/ WD w.�/x
j1

1 x
j2

2 : : : x
jk�1

k�1 znAŒq�; 116

where Œj1; : : : ; jk�1�, .1 � j1 < j2 < � � � < jk�1 � n/ is the sorted list of the last 117

k � 1 entries of � , and q is the reduction of its last k � 1 entries. 118
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For example, with k D 3: 119

w0.Œ4; 7; 1; 6; 3; 5; 8; 2�/ D t231t312t132t312t123t231x2
1x8

2z8AŒ21� D
D t123t132t2

231t
2
312x2

1x8
2z8AŒ21�:

120

Let’s illustrate the method with k D 3. There are two states: Œ1; 2�; Œ2; 1� 121

corresponding to the cases where the two last entries are j1j2 or j2j1 respectively 122

(we always assume j1 < j2). 123

Suppose we are in state Œ1; 2�, so our permutation looks like 124

� D Œ: : : ; j1; j2�; 125

and w0.�/ D w.�/x
j1

1 x
j2

2 znAŒ1; 2�. We want to append i (1 � i � n C 1/ to the 126

end. There are three cases. 127

Case 1: 1 � i � j1. 128

The new permutation, let’s call it � , looks like 129

� D Œ: : : j1 C 1; j2 C 1; i �: 130

Its state is Œ2; 1� and w0.�/ D w.�/t231xi
1x

j2C1
2 znC1AŒ2; 1�. 131

Case 2: j1 C 1 � i � j2. 132

The new permutation, let’s call it � , looks like 133

� D Œ: : : j1; j2 C 1; i �: 134

Its state is now Œ2; 1� and w0.�/ D w.�/t132xi
1x

j2C1
2 znC1AŒ2; 1�. 135

Case 3: j2 C 1 � i � n C 1. 136

The new permutation, let’s call it � , looks like 137

� D Œ: : : j1; j2; i �: 138

Its state is now Œ1; 2� and w0.�/ D w.�/t123x
j2

1 xi
2znC1AŒ1; 2�. 139

It follows that any individual permutation of size n, and state Œ1; 2�, gives rise to 140

n C 1 children, and regarding weight, we have the “umbral evolution” (here W is 141

the fixed part of the weight, that does not change): 142

W x
j1

1 x
j2

2 znAŒ1; 2� ! W t231zAŒ2; 1�

 
j1X

iD1

xi
1x

j2C1
2

!

zn

CW t132zAŒ2; 1�

0

@
j2X

iDj1C1

xi
1x

j2C1
2

1

A zn

CW t123zAŒ1; 2�

0

@
nC1X

iDj2C1

x
j2

1 xi
2

1

A zn:
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Taking out of the
P

-signs whatever we can, we have: 143

W x
j1

1 x
j2

2 znAŒ1; 2� ! W t231zAŒ2; 1�

 
j1X

iD1

xi
1

!

x
j2C1
2 zn

CW t132zAŒ2; 1�

0

@
j2X

iDj1C1

xi
1

1

A x
j2C1
2 zn

CW t123zAŒ1; 2�

0

@
nC1X

iDj2C1

xi
2

1

A x
j2

1 zn:

Now summing up the geometrical series, using the ancient formula: 144

bX

iDa

Zi D Za � ZbC1

1 � Z
; 145

we get 146

W x
j1

1 x
j2

2 znAŒ1; 2� ! W t231zAŒ2; 1�

 
x1 � x

j1C1
1

1 � x1

!

x
j2C1
2 zn

CW t132zAŒ2; 1�

 
x

j1C1
1 � x

j2C1
1

1 � x1

!

x
j2C1
2 zn

CW t123zAŒ1; 2�

 
x

j2C1
2 � xnC2

2

1 � x2

!

x
j2

1 zn:

This is the same as: 147

W x
j1

1 x
j2

2 znAŒ1; 2� ! W t231zAŒ2; 1�

 
x1x

j2C1
2 � x

j1C1
1 x

j2C1
2

1 � x1

!

zn

CW t132zAŒ2; 1�

 
x

j1C1
1 x

j2C1
2 � x

j2C1
1 x

j2C1
2

1 � x1

!

zn

CW t123zAŒ1; 2�

 
x

j2

1 x
j2C1
2 � x

j2

1 xnC2
2

1 � x2

!

zn:
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This is what was called in [13], and its many sequels, a “pre-umbra”. The above 148

evolution can be expressed for a general monomial M.x1; x2; z/ as: 149

M.x1; x2; z/AŒ1; 2� ! t231zAŒ2; 1�

�
x1x2M.1; x2; z/ � x1x2M.x1; x2; z/

1 � x1

�

Ct132zAŒ2; 1�

�
x1x2M.x1; x2; z/ � x1x2M.1; x1x2; z/

1 � x1

�

Ct123zAŒ1; 2�

�
x2M.1; x1x2; z/ � x2

2M.1; x1; x2z/

1 � x2

�

:

But, by linearity, this means that the coefficient of AŒ1; 2� (the weight-enumerator 150

of all permutations of state Œ1; 2�) obeys the evolution equation: 151

f12.x1; x2; z/AŒ1; 2� ! t231zAŒ2; 1�

�
x1x2f12.1; x2; z/ � x1x2f12.x1; x2; z/

1 � x1

�

Ct132zAŒ2; 1�

�
x1x2f12.x1; x2; z/ � x1x2f12.1; x1x2; z/

1 � x1

�

Ct123zAŒ1; 2�

�
x2f12.1; x1x2; z/ � x2

2f12.1; x1; x2z/

1 � x2

�

:

Now we have to do it all over for a permutation in state Œ2; 1�. Suppose we are in 152

state Œ2; 1�, so our permutation looks like 153

� D Œ: : : ; j2; j1�; 154

and w0.�/ D w.�/x
j1

1 x
j2

2 znAŒ2; 1�. We want to append i (1 � i � n C 1/ to the 155

end. There are three cases. 156

Case 1: 1 � i � j1. 157

The new permutation, let’s call it � , looks like 158

� D Œ: : : j2 C 1; j1 C 1; i �: 159

Its state is Œ2; 1� and w0.�/ D w.�/t321xi
1x

j1C1
2 znC1AŒ2; 1�. 160

Case 2: j1 C 1 � i � j2. 161

The new permutation, let’s call it � , looks like 162

� D Œ: : : j2 C 1; j1; i �: 163

Its state is now Œ1; 2� and 164

w0.�/ D w.�/t312x
j1

1 xi
2znC1AŒ1; 2�. 165
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Case 3: j2 C 1 � i � n C 1. 166

The new permutation, let’s call it � , looks like 167

� D Œ: : : j2; j1; i �: 168

Its state is Œ1; 2� and w0.�/ D w.�/t213x
j1

1 xi
2znC1AŒ1; 2�. 169

It follows that any individual permutation of size n, and state Œ2; 1�, gives rise to 170

n C 1 children, and regarding weight, we have the “umbral evolution” (here W is 171

the fixed part of the weight, that does not change): 172

W x
j1

1 x
j2

2 znAŒ2; 1� ! W t321zAŒ2; 1�

 
j1X

iD1

xi
1x

j1C1
2

!

zn

CW t312zAŒ1; 2�

0

@
j2X

iDj1C1

x
j1

1 xi
2

1

A zn

CW t213zAŒ1; 2�

0

@
nC1X

iDj2C1

x
j1

1 xi
2

1

A zn:

Taking out of the
P

-signs whatever we can, we have: 173

W x
j1

1 x
j2

2 znAŒ2; 1� ! W t321zAŒ2; 1�

 
j1X

iD1

xi
1

!

x
j1C1
2 zn

CW t312zAŒ1; 2�

0

@
j2X

iDj1C1

xi
2

1

Ax
j1

1 zn

CW t213zAŒ1; 2�

0

@
nC1X

iDj2C1

xi
2

1

A x
j1

1 zn:

Now summing up the geometrical series, using the ancient formula: 174

bX

iDa

Zi D Za � ZbC1

1 � Z
; 175

176
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we get 177

W x
j1

1 x
j2

2 znAŒ2; 1� ! W t321zAŒ2; 1�

 
x1 � x

j1C1
1

1 � x1

!

x
j1C1
2 zn

CW t312zAŒ1; 2�

 
x

j1C1
2 � x

j2C1
2

1 � x2

!

x
j1

1 zn

CW t213zAŒ1; 2�

 
x

j2C1
2 � xnC2

2

1 � x2

!

x
j1

1 zn:

This is the same as: 178

W x
j1

1 x
j2

2 znAŒ2; 1� ! W t321zAŒ2; 1�

 
x1x

j1C1
2 � x

j1C1
1 x

j1C1
2

1 � x1

!

zn

CW t312zAŒ1; 2�

 
x

j1

1 x
j1C1
2 � x

j1

1 x
j2C1
2

1 � x2

!

zn

CW t213zAŒ1; 2�

 
x

j1

1 x
j2C1
2 � x

j1

1 xnC2
2

1 � x2

!

zn:

The above evolution can be expressed for a general monomial M.x1; x2; z/ as: 179

M.x1; x2; z/AŒ2; 1� ! t321zAŒ2; 1�

�
x1x2M.x2; 1; z/ � x1x2M.x1x2; 1; z/

1 � x1

�

Ct312zAŒ1; 2�

�
x2M.x1x2; 1; z/ � x2M.x1; x2; z/

1 � x2

�

Ct213zAŒ1; 2�

�
x2M.x1; x2; z/ � x2

2M.x1; 1; x2z/

1 � x2

�

:

But, by linearity, this means that the coefficient of AŒ2; 1� (the weight-enumerator 180

of all permutations of state Œ2; 1�) obeys the evolution equation: 181

f21.x1; x2; z/AŒ2; 1� ! t321zAŒ2; 1�

�
x1x2f21.x2; 1; z/ � x1x2f21.x1x2; 1; z/

1 � x1

�

Ct312zAŒ1; 2�

�
x2f21.x1x2; 1; z/ � x2f21.x1; x2; z/

1 � x2

�

Ct213zAŒ1; 2�

�
x2f21.x1; x2; z/ � x2

2f21.x1; 1; x2z/

1 � x2

�

:
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Combining we have the “evolution”: 182

f12.x1; x2; z/AŒ1; 2� C f21.x1; x2; z/AŒ2; 1� !

t231zAŒ2; 1�

�
x1x2f12.1; x2; z/ � x1x2f12.x1; x2; z/

1 � x1

�

Ct132zAŒ2; 1�

�
x1x2f12.x1; x2; z/ � x1x2f12.1; x1x2; z/

1 � x1

�

Ct123zAŒ1; 2�

�
x2f12.1; x1x2; z/ � x2

2f12.1; x1; x2z/

1 � x2

�

:

Ct321zAŒ2; 1�

�
x1x2f21.x2; 1; z/ � x1x2f21.x1x2; 1; z/

1 � x1

�

Ct312zAŒ1; 2�

�
x2f21.x1x2; 1; z/ � x2f21.x1; x2; z/

1 � x2

�

Ct213zAŒ1; 2�

�
x2f21.x1; x2; z/ � x2

2f21.x1; 1; x2z/

1 � x2

�

:

Now the “evolved” (new) f12.x1; x2; z/ and f21.x1; x2; z/ are the coefficients of 183

AŒ1; 2� and AŒ2; 1� respectively, and since the initial weight of both of them is 184

x1x
2
2z2, we have the established the following system of functional equations: 185

f12.x1; x2; z/ D x1x2
2z2

Ct123z

�
x2f12.1; x1x2; z/ � x2

2f12.1; x1; x2z/

1 � x2

�

Ct312z

�
x2f21.x1x2; 1; z/ � x2f21.x1; x2; z/

1 � x2

�

Ct213z

�
x2f21.x1; x2; z/ � x2

2f21.x1; 1; x2z/

1 � x2

�

;

and 186

f21.x1; x2; z/ D x1x2
2z2

Ct231z

�
x1x2f12.1; x2; z/ � x1x2f12.x1; x2; z/

1 � x1

�

Ct132z

�
x1x2f12.x1; x2; z/ � x1x2f12.1; x1x2; z/

1 � x1

�

Ct321z

�
x1x2f21.x2; 1; z/ � x1x2f21.x1x2; 1; z/

1 � x1

�

:
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Let the Computer Do It! 187

All the above was only done for pedagogical reasons. The computer can do it all 188

automatically, much faster and more reliably. Now if we want to find functional 189

equations for the number of permutations avoiding a given set of consecutive 190

patterns P, all we have to do is plug-in tp D 0 for p 2 P and tp D 1 for p 62 P. 191

This gives a polynomial-time algorithm for computing any desired number of terms. 192

This is all done automatically in the Maple package SERGI. See the webpage of this 193

article for lots of sample input and output. 194

Above we assumed that the members of the set P are all of the same length, k. 195

Of course more general scenarios can be reduced to this case, where k would be the 196

largest length that shows up in P . Note that with this approach we end up with a set 197

of .k � 1/Š functional equations in the .k � 1/Š “functions” (or rather formal power 198

series) fp . 199

The Negative Approach 200

Suppose that we want to compute quickly the first 100 terms (or whatever) of the 201

sequence enumerating n-permutations avoiding the pattern Œ1; 2; : : : ; 20�. As we 202

have already noted, using the “positive” approach, we have to set-up a system of 203

functional equations with 19Š equations and 19Š unknowns. While the algorithm is 204

still polynomial in n (and would give a “Wilfian” answer), it is not very practical! 205

(This is yet another illustration why the ruling paradigm in theoretical computer 206

science, of equating “polynomial time” with “fast” is (sometimes) absurd). 207

This is analogous to computing words in a finite alphabet, say of a letters, 208

avoiding a given word (or words) as factors (consecutive subwords). If the word-to- 209

avoid has length k, then the naive transfer-matrix method would require setting up a 210

system of ak�1 equations and ak�1 unknowns. The elegant and powerful Goulden- 211

Jackson method [6, 7], beautifully exposited and extended in [11], and even further 212

extended in [9], enables one to do it by solving one equation in one unknown. We 213

assume that the reader is familiar with it, and briefly describe the analog for the 214

present problem, where the alphabet is “infinite”. This is also the approach pursued 215

in the beautiful human-generated papers [2] and [8]. We repeat that the focus and 216

novelty in the present work is in automating enumeration, and the current topic of 217

consecutive pattern-avoidance is used as a case-study. 218

First, some generalities! For ease of exposition, let’s focus on a single pattern p 219

(the case of several patterns is analogous, see [2]). 220

Using the inclusion-exclusion “negative” philosophy for counting, fix a pattern 221

p. For any n-permutation, let Pattp.�/ be the set of occurrences of the pattern p in 222

� . For example 223
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Patt123.179234568/ D f179; 234; 345; 456; 568g;
Patt231.179234568/ D f792g;
Patt312.179234568/ D f923g;

Patt132.179234568/ D Patt213.179234568/ D Patt321.179234568/ D ;:

Consider the much larger set of pairs 224

fŒ�; S�j � 2 Sn; S � Pattp.�/g; 225

and define 226

weightpŒ�; S� WD .t � 1/jS j; 227

where jS j is the number of elements of S . For example, 228

weight123Œ179234568; f234; 568g� D .t � 1/2;

weight123Œ179234568; f179g� D .t � 1/1 D t � 1;

weight123Œ179234568; ;� D .t � 1/0 D 1:

Fix a (consecutive) pattern p of length k, and consider the weight-enumerator of 229

all n-permutations according to the weight 230

w.�/ WD t#occurrences of pattern p in � ; 231

let’s call it Pn.t/. So: 232

Pn.t/ WD
X

�2Sn

t jPattp.�/j: 233

Now we need the crucial, extremely deep, fact: 234

t D .t � 1/ C 1; 235

and its corollary (for any finite set S ): 236

t jS j D ..t � 1/ C 1/jS j D
Y

s2S

..t � 1/ C 1/ D
X

T �S

.t � 1/jT j: 237

Putting this into the definition of Pn.t/, we get: 238

Pn.t/ WD
X

�2Sn

t jPattp.�/j D
X

�2Sn

X

T �Pattp.�/

.t � 1/jT j: 239
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This is the weight-enumerator (according to a different weight, namely .t �1/jT j) of 240

a much larger set, namely the set of pairs, .�; T /, where T is a subset of Pattp.�/. 241

Surprisingly, this is much easier to handle! 242

Consider a typical such “creature” .�; T /. There are two cases 243

Case I: The last entry of � , �n does not belong to any of the members of 244

T , in which case chopping it off produces a shorter such creature, in the set 245

f1; 2; : : : ; ngnf�ng, and reducing both � and T to f1; : : : ; n � 1g yields a typical 246

member of size n � 1. Since there are n choices for �n, the weight-enumerator 247

of creatures of this type (where the last entry does not belong to any member of 248

T ) is nPn�1.t/. 249

Case II: Let’s order the members of T by their first (or last) index: 250

Œs1; s2; : : : ; sp�; 251

where the last entry of � , �n, belongs to sp . If sp and sp�1 are disjoint, the 252

ending cluster is simply Œsp�. Otherwise sp intersects sp�1. If sp�1 and sp�2 are 253

disjoint, then the ending cluster is Œsp�1; sp�. More generally, the ending cluster 254

of the pair Œ�; Œs1; : : : ; sp�� is the unique list Œsi ; : : : ; sp� that has the property that 255

si intersects siC1, siC1 intersects siC2, : : : , sp�1 intersects sp , but si�1 does not 256

intersect si . It is possible that the ending cluster of Œ�; T � is the whole T . 257

Let’s give an example: with the pattern 123. The ending cluster of the pair: 258

Œ157423689; Œ157; 236; 368; 689�� 259

is Œ236; 368; 689� since 236 overlaps with 368 (in two entries) and 368 overlaps with 260

689 (also in two entries), while 157 is disjoint from 236. 261

Now if you remove the ending cluster of T from T and remove the entries 262

participating in the cluster from � , you get a shorter creature Œ� 0; T 0� where � 0
263

is the permutation with all the entries in the ending cluster removed, and T 0 is what 264

remains of T after we removed that cluster. In the above example, we have 265

Œ� 0; T 0� D Œ1574; Œ157��: 266

Suppose that the length of � 0 is r . 267

Let Cn.t/ be the weight-enumerator, according to the weight .t � 1/jT j, of 268

canonical clusters of length n, i.e., those whose set of entries is f1; : : : ; ng. Then 269

in Case II we have to choose a subset of f1; : : : ; ng of cardinality n � r to be the set 270

of entries of Œ� 0; T 0� and then choose a creature of size n � r and a cluster of size r . 271

Combining Cases I and II, we have, P0.t/ D 1, and for n � 1: 272

Pn.t/ D nPn�1.t/ C
nX

rD2

 
n

r

!

Pn�r .t/Cr.t/: 273
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Now it is time to consider the exponential generating function 274

F.z; t/ WD
1X

nD0

Pn.t/

nŠ
zn: 275

We have 276

F.z; t/ WD 1 C
1X

nD1

Pn.t/

nŠ
zn D

D 1 C
1X

nD1

nPn�1.t/

nŠ
zn C

1X

nD0

1

nŠ

 
nX

rD2

 
n

r

!

Pn�r .t/Cr.t/

!

zn

D 1 C z
1X

nD1

Pn�1.t/

.n � 1/Š
zn�1 C

1X

nD0

1

nŠ

 
nX

rD2

nŠ

rŠ.n � r/Š
Pn�r .t/Cr.t/

!

zn

D 1 C z
1X

nD0

Pn.t/

nŠ
zn C

1X

nD0

 
nX

rD2

1

rŠ.n � r/Š
Pn�r .t/Cr.t/

!

zn

D 1 C zF.z; t/ C
1X

nD0

 
nX

rD2

Pn�r .t/

.n � r/Š
Cr.t/rŠ

!

zn

D 1 C zF.z; t/ C
 1X

n�rD0

Pn�r .t/

.n � r/Š
zn�r

! 1X

rD0

Cr.t/

rŠ
zr

!

;

277

since C0.t/ D 0; C1.t/ D 0, and this equals 278

D 1 C zF.z; t/ C F.z; t/G.z; t/; 279

where G.z; t/ is the exponential generating function of Cn.t/: 280

G.z; t/ WD
1X

nD0

Cn.t/

nŠ
zn: 281

It follows that 282

F.z; t/ D 1 C zF.z; t/ C F.z; t/G.z; t/; 283

leading to 284

F.z; t/ D 1

1 � z � G.z; t/
: 285

So if we had a quick way to compute the sequence Cn.t/, we would have a quick 286

way to compute the first whatever coefficients (in z) of F.z; t/ (i.e., as many Pn.t/ 287

as desired). 288
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A Fast Way to Compute Cn.t/ 289

For the sake of pedagogy let the fixed pattern be 1324. Consider a typical cluster 290

Œ13254768; Œ1325; 2547; 4768��: 291

If we remove the last atom of the cluster, we get the cluster 292

Œ132547; Œ1325; 2547��; 293

of the set f1; 2; 3; 4; 5; 7g. Its canonical form, reduced to the set f1; 2; 3; 4; 5; 6g, is: 294

Œ132546; Œ1325; 2546��: 295

Because of the “Markovian property” (chopping the last atom of the clusters and 296

reducing yields a shorter cluster), we can build-up such a cluster, and in order to 297

know how to add another atom, all we need to know is the current last atom. If the 298

pattern is of length k (in this example, k D 4), we need only to keep track of the last 299

k entries. Let the sorted list (from small to large) be i1 < � � � < ik, so the last atom of 300

the cluster (with r atoms) is sr D Œip1 ; : : : ; ipk
�, where 1 � i1 < i2 < � � � < ik � n is 301

some increasing sequence of k integers between 1 and n. We introduce k catalytic 302

variables x1; : : : ; xk , and define 303

Weight.Œs1; : : : ; sr�1; Œip1 ; : : : ; ipk
��/ WD zn.t � 1/rx

i1
1 � � � xik

k : 304

Going back to the 1324 example, if we currently have a cluster with r atoms, 305

whose last atom is Œi1; i3; i2; i4�, how can we add another atom? Let’s call it 306

Œj1; j3; j2; j4�. This new atom can overlap with the former one in two possibilities. 307

(a) If the overlap is of length 2: 308

j1 D i2 j3 D i4; 309

but because of the “reduction” (making room for the new entries) it is really 310

j1 D i2 j3 D i4 C 1; 311

(and j2 and j4 can be what they wish as long as i2 < j2 < i4 C 1 < j4 � n). 312

(b) If the overlap is of length 1: 313

j1 D i4 314

(and j2; j3; j4 can be what they wish, provided that i4 < j2 < j3 < j4 � n). 315



UNCORRECTED
PROOF

136 A. Baxter et al.

Hence we have the “umbral-evolution”: 316

zn.t � 1/r�1x
i1
1 x

i2
2 x

i3
3 x

i4
4 ! znC2.t � 1/r

X

1�j1Di2<j2<j3Di4C1<j4�n

x
j1

1 x
j2

2 x
j3

3 x
j4

4

CznC3.t � 1/r
X

1�j1Di4<j2<j3<j4�n

x
j1

1 x
j2

2 x
j3

3 x
j4

4 :

These two iterated geometrical sums can be summed exactly, and from this “pre- 317

umbra” the computer can deduce (automatically!) the umbral operator, yielding a 318

functional equation for the ordinary generating function 319

C.t; zI x1; : : : ; xk/ D
1X

nD0

Cn.t I x1; : : : ; xk/zn; 320

of the form 321

C.t; zI x1; : : : ; xk/ D .t � 1/zkx1x2
2 : : : xk

k C
C P

˛ R˛.x1; : : : ; xk I t; z/C.t; zI M ˛
1 ; : : : ; M ˛

k /;
322

where f˛g is a finite index set, M ˛
1 ; : : : ; M ˛

k are specific monomials in x1, : : : , xk , 323

z, derived by the algorithm, and R˛ are certain rational functions of their arguments, 324

also derived by the algorithm. 325

Once again, the novelty here is that everything (except for the initial Maple 326

programming) is done automatically by the computer. It is the computer doing 327

combinatorial research all on its own! 328

Post-processing the Functional Equation 329

At the end of the day we are only interested in C.t; zI 1; : : : ; 1/. Alas, plugging 330

in x1 D 1; x2 D 1; : : : ; xk D 1 would give lots of 0=0. Taking the limits, and 331

using L’Hôpital, is an option, but then we get a differential equation that would 332

introduce differentiations with respect to the catalytic variables, and we would not 333

gain anything. 334

But it so happens, in many cases, that the functional operator preserves some of 335

the exponents of the x0
i s. For example for the pattern 321 the last three entries are 336

always Œ3; 2; 1�, and one can do a change of dependent variable: 337

C.t; zI x1; : : : ; x3/ D x1x
2
2x3

3g.zI t/; 338

and now plugging in x1 D 1; x2 D 1; x3 D 1 is harmless, and one gets a 339

much simpler functional equation with no catalytic variables, that turns out to be 340

(according to S.B. Ekhad) the simple algebraic equation 341
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g.z; t/ D �.t � 1/z2 � .t � 1/.z C z2/g.z; t/; 342

that in this case can be solved in closed-form (reproducing a result that goes back 343

to [EN]). Other times (like the pattern 231), we only get rid of some of the catalytic 344

variables. Putting 345

C.t; zI x1; : : : ; x3/ D x1x2
2g.x3; zI t/; 346

(and then plugging in x1 D 1; x2 D 1) gives a much simplified functional equation, 347

and now taking the limit x3 ! 1 and using L’Hôpital (that Maple does all by 348

itself) one gets a pure differential equation for g.1; zI t/, in z, that sometimes can 349

be even solved in closed form (automatically by Maple). But from the point of view 350

of efficient enumeration, it is just as well to leave it at that. 351

Any pattern p is trivially equivalent to (up to) three other patterns (its reverse, its 352

complement, and the reverse-of-the-complement, some of which may coincide). It 353

turns out that out of these (up to) four options, there is one that is easiest to handle, 354

and the computer finds this one, by finding which ones gives the simplest functional 355

(or, if in luck, differential or algebraic) equation, and goes on to handle only this 356

representative. 357

The Maple Package ELIZALDE 358

All of this is implemented in the Maple package ELIZALDE, that automatically 359

produces theorems and proofs. Lots of sample output (including computer-generated 360

theorems and proofs) can be found on the webpage of this article: 361

http://www.math.rutgers.edu/�zeilberg/mamarim/mamarimhtml/auto.html. 362

In particular, to see all theorems and proofs for patterns of lengths 3 through 5 go to 363

(respectively): 364

http://www.math.rutgers.edu/�zeilberg/tokhniot/sergi/oEP3 200, 365

http://www.math.rutgers.edu/�zeilberg/tokhniot/sergi/oEP4 60, 366

http://www.math.rutgers.edu/�zeilberg/tokhniot/sergi/oEP5 40. 367

If the proofs bore you, and by now you believe Shalosh B. Ekhad, and you only want 368

to see the statements of the theorems, for lengths 3 through 6 go to (respectively): 369

http://www.math.rutgers.edu/�zeilberg/tokhniot/sergi/oET3 200, 370

http://www.math.rutgers.edu/�zeilberg/tokhniot/sergi/oET4 60, 371

http://www.math.rutgers.edu/�zeilberg/tokhniot/sergi/oET5 40, 372

http://www.math.rutgers.edu/�zeilberg/tokhniot/sergi/oET6 30. 373

Humans, with their short attention spans, would probably soon get tired of even 374

the statements of most of the theorems of this last file (for patterns of length 6). 375

In addition to “symbol crunching” this package does quite a lot of “number 376

crunching” (of course using the former). To see the “hit parade”, ranked by size, 377

together with the conjectured asymptotic growth for single cons̃ecũtive-pattern 378

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/auto.html
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oEP3_200
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oEP4_60
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oEP5_40
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oET3_200
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oET4_60
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oET5_40
http://www.math.rutgers.edu/~zeilberg/tokhniot/sergi/oET6_30
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avoidance of lengths between 3 and 6, see, respectively, the output files: 379

http://www.math.rutgers.edu/�zeilberg/tokhniot/sergi/oE3 200, 380

http://www.math.rutgers.edu/�zeilberg/tokhniot/sergi/oE4 60, 381

http://www.math.rutgers.edu/�zeilberg/tokhniot/sergi/oE5 40, 382

http://www.math.rutgers.edu/�zeilberg/tokhniot/sergi/oE6 30. 383

Enjoy! 384
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3F2-Series 2
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Abstract Several closed formulae are established for terminating Watson–like 4

hypergeometric 3F2-series by investigating, through Gould and Hsu’s fundamental 5

pair of inverse series relations, the dual relations of Dougall’s formula for the very 6

well–poised 5F4-series. 7

1 Introduction and Preliminaries 8

Following Bailey [1], the classical hypergeometric series, for an indeterminate z and 9

two nonnegative integers p and q, is defined by 10

1CpFq

�
a0; a1; � � � ; ap

b1; � � � ; bq

ˇ̌
ˇ z

�
D

1X
kD0

.a0/k.a1/k � � � .ap/k

kŠ.b1/k � � � .bq/k

zk

where the rising shifted–factorial reads as 11

.x/0 D 1 and .x/n D x.x C 1/ � � � .x C n � 1/ for n 2 N

with its multi–parameter form being abbreviated as 12

�
˛; ˇ; � � � ; �

A; B; � � � ; C

�
n

D .˛/n.ˇ/n � � � .�/n

.A/n.B/n � � � .C /n

: 13
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When one of numerator parameters fakg is a negative integer, then the 14

hypergeometric series becomes terminating, which reduces to a polynomial in z. 15

Around 15 years ago, Chu [3, 4] devised a systematic approach “inversion 16

techniques” to prove terminating hypergeometric series identities. The method is 17

based on a fundamental pair of the inverse series relations discovered by Gould 18

and Hsu [9, 1973]. For its extensions and further applications, the interested reader 19

may refer to the papers [2,5,6]. In order to facilitate the subsequent application, we 20

reproduce Gould and Hsu’s inversions as follows. Let fak; bkgk�0 be two sequences 21

such that the '-polynomials defined by 22

'.xI 0/ � 1 and '.xI n/ D
n�1Y
kD0

.ak C xbk/ with n 2 N (1)

differ from zero for x; n 2 N0. Then there hold the inverse series relations 23

f .m/ D
mX

kD0

.�1/k
�

m

k

�
'.kI m/g.k/I (2)

g.m/ D
mX

kD0

.�1/k
�

m

k

� ak C kbk

'.mI k C 1/
f .k/: (3)

Among numerous summation formulae for hypergeometric series, Dougall’s 24

theorem [8, 1907] (cf. Bailey [1, �4.4]) for the very well–poised 5F4–series has 25

been very useful. One of its terminating version can be expressed as 26

5F4

"
u; 1 C u

2
; 1

2
C u � v; �m

2
; 1�m

2
u
2
; 1

2
C v; u C 2Cm

2
; u C 1Cm

2

ˇ̌
ˇ 1

#
D
�

1 C 2u; v
1
2

C u; 2v

�
m

: 27

By investigating, through the inversion machinery, linear combinations of the last 28

5F4-series with different parameter settings for u; v and m, we shall evaluate the 29

following terminating 3F2–series 30

W";ı.mju; v/ D 3F2

��m; m C 2u; v

u C "
2
; ı C 2v

ˇ̌
ˇ 1

�
(4)

where " and ı are integers. They can be considered as terminating variants of 31

Watson’s 3F2-series (cf. Bailey [1, �3.3 and �3.4] and [14]) 32

3F2

�
a; b; c

1CaCb
2

; 2c

ˇ̌̌
1

�
D �

"
1
2
; 1CaCb

2
; 1

2
C c; 1�a�b

2
C c

1Ca
2

; 1Cb
2

; 1�a
2

C c; 1�b
2

C c

#
33

because when terminating by a D �m and b D m C 2u, this series can be restated 34

equivalently as Watson’s original expression [15] 35
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3F2

��m; m C 2u; v

u C 1
2
; 2v

ˇ̌̌
1

�
D

8̂
<̂
ˆ̂:

"
1
2
; 1

2
C u � v

1
2

C u; 1
2

C v

#

n

; m D 2nI

0; m D 2n C 1:

36

This identity results in the dual formula of the Dougall sum via Gould and Hsu’s 37

inversion pair (2) and (3). To illustrate our approach, this can be confirmed briefly 38

as follows. Write equivalently the foregoing 5F4-series in terms of a binomial sum 39

Dm.u; v/D
�

2u; v

u C 1
2
; 2v

�
m

D
X
k�0

 
m

2k

!
2u C 4k

.2u C m/2kC1

�
u; u � v C 1

2

v C 1
2

�
k

.2k/Š

kŠ
: (5)

Observe that the last equation can be obtained from (3) by specifying 40

g.m/ D
�

2u; v

u C 1
2
; 2v

�
m

and '.xI n/ D .2u C x/n 41

as well as 42

f .2k/ D .2k/Š

kŠ

�
u; u � v C 1

2

v C 1
2

�
k

and f .2k C 1/ D 0: 43

We have the dual relation corresponding to (2) as follows 44

mX
kD0

.�1/k

 
m

k

!
.2uCk/m

�
2u; v

u C 1
2
; 2v

�
k

D

8̂̂
<
ˆ̂:

.2n/Š

nŠ

"
u; u � v C 1

2

v C 1
2

#

n

; m D 2nI

0; m D 2n C 1:

45

In terms of hypergeometric series, this becomes Watson’s original identity. 46

This example encourages us to explore further identities for the 3F2-series 47

displayed in (4). In the next section, nine identities for W";ı.mju; v/ will be shown 48

in detail by applying the Gould–Hsu inversions (2) and (3) to linear combinations 49

of Dm.u; v/ displayed in (5). The same approach can be employed to demonstrate 50

further identities with 22 selected ones being tabulated in the third section, which 51

cover the formulae for W";ı.mju; v/ with " and ı being small integers. 52

Fifteen years ago, Lewanowicz [13] succeeded in determining analytical formu- 53

lae for generalized Watson series, which have further been improved by Chu [7] 54

recently. However, the formulae derived in these both papers are too involved 55

in double sum expressions. Compared with the method utilized in [7, 13], the 56

approach employed here is totally different and more direct as it leads to finding 57

several elegant formulae expressed in terms of factorial quotients by treating directly 58

with the terminating series W";ı.mju; v/. To our knowledge, most of the identities 59

proved in this paper do not seem to have explicitly appeared previously except for 60
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Theorem 5 whose particular case has been found by Larcombe and Larsen [12] 61

recently. In order to assure the accuracy of mathematical computations, we have 62

appropriately devised a Mathematica package to check all the displayed formulae. 63

2 Nine Identities and Their Proofs 64

By utilizing Gould and Hsu’s inversion pair (2) and (3) to linear combinations 65

of Dm.u; v/ displayed in (5), this section will demonstrate nine identities for 66

W";ı.mju; v/, which are divided into nine subsections with subsection headers being 67

labeled by ."; ı/ parameters. 68

2.1 " D 0 and ı D 0 69

For the following Dougall sum 70

�
2u; v

u; 2v

�
m

D 2u C 2m

2u C m
Dm.u C 1

2
; v/ 71

we can write it explicitly as 72

�
2u; v

u; 2v

�
m

D .2u C 2m/
X
k�0

 
m

2k

!
2u C 4k C 1

.2u C m/2kC2

�
u C 1

2
; u � v C 1

v C 1
2

�
k

.2k/Š

kŠ
:

According to the two–term relation 73

2u C 2m D .2u C m C 2k C 1/.2u C 4k/

2u C 4k C 1
C .m � 2k/.2u C 4k C 2/

2u C 4k C 1
74

we get correspondingly the expression of two binomial sums 75

�
2u; v

u; 2v

�
m

D
X
k�0

 
m

2k

!
.2u C 4k/f .2k/

.2u C m/2kC1

�
X
k�0

 
m

2k C 1

!
.2u C 4k C 2/f .2k C 1/

.2u C m/2kC2

76

where f .k/ is given explicitly by 77

f .2k/ D .2k/Š

kŠ

�
u C 1

2
; u � v C 1

v C 1
2

�
k

;

f .2k C 1/ D � .2k C 1/Š

kŠ

�
u C 1

2
; u � v C 1

v C 1
2

�
k

:
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Comparing the last equation with (3) under the specifications 78

g.m/ D
�

2u; v

u; 2v

�
m

and '.xI n/ D .2u C x/n

we find the following dual relation corresponding to (2) 79

mX
kD0

.�1/k

 
m

k

!
.2u C k/m

�
2u; v

u; 2v

�
k

D
8<
:

f .2n/; m D 2nI
f .2n C 1/; m D 2n C 1:

In terms of hypergeometric series, this yields the following identity. 80

Theorem 1 (Terminating series identity). 81

3F2

��m; m C 2u; v

u; 2v

ˇ̌
ˇ 1

�
D

8̂
ˆ̂̂̂<
ˆ̂̂̂̂
:

"
1
2
; u � v C 1

u; v C 1
2

#

n

; m D 2nI
"

3
2
; u � v C 1

u C 1; v C 1
2

#

n

�1

2u
; m D 2n C 1:

2.2 " D 2 and ı D 0 82

The following Dougall sum 83

�
2u; v

u C 1; 2v

�
m

D 2u

2u C m
Dm.u C 1

2
; v/

can analogously be restated as the equality 84

�
2u; v

u C 1; 2v

�
m

D 2u
X
k�0

 
m

2k

!
2u C 4k C 1

.2u C m/2kC2

�
u C 1

2
; u � v C 1

v C 1
2

�
k

.2k/Š

kŠ
:

Inserting the expression 85

1 D 2u C m C 2k C 1

2u C 4k C 1
� m � 2k

2u C 4k C 1
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into the binomial sum, we can reformulate it as 86

�
2u; v

u C 1; 2v

�
m

D
X
k�0

 
m

2k

!
.2u C 4k/f .2k/

.2u C m/2kC1

�
X
k�0

 
m

2k C 1

!
.2u C 4k C 2/f .2k C 1/

.2u C m/2kC2

where f .k/ is given explicitly by 87

f .2k/ D .2k/Š

kŠ

�
u C 1

2
; u � v C 1

v C 1
2

�
k

u

u C 2k
;

f .2k C 1/ D .2k C 1/Š

kŠ

�
u C 1

2
; u � v C 1

v C 1
2

�
k

u

u C 2k C 1
:

This equation matches exactly (3) under the following specifications 88

g.m/ D
�

2u; v

u C 1; 2v

�
m

and '.xI n/ D .2u C x/n: 89

Then the dual relation corresponding to (2) reads as 90

mX
kD0

.�1/k

 
m

k

!
.2u C k/m

�
2u; v

u C 1; 2v

�
k

D
8<
:

f .2n/; m D 2nI
f .2n C 1/; m D 2n C 1:

91

In terms of hypergeometric series, this gives the following identity. 92

Theorem 2 (Terminating series identity). 93

3F2

��m; m C 2u; v

u C 1; 2v

ˇ̌̌
1

�
D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

"
1
2
; u � v C 1

u; v C 1
2

#

n

u

u C 2n
; m D 2nI

"
3
2
; u � v C 1

u C 1; v C 1
2

#

n

1

2.u C 2n C 1/
; m D 2n C 1:

94
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2.3 " D 0 and ı D 1 95

According to the linear combination 96

�
2u; v

u; 2v C 1

�
m

D 4.u � v/

2u C m
Dm.u C 1

2
; v/

� 2.u � 2v/.2v C m C 1/

.2u C m/.2v C 1/
Dm.u C 1

2
; v C 1/

there holds explicitly the following equality 97

�
2u; v

u; 2v C 1

�
m

D
X
k�0

 
m

2k

!
2u C 4k C 1

.2u C m/2kC2

�
u C 1

2
; u � v

v C 3
2

�
k

.2k/Š

kŠ

� 4.u � v C k/.2v C 2k C 1/ � 2.u � 2v/.2v C m C 1/

2v C 1
:

