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This book is dedicated to the life and
scientific contributions of Herbert Saul Wilf.
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Foreword

This volume commemorates and celebrates the life and achievements of an extraor-
dinary person, Herb Wilf. The planning of the book started while he was still alive. It
was planned to present it to him in person, but unfortunately he passed away before
that could happen. While he was brought down by a neuromuscular degenerative
disease, he had been active in research until shortly before his death, and this volume
even contains a paper he coauthored.

Among the most prominent qualities that endeared Herb to his many students
and colleagues was his warm personality. Deeply devoted to mathematics, he was an
enthusiastic supporter of other researchers, especially of young students struggling
to establish themselves. Always generous with suggestions and credit, he delighted
when others improved on his own results. He was also very supportive of women
mathematicians at a time when they faced high barriers and had an unusually large
number of women among his PhD students.

Herb Wilf was a superb teacher and writer. His books have had extensive impact
on a variety of fields. 'His many publications with their lucid explanations of
abstruse mathematical results give a taste of his abilities as an expositor. He received
a variety of teaching prizes, including the Deborah and Franklin Tepper Haimo
Award of the Mathematical Association of America, which is given to “teachers
of mathematics who have been widely recognized as extraordinarily successful.”
He devoted substantial effort to editorial activities, including a stint as the editor in
chief of the American Mathematical Monthly, and was a cofounder of the Journal
of Algorithms and of the Electronic Journal of Combinatorics.

However, Herb was foremost a researcher, driven by the desire to discover the
inner workings of the mathematical world, as expressed by Hilbert’s famous quote,
“We must know. We will know.” This volume consists of high-quality refereed
research contributions by some of his colleagues, students, and collaborators. The
origins of this book project were in the conference held on the occasion of Herb’s
80th birthday in May 2011. But this is not a conference proceedings, in that many
of the papers presented at that meeting are not included and some papers here
were not part of the conference program. They are meant as a tribute to Herb

ix
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X Foreword

Wilf’s contributions to mathematics and mathematical life. Some are very close
to areas he worked in, and some are further apart. But they are all on topics he knew
well and cared deeply about.

Although all the papers in this volume have some connection to Herb, they
touch mostly on the last (although longest) phase of his career that associated
with combinatorics. It therefore seems appropriate to say a few words about his
development as a mathematician. One of the many notable features of his life was
the willingness to undertake new projects and change directions. Thus, in the 1990s,
while he was already in his 60s and well established as an author and editor in
the traditional print world, he saw the promise of electronic communication and
moved to set up the free and completely scholar-operated Electronic Journal of
Combinatorics. In the spirit of practicing what he preached, he also arranged for
as many of his books as possible to be available for free downloads.In a rare case of
a good deed being properly rewarded, he found, contrary to predictions, that sales
of print copies of those freely downloadable books increased! This flexibility and
willingness to experiment extended to research directions. Even close to the end of
his life, he was always open to new ideas and wrote some papers in mathematical
biology. But this was just a continuation of a lifelong pattern.

The repeated appearance of certain intellectual themes in Herb’s work is
illustrated nicely by one of his most famous contributions, namely, the work with
Doron Zeilberger on automated proofs of identities. The computational aspect of
this research offers a link to the start of Herb’s professional career, which was
closely linked to computers. He did direct hands-on programming of some of
the first electronic digital computers, in order to implement early optimization
algorithms. He then went on to write-a PhD thesis on numerical analysis and
carry out a substantial research program in that field, including producing books on
mathematical models. Later yet he moved on to more theoretical work on complex
analysis and inequalities. And then he was smitten by the charms of combinatorics,
and this became the main. passion for the rest of his life, not that he forgot or
abandoned his earlier interests completely. Computers, for example, continued to
play a major role in his life. As just one example, in 1975, he and Albert Nijenhuis
published Combinatorial Algorithms. It is not used as widely as it used to be, since
the methods it contains are incorporated into standard software programs, such as
Maple, Matlab, and Mathematica. But for that time, it was a tremendously useful
collection that not only explained the methods but provided working code that could
be used when needed. Another illustration of his later work drawing on earlier
experience is provided by his work on complex analysis, which played a role in
his extensive involvement with generating functions in combinatorics.

In conclusion, we can say that it is difficult to give a full picture of the many
facets of Herb Wilf’s life and work. There will be more formal obituary notices
that will cover his contributions in detail. The brief sketch here serves only as an
introduction to this collection of papers, original research contributions by some
of Herb’s many students, collaborators, and other admirers and beneficiaries, who
dedicate their works to his memory. Herb heard presentations of some of these
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papers at his 80th birthday conference. What is certain is that he would have loved to
read them all and appreciate the advances they represent in penetrating ever deeper
into the mysteries of mathematics.

Minneapolis, USA Andrew M. Odlyzko
March 2013
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Preface

The Third Waterloo Workshop on Computer Algebra (WWCA 2011, W80) was held
May 26-29, 2011 at Wilfrid Laurier University, Waterloo, Canada.

The conference was devoted to the 80th birthday of distinguished combinato-
rialist Professor Herbert S. Wilf (University of Pennsylvania, USA). Several of
Professor Wilf’s books are considered classical; we mention for instance Gener-
atingfunctionology, Algorithms and Complexity, A = B.

Topics discussed at the workshop were closely related to several research areas
in which Herbert Wilf has contributed and influenced.

WWCA 2011 was a real celebration of combinatorial mathematics, with some
of the most famous combinatorial mathematicians of the world coming together to
present their talks. We had more than a-100 participants at the conference. The list
of scheduled invited lectures and presentations made at the conference includes:

* Herbert Wilf, University of Pennsylvania, USA, “Two exercises in combinatorial
biology”

e Gert Almkvist, University of Lund, Sweden, “Ramanujan-like formulas for #
and String Theory”

* George E. Andrews, Pennsylvania State University, USA, “Partition Function
Differences, and Anti-Telescoping”

» Miklos Bona, University of Florida, USA, “Permutations as Genome Rearrange-
ments”

* Rod Canfield, University of Georgia, USA, “The Asymptotic Hadamard Conjec-
ture”’

* Sylvie Corteel, Univ. Paris 7, France, “Enumeration of staircase tableaux”

* Aviezri Fraenkel, Weizmann Institute of Science, Israel, “What’s a question to
Herb Wilf’s answer?”’

» Ira Gessel, Brandeis University, USA, “On the WZ method”

e Jan Goulden, University of Waterloo, Canada, “Combinatorics and the KP
hierarchy”

¢ Ronald Graham, UCSD, USA, “Joint statistics for permutations in S, and
Eulerian numbers”

Xiii
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¢ Andrew Granville, Universite de Montreal, Canada, “More combinatorics and
less analysis: A different approach to prime numbers”

* Curtis Greene, Haverford College, USA, “Some Posets Related to Muirhead’s,
Maclaurin’s, and Newton’s Inequalities”

* Joan Hutchinson, Macalester College, USA, “Some challenges in list-coloring
planar graphs”

» David Jackson, University of Waterloo, Canada, “Enumerative aspects of cactus
graphs”

¢ Christian Krattenthaler, University of Vienna, Austria, “Cyclic sieving for gener-
alised non-crossing partitions associated to complex reflection groups”

e Victor H. Moll, Tulane University, USA, “p-adic valuations of sequences:
examples in search of a theory”

e Andrew Odlyzko, University of Minnesota, USA, “Primes, graphs, and generat-
ing functions”

e Peter Paule, RISC-Linz, Austria, “Proving strategies of WZ-type for modular
forms”

* Robin Pemantle, University of Pennsylvania, USA, “Zeros of complex polyno-
mials and their derivatives”

* Marko Petkovsek, University of Ljubljana, Slovenia, “On enumeration of struc-
tures with no forbidden substructures”

* Bruce Sagan, Michigan State University, USA, “Mahonian Pairs”

* CarlaD. Savage, NCSU, USA, “Generalized Lecture Hall Partitions and Eulerian
Polynomials”

» Jeffrey Shallit, University of Waterloo, Canada, “50 Years of Fine and Wilf”

* Richard Stanley, MIT, USA, “Products of Cycles”

e John Stembridge, University of Michigan, USA, “A finiteness theorem for
W-graphs”

e Volker Strehl, Universitaet Erlangen, Germany, “Aspects of a combinatorial
annihilation process”

* Michelle Wachs, University of Miami, USA, “Unimodality of q-Eulerian Num-
bers and p,q-Eulerian Numbers”

* Doron Zeilberger, Rutgers University, USA, “Automatic Generation of Theorems
and Proofs on Enumerating Consecutive-Wilf classes”

* Eugene Zima, Wilfrid Laurier University, Canada, “Synthetic division in the
context of indefinite summation”

The workshop was financially supported by the Fields Institute and various
offices of Wilfrid Laurier University.

This book presents a collection of selected formally refereed papers submitted
after the workshop. The topics discussed in this book are closely related to Herb’s
influential works. Initially it was planned as a celebratory volume. Herb’s sudden
death implied that this has now become a book commemorating his contributions to
mathematics and computer science.

This book would not have been possible without the dedication and hard work of
the anonymous referees, who supplied detailed referee reports and helped authors to
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improve their papers significantly. Finally, we wish to thank the people at Springer-
Verlag, in particular Ruth Allewelt and Martin Peters, for working closely with us
and for their dedicated and unwavering support throughout the entire publication
process.

We feel very fortunate that we were entrusted in the organization of this confer-
ence — “unforgettable conference of historical dimension” according to comments
of one of the invitees.

Waterloo, Canada Ilias S. Kotsireas
December 2012 Eugene Zima
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AQl

A Tribute to Herb Wilf

Doron Zeilberger

To Herbert Saul Wilf (June 13, 1931-Jan. 7, 2012), in
memoriam

Herbert Wilf was one of the greatest combinatorialists of our time, but his influence
far transcends the boundaries of any specific area. He was way ahead of his
time when, as a fresh (28-year-old) PhD, he coedited (with Anthony Ralston)
the pioneering book “Mathematical Methods for Digital Computers”; — 3 years
later wrote the beautiful classic textbook “Mathematics for the Physical Sciences”;
when algorithms just started to pop up everywhere, pioneered (with Don Knuth)
the Journal of Algorithms; and when the Internet started, pioneered the Electronic
Journal of Combinatorics. Herb also realized the great potential of the Internet for
the sharing of knowledge and had several of his classic textbooks available for a free
download!

Not to mention his great mathematical contributions!

Not to mention-that he academically fathered 28 (a perfect number!) brilliant
combinatorial children, including 8 females (way back when there were very few
female PhDs).

Many of these brilliant academic children became distinguished academic
mathematicians, for example, Fan Chung, Joan Hutchinson, the late Rodica Simion,
Felix Lazebnik, and many others. But some of them had brilliant careers elsewhere.
These include:

* Richard Garfield, of Magic the Gathering fame, one-time teenage idol, and still
a household name among gamesters

* The Most Rev. Dr. Anthony Mikovsky, Prime Bishop of the Polish National
Catholic Church

D. Zeilberger (<)
Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus,
110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA
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» Alkes Price, an ex-prodigy, who made a bundle in finance and wisely went back
to academia and is now a rising star in statistical genetics
* Michael Wertheimer, CTO of the National Security Agency from 2005 to 2010

The first scientific contribution of Herb Wilf (b. June 13, 1931) was in astronomy.
In the Oct. 1945 issue of Sky and Telescope, in an article that reported on readers’
observations of a solar eclipse, one can find the following: “Herbert Wilf of US City,
sent in times of the first and last contacts agreeing closely with those predicted for
his location. He used a stop watch of known rate set with radio time signals.”

After that, Herb focused on mathematics, but his interests ranged far and wide
and went through several phases. In a short (probably auto-) biographical footnote
for a 1982 American Mathematical Monthly article, it says:

His principal research interests have been in analysis: numerical, mathematical, and in the
past several years, combinatorical.

Herb’s “religious” conversion to combinatorics was already cited by Fan Chung
and Joan Hutchinson’s lovely tribute on the occasion of his 65th birthday: In 1965,
Gian-Carlo Rota came to the University of Pennsylvania to give a colloquium talk
on his then-recent work on Mobius functions and their role in combinatorics. Herb
recalled, “That talk was so brilliant and so beautiful that it lifted me right out of my
chair and made me a combinatorialist on the spot.”

But Herb returned the debt and made me convert to the religion of combinatorics.

The bio attached to one of my own articles reads:

Doron Zeilberger was born, as a person, on July 2, 1950. He was born, as a
mathematician, in 1976, when he got his PhD under the direction of Harry Dym (in
analysis). He was born-again, as a-.combinatorialist, 2 years later, when he read a
lovely proof of the so-called Hook-Length Formula (enumerating Standard Young
Tableaux) by Curtis Greene, Albert Nijenhuis, and Herb Wilf. He lived happily ever
after.

I still live happily, and all thanks to Herb (and Albert Nijenhuis and Curtis
Greene, now Herb’s beloved son-in-law).

Thanks Herb for the great inspiration that you bestowed on me and on so many
other people whose lives — both mathematically and personally — you have touched.
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Glaisher’s Formulas for % and Some
Generalizations

Gert Almkvist

In memory of Herb Wilf

1
Abstract Glaisher’s formulas for — are reviewed. Two generalized formulas

/4
are proved by using the WZ-method (named after Wilf and Zeilberger). Also an
improvement of Fritz Carlson’s theorem (proved in an Appendix by Arne Meurman)
is used.

Keywords m ¢ Glaisher

1 Introduction

1
Ramanujan-like formulas for — are rare. Only a dozen genuine (not obtained by
T

“squaring” formulas for —) formulas are known, most of them due to Guillera.
14
Only five of them are proved, all by Guillera, using the WZ-method. Until I found

1
Wenchang Chu’s paper [2] I did not know of Glaisher’s formulas for — from 1905

4
(see [3]). His paper is not easy to read (also literary, the exponents in Quaterly
Journal are very small) and I decided to write a self-contained survey.

After finding a slight generalization of Glaisher’s formulas and inspired of Levrie’s

1
paper, I was lead to the following two new formulas for —.
T

G. Almkvist (<)
Institute for Algebraic Meditation, Fogdarod 208, S-24333 Hoor, Sweden
e-mail: gert.almkvist@yahoo.se

LS. Kotsireas and E.V. Zima (eds.), Advances in Combinatorics, 1
DOI 10.1007/978-3-642-30979-3_1, © Springer-Verlag Berlin Heidelberg 2013
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Theorem 1. 19
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2 Glaisher’s Formulas 20

We will make use of Legendre polynomials P,(x), defined by the generating 2

function 22
_——— Z P, (x)t 23
NI=2xt+1* =
They form an orthogonal system with inner product 24
! 2
/ P, (x)P, (x)alx—Sm,,2 1 25
Lemma 1.
Pyyy(x) = xPy(x) = (n + 1) Pu(x) 2

27

Proof. Differentiate the generating function with respect to x 28
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d 1
E m (1 —2xt + [2)3/2 Z P (-x)l
Hence
Z( ()C) XP/(X))tn — L
nt1 " (1= 2xt +12)32
d t .-
S S 1) P, (x)t"
TN T ;(n + 1) Py(x)
Lemma 2.
XP(x) = P,_;(x) = nPy(x)
Proof. We have
xt —12 d 1
Z(xP ) = Pt OV = T A a e
= ZHP,, (x)tn
n=0
Lemma 3.
Proi(x)— P,_(x) = 2n + 1) P,(x)

Proof. Add Lemmas 1 and 2.

Lemma 4.

2
2m
Cn )

1 /1 —x2 e

Proof. We make the substitution x = cos(¢) and obtain

T

LHS = /0 Pa(costg))de = / Pa(cos(¢))dg

-

if n=2m and 0 if n odd.
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Then
> 1
Py (cos(p)t" =
; V1 =2t cos(p) + 12
1 1

(1 —texp(ig))'/? (1 —t exp(—ig))'/?

0 ; k\ t/ Tk
-y (2]’ ) (2k ) e e — b))

j k=0

which gives

Paleoste)) = 5, 3 (27 ) (2: Y ) exp(i (2= 1))

j=o\/

Integrating, the only nonzero term is when 2j = n giving

D

3 Pyj(cos(p))dy =m yoy O
Lemma 5.
2
' xp, 2m+1\m
—1:;1——(—);)2‘“:”2212 Tom ifn=2m+1 and 0 if n even.
Proof. We have
' xP,(x) 1 (7
L dx = —/ cos(¢) P, (cos(p))dge
-1 /1 —x2 2 )
and
cos(¢) P, (cos(¢))
1 & (2j\[2n-2j o o
= m > ( . )( . ){eXp(l(ZJ —n+1Dg) +exp(i(2j —n —1g)}
o \J )\ n—J

Integrating, we get a nonzeroresultonly if n =2m + land j =morj =m + 1.
The result is
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Proposition 1.

1 2m
42m+1\ 1,

Proof. Expanding

2m + 2
m+1

)

(2]

v ZC"P )

P2n ()C)

we get, using the orthogonality of the Legendre polynomials

n

2

-1 V1 —x2 2

2
2m
2n+1 P(x)d 4m+1n i

16m

if n=2m and 0 otherwise.

Remark 1. Putting x = 0 in the generating function we obtain

and hence

vz Z( v

PZm(O) = (_1)m

Then putting x = 0 in Proposition 1 implies

Z( 1)"(4n + 1)

n=0

and sz_l(O) =0

()

64"

(x)..
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which was found by Bauer already in 1859 (see [1]). The convergence is very slow, es
1

as —. 66

Jn

Proposition 2.

ool

arcsin(x) = (n T 16

Pryt1(x) 67

68

Proof. We integrate the formula in Proposition 1. By Lemma 3 we have, assuming 69

that P_;(x) =0 70
1 !
Py, (x) = an+ (P2n+1(x) Pzn—l(x)) 7
and 72
[ Pt = o (Pngal) = Pavca )+ € 79
0
where C = 0 since P,,4+1(0) = P,—1(0) = 0. We get 74
2
2n
Toen \ 7
arcsin(x) = 5’; Ter (Pant1(x) = Pap—1(x))
2 2
(211) <2n + 2)
o0
T n+1
EZ o Pryt1(x)
n=0
2
(2}1
o0
T 4n+3 \ 1
=2y 272 P 0
8 ZZ:O nr1p 1o T

Theorem 2.