Reformulating the fraction displayed in the last line 98

.2u C m C 2k C 1/.2v C 2k C 1/.2u C 4k/

.2u C 4k C 1/.2v C 1/
� .m � 2k/.2u C 4k C 2/.2u � 2v C 2k/

.2u C 4k C 1/.2v C 1/
99

100

we have correspondingly the binomial sum expression 101

�
2u; v

u; 2v C 1

�
m

D
X
k�0

 
m

2k

!
.2u C 4k/f .2k/

.2u C m/2kC1

�
X
k�0

 
m

2k C 1

!
.2u C 4k C 2/f .2k C 1/

.2u C m/2kC2

where f .k/ is given explicitly by 102

f .2k/ D .2k/Š

kŠ

�
u C 1

2
; u � v

v C 1
2

�
k

;

f .2k C 1/ D .2k C 1/Š

kŠ

�
u C 1

2
; u � v

v C 3
2

�
k

2u � 2v C 2k

2v C 1
:

This equation fits in well with (3) under the following specifications 103

g.m/ D
�

2u; v

u; 2v C 1

�
m

and '.xI n/ D .2u C x/n: 104
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Then the dual relation corresponding to (2) results in 105

mX
kD0

.�1/k

 
m

k

!
.2u C k/m

�
2u; v

u; 2v C 1

�
k

D
8<
:

f .2n/; m D 2nI
f .2n C 1/; m D 2n C 1:

106

In terms of hypergeometric series, this becomes the following identity. 107

Theorem 3 (Terminating series identity). 108

3F2

��m; m C 2u; v

u; 2v C 1

ˇ̌
ˇ 1

�
D

8̂
ˆ̂̂̂<
ˆ̂̂̂̂
:

"
1
2
; u � v

u; v C 1
2

#

n

; m D 2nI
"

1
2
; u � v

u; v C 1
2

#

nC1

; m D 2n C 1:

109

2.4 " D 1 and ı D 1 110

From the linear combination 111

�
2u; v

u C 1
2
; 2v C 1

�
m

D Dm.u; v/ � 2um

.2u C m/.2v C 1/
Dm�1.u C 1; v C 1/ 112

we can write it explicitly as the following equality 113

�
2u; v

u C 1
2
; 2v C 1

�
m

D
X
k�0

 
m

2k

!
2u C 4k

.2u C m/2kC1

�
u; u � v C 1

2

v C 1
2

�
k

.2k/Š

kŠ

� 2um

.2u C m/.2v C 1/

X
k�0

 
m � 1

2k

!
2u C 4k C 2

.2u C m C 1/2kC1

�
u C 1; u � v C 1

2

v C 3
2

�
k

.2k/Š

kŠ
:

This can be reformulated, in turn, as the binomial sum expression 114

�
2u; v

uC 1
2
; 2vC1

�
m

D
X
k�0

 
m

2k

!
.2uC4k/f .2k/

.2u C m/2kC1

�
X
k�0

 
m

2kC1

!
.2uC4kC2/f .2kC1/

.2u C m/2kC2
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where f .k/ is given explicitly by 115

f .2k/ D .2k/Š

kŠ

�
u; u � v C 1

2

v C 1
2

�
k

;

f .2k C 1/ D .2k C 1/Š

kŠ

�
u C 1; u � v C 1

2

v C 3
2

�
k

2u

2v C 1
:

Comparing the last equation with (3) specified by 116

g.m/ D
�

2u; v

u C 1
2
; 2v C 1

�
m

and '.xI n/ D .2u C x/n 117

we can write down the dual relation corresponding to (2) as 118

mX
kD0

.�1/k

 
m

k

!
.2u C k/m

�
2u; v

u C 1
2
; 2v C 1

�
k

D
8<
:

f .2n/; m D 2nI
f .2n C 1/; m D 2n C 1I

119

which is equivalent to the following hypergeometric series identity. 120

Theorem 4 (Terminating series identity). 121

3F2

��m; m C 2u; v

u C 1
2
; 2v C 1

ˇ̌
ˇ 1

�
D

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

"
1
2
; u � v C 1

2

u C 1
2
; v C 1

2

#

n

; m D 2nI
"

3
2
; u � v C 1

2

u C 1
2
; v C 3

2

#

n

1

2v C 1
; m D 2n C 1:

122

2.5 " D 2 and ı D 1 123

Taking into account of linear combination 124

�
2u C 1; v

u C 1; 2v C 1

�
m

D 2Dm.u C 1
2
; v/ � 2v C m C 1

2v C 1
Dm.u C 1

2
; v C 1/

we have explicitly the following binomial equality 125

�
2u C 1; v

u C 1; 2v C 1

�
m

D
X
k�0

 
m

2k

!
2u C 4k C 1

.2u C m C 1/2kC1

�
u C 1

2
; u � v

v C 3
2

�
.2k/Š

kŠ

� 2.u � v C k/.2v C 2k C 1/ � .u � v/.2v C m C 1/

.u � v/.2v C 1/
:
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Reformulating the fraction displayed in the last line 126

.2uCmC2kC1/.2vC2kC1/.u�vC2k/

.2u C 4k C 1/.u � v/.2v C 1/
� .m�2k/.uCvC2kC1/.2u�2vC2k/

.2u C 4k C 1/.u � v/.2v C 1/
127

we have correspondingly the binomial sum expression 128

�
2u; v

uC1; 2vC1

�
m

D
X
k�0

 
m

2k

!
.2u C 4k/f .2k/

.2u C m/2kC1

�
X
k�0

 
m

2k C 1

!
.2u C 4k C 2/f .2k C 1/

.2u C m/2kC2

where f .k/ is given explicitly by 129

f .2k/ D .2k/Š

kŠ

�
u C 1

2
; u � v

v C 1
2

�
k

u.u � v C 2k/

.u � v/.u C 2k/
;

f .2k C 1/ D .2k C 1/Š

kŠ

�
u C 1

2
; u � v C 1

v C 3
2

�
k

2u.u C v C 2k C 1/

.2v C 1/.u C 2k C 1/
:

The last equation can be obtained from (3) under the specifications 130

g.m/ D
�

2u; v

u C 1; 2v C 1

�
m

and '.xI n/ D .2u C x/n: 131

Then the dual relation corresponding to (2) reads as 132

mX
kD0

.�1/k

 
m

k

!
.2u C k/m

�
2u; v

u C 1; 2v C 1

�
k

D
8<
:

f .2n/; m D 2nI
f .2n C 1/; m D 2n C 1:

133

In terms of hypergeometric series, this can be stated as the identity. 134

Theorem 5 (Terminating series identity). 135

3F2

��m; m C 2u; v

u C 1; 2v C 1

ˇ̌
ˇ 1

�
D

8̂
ˆ̂̂̂<
ˆ̂̂̂̂
:

"
1
2
; u � v

u; v C 1
2

#

n

u.u � v C m/

.u � v/.u C m/
; m D 2nI

"
3
2
; u � v C 1

u C 1; v C 3
2

#

n

.u C v C m/

.2v C 1/.u C m/
; m D 2n C 1:

136
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When u D 1, v D 1
2

and m D 2n � 1, this theorem becomes the following identity 137

3F2

�
1
2
; 1 C 2n; 1 � 2n

2; 2

ˇ̌̌
1

�
D 1 C 4n

2n

�
1
2
; 1

2

1; 1

�
n

for n � 1: 138

Larcombe and Larsen [12] proved recently its equivalent binomial sum 139

16n

2nX
kD0

4k

 
1
2

k

! 
� 1

2

k

! 
�2k

2n � k

!
D .1 C 4n/

 
2n

n

!2

140

which has been the primary motivation for us to investigate W";ı.mju; v/. 141

Further different proofs of the last identity can be found in the papers by 142

Gessel–Larcombe [10] and Koepf–Larcombe [11], where generating function 143

approach and computer algebra have respectively been employed. 144

2.6 " D 0 and ı D �1 145

The linear combination 146

�
2u; v

u; 2v � 1

�
m

D 4
v C m � 1

2u C m
Dm.u C 1

2
; v � 1/

C 2.u � 2v C 2/.2v C m � 1/

.2u C m/.2v � 1/
Dm.u C 1

2
; v/

is equivalent to the following binomial equality 147

�
2u; v

u; 2v � 1

�
m

D
X
k�0

 
m

2k

!
2u C 4k C 1

.2u C m/2kC2

�
u C 1

2
; u � v C 1

v C 1
2

�
k

.2k/Š

kŠ

�
�

4.vCm�1/.u�vCkC1/.2vC2k�1/

.u�vC1/.2v�1/
C 2.u�2vC2/.2vCm�1/

2v�1

�
:

Reformulating the fraction inside the braces as 148

.2u C m C 2k C 1/.2u C 4k/.2v C 2k � 1/.u � v C 2k C 1/

.2u C 4k C 1/.u � v C 1/.2v � 1/

C 2.m � 2k/.2u C 4k C 2/.u C v C 2k/.u � v C k C 1/

.2u C 4k C 1/.u � v C 1/.2v � 1/
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we have correspondingly the binomial sum expression 149

�
2u; v

u; 2v � 1

�
m

D
X
k�0

 
m

2k

!
.2u C 4k/f .2k/

.2u C m/2kC1

�
X
k�0

 
m

2k C 1

!
.2u C 4k C 2/f .2k C 1/

.2u C m/2kC2

where f .k/ is given explicitly by 150

f .2k/ D .2k/Š

kŠ

�
u C 1

2
; u � v C 1

v � 1
2

�
k

u � v C 2k C 1

u � v C 1
;

f .2k C 1/ D .2k C 1/Š

kŠ

�
u C 1

2
; u � v C 2

v C 1
2

�
k

2u C 2v C 4k

1 � 2v
:

This equation matches exactly (3) under the following specifications 151

g.m/ D
�

2u; v

u; 2v � 1

�
m

and '.xI n/ D .2u C x/n: 152

Then the dual relation corresponding to (2) give rise to 153

mX
kD0

.�1/k

 
m

k

!
.2u C k/m

�
2u; v

u; 2v � 1

�
k

D
8<
:

f .2n/; m D 2nI
f .2n C 1/; m D 2n C 1I

154

which leads to the following hypergeometric series identity. 155

Theorem 6 (Terminating series identity). 156

3F2

��m; m C 2u; v

u; 2v � 1

ˇ̌
ˇ 1

�

D

8̂
ˆ̂̂̂<
ˆ̂̂̂
:̂

"
1
2
; u � v C 1

u; v � 1
2

#

n

u � v C 2n C 1

u � v C 1
; m D 2nI

"
1
2
; u � v C 2

u; v � 1
2

#

nC1

u C v C 2n

v � u � n � 2
; m D 2n C 1:
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2.7 " D 1 and ı D �1 157

For the linear combination 158

�
2u; v

u C 1
2
; 2v � 1

�
m

D Dm.u; v � 1/ � 2um

.2u C m/.1 � 2v/
Dm�1.u C 1; v/ 159

we can state it explicitly the following equality 160

�
2u; v

u C 1
2
; 2v � 1

�
m

D
X
k�0

 
m

2k

!
2u C 4k

.2u C m/2kC1

�
u; u � v C 3

2

v � 1
2

�
k

.2k/Š

kŠ

� 2um

.2u C m/.1 � 2v/

X
k�0

 
m � 1

2k

!
2u C 4k C 2

.2u C m C 1/2kC1

�
u C 1; u � v C 3

2

v C 1
2

�
k

.2k/Š

kŠ
:

This is, in turn, equivalent to the binomial sum expression 161

�
2u; v

u C 1
2
; 2v � 1

�
m

D
X
k�0

 
m

2k

!
.2uC4k/f .2k/

.2uCm/2kC1
�
X
k�0

 
m

2k C 1

!
.2uC4kC2/f .2kC1/

.2uCm/2kC2
162

where f .k/ is given explicitly by 163

f .2k/ D .2k/Š

kŠ

�
u; u � v C 3

2

v � 1
2

�
k

;

f .2k C 1/ D .2k C 1/Š

kŠ

�
u C 1; u � v C 3

2

v C 1
2

�
k

2u

1 � 2v
:

Comparing this equation with (3) specified by 164

g.m/ D
�

2u; v

u C 1
2
; 2v � 1

�
m

and '.xI n/ D .2u C x/n 165

we get the dual relation corresponding to (2) 166

mX
kD0

.�1/k

 
m

k

!
.2u C k/m

�
2u; v

u C 1
2
; 2v � 1

�
k

D
8<
:

f .2n/; m D 2nI
f .2n C 1/; m D 2n C 1I

167

which results in the following hypergeometric series identity. 168
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Theorem 7 (Terminating series identity). 169

3F2

��m; m C 2u; v

u C 1
2
; 2v � 1

ˇ̌
ˇ 1

�
D

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

"
1
2
; u � v C 3

2

u C 1
2
; v � 1

2

#

n

; m D 2nI
"

3
2
; u � v C 3

2

u C 1
2
; v C 1

2

#

n

1

1 � 2v
; m D 2n C 1:

170

2.8 " D 2 and ı D �1 171

The following Dougall sum 172

�
2u; v

u C 1; 2v � 1

�
m

D 2u.2v C m � 1/

.2u C m/.2v � 1/
Dm.u C 1

2
; v/ 173

can be expressed in terms of binomial sum 174

�
2u; v

u C 1; 2v � 1

�
m

D 2u.2v C m � 1/

2v � 1

�
X
k�0

 
m

2k

!
2u C 4k C 1

.2u C m/2kC2

�
u C 1

2
; u � v C 1

v C 1
2

�
k

.2k/Š

kŠ
:

Substituting the linear factor 175

2v C m � 1 D .2u C m C 2k C 1/.2v C 2k � 1/

2u C 4k C 1
C 2.m � 2k/.u � v C k C 1/

2u C 4k C 1
176

into the binomial sum, we get 177

�
2u; v

u C 1; 2v � 1

�
m

D
X
k�0

 
m

2k

!
.2u C 4k/f .2k/

.2u C m/2kC1

�
X
k�0

 
m

2k C 1

!
.2u C 4k C 2/f .2k C 1/

.2u C m/2kC2

where f .k/ is given explicitly by 178

f .2k/ D .2k/Š

kŠ

�
u C 1

2
; u � v C 1

v � 1
2

�
k

u

u C 2k
;

f .2k C 1/ D .2k C 1/Š

kŠ

�
u C 1

2
; u � v C 1

v C 1
2

�
k

2u.u � v C k C 1/

.1 � 2v/.u C 2k C 1/
:
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This equation fits in well with (3) under the following specifications 179

g.m/ D
�

2u; v

u C 1; 2v � 1

�
m

and '.xI n/ D .2u C x/n: 180

Then the dual relation corresponding to (2) becomes 181

mX
kD0

.�1/k

 
m

k

!
.2u C k/m

�
2u; v

u C 1; 2v � 1

�
k

D
8<
:

f .2n/; m D 2nI
f .2n C 1/; m D 2n C 1:

182

In terms of hypergeometric series, this reads as the following identity. 183

Theorem 8 (Terminating series identity). 184

3F2

��m; m C 2u; v

u C 1; 2v � 1

ˇ̌
ˇ 1

�
D

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

"
1
2
; u � v C 1

u C 1; v � 1
2

#

n

u C n

u C 2n
; m D 2nI

�
"

1
2
; u � v C 1

u C 1; v � 1
2

#

nC1

u C n C 1

u C 2n C 1
; m D 2n C 1:

185

2.9 " D 3 and ı D �1 186

This is the hardest case we have ever encountered in this research which cannot be 187

treated directly by inverting combinations of Dougall’s sum Dm.u; v/. Therefore we 188

have to consider the rational function defined by 189

h.�/ D .1 � v � �/b m
2 c

u C � C 1=2
D P.�/ C .3=2 C u � v/b m

2 c
u C � C 1=2

190

where P.�/ is polynomial of the degree b m�2
2

c, the greatest integer � m�2
2

. By 191

means of the induction principle, it is not hard to compute its m-th differences 192

�mh.�/ D �m
.3=2 C u � v/b m

2 c
u C � C 1=2

D .�1/m
mŠ.3=2 C u � v/b m

2 c
.u C � C 1=2/mC1

: 193

Recalling the Newton–Gregory formula 194

�mh.�/ D
mX

kD0

.�1/mCk

 
m

k

!
h.� C k/ 195
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we get the following interesting binomial formula 196

mŠ.u � v C 3=2/b m
2 c

.u C 1=2/mC1

D
mX

kD0

.�1/k

 
m

k

!
.1 � v � k/b m

2 c
u C k C 1=2

: 197

This equation can be identified to (2) with the connecting polynomial being given 198

by '.xI n/ D .1 � v � x/b n
2 c. The dual relation corresponding to (3) reads as 199

2

2u C 2m C 1
D
X
k�0

 
m

2k

!
.2k/Š

.1 � v � m/k

.u � v C 3=2/k

.u C 1=2/2kC1

�
X
k�0

 
m

2k C 1

!
.�v � k/.2k C 1/Š

.1 � v � m/kC1

.u � v C 3=2/k

.u C 1=2/2kC2

:

Putting the last two binomial sums together and then applying the relation 200

2.2u C 4k C 3/.1 � v � m C k/ C 4.m � 2k/.v C k/

D .2u C 4k C 3/.2 � m � 2v/ � .m � 2k/.2u � 4v C 3/

we obtain the expression 201

1 D 2u C 2m C 1

8

X
k�0

.�m/2k

.1 � v � m/kC1

.u � v C 3=2/k

.u C 1=2/2kC2

�
n
.2u C 4k C 3/.2 � m � 2v/ � .m � 2k/.2u � 4v C 3/

o

which can be rewritten in terms of hypergeometric 4F3-series as 202

1 D 4F3

"
1; �m

2
; 1�m

2
; u � v C 3

2

2 � v � m; u
2

C 3
4
; u

2
C 5

4

ˇ̌
ˇ 1

#
.2u C 2m C 1/.2v C m � 2/

.2u C 1/.2v C 2m � 2/

C 4F3

"
1; 1�m

2
; 2�m

2
; u � v C 3

2

2 � v � m; u
2

C 5
4
; u

2
C 7

4

ˇ̌̌
1

#
m.2u C 2m C 1/.2u � 4v C 3/

.2u C 1/.2u C 3/.2v C 2m � 2/
:

According to the Whipple transformation (cf. Bailey [1, �4.3]), expressing both 203

balanced 4F3-series in terms of well–poised 7F6-series, we can reformulate the last 204

equation as 205
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�
2u C 1; v

u C 3
2
; 2v � 1

�
m

D 7F6

"
u; 1 C u

2
; u

2
� 1

4
; u

2
C 1

4
; u � v C 3

2
; 1�m

2
; �m

2
u
2
; u

2
C 5

4
; u

2
C 3

4
; v � 1

2
; u C 1Cm

2
; u C 2Cm

2

ˇ̌̌
1

#

C m.2u � 4v C 3/.2u C 2/

.2u C m C 1/.2v � 1/.2u C 3/

� 7F6

"
u C 1; 3Cu

2
; u

2
C 1

4
; u

2
C 3

4
; u � v C 3

2
; 2�m

2
; 1�m

2
1Cu

2
; u

2
C 7

4
; u

2
C 5

4
; v C 1

2
; u C 2Cm

2
; u C 3Cm

2

ˇ̌̌
1

#

which can further be stated equivalently as the following binomial sums 206

�
2u; v

u C 3
2
; 2v � 1

�
m

D
X
k�0

 
m

2k

!
.2u C 4k/f .2k/

.2u C m/2kC1

�
X
k�0

 
m

2k C 1

!
.2u C 4k C 2/f .2k C 1/

.2u C m/2kC2

where f .k/ is given explicitly by 207

f .2k/ D .2k/Š

kŠ

�
u; u � v C 3

2

v � 1
2

�
k

.2u � 1/.2u C 1/

.2u C 4k � 1/.2u C 4k C 1/
;

f .2k C 1/ D .2k C 1/Š

kŠ

�
u C 1; u � v C 3

2

v C 1
2

�
k

� 2u.2u C 1/.2u � 4v C 3/

.2u C 4k C 1/.2u C 4k C 3/.1 � 2v/
:

This equation matches exactly (3) under the following specifications 208

g.m/ D
�

2u; v

u C 3
2
; 2v � 1

�
m

and '.xI n/ D .2u C x/n: 209

Then the dual relation corresponding to (2) reads as 210

mX
kD0

.�1/k

 
m

k

!
.2u C k/m

�
2u; v

u C 3
2
; 2v � 1

�
k

D
8<
:

f .2n/; m D 2nI
f .2n C 1/; m D 2n C 1:

211

In terms of hypergeometric series, this yields the following identity. 212
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Theorem 9 (Terminating series identity). 213

3F2

��m; m C 2u; v

u C 3
2
; 2v � 1

ˇ̌
ˇ 1

�

D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

"
1
2
; u � v C 3

2

u C 1
2
; v � 1

2

#

n

.2u � 1/.2u C 1/

.2u C 4n � 1/.2u C 4n C 1/
; m D 2nI

"
3
2
; u � v C 3

2

u C 1
2
; v C 1

2

#

n

.2u C 1/.2u � 4v C 3/

.2u C 4n C 1/.2u C 4n C 3/.1 � 2v/
; m D 2n C 1:

3 Further Hypergeometric Series Identities 214

Following the same procedure exhibited in the last section, we have systematically 215

examined W";ı.mju; v/ for small " and ı parameters with �5 � "; ı � 5. It turns 216

out that further 22 formulae have relatively good product expressions. They are 217

tabulated below in order for the reader to have an easy access to them. 218
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Preface 10

There are r boys and n girls. Each boy must pick one girl to invite to be his date 11

in the prom. Although each girl expects to get R WD r=n invitations, most likely, 12

many of them would receive less, and many of them would receive more. Suppose 13

that Nilini, the most “popular” girl, got as many as m C 1 prom-invitations, is she 14

indeed so popular, or did she just “luck-out”? 15

Each one of r students has to choose from n different parallel Calculus sections, 16

taught by different professors. Although each professor expects to get R WD r=n
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students signing-up, most likely, many of them would receive less, and many of 17

them would receive more. Suppose that Prof. Niles, the most “popular” professor 18

got as many as m C 1 students, is Prof. Niles justified in assuming that she is more 19

popular than her peers, or did she just “luck-out”? 20

It is Saturday night, and there are r people who have to decide where to dine, 21

and they have n restaurants to choose from. Although each restaurant expects to get 22

R WD r=n diners, most likely, many of them would receive less, and many of them 23

would receive more. Suppose that the Nevada Diner, the most “popular” restaurant, 24

got as many as m C 1 diners, can they congratulate themselves for the quality of 25

their food, or ambiance, or location, or can they only congratulate themselves for 26

being lucky? 27

Each one of r cases of acute lymphocitic leukemia has to choose one of n towns 28

(artificially made all with equal-populations) where to happen. Although each town 29

expects to get R WD r=n cases, most likely, many of them would receive less, and 30

many of them would receive more. Suppose that the Illinois town Niles had m C 1 31

cases of that disease, do its people have to be concerned about their environment, or 32

is it only Lady Luck’s fault? 33

Of course all these questions have the same answer, and typically one talks about 34

r balls being placed, uniformly at random, in n boxes, where the largest number 35

of balls that landed at the same box was m C 1. Yet another way: A monkey is 36

typing an r-letter word using a keyboard of an alphabet with n letters, and the most 37

frequent letter showed-up m C 1 times. Does the typing monkey have a particular 38

fondness for that letter, or is he a truly uniformly-at-random monkey who does not 39

play favorites with the letters? 40

Asking the Right Question 41

As Herb Wilf pointed out so eloquently in his wonderful talk at the conference W80 42

(celebrating his 80th birthday) (based, in part, on [2]), using the depressing disease 43

formulation, the right questions are not: 44

What is the probability that Nilini would get so many (m C 1 of them) prom-invitations? 45

What is the probability that Prof. Niles would get so many (m C 1 of them) students? 46

What is the probability that the Nevada Diner would get so many (m C 1 of them) diners? 47

What is the probability that Niles, IL would get so many (m C 1 of them) cases of acute 48

lymphocitic leukemia? 49

Even though this is the wrong question (whose answer would make Nilini, Prof. 50

Niles and the Nevada Diner’s successes go to their heads, and would make the real- 51

estate prices in Niles, IL, plummet), because it is so tiny, and seemingly extremely 52

unlikely to be “due to chance”, let’s answer this question anyway. 53

The a priori probability of Nilini getting m C 1 or more prom-invitations, using 54

the Poisson Approximation is: 55
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indeed very small if m is considerably larger than R. 57

But a priori we don’t know who would be the “lucky champion” (or the unlucky 58

town), the right question to ask is: 59

The Right Question: Given r , n, and m, compute (if possible exactly, but at least 60

approximately): 61

P.r; n; m/ WD the probability that every box got � m balls. 62

Getting the Right Answer to the Right Question, 63

as Fast as Possible 64

In [2], Ewens and Wilf present a beautiful, fast (O.mn/), algorithm for computing 65

the exact value of P.r; n; m/, that employs a method that is described in the 66

Nijenhuis-Wilf classic [3] (but that has been around for a long time, and redis- 67

covered several times, e.g. by one of us [5], and before that by J.C.P. Miller, and 68

according to Don Knuth the method goes back to Euler. At any rate, [2] does not 69

claim novelty for the method, only for applying it to the present problem). 70

The specific real-life examples given in [2] were: 71

1. (Niles, IL): r D 14;400; n D 9;000, (so R D 8=5), m D 7. Using their method, 72

they got (in less than 1 s!) the value 73

P.14;400; 9;000; 7/ D 0:0953959131671303999971555481626 : : : ; 74

meaning that the probability that every town in the US, of the size of Niles, 75

IL, would get no more than 7 cases is less than 10 %. So with probability 76

0:904604086832869600002844451837, some town (of the same size, assuming, 77

artificially that the US has been divided into towns of that size) somewhere, in 78

the US, would get at least eight cases. There is (most probably) nothing wrong 79

with their water, or their air-quality, the only one that they may blame is Lady 80

Luck! 81

For comparison, the a priori probability that Niles, IL would get eight or more 82

cases is roughly: 83

1 � e�1:6

7X

iD0

1:6i

i Š
D 0:00026044 : : : ; 84

a real reason for (unjustified!) concern. 85
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2. (Churchill County, NV): r D 8;000; n D 12;000, (so R D 2=3), m D 11. Using 86

their method, they got (in less than 1 s!) the value 87

P.8;000; 12;000; 11/ D 0:999999895529647647310726013392 : : : ; 88

so it is extremely likely that every district got at most 11 cases, and the probability 89

that some district got 12 or more cases is indeed small, namely 90

1 � P.8;000; 12;000; 11/ D 0:104470 � 10�6; 91

so these people should indeed panic. 92

For comparison, the a priori probability that Churchill County, NV, would get 93

12 or more cases is roughly: 94

1 � e�2=3

11X

iD0

.2=3/i

i Š
D 0:870586315 � 10�11; 95

in that case people would have been right to be concerned, but for the wrong 96

reason! 97

The Maple Package BallsInBoxes 98

This article is accompanied by the Maple package BallsInBoxes available from: 99

http://www.math.rutgers.edu/�zeilberg/tokhniot/BallsInBoxes. 100

Lots of sample input and output files can be gotten from: 101

http://www.math.rutgers.edu/�zeilberg/mamarim/mamarimhtml/bib.html. 102

How to Compute P.r; n; m/ Exactly? 103

Easy! As Ewens and Wilf point out in [2], and Herb Wilf mentioned in his talk, 104

there is an obvious, explicit, “answer” 105

P.r; n; m/ D 1

nr

X rŠ

r1Šr2Š : : : rnŠ
; 106

where the sum ranges over the set of n-tuples of integers 107

A.r; n; m/ WD f.r1; r2; : : : ; rn/ j 0 � r1; : : : ; rn � m; r1 C r2 C � � � C rn D rg: 108

So “all” we need, in order to get the exact answer, is to construct the set A.r; n; m/ 109

and add-up all the multinomial coefficients. 110

http://www.math.rutgers.edu/~zeilberg/tokhniot/BallsInBoxes
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/bib.html
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Of course, there is a better way. As it is well-known (see [2]), and easy to see, 111

writing 112

P.r; n; m/ D rŠ

nr

X

.r1;:::;rn/2A.r;n;m/

1

r1Šr2Š : : : rnŠ
; 113

the
P

is the coefficient of xr in the expansion of 114

 
mX

iD0

xi

i Š

!n

; 115

so all we need is to go to Maple, and type (once r; n, and m have been assigned 116

numerical values) 117

r!/n**r*coeff(add(x**i/i!,i=0..m)**n,x,r);. 118

This works well for small n and r , but, please, don’t even try to apply it to the 119

first case of [2], (r D 14;400; n D 9;000; m D 7), Maple would crash! 120

Ewens and Wilf’s brilliant idea was to use the Euler-Miller-(Nijenhuis-Wilf)- 121

Zeilberger-. . . “quick” method for expanding a power of a polynomial, and get an 122

answer in less than a second! 123

[We implemented this method in Procedure Prnm(r,n,m) of BallsInBoxes]. 124

While their method indeed takes less than a second (in Maple) for r D 125

14;400; n D 9;000 (and 7 � m � 12), it takes quite a bit longer for 126

r D 144;000; n D 90;000, and we are willing to bet that for r D 108; n D 108 it 127

would be hopeless to get an exact answer, even with this fast algorithm. 128

But why this obsession with exact answers? Hello, this is applied mathematics, 129

and the epidemiological data is, of course, approximate to begin with, and we make 130

lots of unrealistic assumptions (e.g. that the US is divided into 9,000 towns, each 131

exactly the size of Niles, IL). All we need to know is, “are that many diseases likely 132

to be due to pure chance, or is it a cause for concern?”, Yes or No?, Ja oder Nein?, 133

Oui ou Non?, Ken o Lo?. 134

Enumeration Digression 135

It would be nice to get a more compact (than the huge multisum above) (symbolic) 136

“answer”, or “formula”, in terms of the symbols r; n and m. This seems to 137

be hopeless. But fixing, positive integers a; b and m, one can ask for a “for- 138

mula” (or whatever), in n, for the quantity P.an; bn; m/ that can be written as 139

B.a; b; mI n/=.an/bn where 140

B.a; b; mI n/ WD .an/Š
X

.r1;:::;rn/2A.an;bnIm/

1

r1Šr2Š : : : rnŠ
; 141



UNCORRECTED
PROOF

166 S.B. Ekhad and D. Zeilberger

the cardinality of the natural combinatorial set consisting of placing an balls in bn 142

boxes in such a way that no box receives more than m balls. Equivalently, all words 143

in a bn-letter alphabet, of length an, where no letter occurs more than m times. For 144

example, when a D b D m D 1, we have the deep theorem: 145

B.1; 1; 1I n/ D nŠ: 146

Equivalently, e.n/ D B.1; 1; 1I n/ is a solution of the linear recurrence equation 147

with polynomial coefficients 148

e.n C 1/ � .n C 1/e.n/ D 0; .n � 0/; 149

subject to the initial condition e.0/ D 1. 150

It turns out that, thanks to the not-as-famous-as-it-should-be Almkvist-Zeilberger 151

algorithm [1] (an important component of the deservedly famous Wilf-Zeilberger 152

Algorithmic Proof Theory), one can find similar recurrences (albeit of higher order, 153

so it is no longer “closed-form”, in n) for the sequences B.a; b; mI n/ for any fixed 154

triple of positive integers, a; b; m. 155

(See Procedures Recabm and RacabmV in the Maple package BallsInBoxes). 156

Indeed, since B.a; b; mI n/ is .an/Š times the coefficient of xan in 157

 
mX

iD0

xi

i Š

!bn

; 158

it can be expressed, (thanks to Cauchy), as 159

.an/Š

2�i

I

jzjD1

�Pm
iD0

zi

i Š

�bn

zanC1
dz; .Cauchy/ 160

and this is game for the Almkvist-Zeilberger algorithm, that has been incorporated 161

into BallsInBoxes. See the web-book 162

http://www.math.rutgers.edu/�zeilberg/tokhniot/oBallsInBoxes2 163

for these recurrences for 1 � a; b � 3 and 1 � m � 6. 164

Asymptotics 165

Once the first-named author of the present article computed a recurrence, it can go 166

on, thanks to the Birkhoff-Trzcinski method [4, 6], to get very good asymptotics! So 167

now we can get a very precise asymptotic formula (in n) (to any desired order!) for 168

P.an; bn; m/, that turns out to be very good for large, and even not-so-large n, and 169

for any desired a; b; m. ProcedureAsyabm in our Maple packageBallsInBoxes 170

http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes2
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finds such asymptotic formulas. See 171

http://www.math.rutgers.edu/�zeilberg/tokhniot/oBallsInBoxes1 172

for asymptotic formulas, derived by combining Almkvist-Zeilberger with AsyRec 173

(also included in BallsInBoxes in order to make the latter self-contained.) 174

This works for every m, and every a and b, in principle! In practice, as m gets 175

larger than 10, the recurrences become very high order, and take a very long time to 176

derive. 177

But as long as m � 8 and even (in fact, especially) when n is very large, this 178

method is much faster than the method of [2] (O.mn/ with large n is not that small!). 179

Granted, it does not give you an exact answer, but neither do they (in spite of their 180

claim, see below!). 181

But let’s be pragmatic and forget about our purity and obsession with “exact” 182

answers. Since we know from “general nonsense” that the desired probability 183

C.a; b; mI n/ WD P.an; bn; m/ .D B.a; b; mI n/=.an/bn/ 184

behaves asymptotically as 185

C.a; b; mI n/ � �n.c0 C O.1=n//; 186

for some numbers � and c0, all we have to do is crank out (e.g.) the 200-th and 201- 187

st term and estimate � to be C.a; b; mI 201/=C.a; b; mI 200/, and then estimate c0 188

to be C.a; b; mI 200/=�200. Using Least Squares one can do even better, and also 189

estimate higher order asymptotics (but we don’t bother, enough is enough!). 190

Procedure AsyabmEmpir in our Maple package BallsInBoxes uses this 191

method, and gets very good results! 192

For example, for the Niles, IL, example, in order to get estimates for 193

P.14;400; 9;000; m/, typing 194

evalf(subs(n=1800,AsyabmEmpir(8,5,m,200,n))); 195

for m D 7; 8; 9; 10; 11; 12 yields (almost instantaneously) 196

m D 7: 0:09540287131 : : : (the exact value being: 0:095395913167 : : : ), 197

m D 8: 0:664971462304 : : : (the exact value being: 0:66495441 : : : ), 198

m D 9: 0:9378712268719 : : : (the exact value being: 0:93786433 : : : ), 199

m D 10: 0:990845139 : : : (the exact value being: 0:9908433 : : : ), 200

m D 11: 0:998789295 : : : (the exact value being: 0:99878892861 : : : ). 201

The advantage of the present approach is that we can handle very large n, for 202

example, with the same effort we can compute 203

evalf(subs(n=180000,AsyabmEmpir(8,5,m,200,n))) 204

getting that P.1;440;000; 900;000; 11/ is very close to 0:88554890636027. The 205

method used in [2] (i.e. typing 206

Prnm(1440000,900000,11); 207

in BallsInBoxes) would take forever! 208

http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes1
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Caveat Emptor 209

There is another problem with the O.mn/ method described in [2]. Sure enough, it 210

works well for the examples given there, namely P.14;400; 9;000; m/ for 6 � m � 211

12 and P.8;000; 12;000; m/ for 4 � m � 8. 212

This is corroborated by our implementation of that method, (Procedure 213

Prnm(r,n,m) in 214

BallsInBoxes). 215

Typing (once BallsInBoxes has been read onto a Maple session): 216

t0:=time(): Prnm(14400,9000,9) , time()-t0; 217

returns 218

0:937864339305858219725360911354; 0:884 219

that tells you the desired value (we set Digits to be 30), and that it took 0:884 s 220

to compute that value. 221

But now try: 222

t0:=time(): Prnm(1000,100,15), time()-t0; 223

and get in 0:108 s (real fast!) 224

�0:728465229161818857989128673465 � 1050. 225

“Something is rotten in the State of Denmark!” We learned in kindergarten that a 226

probability has to be between 0 and 1, so a negative probability, especially one with 227

50 decimal digits, is a bit fishy. Of course, the problem is that [2]’s “exact” result is 228

not really exact, as it uses floating-point arithmetic. 229

Big deal, since we work in Maple, let’s increase the system variable Digits 230

(the number of digits used in floating-point calculations), and type the following 231

line: 232

evalf(Prnm(1000,100,15),80); 233

getting 5:71860506564981 : : :, a little bit better! (the probability is now less than 234

six, and at least it is positive!), but still nonsense. 235

Digits:=83 still gives you nonsense, and it only starts to “behave” at 236

Digits:=90. 237

Now let’s multiply the inputs, r and n by 10, and take m D 22 and try to evaluate 238

P.10;000; 1;000; 22/. Even Digits:=250 still gives nonsense! Only Digits:=310 239

gives you something reasonable and (hopefully) correct. 240

The way to overcome this problem is to keep upping Digits until you get 241

close answers with both Digits and, say, Digits+100. This is implemented 242

in Procedure PrnmReliable(r,n,m,k) in BallsInBoxes, if one desires 243

an accuracy of k decimal digits. This is reliable indeed, but not exact, 244

and not rigorous, since it uses numerical heuristics. The exact answer is a 245

rational number, that is implemented in Procedure PrnmExact(r,n,m) of 246

BallsInBoxes. 247
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The Cost of Exactness 248

If you type 249

t0:=time():PrnmExact(14400,9000,7): time()-t0; 250

you would get in 42 s (no longer that fast!) a rational number whose numerator 251

and denominator are exact integers with 54;207 digits. 252

See http://www.math.rutgers.edu/�zeilberg/tokhniot/oBallsInBoxes7a for the outputs (and 253

timings) of PrnmExact(14400,9000,m); for m between 6 and 12 and 254

see http://www.math.rutgers.edu/�zeilberg/tokhniot/oBallsInBoxes7b for the outputs (and 255

timings) of PrnmExact(8000,12000,m); for m between 4 and 8. No longer 256

fast at all! (2;535 and 248 s respectively). 257

Let’s Keep It Simple: An Ode to the Poisson Approximation 258

At the end of [2], the authors state: 259

A Poisson Approximation is also possible but it may be inaccurate, particularly around the 260

tails of the distribution. Our exact method is fast and does not suffer from any of those 261

problems. 262

Being curious, we tried it out, to see if it is indeed so bad. Surprise, it is terrific! 263

But let’s first review the Poisson approximation as we understand it. 264

The probability of any particular box (of the n boxes) getting � m ball is, 265

roughly, using the Poisson approximation (R WD r=n): 266

e�R

mX

iD0

Ri

i Š
: 267

Of course the n events are not independent, but let’s pretend that they are. The 268

probability that every box got � m balls is approximated by 269

Q.r; n; m/ WD
 

e�R

mX

iD0

Ri

i Š

!n

: 270

(Q.r; n; m/ is implemented by procedure PrnmPA(r,n,m) in BallsInBoxes. 271

It is as fast as lightning!) 272

Ewens and Wilf are very right when they claim that P.r; n; m/ and Q.r; n; m/ 273

are very far apart around the “tail” of the distribution, but who cares about 274

the tail? Definitely not a scientist and even not an applied mathematician. It 275

turns out, empirically (and we did extensive numerical testing, see Procedure 276

HowGoodPA1(R0,N0,Incr,M0,m,eps) in BallsInBoxes), that whenever 277

P.r; n; m/ is not extremely small, it is very well approximated by Q.r; n; m/, and 278

using the latter (it is so much faster!) gives very good approximations, and enables 279

http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes7a
http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes7b
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one to construct the “center” of the probability distribution (i.e. ignoring the tails) 280

very accurately. See 281

http://www.math.rutgers.edu/�zeilberg/tokhniot/oBallsInBoxes4, 282

and 283

http://www.math.rutgers.edu/�zeilberg/tokhniot/oBallsInBoxes5, for comparisons (and tim- 284

ings!, the Poisson Approximation wins!). 285

In particular, the estimates for the expectation, standard deviation, and even the 286

higher moments match extremely well! 287

Another (empirical!) proof of the fitness of the Poisson Approximation can be 288

seen in: 289

http://www.math.rutgers.edu/�zeilberg/tokhniot/oBallsInBoxes1 290

where the (rigorous!) asymptotic formulas derived, via AsyRec, from the recur- 291

rences obtained via the Almkvist-Zeilberger algorithm are very close to those 292

predicted by the Poisson Approximation (except for very small m, corresponding 293

to the “tail”). 294

The Full Probability Distribution of the Random Variable 295

“Maximum Number of Balls in the Same Box” 296

It would be useful, for given positive integers a and b, to know how the probability 297

distribution “maximum number of balls in the same box when throwing an balls into 298

bn boxes” behaves. One can “empirically” construct (without arbitrarily improbable 299

tail) the distribution of the random variable “maximum number of balls in the 300

same box” when an balls are uniformly-at-random placed in bn boxes (Let’s call 301

it Xn.a; b/, and Xn for short) using 302

Pr.Xn D m/ D P.an; bn; m/ � P.an; bn; m � 1/: 303

First, and foremost, what is the expectation, �n, of this random variable? Second, 304

what is the standard deviation, �n?, skewness?, kurtosis?, and it would be even 305

nice to know higher ˛-coefficients (alias moments of Zn WD .Xn � �n/=�n), as 306

asymptotic formulas in n. 307

For the expectation, �n, Procedure AveFormula(a,b,n,d,L,k) uses the 308

more accurate “empirical approach” and Maple’s built-in Least-Squares command, 309

to obtain the following empirical (symbolic!) estimates for the expectation. 310

a D 1; b D 1: evalf(AveFormula(1,1,n,1,300,1000,10),10); 311

yields that �n is roughly 2:293850526 C .0:4735983525/ � log n 312

a D 2; b D 1: evalf(AveFormula(2,1,n,1,300,1000,10),10); 313

yields that �n is roughly 3:963420618 C .0:5834252496/ � log n 314

a D 1; b D 2: evalf(AveFormula(1,2,n,1,300,1000,10),10); 315

yields that �n is roughly 1:640094145 C .0:3873602232/ � log n. 316

http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes4
http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes5
http://www.math.rutgers.edu/~zeilberg/tokhniot/oBallsInBoxes1
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Note that for a D 1; b D 1, the approximation to �n can be written 2:293850526C 317

.1:090500507/ � log10 n, so a “rule-of-thumb” estimate for the expectation when n 318

balls are thrown into n boxes is a bit more than 2 plus the number of (decimal) 319

digits. 320

Procedure NuskhaPA1(R,n,K,d) uses the Poisson Approximation to guess 321

polynomials in log n of degree d fitting the average, standard deviation, and higher 322

moments, as asymptotic expressions in n, for nR balls thrown into n boxes, where 323

R is now any (numeric) rational number. Even d D 1 seems to give a fairly good 324

fit, so they all seem to be (roughly) linear in log n. 325

Procedure SmallestmPA 326

Procedure SmallestmPA(r,n,conf) gives you the smallest m for which, with 327

confidence conf, you can deduce that the high value of m is not due to chance 328

(using the Poisson Approximation). For example 329

SmallestmPA(14400,9000,.99); 330

yields 10, meaning that if a town the size of Niles, IL got 10 or more cases, then 331

with probability >0:99 it is not just bad luck. If you want to be %99:99-sure of 332

being a victim of the environment rather than of Lady Luck, type: 333

SmallestmPA(14400,9000,.9999); 334

and get 13, meaning that if you had 13 cases, then with probability larger than 335

0:9999 it is not due to chance. 336

The Minimum Number of Balls that Landed in the Same Box, 337

Procedure LargestmPA 338

An equally interesting, and harder to compute, random variable is the minimum 339

number of balls that landed in the same box, but the Poisson Approximation handles 340

it equally well. Analogous to SmallestmPA, we have, in BallsInBoxes, 341

Procedure LargestmPA(r,n,conf) that tells you the largest m for which you 342

can’t blame luck for getting m or less balls. 343

For example, if there are 10;000 students that have to decide between 100 344

different calculus sections, 345

LargestmPA(10000,100,.99); 346

that happens to be 66, tells you that any section that only has 66 students or 347

less, with probability >0:99, it is because that professor (or time slot, e.g. if it is an 348

8:00 a.m. class) is not popular, and you can’t blame bad luck. 349

LargestmPA(10000,100,.9999); 350

that outputs 57, tells you that anyone who only had �57 students enrolled is 351

unpopular with probability >%99:99, and can’t blame bad luck. 352
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On the other end, going back to the original problem, 353

SmallestmPA(10000,100,.99); 354

yields 139, telling you that any section for which 139 or more students signed 355

up is probably (with prob. >0:99) due to the popularity of that section, while 356

SmallestmPA(10000,100,.9999); yields 151. 357

Final Comments 358

1. One can possibly (using the saddle-point method) get asymptotic formulas from 359

the contour integral .Cauchy/, but this is not our cup-of-tea, so we leave it to 360

other people. 361

2. Another “back-of-the-envelope” “Poisson Approximation” is to argue that since 362

the probability of any individual box getting strictly more than m balls is roughly 363

(recall that R D r=n) 364

e�R

1X

iDmC1

Ri

i Š
D e�R.eR �

mX

iD0

Ri

i Š
/ D 1 � e�R

mX

iD0

Ri

i Š
; 365

by the linearity of expectation, the expected number of lucky (or unlucky if the 366

balls are diseases) boxes exceeding m balls is roughly 367

n

 
1 � e�R

mX

iD0

Ri

i Š

!
: 368

In the case of Niles, IL, the expected number of towns that would get eight or 369

more cases is: 370

9;000

 
1 � e�1:6

7X

iD0

.1:6/i

i Š

!
D 2:343961376410372; 371

so it is not at all surprising that at least one town got as many as eight cases. 372

On the other hand, in the other example r D 8;000; n D 12;000; m D 12, the 373

expected number of unfortunate counties is: 374

12;000

 
1 � e�.2=3/

12X

iD0

.2=3/i

i Š

!
D 0:533706802 � 10�8; 375

so it is indeed a reason for concern. 376
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Conclusion 377

We completely agree with Ewens and Wilf that simulation takes way too long, and is 378

not that accurate, and that their method is far superior to it. But we strongly disagree 379

with their dismissal of the Poisson Approximation. In fact, we used their ingenious 380

method to conduct extensive empirical (numerical) testing that established that the 381

Poisson Approximation, that they dismissed as “inaccurate”, is, as a matter of fact, 382

sufficiently accurate, and far more reliable, in addition to being yet-much-faster! It 383

is much safer to use the Poisson Approximation than to use their “exact” method 384

(in floating-point arithmetic), and when one uses truly exact calculations, in rational 385

arithmetic, their “fast” method becomes anything but. 386

Even when the floating-point problem is addressed by using multiple precision 387

(PrnmReliable discussed above), their fast algorithm becomes slow for very 388

large r and n, while the Poisson Approximation is almost instantaneous even for 389

very large r and n, and any m. 390

So while we believe that the algorithm in [2] is not as useful as the Poisson 391

Approximation, it sure was meta-useful, since it enabled us to conduct extensive 392

numerical testing that showed, once and for all, that it is far less useful then the 393

latter. 394

Additional evidence comes from our own symbolic approach (fully rigorous for 395

m � 9 and semi-rigorous for higher values of m), that establishes the adequacy of 396

the Poisson Approximation for symbolic n. 397

Finally, as we have already pointed out, since the data that one gets in appli- 398

cations is always approximate to begin with, insisting on an “exact” answer, even 399

when it is easy to compute, is unnecessary. 400

Coda: But We, Enumerators, Do Care About Exact Results! 401

Our point, in this article, was that for applications to statistics, the Poisson 402

Approximation suffices. But we are not statisticians. We are enumerators, and 403

we do like exact results! The approach of [2] enables us to know, for exam- 404

ple, in less than 1 s the exact number of ways that 1;001 balls can be placed 405

in 1;001 boxes such that no box received more than 7 balls. Just type (in 406

BallsInBoxes)(1001**1001)*PrnmExact(1001,1001,7); and get a 407

beautiful exact integer with 3;004 digits! 408

Typing (1001**1001)*PrnmPA(1001,1001,7); will give you something 409

fairly close (the ratio being 0:9997852 : : : ) but for a pure enumerator, this is very 410

unsatisfactory. So long live exact answers!, but not in statistics. 411
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1 Prologue 23

Preliminary Thoughts. Subtraction games, also called take-away games, are 24

games on m piles of tokens, where each of two players playing alternately, selects 25

one or more piles and removes from them a number of tokens according to the 26

specified game rules.1 In this paper we consider impartial subtraction games. 27

A game is impartial if for every game position, all moves one player can do also 28

the opponent can do, unlike the partizan chess, where the black player cannot touch 29

a white piece and conversely. 30

A P -position in a game is a position such that the player moving from it loses 31

whatever his move is; an N -position is a position from which a player has a winning 32

move. Notice that every move from a P -position lands in an N -position; from an 33

N position there is a (winning) move to a P -position. In normal play the player 34

making the last move wins; in misère play the player making the last move loses. 35

Throughout we are concerned solely with normal play. 36

Nim is a subtraction game played on a finite number of tokens. A move consists 37

of selecting a (nonempty) pile and removing from it any positive number of tokens, 38

up to and including the entire pile (a Nim move). Wythoff is a subtraction game 39

played on two piles of tokens. There are two types of moves: a Nim move or taking 40

the same number of tokens from both piles. The latter is a Wythoff move. 41

For m � 2, the P -positions of games typically split the positive integers into 42

m disjoint sets A1; : : : ; Am: [m
iD1A

i D Z�1, Ai \ Aj D ; for all i ¤ j for 43

Wythoff-like games. Two of many examples: [3, 6]. There are only a few studies 44

where this splitting does not hold. In [2] and [8] the Nim move is restricted to 45

taking any positive multiple of b tokens from a single pile, where b is an a priori 46

given positive integer parameter (and there is a restricted Wythoff move in [8]). 47

The P -positions there constitute b pairs of integers and there are omissions and 48

repetitions of integers in some of the pairs. Sequences that jointly cover every 49

positive integer precisely m times for any given m � 1 were given by O’Bryant 50

[17] using a generating function approach; and Graham and O’Bryant [11] used 51

them for generalizing a conjecture about splitting sets. They were constructed by 52

elementary means by Larsson and applied there to combinatorial game theory [15]. 53

More recently, Gurvich [12] considered a generalization of Wythoff’s game where, 54

for m D 2, A1 \ A2 D ;, but jZ�1 n .A1 [ A2/j D 1. In [10] games are analyzed 55

for which both A1 \ A2 ¤ ; and jZ�1 n .A1 [ A2/j D 1. But exceptions they 56

are. 57

In the present paper we consider a case, also for m D 2, apparently a first of its 58

kind, where the P -positions constitute a single pair .A1; A2/ of integers, jA1\A2j D 59

1, but A1 [A2 D Z�1 for a Wythoff-like game. The easy part is to construct A1; A2
60

with such properties; the hard part is to formulate appropriate succinct game rules 61

1They can equivalently be modeled as games played on a collection of nonnegative integers, which
are reduced by the players to 0 according to the game rules.
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Table 1 Excerpts of the first few terms of the sequences A and B

Sequence A

t1.1n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

t1.2an 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 28 29

t1.3bn 0 1 3 5 6 8 10 12 13 15 17 19 20 22 24 26 27 29 31 33 34 36 38 40 41 43 45 47

Sequence B
t2.1n 28 35 36 37 38 39 40 41 49 50 51 52 60 61 62 63 64 65 66 67 68

t2.2an 30 37 38 39 40 42 43 44 52 53 55 56 64 65 66 67 69 70 71 72 73

t2.3bn 48 61 62 64 66 68 69 71 85 87 89 90 104 106 108 109 111 113 115 116 118
t2.4

for a game whose P -positions are such non-complementary sequences. We seek a 62

question for a given answer! 63

2 The Game, Main Theorem and Examples 64

Denote by ' D .1 C p
5/=2 the golden section. Then '2 D .3 C p

5/=2, and 65

'�1 C '�2 D 1. Multiplying by 3=2, we get 66

˛�1 C ˇ�1 D 3=2; (1)

where 67

˛ D 2'

3
D 1 C p

5

3
D 1:0786893 : : : ; ˇ D 2'2

3
D 3 C p

5

3
D 1:745356 : : : ; 68

and ˇ�˛ D 2=3. For n � 0, let an D bn˛c, bn D bnˇc. These are Beatty sequences: 69

the floor of the multiples of a positive number. For ˛ > 0 irrational, the two Beatty 70

sequences are complementary if and only if ˛�1 C ˇ�1 D 1. Complementarity 71

means that every positive integer appears exactly once in exactly one of the two 72

sequences. Let 73

A WD [n�0an; B WD [n�0bn; T WD [n�0.an; bn/; an 2 A; bn 2 B: 74

We denote by T D Z�0nT the complement of T, that is, all pairs .x; y/ 2 Z�0�Z�0 75

not in T. The first few terms of A and B are displayed in Table 1. 76

In the game FREAK there are two piles of finitely many tokens. We denote the 77

piles by the number of tokens they contain, i.e., 78

.x; y/; with 0 � x � y: (2)

Two players alternate in reducing the piles. Play ends when the piles are empty. 79

Recall that the player first unable to move loses and the opponent wins (normal 80

play). 81
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Remark 1. In a move from a position .x; y/ subject to (2) where x is unchanged, 82

but y ! y � t with t > 0, we may have x � y � t or y � t < x. To be consistent 83

with (2) we write .x; y/ ! .x; y � t/ in the former case, and .x; y/ ! .y � t; x/ 84

in the latter case. 85

The P -positions of FREAK are given, namely P D T. What are succinct game 86

rules of FREAK such that it has precisely these P -positions? We chose this particular 87

set T since it seems like the simplest case in which the two Beatty sequences are not 88

complementary. 89

We claim that at each stage a FREAK player has the choice of making one of the 90

following two types of moves: 91

(I) (Restricted Wythoff move.) .x; y/ ! .x � t; y � t/ for every t 2 f1; : : : ; xg, 92

except that this move is blocked if t 2 f1; 2; 3g and x 2 A and y 2 B . 93

(II) (Restricted Nim move.) 94

(a) .x; y/ ! .x � t; y/ for any 0 < t � x; or 95

(b) .x; y/ ! .x; y � t/ for any 0 < t � y; or 96

(c) .x; y/ ! .y � t; x/ for any 0 < t � y, except that this move is blocked if 97

x 2 A \ B and y 2 B . 98

Theorem 1. For the game FREAK, P D T. 99

Example 1. We refer the reader to Table 1. 100

• The moves from T to T.4; 6/ ! .3; 5/, .12; 20/ ! .11; 19/ are blocked because 101

4; 12 2 A and 6; 20 2 B ((I), t D 1). 102

• Similarly, the moves .14; 22/ ! .12; 20/, .28; 45/ ! .26; 43/ are blocked ((I), 103

t D 2). 104

• Also .14; 22/ ! .11; 19/, .43; 69/ ! .40; 66/ are blocked ((I), t D 3). 105

• .12; 20/ ! .7; 12/ and .19; 31/ ! .11; 19/ are blocked by (II)(c), since 12 2 106

A \ B , 19 2 A \ B; and 20; 31 2 B . 107

• For every s > 13, .13; s/ ! .8; 13/ is not blocked by (II)(c), since 13 62 A. 108

• Notice that moves from the complement T to T such as .15; 34/ ! .15; 24/, 109

.15; 22/ ! .14; 22/ or .10; 17/, .11; 16/ ! .8; 13/ are not blocked. 110

It should be clear that a winning strategy for FREAK can be effected by means 111

of the P -positions. Given any game position .x; y/ subject to (2), we have only to 112

find out to which sequence, A or B , x and y belong. The complexity of the implied 113

computation will be discussed later on. 114

3 Preliminaries 115

For proving Theorem 1, we begin by collecting a few facts about the sequences A 116

and B . 117

For any number r 2 R>0 and n 2 Z�0, let �bnrc D b.n C 1/rc � bnrc. 118
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Lemma 1. (i) Each of the sequences A and B is strictly increasing. 119

(ii) For every n � 0, �bn˛c D 2 H) �bnˇc D 2. 120

Proof. Note that 1 < ˛ < ˇ < 2. These inequalities imply: 121

�bn˛c 2 f1; 2g; �bnˇc 2 f1; 2g for all n 2 Z�1: (3)

Also note that �bn˛c D 2 if and only if .nC1/˛ D i C1Cı1, n˛ D i �ı2 for some 122

integer i D i.n/, and 0 < ı1; ı2 < ˛ � 1 < 0:08. For such n we have, .n C 1/ˇ D 123

.n C 1/.˛ C 2=3/ D i C 1 C ı1 C 2.n C 1/=3; nˇ D n.˛ C 2=3/ D i � ı2 C 2n=3. 124

Put n D 3k C i , i 2 f0; 1; 2g. Then .n C 1/ˇ D i C 1 C ı1 C 2k C 2.i C 1/=3, 125

nˇ D i � ı2 C 2k C 2i=3. We consider three cases: 126

1. i D 0. Then �bnˇc D .i C 2k C 1/ � .i � 1 C 2k/ D 2. 127

2. i D 1. Then �bnˇc D .i C 2k C 2/ � .i C 2k/ D 2. 128

3. i D 2. Then �bnˇc D .i C 2k C 3/ � .i C 2k C 1/ D 2.Thus �bn˛c D 2 H) 129

�bnˇc D 2. This implies, 130

bnˇc � bn˛c is a nondecreasing function of n: (4)

The properties (3) immediately imply (i). Let bn˛c D K , bnˇc D L. If �bn˛c D 2,
then b.n C 1/˛c D K C 2, b.n C 1/ˇc D L C ı, where ı 2 f1; 2g by (3). Now
bnˇc � bn˛c D L � K , b.n C 1/ˇc � b.n C 1/˛c D L � K C ı � 2. By (4),
L � K C ı � 2 � L � K , so ı � 2. By (3), ı D 2, establishing (ii). ut
Corollary 1. For every n � 0, �bnˇc D 1 H) �bn˛c D 1. 131

Proof. In view of (3), this is the contrapositive statement of Lemma 1(ii). ut
Lemma 2. We have, 132

(i) A [ B D Z�0 (every nonnegative integer appears in A [ B). 133

(ii) Every nonnegative integer N is assumed at most twice in A [ B . If N appears 134

twice, it appears once in A and once in B . 135

(iii) bm D an H) m � n. 136

(iv) jA \ Bj D 1. 137

Proof. (i) It is convenient to put �1 D ˛�1, �2 D ˇ�1. Consider the sequence 138

� D f˛; ˇ; 2˛; 2ˇ; 3˛; 3ˇ; : : :g. It suffices to show that if M � 1 is any integer 139

and there are NM members of � < M , then NMC1 � NM C 1. The number 140

of n > 0 satisfying n˛ < M is bM �1c, and the number of n > 0 satisfying 141

nˇ < M is bM �2c. So NM D bM �1c C bM �2c. Now 142

M �1 � 1 < bM �1c < M �1; M �2 � 1 < bM �2c < M �2: 143

Adding, .3M=2/�2 < NM < 3M=2. If M D 2t is even, then 3t �2 < NM < 144

3t , so NM D 3t � 1, and then 3t � 1=2 < NMC1 < 3t C 3=2, so NMC1 2 145

f3t; 3t C 1g. Thus NMC1 � NM 2 f1; 2g. If M D 2t C 1, M C 1 D 2t C 2, 146

we obviously also get NMC1 � NM 2 f1; 2g, proving (i). 147

(ii) Since each of A and B is strictly increasing, N can appear at most once in 148

each. 149
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(iii) Follows immediately from the fact that ˛ < ˇ. 150

(iv) We have to show that NMC1 � NM D 2 is assumed for infinitely many M 2
Z�0. If NMC1 �NM D 1 for all large M then a simple density argument shows
that �1 C �2 D 1, a contradiction. ut

Lemma 3. �bnˇc D 1 implies 151

�b.n � 2/ˇc D �b.n � 1/ˇc D �b.n C 1/ˇc D �b.n C 2/ˇc D 2: 152

Proof. We have �bnˇc D 1 if and only if N < nˇ < N C 1 < .n C 1/ˇ <

N C 2 for some N 2 Z�0. Since the fractional parts fnˇgn�1 are dense in the reals
(Kronecker’s Theorem), this inequality holds for infinitely many pairs of integers
.n; N /. Since 1:74 < ˇ < 1:75, we then have N C 3 < .n C 2/ˇ < N C 4 <

N C5 < .nC3/ˇ < N C6. Then �b.nC1/ˇc D �b.nC2/ˇc D 2. We also have
�bnˇc D 1 if and only if N �1 > .n�1/ˇ > N �2 > N �3 > .n�2/ˇ > N �4,
so �b.n � 2/ˇc D �b.n � 1/ˇc D 2. ut
Lemma 4. If �bn˛c D 2, then �b.n C i/˛c D 1 for at least all i 2 f1; : : : ; 11g. 153

Proof. Follows from the fact that bf˛g�1c D 12, where fxg denotes the fractional
part of x. ut
Definition 1. For any real number x and any n 2 Z�0, �bnxc is called an x- 154

difference. 155

Lemma 5. For n; r 2 Z�1, let 156

b.n C r/ˇc � bnˇc D b.n C r/˛c � bn˛c D t: (5)

Then r � 2, t � 3; and r D 2 with t D 3 is achieved. 157

Proof. We wish to maximize r . If any two consecutive ˇ-differences are 2, then
the corresponding ˛-differences cannot be 2 by Lemma 4. So one of the two
consecutive ˇ-differences must be 1. The corresponding ˛-difference is then also 1
by Corollary 1. The next ˇ-difference is then necessarily 2 (Lemma 3), and the next
˛-difference can be 2. Then the next ˇ-difference is still 2, but the corresponding
˛-difference is 1. Thus r � 2, t � 3; and r D 2 with t D 3 in (5) is achieved, for
example for n D 11. ut
Lemma 6. Let .an; bn/ T. Then .an � t; bn � t/ D .am; bm/ 2 T for no t > 3. 158

Proof. Follows immediately from Lemmas 3 to 5. ut

4 Proof of the Main Theorem 159

We need to show P D T. Since FREAK is acyclic, it suffices to show two things: 160

Any move from any position in T results in a position in T; and from any position 161

in T, there exists a move to a position in T. 162
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We precede these two aspects with a notation and a proposition. 163

Notation 1. For every n 2 Z� 0, let dn WD bn � an. 164

Lemma 7. (i) For every n 2 Z� 0; dnC1 � dn 2 f0; 1g. 165

(ii) dn is a nondecreasing function of n. 166

(iii) [n�0dn D Z�0. 167

Proof. (i) We have, dnC1 � dn D �bnˇc � �bn˛c. By (3), �bn˛c 2 f1; 2g. 168

If �bn˛c D 1, then �bnˇc 2 f1; 2g. If �bn˛c D 2, then �bnˇc D 2 by 169

Lemma 1. 170

(ii) It follows immediately from (i) that dn is nondecreasing. 171

(iii) The fact that the multiset [n�0dn contains every nonnegative integer also
follows immediately from (i). ut

Any move from any position in T results in a position in T. Let .an; bn/ 2 T, 172

n � 1. We have to show that .an; bn/ ! .am; bm/ 2 T for no m � 0. For t 2 173

f1; 2; 3g, .an; bn/ ! .an � t; bn � t/ is blocked by (I). For t > 3, .an � t; bn � t/ ! 174

.am; bm/ is impossible (Lemma 6). Since A and B are strictly increasing, a move of 175

type B cannot lead from T to T. 176

From any position in T, there exists a move to a position in T. Suppose 177

.x; y/ 2 T, 0 � x � y. We first deal with the case x D y WD t . For t D 1, 178

.t; t/ D .1; 1/ is in T; .2; 2/ ! .0; 0/ is not blocked since 2 62 B . Also .3; 3/ ! 179

.2; 3/ 2 T is not blocked: it is a move of the form (II)(a). For t > 3, taking .t; t/ is 180

never blocked. Moreover, .0; y/ ! .0; 0/ and .1; y/ ! .1; 1/ are not blocked. We 181

may thus assume 1 < x < y. Then x D an D bm implies n > m, since ˇ > ˛, so 182

B increases at least as fast as A (CF Lemma 2(iii)). 183

Since A, B cover the nonnegative integers (Lemma 2(i)), we have either (i) x D 184

an or (ii) x D bn for some n 2 Z�0. Of course Lemma 2(iv) implies that x D an D 185

bm for infinitely many n > m > 1. 186

(i) x 2 B , say x D bm. 187

(i1) x 62 A. Then the Nim move y ! am is a non blocked move of the form 188

(II)(c). 189

(i2) x 2 A, say x D an. We have 1 < m < n. 190

(i21) y > bn. Then do y ! bn. This move is of the form (II)(b). It is not blocked, 191

since bn > x D an. 192

(i22) y < bn. We consider two cases. 193

1. y 2 B , say y D bk . Then k < n, so can make the (II)(a) move x ! ak . 194

2. y 62 B . Then move y ! xm. It is an unblocked move of the form (II)(c). 195

(ii) x 2 A, say x D an. The case where also x 2 B , say x D bm, was dealt with 196

in (i2) above, so we may assume x 62 B . 197

(ii1) y > bn. Then move y ! bn. This Nim move is not blocked, since bn > an D 198

x. The move is of the form (II)(b). 199

(ii2) y < bn. If y 2 B , say y D bk , then we have k < n, so we can move x ! ak ,
as in (i22)1. So we may assume y 62 B . We have 1 < an D x < y < bn. Let
d WD y � x D y � an < bn � an D dn. By Lemma 7(iii), there exists k < n
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such that dk D d , that is, bk � ak D y � an, so y � bk D an � ak WD t: Then
the Wythoff move .x; y/ ! .an � t; y � t/ D .ak; bk/ 2 T is not blocked,
even if t 2 f1; 2; 3g, since y 62 B . ut

5 A Linear Winning Strategy 200

Given any game position .x; y/ of FREAK subject to (2), it obviously suffices to 201

know whether x 2 A, x 2 B , y 2 A, y 2 B . The proof of Theorem 1 then enables 202

us to win if .x; y/ 2 T. 203

Theorem 2. The computations to determine whether or not any of x 2 A, x 2 B , 204

y 2 A, y 2 B holds is linear in the succinct input size log x C log y D log xy of 205

any input game position .x; y/, 1 � x � y. 206

Proof. Since ˛ is irrational and 1 < ˛ < 2, 207

x D bn˛c ” x < n˛ < x C 1 ” x

˛
< n <

x C 1

˛
”

�
x C 1

˛

�

D
jx

˛

k
C 1:

Therefore either x D bn˛c D an, where n D b.x C 1/=˛c, or else, by Lemma 2(i), 208

x D bnˇc D bn, where n D b.x C 1/=ˇc. 209

Since also 1 < ˇ < 2, we can compute the same way whether y D bnˇc,
together with the multiplier n and/or whether y D bn˛c with its multiplier n. These
computations require that ˛ and ˇ be computed to a precision of only O.log y/

digits. Once we made these linear computations, we make the appropriate move
prescribed in sub-steps of (i) or (ii) of the proof of Theorem 1. ut

6 An Alternate Linear Winning Strategy 210

We now present a strategy that depends on two exotic numeration systems. Recall 211

that any positive irrational ˛ can be expanded in a simple continued fraction: 212

˛ D a0 C 1

a1 C 1

a2C 1
a3:::

WD Œa0; a1; a2; a3 : : :�; 213

where a0 2 Z�0, ai 2 Z�1, i � 1. The convergents of the continued fraction are 214

the rationals pn=qn D Œa0; : : : ; an�, and they satisfy the recurrences (see e.g., [13], 215

Chap. 10): 216

p�1 D 1; p0 D a0; pn D anpn�1 C pn�2 .n � 1/; 217
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q�1 D 0; q0 D 1; qn D anqn�1 C qn�2 .n � 1/: 218

For the case a0 D 1 (then 1 < ˛ < 2), one of the numeration systems, the p- 219

system, is spawned by the numerators of the convergents (see [5,9]): Every positive 220

integer N can be written uniquely in the form 221

N D
X
i�0

si pi ; 0 � si � aiC1; siC1 D aiC2 H) si D 0 .i � 0/: 222

Denote by S , T , the numeration systems based on the numerators of the 223

convergents of the simple continued fraction expansion of ˛, ˇ, respectively. For 224

any positive integer N , let RS.N /, RT .N / denote the representations of N in the 225

S , T numeration systems, respectively. We say that N is S -vile, T -vile if RS .N /, 226

RT .N / respectively ends in an even number (possibly 0) of 0s. Analogously, N is 227

S -dopey, T -dopey if RS .N /, RT .N / respectively ends in an odd number of 0s. 228

Note 1. The names “evil” and “dopey” are inspired by the evil and odious numbers, 229

those that have an even and an odd number of 1’s in their binary representation 230

respectively. To indicate that we count 0s rather than 1s, and only at the tail end, 231

the “ev” and “od” are reversed to “ve” and “do” in “vile” and “dopey”. “Evil” and 232

“odious” were coined by Elwyn Berlekamp, John Conway and Richard Guy [1]. 233

We notice that 234

˛ D Œ1; 12; 1; 2; 2; 2; ˛�; ˇ D Œ1; 1; 2; ˛�: 235

The periodicities are of course a manifestation of Lagrange’s Theorem ([13, 236

Chap. 10]). For ˛ we have p0 D 1, p1 D 13, p2 D 14, p3 D 41, p4 D 96; : : :. 237

For ˇ, p0 D 1, p1 D 2, p2 D 5, p3 D 7, p4 D 89; : : :. Also s0 � a1 D 1, so 238

s0 2 f0; 1g for both numeration systems. In Table 2 we exhibit RS .N / on the left- 239

hand side and RT .N / on the right-hand side for the first few positive integers N . 240

Comparing Tables 1 and 2, notice that, at least for the range n 2 Œ1; 20�: n 2 A 241

if and only if n is S -vile; n 2 B if and only if n is T -vile. This property holds in 242

general – see [5], Sect. 5. It follows immediately that the game rules of FREAK, in 243

terms of the S - and T -numeration systems, can be stated as follows: 244

(I) (Restricted Wythoff move.) .x; y/ ! .x � t; y � t/ for every t 2 f1; : : : ; xg, 245

except that this move is blocked if the following three conditions hold: (a) t 2 246

f1; 2; 3g, (b) x is S -vile, (c) y is T -vile. 247

(II) (Restricted Nim move.) 248

(a) .x; y/ ! .x � t; y/ for any 0 < t � x; or 249

(b) .x; y/ ! .x; y � t/ for any 0 < t � y; or 250

(c) .x; y/ ! .y � t; x/ for any 0 < t � y except that this move is blocked if 251

x is both S -vile and T -vile and y is T -vile. 252
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Table 2 Representation of
1 � n � 15 in the S- (left)
and T -system (right)

t3.114 13 1 n 7 5 2 1

t3.20 0 1 1 0 0 0 1
t3.30 0 2 2 0 0 1 0
t3.40 0 3 3 0 0 1 1
t3.50 0 4 4 0 0 2 0
t3.60 0 5 5 0 1 0 0
t3.70 0 6 6 0 1 0 1
t3.80 0 7 7 1 0 0 0
t3.90 0 8 8 1 0 0 1

t3.100 0 9 9 1 0 1 0
t3.110 0 10 10 1 0 1 1
t3.120 0 11 11 1 0 2 0
t3.130 0 12 12 1 1 0 0
t3.140 1 0 13 1 1 0 1
t3.151 0 0 14 2 0 0 0
t3.161 0 1 15 2 0 0 1
t3.171 0 2 16 2 0 1 0
t3.181 0 3 17 2 0 1 1
t3.191 0 4 18 2 0 2 0
t3.201 0 5 19 2 1 0 0
t3.211 0 6 20 2 1 0 1

The computation whether x or y is S -vile or T -vile can obviously be done in 253

linear-time in the input size log xy of any game position .x; y/. It follows that 254

also the winning strategy based on the two numeration systems is linear. It has the 255

advantage of avoiding the floor function and division, both of which are needed for 256

our first winning strategy. 257

7 Epilogue 258

Preliminary Thoughts. We presented two linear winning strategies for a game on 259

m D 2 piles of tokens for which the P -positions constitute a single pair of integers 260

.A1; A2/ (in contrast to [2] and [8]), .A1; A2/ satisfy jA1\A2j D 1, but jA1[A2j D 261

Z�1. It appears to be a first such case for a Wythoff-like game. 262

FREAK, the name of the game, derives from FRactional BEAtty game. The 263

terminology “vile” and “dopey” is inspired by the evil and odious numbers, 264

those that have an even and an odd number of 1’s in their binary representation 265

respectively. To indicate that we count 0s rather than 1s, and only at the tail end, 266

the “ev” and “od” are reversed to “ve” and “do” in “vile” and “dopey”. “Evil” 267

and “odious” were coined by Elwyn Berlekamp, John Conway and Richard Guy 268

while composing their famous book Winning Ways [1]. Urban Larsson suggested 269

the particular values of ˛; ˇ used in this work. A “fractional Beatty theorem” was 270

recently proved by Peter Hegarty [14] (following a suggestion of mine). In previous 271
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Table 3 The first few terms of the P -positions .an; bn/

t4.1n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

t4.2an 0 0 1 2 3 4 5 6 6 7 8 9 10 11 12 13 13 14 15 16 17 18 19 19 20 21 22 23
t4.3bn 0 2 5 8 11 14 17 20 22 25 28 31 34 37 40 43 45 48 51 54 57 60 63 65 68 71 74 77

papers we have shown that a judicious choice of numeration systems can improve 272

the efficiency of winning strategies of various games, much as data structures in 273

Computer Science. In the present paper, numeration systems are the tool used 274

uniformly for both formulating and analyzing FREAK. 275

Further questions 276

(1) Extend the above results to an infinite set of fractional Beatty games, for 277

example, for ˛ D `'=.2k C 1/, ˇ D `'2=.2k C 1/, k, ` any fixed positive 278

integers. 279

(2) Are there “simpler” game rules for the same set of P -positions considered here? 280

(3) A move R D .r1; : : : ; rm/ ¤ .0; : : : ; 0/ in an m-pile subtraction game is 281

invariant if R can be made from every game position .s1; : : : ; sm/ for which 282

si � ri � 0 for i D 1; : : : ; m. An m-pile subtraction game is invariant if all its 283

moves are invariant. Otherwise the game is variant. The move rules for FREAK 284

are obviously variant. Duchêne and Rigo [4] conjectured that for m D 2, given 285

any two complementary Beatty sequences A; B , there exists an invariant game 286

with .A; B/ [ f.0; 0/g as its P -positions. This conjecture was proved in [16]. Is 287

there an invariant game with the P -positions presented in Sect. 2 above? 288

(4) More generally, can the invariance theorem proved in [16] be extended in 289

the following sense: Is there a nontrivial subset of non-complementary Beatty 290

sequences A; B , for which there always exists an invariant game with .A; B/ [ 291

f.0; 0/g as its P -positions? 292

(5) Let r; t 2 R>0. The equation ˛�1 C .˛ C t/�1 D r has the positive solution 293

˛ D .2r�1 � t Cp
t2 C 4r�2/=2. For every set of values .r; t/ 2 R

2
>0 for which 294

˛ is irrational one can define, in principle, an .r; t/-Beatty game. So there is 295

a continuum of such games. If r and t are restricted to be rational we get a 296

denumerable number of games. (One can even consider such games when ˛ is 297

rational, see [7].) For example, for r D 3=2, t D 2, ˛ D .
p

13 � 1/=3 (so 298

2=3 < ˛ < 1), and ˇ D ˛ C 2 D .
p

13 C 5/=3. It may be of interest to 299

formulate game rules for a game whose P -positions are [n�0.an; bn/, where 300

an D bn˛c, bn D bnˇc. In this game there are infinitely many integers that are 301

repeated (at most twice) in fangn�0, in addition to jA \ Bj D 1. But there is 302

the nice property that bn D an C 2n for all n � 0, as can be seen in Table 3 303

below. 304

(6) Investigate the Sprague-Grundy function of fractional Beatty games in an 305

attempt to give a poly-time winning strategy for playing them in a sum. 306

(7) Consider take-away games on m > 2 piles, where the m sequences A1; : : : ; Am
307

constituting the P -positions do not split Z�1. 308
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(8) Consider partizan take-away games where the P -positions do not split Z�1. 309

(9) Investigate Fractional Beatty games for misère play. 310

Acknowledgements Thanks to Urban Larsson, for his useful comments at the beginning of this 311

work. 312
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1 Wilf-Zeilberger’s Pairs 10

We recall that a function A.n; k/ is hypergeometric in its two variables if the 11

quotients 12

A.n C 1; k/

A.n; k/
and

A.n; k C 1/

A.n; k/
13

are rational functions in n and k, respectively. Also, a pair of hypergeometric 14

functions in its two variables, F.n; k/ and G.n; k/, is said to be a Wilf and 15

Zeilberger (WZ) pair [13, Chap. 7] if 16

F.n C 1; k/ � F.n; k/ D G.n; k C 1/ � G.n; k/: (1)

In this case, H. S. Wilf and D. Zeilberger [17] have proved that there exists a rational 17

function C.n; k/ such that 18

G.n; k/ D C.n; k/F.n; k/: (2)
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The rational function C.n; k/ is the so-called certificate of the pair .F; G/. To 19

discover WZ-pairs, we use Zeilberger’s Maple package EKHAD [13, Appendix A]. 20

If EKHAD certifies a function, we have found a WZ-pair! We will write the 21

functions F.n; k/ and G.n; k/ using rising factorials, also called Pochhammer 22

symbols, rather than the ordinary factorials. The rising factorial is defined by 23

.x/n D
�

x.x C 1/ � � � .x C n � 1/; n 2 Z
C;

1; n D 0;
(3)

or more generally by .x/t D � .x C t/=� .x/: For t 2 Z � Z
�, this last definition 24

coincide with (3). But it is more general because it is also defined for all complex x 25

and t such that x C t 2 C � .Z � Z
C/. 26

2 A Barnes-Integrals WZ Strategy 27

If we sum (1) over all n � 0, we get 28

1X
nD0

G.n; k/ �
1X

nD0

G.n; k C 1/ D �F.0; k/ C lim
n!1 F.n; k/ (4)

whenever the series above are convergent and the limit is finite. D. Zeilberger was 29

the first to apply the WZ-method to prove a Ramanujan-type series for 1=� [4]. 30

Following his idea, in a series of papers [5,6,9,10] and in the author’s thesis [8], we 31

use WZ-pairs together with formula (4) to prove a total of 11 Ramanujan-type series 32

for 1=� and 4 Ramanujan-like series for 1=�2. However, while we discovered those 33

pairs we also found some WZ-pairs corresponding to “divergent” Ramanujan-type 34

series [12], like the following pair: 35

F.n; k/ D A.n; k/
.�1/n

� .n C 1/

�
16

9

�n

; G.n; k/ D B.n; k/
.�1/n

� .n C 1/

�
16

9

�n

; 36

where 37

A.n; k/ D U.n; k/
�n.n � 2/

3.n C 2k C 1/
; B.n; k/ D U.n; k/.5n C 6k C 1/; 38

and 39

U.n; k/ D
�

1
2

�
n

�
1
4

C 3k
2

�
n

�
3
4

C 3k
2

�
n

.1 C k/n.1 C 2k/n

�
1
6

�
k

�
5
6

�
k

.1/2
k

: 40
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We cannot use formula (4) with this pair because the series is divergent and the limit 41

is infinite, due to the factor .�16=9/n. To deal with this kind of WZ-pairs we will 42

proceed as follows: First we replace the factor .�1/n with � .nC1/� .�n/. By doing 43

it we again get a WZ-pair, because .�1/n and � .n C 1/� .�n/ transform formally 44

in the same way under the substitution n ! n C 1; namely, the sign changes. To fix 45

ideas, the modified version of the WZ-pair above is 46

QF .s; t/ D A.s; t/� .�s/

�
16

9

�s

; QG.s; t/ D B.s; t/� .�s/

�
16

9

�s

: 47

Then, integrating from s D �i1 to s D i1 along a path P (curved if necessary) 48

which separates the poles of the form s D 0; 1; 2 : : : from all the other poles, 49

we obtain 50

1

2�i

Z i1

�i1
B.s; t/� .�s/.�z/sds D

1X
nD0

B.n; t/
zn

nŠ
; jzj < 1; (5)

where we have used the Barnes integral theorem, which is an application of 51

Cauchy’s residues theorem using a contour which closes the path with a right side 52

semicircle of center at the origin and infinite radius. The Barnes integral gives the 53

analytic continuation of the series to z 2 C � Œ1; 1/. Integrating along the same 54

path the identity QG.s; t C 1/ � QG.s; t/ D QF .s C 1; t/ � QF .s; t/, we obtain 55