2n )
> +D@En+3)\n)

(n + 1)3 256" 72 *

n=0 76
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Proof. We have

2
2n
Z4n+3 n /1 X
“«(n+1)7 16" J J1-x2

arcsin(x)dx = Py (x)dx

1 X
/—1 V1 —x2

Partial integration gives

v 1— x2
arcsm(x)dx = [-V1 — x2arcsin(x)]., + =2
/ v 1+/1— x2
and we finish using Lemma 5. O
Proposition 3.
2
4n + 1 n
V1—x2= Py
o Z nt D@m= 16 e

Proof. Assume
o0
V1l—x2 = Zc,,Pn(x)
n=0

Then

(=P [ T n =2 [ oo sinods

2n +1
= 2 [ Bacostoni — coszonde
Clearly ¢, = 0 if n is odd, so let n = 2m. Now we know from the proof of

Lemma 4

2m . .
Pan(cos(@)) = 1 x (ZJ’ ) (42”; - ) exp(2i (j — m)

7

79

82

83

84

85

86
87

89
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When integrating we get nonzero terms for j = m, j =m + land j = m —1. o

We have ¢y = 7 and form > 1

2
wdm + 1 2m 2m + 2\ [(2m —2
Cp = ——F—— —
4 16m m m+1 m—1

2
2m
b4 4dm + 1 m

T T AmrDEm—1) 16

Theorem 3.

4
2n
e 4n + 1 n 8

n=0 (

Proof. Divide the formula in Proposition 3 by +/1 — x?2

n+1)@2n—1) 2560 . x2

2
2n
4n + 1 h Py, (x)

s
1==
4

Integrating from —1 to 1 and using Lemma 4 we are done.
1
Remark 2. The series converges as —-.
n
Now

4n + 1 1 1

1 o0
m_;(wlxzn—l) 16"

G+ 2)en—1) -1 mt2

and

91

92

93

94

96

97

98
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4 4
2n—2 2n
1 \n—1 1 n

2n 2561 2n —1 256"

()

256"

1 N 1 256n*
2n—1  2n16(2n—1)*

2n !
_ @2n -1+ @2n)* \ 1

(2n—1)* 256"

and we get

2n )
1_f:(Zn—l)?’—i-(Zn)3 n) 4
n=1

2n —1)4 256" ;2

Similarly we can rewrite Theorem 2 as

@n—=1)3 256"  x2

)
Z 2n(4n =1) 4

Adding we obtain

Theorem 4.

4
(2”)

X 1—4n \ N 8

j{:( _

2n —1)4% 256"  n2

Remark 3. Using the Pochhammer symbol this can be written as

2(1_4 )< 1/2>4 _ 8

72

. 1 . .
which converges as — (not as as Glaisher claims).
n

noé
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105

106

107

108
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Another formula with the same convergence is the following (not in Glaisher): 110
Theorem 5.

4
2n

i 4n +1 n)o 32

Z(n+ 1) +2)2n—1)2n—3) 256"  27x2

112

Proof. Assume 113
o0
(1—x%)%? = ZCZmPZm(x) 114
n=0
Doing as in the proof of Proposition 3 we obtain 115
2
2m
O 4m + 1 m
Com = — 116

8 (m+ )(m+2)2m—1)2m—3) 16m

Dividing by +/1 — x2 and integrating from.—1 to 1 we find the formula. O

Remark 4. By expanding (1—x?)*=D/2 ‘the above result can be generalized to the 117
first formula below. Coming so far I received the paper [4] by Levrie from Zudilin. 118

Using the hints on p. 229 and experimenting a little one finds formula (ii): 119
Theorem 6. 120
(i)

4
2n
e ()

’; m+ D +2)...n+k)2n—1D)@2n—3)...2n — 2k — 1)) 256"

25k+lk'4 1
k- (2k)B 2

4
2n
(4n+1) (”)

;) (n+ 134273 . .(n+k)PCn—1p32n—3)%..2n—(2k—1))3 256"

= (D"

(i)

. 22k EK)! 1

=03 @B 72
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Proof.
Proof of (i):
The first formula can be written as

oo

2
> G0k = 2
n=0 T

2 3
2k 2n 2n
(—=D)*k(4n + 1)<k) (n +k)<n )
G(n,k) = 5
n
162 +k(2k)

Zeilberger’s imaginary friend EKHAD (i.e using “WZMethod” in Maple) gives us

2 3
oG
F(n,k) =

2n
1620tk (k 4 1)(2k 4+ 1
0 Wag )<2k+2)

where

such that
Fn+ 1Lk)— F(n,k)=Gn,k+1)—G(n,k)

Write this as

F(n+1,k)_ _G(n,k+1)_G(n,k)
F(n,k)  F(n,k) F(n,k)
_ @+ 1)(8n°k + 4nk + 2k + 1)

N 16n3(n +k +1)

an algebraic identity which is valid for any complex number k. The usual telescop-
ing gives for H(z) = Y no, G(n,2)

Hz+1)—H() = ZG(n,z—}- 1) — ZG(H,Z)
n=0 n=0

=1lim(F(n+1,z) — F(0,z) =0

121
122
123

124

125

126

127

128

129

130

131

132
133
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so H(z) is periodic with period one. We want to use Meurman’s version of Fritz 134

Carlson’s theorem (see the Appendix). We write 135
2 ? 2 2 ?
zcos(wz)(4n + 1)( Z) ( " )( n)
Z n+zf\n
G(n,z) = 136
162n+z 2n
2z
First we notice that 137
. 1 b4
cos(mz) = sm(n(z —7)) = 138

F(E_Z)F(%‘i‘Z)

and 139
22)! 2I'(2z) 42 1
M) — r Z

a T To ety 190

Consider 141

2
zcos(mz) (2;) (n Z_Z z)
()
162
2z

- 8z { ) } 3 r@2n—22)
2!1611“(% —Z)F(% )y T@) =2

1 1
4nr 2F
(@ 2) (2 z+m

nF(z)F(%—z)F(l +z+n)

Since H (z) has period one, we can assume that 1 < R (z) < 2.Letz = x +iy. Then 12
we have 143

. _ b4
PG+ i)l & V27 [y exp(=7 [y

and 145
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1
2 ~ < — forlarge n 146
I'l+z+n) nl/242x = ;52
Furthermore 147
1
P+ 5) 2x+1/2 9/2
|~ P < )
I'x)I'(z —=z)
2
We have for large n 149
5 3
n
4n+1)
n 4n
162" = 4n(wn)d2 .
Collecting the evidence we obtain 151
4n 1 4 o _ 21y77 1
G2 i w = T
and 153
2031”7
|H()l'< —57-5(3) = O(exp(c |y]) 154
T
for any positive ¢ < 2w, so H(z) = A, a constant by Meurman’s Theorem. 155

1
To determine the constant A we put z = 3 We find G(0,z7) — - when z — 3 156
b4

1
while G (n; 5) =0forn > 0. 157
Proof of (ii): 158
Here we have 159

2 3 3
2k 4k 2n 2n
o= 3\ (21
n
162 +3k ( . ) <2k)

and 161
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2k ? 4k : 2n ’ 2n
e (85 (s
Fonh = 8 3k +3 2n ’ 162
162713k (k + 1)*(2k + 1)4(k +1 ) (2k N 2)
where 163

P(n.k) = 64n3(n — 1)(3k + 1)(3k + 2) — 8n(3k + 2)(80k> + 72k* + 12k — 1)

+4n(2k + 1)(3k + 2)(40k> + 16k + 1) + (2k + 1)>(592k* + 752k> + 300k 4 48k + 3)

164

As before we check 165
Fn+1,k)— F(n,k)=Gn,k+1)=G(n,k) 166
To use Meurman’s theorem we write 167
2 ; 4 ’ 2 } 2
zcos>(wz)(4n + 1) < ¢ " &
z 2z n+z n
G(n,z) = 3 168
L6243 3z) (2n
z 2z
We consider 169

5 2 A 3 5 3
20s’(r2) ( ZZ) (2;) (n —:—1 z)
3
. (3z) (2n)
z 2z

1 1 1
_ 43 F(z+§)1"(21+§)3 F(n+§—z)

3

2 1
3n ZF(Z)F(3Z)F(§ o I'n+1+72)
Now for 1 < N (z) <2 we have 170
I'z+ 1)F(2 + 1)3
Z+ = Z+ =
2 2 < |y|6x+l < |y|l3 .

zF(z)F(3z)F(§ —2)3
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Furthermore 172

1
F(E—Z-l-n)?’ N 1

1
T rerm) N atex Enls/z for large n 173
We have 174
2
@n+ (™"
n 4n
162 ¥ B (an)? e
We obtain 176
O 4n 5 4B
1G9 = 55557 43 ()12 172 V" =5 557 R
and 178
41y"
|H@)| = 5 57575(7) = Ofexplc|yD) 179
b4
. . 2
for any positive ¢ < 2. Hence H(Z) is constant. As above we find G(0, z) — 32
b4
1 1
when 7 — E,While G(nz) = Oforn > 0. O

Remark 5. For n_< k we must replace

2k k—

obtain the formulas 181

@)
2%\’
k

16k
2k 2n } 2n 2n }
k-1 (_l)k_n(4n+1)<n+k)<n) o (4n+1)<n+k)<n) 2
X2 +2
=k

)
— 2k —2n 2n T
n=0 n 2n
16 16
( k—n ) <2k)

( 2n ) ( 2k )
n+k n+k

2 with (=1 A
<2n) 2

and we 180
k —2n
n
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o (26 (4
AL A P
3k
163k<k)
3 3
ken 2k 2n 2n 2n
oo 1) (1) e ) ()
+

(ii)

2
3 g s
n=0 1627 2k —2n n=k Le2n 2n
k—n 2k
Remark 6. By using “WZMethod” in Maple on F(n,k +n) in the proof of
Conjecture (i) we get an enormous expression, which-after putting k = 0

simplifies to
o0

5
af2n 1 8

n=0

1
which is Guillera’s first formula for —. Similarly for F'(n,k + 2n) we obtain
T

3 3
2n 4n
i( 1y n ) \2n) 13760 + 1808n° + 784n% + 138n +9 1 32
n=0 (311) Bn+1)(Bn+2) olen — ;2

n

2
In Maple’s answer occur expressions like (4)1) which need interpretation. Hereby
n

one needs the following expansions to turn the binomial coefficients “upside down”

(2(n+8)): Lt o

4(n +¢) (4}1)
n
2n

2(n+e)) _ (=1)" )
(3(n + 8)) = e+ 0()

182
183
184

185

186

187

188

189

190
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2(n +¢) _ 1 )

(4(n+8)+2)_ 4n +2 £+ 0()
n+1) o

2(n+e)+2\ 1 )

(4(n+£)+6)_ 4n+6 e+ 0()
U P

Finally for F(n,k + 3n) we get

(Zn)3 <6n)2 (611)
i(—l)" n 3n 2n P(n)

n=0 <4n) Gn+ 1)(3n + 2)(4n +1)2(4n + 3)2 2200 — 72
2n

where

P(n) = 40389121 4+ 13296384n’ + 18184448n° + 13423232n°
+5828864n* + 1523184n° + 234144n> 4 19440n + 675

Conjecture.

(a) If p > k is a prime then

2
2k 2k
(—1)kk<k) oy (CDF(4n + 1)<n N k) (

S

k
16 — . <2k - Zn)
k—n

3
2n 2n
(4n+1)(n+k)(n)
+2

=0 mod p*

194

196

198

199

200

201

202
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(b) If p > 7 is prime then 203

p—1 5 )
21\ (2n + 1 1
(2] D 0w 4 84n2 4+ 54 +9) <1 = 8p> mod p?

2 12

n=0 n (n+1) 212n

3 Consequences of Levrie’s Work 205

Levrie’s Theorem 7 in [4] can be proved by using the WZ-pair 206
2k\ (4 (20\*( 20\
n n
4 1k
G(n, k) = 5
2n
162n+2k

2 2 2
2k 4k \ [2n 2n
20 @2 2
s e oot (4) () ()
F(n,k)=-— 5

2
2. 1621+ (20 — 2k — 1)2< n)

208

209

2k

Using the “WZMethod” on F/(n, k -+ n) and putting k¥ = 0 we have a new proof of 210

Guillera’s formula 211
4
2 [(2n\ (4n\120n% +34n+3 32
Z — e = 212
e\ n 2n 216n b3
Similarly for F(n, k + 2n) we get 213
2 4
2n 4n 8n
i n 2n 4n P(n) 1 _ 1,024
Z 2\ Qn+ D)Gn + 1)2Gn +2)2 22— g2 o
where 215

P(n) = 968704n" + 2683904n° + 3013376n° + 1758208n*
+568224n3 4+ 10020012 + 8844n + 315.
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Appendix 224
A Periodic Version of Fritz Carlson’s Theorem 225
Arne Meurman! 226

When using the WZ-method one often needs Fritz Carlson’s theorem (see e.g. [1]) 227
to find the value of a constant. Usually the function H(z) which one wants to prove 228
constant is periodic, H(z+ 1) = H(z). The following theorem uses the full strength 229
of the periodicity and also improves the size of the constant in the growth condition 230
toc < 2m. 231

N

Theorem. Let H(z) be an entire function such that H(z + 1) = H(z) and there is 2

w

2

¢ € Rsuch that ¢ < 27 and 233
H(z) = O(exp(c |[Im(z)])) 234
for z € C. Then H (z) is constant. 235
Proof. Replacing H(z) by H(z) — H(0) we may assume that H(k) = 0 for all 236
k € Z. Then H(z) is divisible by e?*'% — 1 in the sense that 237
H(z) = (' = 1)H\(2) 238
with H; entire. As H; is also periodic with period 1 we can express H;(z) = 239
h(e?™ %) with & analytic in the punctured plane C \ {0}. Expanding 4 in a Laurent 240
series we obtain 241
o
H@) =(=1) Y a,e™™. 202
n=—o0
The coefficients satisfy 243
a+1+yi H

a, = / # dz 244

atyi (627111 — 1)82mnz
foranya,y € R.Forn < 0 we let y — +o00 and the assumed estimate on |H(z)| 245
gives 246

a+1+yi H(Z)

a, = lim ——————dz=0. 247

y=>+00 Jopy (62mz — 1)62nznz

248

1Depanment of Mathematics, Lund University, Box 118, SE-221 00 Lund, Sweden,
arnem @maths.Ith.se
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Forn > 0 we let y — —o0 and obtain 249
i a+1+yi H(Z)
an = —111100 . ( 2miz _ |)e2ninz 0 250
Y a+yi e e
Hence H(z) = 0. O
Reference 251

1. G. E. Andrews, R. Askey, R. Roy, Special functions, Cambridge University Press, Cambridge, 252
1999. 253
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Complementary Bell Numbers: Arithmetical
Properties and Wilf’s Conjecture

Tewodros Amdeberhan, Valerio De Angelis, and Victor H. Moll

Abstract The 2-adic valuations of Bell and complementary Bell numbers are
determined. The complementary Bell numbers are known to be zero at n
and H. S. Wilf conjectured that this is the only case where vanishing occurs.
N. C. Alexander and J. An proved (independently) that there are at most two indices
where this happens. This paper presents yet an alternative proof of the latter.

Keywords Valuations ¢ Bell numbers ‘e Complementary Bell numbers e
Closed-form summation * Wilf’s conjecture

1 Introduction

The Stirling numbers of the second kind S(n, k), defined forn € Nand 0 <k <n,
count the number of ways to partition a set of n elements into exactly k nonempty
subsets (blocks). The Bell numbers

B(n) =Y _S(n.k)
k=0
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count all such partitions independent of size and the complementary Bell numbers
5 n
B(n) =) (=1)*S(n.k) )
k=0

takes the parity of the number of blocks into account. The exponential generating
functions are given by

n

| =

= exp(exp(x) — 1) and Z E(H)Z_}: = exp(l — exp(x)). 3)
n=0 ’

[
>,
n=0

!

N

In this paper we consider arithmetical properties of the Bell and complementary
Bell numbers. The results described here are part of a general program to describe
properties of p-adic valuations of classical sequences. The example of Stirling
numbers is described in [3], the ASM numbers that count the number of alternating
sign matrices appear in [15] and a not-so-classical sequence appearing in the
evaluation of a rational integral is described in [2,-10]. On the other hand, much
of our interest in the valuations of the complementary Bell numbers is motivated by

Wilf's conjecture : B(n) =0 only forn = 2.

The guiding strategy for us is this: if we manage to prove that v, (B (n)) is finite
for n > 2, the non-vanishing result will follow. The authors [4] have succeeded in
employing this method to prove that the sequence

n+ X,— .
xp= —"1 starting at x; = 1 4)
1-— nx,—

only vanishes at n = 3. The more natural question that x,, ¢ Z for n > 5 remains
open.

The following notation is adopted throughout this paper: for n € N and a prime
D, the p-adic-valuation of n, denoted by v,(n), is the largest power of p that
divides #. The value v,(0) = +o0 is consistent with the fact that any power of
p divides 0. As an example, the complementary Bell number B(14) = 110,176
factors as 2° - 11 - 313; therefore v,(B(14)) = 5 and v3(B(14)) = 0. Legendre [9]
established the formula

n—spy(n)

P 5)

vp(n!) =

where s, (n) is the sum of the digits of n in base p.
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The exponential generating function (3) and the series representation
~ > r’
Bn)=e) (-1)—. ©6)
=0

as well as elementary properties of the complementary Bell numbers are presented
in [16]. The numbers B(n) also appear in the literature as the Uppuluri-Carpenter
numbers. Subbarao and Verma [14] established the asymptotic growth of B(n),
showing that

limsup 2B _ | 7)
n—soo N logn

The non-vanishing of B(n) has been considered by M. Klazar [7, 8] in the
context of partitions and by M. R. Murty [11] in reference to p-adic irrationality.
Y. Yang [17] established the result [{n < x : B(n) = 0} = O(x?/?) and
De Wannemacker [13] proved that if n # 2, 2,944,838 (mod 3 - 2%°), then
B(n) Z# 0. The main result of [13] is that B(n) = 0'has at most two solutions. This
has been achieved by different techniques by N. C. Alexander [1] and Junkyu An [5].
Our interest in the non-vanishing questions comes from the theory of summation in
finite terms.