Z i1

�i1
QG.s; t C 1/ds �

Z i1

�i1
QG.s; t/ds D

Z i1

�i1
QF .s C 1; t/ds �

Z i1

�i1
QF .s; t/ds

(6)

D
Z 1Ci1

1�i1
QF .s; t/ds �

Z i1

�i1
QF .s; t/ds D �

Z
C

QF .s; t/ds;

where C is the contour limited by the path P, the same path but moved one unit to 56

the right, and the lines y D �1 and y D C1. As the only pole inside this contour 57

is at s D 0 and the residue at this point is zero, the last integral is zero and we have 58

Z i1

�i1
QG.s; t/ds D

Z i1

�i1
QG.s; t C 1/ds: (7)

This implies, by Weierstrass’s theorem [16], that 59

1

2�i

Z i1

�i1
QG.s; t/ds D lim

t!1
1

2�i

Z i1

�i1
QG.s; t/ds D 1

2�i

Z i1

�i1
lim

t!1
QG.s; t/ds

D 1

2�i

Z i1

�i1
3

�

�
1

2

�
s

� .�s/2sds D
p

3

�
;
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where the last equality holds because 60

1

2�i

Z i1

�i1

�
1

2

�
s

� .�s/.�z/sds D
1X

nD0

�
1
2

�
n

.1/n

zn D 1p
1 � z

; jzj < 1; 61

implies that 62

1

2�i

Z i1

�i1

�
1

2

�
s

� .�s/.�z/sds D 1p
1 � z

; z 2 C � Œ1; 1/: 63

Hence, we have 64

1

2�i

Z i1

�i1

�
1
2

�
s

�
1
4

C 3t
2

�
s

�
3
4

C 3t
2

�
s

.1 C t/s.1 C 2t/s

�
1
6

�
t

�
5
6

�
t

.1/2
t

.5sC6t C1/� .�s/

�
4

3

�2s

ds D
p

3

�
; 65

or equivalently 66

1

2�i

Z i1

�i1

�
1
2

�
s

�
1
4

C 3t
2

�
s

�
3
4

C 3t
2

�
s

.1 C t/s.1 C 2t/s
.5s C6t C1/� .�s/

�
4

3

�2s

ds D
p

3

�

.1/2
t�

1
6

�
t

�
5
6

�
t

: 67

Finally, substituting t D 0, we see that 68

1

2�i

Z i1

�i1

�
1
2

�
s

�
1
4

�
s

�
3
4

�
s

.1/2
s

.5s C 1/� .�s/

�
4

3

�2s

ds D
p

3

�
: (8)

It is very convenient to write the Barnes integral in hypergeometric notation. 69

By the definition of hypergeometric series, we see that for �1 � z < 1, we have 70

1X
nD0

�
1
2

�
n

.s/n .1 � s/n

.1/3
n

zn D 3F2

�
1
2
; s; 1 � s

1; 1

ˇ̌
ˇ̌ z

�
71

and 72

1X
nD0

�
1
2

�
n

.s/n .1 � s/n

.1/3
n

nzn D 1

2
s.1 � s/z 3F2

�
3
2
; 1 C s; 2 � s

2; 2

ˇ̌
ˇ̌ z

�
; 73

where the notation on the right side stands for the analytic continuation of the series 74

on the left. Hence, we can write (8) in the form 75

3F2

�
1
2
; 1

4
; 3

4

1; 1

ˇ̌
ˇ̌ �16

9

�
� 5

6
3F2

�
3
2
; 5

4
; 7

4

2; 2

ˇ̌
ˇ̌ �16

9

�
D

p
3

�
:
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If, instead of integrating to the right side, we integrate (8) along a contour which 76

closes the path P with a semicircle of center s D 0 taken to the left side with an 77

infinite radius, then we have poles at s D �n � 1=2, at s D �n � 1=4 and at 78

s D �n � 3=4 for n D 0; 1; 2; : : : , and we obtain 79

p
3

2

1X
nD0

�
1
2

�3

n

.1/n

�
3
4

�
n

�
5
4

�
n

.10n C 3/.�1/n

�
3

4

�2n

�
p

2 �2

8 �
�

3
4

�4

1X
nD0

�
1
4

�3

n

.1/n

�
1
2

�
n

�
3
4

�
n

.20n C 1/.�1/n

�
3

4

�2n

� 3
p

2 �
�

3
4

�4

16 �2

1X
nD0

�
3
4

�3

n

.1/n

�
3
2

�
n

�
5
4

�
n

.20n C 11/.�1/n

�
3

4

�2n

D 1:

which is an identity relating three convergent series. 80

3 Other Examples 81

In a similar way we can prove other identities of the same kind, for example, 82

1

2�i

Z i1

�i1

�
1
2 C t

�3

s

�
1
2

�2

s

.1 C t/3
s .1 C 2t/s

.10s2 C 6s C 1 C 14st C 4t2 C 4t/� .�s/22sds D 4

�2

.1/4
t�

1
2

�4

t

; 83

84

1

2�i

Z i1

�i1

�
1
2

�
s

�
1
2

C t
�2

s

.1/s.1 C 2t/s
.3s C 2t C 1/� .�s/23sds D 1

�

.1/t�
1
2

�
t

; 85

and 86

1

2�i

Z i1

�i1

�
1
2

�
s

�
1
2

C 2t
�
s

�
1
3

C t
�
s

�
2
3

C t
�
s�

1
2

C t
2

�
s

�
1 C t

2

�
s
.1 C t/s

� .15s C 4/.2s C 1/ C t.33s C 16/

2s C t C 1
� .�s/22sds D 3

p
3

�

1

26t

.1/2
t�

1
4

�
t

�
3
4

�
t

:

In the two last examples the hypothesis of Weierstrass theorem fail and hence 87

we cannot apply it, but we obtain the sum using Meurman’s periodic version of 88

Carlson’s theorem [2, p. 39] which asserts that if H.z/ is a periodic entire function of 89

period 1 and there is a real number c < 2� such that H.z/ D O.exp.cjIm.z/j// for 90

all z 2 C, then H.z/ is constant [1, Appendix] and [11, Theorem 2.3]. In the second 91
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and third examples we determine the constants 1=� and 3
p

3=� taking t D 1=2 92

and t D �1=3 respectively. Substituting t D 0 in the above examples, we obtain 93

respectively 94

1

2�i

Z i1

�i1

�
1
2

�5

s

.1/4
s

.10s2 C 6s C 1/� .�s/22sds D 4

�2
; (9)

95

1

2�i

Z i1

�i1

�
1
2

�3

s

.1/2
s

.3s C 1/� .�s/23sds D 1

�
; (10)

and 96

1

2�i

Z i1

�i1

�
1
2

�
s

�
1
3

�
s

�
2
3

�
s

.1/2
s

.15s C 4/� .�s/22sds D 3
p

3

�
: (11)

Using hypergeometric notation, we can write (9), (10) and (11) respectively in the 97

following forms: 98

5F4

�
1
2
; 1

2
; 1

2
; 1

2
; 1

2

1; 1; 1; 1

ˇ̌
ˇ̌ �4

�
� 3

4
5F4

�
3
2
; 3

2
; 3

2
3
2

3
2

2; 2; 2; 2

ˇ̌
ˇ̌ �4

�

�5

4
5F4

�
3
2
; 3

2
; 3

2
3
2

3
2

2; 2; 2; 1

ˇ̌̌
ˇ �4

�
D 4

�2
;

3F2

�
1
2
; 1

2
; 1

2

1; 1

ˇ̌
ˇ̌ �8

�
� 3 3F2

�
3
2
; 3

2
; 3

2

2; 2

ˇ̌
ˇ̌ �8

�
D 1

�
;

and 99

4 3F2

�
1
2
; 1

3
; 2

3

1; 1

ˇ̌
ˇ̌ �4

�
� 20

3
3F2

�
3
2
; 4

3
; 5

3

2; 2

ˇ̌
ˇ̌ �4

�
D 3

p
3

�
: 100

Related applications of the WZ-method for Barnes-type integrals are for example in 101

[3, Sect. 5.2] and [14]. 102

4 The Dual of a “Divergent” Ramanujan-Type Series 103

The WZ duality technique [13, Chap. 7] allows to transform pairs which lead to 104

divergences into pairs which lead to convergent series. To get the dual OG.n; k/ of 105

G.�n; �k/, we make the following changes: 106

.a/�n ! .�1/n

.1 � a/n

; .1/�n ! n.�1/n

.1/n

; .a/�k ! .�1/k

.1 � a/k

; .1/�k ! k.�1/k

.1/k

: 107
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4.1 Example 1 108

The package EKHAD certifies the pair 109

F.n; k/ D U.n; k/
2n2

2n C k
; G.n; k/ D U.n; k/

6n2 C 2n C k C 4nk

2n C k
; (12)

where 110

U.n; k/ D
�

1
2

�2

n

�
1 C k

2

�
n

�
1
2

C k
2

�
n

.1/2
n.1 C k/2

n

�
1
2

�
k

.1/k

4n D .2n/Š2.2n C k/Š.2k/Š

nŠ4kŠ.n C k/Š2
1

16n4k
: 111

We cannot use this WZ-pair to obtain a Ramanujan-like evaluation because, as 112

z > 1, the corresponding series and also the corresponding Barnes integral are both 113

divergent. However, we will see how to use it to evaluate a related convergent series. 114

What we will do is to apply the WZ duality technique. Thus, if we take the dual of 115

G.�n; �k/ and replace k with k � 1, we obtain 116

OG.n; k/ D 1

U.n; k/

2.2k � 1/.2n C k/

n2.n C k/2.n C k � 1/2
.6n2 � 6n C 1 � k C 4nk/; 117

and EHKAD finds its companion 118

OF .n; k/ D 1

U.n; k/

�2.2n C k/.2n C k � 1/.2n � 1/2

n2.n C k/2.n C k � 1/2
: 119

Applying Zeilberger’s formula 120

1X
nDj

. OF .n C 1; n/ C OG.n; n// D
1X

nDj

OG.n; j / 121

with j D 1, we obtain 122

1X
nD1

�
16

27

�n
.1/3

n�
1
2

�
n

�
1
3

�
n

�
2
3

�
n

11n � 3

n3
D 16

1X
nD1

1

4n

.1/3
n�

1
2

�3

n

3n � 1

n3
: (13)

The series in (13) are dual to Ramanujan-type “divergent” series, and in [7, p. 221] 123

we proved that the series on the right side is equal to �2=2. Hence 124

1X
nD1

�
16

27

�n
.1/3

n�
1
2

�
n

�
1
3

�
n

�
2
3

�
n

11n � 3

n3
D 8�2: (14)

Formula (14), as well as other similar formulas, was conjectured in [15, Conjec- 125

ture 1.4] by Zhi-Wei Sun. 126
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4.2 Example 2 127

The package EKHAD certifies the pair 128

F.n; k/ D U.n; k/
64n3

.2k C 1/.2n � 2k C 1/
;

G.n; k/ D U.n; k/
.2n C 1/2.11n C 3/ � 12k.2n2 C 3nk C n C k/

.2n C 1/2
;

where 129

U.n; k/ D
�

1
2

� k
�

n

�
1
2

C k
�2

n

�
1
3

�
n

�
1
3

�
n

.1/3
n

�
1
2

�2

n

�
27

16

�n

: 130

Taking the dual OG.n; k/ of G.�n; �k/, replacing n with n C x and applying 131

Zeilberger’s theorem 132

1X
nD0

OG.n C x; 0/ D lim
k!1

1X
nD0

OG.n C x; k/ C
1X

kD0

OF .x; k/; 133

where OF .n; k/ is the companion of OG.n; k/, we obtain 134

1X
nD0

.1 C x/3
n�

1
2

C x
�

n

�
1
3

C x
�

n

�
2
3

C x
�

n

�
16

27

�n
11.n C x/ � 3

.n C x/3

D 6.3x � 1/.3x � 2/

x3.2x � 1/

1X
kD0

�
1
2

�
k

�
3
2

� x
�

k�
1
2

C x
�2

k

:

Taking x D 1 we again obtain (14). 135
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Abstract By analogy with recent Work of Andrews on smallest parts in partitions 4

of integers, we consider smallest parts in compositions (ordered partitions) of 5

integers. In particular, we study the number of smallest parts and the sum of smallest 6

parts in compositions of n as well as the position of the first smallest part in a random 7

composition of n. 8

1 Introduction 9

A composition of an integer n > 0 is a representation of n as an ordered sum of 10

positive integers n D a1 C a2 C � � � C am: It is well known that there are 2n�1
11

compositions of n, and
�

n�1
k�1

�
compositions of n with exactly k summands or parts, 12

which will also be referred to as k-compositions. 13

The subject of integer compositions has engaged the attention of Herbert Wilf on 14

several occasions (see for example [5] and [9]). 15

In this note we undertake an enumerative study of compositions with respect to 16

the smallest summand. Our inspiration came mostly from the work of G. Andrews 17

which considered smallest parts in integer partitions [2]. He proved that the number 18

spt.n/ of smallest parts in partitions of n is given by 19

spt.n/ D np.n/ � 1

2
N2.n/; 20
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where p.n/ is the number of partitions of n and N2.n/ is the second Atkin-Garvan 21

moment of ranks. 22

We will consider both the number and sum of smallest parts in all compositions. 23

It turns out that, in the case of compositions, we are availed of both elementary 24

and advanced techniques for discussing the two statistics. We will compute explicit 25

formulas, and asymptotic estimates, for the total number of smallest parts in all 26

compositions of n, and for the sum of smallest parts in all compositions of n. 27

In this context we find the following sequence in the Encyclopedia of Integer 28

Sequences: 29

Total number of smallest parts in compositions of n � 1 ([10, A097941]):

1; 3; 6; 15; 31; 72; 155; 340; 738; 1;595; 3;424; 7;335; 15;642; 33;243; 70;432; 148;808; : : :

In Sect. 2 we use elementary constructive arguments to derive the necessary 30

exact formulas. Then in Sect. 3 we use generating function techniques to obtain 31

the formulas, leading naturally to asymptotic enumeration of compositions for large 32

n. The final section is devoted to the enumeration of compositions with respect to 33

the first position of the smallest parts. 34

2 Constructive Proofs 35

We will need the following known result (see for example [1, p. 63]): 36

Lemma 1. The number of k-compositions of Œn� in which each part � m is given by 37

 
n � .m � 1/k � 1

k � 1

!

: 38

Let cj .n; k; r/
defD number of k-compositions of n with smallest part j such that 39

j appears r times in each composition. 40

Then 41

Proposition 1. If n D kj then cj .n; k; r/ D ı1r , and 42

cj .n; k; r/ D
 

k

r

! 
n � jk � 1

k � r � 1

!

; n > kj; (1)

where ıij is the Kronecker delta. 43

Proof. The case n D jk gives the unique composition . n
k
; : : : ; n

k
/. So we assume 44

n > jk and construct a composition enumerated by cj .n; k; r/. 45
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Fix any r of the k positions to hold the j ’s, in
�

k
r

�
ways. Then the remaining 46

k � r positions can be filled with a composition of n � rj, into k � r parts, each 47

� j C 1, such that the i th part occupies the i th available position, from left to right. 48

The number of such compositions, by Lemma 1, is
�

n�rj�j.k�r/�1
k�r�1

� D �
n�jk�1
k�r�1

�
. 49

Hence 50

cj .n; k; r/ D
 

k

r

! 
n � jk � 1

k � r � 1

!

: ut 51

Corollary 1. The number cj .n; k/ of k-compositions of n with smallest part j is 52

given by 53

cj .n; k/ D
 

n � .j � 1/k � 1

k � 1

!

�
 

n � jk � 1

k � 1

!

: (2)

Proof. If compositions with parts � j C 1 are deleted from the set of compositions
with parts � j , we obtain the set of compositions with smallest part j . Now apply
Lemma 1. ut

2.1 The Number of Smallest Parts 54

Corollary 2. The number fj .n; k/ of all occurrences of a fixed smallest part j 55

among all k-compositions of n is given by. 56

fj .n; k/ D k

 
n � .j � 1/k � 2

k � 2

!

: (3)

Proof. Since there are cj .n; k; r/ k-compositions of n with smallest part j such 57

that j appears r times in each composition, the frequency fj .n; k; r/ of j among 58

all compositions in which it appears r times is given by fj .n; k; r/ D rcj .n; k; r/. 59

Thus 60

fj .n; k; r/ D rcj .n; k; r/ D r

 
k

r

! 
n � jk � 1

k � r � 1

!

; 61

and 62

fj .n; k/ D
X

r�1

fj .n; k; r/ D
X

r�1

r

 
k

r

! 
n � jk � 1

k � r � 1

!

63
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Then we apply the rule k
n

�
n
k

� D �
n�1
k�1

�
, and note that the Vandermonde convolution 64

gives: 65

X

r�1

 
k � 1

r � 1

! 
n � jk � 1

k � r � 1

!

D
 

n � .j � 1/k � 2

k � 2

!

: 66

ut
Since the set of smallest parts among all k-compositions of n is f1; 2; : : : ; bn=kcg, 67

we can use Corollary 2 to obtain: 68

Corollary 3. The number sp.n; k/ of smallest parts among all k-compositions of n 69

is given by 70

sp.n; k/ D k

bn=kcX

j D1

 
n � .j � 1/k � 2

k � 2

!

: (4)

It is easily verified that the sum
P

k

sp.n; k/; n > 0; agrees with the Sloane 71

sequence [10, A097941] mentioned earlier. 72

2.2 The Sum of Smallest Parts 73

The following corollaries are immediate consequences of Corollaries 2 and 3. 74

Corollary 4. The sum s.n; k; j / of all copies of a fixed smallest part j among all 75

k-compositions of n is given below. 76

s.n; k; j / D jk

 
n � .j � 1/k � 2

k � 2

!

: (5)

Corollary 5. The sum s.n; k/ of all smallest parts among all k-compositions of n 77

is given below. 78

s.n; k/ D k

bn=kcX

j D1

j

 
n � .j � 1/k � 2

k � 2

!

: (6)

The sequence for the sum of smallest parts in all compositions of an integer n > 0 79

is not yet in Sloane [10]: 80

X

k

s.n; k/; n > 0; W 1; 4; 8; 20; 37; 56; 173; 372; 788; 1;680; 3;550; 7;554; : : : 81
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3 An Approach via Generating Functions 82

3.1 The Number of Compositions of n with Smallest Part j 83

Let cj .n; m/ denote the number of compositions of n with m parts and with smallest 84

part j and let cj .n/ denote the number of compositions of n with smallest part j . 85

We use the following decomposition of the set Cj of compositions of n with smallest 86

part j . 87

Cj D fa composition with all parts � j C 1g
� fa part equal to j g � fa composition with all parts � j g: (7)

Translating to generating functions, where z marks the size of a composition and 88

y marks the number of parts, gives 89

Cj .z; y/ D
X

n�1

X

m�1

cj .n; m/znym D yzj

�
1 � yzj

1�z

� �
1 � yzj C1

1�z

�

D y.z � 1/2zj

.yzj C z � 1/ .yzj C1 C z � 1/
:

Setting y D 1 the generating function for compositions with smallest part j is 90

X

n�1

cj .n/zn D .z � 1/2zj

.zj C z � 1/ .zj C1 C z � 1/
: 91

The generating function for cj .n/ is a rational function of z and the asymptotic 92

growth of the coefficients will depend on the smallest positive zero � of the 93

denominator polynomials zj C z � 1 and zj C1 C z � 1. Since � < 1, it satisfies 94

the equation 1 � � � �j D 0. By singularity analysis 95

cj .n/ � Œzn�
.� � 1/2�j

.j�j �1 C 1/ .�j C1 C � � 1/ .z � �/
: 96

After some simplification this leads to the asymptotic estimate 97

cj .n/ � �2j �n�1

.1 � �/ .j�j �1 C 1/
: 98
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In the case j D 1 we have the exact result cj .n/ D 2n�1 � Fn where Fn is the n-th 99

Fibonacci number with F0 D 0 and F1 D 1. Consequently almost all compositions 100

of n have smallest part 1. 101

For j D 2 we find � D 1
2

�p
5 � 1

�
D 0:618034 : : : and for n D 50 our 102

asymptotic estimate for c2.50/ is 7;778;742;049 as compared the exact value 103

7;739;952;337. Similarly, For j D 3 we find � D 0:682327803 : : : and for n D 50 104

our asymptotic estimate for c3.50/ is 38;789;712 as compared the exact value 105

37;287;157. 106

For a fixed number m of parts we can obtain explicit formulas for cj .n; m/ in the 107

spirit of Sect. 1. We can write 108

Cj .z; y/ D yzj

 1X

kD0

ykz.j C1/k

.1 � z/k

! 1X

kD0

ykzjk

.1 � z/k
: 109

Then 110

Œym�Cj .z; y/ D zj

.1 � z/m�1

m�1X

kD0

z.j C1/kzj.�kCm�1/ D .1 � z/�m
�
zjm � z.j C1/m

�
: 111

Consequently 112

cj .n; m/ D
 

n � .j � 1/m � 1

m � 1

!

ŒŒn � jm�� �
 

n � jm � 1

m � 1

!

ŒŒn � .j C 1/m�� 113

and hence 114

cj .n/ D
nX

mD1

  
n � .j � 1/m � 1

m � 1

!

ŒŒn � jm�� �
 

n � jm � 1

m � 1

!

ŒŒn � .j C 1/m��

!

; 115

where the Iverson notation ŒŒP �� takes the value 1 if the condition P is satisfied and 116

0 otherwise. 117

3.2 The Number of Smallest Parts in Compositions of n 118

Again we use the decomposition (7). We mark with u all the smallest parts, getting 119

the bivariate generating function for the number of smallest parts of compositions 120

of n with smallest part j as 121

uzj

�
1 � zj C1

1�z

� �
1 � uzj � zj C1

1�z

� D u.z � 1/2zj

.1 � zj C1 � z/ ..u � 1/zj C1 � uzj � z C 1/
: 122
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Summing over j we find that the generating function for compositions of n 123

according to number of smallest parts is 124

S.z; u/ WD
X

j �1

u.z � 1/2zj

.1 � zj C1 � z/ ..u � 1/zj C1 � uzj � z C 1/
: 125

In particular, the total number of smallest parts in compositions of n has generating 126

function 127

S 0.z; 1/ D
X

j �1

.z � 1/2zj

.1 � z � zj /
2
: 128

We find this is 129

z C 3z2 C 6z3 C 15z4 C 31z5 C 72z6 C 155z7 C 340z8 C 738z9 C 1595z10 C 3424z11
130

131

C7335z12 C 15642z13 C 33243z14 C 70432z15 C 148808z16 C 313571z17 C OŒz�18: 132

The coefficients are sequence A097941 in Sloane. For asymptotic purposes the 133

dominant pole comes from the j D 1 term whose coefficient is 2�3Cn.2 C n/. 134

Thus the average number of smallest parts in compositions of n is nC2
4

C 135

O.
�p

5C1
4

�n

/. 136

3.3 The Sum of Smallest Parts in Compositions of n 137

We mark with uj all the smallest parts, getting the bivariate generating function for 138

the sum of smallest parts of compositions of n with smallest part j as 139

uj zj

�
1 � zj C1

1�z

� �
1 � uj zj � zj C1

1�z

� D uj .z � 1/2zj

.1 � zj C1 � z/ ..uj � 1/zj C1 � uj zj � z C 1/
: 140

Summing over j we find that the generating function for compositions of n 141

according to the sum of smallest parts is 142

S2.z; u/ WD
X

j �1

uj .z � 1/2zj

.1 � zj C1 � z/ ..uj � 1/zj C1 � uj zj � z C 1/
: 143
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In particular, the total sum of smallest parts in compositions of n has generating 144

function 145

S20.z; 1/ D
X

j �1

.z � 1/2j zj

.1 � z � zj /
2
: 146

We find this is 147

z C 4z2 C 8z3 C 20z4 C 37z5 C 86z6 C 173z7 C 372z8 C 788z9 C 1680z10 C 3550z11
148

149

C7554z12 C 15994z13 C 33820z14 C 71374z15 C 150376z16 C 316151z17 C OŒz�18: 150

The coefficients are sequence A097940 in Sloane. For asymptotic purposes the 151

dominant pole again comes from the j D 1 term whose coefficient is 2�3Cn.2Cn/. 152

Thus the average sum of smallest parts in compositions of n is nC2
4

C 153

O.
�p

5C1
4

�n

/. We can make this more precise by considering the j D 2 term 154

more carefully. From this we find that 155

the total sum of smallest parts in compositions of n exceeds the total number of 156

smallest parts in compositions of n by 157

1

50

�
�25 C 13

p
5 C

�
35 � 15

p
5
�

n
�
 

1

2
C

p
5

2

!n

as n ! 1: 158

For example, for n D 50 the exact difference is 43;618;840;751 and the asymptotic 159

result is 43;351;455;601. 160

4 First Position of Smallest Parts 161

In this section we consider the related idea of counting compositions with respect to 162

the first position of their smallest parts. We denote the result of Lemma 1 by 163

c.n; k/�m D
 

n � .m � 1/k � 1

k � 1

!

; 164

thus making the notation c.n; k/>m clear as well. 165

Let w.n; k; p/ denote the number of k-compositions of n in which the smallest 166

parts occur for the first time in the p-th position, and let ws.n; k; p/ be the number 167

of compositions enumerated by w.n; k; p/ such that the smallest part is s, 1 � p � 168

k � n, 1 � s � n. Thus w.n; k; p/ D P
s ws.n; k; p/. 169
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Then the following special values are immediate 170

ws.n; k; 1/ D c.n � s; k � 1/�sI ws.n; k; k/ D c.n � s; k � 1/>sI 171

Thus 172

wn.n; k; 1/ D ı1k D wn.n; k; k/: 173

In general, when 1 < p < k, a composition enumerated by ws.n; k; p/ consists of 174

the concatenation of three strings namely: 175

((p � 1)-composition of m with parts > s),(s),((k � p)-composition of n � m 176

with parts � s), 177

where 1 � m � n � s � 1. 178

Hence Lemma 1 gives, for 1 < p < k, 179

ws.n; k; p/ D
X

m

c.m; p � 1/>s � 1 � c.n � s � m; k � p/�s; 180

that is, 181

ws.n; k; p/ D
X

m

 
m � s.p � 1/ � 1

p � 2

! 
n � s � m � .s � 1/.k � p/ � 1

k � p � 1

!

; (8)

and when 1 � s < n; k > 1, we have 182

ws.n; k; 1/ D
 

n � s � .s � 1/.k � 1/ � 1

k � 2

!

; ws.n; k; k/ D
 

n � s � s.k � 1/ � 1

k � 2

!

: 183

184

4.1 First Position of Smallest Parts via Generating Functions 185

Let vj .n; m; l/ denote the number of compositions of n with m parts and with 186

smallest part j and l positions prior to the first smallest part. As previously we 187

use the decomposition (7) of the set Cj of compositions of n with smallest part j . 188

Translating to generating functions, where z marks the size of a composition, y 189

the number of parts and x the number of positions prior to the first smallest part, 190

gives 191

Vj .z; y; x/ D
X

n�1

X

m�1

X

`�0

vj .n; m; l/znymx` D yzj

�
1 � yzj

1�z

� �
1 � xyzj C1

1�z

�

D y.z � 1/2zj

.yzj C z � 1/ .xyzj C1 C z � 1/
:
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Setting y D 1 the generating function for compositions with smallest part j and l 192

positions prior to the first smallest part is 193

Vj .z; 1; x/ D .z � 1/2zj

.zj C z � 1/ .xzj C1 C z � 1/
: 194

Summing over j and differentiating with respect to x gives 195

V 0.z; 1; 1/ D
X

j �1

.z � 1/2z2j C1

.1 � z � zj / .zj C1 C z � 1/
2
: 196

This is 197

z3 C2z4 C7z5 C15z6 C36z7 C80z8 C174z9 C371z10 C787z11 C1644z12 C3410z13
198

199

C7031z14 C 14423z15 C 29455z16 C 59948z17 C O
�
z18
�

; 200

which is not in Sloane. The dominant pole again comes from the j D 1 term, with 201

Œzn�V 0.z; 1; 1/ � 2n�1. It follows that the average position of the first smallest part 202

is 2. 203

We can also determine the asymptotic distribution of the position of the first 204

smallest part. The generating function for compositions in which the first smallest 205

part occurs in position k is 206

V.k/.z/ D
X

j �1

�
zj C1

1 � z

�k�1
zj .1 � z/

1 � z � zj
D 1

.1 � z/k�2

X

j �1

zkj Ck�1

1 � z � zj
: 207

The dominant pole again comes from the j D 1 term, with Œzn�V.k/.z/ � 2�k2n�1. 208

Thus the position of the first smallest part follows a geometric distribution with 209

parameter 1=2. In particular, asymptotically half of all compositions of n will have 210

the first smallest part in position 1. 211

4.2 The First Position of the Part Equal to k 212

The distribution of part sizes in a random composition is well known to be 213

geometric with parameter 1=2 as discussed for instance in [6]. In the same spirit 214

we briefly consider the average position of the first part equal to k, any fixed k, in 215

a composition of n. We use the following decomposition of the set of compositions 216

of n with at least one occurrence of k. 217

fa composition with no kg � fkg � fany compositiong: 218
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We mark with x the positions to the left of the first k obtaining the generating 219

function 220

1

1 � x
�

z
1�z � zk

�
zk

1 � 2z
D zk.1 � z/2

1 � z � xz C xzk.1 � z/
: 221

Differentiating with respect to x gives 222

zk.1 � z/2.z � zk.1 � z/

.1 � 2z/.1 � 2z C zk.1 � z//2
: 223

From the dominant pole at z D 1=2 we find that the coefficient of zn is asymptotic 224

to .2k � 1/2n�1. 225

Asymptotically almost all compositions of n have one or more parts k, so the 226

average position of the first part equal to k is therefore 2k , as is to be expected from 227

the essentially geometric distribution of the part sizes. 228
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non-crossing partitions associated with reflection groups due to Bessis [7] and Brady 16

and Watt [11] into one uniform framework. Bessis and Reiner [10] observed that 17

Armstrong’s definition can be straightforwardly extended to well-generated complex 18

reflection groups (see Sect. 2 for the precise definition). These generalised non- 19

crossing partitions possess a wealth of beautiful properties, and they display deep 20

and surprising relations to other combinatorial objects defined for reflection groups 21

(such as the generalised cluster complex of Fomin and Reading [14], or the extended 22

Shi arrangement and the geometric multichains of filters of Athanasiadis [5,6]); see 23

Armstrong’s memoir [3] and the references given therein. 24

On the other hand, cyclic sieving is a phenomenon brought to light by Reiner, 25

Stanton and White [30]. It extends the so-called “.�1/-phenomenon” of Stembridge 26

[36, 37]. Cyclic sieving can be defined in three equivalent ways (cf. [30, Propo- 27

sition 2.1]). The one which gives the name can be described as follows: given a 28

set S of combinatorial objects, an action on S of a cyclic group G D hgi with 29

generator g of order n, and a polynomial P.q/ in q with non-negative integer 30

coefficients, we say that the triple .S; P;G/ exhibits the cyclic sieving phenomenon, 31

if the number of elements of S fixed by gk equalsP.e2�ik=n/. In [30] it is shown that 32

this phenomenon occurs in surprisingly many contexts, and several further instances 33

have been discovered since then, see the recent survey [33]. 34

In [3, Conjecture 5.4.7] (also appearing in [10, Conjecture 6.4]) and [10, Conjec- 35

ture 6.5], Armstrong, respectively Bessis and Reiner, conjecture that generalised 36

non-crossing partitions for irreducible well-generated complex reflection groups 37

exhibit two different cyclic sieving phenomena (see Sects. 3 and 7 for the precise 38

statements). 39

According to the classification of these groups due to Shephard and Todd [34], 40

there are two infinite families of irreducible well-generated complex reflection 41

groups, namely the groups G.d; 1; n/ and G.e; e; n/, where n; d; e are positive 42

integers, and there are 26 exceptional groups. For the infinite families of types 43

G.d; 1; n/ and G.e; e; n/, the two cyclic sieving conjectures follow from the results 44

in [20]. 45

The purpose of the present article is to present a proof of the cyclic sieving 46

conjectures of Armstrong, and of Bessis and Reiner, for the 26 exceptional types, 47

thus completing the proof of these conjectures. Since the generalised non-crossing 48

partitions feature a parameter m, from the outset this is not a finite problem. Con- 49

sequently, we first need several auxiliary results to reduce the conjectures for each 50

of the 26 exceptional types to a finite problem. Subsequently, we use Stembridge’s 51

Maple package coxeter [38] and the GAP package CHEVIE [15,28] to carry out 52

the remaining finite computations. The details of these computations are provided 53

in [22]. In the present paper, we content ourselves with exemplifying the necessary 54

computations by going through some representative cases. It is interesting to observe 55

that, for the verification of the type E8 case, it is essential to use the decomposition 56

numbers in the sense of [18,19,21] because, otherwise, the necessary computations 57

would not be feasible in reasonable time with the currently available computer 58

facilities. We point out that, for the special case where the aforementioned parameter 59

m is equal to 1, the first cyclic sieving conjecture has been proven in a uniform 60
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fashion by Bessis and Reiner in [10]. The crucial result on which this proof is based 61

is (14) below, and it plays an important role in our reduction of the conjectures for 62

the 26 exceptional groups to a finite problem. A—non-uniform—proof of cyclic 63

sieving for non-crossing partitions associated with real reflection groups under the 64

action of the so-called Kreweras map—a special case of the second cyclic sieving 65

phenomenon discussed in the present paper—is given by Armstrong, Stump and 66

Thomas in [4]. Just recently, Rhoades proposed a uniform approach to prove the 67

first cyclic sieving conjecture for real reflection groups (but for genericm), see [31, 68

Theorem 3.7]. 69

Our paper is organised as follows. In the next section, we recall the definition 70

of generalised non-crossing partitions for well-generated complex reflection groups 71

and of decomposition numbers in the sense of [18, 19, 21], and we review some 72

basic facts. The first cyclic sieving conjecture is subsequently stated in Sect. 3. 73

In Sect. 4, we outline an elementary proof that the q-Fuß–Catalan number, which 74

is the polynomial P in the cyclic sieving phenomena concerning the generalised 75

non-crossing partitions for well-generated complex reflection groups, is always a 76

polynomial with non-negative integer coefficients, as required by the definition of 77

cyclic sieving. (Full details can be found in [22, Sect. 4]. The reader is referred to 78

the first paragraph of Sect. 4 for comments on other approaches for establishing 79

polynomiality with non-negative coefficients.) Section 5 contains the announced 80

auxiliary results which, for the 26 exceptional types, allow a reduction of the 81

conjecture to a finite problem. In Sect. 6, we discuss a few cases which, in a 82

representative manner, demonstrate how to perform the remaining case-by-case 83

verification of the conjecture. For full details, we refer the reader to [22, Sect. 6]. The 84

second cyclic sieving conjecture is stated in Sect. 7. Section 8 contains the auxiliary 85

results which, for the 26 exceptional types, allow a reduction of the conjecture 86

to a finite problem, while in Sect. 9 we discuss some representative cases of the 87

remaining case-by-case verification of the conjecture. Again, for full details we refer 88

the reader to [22, Sect. 9]. 89

2 Preliminaries 90

A complex reflection group is a group generated by (complex) reflections in C
n. 91

(Here, a reflection is a non-trivial element of GLn.C/ which fixes a hyperplane 92

pointwise and which has finite order.) We refer to [25] for an in-depth exposition of 93

the theory complex reflection groups. 94

Shephard and Todd provided a complete classification of all finite complex 95

reflection groups in [34] (see also [25, Chap. 8]). According to this classification, 96

an arbitrary complex reflection group W decomposes into a direct product of irre- 97

ducible complex reflection groups, acting on mutually orthogonal subspaces of the 98

complex vector space on which W is acting. Moreover, the list of irreducible com- 99

plex reflection groups consists of the infinite family of groups G.m;p; n/, where 100

m;p; n are positive integers, and 34 exceptional groups, denoted G4;G5; : : : ; G37 101

by Shephard and Todd. 102
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In this paper, we are only interested in finite complex reflection groups which 103

are well-generated. A complex reflection group of rank n is called well-generated if 104

it is generated by n reflections.1 Well-generation can be equivalently characterised 105

by a duality property due to Orlik and Solomon [29]. Namely, a complex reflection 106

group of rank n has two sets of distinguished integers d1 � d2 � � � � � dn and 107

d�
1 � d�

2 � � � � � d�
n , called its degrees and codegrees, respectively (see [25, p. 51 108

and Definition 10.27]). Orlik and Solomon observed, using case-by-case checking, 109

that an irreducible complex reflection group W of rank n is well-generated if and 110

only if its degrees and codegrees satisfy 111

di C d�
i D dn

for all i D 1; 2; : : : ; n. The reader is referred to [25, Appendix D.2] for a table 112

of the degrees and codegrees of all irreducible complex reflection groups. Together 113

with the classification of Shephard and Todd [34], this constitutes a classification of 114

well-generated complex reflection groups: the irreducible well-generated complex 115

reflection groups are 116

– The two infinite families G.d; 1; n/ and G.e; e; n/, where d; e; n are positive 117

integers, 118

– The exceptional groups G4;G5;G6;G8;G9;G10; G14; G16; G17; G18; G20; G21 of 119

rank 2, 120

– The exceptional groupsG23 D H3;G24;G25; G26; G27 of rank 3, 121

– The exceptional groupsG28 D F4;G29; G30 D H4;G32 of rank 4, 122

– The exceptional groupG33 of rank 5, 123

– The exceptional groupsG34;G35 D E6 of rank 6, 124

– The exceptional groupG36 D E7 of rank 7, 125

– And the exceptional groupG37 D E8 of rank 8. 126

In this list, we have made visible the groups H3; F4;H4;E6;E7;E8 which appear 127

as exceptional groups in the classification of all irreducible real reflection groups 128

(cf. [17]). 129

Let W be a well-generated complex reflection group of rank n, and let T � W 130

denote the set of all (complex) reflections in the group. Let `T W W ! Z denote the 131

word length in terms of the generators T . This word length is called absolute length 132

or reflection length. Furthermore, we define a partial order �T on W by 133

u �T w if and only if `T .w/ D `T .u/C `T .u
�1w/: (1)

This partial order is called absolute order or reflection order. As is well-known and 134

easy to see, the equation in (1) is equivalent to the statement that every shortest 135

representation of u by reflections occurs as an initial segment in some shortest 136

product representation of w by reflections. 137

1We refer to [25, Definition 1.29] for the precise definition of “rank.” Roughly speaking, the rank
of a complex reflection group W is the minimal n such that W can be realized as reflection group
on Cn.
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Now fix a (generalised) Coxeter element2 c 2 W and a positive integer m. The 138

m-divisible non-crossing partitions NCm.W / are defined as the set 139

NCm.W / D ˚
.w0I w1; : : : ;wm/ W w0w1 � � � wm D c and

`T .w0/C `T .w1/C � � � C `T .wm/ D `T .c/
�
:

A partial order is defined on this set by 140

.w0I w1; : : : ;wm/ � .u0I u1; : : : ; um/ if and only if ui �T wi for 1 � i � m: 141

We have suppressed the dependence on c, since we understand this definition up to 142

isomorphism of posets. To be more precise, it can be shown that any two Coxeter 143

elements are related to each other by conjugation and (possibly) an automorphism 144

on the field of complex numbers (see [35, Theorem 4.2] or [25, Corollary 11.25]), 145

and hence the resulting posets NCm.W / are isomorphic to each other. If m D 1, 146

then NC1.W / can be identified with the set NC.W / of non-crossing partitions for 147

the (complex) reflection group W as defined by Bessis and Corran (cf. [9] and [8, 148

Sect. 13]; their definition extends the earlier definition by Bessis [7] and Brady and 149

Watt [11] for real reflection groups). 150

The following result has been proved by a collaborative effort of several authors 151

(see [8, Proposition 13.1]). 152

Theorem 1. LetW be an irreducible well-generated complex reflection group, and 153

let d1 � d2 � � � � � dn be its degrees and h WD dn its Coxeter number. Then 154

jNCm.W /j D
nY

iD1

mhC di

di
: (2)

Remark 1. (1) The number in (2) is called the Fuß–Catalan number for the 155

reflection groupW . 156

(2) If c is a Coxeter element of a well-generated complex reflection group W of 157

rank n, then `T .c/ D n. (This follows from [8, Sect. 7].) 158

2An element of an irreducible well-generated complex reflection group W of rank n is called a
Coxeter element if it is regular in the sense of Springer [35] (see also [25, Definition 11.21]) and
of order dn. An element of W is called regular if it has an eigenvector which lies in no reflecting
hyperplane of a reflection of W . It follows from an observation of Lehrer and Springer, proved
uniformly by Lehrer and Michel [24] (see [25, Theorem 11.28]), that there is always a regular
element of order dn in an irreducible well-generated complex reflection group W of rank n. More
generally, if a well-generated complex reflection groupW decomposes asW Š W1�W2�� � ��Wk ,
where the Wi ’s are irreducible, then a Coxeter element of W is an element of the form c D
c1c2 � � � ck , where ci is a Coxeter element of Wi , i D 1; 2; : : : ; k. If W is a real reflection group,
that is, if all generators in T have order 2, then the notion of generalised Coxeter element given
above reduces to that of a Coxeter element in the classical sense (cf. [17, Sect. 3.16]).
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We conclude this section by recalling the definition of decomposition numbers 159

from [18, 19, 21]. Although we need them here only for (very small) real reflection 160

groups, and although, strictly speaking, they have been only defined for real 161

reflection groups in [18, 19, 21], this definition can be extended to well-generated 162

complex reflection groups without any extra effort, which we do now. 163

Given a well-generated complex reflection group W of rank n, types 164

T1; T2; : : : ; Td (in the sense of the classification of well-generated complex 165

reflection groups) such that the sum of the ranks of the Ti ’s equals n, and a 166

Coxeter element c, the decomposition number NW .T1; T2; : : : ; Td / is defined as 167

the number of “minimal” factorisations c D c1c2 � � � cd , “minimal” meaning that 168

`T .c1/ C `T .c2/ C � � � C `T .cd / D `T .c/ D n, such that, for i D 1; 2; : : : ; d , the 169

type of ci as a parabolic Coxeter element is Ti . (Here, the term “parabolic Coxeter 170

element” means a Coxeter element in some parabolic subgroup. It follows from 171

[32, Proposition 6.3] that any element ci is indeed a Coxeter element in a unique 172

parabolic subgroup of W .3 By definition, the type of ci is the type of this parabolic 173

subgroup.) Since any two Coxeter elements are related to each other by conjugation 174

plus field automorphism, the decomposition numbers are independent of the choice 175

of the Coxeter element c. 176

The decomposition numbers for real reflection groups have been computed in 177

[18, 19, 21]. To compute the decomposition numbers for well-generated complex 178

reflection groups is a task that remains to be done. 179

3 Cyclic Sieving I 180

In this section we present the first cyclic sieving conjecture due to Armstrong [3, 181

Conjecture 5.4.7], and to Bessis and Reiner [10, Conjecture 6.4]. 182

Let � W NCm.W / ! NCm.W / be the map defined by 183

.w0I w1; : : : ;wm/ 7! �
.cwmc

�1/w0.cwmc
�1/�1I cwmc

�1;w1;w2; : : : ;wm�1
�
:

(3)

It is indeed not difficult to see that, if the .m C 1/-tuple on the left-hand side is an 184

element of NCm.W /, then so is the .mC1/-tuple on the right-hand side. Form D 1, 185

this action reduces to conjugation by the Coxeter element c (applied to w1). Cyclic 186

sieving arising from conjugation by c has been the subject of [10]. 187

3The uniqueness can be argued as follows: suppose that ci were a Coxeter element in two parabolic
subgroups ofW , say U1 and U2. Then it must also be a Coxeter element in the intersection U1\U2.
On the other hand, the absolute length of a Coxeter element of a complex reflection group U is
always equal to rk.U /, the rank of U . (This follows from the fact that, for each element u of U ,
we have `T .u/ D codim

�
ker.u � id/

�
, with id denoting the identity element in U ; see e.g. [32,

Proposition 1.3]). We conclude that `T .ci / D rk.U1/ D rk.U2/ D rk.U1 \ U2/, This implies that
U1 D U2.
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It is easy to see that �mh acts as the identity, where h is the Coxeter number of 188

W (see (10) and Lemma 6 below). By slight abuse of notation, let C1 be the cyclic 189

group of order mh generated by �. (The slight abuse consists in the fact that we 190

insist on C1 to be a cyclic group of ordermh, while it may happen that the order of 191

the action of � given in (3) is actually a proper divisor of mh.) 192

Given these definitions, we are now in the position to state the first cyclic sieving 193

conjecture of Armstrong, respectively of Bessis and Reiner. By the results of [20] 194

and of this paper, it becomes the following theorem. 195

Theorem 2. For an irreducible well-generated complex reflection group W and 196

any m � 1, the triple .NCm.W /;Catm.W I q/; C1/, where Catm.W I q/ is the 197

q-analogue of the Fuß–Catalan number defined by 198

Catm.W I q/ WD
nY

iD1

ŒmhC di �q

Œdi �q
; (4)

exhibits the cyclic sieving phenomenon in the sense of Reiner, Stanton and White 199

[30]. Here, n is the rank ofW , d1; d2; : : : ; dn are the degrees ofW , h is the Coxeter 200

number of W , and Œ˛�q WD .1� q˛/=.1� q/. 201

Remark 2. We write Catm.W / for Catm.W I 1/. 202

By definition of the cyclic sieving phenomenon, we have to prove that 203

Catm.W I q/ is a polynomial in q with non-negative integer coefficients, and that 204

j FixNCm.W /.�
p/j D Catm.W I q/ˇ̌

qDe2�ip=mh ; (5)

for all p in the range 0 � p < mh. The first fact is established in the next section, 205

while the proof of the second is achieved by making use of several auxiliary results, 206

given in Sect. 5, to reduce the proof to a finite problem, and a subsequent case- 207

by-case analysis. All details of this analysis can be found in [22, Sect. 6]. In the 208

present paper, we content ourselves with discussing the cases where W D G24 and 209

where W D G37 D E8, since these suffice to convey the flavour of the necessary 210

computations. 211

4 The q-Fusz–Catalan Numbers Catm.W I q/ 212

The purpose of this section is to provide an elementary and (essentially) self- 213

contained proof of the fact that, for all irreducible complex reflection groupsW , the 214

q-Fuß–Catalan number Catm.W I q/ is a polynomial in q with non-negative integer 215

coefficients. For most of the groups, this is a known property. However, aside from 216

the fact that, for many of the known cases, the proof is very indirect and uses deep 217

algebraic results on rational Cherednik algebras, there still remained some cases 218

where this property had not been formally established. The reader is referred to the 219

Theorem in Sect. 1.6 of [16], which says that, under the assumption of a certain rank 220
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condition [16, Hypothesis 2.4], the q-Fuß–Catalan number Catm.W I q/ is a Hilbert 221

series of a finite-dimensional quotient of the ring of invariants of W and also the 222

graded character of a finite-dimensional irreducible representation of a spherical 223

rational Cherednik algebra associated with W . At present, this rank condition has 224

been proven for all irreducible well-generated complex reflection groups apart from 225

G17;G18; G29; G33; G34; see [26, Tables 8 and 9, column “rank”] and the recent 226

paper [27], which establishes the result in the case of G32. 227

In the sequel, aside from the standard notation Œ˛�q D .1 � q˛/=.1 � q/ for 228

q-integers, we shall also use the q-binomial coefficient, which is defined by 229

�
n

k

�

q

WD
(
1; if k D 0,
Œn�q Œn�1�q ���Œn�kC1�q
Œk�q Œk�1�q ���Œ1�q ; if k > 0.

230

We begin with several auxiliary results. The first of these (Proposition 1) is well- 231

known (and follows, for example, from [1, Eqs. (3.3.3) and (3.3.4)]), or from [1, 232

Theorem 3.1]). The second (Proposition 2) follows by replacing n by mn C 1 and 233

j by n in Theorem 2 of [2].AQ1 234

Proposition 1. For all non-negative integers n and k, the q-binomial coefficient 235

Œ nk �q is a polynomial in q with non-negative integer coefficients. 236

Proposition 2. For all non-negative integers m and n, the q-Fuß–Catalan number 237

of type An, 238

1

Œ.mC 1/nC 1�q

�
.mC 1/nC 1

n

�

q

; 239

is a polynomial in q with non-negative integer coefficients. 240

The purpose of the next lemma is to lay the basis for the proof of the positivity 241

of coefficients in the polynomial in Corollary 1. 242

Lemma 1. If a and b are coprime positive integers, then 243

Œab�q

Œa�q Œb�q
(6)

is a polynomial in q of degree .a � 1/.b � 1/, all of whose coefficients are in 244

f0; 1;�1g. Moreover, if one disregards the coefficients which are 0, then C1’s and 245

.�1/’s alternate, and the constant coefficient as well as the leading coefficient of the 246

polynomial equal C1. 247

Proof. Let ˚n.q/ denote the n-th cyclotomic polynomial in q. Using the classical 248

formula 249

1� qn D
Y

d jn
˚d .q/; 250
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we see that 251

.1 � q/.1 � qab/

.1 � qa/.1 � qb/ D
Y

d1ja; d1¤1
d2ja; d2¤1

˚d1d2.q/; 252

so that, manifestly, the expression in (6) is a polynomial in q. The claim concerning 253

the degree of this polynomial is obvious. 254

In order to establish the claim on the coefficients, we start with a sub-expression 255

of (6), 256

.1 � qab/

.1 � qa/.1 � qb/ D
� b�1X

iD0
qia
�� 1X

jD0
qjb
�

D
1X

kD0
Ckq

k; (7)

say. The assumption that a and b are coprime implies that 0 � Ck � 1 for k � 257

.a � 1/.b � 1/. Multiplying both sides of (7) by 1 � q, we obtain the equation 258

Œab�q

Œa�q Œb�q
D .1 � q/

.a�1/.b�1/X

kD0
Ckq

k C .1 � q/

1X

kD.a�1/.b�1/C1
Ckq

k: (8)

By our previous observation on the coefficients Ck with k � .a � 1/.b � 1/, it is 259

obvious that the coefficients of the first expression on the right-hand side of (8) are 260

alternately C1 and �1, when 0’s are disregarded. Since we already know that the 261

left-hand side is a polynomial in q of degree .a � 1/.b � 1/, we may ignore the 262

second expression. 263

The proof is concluded by observing that the claims on the constant and leading
coefficients are obvious. ut
Corollary 1. Let a and b be coprime positive integers, and let � be an integer with 264

� � .a � 1/.b � 1/. Then the expression 265

Œ��q Œab�q

Œa�q Œb�q
266

is a polynomial in q with non-negative integer coefficients. 267

Proof. Let 268

Œab�q

Œa�q Œb�q
D

.a�1/.b�1/X

kD0
Dkq

k: 269

We then have 270

Œ��q Œab�q

Œa�q Œb�q
D

.a�1/.b�1/C��1X

ND0
qN

NX

kDmaxf0;N��C1g
Dk: (9)
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If N � � � 1, then, by Lemma 1, the sum over k on the right-hand side of (9) 271

equals 1� 1C 1� 1C � � � , which is manifestly non-negative. On the other hand, if 272

N > � � 1, then we may rewrite the sum over k on the right-hand side of (9) as 273

NX

kDmaxf0;N��C1g
Dk D

.a�1/.b�1/X

kDN��C1
Dk D

.a�1/.b�1/C��1�NX

kD0
D.a�1/.b�1/�k: 274

Again, by Lemma 1, this sum equals 1� 1C 1� 1C � � � , which is manifestly non-
negative. ut

The next lemma collects positivity results for coefficients in polynomials given 275

by rational function expressions of special form. 276

Lemma 2. Let ˛ and ˇ be positive integers. The following expressions are polyno- 277

mials in q with non-negative integer coefficients: 278

(a) Œ˛�q3 Œˇ�q4
Œ72�q Œ3�q Œ4�q
Œ8�q Œ9�q Œ12�q

for ˛ � 6 and ˇ � 8; 279

(b) Œ˛�q Œˇ�q4
Œ15�q
Œ3�q Œ5�q

Œ72�q Œ3�q Œ4�q
Œ8�q Œ9�q Œ12�q

for ˛ � 26 and ˇ � 8; 280

(c) Œ˛�q3 Œˇ�q4
Œ90�q Œ3�q Œ4�q
Œ5�q Œ6�q Œ9�q

for ˛ � 18 and ˇ � 3; 281

(d) Œ˛�q Œˇ�q3
Œ90�q Œ3�q
Œ5�q Œ6�q Œ9�q

for ˛ � 20 and ˇ � 18; 282

(e) Œ˛�q
Œ15�q
Œ3�q Œ5�q

Œ12�q3

Œ3�q3 Œ4�q3
for ˛ � 26; 283

(f) Œ˛�q
Œ15�q
Œ3�q Œ5�q

Œ6�q3

Œ2�q3 Œ3�q3
for ˛ � 14; 284

(g) Œ˛�q Œˇ�q2
Œ84�q Œ2�q
Œ4�q Œ6�q Œ7�q

for ˛ � 30 and ˇ � 20; 285

(h) Œ˛�q Œˇ�q
Œ105�q

Œ3�q Œ5�q Œ7�q
for ˛ � 24 and ˇ � 68; 286

(i) Œ˛�q Œˇ�q
Œ70�q

Œ2�q Œ5�q Œ7�q
for ˛ � 24 and ˇ � 34; 287

(j) Œ˛�q2 Œˇ�q5
Œ30�q Œ2�q Œ3�q Œ5�q
Œ6�q Œ10�q Œ15�q

for ˛ � 4 and ˇ � 2; 288

(k) Œ˛�q Œˇ�q5
Œ14�q
Œ2�q Œ7�q

Œ30�q Œ2�q Œ3�q Œ5�q
Œ6�q Œ10�q Œ15�q

for ˛ � 14 and ˇ � 2; 289

(l) Œ˛�q Œˇ�q2
Œ35�q
Œ5�q Œ7�q

Œ30�q Œ2�q Œ3�q Œ5�q
Œ6�q Œ10�q Œ15�q

for ˛ � 32 and ˇ � 12; 290

(m) Œ˛�q2 Œˇ�q5
Œ60�q Œ2�q Œ3�q Œ5�q
Œ10�q Œ12�q Œ15�q

for ˛ � 16 and ˇ � 2; 291

(n) Œ˛�q Œˇ�q2
Œ35�q
Œ5�q Œ7�q

Œ60�q Œ2�q Œ3�q Œ5�q
Œ10�q Œ12�q Œ15�q

for ˛ � 56 and ˇ � 4; 292

(o) Œ˛�q Œˇ�q5
Œ14�q
Œ2�q Œ7�q

Œ60�q Œ2�q Œ3�q Œ5�q
Œ10�q Œ12�q Œ15�q

for ˛ � 38 and ˇ � 2; 293

(p) Œ˛�q Œˇ�q3
Œ126�q Œ3�q
Œ6�q Œ7�q Œ9�q

for ˛ � 30 and ˇ � 26; 294

(q) Œ˛�q Œˇ�q3
Œ252�q Œ3�q
Œ7�q Œ9�q Œ12�q

for ˛ � 66 and ˇ � 54; 295

(r) Œ˛�q Œˇ�q2
Œ140�q Œ2�q
Œ4�q Œ7�q Œ10�q

for ˛ � 54 and ˇ � 34. 296
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Proof. All these assertions have a very similar flavour, and so do their proofs. 297

In order to avoid repetition, proof details are only provided for items (a) and (j); 298

the proofs of items (b)–(i) and (p)–(r) follow the pattern exhibited in the proof of 299

item (a), while the proofs of items (k)–(o) follow that of the proof of item (j). Full 300

details are found in [22, Sect. 4]. 301

In order to establish item (a), we start with the factorisation 302

Œ72�q Œ3�q Œ4�q

Œ8�q Œ9�q Œ12�q

D .1� q3 C q9 � q15 C q18/.1� q4 C q8 � q12 C q16 � q20 C q24 � q28 C q32/:

It should be observed that both factors on the right-hand side have the property that 303

coefficients are in f0; 1;�1g and that .C1/’s and .�1/’s alternate, if one disregards 304

the coefficients which are 0. If we now apply the same idea as in the proof of 305

Corollary 1, then we see that Œ˛�q3 times the first factor is a polynomial in q with 306

non-negative integer coefficients, as is Œˇ�q4 times the second factor. Taken together, 307

this establishes the claim. 308

Now we turn to item (j). We have 309

Œ30�q Œ2�q Œ3�q Œ5�q

Œ6�q Œ10�q Œ15�q
D 1C q � q3 � q4 � q5 C q7 C q8: 310

If we multiply this expression by Œ˛�q2 , then, for ˛ D 4 we obtain 311

1C q C q2 � q5 � q9 C q12 C q13 C q14; 312

for ˛ D 5 we obtain 313

1C q C q2 � q5 C q8 � q11 C q14 C q15 C q16; 314

and, for ˛ � 6, we obtain 315

1CqCq2�q5Cq8Cq10Cp1.q/Cq2˛�4Cq2˛�2�q2˛C1Cq2˛C4Cq2˛C5Cq2˛C6; 316

where p1.q/ is a polynomial in q with non-negative coefficients of order at least 11
and degree at most 2˛�5. In all cases it is obvious that the product of the result and
Œˇ�q5 , with ˇ � 2, is a polynomial in q with non-negative coefficients. ut

We are now ready for the proof of the main result of this section. 317

Theorem 3. For all irreducible well-generated complex reflection groups and 318

positive integers m, the q-Fuß–Catalan number Catm.W I q/ is a polynomial in q 319

with non-negative integer coefficients. 320
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Proof. First, let W D An. In this case, the degrees are 2; 3; : : : ; nC 1, and hence 321

Catm.AnI q/ D 1

Œ.mC 1/nC 1�q

�
.mC 1/nC 1

n

�

q

; 322

which, by Proposition 2, is a polynomial in q with non-negative integer coefficients. 323

Next, let W D G.d; 1; n/. In this case, the degrees are d; 2d; : : : ; nd, and hence 324

Catm.G.d; 1; n/I q/ D
�
.mC 1/n

n

�

qd

; 325

which, by Proposition 1, is a polynomial in q with non-negative integer coefficients. 326

Now, letW D G.e; e; n/. In this case, the degrees are e; 2e; : : : ; .n� 1/e; n, and 327

hence 328

Catm.G.e; e; n/I q/ D Œm.n � 1/e C n�q

Œn�q

n�1Y

iD1

Œm.n � 1/e C ie�q
Œie�q

D
�
.mC 1/.n� 1/

n � 1

�

qe

C qnŒe�qn

�
.mC 1/.n� 1/

n

�

qe

;

which, by Proposition 1, is a polynomial in q with non-negative integer coefficients. 329

It remains to verify the claim for the exceptional groups. 330

For the groups W D G6;G9;G14; G17; G21; and partially for the groups W D 331

G20;G23; G28; G30; G33; G35; G36; G37 (depending on congruence properties of the 332

parameterm), polynomiality and non-negativity of coefficients of the corresponding 333

q-Fuß–Catalan number can be directly read off by a proper rearrangement of the 334

terms in the defining expression; for example, forW D G21 (with degrees given by 335

12; 60) we have 336

Catm.G21I q/ D Œ60mC 12�q Œ60mC 60�q

Œ12�q Œ60�q
D Œ5mC 1�q12 ŒmC 1�q60 ; 337

which is manifestly a polynomial in q with non-negative integer coefficients. 338

For the groupsG5;G10;G18; G26; G27; G29; G34, the terms in the defining expres- 339

sion of the corresponding q-Fuß–Catalan number can be arranged in a manner 340

so that a q-binomial coefficient appears; polynomiality and non-negativity of 341

coefficients then follow from Proposition 1. For example, for W D G34 (with 342

degrees given by 6; 12; 18; 24; 30; 42) we have 343

Catm.G34I q/

D Œ42mC 6�q Œ42mC 12�q Œ42mC 18�q Œ42mC 24�q Œ42mC 30�q Œ42mC 42�q

Œ6�q Œ12�q Œ18�q Œ24�q Œ30�q Œ42�q

D ŒmC 1�q42

�
7mC 5

5

�

q6

;
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which, written in this form, is obviously a polynomial in q with non-negative integer 344

coefficients. 345

On the other hand, for the groupsG4;G8;G16; G25; G32, the terms in the defining 346

expression of the correspondingq-Fuß–Catalan number can be arranged in a manner 347

so that a q-Fuß–Catalan number of type A appears and Proposition 2 applies; for 348

example, for W D G32 (with degrees given by 12; 18; 24; 30) we have 349

Catm.G32I q/ D Œ30mC 12�q Œ30mC 18�q Œ30mC 24�q Œ30mC 30�q

Œ12�q Œ18�q Œ24�q Œ30�q

D 1

Œ5mC 6�q6

�
5mC 6

5

�

q6

;

which indeed fits into the framework of Proposition 2 and, hence, is a polynomial 350

in q with non-negative integer coefficients. 351

In the other cases, the more “specialised” auxiliary results given in Corollary 1 352

and Lemma 2 have to be applied. For the sake of illustration, and in order for the 353

reader to get a feeling for the utility of Corollary 1 and the 18 assertions in Lemma 2, 354

we exhibit one example of application for each of them below, with full details being 355

provided in [22, Sect. 4]. In general, the idea is that, given a rational expression 356

consisting of cyclotomic factors, as in the definition of the q-Fuß–Catalan numbers, 357

one tries to place denominator factors below appropriate numerator factors so that 358

one can divide out the denominator factor completely. For example, if we were to 359

encounter the expression 360

Œ30mC 12�q � (other terms)

Œ12�q � (other terms)
361

and know that m is even, then we would simplify this to 362

	
5mC2
2



q12

� (other terms)

(other terms)
; 363

where Œ 5mC2
2
�q12 is manifestly a polynomial in q with non-negative integer coeffi- 364

cients. On the other hand, in a situation where two denominator factors “want” to 365

divide a single numerator factor, we “extract” as much as we can from the numerator 366

factor and compensate by additional “fudge” factors. To be more concrete, if we 367

encounter the expression 368

Œ14mC 14�q � (other terms)

Œ6�q Œ14�q � (other terms)
369

and we know that m � 2 .mod 3/, then we would try the rewriting 370

	
mC1
3



q42

Œ21�q2

Œ3�q2 Œ7�q2 Œ2�q
� (other terms)

(other terms)
; 371
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with the idea that we might find somewhere else a term Œ2˛�q , which could be 372

combined with the term Œ2�q in the denominator into Œ2˛�q=Œ2�q D Œ˛�q2 , and then 373

apply Corollary 1 to see that 374

Œ˛�q2
Œ21�q2

Œ3�q2 Œ7�q2
375

is a polynomial in q with non-negative integer coefficients (provided ˛ is at least 376

12), with
	
mC1
3



q42

being such a polynomial in any case. 377

In situations where three denominator factors “want” to divide a single numerator 378

factor, one has to perform more complicated rearrangements, in order to be able to 379

apply one of the assertions from Lemma 2. 380

For example, forW D G24, the degrees are 4; 6; 14, and hence 381

Catm.G24I q/ D Œ14mC 4�q Œ14mC 6�q Œ14mC 14�q

Œ4�q Œ6�q Œ14�q
: 382

We have 383

Catm.G24I q/ D

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
:̂

	
7m
2

C 1


q4

	
14m
6

C 1


q6
ŒmC 1�q14 ; if m � 0 (mod 6),

	
7mC2
3



q6

	
7mC3
2



q4
ŒmC 1�q14 ; if m � 1 (mod 6),

	
7m
2

C 1


q4
Œ7mC 3�q2

	
mC1
3



q42

Œ21�
q2

Œ3�
q2
Œ7�
q2
; if m � 2 (mod 6),

Œ7mC 2�q2
	
7m
3

C 1


q6

	
mC1
2



q28

Œ14�q2

Œ2�q2 Œ7�q2
; if m � 3 (mod 6),

	
7mC2
6



q12

Œ6�q2

Œ2�q2 Œ3�q2
Œ7mC 3�q2 ŒmC 1�q14 ; if m � 4 (mod 6),

Œ7mC 2�q2
	
7mC3
2



q4

	
mC1
3



q42

Œ21�
q2

Œ3�q2 Œ7�q2
; if m � 5 (mod 6),

384

which, by Corollary 1, are polynomials in q with non-negative integer coefficients 385

in all cases. 386

For W D G30 D H4, the degrees are 2; 12; 20; 30, and hence 387

Catm.H4I q/ D Œ30mC 2�q Œ30mC 12�q Œ30mC 20�q Œ30mC 30�q

Œ2�q Œ12�q Œ20�q Œ30�q
: 388

If m is odd, then we may write 389

Catm.H4I q/ D 	
15mC1
2



q4
Œ5mC 2�q6 Œ3mC 2�q10

	
mC1
2



q60

Œ30�q2 Œ2�q2 Œ3�q2 Œ5�q2

Œ6�q6 Œ10�q2 Œ15�q2
;

which, by Lemma 2.(j), is a polynomial in q with non-negative integer coeffi- 390

cients. 391
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For W D G35 D E6, the degrees are 2; 5; 6; 8; 9; 12, and hence 392

Catm.E6I q/ D Œ12mC 2�q Œ12mC 5�q Œ12mC 6�q Œ12mC 8�q Œ12mC 9�q Œ12mC 12�q

Œ2�q Œ5�q Œ6�q Œ8�q Œ9�q Œ12�q
:

If m � 5 .mod 30/; then we have 393

Catm.E6I q/ D Œ6mC 1�q2
	
12mC5
5



q5
Œ2mC 1�q6

� Œ3mC 2�q4 Œ4mC 3�q3
	
mC1
6



q72

Œ72�q Œ3�q Œ4�q

Œ8�q Œ9�q Œ12�q
;

which, by Lemma 2.(a), is a polynomial in q with non-negative integer coefficients. 394

If m � 7 .mod 30/; then we have 395

Catm.E6I q/ D 	
6mC1
2



q4
Œ12mC 5�q

	
2mC1
15



q90

� Œ90�q Œ3�q Œ4�q

Œ5�q Œ6�q Œ9�q
Œ3mC 2�q4 Œ4mC 3�q3

	
mC1
2



q24

Œ6�q4

Œ2�q4 Œ3�q4
;

which, by Corollary 1 and Lemma 2.(c), is a polynomial in q with non-negative 396

integer coefficients. 397

If m � 8 .mod 30/; then we have 398

Catm.E6I q/ D Œ6mC 1�q2 Œ12mC 5�qŒ2mC 1�q6
	
3mC2
2



q8

� 	 4mC3
5



q15

Œ15�q

Œ3�q Œ5�q

	
mC1
3



q36

Œ12�q3

Œ3�q3 Œ4�q3
;

which, by Lemma 2.(e), is a polynomial in q with non-negative integer coefficients. 399

If m � 13 .mod 30/; then we have 400

Catm.E6I q/ D Œ6mC 1�q2 Œ12mC 5�q
	
2mC1
3



q18

Œ6�q3

Œ2�q3 Œ3�q3

� Œ3mC 2�q4
	
4mC3
5



q15

Œ15�q

Œ3�q Œ5�q

	
mC1
2



q24

Œ6�q4

Œ2�q4 Œ3�q4
;

which, by Lemma 2.(f), is a polynomial in q with non-negative integer coefficients. 401

If m � 22 .mod 30/; then we have 402

Catm.E6I q/ D Œ6mC 1�q2 Œ12mC 5�q
	
2mC1
15



q90

Œ90�qŒ3�q

Œ5�qŒ6�qŒ9�q

� 	 3mC2
2



q8
Œ4mC 3�q3 ŒmC 1�q12 ;
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which, by Lemma 2.(d), is a polynomial in q with non-negative integer coefficients. 403

If m � 23 .mod 30/; then we have 404

Catm.E6I q/ D Œ6mC 1�q2 Œ12mC 5�qŒ2mC 1�q6

� Œ3mC 2�q4
	
4mC3
5



q15

Œ15�q

Œ3�q Œ5�q

	
mC1
6



q72

Œ72�q Œ3�q Œ4�q

Œ8�q Œ9�q Œ12�q
;

which, by Lemma 2.(b), is a polynomial in q with non-negative integer coefficients. 405

For W D G36 D E7, the degrees are 2; 6; 8; 10; 12; 14; 18, and hence 406

Catm.E7I q/ D Œ18mC 2�q Œ18mC 6�q Œ18mC 8�q Œ18mC 10�q

Œ2�q Œ6�q Œ8�q Œ10�q

� Œ18mC 12�q Œ18mC 14�q Œ18mC 18�q

Œ12�q Œ14�q Œ18�q
:

If m � 18 .mod 140/; then we have 407

Catm.E7I q/ D Œ9mC 1�q2
	
3mC1
5



q30

Œ15�q2

Œ3�q2 Œ5�q2

� 	 9mC4
2



q4
Œ9mC 5�q2

	
3mC2
28



q168

Œ84�q2 Œ2�q2

Œ4�q2 Œ6�q2 Œ7�q2
Œ9mC 7�q2 ŒmC 1�q18 ;

which, by Corollary 1 and Lemma 2.(g), is a polynomial in q with non-negative 408

integer coefficients. 409

If m � 23 .mod 140/; then we have 410

Catm.E7I q/ D 	
9mC1
4



q8

	
3mC1
35



q210

Œ105�q2

Œ3�q2 Œ5�q2 Œ7�q2
Œ9mC 4�q2 Œ9mC 5�q2

� Œ3mC 2�q6 Œ9mC 7�q2
	
mC1
2



q36

Œ6�q6

Œ2�q6 Œ3�q6
;

which, by Corollary 1 and Lemma 2.(h), is a polynomial in q with non-negative 411

integer coefficients. 412

If m � 54 .mod 140/; then we have 413

Catm.E7I q/ D Œ9mC 1�q2 Œ3mC 1�q6
	
9mC4
70



q140

Œ70�q2

Œ2�q2 Œ5�q2 Œ7�q2
Œ9mC 5�q2

� 	 3mC2
4



q24

Œ6�q4

Œ2�q4 Œ3�q4
Œ9mC 7�q2 ŒmC 1�q18 :
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If one decomposes Œ9m C 7�q2 as Œ 9m
2

C 4�q4 C q2Œ 9m
2

C 3�q4 , then one sees that, 414

by Corollary 1 and Lemma 2.(i), this is a polynomial in q with non-negative integer 415

coefficients. 416

For W D G37 D E8, the degrees are 2; 8; 12; 14; 18; 20; 24; 30, and hence 417

Catm.E7I q/ D Œ30mC 2�q Œ30mC 8�q Œ30mC 12�q Œ30mC 14�q

Œ2�q Œ8�q Œ12�q Œ14�q

� Œ30mC 18�q Œ30mC 20�q Œ30mC 24�q Œ30mC 30�q

Œ18�q Œ20�q Œ24�q Œ30�q
:

If m � 3 .mod 84/; then we have 418

Catm.E8I q/ D 	
15mC1
2



q4

	
15mC4
7



q14
Œ5mC 2�q6

	
15mC7
4



q8

	
5mC3
6



q36

Œ6�q6

Œ2�q6 Œ3�q6

� Œ3mC 2�q10 Œ5mC 4�q6
	
mC1
4



q120

Œ60�q2 Œ2�q2 Œ3�q2 Œ5�q2

Œ10�q2 Œ12�q2 Œ15�q2
;

which, by Corollary 1 and Lemma 2.(m), is a polynomial in q with non-negative 419

integer coefficients. 420

If m � 8 .mod 84/; then we have 421

Catm.E8I q/ D Œ15mC 1�q2
	
15mC4
4



q8

	
5mC2
42



q252

Œ126�q2 Œ3�q2

Œ6�q2 Œ7�q2 Œ9�q2

� Œ15mC 7�q2 Œ5mC 3�q6
	
3mC2
2



q20

	
5mC4
4



q24
ŒmC 1�q30 ;

which, by Lemma 2.(p), is a polynomial in q with non-negative integer coefficients. 422

If m � 11 .mod 84/; then we have 423

Catm.E8I q/ D 	
15mC1
2



q4
Œ15mC 4�q2

	
5mC2
3



q18

	
15mC7
4



q8

	
5mC3
2



q12

� 	 3mC2
7



q70

Œ35�q2

Œ5�q2 Œ7�q2
Œ5mC 4�q6

	
mC1
4



q120

Œ60�q2 Œ2�q2 Œ3�q2 Œ5�q2

Œ10�q2 Œ12�q2 Œ15�q2
;

which, by Corollary 1 and Lemma 2.(n), is a polynomial in q with non-negative 424

integer coefficients. 425

If m � 16 .mod 84/; then we have 426

Catm.E8I q/ D Œ15mC 1�q2
	
15mC4
4



q8

	
5mC2
2



q12
Œ15mC 7�q2 Œ5mC 3�q6

� 	 3mC2
2



q20

	
5mC4
84



q504

Œ252�q2 Œ3�q2

Œ7�q2 Œ9�q2 Œ12�q2
ŒmC 1�q30 ;

which, by Lemma 2.(q), is a polynomial in q with non-negative integer coefficients. 427
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If m � 18 .mod 84/; then we have 428

Catm.E8I q/ D Œ15mC 1�q2
	
15mC4
2



q4

	
5mC2
4



q24
Œ15mC 7�q2

	
5mC3
3



q18

	
3mC2
28



q280

Œ140�q2 Œ2�q2

Œ4�q2 Œ7�q2 Œ10�q2

	
5mC4
2



q12
ŒmC 1�q30 ;

which, by Lemma 2.(r), is a polynomial in q with non-negative integer coefficients. 429

If m � 21 .mod 84/; then we have 430

Catm.E8I q/ D 	
15mC1
4



q8
Œ15mC 4�q2 Œ5mC 2�q6

	
15mC7
14



q28

Œ14�q2

Œ2�q2 Œ7�q2

	
5mC3
12



q72

� Œ12�q6

Œ3�q6 Œ4�q6
Œ3mC 2�q10 Œ5mC 4�q6

	
mC1
2



q60

Œ30�q2 Œ2�q2 Œ3�q2 Œ5�q2

Œ6�q2 Œ10�q2 Œ15�q2
;

which, by Corollary 1 and Lemma 2.(k), is a polynomial in q with non-negative 431

integer coefficients. 432

If m � 25 .mod 84/; then we have 433

Catm.E8I q/ D 	
15mC1
4



q8
Œ15mC 4�q2 Œ5mC 2�q6

	
15mC7
2



q4

	
5mC3
4



q24

� 	 3mC2
7



q70

Œ35�q2

Œ5�q2 Œ7�q2

	
5mC4
3



q18

	
mC1
2



q60

Œ30�q2 Œ2�q2 Œ3�q2 Œ5�q2

Œ6�q2 Œ10�q2 Œ15�q2
;

which, by Lemma 2.(l), is a polynomial in q with non-negative integer coefficients. 434

If m � 27 .mod 84/; then we have 435

Catm.E8I q/ D 	
15mC1
14



q28

Œ14�q2

Œ2�q2 Œ7�q2
Œ15mC 4�q2 Œ5mC 2�q6

	
15mC7
4



q8

	
5mC3
6



q36

� Œ6�q6

Œ2�q6 Œ3�q6
Œ3mC 2�q10 Œ5mC 4�q6

	
mC1
4



q120

Œ60�q2 Œ2�q2 Œ3�q2 Œ5�q2

Œ10�q2 Œ12�q2 Œ15�q2
;

which, by Corollary 1 and Lemma 2.(o), is a polynomial in q with non-negative 436

integer coefficients. 437

All other cases are disposed of in a similar fashion. ut

5 Auxiliary Results I 438

This section collects several auxiliary results which allow us to reduce the problem 439

of proving Theorem 2, or the equivalent statement (5), for the 26 exceptional groups 440

listed in Sect. 2 to a finite problem. While Lemmas 4 and 5 cover special choices of 441
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the parameters, Lemmas 3 and 7 afford an inductive procedure. More precisely, if 442

we assume that we have already verified Theorem 2 for all groups of smaller rank, 443

then Lemmas 3 and 7, together with Lemmas 4 and 8, reduce the verification of 444

Theorem 2 for the group that we are currently considering to a finite problem; see 445

Remark 3. The final lemma of this section, Lemma 9, disposes of complex reflection 446

groups with a special property satisfied by their degrees. 447

Let p D amC b, 0 � b < m. We have 448

�p
�
.w0I w1; : : : ;wm/

�

D .	I caC1wm�bC1c�a�1; caC1wm�bC2c�a�1; : : : ; caC1wmc�a�1;

caw1c
�a; : : : ; cawm�bc�a�;

(10)

where 	 stands for the element ofW which is needed to complete the product of the 449

components to c. 450

Lemma 3. It suffices to check (5) for p a divisor of mh. More precisely, let p be a 451

divisor of mh, and let k be another positive integer with gcd.k;mh=p/ D 1, then 452

we have 453

Catm.W I q/ˇ̌
qDe2�ip=mh D Catm.W I q/ˇ̌

qDe2�ikp=mh (11)

and 454

j FixNCm.W /.�
p/j D j FixNCm.W /.�

kp/j: (12)

Proof. For (11), this follows immediately from 455

lim
q!�

Œ˛�q

Œˇ�q
D
(
˛
ˇ

if ˛ � ˇ � 0 .mod d/;

1 otherwise;
(13)

where � is a primitive d -th root of unity and ˛; ˇ are non-negative integers such that 456

˛ � ˇ .mod d/. 457

In order to establish (12), suppose that x 2 FixNCm.W /.�
p/, that is, x 2 NCm.W /

and �p.x/ D x. It obviously follows that �kp.x/ D x, so that x 2 FixNCm.W /.�
kp/.