The methods developed by R. Gosper show that the finite sum

Xn:k! )
k=1

does not admit a closed-form expression as a hypergeometric function of n. The

identity
n—1 a n—1
Dokekl =3 (=D re@) + (=D Ba+ 1) ) k! ©)
k=1 (=1 k=0
where
{—1
r(@) =S@+1L.L+1)Y ((n+i)—il), (10)
i=0

shows that a positive verification of Wilf’s conjecture implies that the elementary
identity

D kkl=(n+1!-1 (1)
k=1
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is unique in this category. M. Petkovsek, H. S. Wilf and D. Zeilberger [12] is the
standard reference for issues involving closed-form summation. The details for (9)
are provided in [6].

Section 2 presents a family of polynomials that play a crucial role in the study
of the 2-adic valuations of Bell numbers given in Sect.3. The main arguments
presented here are based on the representation of the polynomials introduced in
Sect.2 in terms of rising and falling factorials. This is discussed in Sect.4. An
alternative proof of the analytic expressions for the valuations of regular Bell
numbers is presented in Sect. 5. This serves as a motivating example for the more
difficult case of the 2-adic valuations of complementary Bell numbers. Experimental
data on these valuations are presented in Sect. 6. The data suggests that only those
indices congruent to 2 modulo 3 need to be considered. The study of this case begins
in Sect. 7, where these valuations are determined for all but two classes modulo 24.
The two remaining classes require the introduction of an infinite matrix. This is done
in Sect. 8. The two remaining classes are analyzed in Sects. 9 and 10, respectively.
The final section presents the exponential generating functions of the two classes of
polynomials employed in this work, and some open problems.

2 An Auxiliary Family of Polynomials

The recurrence for the Stirling numbers of second kind
S(n+1,k)=Smn,k—1)+kS(n, k) (12)

is summed over 0 < k < n'+ 1 to produce

n+1 n
Y S+ 1.k) =Y (k+1)S(n.k) (13)
k=0 k=0

using the vanishing of S(n, k) for k < 0 or k > n. Iteration of this procedure leads
to the next result.

Lemma 1. The family of polynomials i ; (k), defined by

pj+1(k) =kp; k) + pjk + 1), (14)
po(k) =1, (15)
satisfy
n+j n
Bn+j)=)_Sm+jk)=Y njk)Sn.k), (16)
k=0 k=0

foralln, j > 0.
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Proof. The proof is by induction on j. The inductive step gives

(n+1D+j n+1
YO S+ D+ k) =) pujk)Sn+ 1.k). (17)
k=0 k=0
The recurrence (12) and (14) yield the result. ]

Note. The polynomials 1 ; (k) have positive integer coefficients and the first few
are given by

polk) =1

pilk) =k +1

pak) = k* + 2k +2

wa(k) = k* + 3k* + 6k + 5.
The degree of u; is j, so the family Z,, := {,uj : 0 < j < m} forms a basis for
the space of polynomials of degree at most m.

The special polynomial

pia(k) = k' + 12k 4+ 1326194 1100k° + 7425k8 + 41184k7  (18)
+187572k® + 694584k> + 2049300k* + 4652340k
+7654350k? + 8142840k + 4,213,597

plays a crucial role in the study of 2-adic valuation of Bell numbers discussed in
Sect. 3.

3 The 2-adic Valuation of Bell Numbers

In this section we determine the 2-adic valuation of the Bell numbers. The data
presented in Fig. | suggests examining this valuation according to the equivalence
classes modulo 12.

Theorem 1. The 2-adic valuation of the Bell numbers satisfy
w(BMm)) =0 ifn=0,1 (mod3). (19)
In the missing case, n = 2 (mod 3), the sequence v,(B(3n + 2)) is a periodic

Sfunction of period 4. The repeating values are {1, 2, 2, 1}. In particular, the 2-adic
valuation of the Bell numbers is completely determined modulo 12. In detail,
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Fig. 1 The 2-adic valuation 2k
of Bell numbers

10 20 30 40 50 60

0 ifj=0,13,4,672910 _ (mod 12);

w(B(12n+j) =131 ifj=2,11 (mod 12); (20)
2 ifj=58 (mod 12).
The proof of the theorem starts with a congruence for the Bell numbers. 97
Lemma 2. The Bell numbers satisfy 98
B(n +24) = B(n)  (mod ). 2n
Proof. The identity (16) gives 99
n+12 n
> S+ 12.k) =) pik)S(n. k). (22)
k=0 k=0

The polynomial 1, (k) given in (18) is now expressed in terms of the basis of rising 100
factorials 101

KM =kk + 1)k +2)---(k +m—1), m € N, with (k) = 1. (23)

A direct calculation shows that 102
12
k) =Y an (k)™ (24)
m=0

with ag = 421,359 = 5, a; = 3,633,280 = 0, a; = 1,563,508 = 4, and a3 = 103
414,920 = 0 (mod 8). Also, for m > 4, we have (k)" = 0 (mod 8). Thus 104

piak) =5+ 4k(k +1) =5 (mod 8). (25)
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O

20 40 60 80 100 120 140

Fig. 2 The 3-adic valuation of Bell numbers

Now (22) produces 105
n+12 n
D> S(n+12,k)=5) S(n.k) (mod8). (26)
k=0 k=0

that is, B(n 4+ 12) = 5B(n) (mod 8). Repeating this yields B(n + 24) = 5B(n +
12) = 25B(n) = B(n) (mod 8). O

The result of the theorem now follows from computing of the first 24 Bell 106
numbers modulo § to obtain the pattern asserted in the theorem. 107

Remark 1. The p-adic valuation of Bell numbers for primes p # 2 exhibit some 108

patterns. Figure 2 shows the case p = 3. 109
Experimental observations show that, if j # 2 (mod 3), then 110
v3(Bi2n+13j) = v3(Bi2s), forn > 0. (27)

In other words, up to a shift, the valuations v3(B12,+ ;) are independent of j. 111

4 A Representation in Two Bases 112

The set 113
Zn={p;jk):0<j <m} (28)

is a basis of the vector space of polynomials of degree at most m. This section 114
explores the representation of this basis in terms of the usual rising factorials, 115
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defined by 116
O =k(k + Dk +2)---(k+r—1) forr >0, (29)
) 2= 1,
and the falling factorials, given by 117
k) =ktk—1)(k—=2)---(k—r+1) forr >0, (30)
(k) :=1,
Definition 1. The coefficients of u, (r) with respect to these bases are denoted 118
J J
wik) = a;()"  and p;k) =Y d;r) k), 31)
r=0 r=0
These coefficients are stored in the vectors 119

aj:=[a;(0), a;(1),---] and dj:=[d;(0), d;(1), -] (32)

wherea;(r) =d;(r) =0forr > j. 120

Certain properties of (k), and (k)I'! required in the analysis of the 2-adic 121
valuations are stated below. 122
Lemma 3. The rising factorial symbol satisfies 123

(k=1 = ()" = ("
k(k)["] — (k)["“] _ r(k)["].

The corresponding relations for the falling factorials are 124

(k+1), = (k) +rk)r—
k) = B)esr + 1),

The next step is to transform the recurrence for 4 ; in (14) into recurrences for 125
the coefficients a; (r) and d; (7). 126

Proposition 1. The coefficients a; (r) in Definition I satisfy 127
ajr1(r)—(+Daj1(r+1)=a;j(r—1)—2ra;(r)+(+ 1)2aj(r+ 1), @33

with the assumptions thata;(r) = 0ifr <Oorr > j. 128
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Proof. This follows directly from the recurrence for ( ; and the properties described
in Lemma 3. O

Note. The recurrences for the coefficients a; can be written using the (infinite) 129

matrices 130
M = (mij)i jz0 andN = (n;j)i j=0 (34)
with 131
o ) 1 ifi=74+1
1 ifi = j; . o
. e 20 —1) ifi =
mij = y—@{+1) ifi=j—-1; and ny; =4 A
. I ifi =j —1;
0 otherwise; .
0 otherwise;
in the form 132
Maj+1 = Naj. (35)
The analogue of Proposition 1 for falling factorials is stated next. 133
Proposition 2. The coefficients d;(r) in (1) satisfy 134
djt1(r) =d;(r = 1) +(r+ Dd;(r) + (r + D)d; (r + 1), (36)
with the assumptions that d;(r) =0ifr <0orr > j. 135
Note. The recurrence for d; is now written using T = (#;;);, >0, where 136
i+1 ifi =j;
i ifi =j—1;
lij = e
ifi =j+1;
0 otherwise;
in the form 137
djs1 = Td,. (37)
S An Alternative Approach to Valuation of Bell Numbers 138

This section presents an alternative proof of the congruence (2) based on the 139
results of Sect.4. Recall that this congruence provides complete structure of the 140
2-adic valuation of the Bell numbers. The ideas introduced here provide a partial 141
description of the 2-adic valuations of complementary Bell numbers. 142
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The first step is to identify the Bell numbers as the first entry of the vectors a;

andd;.

Lemma 4. The Bell numbers are given by

B(j) = ;(0) = a;(0) = d; (0).

(38)

Proof. Let n = 0 in the identity (16) to obtain B(j) = wu;(0). The other two

expressions for the Bell numbers B(j) are obtained by letting k = 0 in (31).

|

The congruence for the Bell numbers now arises from the analysis of the relations

(35) and (37) modulo 8. The key statement is provided next.
Lemma 5. Ifk € Nandr > 4, then

(k)'=(k), =0 (mod 8).

Proof. Among any set of four consecutive integers there is one that is a multiple of

2 and a different one that is a multiple of 4.

The system (35) now reduces to

1-10 O aj_H(O) 01 0 O aj(O)
01 -2020 aj_H(l) _ 1-24 0 aj(l)
00 1 =3||a+12| (01 =49 |]|a;Q)
00 0 1 aj+1(3) 00 1 -6 aj(3)

Inverting the matrix on the left and taking entries modulo 8 leads to

4 4
35431 = X4a; ) (mod 8)

where 3;4) represents the first four entries of the coefficient vector a; and

1126
1026
0177
0012

Xy

Now observe that

4 _ 4 _ 2.4
al?, = X,a?, = x7a®  (mod 8)

(39)

O

(40)

(41)
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and this extends to

al), = X;a¥ (mod 8) (42)

forany s € N.
Lemma 6. The matrix X satisfies X** = I (mod 8).
Proof. Direct (symbolic) calculation. O

The Bell number B(j) is the first entry of the vector a;4) . Then considering the
first entry in the relation

a}jf% =X 343;4) (mod 8) (43)

gives the congruence B(j + 24) = B(j) (mod 8).

Note. The corresponding relation for the coefficient vector d; is simpler: the
system (37) reduces to

dj4+1(0) d(0)
djp1() | _ d;(1)
=T, x mod 8 44
4@ | = a4 @9
dj+1(3) d;j(3)
where
1100
1220
L=10133 “45)
0014

The matrix 7} also satisfies T424 = ] (mod 8) and the argument proceeds as before.

6 Some Experimental Data on v,(B (n))

This section discusses the 2-adic valuations of the complementary Bell numbers
B(n). The data is depicted in Fig. 3 in the range 3 < n < 1,000.

This discussion begins with some empirical data from the sequence v,(B(n)).
For 3 < n < 30, the list is

{0,0,1,0,0,1,0,0,2,0,0,50,0,1,0,0,1,0,0,2,0,0, 5,0, 0, 1, 0}.
(46)
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Fig. 3 The 2-adic valuation
of the complementary Bell 10l
numbers
8 |
6 |
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This suggests that v2(B(n)) = 0ifn # 2 (mod 3). The list of values of
V2(B(3n +2)) is

{1,1,2,5,1,1,2,5,1,1,2,7,1,1,2,6,1,.1,2,5,1,1,2,5, 1,1, 2,6, 1, 1}

and the patterns {1, 1, 2, *} suggests considering the sequence v2(B(n)) for n
modulo 12. The values n = 2 (mod 3) split into classes 2, 5, 8 and 11 modulo
12. The data suggests

v (B(12n + 5)) = L, va(B(12n + 8)) = 1, va(B(12n + 11)) = 2,
while the class n = 2-(mod 1)2 does not exhibit such a pattern.
The first step in the analysis of 2-adic valuations of B(n) is to present some

elementary congruences to establish that both B(3n) and B(3n + 1) are always odd
integers. The proof relies on the recurrence

n—I1
Bm=-Y (” - 1)E(k), forn > 1 and B(0) = 1. (47)

k=0 k
Proposition 3. The complementary Bell numbers B(n) satisfy
BGBn)=BBn+1)=1,and BBn+2)=0 (mod 2). (48)

Proof. Proceed by induction. The recurrence (47) yields

~ 3n—1 3n—1 ~
—BGn) =Y LB (49)

k=0

178

179



Editor's Proof

Complementary Bell Numbers: Arithmetical Properties and Wilf’s Conjecture 35
Fig. 4 The 2-adic valuation
of B(3n + 2) 10 +
8 L
6 L
4
2
I
Sb 160 15‘0 260 230 360
Splitting the sum as
n—1 n—1 n—1
~ 3n—1)\ =~ 3n—1Y\ ~ 3n—1\ ~
— B(3n) = B3k Bk +1 B3k +2
o= 2 (5 oo+ 2 (e i (o

and using the inductive hypothesis gives
. — (31 S 3n-1
— B(3n) = d 2). 50
(3n) Z( 3k )+Z(3k+1) (mod 2) 0)
k=0 k=0
The two sums appearing in the previous line add up to
S 3n—1
21— . 51
>(3s) o
k=0
The result now follows from the identity
n—1
3n—1 23n—1 —1)"
Z " = # (52)
prd 3k +2 3

Both sides satisfies the recurrence x,,+2 —7x,+1—8x, = 0 and have the same initial
conditions x; = 1 and x, = 11. O

Proposition 3 shows that
v2(B(3n)) = v2(B(3n + 1)) = 0, (53)

leaving the case v2(B (3n + 2)) for discussion. This is presented in Sect. 7. Figure 4
shows the data for this sequence and its erratic behavior can be seen from the graph.
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7 The 2-Adic Valuation of B (3n + 2)

The results from the previous section show that B(3n) and B(3n + 1) are odd
integers and l§(3n + 2) is an even integer. This section explores the value of the
sequence v, (B(3n +2)). The family of polynomials {1 j(k) : j = 0} play the same
role as (k) did for the regular Bell numbers B(n).

Lemma 7. The family of polynomials A ; (k), defined by

Ajpi(k) =kAjk) —Aj(k+ 1), 54)
Ao(k) =1,
satisfy
_ n+j n
Bn+j) =) (DSt + j.k) =D (DA (S k), (59
k=0 k=0
foralln, j = 0.
Proof. Use the recurrence (54) and proceed as in the proof of Lemma 1. O

Corollary 1. The evaluation B(j) = A;(0) is valid for j € N.

The recursions for the falling factorials, given in Proposition 3, yields an
evaluation of B(n) in terms of the powers of an infinite matrix.

Note. The (7, j)-entry of a matrix A is denoted by A(Z, j). This notation is used to
prevent confusion with the presence of a variety of subindices.

Theorem 2. Let P .= P(r,s), r,s > 0 be the infinite matrix defined by

P(r+1,r)y=1,P(r,r)y=r—1,P(r,r+1)=—r—1, P(r,s) =0for|r—s|>1

(56)
or.
-1-10 0 0 O -
1 0-20 0 0 -
01 1-30 0-
p=]10 01 2 —-40- (57)
0001 3 -5
00 001 4.
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Then
B(n) = P"(0,0). (58)
Proof. The first step is to express the polynomials A,(x) in terms of the falling
factorial:
n
An(k) =" en(r) (k). (59)
r=0

The recurrence relation in Lemma 7 shows that ¢, (r) are integers with ¢y(0) =1,
co(r) = 0forr > 0 and ¢,(r) = 0 if r > n. Moreover, this recurrence may be
expressed as

Cnt1 = Pen, (60)

with P defined in (57) and ¢, is the vector (¢, (r) : r > 0).
Note that powers of P can be computed with a finite number of operations: each
row or column has only finitely many non-zero entries. Iterating (60) gives

cy(r)y = P"(r,0),r >0. (61)

The result now follows from Corollary 1 and ¢, (0) = A4,,(0). O

The next lemma contains a precise description of the fact that the falling factorial
(k) is divisible by a large power of 2. This is a fundamental tool in the analysis of
the 2-adic valuation of B (n).

Lemma 8. For eachm > 0.and k > 1, the congruence
k), =0  (mod 2*"7Y) holds forall r > 2. (62)

Proof. Since (k), divides (k); for j > r, it may be assumed that r = 2”". Now
observe that(k), /r! = (/:), thus v2((k),) = va(r!). Forr = 2™, Legendre’s formula
(5) givesthe value vo(r!) = 2" —5,(2") = 2" — 1. O

Now we exploit the previous lemma to derive congruences for E(n) modulo a
large power of 2. The first step is to show a result analogous to Theorem 2, with
P replaced by a 2" x 2" matrix, provided the computations are conducted modulo
22"=1 Proposition 4 is not necessary for the results that follow it, but it is of interest
because it allows us to express E(n) as the top left entry of the power of a finite
matrix (with size depending on n).

Proposition 4. Let P[n] be the n x n matrix defined by

Pln](r,s) = P(r.s), 0=<rs=n-—1. (63)
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Foreachn > 1landi > 1,

(P[n))’ (r.s) = P'(r,s) forO<r,s<n—1, r+s+i<2n—1.