To establish the converse, note that, if gcd.k;mh=p/ D 1, then there exists k0 with
k0k � 1 (mod mh

p
). It follows that, if x 2 FixNCm.W /.�

kp/, that is, if x 2 NCm.W /

and �kp.x/ D x, then x D �k
0kp.x/ D �p.x/, whence x 2 FixNCm.W /.�

p/. ut
Lemma 4. Let p be a divisor of mh. If p is divisible by m, then (5) is true. 458

Proof. According to (10), the action of �p on NCm.W / is described by 459

�p
�
.w0I w1; : : : ;wm/

� D .	I cp=mw1c
�p=m; : : : ; cp=mwmc

�p=m�:
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Hence, if .w0I w1; : : : ;wm/ is fixed by �p , then each individual wi must be fixed 460

under conjugation by cp=m. 461

Using the notation W 0 D CentW .cp=m/, the previous observation means 462

that wi 2 W 0, i D 1; 2; : : : ; m. Springer [35, Theorem 4.2] (see also [25, 463

Theorem 11.24(iii)]) proved that W 0 is a well-generated complex reflection group 464

whose degrees coincide with those degrees ofW that are divisible bymh=p. It was 465

furthermore shown in [10, Lemma 3.3] that 466

NC.W / \W 0 D NC.W 0/: (14)

Hence, the tuples .w0I w1; : : : ;wm/ fixed by �p are in fact identical with the 467

elements of NCm.W 0/, which implies that 468

j FixNCm.W /.�
p/j D jNCm.W 0/j: (15)

Application of Theorem 1 with W replaced by W 0 and of the “limit rule” (13) then 469

yields that 470

jNCm.W 0/j D
Y

1�i�n
mh
p jdi

mhC di

di
D Catm.W I q/ˇˇ

qDe2�ip=mh : (16)

Combining (15) and (16), we obtain (5). This finishes the proof of the lemma. ut
Lemma 5. Equation (5) holds for all divisors p of m. 471

Proof. Using (13) and the fact that the degrees of irreducible well-generated 472

complex reflection groups satisfy di < h for all i < n, we see that 473

Catm.W I q/ˇˇ
qDe2�ip=mh D

(
mC 1 if m D p;

1 if m ¤ p:
474

On the other hand, if .w0I w1; : : : ;wm/ is fixed by �p , then, because of the action 475

(10), we must have w1 D wpC1 D � � � D wm�pC1 and w1 D cwm�pC1c�1. 476

In particular, w1 2 CentW .c/. By the theorem of Springer cited in the proof of 477

Lemma 4, the subgroup CentW .c/ is itself a complex reflection group whose degrees 478

are those degrees of W that are divisible by h. The only such degree is h itself, 479

hence CentW .c/ is the cyclic group generated by c. Moreover, by (14), we obtain 480

that w1 D ", the identity element of W , or w1 D c. Therefore, for m D p the 481

set FixNCm.W /.�
p/ consists of the m C 1 elements .w0I w1; : : : ;wm/ obtained by 482

choosing wi D c for a particular i between 0 andm, all other wj ’s being equal to ", 483

while, form ¤ p, we have 484

FixNCm.W /.�
p/ D ˚

.cI "; : : : ; "/�; 485

whence the result. ut
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Lemma 6. Let W be an irreducible well-generated complex reflection group all of 486

whose degrees are divisible by d . Then each element ofW is fixed under conjugation 487

by ch=d . 488

Proof. By the theorem of Springer cited in the proof of Lemma 4, the subgroup
W 0 D CentW .ch=d / is itself a complex reflection group whose degrees are those
degrees of W that are divisible by d . Thus, by our assumption, the degrees of
W 0 coincide with the degrees of W , and hence W 0 must be equal to W . Phrased
differently, each element of W is fixed under conjugation by ch=d , as claimed. ut
Lemma 7. Let W be an irreducible well-generated complex reflection group of 489

rank n, and let p D m1h1 be a divisor of mh, where m D m1m2 and h D h1h2. 490

Without loss of generality, we assume that gcd.h1;m2/ D 1. Suppose that Theorem 2 491

has already been verified for all irreducible well-generated complex reflection 492

groups with rank < n. If h2 does not divide all degrees di , then Eq. (5) is satisfied. 493

Proof. Let us write h1 D am2 C b, with 0 � b <m2. The condition gcd.h1;m2/D 1 494

translates into gcd.b;m2/ D 1. From (10), we infer that 495

�p
�
.w0I w1; : : : ;wm/

�

D .	I caC1wm�m1bC1c�a�1; caC1wm�m1bC2c�a�1; : : : ; caC1wmc�a�1;

caw1c
�a; : : : ; cawm�m1bc�a�:

(17)

Supposing that .w0I w1; : : : ;wm/ is fixed by �p , we obtain the system of equations 496

wi D caC1wiCm�m1bc�a�1; i D 1; 2; : : : ; m1b;

wi D cawi�m1bc�a; i D m1b C 1;m1b C 2; : : : ; m;

which, after iteration, implies in particular that 497

wi D cb.aC1/C.m2�b/awi c
�b.aC1/�.m2�b/a D ch1wi c

�h1 ; i D 1; 2; : : : ; m: 498

It is at this point where we need gcd.b;m2/ D 1. The last equation shows that 499

each wi , i D 1; 2; : : : ; m, and thus also w0, lies in CentW .ch1 /. By the theorem of 500

Springer cited in the proof of Lemma 4, this centraliser subgroup is itself a complex 501

reflection group, W 0 say, whose degrees are those degrees of W that are divisible 502

by h=h1 D h2. Since, by assumption, h2 does not divide all degrees, W 0 has rank 503

strictly less than n. Again by assumption, we know that Theorem 2 is true for W 0, 504

so that in particular, 505

j FixNCm.W 0/.�
p/j D Catm.W 0I q/ˇˇ

qDe2�ip=mh : 506

The arguments above together with (14) show that 507

FixNCm.W /.�
p/ D FixNCm.W 0/.�

p/: 508
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On the other hand, using (13) it is straightforward to see that 509

Catm.W I q/ˇˇ
qDe2�ip=mh D Catm.W 0I q/ˇˇ

qDe2�ip=mh : 510

This proves (5) for our particular p, as required. ut
Lemma 8. Let W be an irreducible well-generated complex reflection group of 511

rank n, and let p D m1h1 be a divisor of mh, where m D m1m2 and h D h1h2. We 512

assume that gcd.h1;m2/ D 1. If m2 > n then 513

FixNCm.W /.�
p/ D ˚

.cI "; : : : ; "/�: 514

Proof. Let us suppose that .w0I w1; : : : ;wm/ 2 FixNCm.W /.�
p/ and that there exists

a j � 1 such that wj ¤ ". By (17), it then follows for such a j that also wk ¤ " for
all k � j � lm1b (modm), where, as before, b is defined as the unique integer with
h1 D am2 C b and 0 � b < m2. Since, by assumption, gcd.b;m2/ D 1, there are
exactly m2 such k’s which are distinct mod m. However, this implies that the sum
of the absolute lengths of the wi ’s, 0 � i � m, is at least m2 > n, a contradiction to
Remark 1.(2). ut
Remark 3. (1) If we put ourselves in the situation of the assumptions of Lemma 7, 515

then we may conclude that Eq. (5) only needs to be checked for pairs .m2; h2/ 516

subject to the following restrictions: 517

m2 � 2; gcd.h1;m2/ D 1; and h2 divides all degrees of W : (18)

Indeed, Lemmas 4 and 7 together imply that Eq. (5) is always satisfied in all 518

other cases. 519

(2) Still putting ourselves in the situation of Lemma 7, if m2 > n and m2h2 does 520

not divide any of the degrees of W , then Eq. (5) is satisfied. Indeed, Lemma 8 521

says that in this case the left-hand side of (5) equals 1, while a straightforward 522

computation using (13) shows that in this case the right-hand side of (5) equals 523

1 as well. 524

(3) It should be observed that this leaves a finite number of choices for m2 to 525

consider, whence a finite number of choices for .m1;m2; h1; h2/. Altogether, 526

there remains a finite number of choices for p D h1m1 to be checked. 527

Lemma 9. Let W be an irreducible well-generated complex reflection group of 528

rank n with the property that di j h for i D 1; 2; : : : ; n. Then Theorem 2 is true for 529

this groupW . 530

Proof. By Lemma 3, we may restrict ourselves to divisors p of mh. 531

Suppose that e2�ip=mh is a di -th root of unity for some i . In other words, mh=p 532

divides di . Since di is a divisor of h by assumption, the integermh=p also divides h. 533

But this is equivalent to saying that m divides p, and Eq. (5) holds by Lemma 4. 534

Now assume that mh=p does not divide any of the di ’s. Then, by (13), the right- 535

hand side of (5) equals 1. On the other hand, .cI "; : : : ; "/ is always an element of 536



UNCORRECTED
PROOF

Cyclic Sieving for Generalised Non-crossing Partitions Associated with . . . 231

FixNCm.W /.�
p/. To see that there are no others, we make appeal to the classification 537

of all irreducible well-generated complex reflection groups, which we recalled in 538

Sect. 2. Inspection reveals that all groups satisfying the hypotheses of the lemma 539

have rank n � 2. Except for the groups contained in the infinite series G.d; 1; n/ 540

and G.e; e; n/ for which Theorem 2 has been established in [20], these are the 541

groups G5;G6;G9;G10; G14; G17; G18; G21. We now discuss these groups case by 542

case, keeping the notation of Lemma 7. In order to simplify the argument, we 543

note that Lemma 8 implies that Eq. (5) holds if m2 > 2, so that in the following 544

arguments we always may assume that m2 D 2. 545

CASE G5. The degrees are 6; 12, and therefore Remark 3.(1) implies that Eq. (5) 546

is always satisfied. 547

CASE G6. The degrees are 4; 12, and therefore, according to Remark 3.(1), we 548

need only consider the case where h2 D 4 and m2 D 2, that is, p D 3m=2. Then 549

(17) becomes 550

�p
�
.w0I w1; : : : ;wm/

�

D .c2wm
2 C1c�2; c2wm

2 C2c�2; : : : ; c2wmc�2; cw1c�1; : : : ; cwm
2
c�1�: (19)

If .w0I w1; : : : ;wm/ is fixed by �p and not equal to .cI "; : : : ; "/, there must exist 551

an i with 1 � i � m
2

such that `T .wi / D `T .wm
2 Ci / D 1, wm

2 Ci D cwi c�1, 552

wiwm
2 Ci D wi cwi c�1 D c, and all wj , with j ¤ i; m

2
C i , equal ". However, with 553

the help of the GAP package CHEVIE [15, 28], one verifies that there is no wi in 554

G6 such that 555

`T .wi / D 1 and wi cwi c
�1 D c 556

are simultaneously satisfied. Hence, the left-hand side of (5) is equal to 1, as 557

required. 558

CASE G9. The degrees are 8; 24, and therefore, according to Remark 3.(1), we 559

need only consider the case where h2 D 8 and m2 D 2, that is, p D 3m=2. This is 560

the same p as for G6. Again, CHEVIE finds no solution. Hence, the left-hand side 561

of (5) is equal to 1, as required. 562

CASE G10. The degrees are 12; 24, and therefore Remark 3.(1) implies that 563

Eq. (5) is always satisfied. 564

CASE G14. The degrees are 6; 24, and therefore Remark 3.(1) implies that Eq. (5) 565

is always satisfied. 566

CASE G17. The degrees are 20; 60, and therefore, according to Remark 3.(1), we 567

need only consider the cases where h2 D 20 or h2 D 4. In the first case, p D 3m=2, 568

which is the same p as for G6. Again, CHEVIE finds no solution. In the second 569

case, p D 15m=2. Then (17) becomes 570

�p
�
.w0I w1; : : : ;wm/

�

D .	I c8wm
2 C1c�8; c8wm

2 C2c�8; : : : ; c8wmc�8; c7w1c�7; : : : ; c7wm
2
c�7�:

(20)
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By Lemma 6, every element of NC.W / is fixed under conjugation by c3, and, thus, 571

on elements fixed by �p , the above action of �p reduces to the one in (19). This 572

action was already discussed in the first case. Hence, in both cases, the left-hand 573

side of (5) is equal to 1, as required. 574

CASE G18. The degrees are 30; 60, and therefore Remark 3.(1) implies that 575

Eq. (5) is always satisfied. 576

CASE G21. The degrees are 12; 60, and therefore, according to Remark 3.(1), we 577

need only consider the cases where h2 D 12 or h2 D 4. In the first case, p D 5m=2, 578

so that (17) becomes 579

�p
�
.w0I w1; : : : ;wm/

�

D .	I c3wm
2 C1c�3; c3wm

2 C2c�3; : : : ; c3wmc�3; c2w1c�2; : : : ; c2wm
2
c�2�:

(21)

If .w0I w1; : : : ;wm/ is fixed by �p and not equal to .cI "; : : : ; "/, there must exist an i 580

with 1 � i � m
2

such that `T .wi / D 1 and wi c2wi c�2 D c. However, with the help 581

of the GAP package CHEVIE [15, 28], one verifies that there is no such solution 582

to this equation. In the second case, p D 15m=2. Then (17) becomes the action in 583

(20). By Lemma 6, every element of NC.W / is fixed under conjugation by c5, and, 584

thus, on elements fixed by �p, the action of �p in (20) reduces to the one in the first 585

case. Hence, in both cases, the left-hand side of (5) is equal to 1, as required. 586

This completes the proof of the lemma. ut

6 Exemplification of Case-by-Case Verification of Theorem 2 587

It remains to verify Theorem 2 for the groups G4,G8,G16,G20, G23 D 588

H3,G24,G25,G26,G27, G28 D F4,G29,G30 D H4,G32, G33,G34,G35 D E6,G36 D 589

E7,G37 D E8. All details can be found in [22, Sect. 6]. We content ourselves with 590

illustrating the type of computation that is needed here by going through the case 591

of the group G24, and by discussing some of the arguments needed for the group 592

G37 D E8. 593

In the sequel we write �d for a primitive d -th root of unity. 594

6.1 CASE G24 595

The degrees are 4; 6; 14, and hence we have 596

Catm.G24I q/ D Œ14mC 14�q Œ14mC 6�q Œ14mC 4�q

Œ14�q Œ6�q Œ4�q
: 597
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Let � be a 14m-th root of unity. In what follows, we abbreviate the assertion that “� 598

is a primitive d -th root of unity” as “� D �d .” The following cases on the right-hand 599

side of (5) occur: 600

lim
q!�

Catm.G24I q/ D mC 1; if � D �14; �7; (22)

lim
q!�

Catm.G24I q/ D 7mC3
3
; if � D �6; �3; 3 j m; (23)

lim
q!�

Catm.G24I q/ D 7mC2
2
; if � D �4; 2 j m; (24)

lim
q!�

Catm.G24I q/ D Catm.G24/; if � D �1 or � D 1; (25)

lim
q!�

Catm.G24I q/ D 1; otherwise. (26)

We must now prove that the left-hand side of (5) in each case agrees with the 601

values exhibited in (22)–(26). The only cases not covered by Lemma 4 are the ones 602

in (23), (24), and (26). (In both (22) and (25) we have d j h.) 603

We first consider (23). By Lemma 3, we are free to choose p D 7m=3 if � D �6, 604

respectively p D 14m=3 if � D �3. In both cases, m must be divisible by 3. 605

We start with the case that p D 7m=3. From (10), we infer 606

�p
�
.w0I w1; : : : ;wm/

�

D .	I c3w 2m
3 C1c

�3; c3w 2m
3 C2c

�3; : : : ; c3wmc�3; c2w1c�2; : : : ; c2w 2m
3
c�2�:

Supposing that .w0I w1; : : : ;wm/ is fixed by �p , we obtain the system of equations 607

wi D c3w 2m
3 Ci c�3; i D 1; 2; : : : ; m

3
; (27)

wi D c2wi�m
3
c�2; i D m

3
C 1; m

3
C 2; : : : ; m: (28)

There are two distinct possibilities for choosing the wi ’s, 1 � i � m: either all 608

the wi ’s are equal to ", or there is an i with 1 � i � m
3

such that 609

`T .wi / D `T .wiCm
3
/ D `T .wiC 2m

3
/ D 1: 610

Writing t1; t2; t3 for wi ;wiCm
3
;wiC 2m

3
, respectively, the Eqs. (27) and (28) reduce to 611

t1 D c3t3c
�3; (29)

t2 D c2t1c
�2; (30)

t3 D c2t2c
�2: (31)
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One of these equations is in fact superfluous: if we substitute (30) and (31) in 612

(29), then we obtain t1 D c7t1c
�7 which is automatically satisfied due to Lemma 6 613

with d D 2. 614

Since .w0I w1; : : : ;wm/ 2 NCm.G24/, we must have t1t2t3 D c. Combining this 615

with (29)–(31), we infer that 616

t1.c
2t1c

�2/.c4t1c�4/ D c: (32)

With the help of CHEVIE, one obtains seven solutions for t1 in this equation, each 617

of them giving rise to m=3 elements of FixNCm.G24/.�
p/ since i (in wi ) ranges from 618

1 to m=3. 619

In total, we obtain 1 C 7m
3

D 7mC3
3

elements in FixNCm.G24/.�
p/, which agrees 620

with the limit in (23). 621

The case where p D 14m=3 can be treated in a similar fashion. In the end, it 622

turns out that we have to solve the same enumeration problem as for p D 7m=3, 623

and, consequently, the number of elements of FixNCm.G24/.�
p/ is the same, namely 624

7mC3
3

, as required. 625

Our next case is (24). Proceeding in a similar manner as before, we see that there 626

is again the trivial possibility .cI "; : : : ; "/, and otherwise we have to find t1 with 627

`T .t1/ D 1 satisfying the inequality 628

t1.c
3t1c

�3/ �T c: (33)

With the help of CHEVIE, one obtains 7 solutions for t1 in this relation, each of 629

them giving rise to m=2 elements of FixNCm.G24/.�
p/ since i (in wi ) ranges from 1 630

to m=2. 631

In total, we obtain 1 C 7m
2

D 7mC2
2

elements in FixNCm.G24/.�
p/, which agrees 632

with the limit in (24). 633

Finally, we turn to (26). By Remark 3, the only choices for h2 and m2 to be 634

considered are h2 D 1 and m2 D 3, h2 D m2 D 2, and h2 D 2 and m2 D 3. These 635

correspond to the choices p D 14m=3, p D 7m=2, respectively p D 7m=3, all of 636

which have already been discussed as they do not belong to (26). Hence, (5) must 637

necessarily hold, as required. 638

6.2 CASE G37 D E8 639

The degrees are 2; 8; 12; 14; 18; 20; 24; 30, and hence we have 640

Catm.E8I q/ D Œ30mC 30�q Œ30mC 24�q Œ30mC 20�q Œ30mC 18�q

Œ30�q Œ24�q Œ20�q Œ18�q

� Œ30mC 14�q Œ30mC 12�q Œ30mC 8�q Œ30mC 2�q

Œ14�q Œ12�q Œ8�q Œ2�q
:



UNCORRECTED
PROOF

Cyclic Sieving for Generalised Non-crossing Partitions Associated with . . . 235

Let � be a 30m-th root of unity. The cases occurring on the right-hand side of (5) 641

not covered by Lemma 4 are: 642

lim
q!�

Catm.E8I q/ D 5mC4
4
; if � D �24; 4 j m; (34)

lim
q!�

Catm.E8I q/ D 3mC2
2
; if � D �20; 2 j m; (35)

lim
q!�

Catm.E8I q/ D 5mC3
3
; if � D �18; �9; 3 j m; (36)

lim
q!�

Catm.E8I q/ D 15mC7
7

; if � D �14; �7; 7 j m; (37)

lim
q!�

Catm.E8I q/ D .5mC4/.5mC2/
8

; if � D �12; 2 j m; (38)

lim
q!�

Catm.E8I q/ D .5mC4/.15mC4/
16

; if � D �8; 4 j m; (39)

lim
q!�

Catm.E8I q/ D .5mC4/.3mC2/.5mC2/.15mC4/
64

; if � D �4; 2 j m; (40)

lim
q!�

Catm.E8I q/ D Catm.E8/; if � D �1 or � D 1; (41)

lim
q!�

Catm.E8I q/ D 1; otherwise. (42)

We now have to prove that the left-hand side of (5) in each case agrees with the 643

values exhibited in (34)–(42). Since the corresponding computations in the various 644

cases are very similar, we concentrate here only on the cases (39) and (40), these 645

two being representative of the types of arguments arising. As before, we refer the 646

reader to [22, Sect. 6] for full details. 647

Let us consider the case in (39) first. By Lemma 3, we are free to choose p D 648

15m=4. In particular,m must be divisible by 4. From (10), we infer 649

�p
�
.w0I w1; : : : ;wm/

�

D .	I c4wm
4 C1c�4; c4wm

4 C2c�4; : : : ; c4wmc�4; c3w1c�3; : : : ; c3wm
4
c�3�:

Supposing that .w0I w1; : : : ;wm/ is fixed by �p , we obtain the system of equations 650

wi D c4wm
4 Ci c�4; i D 1; 2; : : : ; 3m

4
; (43)

wi D c3wi� 3m
4
c�3; i D 3m

4
C 1; 3m

4
C 2; : : : ; m: (44)

There are several distinct possibilities for choosing the wi ’s, 1 � i � m, which 651

we summarize as follows: 652

(i) All the wi ’s are equal to " (and w0 D c), 653

(ii) There is an i with 1 � i � m
4

such that 654
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1 � `T .wi / D `T .wiCm
4
/ D `T .wiC 2m

4
/ D `T .wiC 3m

4
/ � 2; (45)

and the other wj ’s, 1 � j � m, are equal to ", 655

(iii) There are i1 and i2 with 1 � i1 < i2 � m
4

such that 656

`T .wi1 / D `T .wi2 / D `T .wi1Cm
4
/ D `T .wi2Cm

4
/

D `T .wi1C 2m
4
/ D `T .wi2C 2m

4
/ D `T .wi1C 3m

4
/ D `T .wi2C 3m

4
/ D 1;

(46)

and all other wj are equal to ". 657

Moreover, since .w0I w1; : : : ;wm/ 2 NCm.E8/, we must have 658

wiwiCm
4

wiC 2m
4

wiC 3m
4

�T c; 659

or 660

wi1wi2wi1Cm
4

wi2Cm
4

wi1C 2m
4

wi2C 2m
4

wi1C 3m
4

wi2C 3m
4

D c: 661

Together with Eqs. (43), (44), (45), and (46), this implies that 662

wi D c15wi c
�15 and wi .c

11wi c
�11/.c7wi c�7/.c3wi c�3/ �T c; (47)

or that 663

wi1 D c15wi1c
�15; wi1 D c15wi2c

�15; and

wi1wi2 .c
11wi1 c

�11/.c11wi2c�11/.c7wi1c�7/.c7wi2 c�7/.c3wi1 c�3/.c3wi2c�3/ D c:

(48)

Here, the first equation in (47) and the first two equations in (48) are automatically 664

satisfied due to Lemma 6 with d D 2. 665

With the help of Stembridge’s Maple package coxeter [38], one obtains 30 666

solutions for wi in (47) with `T .wi / D 1, 45 solutions for wi with `T .wi / D 2 667

and wi of type A21 (as a parabolic Coxeter element; see the end of Sect. 2), and 668

20 solutions for wi with `T .wi / D 2 and wi of type A2. Each of them gives rise to 669

m=4 elements of FixNCm.E8/.�
p/ since i ranges from 1 to m=4. 670

The number of solutions in Case (iii) can be computed from our knowledge of the 671

solutions in Case (ii) according to type, using some elementary counting arguments. 672

Namely, the number of solutions of (48) is equal to 673

45 � 2C 20 � 3 D 150; 674

since an element of type A21 can be decomposed in two ways into a product of two 675

elements of absolute length 1, while for an element of type A2 this can be done in 3 676

ways. 677
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In total, we obtain 1C .30C 45C 20/m
4

C 150
�
m=4
2

� D .5mC4/.15mC4/
16

elements 678

in FixNCm.E8/.�
p/, which agrees with the limit in (39). 679

Next, we discuss the case in (40). By Lemma 3, we are free to choose p D 680

15m=2. In particular,m must be divisible by 2. From (10), we infer 681

�p
�
.w0I w1; : : : ;wm/

�

D .	I c8wm
2 C1c�8; c8wm

2 C2c�8; : : : ; c8wmc�8; c7w1c�7; : : : ; c7wm
2
c�7�:

Supposing that .w0I w1; : : : ;wm/ is fixed by �p , we obtain the system of equations 682

wi D c8wm
2 Ci c�8; i D 1; 2; : : : ; m

2
; (49)

wi D c7wi�m
2
c�7; i D m

2
C 1; m

2
C 2; : : : ; m: (50)

There are several distinct possibilities for choosing the wi ’s, 1 � i � m: 683

(i) All the wi ’s are equal to " (and w0 D c), 684

(ii) There is an i with 1 � i � m
2

such that 685

1 � `T .wi / D `T .wiCm
2
/ � 4; (51)

and the other wj ’s, 1 � j � m, are equal to ", 686

(iii) There are i1 and i2 with 1 � i1 < i2 � m
2

such that 687

`1 WD `T .wi1 / D `T .wi1Cm
2
/ � 1; `2 WD `T .wi2 / D `T .wi2Cm

2
/ � 1;

and `1 C `2 � 4; (52)

and the other wj ’s, 1 � j � m, are equal to ", 688

(iv) There are i1; i2; i3 with 1 � i1 < i2 < i3 � m
2

such that 689

`1 WD `T .wi1 / D `T .wi1Cm
2
/ � 1; `2 WD `T .wi2 / D `T .wi2Cm

2
/ � 1;

`3 WD `T .wi3 / D `T .wi3Cm
2
/ � 1; and `1 C `2 C `3 � 4; (53)

and the other wj ’s, 1 � j � m, are equal to ", 690

(v) There are i1; i2; i3; i4 with 1 � i1 < i2 < i3 < i4 � m
2

such that 691

`T .wi1 / D `T .wi2 / D `T .wi3 / D `T .wi4 /

D `T .wi1Cm
2
/ D `T .wi2Cm

2
/ D `T .wi3Cm

2
/ D `T .wi4Cm

2
/ D 1; (54)

and all other wj ’s are equal to ". 692

Moreover, since .w0I w1; : : : ;wm/ 2 NCm.E8/, we must have wiwiCm
2

�T c, 693

respectively wi1wi2wi1Cm
2

wi2Cm
2

�T c, respectively 694
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wi1wi2wi3wi1Cm
2

wi2Cm
2

wi3Cm
2

�T c; 695

respectively 696

wi1wi2wi3wi4wi1Cm
2

wi2Cm
2

wi3Cm
2

wi4Cm
2

D c: 697

Together with Eqs. (49), (50), and (51)–(54), this implies that 698

wi D c15wi c
�15 and wi .c

7wi c
�7/ �T c; (55)

respectively that 699

wi1 D c15wi1c
�15; wi2 D c15wi2 c

�15; and wi1wi2 .c
7wi1c

�7/.c7wi2c�7/ �T c;

(56)

respectively that 700

wi1 D c15wi1c
�15; wi2 D c15wi2c

�15; wi3 D c15wi3 c
�15;

and wi1wi2wi3 .c
7wi1c

�7/.c7wi2c�7/.c7wi3 c�7/ �T c; (57)

respectively that 701

wi1 D c15wi1c
�15; wi2 D c15wi2c

�15; wi3 D c15wi3c
�15; wi4 D c15wi4c

�15;

and wi1wi2wi3wi4 .c
7wi1c

�7/.c7wi2c�7/.c7wi3c�7/.c7wi4 c�7/ D c: (58)

Here, the first equation in (55), the first two in (56), the first three in (57), and the 702

first four in (58), are all automatically satisfied due to Lemma 6 with d D 2. 703

With the help of Stembridge’s Maple package coxeter [38], one obtains 704

– 45 solutions for wi in (55) with `T .wi / D 1, 705

– 150 solutions for wi in (55) with `T .wi / D 2 and wi of type A21, 706

– 100 solutions for wi in (55) with `T .wi / D 2 and wi of type A2, 707

– 75 solutions for wi in (55) with `T .wi / D 3 and wi of type A31, 708

– 165 solutions for wi in (55) with `T .wi / D 3 and wi of type A1 	 A2, 709

– 90 solutions for wi in (55) with `T .wi / D 3 and wi of type A3, 710

– 15 solutions for wi in (55) with `T .wi / D 4 and wi of type A21 	 A2, 711

– 45 solutions for wi in (55) with `T .wi / D 4 and wi of type A1 	 A3; 712

– 5 solutions for wi in (55) with `T .wi / D 4 and wi of type A22, 713

– 18 solutions for wi in (55) with `T .wi / D 4 and wi of type A4, 714

– 5 solutions for wi in (55) with `T .wi / D 4 and wi of typeD4. 715

Each of them gives rise tom=2 elements of FixNCm.E8/.�
p/ since i ranges from 1 to 716

m=2. There are no solutions for wi in (55) with wi of type A41. 717

Letting the computer find all solutions in cases (iii)–(v) would take years. 718

However, the number of these solutions can be computed from our knowledge of 719

the solutions in Case (ii) according to type, if this information is combined with 720
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the decomposition numbers in the sense of [18, 19, 21] (see the end of Sect. 2) and 721

some elementary (multiset) permutation counting. The decomposition numbers for 722

A2, A3, A4, and D4 of which we make use can be found in the appendix of [19]. 723

To begin with, the number of solutions of (56) with `1 D `2 D 1 is equal to 724

n1;1 WD 150 � 2C 100 �NA2.A1; A1/ D 600; 725

since an element of type A21 can be decomposed in two ways into a product of two 726

elements of absolute length 1, while for an element of type A2 this can be done in 727

NA2.A1; A1/ D 3 ways. Similarly, the number of solutions of (56) with `1 D 2 and 728

`2 D 1 is equal to 729

n2;1 WD 75 � 3C 165 � .1CNA2.A1; A1//C 90 �NA3.A2; A1/ D 1;425; 730

the number of solutions of (56) with `1 D 3 and `2 D 1 is equal to 731

n3;1 WD 15 � .2CNA2.A1; A1//C 45 � .1CNA3.A2; A1//C 5 � .2NA2.A1; A1//
C18�.NA4.A3; A1/CNA4.A1	A2;A1//C5�.ND4.A3; A1/CND4.A31; A1// D 660;

the number of solutions of (56) with `1 D `2 D 2 is equal to 732

n2;2 WD 15 � .2C 2NA2.A1; A1//C 45 � .2NA3.A2; A1//C 5 � .2CNA2.A1; A1/
2/

C 18 � .NA4.A2; A2/CNA4.A
2
1; A

2
1/C 2NA4.A2; A

2
1//

C 5 � .ND4.A2; A2/C 2ND4.A2; A
2
1// D 1;195;

the number of solutions of (57) with `1 D `2 D `3 D 1 is equal to 733

n1;1;1 WD 75 � 3ŠC 165 � .3NA2.A1; A1//C 90NA3.A1; A1; A1/ D 3;375; 734

the number of solutions of (57) with `1 D 2 and `2 D `3 D 1 is equal to 735

n2;1;1 WD 15 � .2CNA2.A1; A1/C 2 � 2 �NA2.A1; A1//
C 45 � .2NA3.A2; A1/CNA3.A1; A1; A1//C 5 � .2NA2.A1; A1/C 2NA2.A1; A1/

2/

C 18 � .NA4.A2; A1; A1/CNA4.A
2
1; A1; A1//

C 5 � .ND4.A2; A1; A1/CND4.A
2
1; A1; A1// D 2;850;

and the number of solutions of (58) is equal to 736

n1;1;1;1 WD 15 � .12NA2.A1; A1//C 45 � .4NA3.A1; A1; A1//C 5 � .6NA2.A1; A1/2/
C 18 �NA4.A1; A1; A1; A1/C 5 �ND4.A1; A1; A1; A1/ D 6;750:
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In total, we obtain 737

1C .45C 150C 100C 75C 165C 90C 15C 45C 5C 18C 5/
m

2

C .n1;1 C 2n2;1 C 2n3;1 C n2;2/

 
m=2

2

!

C .n1;1;1 C 3n2;1;1/

 
m=2

3

!

C n1;1;1;1

 
m=2

4

!

D .5mC 4/.3mC 2/.5mC 2/.15mC 4/

64

elements in FixNCm.E8/.�
p/, which agrees with the limit in (40). 738

7 Cyclic Sieving II 739

In this section we present the second cyclic sieving conjecture due to Bessis and 740

Reiner [10, Conjecture 6.5]. 741

Let  W NCm.W / ! NCm.W / be the map defined by 742

.w0I w1; : : : ;wm/ 7! �
cwmc

�1I w0;w1; : : : ;wm�1
�
: (59)

For m D 1, we have w0 D cw�1
1 , so that this action reduces to the inverse of the 743

Kreweras complementKc
id as defined by Armstrong [3, Definition 2.5.3]. 744

It is easy to see that  .mC1/h acts as the identity, where h is the Coxeter number 745

of W (see (61) below). By slight abuse of notation as before, let C2 be the cyclic 746

group of order .mC 1/h generated by  . 747

Given these definitions, we are now in the position to state the second cyclic 748

sieving conjecture of Bessis and Reiner. By the results of [20] and of this paper, it 749

becomes the following theorem. 750

Theorem 4. For an irreducible well-generated complex reflection group W and 751

any m � 1, the triple .NCm.W /;Catm.W I q/; C2/, where Catm.W I q/ is the 752

q-analogue of the Fuß–Catalan number defined in (4), exhibits the cyclic sieving 753

phenomenon. 754

By definition of the cyclic sieving phenomenon, we have to prove that 755

j FixNCm.W /. 
p/j D Catm.W I q/ˇˇ

qDe2�ip=.mC1/h ; (60)

for all p in the range 0 � p < .mC 1/h. 756
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8 Auxiliary Results II 757

This section collects several auxiliary results which allow us to reduce the problem 758

of proving Theorem 4, respectively the equivalent statement (60), for the 26 759

exceptional groups listed in Sect. 2 to a finite problem. The corresponding lemmas, 760

Lemmas 10–15, are analogues of Lemmas 3–5 and 7–9 in Sect. 5. 761

Let p D a.mC 1/C b, 0 � b < mC 1. We have 762

 p
�
.w0I w1; : : : ;wm/

�

D .caC1wm�bC1c�a�1I caC1wm�bC2c�a�1; : : : ; caC1wmc�a�1;

caw0c
�a; : : : ; cawm�bc�a�: (61)

Lemma 10. It suffices to check (60) for p a divisor of .mC1/h. More precisely, let 763

p be a divisor of .mC 1/h, and let k be another positive integer with gcd.k; .mC 764

1/h=p/ D 1, then we have 765

Catm.W I q/ˇˇ
qDe2�ip=.mC1/h D Catm.W I q/ˇˇ

qDe2�ikp=.mC1/h (62)

and 766

j FixNCm.W /. 
p/j D j FixNCm.W /. 

kp/j: (63)

Proof. For (63), this follows in the same way as (12) in Lemma 3. 767

For (62), we must argue differently than in Lemma 3. Let us write � D 768

e2�ip=.mC1/h. For a given groupW , we write S1.W / for the set of all indices i such 769

that �di�h D 1, and we write S2.W / for the set of all indices i such that �di D 1. 770

By the rule of de l’Hospital, we have 771

Catm.W I q/ˇˇ
qDe2�ip=.mC1/h

D
8
<

:

0 if jS1.W /j > jS2.W /j;Q
i2S1.W /

.mhCdi /Q
i2S2.W /

di

Q
i…S1.W /

.1��di�h/
Q
i…S2.W /

.1��di / ; if jS1.W /j D jS2.W /j:
(64)

Since, by Theorem 3, Catm.W I q/ is a polynomial in q, the case jS1.W /j < jS2.W /j 772

cannot occur. 773

We claim that, for the case where jS1.W /j D jS2.W /j, the factors in the quotient 774

of products 775

Q
i…S1.W /.1 � �di�h/
Q
i…S2.W /.1� �di /

776
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cancel pairwise. If we assume the correctness of the claim, it is obvious that we 777

get the same result if we replace � by �k , where gcd.k; .m C 1/h=p/ D 1, hence 778

establishing (62). 779

In order to see that our claim is indeed valid, we proceed in a case-by-case 780

fashion, making appeal to the classification of irreducible well-generated complex 781

reflection groups, which we recalled in Sect. 2. First of all, since dn D h, the set 782

S1.W / is always non-empty as it contains the element n. Hence, if we want to have 783

jS1.W /j D jS2.W /j, the set S2.W / must be non-empty as well. In other words, 784

the integer .m C 1/h=p must divide at least one of the degrees d1; d2; : : : ; dn. In 785

particular, this implies that, for each fixed reflection group W of exceptional type, 786

only a finite number of values of .m C 1/h=p has to be checked. Writing M for 787

.mC1/h=p, what needs to be checked is whether the multisets (that is, multiplicities 788

of elements must be taken into account) 789

f.di � h/ modM W i … S1.W /g and fdi modM W i … S2.W /g 790

are the same. Since, for a fixed irreducible well-generated complex reflection group,
there is only a finite number of possibilities for M , this amounts to a routine
verification. ut
Lemma 11. Let p be a divisor of .mC 1/h. If p is divisible by mC 1, then (60) is 791

true. 792

We leave the proof to the reader as it is completely analogous to the proof of 793

Lemma 4. 794

Lemma 12. Equation (60) holds for all divisors p of mC 1. 795

Proof. We have 796

Catm.W I q/ˇˇ
qDe2�ip=.mC1/h D

(
0 if p < mC 1;

mC 1 if p D mC 1:
797

Here, the first case follows from (64) and the fact that we have S1.W / 
 fng and 798

S2.W / D ; if p j .mC 1/ and p < mC 1. 799

On the other hand, if .w0I w1; : : : ;wm/ is fixed by  p , then one can apply an
argument similar to that in Lemma 5 with any wi taking the role of w1, 0 � i � m.
It follows that if p D mC 1, the set FixNCm.W /. 

p/ consists of the mC 1 elements
.w0I w1; : : : ;wm/ obtained by choosing wi D c for a particular i between 0 and
m, all other wj ’s being equal to ". If p < m C 1, then there is no element in
FixNCm.W /. 

p/. ut
Lemma 13. Let W be an irreducible well-generated complex reflection group of 800

rank n, and let p D m1h1 be a divisor of .m C 1/h, where m C 1 D m1m2 and 801

h D h1h2. We assume that gcd.h1;m2/ D 1. Suppose that Theorem 4 has already 802

been verified for all irreducible well-generated complex reflection groups with rank 803

< n. If h2 does not divide all degrees di , then Eq. (60) is satisfied. 804
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We leave the proof to the reader as it is completely analogous to the proof of 805

Lemma 7. 806

Lemma 14. Let W be an irreducible well-generated complex reflection group of 807

rank n, and let p D m1h1 be a divisor of .m C 1/h, where m C 1 D m1m2 and 808

h D h1h2. We assume that gcd.h1;m2/ D 1. If m2 > n then 809

FixNCm.W /. 
p/ D ;: 810

We leave the proof to the reader as it is analogous to the proof of Lemma 8. 811

Remark 4. By applying the same reasoning as in Remark 3 with Lemmas 7 and 8 812

replaced by Lemmas 13 and 14, respectively, it follows that we only need to check 813

(60) for pairs .m2; h2/ satisfying (18) and m2 � n. This reduces the problem to a 814

finite number of choices. 815

Lemma 15. Let W be an irreducible well-generated complex reflection group of 816

rank n with the property that di j h for i D 1; 2; : : : ; n. Then Theorem 4 is true for 817

this groupW . 818

Proof. Proceeding in a fashion analogous to the beginning of the proof of Lemma 9, 819

we may restrict to the case where p j .m C 1/h and .m C 1/h=p does not divide 820

any of the di ’s. In this case, it follows from (64) and the fact that we have S1.W / 
 821

fng and S2.W / D ; that the right-hand side of (60) equals 0. Inspection of the 822

classification of all irreducible well-generated complex reflection groups, which we 823

recalled in Sect. 2, reveals that all groups satisfying the hypotheses of the lemma 824

have rank n � 2. Except for the groups contained in the infinite seriesG.d; 1; n/ and 825

G.e; e; n/ for which Theorem 2 has been established in [20], these are the groups 826

G5;G6;G9;G10; G14; G17; G18; G21. The verification of (60) can be done in a similar 827

fashion as in the proof of Lemma 9. We illustrate this by going through the case of 828

the group G6. In analogy with the earlier situation, we note that Lemma 14 implies 829

that Eq. (60) holds if m2 > 2, so that in the following arguments we may assume 830

that m2 D 2. 831

CASE G6. The degrees are 4; 12, and therefore, according to Remark 4, we need 832

only consider the case where h2 D 4 and m2 D 2, that is, p D 3.mC 1/=2. Then 833

the action of  p is given by 834

 p
�
.w0I w1; : : : ;wm/

�

D .c2wmC1
2
c�2I c2wmC3

2
c�2; : : : ; c2wmc�2; cw0c

�1; : : : ; cwm�1
2
c�1�: (65)

If .w0I w1; : : : ;wm/ is fixed by p , there must exist an i with 0 � i � m�1
2

such that 835

`T .wi / D 1, wi cwi c�1 D c, and all wj , j ¤ i; mC1
2

C i , equal ". However, with the 836

help of CHEVIE, one verifies that there is no such solution to this equation. Hence, 837

the left-hand side of (60) is equal to 0, as required. 838

This completes the proof of the lemma. ut
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9 Exemplification of Case-by-Case Verification of Theorem 4 839

It remains to verify Theorem 4 for the groups G4;G8;G16; G20; G23 D 840

H3;G24;G25; G26; G27; G28 D F4;G29; G30 D H4;G32;G33; G34; G35 D 841

E6;G36 D E7;G37 D E8. All details can be found in [22, Sect. 9]. We content 842

ourselves with discussing the case of the group G24, as this suffices to convey the 843

flavour of the necessary computations. 844

In order to simplify our considerations, it should be observed that the action 845

of  (given in (59)) is exactly the same as the action of � (given in (3)) with m 846

replaced by m C 1 on the components w1;w2; : : : ;wmC1, that is, if we disregard 847

the 0-th component of the elements of the generalised non-crossing partitions 848

involved. The only difference which arises is that, while the .m C 1/-tuples 849

.w0I w1; : : : ;wm/ in (59) must satisfy w0w1 � � � wm D c, for w1;w2; : : : ;wmC1 in 850

(3) we only must have w1w2 � � � wmC1 �T c. Consequently, we may use the 851

counting results from Sect. 6, except that we have to restrict our attention to those 852

elements .w0I w1; : : : ;wm;wmC1/ 2 NCmC1.W / for which w1w2 � � � wmC1 D c, or, 853

equivalently, w0 D ". 854

9.1 CASE G24 855

The degrees are 4; 6; 14, and hence we have 856

Catm.G24I q/ D Œ14mC 14�q Œ14mC 6�q Œ14mC 4�q

Œ14�q Œ6�q Œ4�q
: 857

sss Let � be a 14.mC1/-th root of unity. The following cases on the right-hand side 858

of (60) occur: 859

lim
q!�

Catm.G24I q/ D mC 1; if � D �14; �7; (66)

lim
q!�

Catm.G24I q/ D 7mC7
3
; if � D �6; �3; 3 j .mC 1/; (67)

lim
q!�

Catm.G24I q/ D Catm.G24/; if � D �1 or � D 1; (68)

lim
q!�

Catm.G24I q/ D 0; otherwise. (69)

We must now prove that the left-hand side of (60) in each case agrees with 860

the values exhibited in (66)–(69). The only cases not covered by Lemma 11 are 861

the ones in (67) and (69). On the other hand, the only cases left to consider 862

according to Remark 4 are the cases where h2 D 1 and m2 D 3, h2 D 2 and 863

m2 D 3, and h2 D m2 D 2. These correspond to the choices p D 14.m C 1/=3, 864
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p D 7.mC 1/=3, respectively p D 7.mC 1/=2. The first two cases belong to (67), 865

while p D 7.mC 1/=2 belongs to (69). 866

In the case that p D 7.mC 1/=3, the action of  p is given by 867

 p
�
.w0I w1; : : : ;wm/

�

D .c3w 2mC2
3
c�3I c3w 2mC5

3
c�3; : : : ; c3wmc�3; c2w0c�2; : : : ; c2w 2m�1

3
c�2�:

Hence, for an i with 0 � i � m�2
3

, we must find an element wi D t1, where t1 868

satisfies (32), so that we can set w
iCmC1

3
D c2t1c

�2, w
iC 2mC2

3
D c4t1c

�4, and all 869

other wj ’s equal to ". We have found seven solutions to the counting problem (32), 870

and each of them gives rise to .m C 1/=3 elements in FixNCm.G24/. 
p/ since the 871

index i ranges from 0 to .m � 2/=3. 872

On the other hand, if p D 14.mC 1/=3, then the action of  p is given by 873

 p
�
.w0I w1; : : : ;wm/

�

D .c5wmC1
3
c�5I c5wmC4

3
c�5; : : : ; c5wmc�5; c4w0c�4; : : : ; c4wm�2

3
c�4�:

By Lemma 6, every element of NC.W / is fixed under conjugation by c7, and, thus, 874

the equations for t1 in this case are the same as in the previous one where p D 875

7.mC 1/=3. 876

Hence, in either case, we obtain 7mC1
3

D 7mC7
3

elements in FixNCm.G24/. 
p/, 877

which agrees with the limit in (67). 878

If p D 7.mC 1/=2, the relevant counting problem is (33). However, no element 879

.w0I w1; : : : ;wm/ 2 FixNCm.G24/. 
p/ can be produced in this way since the counting 880

problem imposes the restriction that `T .w0/C`T .w1/C� � �C`T .wm/ be even, which 881

contradicts the fact that `T .c/ D n D 3. This is in agreement with the limit in (69). 882
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Abstract A partition of f1; : : : ; ng has an m-nesting if it contains at least m disjoint 3

blocks, and a subset of 2m points i1 < i2 < � � � < im < jm < jm�1 < � � � < 4

j1, such that il and jl are in the same block for all 1 � l � m, but no other 5

pairs are in the same block. In this note we use generating trees to construct the 6

class of partitions with no m-nesting, determine functional equations satisfied by 7

the associated generating functions, and generate enumerative data for m � 4. 8

Keywords Set partition • Nesting • Pattern avoidance • Generating tree • Alge- 9

braic kernel method • Coefficient extraction • Enumeration 10

1 Introduction 11

Graphic representations of set partitions can contain various patterns and shapes. 12

One particular pattern, known as an m-nesting, resembles a rainbow, for example. In 13

this work we address the enumeration of set partitions that avoid m-nestings. These 14

results are in the context of recent studies of other combinatorial objects that avoid 15

similar or related patterns. We are particularly motivated by the study of protein 16

folding [7] where such patterns arise in the molecular bonds and their presence has 17

strong consequences on the geometry of the protein. 18

Our strategy parallels a recent generating tree approach used by Bousquet-Mélou 19

to enumerate a family of pattern avoiding permutation classes [3]. A novel feature 20
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of this approach is that the length of the label in the generating tree is related to 21

the length of the pattern avoided. Thus, the resulting expressions for generating 22

functions are generic, and expressed in terms of m. The generating tree permits 23

direct access to new enumerative data for set partitions avoiding m-nestings for 24

some m > 4, and we present the equations as a starting point for further analysis. 25

1.1 Notation and Definitions 26

A set partition � of Œn� WD f1; 2; 3; : : : ; ng, denoted by � 2 ˘n, is a collection of 27

nonempty and mutually disjoint subsets of Œn�, called blocks, whose union is Œn�. 28

The number of set partitions of Œn� into k blocks is denoted S.n; k/, and is known 29

as a Stirling number of the second kind. The total number of partitions of Œn� is 30

the Bell number Bn D P
k S.n; k/. We represent � by a graph on the vertex set 31

Œn� whose edge set consists of arcs connecting elements of each block in numerical 32

order. Such an edge set is called the standard representation of the partition � , as 33

seen in [6]. For example, the standard representation of 34

1j2 5 6 8j3 7j4 35

is given by the following graph with edge set f.2; 5/; .5; 6/; .6; 8/; .3; 7/g: 36

1 2 3 4 5 6 7 8 37

With this representation, we can define two classes of patterns: crossings and 38

nestings. An m-crossing of � is a collection of m edges .i1; j1/, .i2; j2/, . . . , .im; jm/ 39

such that i1 < i2 < � � � < im < j1 < j2 < � � � < jm. Using the standard 40

representation, an m-crossing is drawn as follows: 41

i1 i2 im j1 j2 jm 42

Similarly, we define an m-nesting of � to be a collection of m edges .i1; j1/, 43

.i2; j2/, . . . , .im; jm/ such that i1 < i2 < � � � < im < jm < jm�1 < � � � < j1. This is 44

drawn: 45

i1 i2 im jm j2 j1 46

A partition is m-noncrossing if it contains no m-crossing, and it is said to be 47

m-nonnesting if it contains no m-nesting. 48
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1.2 Context and Plan 49

Chen, Deng, Du, Stanley and Yan in [6], and independently Krattenthaler in [8], 50

gave a non-trivial bijective proof that m-noncrossing partitions of Œn� are equinumer- 51

ous with m-nonnesting partitions of Œn�, for all values of m and n. A straightforward 52

bijection with Dyck paths illustrates that 2-noncrossing partitions (or simply, 53

noncrossing partitions) are counted by Catalan numbers. Bousquet-Mélou and Xin 54

in [4] showed that the sequence counting 3-noncrossing partitions is P-recursive, 55

that is, satisfies a linear recurrence relation with polynomial coefficients. Indeed, 56

they determined an explicit recursion, complete with solution and asymptotic 57

analysis. They further conjectured that m-noncrossing partitions are not P-recursive 58

for all m � 4. Certainly, the limit as m goes to infinity is not D-finite, since Bell 59

numbers are well known not to be P-recursive because of the composed exponentials 60

in the generating function B.x/ D eex�1 (see Example 19 of [2]). If it turns out that 61

m-noncrossing partitions do have a D-finite generating function, then we have a 62

very interesting refinement of a non-D-finite class. 63

Since m-noncrossing partitions of Œn� and m-nonnesting partitions of Œn� are 64

equinumerous, we study m-nonnesting partitions in this paper and show how to 65

generate the class using generating trees, and how to determine a recursion satisfied 66

by the counting sequence for m-nonnesting partitions. 67

Our approach is an adaptation of Bousquet-Mélou’s recent work on the 68

enumeration of permutations with no long monotone subsequence in [3]. She 69

combined the ideas of recursive construction for permutations via generating trees 70

and the algebraic kernel method to determine and solve functional equations with 71

multiple catalytic variables. 72

In Sect. 2, we employ Bousquet-Mélou’s generating tree construction to find 73

functional equations satisfied by the generating functions for set partitions with no 74

m-nesting. The resulting equations, though similar to the equations arising in [3], 75

have a key structural difference which resists a similar treatment of the algebraic 76

kernel method followed by a constant term extraction as used by Bousquet-Mélou 77

in [3]. However, the process does yield the result for nonnesting set partitions 78

counted by the Catalan numbers. We refer interested readers to [9] for the processing 79

of functional equations in the spirit of [3]. 80

Using our constructions we generate new enumerative data for m > 4, discuss 81

the limiting factors in data generation, and assess the current state of recurrences 82

and explicit forms. 83

2 Generating Trees and Functional Equations 84

The generating tree construction for the class of m-nonnesting partitions is based on 85

a standard generating tree description of partitions, and the constraint is incorporated 86

using a vector labelling system. The generating tree construction has an immediate 87

translation to a functional equation with m-variate series. 88
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2.1 A Generating Tree for Set Partitions 89

Let � be a set partition. Define ne.�/ to be the maximal i such that � has an i - 90

nesting, also called the maximal nesting number of � , and let ˘
.m/
n be the set of 91

partitions of Œn� for n � 0 (where n D 0 means the empty partition) with ne.�/ � 92

m, thus .m C 1/-nonnesting. We define the union ˘.m/ D [n˘
.m/
n . 93

Note that an arc over a fixed point is not a 2-nesting, but a 1-nesting: 94

i kj 95

We next describe how to generate all set partitions via generating trees in the 96

fashion of [2]. First, order the blocks of a given partition, � , by the maximal element 97

of each block in descending order. 98

Example 1. The first block of 1j2 5 6 8j3 7j4 is 2 5 6 8; the second block is 3 7; the 99

third block is singleton 4; and 1 is the last block. Using the standard representation, 100

1 2 3 4 5 6 7 8

Block: 4 3 2 1 101

we number the blocks in descending order (from the right to the left) according to 102

the maximal element in each block (that is, the rightmost vertex of each block). 103

With the order of blocks thus defined, we warm up by generating all set partitions 104

without nesting restriction first. Figure 1 contains the generating tree for all set 105

partitions, in addition to the generating tree for the number of children of each node 106

from the tree of set partitions to indicate how enumeration can be facilitated. 107

1. Begin with ; as the top node of the tree. It has only one child, so the 108

corresponding node in the tree for the number of children is labelled 1. 109

2. To produce the n C 1st level of nodes, take each set partition at the nth level, and 110

either add n C 1 as a singleton, or join n C 1 to block j for each 1 � j � k if 111

the set partition has k blocks. 112

Summarizing the description above in the notation of [2], we recall that the 113

rewriting rule of a generating tree is denoted by: 114

Œ.s0/; f.k/ ! .e1;k/.e2;k/ : : : .ek;k/g�; 115

where s0 denotes the degree of the root, and for any node labelled k, that is, with k 116

descendants, the label of each descendent is given by .ej;k/ for 1 � j � k. Thus, 117
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1

1 2

1 2 3 1 2 3 1 2 3

1 2

1 2 3 1 2 3

1

2

3

4 3 3

2

3 2

Fig. 1 Generating tree for set
partitions and its
corresponding generating tree
of the number of children

the class of set partitions has a generating tree of labels given by Œ.1/ W .k/ ! 118

.k C 1/.k/k�1�: 119

2.2 A Vector Label to Track Nestings 120

The generating tree of set partitions generates all set partitions � graded by n, the 121

size of � , but it does not keep track of nesting numbers. Also note that the number 122

of children of � is one more than the number of blocks of � . Let us now address 123

nestings. 124

Fix m. In order to keep track of nesting numbers, we need to define the label of 125

� 2 ˘.m/. To identify the position of a nesting, we consider the relative position 126

of the smallest vertex incident to the nesting. Thus, the rightmost j -nesting is the 127

set of j edges forming a j -nesting pattern such that its minimal incident vertex is 128

greater than, or equal to the minimal vertex incident to all the other j -nestings. If 129

one vertex is common to two j -nestings, we consider the second smallest incident 130

vertex, and so on. Roughly, our labels keep track of the number of blocks to the 131

right of a j -nesting that might potentially become a j -nesting based on how the 132

next edge is added. Any edge added that affect nestings to the left of the right most 133

j-nesting, will necessarily create a j C1 nesting because it will create an arc overtop 134

of the rightmost j -nesting. 135

Definition 1. Define the label of a partition, L.�/ D .a1.�/; a2.�/; : : : ; am.�//, 136

or in short, L.�/ D .a1; a2; : : : ; am/ as follows. For 1 � j � m, 137

aj .�/ D

8
ˆ̂
<

ˆ̂
:

1C number of blocks in � , if � is j -nonnesting,

1C number of blocks ending to the right of
the smallest vertex in the rightmost j -nesting

otherwise.

138

Example 2. To continue the example, let � D 1j2 5 6 8j3 7j4 and suppose m D 3. 139

Then L.1j2 5 6 8j3 7j4/ D .3; 4; 5/ for the following reasons. The rightmost 140
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1-nesting is the edge with largest vertex endpoint: .6; 8/. Hence, a1.�/ D 3 because 141

blocks 1 and 2 end to the right of vertex 6. The rightmost 2-nesting is the set of 142

edges f.5; 6/; .3; 7/g hence a2.�/ D 4 because 3 blocks end to the right of vertex 143

3. Finally, a3.�/ D 5 because the diagram has no 3-nesting, and is comprised of 4 144

blocks. Note that in this convention, the empty set partition has label .1; 1; : : : ; 1/, 145

since it has no nestings and no blocks. 146

A set partition in ˘.m/ always has am children. This is one more than the number 147

of blocks, if there is no m-nesting (and hence there is no risk that adding an edge will 148

create an m C 1-nesting). Otherwise, it indicates more than the number of blocks 149

to which you can add an edge without creating an m C 1-nesting. The label of a 150

set partition is sufficient to derive the label of each of its children, and this process 151

is described in the next proposition. Also, remark that the label is a non-decreasing 152

sequence, since the rightmost j -nesting either contains the rightmost j � 1 nesting 153

or is to the left of it. 154

Proposition 1 (Labels of children). Let � be in ˘
.m/
n , the set of set partitions on 155

Œn� avoiding mC1-nestings, and suppose the label of � is L.�/ D .a1; a2; : : : ; am/. 156

Then, the labels of the am set partitions of ˘
.m/
nC1 obtained by recursive construction 157

via the generating tree are 158

.a1 C 1; a2 C 1; : : : ; am C 1/ (Add n C 1 as a singleton to �) 159

and 160

. 2; a2; a3; : : : ; am�1; am/ (Add n C 1 to block 1)

. 3; a2; a3; : : : ; am�1; am/ (Add n C 1 to block 2)
:::

. a1; a2; a3; : : : ; am�1; am/ (Add n C 1 to block a1 � 1)

.a1 C 1; a1 C 1; a3; : : : ; am�1; am/ (Add n C 1 to block a1)

.a1 C 1; a1 C 2; a3; : : : ; am�1; am/ (Add n C 1 to block a1 C 1)
:::

.a1 C 1; a2 C 1; a2 C 1; : : : ; am�1; am/ (Add n C 1 to block a2)
:::

.a1 C 1; a2 C 1; a3 C 1; : : : ; am�1 C 1; am�1 C 1/ (Add n C 1 to block am�1)
:::

.a1 C 1; a2 C 1; a3 C 1; : : : ; am�1 C 1; am/ (Add n C 1 to block am � 1)

161

Proof. By careful inspection. ut
Example 3. Consider the following partition from ˘

.3/
8 . The reader can refer to 162

its arc diagram in Example 1 which shows that it is 3-nonnesting, thus also
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4-nonnesting. The partition 1j2 5 6 8j3 7j4 with label .3; 4; 5/ has five children and 163

their respective labels are: 164

� L.�/

1j2 5 6 8j3 7j4j9 .4; 5; 6/

1j2 5 6 8 9j3 7j4 .2; 4; 5/

1j2 5 6 8j3 7 9j4 .3; 4; 5/

1j2 5 6 8j3 7j4 9 .4; 4; 5/

1 9j2 5 6 8j3 7j4 .4; 5; 5/

165

Example 4. As we mentioned before, 2-nonnesting set partitions are counted by 166

Catalan numbers. The generating tree construction given in Proposition 1 restricted 167

to this case is given by 168

Œ.1/ W .k/ ! .k C 1/.2/.3/ : : : .k/�; 169

which is the same construction for Catalan numbers given in [2]. The generating 170

tree for 3-noncrossing partitions is given by 171

Œ.1; 1/ W .i; j / ! .i C1; j C1/.2; j /.3; j / � � � .i; j /.i C1; i C1/.i C1; i C2/ : : : .i C1; j /�: 172

2.3 A Functional Equation for the Generating Function 173

The simple structure of the labels in Proposition 1 permits a direct translation from 174

the generating tree to a functional equation. 175

Let us define QF .u1; u2; : : : ; umI t/ to be the ordinary generating function of partitions 176

in ˘.m/ counted by the statistics a1, a2, . . . , am and by size, 177

QF .u1; u2; : : : ; umI t/ WD
X

�2˘.m/

ua1.�/
1 ua2.�/

2 : : : uam.�/
m t j�j

D
X

a1;a2;:::;am

QFa.t/ua1

1 ua2

2 : : : uam
m ;

178

where QFa.t/ is the size generating function for the set partitions of ˘.m/ with the 179

label a D .a1; a2; : : : ; am/. For example, when m D 2, 180

QF .uI t/ D u1u2 C u1
2u2

2t C �
u1

3u2
3 C u1

2u2
2
�

t2 C �
u1

4u2
4 C 2 u1

3u2
3 C u1

2u2
2 C u1

2u2
3
�

t3 C : : : : 181

182

Proposition 1 implies 183
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QF .u1; : : : ; umI t / D u1u2 : : : um C tu1u2 : : : um
QF .u1; u2; : : : ; umI t /

C t
X

a1;a2;:::;am

QFa.t /ua2

2 ua3

3 : : : uam
m

a1X

˛D2

u˛
1

C t
X

a1;a2;:::;am

QFa.t /

mX

jD2

ajX

˛Daj �1C1

ua1C1
1 ua2C1

2 : : : u
aj �1C1

j�1 u˛
j u

aj C1

jC1 : : : uam
m :

184

We can simplify the expression using the finite geometric series sum formula to 185

rewrite this as the following expression. 186

Proposition 2. The ordinary generating function of partitions in ˘.m/ counted 187

by the statistics a1, a2, . . . , am and by size, denoted QF .u1; u2; : : : ; umI t/, or 188

simply QF .uI t/ satisfies the following functional equation: 189

QF .uI t/ D u1 : : : um C tu1u2 : : : um
QF .uI t/

C tu1

 QF .uI t/ � u1
QF .1; u2; : : : ; umI t/

u1 � 1

!

C t

mX

j D2

u1u2 : : : uj

 QF .uI t/ � QF .u1; : : : ; uj �2; uj �1uj ; 1; uj C1; : : : ; umI t/

uj � 1

!

:

(1)

3 Computing Series Expansions 190

Notice that in Eq. (1), if one has a series expansion of NF .uI t/ correct up to tk , then 191

substituting this series into RHS of Eq. (1) yields the series expansion of NF correct 192

to tkC1 because the RHS of Eq. (1) contains a term free of t ; otherwise, the degree 193

of t is increased by 1. We have iterated Eq. (1) to get enumerative data for up to 194

m D 9. 195

For 3-nonnesting set partitions, an average laptop running Maple 15 can produce 196

70 terms in a reasonable time (less than 24 h). For m D 4, only 38 terms; m D 5, 27 197

terms; m D 6, 20 terms; m D 7, 16 terms, m D 8, 12 terms; and finally m D 9, 12 198

terms. The limitation seems memory space due to the growing complication in the 199

functional equation when m gets larger (Table 1).AQ1 200

4 Conclusion 201

The generating tree approach permits a direct translation to a functional equation 202

involving an arbitrary number of catalytic variables satisfied by set partitions 203

avoiding m C 1-nestings for any positive integer m. We avoid passing through 204
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vacillating lattice walks or tableaux. The functional equation can be iterated to 205

generate series data for m C 1-nonnesting set partitions, but ideally we would like 206

to solve the equations, or find some other format from which more information 207

can be obtained. For example, perhaps under further scrutiny one can decide if the 208

generating functions are D-finite or not. 209

One possible route to a proof of non-D-finiteness is to use our expressions to 210

determine bounds on the order and the coefficient degrees of the minimal differential 211

equation satisfied by the generating function. Though a tantalizingly simple idea, the 212

limitation is the lack of series data for large m. 213

The generating tree studied is for m C 1-nonnesting set partitions. The authors 214

have tried to study a generating tree for m C 1-noncrossing set partitions in the 215

hope of reproving the result of Chen et al. in [6] by tree isomorphism. However, the 216

authors were unable to generate m C 1-noncrossing set partitions. 217

Finally, our generating tree approach is limited only to the non-enhanced case. 218

For a more general treatment of the subject involving enhanced set partitions and 219

permutations, both enhanced and non-enhanced, we refer the reader to [5] by Burrill, 220

Elizalde, Mishna, and Yen. 221
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There are too many refinements of this result to state. A partial list (of which several 21

have precisely the same title!) is as follows: [1,3,5–9,12,14,16,17,19,20,22–26]). 22

Among these, we mention two extensions that are easy to state. 23

• Jensen’s theorem: if p.z/ has real coefficients, then the non-real critical points of 24

p lie in the union of the “Jensen Disks”, where a Jensen disk J is a disk one of 25

whose diameters is the segment joining a pair of conjugate (non-real) roots of p: 26

• Marden’s theorem: Suppose the zeroes z1; z2; and z3 of a third-degree polynomial 27

p.z/ are non-collinear. There is a unique ellipse inscribed in the triangle with 28

vertices z1; z2; z3 and tangent to the sides at their midpoints: the Steiner inellipse. 29

The foci of that ellipse are the zeroes of the derivative p0.z/: 30

There has not been any probabilistic study of critical points (despite the obvious 31

statistical physics connection) from this viewpoint. There has been a very extensive 32

study of random polynomials (some of it quoted further down in this paper), but 33

generally this has meant some distribution on the coefficients of the polynomial, 34

and not its roots [4]. Let us now define our problem: 35

Let � be a probability measure on the complex numbers. Let fXn W n � 0g 36

be random variables on a probability space .˝;F;P/ that are IID with common 37

distribution �. Let 38

fn.z/ WD
nY

j D1

.z � Xj / 39

be the random polynomial whose roots are X1; : : : ; Xn. For any polynomial f we 40

let Z.f / denote the empirical distribution of the roots of f , for example, Z.fn/ D 41
1
n

Pn
j D1 ıXj . 42

The question we address in this paper is: 43

Question 1.1. When are the zeros of f 0
n stochastically similar to the zeros of fn? 44

Some examples show why we expect this. 45

Example 1.1. Suppose � concentrates on real numbers. Then fn has all real zeros 46

and the zeros of f 0
n interlace the zeros of fn. It is immediate from this that the 47

empirical distribution of the zeros of f 0
n converges to � as n ! 1. The same is 48

true when � is concentrated on any affine line in the complex plane: interlacing 49

holds and implies convergence of the zeros of f 0
n to �.1 Once the support of � is not 50

contained in an affine subspace, however, the best we can say geometrically about 51

the roots of f 0
n is that they are contained in the convex hull of the roots of fn; this is 52

the Gauss-Lucas Theorem. 53

1Even in this case there are interesting probabilistic questions concerning the distribution of critical
points of fn close to the edge of the support of �; see [15]
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Fig. 1 Critical points of a polynomial whose roots are uniformly sampled inside the unit disk

Example 1.2. Suppose the measure � is atomic. If �.a/ D p > 0 then the 54

multiplicity of a as a zero of fn is n.p Co.1//. The mulitplicity of a as a zero of f 0
n 55

is one less than the multplicity as a zero of fn, hence also n.p C o.1//. This is true 56

for each of the countably many atoms, whence it follows again that the empirical 57

distribution of the zeros of f 0
n converges to �. 58

Atomic measures are weakly dense in the space of all measures. Sufficient 59

continuity of the roots of f 0 with respect to the roots of f would therefore imply 60

that the zeros of f 0
n always converge in distribution to � as n ! 1. In fact we 61

conjecture this to be true. 62

Example 1.3. Our first experimental example has the roots of f uniformly 63

distributed in the unit disk. In the figure, we sample 300 points from the uniform 64

distribution in the disk, and plot the critical points (see Fig. 1). The reader may or 65

may not be convinced that the critical points are uniformly distributed. 66

Example 1.4. Our second example takes polynomials with roots uniformly 67

distributed on the unit circle, and computes the critical points. In Fig. 2 we do 68

this with a sample of size 300. One sees that the convergence is rather quick. 69

Remark 1. The figures were produced with Mathematica. However, the reader 70

wishing to try this at home should increase precision because Mathematica 71

(and Maple, Matlab and R) do not use the best method of computing zeros of 72

polynomials. 73
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Fig. 2 Critical points of polynomial whose roots are uniformly sampled on the unit circle

Conjecture 1. For any �, as n ! 1, Z.f 0/ converges weakly to �. 74

There may indeed be such a continuity argument, though the following coun- 75

terexample shows that one would at least need to rule out some exceptional sets of 76

low probability. Suppose that f .z/ D zn � 1. As n ! 1, the distribution of the 77

roots of f converge weakly to the uniform distribution on the unit circle. The roots 78

of f 0
n however are all concentrated at the origin. If one moves one of the n roots of 79

fn along the unit circle, until it meets the next root, a distance of order 1=n, then 80

one root of f 0
n zooms from the origin out to the unit circle. This shows that small 81

perturbations in the roots of f can lead to large perturbations in the roots of f 0. It 82

seems possible, though, that this is only true for a “small” set of “bad” functions f . 83

1.1 A Little History 84

This circle of questions was first raised in discussions between one of us (IR) and the 85

late Oded Schramm, when IR was visiting at Microsoft Research for the auspicious 86

week of 9/11/2001. Schramm and IR had some ideas on how to approach the 87

questions, but were somewhat stuck. There was always an intent to return to these 88

questions, but Schramm’s passing in September 2008 threw the plans into chaos. 89

We (RP and IR) hope we can do justice to Oded’s memory. 90
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These questions are reminscent of questions of the kind often raised by Herb 91

Wilf, that sound simple but are not. This work was first presented at a conference in 92

Herb’s honor and we hope it serves as a fitting tribute to Herb as well. 93

2 Results and Notations 94

Our goal in this paper is to prove cases of Conjecture 1. 95

Definition 2. We definite the p-energy of � to be 96

Ep.�/ WD
�Z Z

1

jz � wjp d�.z/ d�.w/

�1=p

: 97

Since in the sequel we will only be using the 1-energy, we will write E for E1: 98

By Fubini’s Theorem, when � has finite 1-energy, the function V� defined by 99

V�.z/ WD
Z

1

z � w
d�.w/ 100

is well defined and in L1.�/. 101

Remark 2. The potential function V� is sometimes called the Cauchy transform of 102

the measure �. Commonly it is implied that � is supported on R or on the boundary 103

of a region over which z varies, but this need not be the case and is not the case for 104

us (except in Theorem 2). 105

Theorem 1. Suppose � has finite 1-energy and that 106

�
˚
z W V�.z/ D 0

� D 0 : (1)

Then Z.f 0
n/ converges in distribution to � as n ! 1. 107

A natural set of examples of � with finite 1-energy is provided by the following 108

observation: 109

Observation 1. Suppose ˝ � C has Hausdorff dimension greater than one, and � 110

is in the measure class of the Hausdorff measure on ˝: Then � has finite 1-energy. 111

Proof. This is essentially the content of [11][Theorem 4.13(b)]. ut
In particular, if � is uniform in an open subset (with compact closure) of C, its 112

1-energy is finite. 113

A natural special case to which Theorem 1 does not apply is when � is uniform 114

on the unit circle; here the 1-energy is just barely infinite. 115

Theorem 2. If � is uniform on the unit circle then Z.fn/ converges to the unit circle 116

in probability. 117
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This result is somewhat weak because we do not prove Z.fn/ has a limit in 118

distribution, only that all subsequential limits are supported on the unit circle. By the 119

Gauss-Lucas Theorem, all roots of fn have modulus less than 1, so the convergence 120

to � is from the inside. Weak convergence to � implies that only o.n/ points can 121

be at distance �.1/ inside the cirle; the number of such points turns out to be �.1/. 122

Indeed quite a bit can be said about the small outliers. For 0 < � < 1, define 123

B� WD fz W jzj � �g. The following result, which implies Theorem 2, is based on a 124

very pretty result of Peres and Virag [21, Theorems 1 and 2] which we will quote in 125

due course. 126

Theorem 3. For any � 2 .0; 1/, as n ! 1, the set Z.gn/\B� of zeros of gn on B� 127

converges in distribution to a determinantal point process on B� with the so-called 128

Bergmann kernel ��1.1 � zi zj /2. The number N.�/ of zeros is distributed as the 129

sum of independent Bernoullis with means �2k, 1 � k < 1. 130

2.1 Distance Functions on the Space of Probability Measures 131

If � and � are probability measures on a separable metric space S , then the 132

Prohorov2 distance j� � �jP is defined to be the least � such that for every set 133

A, �.A/ � �.A�/ C � and �.A/ � �.A�/ C �. Here, A� is the set of all points 134

within distance � of some point of A. The Prohorov metric metrizes convergence in 135

distribution. We view collections of points in C (e.g., the zeros of fn) as probability 136

measures on C, therefore the Prohorov metric serves to metrize convergence of zero 137

sets. The space of probability measures on S , denoted P.S/, is itself a separable 138

metric space, therefore one can define the Prohorov metric on P.S/, and this 139

metrizes convergence of laws of random zero sets. 140

The Ky Fan metric on random variables on a fixed probability space will be of 141

some use as well. Defined by K.X; Y / D inff� W P.d.X; Y / > �/ < �g, this 142

metrizes convergence in probability. The two metrics are related (this is Strassen’s 143

Theorem): 144

j� � �jP D inffK.X; Y / W X � �; Y � �g : (2)

A good reference for the facts mentioned above is available on line [13]. We 145

will make use of Rouché’s Theorem. There are a number of formulations, of 146

which the most elementary is probably the following statement proved as Theorem 147

10.10 in [2]. 148

Theorem 4 (Rouché). If f and g are analytic on a topological disk, B , and jgj < 149

jf j on @B , then f and f C g have the same number of zeros on B . 150

2Also known as the Prokhorov and the Lévy-Pro(k)horov distance
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3 Proof of Theorem 1 151

We begin by stating some lemmas. The first is nearly a triviality. 152

Lemma 1. Suppose � has finite 1-energy. Then 153

(i)

t � P
�

jX0 � X1j � 1

t

�
! 0 : 154

(ii) for any C > 0, 155

P

�
min

1�j �n
jXj � XnC1j � C

n

�
! 0 I 156

Proof. For part .i/ observe that lim sup t � P.jX0 � X1j � 1=t/ � 2 lim sup 2j � 157

P
�jX0 � X1j � 2�j

�
as t goes over reals and j goes over integers. We then have 158

1 > E.�/

D E
1

jX0 � X1j

� 1

2
E

X

j 2Z
2j 1jX0�X1j�2�j

D 1

2

X

j

2j
P
�jX0 � X1j � 2�j

�

and from the finiteness of the last sum it follows that the summand goes to zero. 159

Part .ii/ follows from part .i/ upon observing, by symmetry, that 160

P

�
min

1�j �n
jXj � XnC1j � C

n

�
� nP

�
jX0 � X1j � C

n

�
: ut 161

Define the nth empirical potential function V�;n by 162

V�;n.z/ WD 1

n

nX

j D1

1

z � Xj

163

which is also the integral in w of 1=.z � w/ against the measure Z.fn/. Our next 164

lemma bounds V 0
�;n.z/ on the disk B WD BC=n.XnC1/. 165
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Lemma 2. For all � > 0, 166

P

�
sup
z2B

jV 0
�;n.z/j � �n

�
! 0 167

as n ! 1. 168

Proof. Let Gn denote the event that min1�j �n jXj � XnC1j > 2C=n. Let Sn WD 169

supz2B jV 0
�;n.z/j. We will show that 170

ESn1Gn D o.n/ (3)

as n ! 1. By Markov’s inequality, this implies that P.Sn1Gn � �n/ ! 0 for all 171

� > 0 as n ! 1. By part .ii/ of Lemma 1 we know that P.Gn/ ! 1, which then 172

establishes that P.Sn � �n/ ! 0, proving the lemma. 173

In order to show (3) we begin with 174

jV 0
�;n.z/j D

ˇ̌
ˇ̌
ˇ̌
1

n

nX

j D1

�1

.z � Xj /2

ˇ̌
ˇ̌
ˇ̌ � 1

n

nX

j D1

1

jz � Xj j2 : 175

Therefore, 176

Sn1Gn � 1

n

nX

j D1

1

.jXnC1 � Xj j � C=n/2
1Gn � 1

n

nX

j D1

4

jXnC1 � Xj j2 1Gn ; (4)

where we have used the triangle inequality, thus: 177

jz � Xj j D j.z � XnC1/ C .xnC1 � Xj /j � jXnC1 � Xj j � jz � XnC1j : 178

Since we are in B , we know that jz � XnC1j � C=n; and since we are in Gn; we 179

know that C=n < jXnC1 � Xj j=2: 180

Because Sn is the supremum of an average of n summands and the summands are 181

exchangeable, the expectation of Sn1Gn is bounded from above by the expectation 182

of one summand. Referring to (4), and using the fact that Gn is contained in the 183

event that jXnC1 � X1j > 2C=n, this gives 184

ESn1Gn � E
4

jXnC1 � X1j2 1jXnC1�X1j�2C=n : 185

A standard inequality for nonnegative variables (integrate by parts) is 186

EW 21W �t �
Z t

0

2sP.W � s/ ds : 187
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When applied to W D jXnC1 � X1j�1 and t D n=.2C /, this yields 188

ESn1Gn �
Z n=.2C /

0

2s P

�
1

jX0 � X1j > s

�
ds : 189

The integrand goes to zero as n ! 1 by part .i/ of Lemma 1. It follows that the
integral is o.n/, proving the lemma. ut

Define the lower modulus of V to distance C=n by 190

V C
n .z/ WD inf

wWjw�zj�C=n

ˇ̌
V�;n.w/

ˇ̌
: 191

This depends on the argument � as well as C and n but we omit this from the 192

notation. 193

Lemma 3. Assume � has finite 1-energy. Then as n ! 1, the random variable 194

V C
n .XnC1/ converges in probability, and hence in distribution, to jV�.XnC1/j. 195

In the sequel we will need the Glivenko-Cantelli Theorem [10, Theorem 1.7.4]. 196

Let X1; : : : ; Xn; : : : be independent, identitically distributed random variables in 197

R with common cumulative distribution function F . The empirical distribution 198

function Fn for X1; : : : ; Xn is defined by 199

Fn.x/ D 1

n

nX

iD1

I.�1;x�.Xi /; 200

where IC is the indicator function of the set C: For every fixed x, Fn.x/ is a 201

sequence of random variables, which converges to F.x/ almost surely by the 202

strong law of large numbers. Glivenko-Cantelli Theorem strengthen this by proving 203

uniform convergence of Fn to F: 204

Theorem 5 (Glivenko-Cantelli). 205

kFn � F k1 D sup
x2R

jFn.x/ � F.x/j �! 0 almost surely. 206

The following Corollary is immediate: 207

Corollary 1. Let f be a bounded continuous function on R: Then 208

lim
n!1

Z

R

fdFn D
Z

R

fdF; almost surely: 209

Another immediate Corollary is: 210

Corollary 2. With notation as in the statement of Theorem 5, the Prohorov distance 211

between Fn and F converges to zero almost surely. 212
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Proof of Lemma 3. It is equivalent to show that V C
n � jV�.XnC1/j ! 0 in 213

probability, for which it sufficient to show 214

sup
u2B

ˇ̌
V�;n.u/ � V�.XnC1/

ˇ̌ ! 0 (5)

in probability. This will be shown by proving the following two statements: 215

sup
u2B

ˇ̌
V�;n.u/ � V�;n.XnC1/

ˇ̌ ! 0 in probability I (6)

ˇ̌
V�;n.XnC1/ � V�.XnC1/

ˇ̌ ! 0 in probability : (7)

The left-hand side of (6) is bounded above by .C=n/ supu2B jV 0
�;n.u/j. By Lemma 2, 216

for any � > 0, the probability of this exceeding C� goes to zero as n ! 1. This 217

establishes (6). 218

For (7) we observe, using Dominated Convergence, that under the finite 1-energy 219

condition, 220

EK.�/ WD
Z Z

1

jz � wj1jz�wj�1�K d�.z/ d�.w/ ! 0 221

as K ! 1. Define 	K;z by 222

	K;z.w/ D 1

z � w

jz � wj
maxfjz � wj; 1=Kg 223

in other words, it agrees with 1=.z�w/ except that we multiply by a nonegative real 224

so as to truncate the magnitude at K . We observe for later use that 225

ˇ̌
ˇ̌	K;z.w/ � 1

jz � wj
ˇ̌
ˇ̌ � 1

jz � wj1jz�wj�1�K 226

so that 227

Z Z ˇ̌
ˇ̌	K;z.w/ � 1

jz � wj
ˇ̌
ˇ̌ d�.z/ d�.w/ � EK.�/ ! 0 : (8)

We now introduce the truncated potential and truncated empirical potential with 228

respect to 	K;z: 229

V K
� .z/ WD

Z
	K;z.w/ d�.w/

V K
�;n.z/ WD

Z
	K;z.w/ dZ.fn/.w/ :
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We claim that 230