Proof. Fix n > 1 and proceed by induction on i. The statement is clearly true for
i = 1. Assume thatr 4+ s 4 i 4+ 1 < 2n — 1, then the claim follows by computing

n—1
(Pl ™ (r.5) = Y (P[] (r.0) P[a](2, 5). (64)
1=0
O
Corollary 2. Fori < 2n — 1, the complementary Bell number is given by
B(i) = (P[n])". (65)

For m > 1 fixed, denote P[2™] by P,,. This is a matrix of size 2" x 2", indexed
by {0,1,...,2" — 1}. Lemma 8 gives

2m—1
(k) = Z en(r)(k), (mod 2" 7Y, n>1k=>0, (66)

r=0

and then the same argument as before gives
en(r) = Ph(r,0) 7 (mod 2>"71), for0<r<2"—1,n>1.  (67)

The next proposition summarizes the discussion.

Proposition 5. Forn € N,

B(n) = P"(0,0)  (mod 2*"71). (68)

Corollary 3. The complementary Bell numbers satisfy

21
B+ j)= ) PJO.r)Py(r.0)  (mod2”").n>1j=0. (69
r=0
Proof. This is simply the identity Py '/ = P x P, u]

Proposition 6. The following table gives the values of 1;’(24n + j) modulo 8 for
0<j<23:
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B(24n + j) mod 8 j |B@24n + j) mod 8
12
13
14
15
16
17
18
19
20
21
22
23

O 00 1 O N bW = O~

AN WD I N==O -
A= QDWW o O W W

—_
— O

Proof. Choose m = 2, and check that P* = I (mod 8).Corollary 3 gives

3
BQ4n+ j) =) P/ (0.r)P}*(r.0)= P{(0.0) = B(j)  (mod8). (70)
r=0

Therefore the value of l;’( J) modulo.8.is a periodic function with period 24.
The result follows by computing the values B(j) for0 < j < 23. O
Corollary 4. Assume j # 2, 14 (mod 24). Then

v(B(j)) =12 if j = 11,23 (mod 24); (71)

0 otherwise.

Corollary 5. Assume j # 2, 14 (mod 24). Then B(j) # 0.

The ‘remaining sections discuss the more difficult cases n = 2 and n = 14
(mod 24).

8 The Top-Left Block of Powers of the Matrix P,

The analysis of the 2-adic valuation of B(n) employs the sequence of matrices
appearing in the top-left block of powers of the matrix P,,. This section describes
properties of this sequence.

A convention on their block structure is presented next:
letn € Nandi, j integers with 1 < i, j < n — 1. For an n x n matrix Q and an
i x j matrix A, the block structure is
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A B
Q=(CD). (72)

Since the size of the top left corner determines the rest, the notation

iXj

——
o=|"4 B

cC D

will be used to specify the size of all blocks when necessary. The default convention
is that whenever a 2™ x 2™ matrix is written in block form (é g), it will be

understood that the blocks are of size 2! x 2~
_ The next lemma is the essential part of the argument for the 2-adic analysis of
B(n). The proof is a simple check with the definitions.

Definition 2. For each m > 0, define 2" x 2™ matrices B, D,,, V,,, inductively as
follows: By = —1,Do=1,Vy =1,

00 D,, B oV,
Bm+1=(B 0),Dm+1=( OmDm),Vm+1=(O (;"),

where all blocks are 2™ x 2™ matrices.

Recall the P, is the 2 x 2" matrix obtained from the top left corner of the
infinite matrix P defined in (57).

Lemma 9. The matrices Py, satisfy the recurrence

Py 0 w0 By
P’”“_(Vm Pm)+2 (ODm)'

The first point in the analysis is to show that, for every power of P,,, the top half
of the last column is zero modulo a large power of 2.

Lemma 10. Forallm > 1,n > 1, and 0 <i < 2" — 1, the inequality
vy (P,Z(i,Z’”—l)) >2" —m—1—v(i!). (73)

holds.

Proof. The right-hand side vanishes form = 1. Fixm > 2.Ifn = 1, the last column
of P, has 2" — 2 zeros at the beginning and its last two entries are —(2” — 1) and
2™ — 2. Therefore, vy (P, (i,2" — 1)) = oo for0 <i <2™ — 3, and

V2 (P (2" =2,2" = 1)) = na(—=(2" = 1)) = 0,

v (P (2" —=1,2" = 1)) = v,(2" =2) = 1.
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Legendre’s formula (5) shows that the right-hand side of (73) is 2" —m—1—i +s2(i), 271

so it vanishes fori = 2™ —2 andi = 2" — 1. This proves the case forn = 1.

The inductive step is presented next:

Pptl2m —1)

2m—1
> Puli HPLG.2" = 1)
j=0

Py,(i,i =P, —1,2"—=1)+ P,(i,i)P,({i,2" — 1)
+Py(i,i + 1P, +1,2"—1)

Pii—1.2"—1) 4+ (i —DPIi.2" —1)— (i + )P +1,2"—1).

Observe that the three terms on the last line are elements of the last column of the
matrix P). The inductive argument provides a lower bound on the power of 2 that

divides these integers. Therefore, there are integers ¢, ¢»; ¢3 such that

P)Z +1 (l, om _ 1) — zszmfl (27v2((i71)!)q1 + 21)2(1' — l)—vz(i!)q2 _ zvz(i + 1) —w(i+ l)!)éh) .

It follows that

v (PpE,2" = 1)) =
2" —m — 1 +min{—v(({ =D, w20 — 1) —v2(i!), v2(@ + 1) —va((@ + 1)H}.

(74)

Now use v (i + 1) —vo((i + 1)) = —v2(i!) and —v((i — 1)) > —v, (i), to verify

that the minimum onthe right is —v,(i!). This completes the argument.

O

The next stepis to describe the relation of the matrix P, (of size 2" x2")to P+
(of size 21 x 2T 1), The additional block matrices appearing in this transition are

defined recursively:

Fix m > 0, define 2" x 2™ matrices Vi, .», Amans Bmns Cmns Dm.n inductively by

Vi1
By a
Am.
Dy,

Cm,l

=Vu, Vst = Viun P + P Vi p
= By, Bun+1 = P By + By Pn
=0, Amnt1 = AmnPm + BuaVn

=Dp, Dpps1 = ViunBu + P Dy + Dy yy Py

=0, Cm,n+l = Cm,n Pm + Dm,n Vm

The relation between P,, and P,y is stated next.
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Lemma 11. For each n > 1, the congruence 286
P* 0 A B

pr=(," pA I d 2™ 75

m+1 ( Vm’n PIZ ) + (Cm’n Dm'n ) (mo ) ( )
holds. 287
Proof. The result is clear for n = 1. Computing P = P! Py, it follows 28
that 289

Pn+l — Pr’:, + 2mAm,n 2mBm,n P,Z ZmBm
ML A\ Vi +2"Crp P2+ 2" Dy ) \ Vi P+ 27D,
Pn+l 0
— m
N (Vm,n Py + P!V, P,;;H)

n
+2m(Am,an+Bm,an PmBm+Bm,an )

d 2%™).
Corn Pos + DusVin Vi B + P Dyy + Dy Py (mod 2°)

The recurrence for the matrices A, B, C, D and V are designed to complete the

inductive step. O
Corollary 6.

Vinon = Ve P+ P2Vin  (mod 2°™) (76)
Proof. This follows from Lemma 11 by computing P,ﬁ’fH =P P O

The next lemma shows some operational rules for the matrices A, B introduced 290
above. The symbol * indicates an unspecified integer or matrix. 291

Lemma 12. (a) Forany?2™ x 2™ matrix M (i, j) and arbitrary i € N, we have 292

(MB,)(i,0) = —M(3{,2" —1).

(b) Form > 2 andn > 1, both By, , and Ay, , have the form 293
(0 0) (mod 22m—l_1)
* %

Proof. Part (a) follows directly from the definition of B,,. Part (b) is established by 294
induction. The statement holds for B,, ;. Now observe that 295

(P!B,)(i,0) = —P"(i,2" —1)=0  (mod2*" '~1) for0<i <2" ' —1,
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by part (a) and Lemma 10. The induction hypothesis implies that

By = (0 0) (mod 2271,
k ok

and this leads to

Bunst = P By + Bun P = (0 O) (mod 22"~ 1),
' k ok

A similar argument shows that
Am~"+1 = ApnPpu + Bm,an = (0 :‘)) (mod sz_l_l)- O
, , \

The next results describe the powers of P, considered modulo 2%, This leads to
explicit formula for the 2-adic valuation of B(n).

Notation: d,, = 3 x 2™,

Proposition 7. Forallm > 1,
Pin =] (mod 4), and Vya, =0 (mod 2).

Proof. For m = 1, a direct calculation shows that Pf’ = I and so Pld '= Pl6 =1.

Also,
11
V1,25V1P1+P1V15(01) (mod 2),
_ », (01
Via=ViaPi+ PV = 1 (mod 2),

and this produces

00

Vl,dl = Vl,() = I/1,31')13 + Pl?)l/lq?’ = (0 O

) (mod 2).

Assume now P, = I (mod 4) and V}, 4, = 0 (mod 2). For simplicity, drop the
subscripts in the matrices. Lemma 11 gives

dyn _ (PO _ (10
Pm+l:(VP)=(VI) (m0d4)

296

297

298

299
300

301

302

304

305

306

307

308
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and 313
dn dw > _ (10 10y (10\_ (I0
P = (Pilh) :(f’l)(VI)::(ZVI)::(OI) (mod 4). a1
Using the notation 315
V%H¢n=(§d;) 316
it follows that 317
— dﬂ’l dﬂl
Vint1.dpsr = Vn+r12dn = Vit rdy Pyt + Pyii Vit 1.d,,

Gw)(ve)+ (v2) o)
(w) G0 7) (2 w)
o) (o)

E( X +YV 2Y )E(oo) (tmod 2).

O

2Z+ WV +VX VY +2W 00

The next proposition provides the structure of Pn”f”’ modulo 2”13, for m > 4. 318

Introduce the notation 319
1260
1
0143
and define recursively for m > 4 the 4 x (2" — 4) matrices R,, by 321

110000000000
100000000000

R - ’
4 011100000000
001000000000
Rus1 = (R, 0).

Notation: ¢(*) indicates a matrix or number that is a multiple of g. 322
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Proposition 8. Let m > 4. Then 323
4x4
—_——
2mQ 2mTIR 324
pin=14 (29 " (mod 2"*).
4(x)  4(%)

Proof. The claim holds for m = 4 by simple task: evaluate P,® modulo 2’. Keep in 325
mind that P, is a 16 x 16 matrix. 326

Assume the claim holds for m. Observe that 2m > m+4 for m > 4, therefore the 327
congruence modulo 22" of Lemma 11 can be replaced with a congruence modulo 328

2mt4 Write V = ()Z( ;/) to obtain 329
PO A B
Pdm = 2m
= (0p)e(e0)
[+2mQ 2R 0 0
4(x) I +4(x)  2"(x) 2"(%) m+4
= d 2 .
X 4 27(x) Y 4 27(x) T +27(%) 2" (%) (mo )
Z +2M(x) W 42" (%) « 4(x) T +4(%)
Squaring this matrix gives 330
[ 42m g  omi3R 0 0
dn 4(x) I'+4(x)  4(%) 4(x) +4
Pt = d 2",
m] 2X 4 4(k) 2 +4(x) [ +4(x)  4(x) (mod 275.

27 4(x) 2W 4+ 4(x)  4(x) T +4(x)

The previous proposition shows that V' = ()Z( I/I:/) =0 (mod 2), therefore 332
dp — 2m+lQ 2m+3Rm+1 m—+4
Pmﬁl =]+ ( 4(x) 4(%) (mod 2"7™7). 333
This completes the induction argument. O

The next corollary is employed in the next section to establish the 2-adic 334
valuation of complementary Bell numbers. 335



Editor's Proof

46 T. Amdeberhan et al.
Corollary 7. Foreachn > 1, 336
4x4
—_——
m m+2 337
Pldn =] 4 n 2"Q 2" Ry (mod 2m+3).
4(x)  4(x)

Proof. The result follows immediately from Proposition 8 and the binomial

theorem. O
9 The Case n =2 (mod 24) 338
The 2-adic valuations for the complementary Bell numbers B(n) are given in 339
Corollary 4 for j # 2, 14 (mod 24). This section determines the case j = 2. 340
The main result is: 341
Theorem 3. Forn € N, 342
vy (§(24n + 2)) = 54 vy(n). 343
Proof. Write n = 2"q with g odd. Corollary 3 and Proposition 8 give 344

2m+3_1

Ban+2) = BG-2"Pq+2)= Y PIAE0.r)P24(.0)
r=0

dm dm
= P15 (0.0)P2,5(0.0) + P4 (0.1 P2, ,(1,0)
d}’ll
+ P13 (0,2)Ph 4(2,0)
) A (1 + 2m+3q)(0) _ q2m+4 + 6q2m+3

= q2m+5 = 2m+5 (mod 2m+6)'

The expression for the valuation v, (B(24n + 2)) follows immediately. O

The tree shown in Fig.5 summarizes the information derived so far on the 345
2-adic valuation of B(n). The top three edges of the tree correspond to the 346
residue class of n (mod 3). The number by the side of the edge (if present) 347
gives the (constant) 2-adic valuation of B(n) for that residue class. For example s4s
v2(B(3n + 1)) = 0. If there is no number next to the edge, the 2-adic valuation is 349
not constant for that residue class, so n needs to be split further. The split at each 350
stage is conducted by replacing the index n of the sequence by 2n and 2n + 1. 351
For example, the sequence v2(B(12n + 2)) is not constant so it generates the two 352
new sequences v,(B(24n + 2)) and v2(B(24n + 14)). Constant sequences include 3s3
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Fig. 5 The 2-adic valuation of B(24n+ 2)

mod 3

mod3-2

mod3-2°

mod3-2°

mod3-2*

mod3-2’

mod3-2°

mod3-2’

mod3-2°

47

v2(B(12n + 8)) = v2(B(12n +5)) = 1 and v,(B(12n + 11)) = 2. The main
theorem of this section shows that the infinite branch on the left, coming from the
splitting of 24n 4 2, has a well-determined structure. The other infinite branch,
corresponding to 24n 4 14, does not exhibit such a regular pattern. This is the topic

of the next section.

10  The Case n = 14 (mod 24)

This section discusses the last missing case in the 2-adic valuations of B(n). The

main result of this section is:

Theorem 4. There is at most one integer n > 2 such that B(n) = 0.

Outline of the proof. The proof consists of a sequence of steps.

354
355
356
357
358

359

360
361

362
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Step 1.  Define two sequences {x,,, ¥n } recursively via

Vm if vy (B (xp)) > m + 5;
Ym+1 =
Ym + 27 if VZ(g(xm)) <m+5;

Xm+1 = 24ym+l + 14.

Step2. Let y, = Z sm,,-Z" and let s; = lim s,; and define s =
Pt m—00
(S()s S17s27”')'
Step3. Forn eNletn = Z by (n)2* be its binary expansion. Let
k

first index k such that by (n) # si;

o) otherwise.

w(n) = (77)

Then w(n) < oo unless s has ony finitely many ones and s is the binary expansion
of n. If such n exists, it is called~excepti0nal.
Step 4. The 2-adic valuation of B(24n + 14) is given by

12(BQ24n + 14)) = w(n) + 5. (78)
In particular B(n) = 0 only if # is exceptional. This concludes the proof of the

theorem.

Proof of Theorem 4. The r-th entry of the top row of P} needs to be expressed as
a linear combination of B(j + i) (mod 22"~'), 0 < i < r. This is the content of
the next lemma. O

Lemma 13. Define b, (i) recursively by
bo(0) = 1,
by+1() = b,(i = 1) + (1 —=r)by (i) +rby—1(i), 0<i <r
b.(i) =0 fori <O0ori >r.
Then foreachm > 1, j > 1, and 0 <r < 2™ — 1, we have

PJ(0.r) =) b ())B(j +i) (mod 2.
i=0

363

364

365

366

367
368
369

370
371

372

373

374
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Proof. The proof is by induction on r. If r = 0, the statement is Proposition 5.
Assuming the statement for r, it follows that

PItN0,r) = Zb,(i)é(j +14i)  (mod2*"7h
i=0

and also

Pt 0.r) = PI(0.r — 1) Pyy(r — L,r) + P (0.7) Pu(r.7)
+ PJO.r + )P, (r +1,r)
= —rPJ(0,r — 1) + (r — )PJ(0,r) + PJ(0,r=1).

Comparing the two expressions and using induction, P,,’; (0,74 1) is expressed as a
linear combination of B(j + i), 0 < i < r, with coefficients as in the right side of
the equation defining b, 41 (7). O

Extensive calculations suggest that vz(é (24n +14)) is always at least 5, and it
is rather irregular. After examining the experimental data, we were led to define the
following sequences.

Define x,,, y» inductively by:

Yo = 0, xo= 24y0 + 14,
and if x,,, y,, have been defined, set

Vi if vy (l?(xm)) >m+5
2"+ yurif vy (B(xm)) <m+5°

Ym+1 = Xmt1 = 24ypm41 + 14.

This is the statement of Step 1.
The next table gives the first few values of y,, and x,,.

m|0 12 3 4 5 6 7 8 9 10
ym|O 1 1 5 13 13 13 77 77 333 845
xm|14 38 38 134 326 326 326 1,862 1,862 8,006 20,294

The next lemma provides a lower bound for the 2-adic valuation of the
subsequence of complementary Bell numbers indexed by x,.

Lemma 14. Form € N, v,(B(x,,)) > m + 5.

375
376

378

379
380
381
382

383

384

385

386
387

388

389
390

391
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Proof. The proof employs the values of b, (i) for 0 < r < 2. These are given in
Lemma 13 for r = 0, 1, 2. It turns out that b;(0) = b;(1) = by(0) = by(1) =
b>(2) = 1. (In case one wonders here if all non-zero terms of b, (i) are 1, this is not
true for r > 3).

Direct calculation shows that v5(B(xg)) = v2(B(14)) = 5, and v,(B(x))) =
v2(B(38)) = 7. Therefore the statement holds for m = 0, 1. Assume the result for
m > 1. Therefore vz(é (xp)) =m+5.1f vz(é (X)) > m + 5, then by definition
Xm+1 = Xm, and it follows that vz(é (Xm+1)) = m + 6. On the other hand, if
V(B (xp)) = m + 5, write B(x,,) = 2" %3¢, with ¢ is odd. Then yy41 = 2" + ¥,
and x,+1 = 242" +y,,) +14 = 3-2"T3 4 x,,. Corollary 3 (withn = 3.2"+3, j =
Xm, and m replaced by m 4+ 3) and Proposition 8 (with m replaced by m 4-3), produce

2m+3 1
B(xws)) = B3-2"P 4 x)= > P (0. r)Pm’ff(r,O) (mod
r=0

=(1+ 2m+3)PXm 3(0 0)+6- 2m+3me 3(0 1) +3- 2m+3PXm 3(0 2)

m—+3
22

_1)

om+3_q
+ 3 PP 0)  (mod 277F6),

Proposition 8 shows that the first term in the last sum is divisible by 2”5 and the
second term is divisible by 4. Then, Lemma 13 yields

B (ong) = (142" B (x) +3-2" (B (x) + B (x + 1))
+3 ’ 2m+3 (l§ (xM) + é (xm + 1) + B (Xm + 2)) (mod 2111—{-6).

Since x,, + 1 = 15 and x,, + 2 = 16 (mod 24), Proposition 6 shows that
B(xn+1)=B(x,+2)=5 (mod 8). So we find

B (xpa1) = (L4 2732715 3. 2mF4 (27F5g + 5 + 8(x))
+ 3.2 (2"Fg + 5+ 8(x) + 5 + 8(x))
=2"t5g 4 15. 2" 4 15.2m%3 4 15. 0713
=2"Pg +15-2" = (g + 152" =0 (mod 2"*°).

This completes the inductive step. O

Lemma 15. The binary expansion of y,, has the form
m
Ym =) Smi2 (79)

and s; = lim s, ; exists.
m—00
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Proof. By construction y,, < 2™ — 1, showing that the binary expansion of y,, ends
at 2"~!. Moreover, the binary expansion of y,,+| is the same as that of y,, with
possibly and extra leading 1. This confirms the existence of the limit s;. O

Note. Step 2 concludes by defining s = (s9,s1,...)=(1,0,1,1,0,0,1,0,1,1,...).

Theorem 5. Let n be a positive integer with binary expansionn =y, by 2%, and
let w(n) be the first index for which by # sy. If no such index exists, let w(n) = oo.
Then

v2(B(24n + 14)) = w(n) + 5.

Note. Asdiscussed in Step 3, there is at most one index n > 2 for which w(n) = oco.
This happens when s, defined above, has finitely many ones. In this situation, s is
the binary expansion of this exceptional index. The conjecture of Wilf states that
this situation does not happen.

Proof. The notation m = w(n) is employed in the proof.If m = oo, then B(24n +
14) = 0 and the formula holds. Suppose now that m # oco. Then there is p € N
such that 24n + 14 = 3.2"F3p 4 x,,.

Write B(x,,) = 2"+ g, with ¢ odd and i > 0. Then, as in the previous proof
(and also using Lemma 7), it follows that

B(24n +14) = B (3-2""p + x,)
=(1+ 2m+3p)2m+5+iq +3p- om+4 (2m+5+iq +54 8(*))
+3p- 273 (2P g + 5+ 8(x) + 5+ 8(x))
= 2G4 5p 2 L 15p - 2m S p 15p 23
=2"ttig 1 15p . 2" = 2" P52l +15p)  (mod 2™9).

Ifi = 0, then s,, = 1, and p must be even (because this is where n and s disagree).
Thus the quantity in parentheses on the last line is odd, and v,(B(24n + 14)) =
m + 5.1f i > 0, then 5, = 0, and p must be odd and, as in the previous case, the
quantity-in parentheses is odd. The result follows from here. O

Note. The tree shown in Fig. 6 updates Fig. 5 by including the 2-adic valuation of
B(24n + 14). It is a curious fact that v,(B(n)) takes on all non-negative values
except 3 and 4.

Final comment. It remains to decide if the exceptional case exists. If it does
not, then B(n) # 0 for n > 2, Wilf’s conjecture is true and the sequence
v,(B(24n + 14)) is unbounded. If this exceptional index exists, then it is unique.
Observe that the exceptional case exists if and only if the sequence x,, is eventually
constant.
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n
9%
© ® 0, mod 3
@) 3) mod3-2
1 1 2

Q ® & O mod3-2°

Q) @ mod3-2°
5 5
@ @ @ &3 mod3-2*
6 6
@ @ @ @ mod3-2°
7 7
@) @ 69 (39 mod3-2°
8 8
@ 66) 3 (20 mod3-2’
9 9
@ @20 @D mod3-2
K 10

@O T mod3?
11
@ @ mod3.2"
12
BD@D  mods2!
13

G E0D mod3.2"
14
QoD mod32”
15

GIDWSTD  mod3-2"

Fig. 6 The 2-adic valuation of 5(2411 + 14)
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11 Two Classes of Polynomials 434

Two families of polynomials have been considered in Lemmas 1 and 7: po(x) = 435

1,A0(x) =1, and 436
Mj+1(x):xﬂj(X)+Mj(x+l); forn > 0; (80)
/\j-l—l(-x) :x/\j(x)—/\j(x—i—l); forn > 0. 81)
The corresponding exponential generating functions are provided below. 437
Lemma 16. The polynomials jv; and A ; have generating functions given by 438
oz . -y .
Z o (X) — exz—l-l—ev and Z _AJ ()C) — exz-l—l—e ) (82)
— j! — j!
j=0 j=0

7 .
Proof. Let F(x,z) = ZZ,—',uj (x) and G(x,z) = ¥ !*¢, Multiplying the 430

j=0
polynomial recurrence through by z/ /! yields 440
Z z 7"
Wj+1(X) = = xp )=+ (x + 1= 441
J: J: J:
Now sum over all non-negative integers j to find 442
0
a—ZF(x,z) =xF(x,z) + F(x + 1,2). (83)
Since G(x + 1,z) = e*G(x, z), it follows 443
d
a—ZG(x,z) =G(x,2)(x +€%) = xG(x,2) + G(x + 1,2). (84)

On the other hand, F(x,0) = uo(x) = 1 = G(x,0). Therefore, F(x,z) = G(x,2).
The same argument verifies the second assertion of the lemma. The proof is

complete. O
Corollary 8. The polynomials j1; and A ; satisfy 444
1j(0) = B(j) and 1;(0) = B(j). (85)
Corollary 9. There are double-indexed exponential generating functions for a4s
pj(n), Aj(n): 446
A 2y _ L~ l+(+De A Zy" _ —l4(—Dé
ZHI(H)]'I’Z' =e s ZA](H)]'H' =e€ . 447

Jjn=0 Jjn=0
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Proof. Direct computation shows 448
ijn nz—l+-e* yn —1+e* (yez)n
Z“f(n)jlnl —Ze T Z n! (86)
T In! - ! - !
with a similar argument for A ;. O

Corollary 10. The polynomials 1;(x),A;(x) are binomial convolutions of Bell 49

numbers, 450
wi(x) = Z (j)B(r)xj_’, Aj(x) = Z (’)é(r)xf—f. 451
r r
r r
Proof. This follows directly from 452
Zj _ =1 xz _ B(k Zk n 4 ]7
Zuj(x)ﬁ—e e =) Bl x Yo" (87)
j=0 k>0 nz0
and a similar argument for A ;. o

Corollary 11. The family of polynomials Xj(x) have a missing strip of coeffi- 453

cients, i.e. 454
[xj_z])kj (x) =0. 455

Proof. Follows from Corollary 10 and B(2) = 0. O
Define the functions ) (x) inductively, as follows: 456

e(x) =eV(x)=1-¢"

e* D (x) = e(e®(x)).

These are called super-exponentials. For example, 457
ePx)=1—-¢" and e®x)=1- el 458
Introduce the super-complementary Bell numbers, B%)(n), according to 459
~ x"
ZB(k)(n)—' =1—e%D(x). (88)
= n!

The usual complementary Bell numbers B (n) become BM (n) due to the relation 460

> é(n));—’: =™ =1-eP(x). (89)
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The next conjecture is a natural extension of Wilf’s original question. 461

Conjecture 1. Letk € Nbe odd. Then B¥)(n) = Oif and onlyif n = 2. Fork € N 4e2
even and k # 2, it is conjectured that B®(n) # 0. The case k = 2 is peculiar: the 463
corresponding conjecture is that B® (n) = 0 if and only if n = 3. 464

Combinatorial meanings: Bl(l)(n) = number of set partitions of {1,...,n} with 465
an even number of parts, minus the number of such partitions with an odd number 466
of parts; Bl(z) (n) = number of set partitions of {1,...,n} with an even number 467
of parts, minus the number of such partitions with an odd number of parts, and 4es
then repeating this process for each block. Similar number of chain reactions yield 4eo
B fk) (n). For instance, 470

BO(n) =) (=1)/S(n, ) B(). (90)

=0

Illustrative example. Take n = 3, and partition the'set {1,2,3}. For k = 1: 471
{1,2,3}; fork = 2: {1,{2,3}}, {2,{1,3}}, {3,{1,2}}; for k.= 3: {{1},{2},{3}}.In 472
the next step, partition blocks as follows. When k= 1: {1, 2, 3} is its own partition 473
as a l-element set; when k = 2, partition each of {1, {2, 3}}, {2, {1, 3}}, {3, {1,2}} 474
as 2-element sets; when k = 3, partition {{1},{2},{3}} as a 3-element set. The 475

N
hai

N
ki

resulting collection looks like this: 476
{1.2.3},
{112, 33},
g, 12,35}
{2,{1.3}},
{12} {1,345}
{3.41.2}},

{33 {1,215}
{1} {25435}
{1} 423 333,
{H2) {13 333,
{35, {15 {23,
L {23 30
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Partitions with Early Conditions

George E. Andrews™

In honor of my friend, Herb Wilf, on the occasion of his 80th
birthday.

Abstract In an earlier paper, partitions in which the smaller parts were required to
appear at least k-times were considered. Some of those results were tied up with
Rogers-Ramanujan type identities and mock theta functions. By considering more
general conditions on initial parts we are led to natural explanations of many more
identities contained in Slater’s compendium of 130 Rogers-Ramanujan identities.

1 Introduction

In 1886, J. J. Sylvester [17] posed a couple of problems in the Educational Times
that are precursors to the study undertaken here. We reproduce the problems in their
AQ1 entirety:

Definition. If, in any arrangement of integers, each of the numbers 1,2, 3, ... up to any odd
number (unity inclusive), say 2i — 1, occurs once or any odd number of times, but the even
number following, say 2i, does not occur any odd number of times, the arrangement is said
to be flushed; if such kind of sequence does not occur, it is said to be unflushed.

1. Required to prove, that if any number be partitioned in every possible way, the number
of unflushed partitions containing an odd number of parts is equal to the number of
unflushed partitions containing an even number of parts.

*Partially supported by National Science Foundation Grant DMS-0801184

G.E. Andrews (X))
Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA
e-mail: andrews @math.psu.edu

LS. Kotsireas and E.V. Zima (eds.), Advances in Combinatorics, 57
DOI 10.1007/978-3-642-30979-3_3, © Springer-Verlag Berlin Heidelberg 2013

> w

© o N o O


mailto:andrews@math.psu.edu

Editor's Proof

58

G.E. Andrews

Ex.gr.: The total partitions of 7 are
7,6,1;52;5,1,1;4,3;4,2,1;4,1,1,1;3,3
1;2,2,1,1,1;2,1,1, 1,1, 1; 1, 1,1, 1, 1, 1, 1.
Of these, 6, 1;4,1,1,1;3,3,1;2,2, 1,1, 1; 1, 1, 1, 1, 1, 1, 1 alone are flushed. Of
the remaining unflushed partitions, five contain an odd number of parts, and five an even
number.

Again, the total partitions of 6 are
6;5,1;4,2;4,1,1;3,3;3,2,1;2,2,2;3,1,1,1;2,2,1, 1;2, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1;
of which 5, 1; 3, 2, 1; 3, 1, 1, 1 alone are flushed. Of the remainder, four contain an odd
and four an even number of parts.

N.B.—This transcendental theorem compares singularly with the well-known alge-
braical one, that the total number of the permuted partitions of a number with an odd
number of parts is equal to the same of the same with an even number.

,153,2,2:3,2,1,1:2,2,2, 1,3, 1, 1, 1,

s Ly

. Required to prove that the same proposition holds when any odd number is partitioned

without repetitions in every possible way.

Sylvester did not publish solutions to these problems. In 1970, solutions to both
problems were published [1] and the generating function for flushed partitions

(corrected) was revealed as

[e.0]

an(Sn—l)/Z(l _ qn)

n=1

>

(¢:9) 0

where

The solutions of Sylvester’s problems involved generating functions. It is com-
pletely unknown whether this was Sylvester’s approach and how he came upon

(A;q)n = (L= A)(1 = Ag) -+ (1 = Ag" ™).

flushed partitions in the first place.

Sylvester’s flushed partitions suggest a more extensive study of partitions subject
to variations on the following three constraints which we shall call the Sylvester

constraints:

1.

2.

Some of the smaller parts are required to appear a specified number of times
(e:g..in the case of flushed partitions, an odd number of times).
Immediately following the parts considered in (1) there may be one or two
special parts (e.g. in the case of flushed partitions, the first integer appearing
an even number of times is even).
. The larger parts are constrained differently if at all (e.g. in the case of flushed
partitions there are no constraints).

In the subsequent decades of the twentieth century, N. J. Fine appears to have
been the only one to consider questions of this type. In lectures at Penn State, he
observed that the conjugates of partitions into distinct parts are “partitions without
gaps,” i.e. partitions in which every integer smaller than the largest part is also a
part. For example, here are the partitions of 6 into distinct parts paired with their

conjugates:

21
22
23
24
25
26
27
28
29
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31
32
33
34
35
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39

40

41

42
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44
45
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52
53
54

55
56
57
58
59
60
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6 I+1+1+1+1+1
5+1 24+1+141+41
442 24+24+1+1
3+2+1 34241

Fine also noted in his book [7, p. 57] (see also [18]) that in one of Ramanujan’s
third order mock theta functions

the coefficient S(n) is the number of partitions of n into odd parts where each odd
integer smaller than the largest part must also be a part.

In 2009, the theme initiated by Sylvester was further developed in a paper titled
“Partitions with initial repetitions” [5].

Definition 1. A partition with initial k-repetitions is a partition in which if any j
appears at least k times as a part, then‘each positive integer less than j appears k
times as a part.

As noted in [5, Theorem 1], partitions with initial k-repetitions fit naturally into
an expanded version of the Glaisher/Euler theorem [2, Corollary 1.3, p. 6].

Theorem 1. The number of partitions of n with initial k-repetitions equals the
number of partitions of n into parts not divisible by 2k and also equals the number
of partitions of n_in which no part is repeated more than 2k — 1 times.

This idea was further developed in [5] and sets the stage for the results in this
paper.
Definition 2. Let F,(n) (resp. F,(n)) denote the number of partitions of 7 in which
no odd (resp. no even) parts are repeated and no odd part (resp. even part) is smaller

than a repeated even part (resp. odd part), and if an even (resp. odd) part is repeated
then each smaller even (resp. odd) positive integer is also a repeated part.

Theorem 2. F,(n) equals the number of partitions of n into parts % 0,=£2
(mod 7).

This result follows immediately from the second Rogers-Selberg identity

[16, p. 155, Eq.(32)]

2n%+2n (_q2n+l;

o 4 q) = 1
o p—
,; (@%q%)n e q"

n=1
n#£0=£2 (mod 7)
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o0

Theorem 3. Z F,(0)q" = (—=q:q)o0 f(q%), where f(q) is one of Ramanujan’s
n=0

seventh order mock theta functions [14, p. 355]

n2

— 4
fla) = Pyl
nz::l(q Sn

Our object in this paper is to apply the Sylvester constraints to various other
Rogers-Ramanujan type identities found by Slater [16], (cf. [14, Appendix A]).In
each instance odds and evens will be subject to different restrictions. Interchanging
the roles of odds and evens (as was done in passing from Theorems 2 to 3) has
an interesting outcome. Sometimes mock theta functions (cf. [18]) arise (cf. (7),
(8) and Sect.4), and sometimes other Rogers-Ramanujan type identities arise
(cf. Sect. 3).

In Sect. 2, we analyze two theorems that were originally found by F. H. Jackson
and are listed as identities (38) and (39) in Slater [16]. In this case the
exchange of the roles of odds and evens yields two of the mock theta functions
listed in [6].

In Sect.3, we begin with Slater’s identity (119) [16, p. 165]. In this case,
the reversed roles of odds and evens leads to a result equivalent to Slater’s (81)
[16, p. 160].

In Sect.4, events take a surprising turn. We begin with Slater’s (44) and (46)
[16, p. 156]. Each of these makes condition (2) of the Sylvester constraints rather
cumbersome. So the terms of the series in (44) and (46) are slightly altered to
streamline condition (2). The result is new Hecke-type series, and the odd even
reversal yields a further instance.

Finally in Sect.5, we start with Slater’s (53). This requires us to move from
odd-even (or modulus 2)-conditions to modulus 4 conditions. In this case, the role
reversal takes us from Slater’s (53) to Slater’s (55).

Section 6 is the conclusion where we discuss a variety of potential projects
foreshadowed by this paper.