E

ˇ̌
ˇV K

� .XnC1/ � V�.XnC1/
ˇ̌
ˇ � EK.�/ : (9)

Indeed, 231

V�.XnC1/ � V K
� .XnC1/ D

Z �
1

z � XnC1

� 	K;z.XnC1/

�
d�.z/ 232

so taking an absolute value inside the integral, then integrating against the law of 233

XnC1 and using (8) proves (9). The empirical distribution V�;n has mean � and is 234

independent of XnC1, therefore the same argument proves 235

E

ˇ̌
ˇV K

�;n.XnC1/ � V�;n.XnC1/
ˇ̌
ˇ � EK.�/ (10)

independent of the value of n. 236

We now have two thirds of what we need for the triangle inequality. That is, to 237

show (7) we will show that the following three expressions may all be made smaller 238

than � with probability 1 � �. 239

V�;n.XnC1/ � V K
�;n.XnC1/

V K
�;n.XnC1/ � V K

� .XnC1/

V K
� .XnC1/ � V�.XnC1/

Choosing K large enough so that EK.�/ < �2, this follows for the third of these
follows by (9) and for the first of these by (10). Fixing this value of K , we turn
to the middle expression. The function 	K;z is bounded and continuous. By the
Corollary 1 to the Glivenko-Cantelli Theorem 5, the empirical law Z.fn/ converges
weakly to �, meaning that the integral of any bounded continuous function 	 against
Z.fn/ converges in probability to the integral of 	 against �. Setting 	 WD 	K;z

and z WD XnC1 proves that V K
�;n.XnC1/ � V K

� .XnC1/ goes to zero in probability,
establishing the middle statement (it is in fact true conditionally on XnC1) and
concluding the proof. ut
Proof of Theorem 1. Suppose that V C

n .XnC1/ > 1=C . Then for all w with jw � 240

XnC1j � C=n, we have 241

f 0
n.w/ D

nX

j D1

1

w � Xj

D nV�;n.w/ � n

C
242

243
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and hence 244

ˇ̌
f 0

n.w/
ˇ̌ D n

ˇ̌
V�;n.w/

ˇ̌ � nV C
n .XnC1/ � n

C
: 245

To apply Rouché’s Theorem to the functions 1=f 0
n and z � XnC1 on the disk B WD 246

BC=n.XnC1/ we note that j1=f 0
n j < C=n D jz � XnC1j on @B and hence that 247

the sum has precisely one zero in B , call it anC1. Taking reciprocals we see that 248

anC1 is also the unique value in z 2 B for which f 0
n.z/ D �1=.z � XnC1/. But 249

f 0
n.z/ C 1=.z � XnC1/ D f 0

nC1.z/, whence f 0
nC1 has the unique zero anC1 on B . 250

Now fix any ı > 0. Using the hypothesis that �fz W V�.z/ D 0g D 0, we pick a 251

C > 0 such that P.jV�.XnC1/j � 2=C / � ı=2. By Lemma 3, there is an n0 such 252

that for all n � n0, 253

P

�
V C .XnC1/ � 1

C

�
� ı : 254

It follows that the probability that f 0
nC1 has a unique zero anC1 in B is at least 1 � ı 255

for n � n0. By symmetry, we see that for each j , the probability is also at least 256

1 � ı that f 0
nC1 has a unique zero, call it aj , in the ball of radius C=n centered at 257

Xj ; equivalently, the expected number of j � n C 1 for which there is not a unique 258

zero of f 0
nC1 in BC=n.Xj / is at most ın for n � n0. 259

Define xj to equal aj if f 0
nC1 has a unique root in BC=n.Xj / and the minimum

distance from Xj to any Xi with i � n C 1 and i ¤ j is at least 2C=n. By
convention, we define xj to be the symbol 
 if either of these conditions fails.
The values xj other than 
 are distinct roots of f 0

nC1 and each such value is
within distance C=n of a different root of fnC1. Using part .ii/ of Lemma 1 we
see that the expected number of j for which xj D 
 is o.n/. It follows that
P.jZ.fnC1/ � Z.f 0

nC1/jP � 2ı/ ! 0 as n ! 1. But also the Prohorov distance
between Z.fnC1/ and � converges to zero by Corollary 2. The Prohorov distance
metrizes convergence in distribution and ı > 0 was arbitrary, so the theorem is
proved. ut

4 Proof of Remaining Theorems 260

Let G WD P1
j D0 Yj zj denote the standard complex Gaussian power series where 261

fYj .!/g are IID standard complex normals. The results we require from [21] are as 262

follows. 263

Proposition 1 ([21]). The set of zeros of G in the unit disk is a determinantal point 264

process with joint intensities 265

p.z1; : : : ; zn/ D ��n det

�
1

.1 � zi zj /2

�
: 266
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The number N.�/ of zeros of G on B� is distributed as the sum of independent 267

Bernoullis with means �2k , 1 � k < 1. 268

To use these results we broaden them to random series whose coefficients are 269

nearly IID Gaussian. 270

Lemma 4. Let fgn WD P1
rD0 anr zrg be a sequence of power series. Suppose 271

(i) For each k, the k-tuple .an;1; : : : ; an;k/ converges weakly as n ! 1 to a 272

k-tuple of IID standard complex normals; 273

(ii) Ejanr j � 1 for all n and r . 274

Then on each disk B�, the set Z.gi / \ B� converges weakly to Z.G/ \ �. 275

Proof. Throughout the proof we fix � 2 .0; 1/ and denote B WD B�. Suppose an 276

analytic function h has no zeros on @B . Denote by jjg � hjjB the sup norm on 277

functions restricted to B . Note that if hn ! h uniformly on B then Z.hn/ \ B ! 278

Z.h/ \ B in the weak topology on probability measures on B , provided that h has 279

no zero on @B . We apply this with h D G WD P1
j D0 Yj zj where fYj .!/g are IID 280

standard complex normals. For almost every !, h.!/ has no zeros on @B . Hence 281

given � > 0 there is almost surely a ı.!/ > 0 such that jjg � GjjB < ı implies 282

jZ.g/ � Z.G/jP < �. Pick ı0.�/ small enough so that P.ı.!/ � ı0/ < �=3; thus 283

jjg �GjjB < ı0 implies jZ.g/ �Z.G/j < � for all G outside a set of measure at most 284

�=3. 285

By hypothesis .ii/, 286

E

ˇ̌
ˇ̌
ˇ

1X

rDkC1

anr zr

ˇ̌
ˇ̌
ˇ � �kC1

1 � �
: 287

Thus, given � > 0, once k is large enough so that �kC1=.1 � �/ < �ı0.�/=6, we 288

see that 289

P

 ˇ̌
ˇ̌
ˇ

1X

rDkC1

anr zr

ˇ̌
ˇ̌
ˇ � ı0.�/

2

!
� �

3
: 290

For such a k.�/ also jP1
rDkC1 Yrzr j � �=3. By hypothesis .i/, given � > 0 and 291

the corresponding ı.�/ and k.�/, we may choose n0 such that n � n0 implies 292

that the law of .an1; : : : ; ank/ is within minf�=3; ı0.�/=.2k/g of the product of k 293

IID standard complex normals in the Prohorov metric. By the equivalence of the 294

Prohorov metric to the minimal Ky Fan metric, there is a pair of random variables 295

Qg and Qh such that Qg � gn and Qh � G and, except on a set of of measure �=3, each of 296

the first k coefficients of Qg is within ı0=.2k/ of the corresponding coefficient of G. 297

By the choice of k.�/, we then have 298

P.jj Qg � QhjjB � ı0/ � 2�

3
: 299
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By the choice of ı0, this implies that 300

P.jZ. Qg/ � Z. Qh/jP � �/ < � : 301

Because Qg � gn and Qh � G, we see that the law of Z.gn/ \ B and the law of
Z.G/ \ B are within � in the Prohorov metric on laws on measures. Because � > 0

was arbitrary, we see that the law of Z.gn/ \ B converges to the law of Z.G/ \ B .
ut

Proof of Theorem 3. Let � < 1 be fixed for the duration of this argument and denote 302

B WD B�. Let 303

gn.z/ WD f 0
n.z/

f .z/
D

nX

j D1

1

z � Xj

: 304

Because jXj j D 1, the rational function 1=.z�Xj / D �X�1
j =.1�X�1

j z/ is analytic 305

on the open unit disk and represented there by the power series �P1
rD0 X�r�1

j zr . It 306

follows that �gn=
p

n is analytic on the open unit disk and represented there by the 307

power series �gn.z/=
p

n D P1
rD0 anr zr where 308

anr D n�1=2

nX

j D1

X�r�1
j : 309

The function �gn=
p

n has the same zeros on B as does f 0
n , the normalization by 310

�1=
p

n being inserted as a convenience for what is about to come. 311

We will apply Lemma 4 to the sequence fgng. The coefficients anj are normalized
power sums of the variables fXj g. For each r � 0 and each j , the variable X�r�1

j

is uniformly distributed on the unit circle. It follows that Eanr D 0 and that

Eanranr D n�1
P

ij X�r�1
i Xj

�r�1 D n�1
P

ij ıij D 1. In particular, Ejanr j �
.Ejanr j2/1=2 D 1, satisfying the second hypothesis of Lemma 4. For the first
hypothesis, fix k, let �j D Arg.Xj /, and let v.j / denote the .2k/-vector .cos.�j /,
� sin.�j /, cos.2�j /, � sin.2�j /, : : :, cos.k�j /, � sin.k�j //; in other words, v.j / is
the complex k-vector .X�1

j ; X�2
j ; : : : ; X�k

j / viewed as a real .2k/-vector. For each

1 � s; t � 2k we haveEv.j /
s v.j /

t D .1=2/ıij . Also the vectors fv.j /g are independent
as j varies. It follows from the multivariate central limit theorem (see, e.g., [10,
Theorem 2.9.6]) that u.n/ WD n�1=2

Pn
j D1 v.j / converges to 1=

p
2 times a standard

.2k/-variate normal. For 1 � r � k, the coefficient anr is equal to u.n/
2r�1 C iu.n/

2r .
Thus fanr W 1 � r � kg converges in distribution as n ! 1 to a k-tuple of IID
standard complex normals. The hypotheses of Lemma 4 being verified, the theorem
now follows from Proposition 1. ut
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problems. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 215:107–125 (2007), 2006. 338
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and they remarked that the function S.N / is connected with a problem in 14

combinatorial group theory. In particular, C. Schaap proved that for any prime p; 15

S.p/ D p2 � p C 1 � L.p/ where L D L.p/ is the largest integer for which there 16

is a sequence of integers a1; : : : ; aL with 1 � a1 � a2 � � � � � aL � p � 1 for 17

which a1 C � � � C aj 6� 0.mod p/ for 1 � j � L: An examination of Kruyswijk 18

and Meijer’s proof shows that the implied constants in (2) may be made explicit 19

and that 1
�2
N 3=2 < S.N / < 96N 3=2 for N sufficiently large. They conjectured 20

that limN!1 S.N /=N 3=2 exists and is equal to . 4
�
/2 D 1:62 : : : : Numerical 21

work seems to be in agreement with this conjecture. In the report [5] we gave an 22

alternative proof of (2) and in fact showed that 23

1:20N 3=2 < S.N / < 2:33N 3=2

for N sufficiently large. We are now able to refine this estimate. 24

Theorem 1. For N sufficiently large 25

1:35N 3=2 < S.N / < 2:04N 3=2:

Our proof of Theorem 1 depends on two results of R.R. Hall [2] on the 26

distribution and the second moments of gaps in the Farey series. 27

2 Preliminary Lemmas 28

LetN be a positive integer and let FN D fx1; : : : ; xRg where 0 < x1 < � � � < xR D 29

1: Put `1 D x1 and `r D xr � xr�1 for r D 2; : : : ; R so that the `i ’s correspond to 30

gaps in the Farey series with the points 0 and 1 identified. 31

Lemma 1. There is a positive number C0 such that for N � 2; 32

RX

rD1
`2r < .C0 logN/=N 2:

Proof. This follows from Theorem 1 of [2]. ut
For each positive real number t and each positive integer N we define �N .t/ to 33

be the number of gaps `r for which `r > t=N 2: Thus 34

�N .t/ D
RX

rD1
t<N2`r

1:

We also define ıN .t/ by 35

ıN .t/ D �N .t/=R.N /: 36
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Then ıN .t/ is a distribution function and Hall [2] proves that ıN .t/ tends to a limit 37

as N tends to infinity. 38

Lemma 2. If 4 � t � N and w D w.t/ is the smaller root of the equation w2 D 39

t.w � 1/ then 40

ıN .t/ D 2t�1.1 � w C 2 log w/CO.t�1N�1 logN CN�3=2/: 41

If 1 � t � 4 then 42

ıN .t/ D 2t�1
�
1C log t � t

2

�
CO.N�1 logN/: 43

Proof. The first assertion follows from Theorem 4 of [2] together with (1). The
second assertion follows from (1.2) of [2]. ut

Let us define f .t/ for 1 � t by 44

f .t/ D
(
2
�
1C log t � t

2

�
for 1 � t � 4

2.1� w C 2 log w/ for 4 < t
(3)

where 45

w D t

2

 
1 �

�
1 � 4

t

�1=2!
for 4 < t: 46

Observe that 47

lim
t!1f .t/=.2=t/ D 1: (4)

Lemma 3. For 4 � t � N we have 48

�N .t/ � 24.2 log2 � 1/

�2

�
N

t

�2
CO

�
N

t
logN CN1=2

�
: 49

Proof. Since �N .t/ D R.N/ıN .t/ it suffices, by (1) and Lemma 2 to show that for 50

t � 4; g.t/ is a decreasing function of t where 51

g.t/ D t.2 log w.t/ � .w.t/ � 1//: 52

Since 53

w.t/ D
�
t � t .1 � 4=t/1=2

�
=2 54
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we find that 55

g0.t/ D 2 log w � .w � 1/C ..2=w/� 1/tw0.t/

so 56

g0.t/ D 2 log w � 2w C 2:

On observing that log.1 C x/ � x for x � 0 and putting x D w � 1 we conclude 57

that 58

g0.t/ � 2.w � 1/� 2w C 2 D 0

whenever w � 1: Since, for t > 4; 59

w.t/ D 1C 1

t
C 2

t2
C � � � C cn

tn
C � � �

where the cn are positive numbers we see that w > 1 for t > 4 hence for t � 4:

Thus g.t/ is a decreasing function of t as required. ut

3 Further Preliminaries 60

For each positive integer M we define �.M/ to be the number of qi ’s in the sum 61

giving S.N / which are larger thanM: Thus 62

�.M/ D
NX

iD1
qi>M

1:

For positive integers j and M let  .j / (D  M.j /) denote the number of gaps `r 63

in FM of size larger than j

N
: Accordingly we have 64

 .j / D
R.M/X

rD1
`r>

j
N

1:

A gap `r in FM with `r � jC1
N

properly contains at most j intervals
�
h�1
N
; h
N

�
with 65

1 � h � N: �.M/ is the total number of intervals
�
h�1
N
; h
N

�
which are properly 66

contained in gaps of FM : Thus 67

�.M/ �  .1/C  .2/C � � � :

Similarly a gap `r in FM with `r >
jC1
N

properly contains at least j intervals of the 68

form
�
h�1
N
; h
N

�
: Therefore 69
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 .2/C  .3/C � � � � �.M/: 70

Since  .j / D �M

�
jM2

N

�
; it follows that 71

vX

jD2
�M

�
jM2

N

�
� �.M/ �

vX

jD1
�M

�
jM2

N

�
; (5)

where v (D v.M/) satisfies 72

v <
N

M
� v C 1: (6)

Let u1 be the number of rationals h
k

with .h; k/ D 1 and 1 � h � k � p
N: 73

Then by (1) 74

u1 D 3

�2
N CO.N1=2 logN/ (7)

and the sum S1 of the denominators of these rationals is 75

S1 D
X

k�p
N

k'.k/: 76

By Abel summation and (1) we find that 77

S1 D 2

�2
N 3=2 CO.N logN/: (8)

Observe that if q is an integer with 1 � q � p
N then each rational p=q with p 78

positive and coprime with q contributes a term q to S.N /: Thus S1 is the sum of the 79

u1 smallest terms in the sum giving S.N /: Put 80

u2 D N � u1 (9)

and let S2 be the sum of the u2 largest q’s which appear in the sum for S.N /: Then 81

S.N / D S1 C S2: (10)

4 The Upper Bound in Theorem 1 82

In order to establish an upper bound for S.N / we shall establish an upper bound for 83

S2 and then appeal to (8) and (10). 84
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For any positive integerM with M � N we have 85

S2 � Mu2 C �.M/C �.M C 1/C � � � C �.N /: (11)

Put � D 1:38 and M1 D Œ�N 1=2�: Since �.1 � 3=�2/ < 0:96054 and �.M1/ � N; 86

it follows from (7), (9) and (11) that 87

S2 < 0:96054N
3=2 C �.M1 C 1/C �.M1 C 2/C � � � C �.N / (12)

for N sufficiently large. Next, put 88

S3 D
X

M1<M<N3=5

�.M/ and S4 D
X

N3=5�M�N
�.M/: 89

Thus, by (12), 90

S2 < 0:96054N
3=2 C S3 C S4: (13)

Let us first estimate S4: To that end recall that �.M/ is the number of qi ’s in the 91

sum S.N / which are larger thanM: Thus there are �.M/ intervals
�
j�1
N
;
j

N

i
which 92

contain no element of FM : In particular there must exist differences `r1; : : : ; `rs in 93

FM for which we can find positive integers k1; : : : ; ks with `ri � ki=N for i D 94

1; : : : ; s and such that k1 C � � � C ks � �.M/: Thus we certainly have 95

sX

iD1
`2ri � �.M/

N 2
: (14)

On the other hand, by Lemma 1, 96

R.M/X

rD1
`2r < C0M

�2 logM: (15)

A comparison of (14) and (15) reveals that 97

�.M/ < C0
N 2

M2
logM: 98

For N3=5 � M � N we have logM � logN hence 99

X

N3=5�M�N
�.M/ < C0N

2 logN
Z N

N3=5�1
dM

M2
100

so 101

S4 < 2C0N
7=5 logN: (16)
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Next we estimate S3: By (5) 102

S3 D
X

M1<M<N3=5

�.M/ �
X

M1<M<N3=5

vX

jD1
�M

�
jM2

N

�
: (17)

For M < N3=5 we see from (6) that v C 1 is at least N2=5; which in turn exceeds 103

104 for N sufficiently large. Then, by Lemma 3, 104

X

M1<M<N3=5

X

104<j�v
�M

�
jM2

N

�
<

X

M1<M<N3=5

N 2

M2

X

104<j<1

�
1

j

�2

< 10�4N 2
X

M1<M<N3=5

1

M2

< 10�4N 3=2; (18)

for N sufficiently large. Accordingly by (17) and (18) 105

S3 < 10
�4N 3=2 C

X

M1<M<N3=5

104X

jD1
�M

�
jM2

N

�
: (19)

Let " > 0: For N sufficiently large in terms of " 106

R.M/ <

�
3

�2
C "

�
M2

hence 107

�M

�
jM2

N

�
D R.M/ıM

�
jM2

N

�
<

�
3

�2
C "

�
M2ıM

�
jM2

N

�

and so 108

�M

�
jM2

N

�
<

�
3

�2
C "

�
N

j

�
jM2

N
ıM

�
jM2

N

��
: (20)

It follows from Lemma 2 and (3) that for j � 104 and M � N3=5
109

jM2

N
ıM

�
jM2

N

�
D f

�
jM2

N

�
CO

�
logN

N

�
:
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Thus, by (4), for N sufficiently large in terms of " 110

jM2

N
ıM

�
jM2

N

�
< .1C "/f

�
jM2

N

�
: (21)

For each integer j with 1 � j � 104 we find from (20) and (21) that 111

X

M1<M<N3=5

�M

�
jM2

N

�
<

�
3

�2
C "

�
.1C "/

N

j

X

M1<M<N3=5

f

�
jM2

N

�
: (22)

The function f is continuous and it is increasing on .1; 4/ and decreasing on .4;1/: 112

Accordingly, with � D 1= logN; we have 113

X

M1<M<N3=5

f

�
jM2

N

�

<

0

@
X

1�k<.N3=5�M1/=Œ�
p
N�

f

 
j.M1 C kŒ�

p
N�/2

N

!
Œ�

p
N�

1

ACO

 p
N

logN

!

which is, for N sufficiently large, 114

<

0

@
X

1�k<N1=5

f

 
j.�

p
N CO.1/ C k.�

p
N CO.1///2

N

!
.�

p
N CO.1//

1

ACO

 p
N

logN

!
: 115

116

Therefore, for N sufficiently large in terms of "; 117

X

M1<M<N3=5

f

 
jM2

N

!
< .1C "/N1=2

X

1�k<N1=5

f
�
j.�C k�/2 CO

�
k2N�1=2�� ��

< .1C "/2N1=2

Z 1

�
f .jt2/dt: (23)

118

Thus, by (22) and (23), 119

104X

jD1

X

M1<M<N3=5

�M

�
jM2

N

�

<

�
3

�2
C "

�
.1C "/3N 3=2

104X

jD1

1

j

Z 1

�

f .jt2/dt:

(24)
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Evaluating with MAPLE we find that 120

104X

jD1

1

j

Z 1

�

f .jt2/dt < 2:8640: (25)

Therefore, by (24) and (25), for N sufficiently large, 121

104X

jD1

X

M1<M<N3=5

�M

�
jM2

N

�
< 0:8706N 3=2: (26)

By (19) and (26) 122

S3 < 0:8707N
3=2 (27)

for N sufficiently large. Further, by (13), (16) and (27), 123

S2 < 1:8313N
3=2

for N sufficiently large. Our result now follows from (8) and (10). 124

5 The Lower Bound in Theorem 1 125

The value of the smallest qi in S2 exceeds
p
N and so 126

S2 � Œ
p
N�u2 C �.Œ

p
N�/C �.Œ

p
N�C 1/C � � � C �.N /

hence, by (7) and (9), 127

S2 �
�
1 � 3

�2

�
N3=2 CO.N logN/C �.Œ

p
N�/C � � � C �.N /: (28)

Certainly 128

�.Œ
p
N�/C � � � C �.N / �

X

N1=2<M<N3=5

�.M/

and for M with M < N3=5 we see from (6) that v C 1 is at least N2=5: Therefore, 129

by (5), for N sufficiently large 130

X

N1=2<M<N3=5

�.M/ >
X

N1=2<M<N3=5

104X

jD2
�M

�
jM2

N

�
131
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and so, by (28), 132

S2 >

�
1 � 3

�2

�
N3=2 CO.N logN/C

104X

jD2

X

N1=2<M<N3=5

�M

�
jM2

N

�
: (29)

We shall now estimate the double sum in (29). Let " > 0: ForN sufficiently large 133

in terms of " 134

R.M/ >

�
3

�2
� "

�
M2

135

hence 136

�M

�
jM2

N

�
D R.M/ıM

�
jM2

N

�
>

�
3

�2
� "

�
M2ıM

�
jM2

N

�

and so 137

�M

�
jM2

N

�
>

�
3

�2
� "

�
N

j

�
jM2

N
ıM

�
jM2

N

��
: (30)

It follows from Lemma 2 and (3) that for j � 104 and M � N3=5
138

jM2

N
ıM

�
jM2

N

�
D f

�
jM2

N

�
CO

�
logN

N

�
: 139

Thus, by (4), for N sufficiently large in terms of " 140

jM2

N
ıM

�
jM2

N

�
> .1 � "/f

�
jM2

N

�
: (31)

For each integer j with 2 � j � 104 we find from (30) and (31) that 141

X

N1=2<M<N3=5

�M

�
jM2

N

�

>

�
3

�2
� "

�
.1 � "/N

j

X

N1=2<M<N3=5

f

�
jM2

N

�
:

(32)

The function f is continuous and it is increasing on .1; 4/ and decreasing on 142

.4;1/: Accordingly, with � D 1= logN; we have 143
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X

N1=2<M<N3=5

f

 
jM2

N

!

�

0

B@
X

1�k<.N3=5�N1=2/=Œ�
p
N�

f

 
j.Œ

p
N �C kŒ�

p
N�/2

N

!
Œ�

p
N�

1

CACO

 p
N

logN

!

144

which is, for N sufficiently large, 145

�
0

@
X

1�k<N1=10

f

 
j.

p
N CO.1/C k.�

p
N CO.1///2

N

!
.�

p
N CO.1//

1

A CO

 p
N

logN

!
:

146

Therefore, for N sufficiently large in terms of "; 147

X

N1=2<M<N3=5

f

�
jM2

N

�
> .1 � "/N 1=2

X

1�k <N1=10

f .j.1C k�/2 CO.k2N�1=2// ��

> .1 � "/2N 1=2

Z 1

1

f .jt2/dt: (33)

Thus, by (32) and (33), 148

104X

jD2
�

X

N1=2<M<N3=5

�m

�
jM2

N

�

>

�
3

�2
� "

�
.1 � "/3N 3=2

104X

jD2

1

j

Z 1

1

f .jt2/dt:

(34)

Evaluating with MAPLE we find that 149

104X

jD2

1

j

Z 1

1

f .jt2/dt > 1:5098: (35)

Therefore by (34) and (35), for N sufficiently large 150

104X

jD2

X

N1=2<M<N3=5

�M

�
jM2

N

�
> 0:4589N 3=2: (36)
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By (8), (10), (29) and (36) we see that 151

S.N / >

�
1 � 1

�2
C 0:458

�
N3=2 > 1:35N 3=2

152

for N sufficiently large and the result now follows. 153

References 154

1. C. Cobeli, A. Zaharescu, The Haros-Farey sequence at two hundred years, a survey, Acta 155

Universitatis Apulensis 5 (2003), 1–38. 156

2. R.R. Hall, A note on the Farey series, J. London Math. Soc. 2 (1970), 139–148. 157

3. G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, eth ed., Oxford, 1979. 158

4. D. Kruyswijk, H.G. Meijer, On small denominators and Farey sequences, Indagtiones Math. 39 159

(1977), 332–337. 160

5. C.L. Stewart, On a sum associated with the Farey series, Report ZW88, Mathematisch Centrum 161

(1976), 1–11. 162



Metadata of the chapter that will be visualized online

Chapter Title Lost in Translation
Copyright Year 2013
Copyright Holder Springer-Verlag Berlin Heidelberg
Corresponding Author Family Name Zudilin

Particle
Given Name Wadim
Suffix
Organization School of Mathematical and Physical

Sciences, The University of Newcastle
Address Callaghan,  NSW 2308,  Australia

Abstract We explain the use and set grounds about applicability of algebraic
transformations of arithmetic hypergeometric series for proving
Ramanujan’s for- mulae for 1/π and their generalisations

Keywords
(separated by “-”)

π  -  Ramanujan  -  Arithmetic hypergeometric series  -  Algebraic
trans-formation  -  Modular function



UNCORRECTED
PROOF

Lost in Translation 1

Wadim Zudilin�
2

In memory of Herb Wilf 3

Abstract We explain the use and set grounds about applicability of algebraic 4

transformations of arithmetic hypergeometric series for proving Ramanujan’s for- 5

mulae for 1=� and their generalisations. 6

Keywords � • Ramanujan • Arithmetic hypergeometric series • Algebraic trans- 7

formation • Modular function 8

The principal goal of this note is to set some grounds about applicability of algebraic 9

transformations of (arithmetic) hypergeometric series for proving Ramanujan’s for- 10

mulae for 1=� and their numerous generalisations. The technique was successfully 11

used in quite different situations [7, 16, 18–20] and was dubbed as ‘translation 12

method’ by J. Guillera, although the name does not give any clue about the method 13

itself. In theory, one could think of the method as a way to reduce (rather than 14

translate) the identity in question to a simpler one, but the simpler identity may 15

be much more involved than the original in many perspectives. (Also, “Lost in 16

reduction” sounds menacingly.) 17

�This work is supported by the Australian Research Council.

W. Zudilin (�)
School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan,
NSW 2308, Australia
e-mail: wzudilin@gmail.com

I.S. Kotsireas and E.V. Zima (eds.), Advances in Combinatorics,
DOI 10.1007/978-3-642-30979-3 16, © Springer-Verlag Berlin Heidelberg 2013

287

mailto:wzudilin@gmail.com


UNCORRECTED
PROOF

288 W. Zudilin

Consider the following problem: Show that 18

1X

nD0

.4n/Š

nŠ4
.3 C 40n/ � 1

284n
D 49

3
p

3�
: (1)

Step 0. It comes as a useful rule: prior to any attempts to prove an identity 19

verify it numerically. The convergence of the series on the left-hand side of (1) 20

is reasonably fast (more than three decimal places per term), so you shortly 21

convince yourself that the both sides are 22

3:001679541740867825117222046370611403163548615329487998574326 : : : : 23

24

Step 1. Series of the type given in (1) should be quite special. With a little search 25

you identify 26

1X

nD0

.4n/Š

nŠ4

�
x

256

�n

D 3F2

�
1
4
; 1

2
; 3

4

1; 1

ˇ̌
ˇ̌ x

�
D

1X

nD0

�
1
4

�
n

�
1
2

�
n

�
3
4

�
n

.1/n.1/n

xn

nŠ
; (2)

a hypergeometric series, where the notation .a/n (Pochhammer’s symbol or 27

shifted factorial) stands for � .a C n/=� .a/ D a.a C 1/ � � � .a C n � 1/. 28

A generalised hypergeometric series 29

mFm�1

�
a1; a2; : : : ; am

b2; : : : ; bm

ˇ̌
ˇ̌ x

�
WD

1X

nD0

.a1/n.a2/n � � � .am/n

.b2/n � � � .bm/n

xn

nŠ

is an object of intensive study since Euler [2, 17]; one of its important properties 30

is the linear differential equation 31

��
x

d

dx

� mY

j D2

�
x

d

dx
C bj � 1

�
� x

mY

j D1

�
x

d

dx
C aj

��
F D 0 (3)

satisfied by the series. The required identity (1) can be therefore transformed to 32

the more conceptual form 33

1X

nD0

�
1
4

�
n

�
1
2

�
n

�
3
4

�
n

nŠ3
3C40n

74n
D

�
3C40x

d

dx

�
3F2

�
1
4
; 1

2
; 3

4

1; 1

ˇ̌
ˇ̌ x

�ˇ̌
ˇ̌
xD1=74

D 49

3
p

3�
:

(4)

Step 2. Convince yourself that identities of the wanted type are known in the 34

literature. In fact, they are known for almost a century after Ramanujan’s 35

publication [15]; identity (1) is Eq. (42) there. Ramanujan did not indicate how 36

he arrived at his series but left some hints that these series belong to what is 37

now known as ‘the theories of elliptic functions to alternative bases’. The first 38
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proofs of Ramanujan’s identities and their generalisations were given by the 39

Borweins [5] and Chudnovskys [8]. Those proofs are however too lengthy to 40

be included here. Note that Ramanujan’s list in [15] does not include the slowly 41

convergent example 42

1X

nD0

�
1
2

�3

n

nŠ3
.1C4n/ .�1/n D

�
1C4x

d

dx

�
3F2

�
1
2
; 1

2
; 1

2

1; 1

ˇ̌
ˇ̌ x

�ˇ̌
ˇ̌
xD�1

D 2

�
; (5)

which was shown to be true by G. Bauer [3] already in 1859. Bauer’s proof 43

makes no reference to sophisticated theories and is much shorter, although 44

does not seem to be generalisable to the other entries from [15]. In fact, 45

D. Zeilberger assisted by his automatic collaborator S. B. Ekhad [9] came up 46

in 1994 with a short proof of (5) verifiable by a computer. The key is a use 47

of a simple telescoping argument (this part is completely automated by the 48

great Wilf–Zeilberger (WZ) machinery [14]) and an advanced theorem due to 49

Carlson [2, Chap. V]; the proof is reproduced in [21]. Quite recently, J. Guillera 50

advocated [10–13] the method from [9] and significantly extended the outcomes; 51

he showed, for example, that many other Ramanujan’s identities for 1=� can be 52

proven completely automatically. Note however that (1) is one of ‘WZ resistant’ 53

identities. To overcome this technical difficulty, below we reduce the identity 54

to the simpler one (5). (There is no warranty, of course, for (5) to exist. The 55

comments below address this issue up to a certain point.) 56

Step 3. Use your favourite computer algebra system (CAS) to verify the hyperge- 57

ometric identity 58

3F2

�
1
2
; 1

2
; 1

2

1; 1

ˇ̌
ˇ̌ x

�
D r � 3F2

�
1
4
; 1

2
; 3

4

1; 1

ˇ̌
ˇ̌ y

�
(6)

where y D y.x/ D � 1
1;024

x3 CO.x4/ and r D r.x/ D 1C 1
8
x C 27

512
x2 CO.x3/ 59

are algebraic functions determined by the equations 60

.x2 � 194x C 1/4y4

C 16.4833x6 C 2029050x5 C 47902255x4 � 92794388x3

C 47902255x2 C 2029050x C 4833/xy3

� 96.3328x6 � 623745x5 C 3837060x4 � 6470150x3

C 3837060x2 � 623745x C 3328/xy2

C 256.1024x6 � 1152x5 C 225x4 � 2x3 C 225x2 � 1152x C 1024/xy C 256x4 D 0

and 61

.x2 � 194x C 1/2r8 C 4.61x2 C 25798x C 61/.x � 1/r6

C 486.41x2 � 658x C 41/r4 C 551124.x � 1/r2 C 531;441 D 0:
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To do this you (and your CAS) are expected to use the linear differential 62

equations (3) for the involved hypergeometric functions and generate any-order 63

derivatives of y and r with respect to x by appealing to the implicit functional 64

equations. To summarise, you have to check that both sides of (6) satisfy the same 65

(third order) linear differential equation in x with algebraic function coefficients 66

and then compare the first few coefficients in the expansions in powers of x. 67

Note that x D �1 corresponds to y D 1=74 (cf. (5) vs. (4)), and this is the reason 68

behind considering the sophisticated functional identity (6). 69

The task on this step does not look humanly pleasant, and there is a (casual) trick 70

to verify (6) by parameterising x, y and r : 71

x D �4p.1 � p/.1 C p/3.2 � p/3

.1 � 2p/6
; y D 16p3.1 � p/3.1 C p/.2 � p/.1 � 2p/2

.1 � 2p C 4p3 � 2p4/4
;

r D .1 � 2p/3

1 � 2p C 4p3 � 2p4
:

72

Choosing p D .1 �
p

45 � 18
p

6/=2 we obtain x D �1 and y D 1=74. (The 73

modular reasons behind this parametrisation can be found in [4, Lemma 5.5 on 74

p. 111] where our p is the negative of the p there.) 75

Step 4. By differentiating identity (6) with respect to x and combining the result 76

with (6) itself we see that 77

�
a C bx

d

dx

�
3F2

�
1
2 ; 1

2 ; 1
2

1; 1

ˇ̌
ˇ̌ x

�
D

�
a C bx

dr

dx
C b

rx

y

dy

dx
� y

d

dy

�
� 3F2

�
1
4 ; 1

2 ; 3
4

1; 1

ˇ̌
ˇ̌ y

�
I

(7)
78

again, the derivatives dy=dx and dr=dx are read from the implicit functional 79

equations. An alternative (but simpler) way is using the parametrisations x.p/, 80

y.p/ and r.p/. Taking a D 1, b D 4 and x D �1 in (7) you recognise the 81

left-hand side as the familiar Bauer’s (WZ easy) identity (5), while the right-hand 82

side is nothing but the series in (4). 83

Comments. The story exposed above is general enough to be used in other situations 84

for proving some other formulae for 1=� . The setup can be as follows. Assume we 85

already have an identity 86

�
a C bx

d

dx

�
F.x/

ˇ̌
ˇ̌
xDx0

D �; 87

where a, b, x0 and � are certain (simple or at least arithmetically significant) 88

numbers, and F.x/ is an (arithmetic) series. Furthermore, assume we have a 89

transformation F.x/ D rG.y/ with r D r.x/ and y D y.x/ differentiable at 90

x D x0. Then 91

�
Oa C Oby

d

dy

�
G.y/

ˇ̌
ˇ̌
yDy0

D �; 92
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where 93

Oa D a C bx
dr

dx

ˇ̌
ˇ̌
xDx0

; Ob D b
rx

y

dy

dx

ˇ̌
ˇ̌
xDx0

; and y D y0: 94

There is, of course, no magic in this result: it is just the standard ‘chain rule’. 95

The applicability of this simple argument heavily rests on existence of trans- 96

formations like (6). This in turn is based on the modular origin [5, 6, 8, 21] of 97

Ramanujan’s identities for 1=�: any such identity can be written in the form 98

�
a C bx

d

dx

�
F.x/

ˇ̌
ˇ̌
xDx0

D c

�
; a; b; c; x0 2 Q; (8)

where F.x/ is an arithmetic hypergeometric series [23] satisfying a third order 99

linear differential equation. In other words, for a certain modular function x D x.�/ 100

(not uniquely defined!) the function F.x.�// is a modular form of weight 2. The 101

theory of modular forms provides us with the knowledge that any two modular 102

forms are algebraically dependent; thus, whenever we have another arithmetic 103

hypergeometric series G.y/ and a related modular parametrisation y D y.�/, 104

the modular functions y.�/ and G.y.�//=F.x.�// are algebraic over QŒx.�/�. 105

Another warrants of the theory is an algebraic dependence over Q of x.�/ and 106

x..A� C B/=.C� C D// for any
�

A B
C D

� 2 SL2.Q/. On the other hand, there is no 107

other source known for such algebraic dependency; the functions x.�/ and x.A�/, 108

A > 0, are algebraically dependent if and only if A is rational. 109

The above arithmetic constraints impose the natural restriction on �0 from the 110

upper half-plane Re � > 0 to satisfy x.�0/ D x0 in (8). Namely, �0 is an 111

(imaginary) quadratic irrationality, �0 2 QŒ
p�d� for some positive integer d . But 112

then .A�0 C B/=.C�0 C D/ belongs to the same quadratic extension of Q for any 113�
A B
C D

� 2 SL2.Q/, so whatever transformation F.x/ D rG.y/ (of modular origin) 114

we use, the modular arguments of x.�/ and y.�/ have to be tied by an SL2.Q/ 115

linear-fractional transform. In the examples (4) and (5) we have both arguments 116

belonging to QŒ
p�2�, therefore an algebraic transformation must exist, and this is 117

confirmed by (6) mapping the corresponding x.�0/ D �1 into y.3�0/ D 1=74 where 118

�0 D .1 C p�2/=2. There is however no way known to ‘translate’ identities (4) 119

and (5) to either 120

1X

nD0

�
1
2

�3

n

nŠ3
.1 C 6n/

1

4n
D 4

�

or 121

1X

nD0

�
1
6

�
n

�
1
2

�
n

�
5
6

�
n

nŠ3
.13;591;409 C 545140134n/ � .�1/n

53;3603nC2
D 3

2
p

10005�
;
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as the corresponding modular arguments lie in the fields QŒ
p�3� and QŒ

p�163�, 122

respectively. We refer the interested reader to [6] for exhausting lists of ‘rational’ (in 123

the sense of x0) identities which express 1=� by means of general hypergeometric- 124

type series; the details of the modular machinery are greatly explained there. 125

In a sense, to make the ‘translation method’ work we first should carefully 126

examine the underlying modular parametrisations. On the other hand, there are 127

situations when we know (or can produce [1]) the algebraic transformations without 128

having modularity at all. These are particularly useful in the context of similar 129

formulae for 1=�2 recently discovered by Guillera [10, 11, 13]. 130

There is a p-adic counterpart of the Ramanujan-type identities for 1=� and 1=�2
131

which we review in [22]. It seems likely that the algebraic transformation machinery 132

is generalisable to those situations as well but, for the moment, no single example 133

of this is known. 134
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