2 Identities of Modulus 8

Of course, there are two famous modulus 8, Rogers-Ramanujan identities. They are
due to Lucy Slater [14, Egs. (36) and (34)]:

49" = 5 1
Z = I = M

(9%:9%)n

n=1
n=1,4,7 (mod 8)
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and

( q: (]2) qn 242n 00 1
Z (4% q*)n l:[ 1—g" @

n=|1
n=3,4,5 (mod 8)

Although Slater first obtained these results in her Ph.D. thesis in the late 1940s,
they have become known as the Gollnitz-Gordon identities because in the early
1960s both H. Gollnitz [9] and B. Gordon [10] discovered their partition theoretic
interpretation.

As A. Sills notes in [15, p. 103], F. H. Jackson [11] found, and- Slater
[16, Egs. (39) and (38)] re-found closely related results which we now consider
in slightly altered form:

00 Zn ( q2n+17q ) _ 10_0[ 1 (3)
S (A M T S
n=1,4,7 (mod 8)
and
00 q2n2+2n( q2n+3’q) { 1"_"[ 1 @
= (4% q*)n ol 1—q"

nE3,4, (mod 8)

Let us rewrite these series in‘a form where the partition theoretic interpretation
is obvious.

e q2+2+4+4+-'-+(2n—2)+(2n—2)+2n(1 4 q2n+l)(1 4 q2n+3)(1 4 q2n+5) .

(I=g?)(1—=g*---(1—q*)

n=0

R q2+2+4+4+-'-+2n+2n(1 + q2n+3)(1 + q2n+5)(1 + q2n+7)___

= (I=g)H(A—g%---(1—¢g*)

The standard methods for generating partitions from g-series and products
[2, Chap. 1] allows us to interpret (5) and (6) as follows.
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Theorem 4. Let G (n) denote the number of partitions of n into parts = 1,4 or 7 130
(mod 8). Let R (n) denote the number of partitions of n in which, (i) odd parts are 131
distinct and each is larger than any even part, and (ii) all even integers less than the 132
largest even part appears at least twice. Then for eachn > 0, 133

Gi(n) = Ri(n). 134

For example, the 12 partitions enumerated by G(15) are 15, 124+ 1+ 1+ 1, 135
I94+4+1+L9+1+1+---+1L,74+7+1,7+4+4,T7+4+1+1+1+4+1, 136
T+1+14+--+1L44+44+44+1+1+1L4+44+14+14---+ 1,44+ 1+ 1+ 41, 137
14+ 1+4---4 1, and the 12 partitions enumerated by R;(15) are 15, 1143 + 1, 138
94+5+1,74+54+3,134+2,11+24+2,94+24+24+2,74+2+2+2+4+2, 13
542424242423 42424-4+2,74+4+24+2,54+4+2+2+2. 10

Theorem 5. Let G,(n) denote the number of partitions of n into parts' = 3, 4, or 141
5 (mod 8). Let Ry(n) denote the number of partitions of n in which, (i) odd parts 142
are distinct, greater than 1, and each is larger than the largest even+2, and (ii) all 143
even integers up to and including the largest even part appear at least twice. Then 144
foreachn >0 145

Gz(ﬂ) = Rz(l’l) 146
For example, the 7 partitions enumerate by G,(16) are 13 + 3, 12 + 4, 11 + 5, 147

545+34+3,5+44+4+3,44+4+4+4,44 3+ 3+ 3,and the 7 partitions 148
enumerated by R,(16) are 1343, 114+5,947,7+54+2+2,44+44+24+24+2+2, 149

444444242242+ +2. 150
Now let us reverse the roles played by the evens and odds. The resulting 151
counterpart of (5) is 152
q1—|—1-|—3—|—3-|—~~~-I—(2n—3)+(2n—3)-|—(2n—1) (_q2n; qZ)OO _ q2n2—|—2n (_q2n+2; qZ)oo
= (q:9%)n = (q:9%)n+1
. o0 q2n2+2n
=q(=q7:9") P ——
= ;, (@i =@)2n-+1
= q(=4%14")51(q), )
153
where [6] 154
oo 2n24-2n
q
Si=) =) ———
1 ;, (—=4: @)2n+1
1 —an n -
—— Zq4n 3 (q14 +7 _ l) Z ( 1)] j2
T D)oo = =
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The latter is the now familiar form of a Hecke-type series involving an indefinite 155

quadratic form (see also [6, Eq. (1.15)]). 156
The resulting counterpart of (6) is 157
q1+1+3+3+“'+(2n—1)+(2n—1)(_q2n+2;q2)oo _ qz"z(—qz“"'z;qz)oo
= (q:9%)n = (q:97)n
[ee] q2n2
(2.2
i )w; (@3 =92
= (=477 %2(9), 3
where [6, Eq. (1.14)] 158
(e o] q2n2
Go-q) =) ———
e n;) (=q:9)2n
1 oo n o
= Zq4n2+n(l _q6n+3) Z (_l)jq 12.
(@* 9% = ) S—

Thus, as was mentioned in the Introduction, the even-odd reversal transformed 159
the related generating functions from. classical theta functions into mock theta 160
functions. 161

3 Identities of Modulus 28 162

Suppose now we allow some mixing of odds and evens in our Sylvester constraints. 163

Let us turn to identity (119) in Slater’s [16, p. 165] which we write as follows: 164
oo q1+3+.---|—(2n+1) (_q2n+2; qz)oo _ ‘ lo_o[ 1 (9)
— (4: @)2n+1 e Rl
n#0,14,4£549,14 (mod 28)
We directly deduce from this the following partition identity. 165

Theorem 6. Let H\(n) denote the number of partitions of n into parts # 0,+£4,+5, 166
£9, 14 (mod 28). Let S| (n) denote the number of partitions of n in which odd parts do 167
appear and without gaps while the evens larger than the largest odd part are distinct. Then 168
forn>1 169

Hi(n—1) = Si(n). 170

For example, the 18 partitions enumerated by H;(9) are 8 + 1,7+ 2,7+ 1+ 1, 171
6+3,6+2+1,6+1+1+1,34+34+3,3+34+24+1,34+34+14+1+1,34+24+2+2, 172
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34242414+1,342414+14+14+1,34+14--4+1,24242424+1,2424+ 14141,
24241 4+14+14+1+1,241+14---4+1,14+14---+1, and the 18 partitions
enumerated by S;(10)are 8 +1+1,6+3+1,6+2+1+1,6+1+14+1+1,
SH3 41+ 1L,4 4342+ L4434+ 1+1+1L,442+1+1+14+1,34+34+3+1,
4414144+ 15,343 4+2+1+1L,34+34+14+14+14+1,3424+24+24+1,
342424+ 1+1+ 1,342+ 1+ 14+ 1,3+ 1+1++ L2+ 1+ 14 +1,
T4+1+--+1.

When we now reverse the roles of evens and odds, we find that, instead of a mock
theta function arising, we obtain another identity of Slater’s [16]. Thus

OO 2444421 2n+1. 2 o n?+n
q (=¢™"":q%) q
; = :(—61%12)002.—_.2)
n=0 (KI’(])zn n=0 (qu)Zn( q4:9)n
oo n2+n
q
=(-4:9") B
= 2:;, (@%42a(g% 4"
°° 1

= l_[ l_qn’

=1
n$0.:|:2,:|:10n.:t12.14 (mod 28)

by Slater [16, p. 160, Eq. (81)].
This result is then directly interpretable in the following theorem.

Theorem 7. Let H,(n) denote the number of partitions of n into parts # 0,12,
+10,£12,14 (mod 28). Let S,(n) denote the number of partitions of n in which even
parts appear without gaps and the odd parts larger than the largest even part are distinct.
Then

Hy(n) = Sy(n).

For example, the 15 partitions enumerated by H,(9) are 9,8+ 1,7+ 1+ 1,6+ 3,
64+1+14+1,5+4,5+3+1,5+14+14+14+1,44+44+1,44+34+1+1,44+1+14---+1,
34343,3+34+14+14+1,3+14+14+---4+1,1+1+4---+1, and the 15 partitions
enumerated by S>(9) are 9,7+ 2,54+3+1,5+2+2,54+2+1+1,4+3+2,
442414+14+1,44+24+241,34+24+24+2,34+24+24+1+1,342+14+1+141,
24+242424+1,24242414+14+1,2424+14+14+---+1,2414+1+---+1.

4 Identities Stemming from Modulus 20

As is apparent by now, each section of this paper is devoted to some different
outcome when extending Sylvester’s three conditions to the interpretation of
Slater’s identities. In this section we begin with two of Slater’s formulas that,
upon inspection, suggest rather cumbersome partition identities. The modifications
necessary to reduce the awkwardness again lead us to mock theta functions.

188

195
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The identities in question are Slater’s (44) and (46) [16, p. 156] slightly rewritten: 201

q1+1+2+3+3+~--+(2n—1)+(2n—1)+2n+(2n+1)(_q2n+3; qz)oo
n>0 (q)Zn-l—l
= 1
= . 10
qﬂl_qn (10)
n#0,42,4£4,4:6,10 (mod 20)
and 202

q1+1-|—2—|-3-|—3+~~~—|—(2n—3)-I—(2n—3)+(2n—2)-|—(2n—1)+2n (_q2n+l : qZ)OO

(Q)2n

n=0
RN
= . 11
q 1;[1 = (b
n#0,12,46,24:8,10 (mod 20)

One can interpret (10) and (11) in the Sylvester manner, but, in doing so, 203

condition (2) in the Sylvester constraints becomes quite complicated. 204
So instead we consider closely related series where the interpretations are more 205
natural. Let 206
. q1+1-|—2+3-|—3+4-|—~~~-|—(2n—1)+(2n—1)-|—2n (_q2n+l;q2)oo
Z Sim)q" = Z @)
n=>0 n=0 9)2n
2
_ q3n -I—n(_an—i-l;qZ)oo (12)
n>0 (('I)Zn
and 207
\ q1-|—1+2-|—3+3-|—4+'~~-|—2n+(2n-|—1)+(2n-|—1)(_q2n+3;qZ)OO
D By =

n>0 n>0 (Q)Zn-i-l
2
_ Z q3n +5n+2(_q2n-|—3; qZ)OO (13)
<o (9)2n+1

Now J;(n) and J,(n) may be viewed as enumerating partitions that mix “parti- 208
tions with initial 2-repetitions” with “partitions without gaps.” 209
Namely, J,(n) is the number of partitions of » in which (1) all odd integers 210
smaller than the largest even part appear at least twice, (2) even parts appear without 211
gaps, and (3) odd parts larger than the largest even part are distinct. 212
The formulation of J,(n) is even more straightforward. J,(n) is the number of 213
partitions of n in which (1) each odd integer smaller than a repeated odd part is a 214
repeated odd part and (2) every even integer smaller than the largest repreated odd 215
part is a part, and (3) there are no other even parts. 216
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Theorem 8.
1 oo L5
2 A S
> hmg" = A g =gt Y (g (14)
n=>0 q n=0 j=—L%J
and
q2 co le2 IJ
2 DT
ZJz(n)q” — v Zq4n +6n(1 _q4n+4) Z (-1)/q 6j°+2j (15)
n=>0 4q n=0 j:—L%J
where
(e @)
V(g) =Y q"" V"2, (16)
n=0

Proof. Using representations (12) and (13) we see that (14) and (15) are equivalent to
the following assertions:

oo q3n2+n 1 o in24ls ) AP 6242
= g T =g ) (=D/g™ Y
;) @*4)n(@% 49 (@747 o0 ;) |sz|5:,1
(17)
and
2
i q3n +5n
= (4% (q% g D41
1

(oo}
Zq4n2+6n(l _q4n+4) Z (_l)jq—GjZ-I—Zj' (18)
n=0

= 20
(G*:19?)oo 2 —n<2j<n+1

Identities (17) and (18) may be reduced to Bailey pair identities following the use of
the strong form of Bailey’s Lemma [3, p. 270]. In the case of (17) we replace ¢ by ¢ in
Bailey’s Lemma and set @ = ¢>. In the case of (18) we replace ¢ by g in Bailey’s Lemma

and set a = 1. If we then invoke the weak form of Bailey’s Lemma [4, p. 27, Eq. (3.33)]
we see that (17) and (18) are equivalent to the assertions (27) and (28) below.
Let
n _ j+1
@":9); " q)4")
ai(n,q) = (19)
1 ;) (@:9);(q:9%);
n _ j+1
@9 (q"9);9"2)
ax(n.q) = . (20)
’ jzzl @:9),-1(d:47);
n —n. (N . (j'ZH)
sy =3 @":9);q" 99" @n

= (@D

217
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Our proof relies on proving the following three identities. This in the spirit of the 228

method developed at length in [6]. 229
ai(n.q) +q"ai(n —1,q) = (1 + ¢")as(n.q), (22)
q"ax(n,q) — (1 —¢")ai(n.q) = —(1 —q")asz(n.q), (23)
0 if n is odd
as(n,q) = 2 . (24)
(=Dvg™ ifn =2v.

First we prove (22). 230

n _ j+1
@) —i @) =g
ai(n,q) +q"ai(n—1,q) =
,;o (¢:9);(q:9%);

{1 =g™)(1 = ") 44" =g (1~ ")

B ORI TT LR,
=
(1+q );) (q:9);(g:9%);

= (1 +¢"az(n,q).
AQ2 Next we treat (23). 231

”;Q)j(CI":KI)jq(jJ{I)
(q:9);(g:9%);

ax(n.q) — (1 = "an(n, q) = ST

j=0

((1—qf)—(1—q”+j)

o @), (g ) q U DT
= — l —
(1-q )j; (q:9);(q:9%);

o 07994 (1= (11— ¢))
= — 1 -
(I-q )j; @:9);(4:4%);

=—(1-¢"asz(n,q) + (1 —q")ax(n,q),

which is equivalent to (23). 232
Finally we move to (24) using the notation of [8, p. 4] and invoking [8, p. 242, 233
Eq.III.13]. 234
) q9".q9".—%:q4.7
az(n,q) = lim ¢, [
=03 q2,—q>2
1 g ~1,977"q.q
= lim 3_,
(—q2:9), 7% RN
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1 ¢ (q_"aqé_“;q,—qﬁ”)
=1 % 1
(=42:@)n» q2
_ 0 if n is odd
(—1)”9{_”2 if n = 2v,

where the final line follows from the g-analog of Kummer’s theorem [8, p. 236, Eq. (IL.9)].

From (22) to (24) it is clear that each of @, (n, q), a>(n, q) and as(n, q) is recursively
defined as a Laurent polynomial in ¢. It is then a straightforward matter to show via
mathematical induction that

—q"a;(n—1,q) if n odd
R PICE I Sy L P (25)
j=—v
L25]
wn.q) = (1—g)(=1)"q® Y (~1)igPET, (26)
j=—14]

Equating (19) and (25) are equivalent to the assertion that

2

_(=D"g" —11(1_q411+2) 2
On = (1—¢7) @ (n.q%) 27)
Pn = (@2:4%)n (g9
are a Bailey pair (where ¢ — g% and a = ¢?) (see [3] especially Bailey’s Lemma

on page 270 and Eq.(4.1) on page 278). We note that this Bailey pair can also be
deduced from the more general Bailey pair given by Lovejoy [12, p. 1510, Egs. (2.4)
and (2.5)]. We may now insert this Bailey pair into the weak form of Bailey’s Lemma
[4, p. 27, Eq.(3.33)] with ¢ — ¢> a = ¢?], and then (25) and simplification
yields (17).

Equations(20) and (26) are equivalent to the assertion that

@ = (=1)"¢" 7" (1 + ¢*ax(n,q)
—_— qnzfn (l_quI) (28)

Bn = (@249 (g%

are a Bailey pair (with ¢ — g2, @ = 1) [3, pp. 270 and 278]. We may now insert this
Bailey pair into the weak form of Bailey’s Lemma [4, p. 27, Eq. (3.33) with ¢ — ¢2,
a = 1]; then (26) and simplification yields (18). O

Notice that our starting position in this section, namely (12) and (13) (inspired
by (10) and (11)) landed us in the world of Hecke-type series immediately. So what
will happen when we reverse the roles of evens and odds? We define
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. q1+2+2+3+4+4+~-+2n+2n+(2n+1)(_q2n+2;qZ)OO
Z Ki(n)q" = Z (q)
n>0 >0 q)2n+1
2
B q3n +4n-|—1(_q2n+2; qZ)OO
-y )
1=0 (@)2n+1
and
o q1+2+2+3+~~~+2n+2n (_q2n+2;q2)oo
Z Ky(mq" = Z @)
n=>0 n=>0 q)2n

3n242n ¢, 2n+2. 2
:Zq (4™ 4o 30
(('I)Zn

n=>0

We shall not formally provide the partition-theoretic interpretations of K (n) and
K,(n) because they are identical with those of J;(n) and J,(n) respectively where
the roles of odds and evens have been exchanged.

Theorem 9.
1 oo
K = K —q)", 31
; ) = S P ;0 2(1)(—4) (31)
and

Zq4n2+2n(l 4n+2) Z( 1)]( q) 1(3]—1)/2 (32)

n=0 j=—n

K n
X e = 5

n=>0

with §(q) =Yg

n=—oo

Proof. Using representations (29) and (30) we see that (31) and (32) are equivalent to
the following assertions.

Z q3n +4n+1
=5 (@G Dont1(=4% %)
1 o0 oo q3n2+2n
= (=1)"(=q)"CrTI/2) - — 1 (33
(4% 9% oo (n;_:oo ,; (q:9)2n(=q% 4>
3n24-2n
q
;(61 @)2n(=q%: 4%
1

2) Zq4nz+2n(1 4n+2) Z( 1)]( q) 1(3]—1)/2. (34)

j==n

T @%q
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Identities (33) and (34) may be reduced to Bailey pair identities following the use of
the strong form of Bailey’s Lemma [3, p. 270]. For both (33) and (34) we replace ¢ by ¢>
in Bailey’s Lemma and set a = ¢°. If we then invoke the weak form of Bailey’s Lemma
[4, p. 27, Eq. (3.33)] we see (33) and (34) are equivalent to the assertions (45) and (46)
below.

Let
n (q—2n7q2) (q2n+2’q2) q,2+4/+1
Ai(n.q) = , (35
1 ;) (@:9)2j+1(—q%4%);
(@747, g 90
Ay(n.q) = ; (36)
: ;) (:9)2 (—q%* %) ;
(@747, (@) 90
Asz(n.q) = (37
’ ;) (:0)2j+1(=q%q%);
n (q—2n7q2)1(q2n 2)jqj2+2j
As(n,q) = ¢ 38
W9 Z (4:9)2(=q%*4%); o9
Our proof requires the following identities.
A3(l’l,£]) - Al(ns q) =N Az(n,q), (39)
A(n,q) + ¢*" A = 1,9) = (1 + ¢*")Aa(n,q), (40)
-
aati. ) = 0. 1)
Ay = CO7V A+ 0 “2)
4% 1 _I_q2n

First we prove (39).
(47247, (6> % ¢%),47 T (1 - g¥ )
(@925 +1(=q%:9%)

A3(n,q)— Ar(n.q) =)

j=0

(4
a ZIO (q:9)2j (4% %)

—2n. 2 2n+2. 2 i242j
:4°); (" g7 g0
J J = Ay(n,q).

Next comes (40).

Ax(n.q) + q*" Ax(n — 1,q)

:Z(‘I

J=0

B O YR R Y V!

(q,q)z,( q%q?);

262
263
264
265
266
267

268

269

270



Editor's Proof

Partitions with Early Conditions 71

% {(1 — (1 = gy 4 (1 — g _q2n)}

—2n. 2 2y i 2j
:(1+q2n)2(4 14%);(a*":4%)4

= @92 ,qz);

271
Now we treat (41) using the notation of [8, p. 4]. 272

] (1—2}17[12114—27 —%;qz,qu
lim ¢, 3 ;
— g t—>03 q°,—q

1 q—2n’_%’_ —Zn;qZ’qZ
(4:9%)n+1 11—1903%( g2, -

by Gasper and Rahman [8, p. 242, Eq. (II1.13)]

B 1 ¢ q—2n’ _an; q2’ q2n+3
N (61;512)114-12 ! _q2

Z (q—4n 4) q(2ﬂ+3)]

@05 _ (9=®)
(q;q2)11~|—1 1 _q2n+1’

A3("7‘1) =

T (g )n+1 (q*:q%);

where the penultimate assertion follows from [8, p. 236, Eq. (IL.7)]. 273
Finally we treat the fourth identity (42). 274

—2n ,2n q.,2 2
. q 4, —7:497,94°T
i = mel 40 )

=5 %
(4:9%)n,
by Gasper and Rahman [8, p. 241, Eq. (II1.9)]

n

1 A T U I U o e b
R et (g*:q%);

—4n.

1 (g~ g%, ( i(14-2n) —2n+4j(3+2n)
— — qj n +q n j n )
(4:9P)n(1 +g72") 2 (g*:9"%);

Jj=0

q2n

— 1-2n. 4 3—2n. 4
(@ +q2")<(q 4 @)
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) D) (O

- l_l_an 1 _I_q2n

0 (L+ (=9)")
1 + q2n

=(—q)~

’

as desired.
From (39) to (42), it follows by mathematical induction that
: (g~
2 : i —
Ain.g) = —¢" (1" Y0 (D ()T T
j=—n

(43)

Ay(n.q) = (—1)"q" T " (=1)] (—q) IV, (44)

j==n

Let us treat (32) or rather its equivalent formulation (34) first. Identity (44) is
equivalent to the assertion that

202 (| 4n+2 . . h YA
af = q ((11_;12) ) Z (=1)/(=q) JBji—1/2
= 45)

_ q
(43920 (—4%:%)n

are a Bailey pair (where ¢ — ¢? and a = ¢?). It should be noted that this Bailey pair
was found earlier by A. Patkowskiiin [13]. Inserting this Bailey pair into the weak form of
Bailey’s Lemma, we obtain (34) by invoking (44) and simplifying.

As for (31), or rather its equivalent formulation (33), we see from (43) and (44) that

e o D= P At
U = 0 T (=% (46)
ﬂ// _ qnz+2n+l

T (@ am+1(—q%q)n

form a Bailey pair. Furthermore

oo
Z K](I’l)qn — Zq2n2+2n'3’/1/

n=>0 n=0

2n2+2n Vi
R qz) Zq

vt [, L CD O+ g
R qz) Z ( o 1-¢?

Z 1)y (- T,

n=—0oo

=- Z Ky(m)q" + ——5—

n=>0

(¢°
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and invoking Jacobi’s triple product identity [2, Theorem 2.8, p. 21], we see that (33) is
established. O

5 Identities of Modulus 12

As is obvious by now, we are choosing a variety of examples from Slater’s
compendium to illustrate the variety that arises when we mix parity with the
Sylvester constraints. We close our presentation with a move beyond parity -to
conditions modulo 4.

Recall that evenly even numbers are numbers divisible by 4 while oddly even
numbers are numbers congruent to 2 modulo 4.

We shall examine Slater’s (53) and (55) [16, p. 157].

1 q4n2
= (47)
l;ll 1—g" ;(q4;q4)zn(q4“+‘;q2)oo
n==41,43,44 (mod 12) -
_ 1 N q2+2
(@:9) 0 (1 =g*>T2)(L— g4 (¢ ¢?) o
q2+2~|—6+6
T U= =g (1 =9 (1 — ¢ (% 4o
and
1
I1 1 (48)
n=1 q
n==+£3,44,+5 (mod 12)
_ q4n2—|—4n
= @ D10 0700
: 1 N q4+4
1= (% ¢Ho0 (1 =¢g>TH(A —g*TH (1 -3¢ ("1 4P o
q4+4+8+8
* (1 —¢g*t2)(A = g*tH (1 — g0 (1 — g3T8) (1 — ¢0F10) (g1 ¢?) o

In both (47) and (48), the extended final forms are given so that the following
theorems are immediately interpreted from these forms.

Theorem 10. Let L;(n) denote the number of partitions of n into parts that are =
+1,+£3,+4 (mod 12). Let T\ (n) denote the number of partitions of n in which (1) all
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even parts must appear an even number of times, (2) each oddly even integer not exceeding
the largest even part must appear, (3) each odd part is at least 3 greater than each oddly
even part. Then for n > 0,

Lyi(n) = Th(n).

For example, the 20 partitions enumerated by 7;(13) are 13, 11 +1+ 1,943+ 1,
94242, 94+ 1+ 1+ 1+ 1, 74+5+1,74+34+3,7+3+1+1+1L, 7+ 1+ 1441,
54543,54+5+1+14+1,5434+3+ 1+ 1,543+ 144+ 1,542+2+---42,
S+14+1+4-+1L,3+343+3+L34343+14+1+14+1,3+3+1+1+-+1,
3+414+1+---+1,14+1+---+ 1, and the 20 partitions enumerated by L, (13)
are 13, 11 +14+1,9+4,9+3+1,94+14+14+14+1,84+4+1,8+3+1+1,
8+1l+1+- -+ 1, 4+d4+44+1,4+44+3+1+1,4+4+1+1+---+1,4434+3+3,
44343 +1+1+1,4+3+1+14+L4+1+1++1,343+3+3+1,
34343+ 1+1+1+1L3434+14+1++1,3+1+1+-+1, T+ 1+ +1,

Theorem 11. Let L,(n) denote the number of partitions of n into parts that are =
43,44, £5 (mod 12). Let T>(n) denote the number of partitions of n in which (1)
all even parts must appear an even number of times, (2) each evenly even integer not
exceeding the largest even part must appear as a part, (3) each odd part is larger than 1
and at least 3 larger than the largest evenly even part. Then for n > 0,

Ly(n) = Tr(n).

For example the 10 partitions enumerated by L,(15) are 15, 9+ 3 + 3, 8 + 7,
8+4+3,7+543,7+4+4,5+5+5544+3+3,4+4+4+3,3+3+3+3+3,
and the 10 partitions enumerated by 7>(15) are 15, 11 +2+ 2,9+ 3+ 3,7+ 5+ 3,
T4+44+4,7T+2424+242,545+554+3+3+2+2,3+3+3+3+3,
34242442,

6 Conclusion

This paper is in no way meant to be exhaustive. Indeed we have chosen a handful
of Slater’s identities for consideration. The examples were chosen to illustrate the
variety of possible outcomes.

There are many further formulas in Slater’s paper [16] that can be interpreted
using the approach we have developed. Indeed this can be done for the original
Rogers-Ramanujan identities [14, pp. 133-134 (14)—(18)] and also for variants
on the Rogers-Ramanujan identities (cf. Slater’s (15), (16), (19), (20) and (25)).
Others like the modulus 6 results (Slater’s (22)—(30)) are either quite classical
(e.g. (23) is effectively due to Euler) or seem to require some alternative analysis.
The identities with modulus 27 (Slater’s (88)—(93)) seem quite distant from these
developments as do those identities like (97), or (101)—(112), or (125)-(130) that
apparently are not reducible to a single product.
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It would certainly be interesting to determine if there is an alternative to
Sylvester’s constraints that leads to explanations of further Slater identities that
could not be treated here.

It is interesting to note that in each case where a Slater identity was modified
to fit the Sylvester paradigm, the resulting infinite product was always of the nicest
form imaginable, namely

oo’/ 1
[T =
n=1

where the  indicates only that the n are restricted to a specified set of arithmetic
progressions.

Finally the relation of (33) to the original Rogers-Ramanujan function is striking.
Indeed one can provide an alternative proof of (33) by adding together the left-hand
sides of (33) and (34) and proving (slightly non-trivially) that the result is, in fact,
Slater’s (15) [16, p. 153] with ¢ replaced by —q.

In fact, it is possible to prove that, instead of (33),

o0 q3n2+4n+1

2

= (@ D21 (=% 47

Z 4n? —Zn(l 1211-|—6) Xn: (_l)j(_q)—j(Sj—l)/Z' (49)

j=—n

T @ qz)

In addition

3112

< (q: ('I)Zn( q%.4*)n

(q q2) Zq4n (1- 8n+4) Z (_1)/(_q)—j(3j—1)/2. (50)

j=—n

If we denote the left-hand side of (50) by T'(¢), then Slater’s (19) [16, p. 154]
asserts

)= @214)00(@’: 470071 47) oo

T —
(4 (4% 9% oo

(51

Identities of this nature combined with the results in Sect. 4 suggest a variety of new
Hecke-type series results related to the Rogers-Ramanujan identities.

I want to thank J. Lovejoy, A. Patkowski and A. Sills for comments and
corrections of an earlier version of this paper.
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1 Introduction

The purpose of this note is to show how combinatorial arguments can produce
nontrivial identities between hypergeometric g-series in two variables. This will be
illustrated by using as examples

AN AW =

. The major index of a binary word

. The Durfee square size of an integer partition

. The number of inversions in a binary word

. The number of descents in a binary word

. The sum of the positions of the 0’s in a bitstring
. “Lecture hall” statistics on words.

Let w be a word of length n over the alphabet {0, 1} (a binary word). By the
major index of w we mean the sum of those indices j, 1 < j < n — 1, for which

w; > wjyy,ie., forwhichw; = 1andw;; = 0. Let f(n,m) denote the number

of binary words of length n whose major index is m (f(0,0) = 1). In Sects.2
and 3, we find the generating function F(x,q) = Y, f(n,m)x"q" in various
ways, compare it to the known Mahonian form of this function, and thereby obtain
an interesting chain of seven equalities, namely

F(x.q) "= Y f(n.m)x"q"

n,m>0

Y X!

=0 (5 @n+1

. () 2
=1+ (1 +(1-20)q") (L@)

=0 (x1q)j+1

_ Z(M)Z

T\

V(4 g

= D+

=14+2x+ B+ x>+ @ +2g +2¢H)x> +....

in which the [ ],’s are the Gaussian binomial coefficients.

ey

@)

3)

“

&)

(6)

(N

30
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In Sect. 2.5 we highlight the connections between F(x, q) and some third order
mock theta functions.

Section 4 deals with words over larger alphabets. In Sect.5, a related identity
is derived by considering the positions of 0’s in a bitstring. In Sect. 6 we look at
identities arising from some novel statistics on words. In Sect.7, we consider the
process of deriving the generating function F(x,q) = Y, ;- (1, k)x"q* when a
nice product form for the g-series Y, ., 7(n, k)g* is known. We show in this case
how F(x, q) can be expressed in terms of statistics on words.

2 The Equivalence of (1) Through (5)

For a binary word w of length n, the blocks of w are the maximal contiguous
subwords whose letters are all the same. The word w = 11011000, for example,
contains four blocks, namely 11, 0, 11, 000, of lengths 2,1, 2, 3. The major index
of w is then the sum of the indices of the final letters of the blocks of 1’s, excepting
only a terminal block of 1’s. The word w above has major index 2+ 5 =17.

2.1 Proofof(1)=(2)

This follows from MacMahon’s result [8] that

n .
— § gma_](w) ,
|:kj| q w

where the sum is over all binary words w with k ones and n — k zeroes. We refer to
(2) as the Mahonian form of F(x, q).

2.2 Proof of (3)

2.2.1° Via Generatingfunctionology

The g-binomial coefficients satisfy the recurrence

n+1 _k|n n -
Bl e
q q q
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Let’s find their vertical generating function 54
€] n n
Pe(t) =D 1 M (k=0,1,2,...). 55
n>0 q
We find that 56
(1= 1ge(0) = 1 () (k = Ligo(1) = 1/(1 =1)), 57
and therefore 58
¢k
$(t) = ———— (k=0,1,2,...). 59
[[j=o(1 —1g7)
Next, the horizontal generating function (= the Gaussian polynomial) 60
Yu(x) = e Z " xk 61
" N k
k>0 q
satisfies 62
Vnt1(x) = ¥ (qx) + X9, (x) (n=0;90=1). 63
If we introduce the two variable generating function @ (¢, x) = Zn,kzo [Z]qt”xk, 64
then we find that 65
D(t,x)(1 —xt) =tD(t,qgx) + 1, 66
which leads to 67
P(1.x) =) [ ] =) = =
nk>0 g n>0 l_[j 0(1 _qJXZ)
as required. 69
2.2.2 Via g-Series 70

In [2, Theorem 3.3], (3) is derived from (2) using Cauchy’s Theorem [2, Theo- 71
rem 2.1]: 72

(a;q)ix* (1 —axq®)
kzzo (9:9)k 1_[ —xqk)
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n+1

witha = ¢"™', after setting n = n + k in (2). In the process we have 73

n+k| , (1 —xg*tnthy 1
Z|: k :|q l_[ 1_qu) - . ’ ®)

k>0 (X ’ q)n +1
the g-binomial theorem. 74
2.3 Proofof (1) =(4) -

To solve the word problem posed in Sect. 1, we split it into four cases, namely 7
words with an even (resp. odd) number of blocks, the first of whichis a block of 1’s 77
(resp. 0’s). We will show all steps of the solution for the first.case, and then merely 7s
exhibit the results for the other three cases. 79

Let’s do the case of words w, of length n, which have an even number, 2k, say, &o
of blocks, the first of which is a block of 1’s, and suppose that the lengths of these s1
blocks are aj,a,...,ax (all a; > 1). Such aword has descents at the indices s2
aj,a;+ax+as,...,a; +ax+ -+ ax—1,%0 its major index is 83

maj(w) = ka; + (k — D)ay + (k— Dasz + -+ + ask—2 + az—1
2k—1

S

Let Blocks(w) be the number of blocks of w. It follows that the contribution of s4
all the words whose form is that of the first of the four cases is 85

Fi(x,q,1) = ZX\W\qmaj(w)tBlocks(w)

= Z Z x2§k=1 ujq2§:1 ax—; [7/21 2k

k>1ap,...ax>1
2
quk 12k

= (=00 —qu)l_[,_l(l —xq/)?

=x2q + X7 (1°q> + 1q) + x* (1'q* + P4 + P> + Pq) + .. ..

Similarly, in the second case, where the number of blocks is even but the first se
block consists of 0’s, we have 87
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Fy(x.q.t) = Zx|W|qmaj(W)tBlocks(W)

_Z Z zikla,q 75 an—; [Gi—1)/21 2k

k>1ai,...axy>1

qk(k 1) 2k

k>1 l_[ (1 - xqj )2
=122 +20%5° + X3+ t4qH) + @7 200 q + 2%y 4 ..

In the third case the number of blocks is odd, say 2k + 1, with k > 0;and the
first block is all 1’s. The major index of such a word is

2k—1

maj(w) = Z Aok—j ’715—‘ .
j=1

Thus,

F; (X, q. t) — Z xlwlqma_](w)tBlocks(w)
-y ¥ X0 B e /21 2k
k>0ay,...ax+1=1

2
x2k+l k [2k+l

_ q
k_ .
= (= xg4) TTi20(1 — xq/)?

=1x +ix*+ x7 (g +1) + x* (¢ +2q1° +1)

+x° (¢ + @1 +2¢° +3q87 +1) + ...

Finally, if there are 2k + 1 blocks in the word w and the first block is all 0’s, the
major index is

2%—1 ,
maj(w) = Z A2k—j [——‘,
S0
Fy(x,q,t) = lew|qmaj(w)tBlOCks(W)

+
_ } :xzikﬁ‘a,q H sy [ ] 2
k=0

88
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2k ghe+1)  2k+1

1-ny =—1

k>0 n];=0(1 —xq/)?

tx 4+ 12 4+ 3 (Py2 1) + x4 (20 + 2y +0)

+x7 (Y 30y 420y + Py ) 4L

96

Now we compute the desired generating function F(x, g,t) as 97
4
F(x.q.0) =1+ ) Fi(x.q.1) %8
i=1
in which the F; are explicitly shown above. If we put# = 1 we find that 99

D xMgmit) = 14 2x + x2(g +3) + x° (24 +24 + 4)
+x* (¢* +3¢° + 44> + 3¢ +5)
+x°(2¢° +2¢° + 64*+ 6¢” + 6¢* +4q +6) + ...

Observe that if we put g := 1, the coefficient of each x" is indeed 2". 100
On the other hand, the maj statistic is well known to be Mahonian, which implies 101
that its distribution function is 102
lew\qmaj(w) — Z n X", 103
k
w nk q
in which the [Z] are the usual Gaussian polynomials. 104
q
It follows that 105
n
> M K= 1+ Fi(x.g. ) + B(xg. ) + F(rg. 1) + Fi(x.q.1)
n.k=0 q

2
0 X% gk 2k gh(k=1)

=1+

k— i k=1, i\2
2 =00 —xg) T2 = xg/)?  Z 152000 — xq7)?
K 2k+1 k2 x2k+1qk(k+1)

1 —I—(l—x)z

DY L
f— . k .
= (1= xgM) TT5 2601 — xq/)? =0 [Tj=o(1 = xg/)?

2k ,k*
xq 1—x 1)
:1+E (—+_
= i \1—x¢*  g*
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2%k+1 k2 1 1 —x)gk
P (e ’”ZZ)
=0 @i \1-x¢" (1-xq%)
Ly (1+ (1 —2x)q%) [ x q(z)
= (-xd? (g
106
as claimed. 107
2.4 Proof of (5) 108
We prove (5) in four different ways. 109
2.4.1 Equivalence of (3) and (5) Using the Rogers-Fine Identity 110

The Rogers-Fine identity is [5], [4, p. 223]: 111

o

@:q)n_, (@ q)natg/Big)up't"q" ™" (1 — arg®)
Z_;) B =L (B (T: Q1 '

€))

n=0

Setting « = 0, 7 = x, and 8 = xq in (9) gives 112

Z (xq q)n - Z

(xq: q)n(x D1
Multiply through by 1/(1 — x) and use the equivalence of (1) and (3) to conclude 113

n

e X e ann2/2 2
F(x,q) = —_— = ] . 114
;(x:q)m 2 (X @)n+1

In this form the generating function appears quite similar to, but not identical with 115
(4), though it is of course identical. Consequently, by comparing the two forms, we 116

see that we have proved the small identity 117
G
Z(L (1—2qu)= 1. 118
= \ @t

We show in the following subsection how to transform (4) into (5). 119
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2.4.2 Direct Proof of (4) = (5) 120
We would like to prove: 121
"o\ 2 s 2
(4 (- 20gh (_(;f;)fil ) -y (—(fff;:l ) |
k=0 k=0
Using the fact that 122
L4 (1-2x)¢" = —x?¢* + (1 - x¢")(1 — x4") + 4",
we can transform as follows: 123

. ( kg ®) )2
1+ 1+ (1 -20¢" [ ——

k>0 (x’q)k‘f—l

x2k+2qk2+k X2 qkz —k Xquk
=—1- Z A

- 4)\2
= i g or S iy

2k kz—k 2k k2—k

L q x2qu2
- Z (x q)k Z 2 +Z . \2

k=1 k=0 (x sq)k k=0 (-xsq)k_l’-l

xqukZ
)2
im0 O iy

124

2.4.3 Equivalence of (1) and (5) by Recurrence 125

As an alternative, we can derive (5) directly from the definition of F(x, g) in terms 126
of binary words. 127

N

Lemma 1. Let f(n, m) denote the number of binary words of length n whose major 128
index is m. Then 129

fn,m)y=2f(n—1,m)— fmn—-2,m)+ f(n—2,m—n+1) n=2;m=>0)
(10)
with initial conditions f(0,m) = &mo, f(1,m) = 28,.0. 130

Proof. Let S(n,m) be the set of binary words of length # with major index m, so 131
that f(n,m) = |S(n,m)|. Let “-” denote concatenation of words and observe that 132
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maj(w - 1) = maj(w),
maj(w - 10) = maj(w) + |w- 1|,
maj(w - 00) = maj(w - 0).

Thus

w-1eSn,m)<weSh—1,m),
w-10€e S(n,m)<>weSh—-2,m—(n-—1)),
w-00€ S(n,m)<>w-0e Sm—1,m)—S(n—-2,m) - 1.

Since every element of S(n, m) falls into exactly one of the cases above, the result
follows. O

As in (1), we define the generating function F(x,q) =73, - f(n,m)x"q".
Next we multiply each of the four terms in (10) by x"¢” and sum over n > 2 and
m > 0.

The first term yields F(x,q) — 2x — 1, the second gives 2x(F(x,qg) — 1), the
third becomes x? F(x, q), and the fourth yields x?qF (xq, ). Therefore we have the
functional equation

1 +x%qF(xq.q)

F(x,q) = —x?

whose solution is

. )
x% q’

Flx.q) =)

j=0 n£=o(1 —xq")?

2.4.4 Equivalence of (2) and (5) via Partitions
We can also give a direct proof of the identity

x qJ

Z |:k]q Z (()C f]);+1)2’

n,k>0

using partitions. We’ll see the value of this after we look at inversions in Sect. 3.
We show that both sides count, for every pair (a, ), the number of partitions A in

an a X b box, where g keeps track of |A| = A; + A, + ...+ A, and x keeps track of

a+ b. The left-hand side counts all the partitions for fixed (a, ») and then sums over

133
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all (a, b). The right-hand side counts all the partitions with Durfee square size j,
forevery (j + s) x (j + t) box containing them, and then sums over all ;.

Let P(a, b) be the set of partitions whose Ferrers diagram fit in an a x b box. Let
D(A) denote the size of the Durfee square of A. The argument above actually shows
that

Z Z qa atb D) _ Z 214}
((x;

2%
a,b,>0 A€P(a,b) >0 Q) j+1)

We’ll return to this at the end of Sect. 3.

2.5 Mock Theta Functions

It was observed in [3] that there is a connection between F(x, ¢), defined by (1)—
(7), and the following two of Ramanujan’s third order mock theta functions ([11],

cf. p. 62):
q"
= ; 11
/@) ]2_% iy (1)
2j242j
wlg) = Y- (12)

@974
Specifically, appealing to (5), note that

F(-1,9) = f(q)/4 (13)
F(q.9%) = w(q). (14)

One of the goals of the paper [3] was to develop a methodology for interpreting
g-series identities in terms of families of partitions, via an appropriate statistic.
After deriving the equivalence of (5) and (3), the appropriate partition statistic was
revealed for interpreting F(x, q):

Fix,q) _ Zq\ﬂxp(x)’

1—x

where the sum is over all partitions, A, and the statistic p(4) is the sum of the
number of parts of A and the largest part of A. Note that this is equivalent to the
interpretation of F(x, ¢) in the preceding subsection. This was then combined with
the observations (13) and (14) to interpret the mock theta functions (11) and (12) as
generating functions for certain families of partitions.

150
151
152
153
154

155

156

157

158
159
160

161

162
163
164
165

166

167
168
169
170
171



Editor's Proof

88

G.E. Andrews et al.

In view of (1), (13), and (14), we see that the mock theta functions (11) and (12)
can be interpreted in terms of statistics on binary words as:

f@) = S (=1)Mgm;

w(q) — Zq|w|+2maj,

where the sum is over all binary words w and |w| denotes the length of w.

3 An “Inversions” View of (5) and (6)

We obtain another identity by carrying out the same sort of analysis on the inversions
of a word, rather than the major index. An inversion in a word w is a pair (i, j) such
thati < j but w; > w; and inv(w) is the number of inversions in w. The statistic
inv is also Mahonian on binary words [8], so its distribution is given by (2).

3.1 Proofof (6)

Let f(n, k, m) be the number of binary strings of length n, containing exactly k 1’s,
and with m inversions. Then evidently

fn,k,m)= f(n—1,k—1,m)+ f(n—1,k,m—k),

forn > 2, with f(1;k,m).= 6x.00m.0+0k.10m.0- If we define the generating function

Z LIRS

_x(I+y)+xF(x,yz,2)

F(x,y,2) = ,

whose solution is

Fx.y,9 =)

1—xy

x"(1 4 yz"7 Y
T2 = xyzd)

We can now set y = 1 and find that the number of binary words of length n with m
inversions is equal to the coefficient of x"¢™ in

xm+1 (1 + qm)

m=>0

(X3 @m+1

=20+ B+ Qx>+ @4 +29 +2¢)x° + ...

1

N

2
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3.2 The Equivalence of (5) and (6)

Let g(n,m) be the number of binary words of length n with m inversions.
The previous subsection showed that (6) is the generating function for

ZnZO,mZO g(n, m)anm'

Because of the equidistribution of maj and inv, g(n,m) = f(n,m), for f(n,m)
defined in Sect. 1. But supposing we didn’t know that, we show that g (n, m) satisfies
the same recurrence as f(n,m) in Lemma 1 of Sect.2.4.3, and therefore it has the
same functional equation, whose solution was shown there to be (5).

Claim. We have the recurrence
gn,m)=2gn—1,m)—gn—-2,m)+gmn—-2,m—n+1) @ >2;m>0) (15)

with initial data g(0,m) = 8,0, g(1,m) = 26,,.0.
Proof. Let R(n,m) be the set of binary words of length n with m inversions, so that
g(n,m) = |R(n,m)|. Observe that
inv(l-w-0) = inv(w) + |w| + 1,
inv(0 - w) = inv(w),

inv(w - 1) = inv(w)

Words of the form O - w - 1 fall into both of the last two classes above and all other
words fall into exactly one of the three classes above. So,

|[R(n,m)| = [1-R(n—2,m—n—1))-0|4+[0-R(n—1,m)|+|R(n—1,m)-1|—|0- R(n—2,m)-1],

and the recurrence follows. O

3.3 Revisiting (5)

Recall the notation P(a,b), D(1), and |A| from Sect.2.4.4 on partitions. View a
binary word as a lattice path, where “1” is an east step and “0” is a north step.
Then a binary word w with a 0’s and b 1’s forms the lower boundary of a partition
A € P(a,b). Itis not hard to check that

inv(w) = |A],

But also, the Durfee square size, D(A), is interesting, in the following way.
Let ¢ be Foata’s “second fundamental transformation” on words [6]. When
restricted to binary words w, ¢ (w) is a permutation of w, with

maj(w) = inv(¢(w)),
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and ¢ proves bijectively that for any a, b, maj and inv have the same distribution 216

over the binary words with @ 0’s and b 1’s, 217
Furthermore, if A is the partition defined by the lattice path associated with ¢ (w), 218
then it was shown in [9] that 219

des(w) = D(Q),
where des(w) is the number of descents of w. Thus, (maj, des) and (inv, D) have the 220

same joint distribution. 221
We can combine these observations with the identity from the end of Sect:2.2.4: 222

Z Z q* a+b D(k)_z((qu] j -

2%
a.b>0 A€ P(ab) Jjz0 X:4)j+1)
to get 24
x2/ q/
_ Z Z qlxa+bZD(l)
2%

=0 ((x; q)J‘H) a,b>0 A P(a.b)

— Zqinv(w)x|W|ZD()t(W))

w

- quaj(w)xlwlzdes(w)'
w

So, “des” is something like the “Blocks” statistic used in Sect. 2.3. However, observe 225
that “des” gives rise to (5), whereas “Blocks” gives rise to (4). 226

4 Larger Alphabets 227

The above results were all obtained by studying binary words. Now let’s look at 228
words.over the M -letter alphabet [M] = {0,1,2,..., M —1}. 229

Let f(ko, k1, ..., kpy—1; ) denote the number of words over [M] that contain 230
exactly ko 0’s, k1 1°s,...,kpy—1 M — 1’s, and which have major index . Of course 231
the-length of such a word is N = ), k;. It is known that major index is Mahonian 232
on this set of words [8] and therefore its distribution is given by the g-multinomial 233
coefficient 234

Zf(ko,kl,...,kM_l;/,L)q“ = |:

N
>0 k()?kla""kM—l .
n= q
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See Sloane’s sequences A129529, A129531 for the cases M = 3,4. So, if [M]*
denotes the set of all words over [M],

Frg)= Y g™kl = 3 )

we[M]*

Rewriting the last expression and applying (8), we find

F(x,q)

g

ko.k1,...kpy—1>0

[

ko.k1,..., ky—2>0

[

ko.k1,..., ky—2>0

Ko+
ko, ..

ko + -+
ko, ..

Ko+
k...

N=0 ko+-tky—1=N

+ kM—l_
k-1 |

+ kM—Z_
Jkym—2

=4
+kyp—2

Jkp—2

kot Fkp—

q

kottky— Z

kot tku—2

1y Digtetien

kpm—120

|

Ko+ -+ 4 ko1
kp—1

This generalizes the equivalence of (2) and (3) which is the M = 2 case.
We will consider a variation and get a g-difference equation.

Let f;(ko,k1,...,ky—1; 1) denote the number of words over [M] that contain
exactly ko 0’s, k1 1’s,...,kp—1 M — 1’s, and which have major index p, and whose
last letterisi (i =0,...,M —1).

Of these f;(ko, k1, ..., km—i; 1) words, the number whose penultimate letter is
jis

fitko koo ki =1, . ky—isp— (N =1)), ifj>i,
fj(k(),kl,...,ki—1,...,kM_1;,u), ifj <i.

Consequently; fori =0..., M — 1, we have

filkoky. ool ky—ip) = Y fiko.ki. .

Now sum both sides over all k such that kg + - -+ + kj;—1 = N, and write F; (N, u)
for Zk()+"'+kM_1=N fi(k()’ kl 5.

j>i

+>° filko.ki. ...

J=i

. ky—1; ). We obtain

Fy(N.p) =Y Fj(N =1 p=N+1)+Y Fi(N=1p),

J=i

N N
xN.
|:ko,k1, e 7kM—l:|q

(16)

:| xkm—1
q

,ki—l,...,kM_l;pL—(N—l))

ki =1,k ).
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with F;(1, ) = M §, 0. In terms of the generating functions

Dy; =Y Fi(N.wg",
n

we find that
Py =gV Z Py-1j + Z PN-1,,
j>i j=i

with @;; = 1foralli =0,..., M — 1.
Finally, if @; (x.q) = >y~ @y, xV, we find that

Bi(x.q) =x+x) Pi(gx.q)+xY ®i(x.q). (i =01....M-1)

J>i J=i

5 A Related Identity Based on the Positions
of 0’s in Bitstrings

If w is a binary string of length n, let o (w) be the sum of the positions that contain
0 bits, the positions being labeled 1,2;...,n. Thus f(10101) = 2 + 4 = 6. We
consider the generating function

F(x,q)= Zx|w|q‘7(w),

the sum extending over all binary words of all lengths.

If we let T'(nyk) denote the number of words of length n for which o (w) = k,
then we have the obvious recurrence T'(n, k) = T(n—1,k) +T(n — 1,k —n). This
leads, in the usual way, to the functional equation

1+ xqF(xq,q)

F(x,q) = , (I7)
I—x
which in turn leads, by iteration, to the explicit expression
i+l
x/ q(] 2 )
Fx.q) =" (18)

(G

On the other hand it is easy to see that

Y Tk =] +4", (19)
k (=1
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since each position £ in w can either be 1, which contributes £ to o (w), or 0, which
contributes nothing. Thus, we have the identity
X j (/ +l)

Yo ——— =) x H(l +4q"). (20)

j>0 (x:9))+1 >0

Note that (20) is a specialization of Heine’s second transformation (Eq.III.2 in
Appendix Il of [7] witha = —¢q, b =g, ¢ = 0,z = x).

5.1 A Partition Theory View

We can interpret the identity (20) in terms of partitions.

We claim that both sides of the identity count all pairs (A, ) where A is a partition
into distinct parts and 7 is greater than or equal to the largest part of A.

On the right-hand side, [],_,(1 + q"%) is the generating function for partitions
into distinct parts, the largest of which is < n. So, the right-hand side counts all
pairs (A, n) where A is a partition into distinct parts and 7 is greater than or equal to
the largest part of A, as claimed.

The left-hand side counts the same quantity by summing over all j the terms
x" g™ for all pairs (A,n) where A is a partition into j positive distinct parts, the
largest of which is < n. To see this, If A is a partition into j distinct positive parts,
then subtracting the staircase partition (j, j — 1, ..., 1) from A subtracts (j ;1) from
the g-weight of A and subtracts j-from the largest part of A, leaving an ordinary
partition A" with at most j parts. Such A’ are counted in the left-hand-side of (20) by
1/(x;q);+1, where x keeps track of the size of the largest part of A’ plus an excess
corresponding to the number of times the “0” part is selected as the 1/(1 — x) factor
in the product.

5.2 A Generalization

Letw be a word over the K letter alphabet {0, 1, ..., K — 1} and let

o(w) = Zn:iw,-.

i=1

We have 6(10101) = 1+ 3+ 5=9and 0(120301) =14+ 4+ 124 6 = 23. We
consider the generating function

Flrg) = 3 xgr,

the sum extending over all K-ary words of all lengths.
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If we let T'(n, k) denote the number of words of length n for which o(w) = k, 301

then we have the obvious recurrence 302
K—1

T(n.k)=Y Tn—1lk—in). (n>1:T0.k)=8.y). 303
i=0

If we take our generating function in the form F(x,q) =}, -, T (n, k)x" gk, this 304
leads, in the usual way, to the functional equation 305

F(x.q) = al

+
1—x 1—x

> 4'F(xq'.q). 1)

i=1

In the binary case (K = 2), this agrees with (17), which has the explicit expression 306

(lggn the other hand, since a j in position £ contributes j£to a(w), so ZZ;
S Tw.kg* = ﬁ(l +q g e g* Y = ]_[ L=a o)
k ’ (=1 =1 I—q""
and in the case K = 2 we have another view of the identity (20). 309

We would like an explicit solution to the functional equation (21) for K > 2, 310
analogous to (20). Recall that (20) was a special case of Heine’s second transfor- 311
mation. There is no analog of Heine’s second transformation for K > 2. However, 312
there is an analog of the first Heine transformation that can be applied. We make use 313
of the following, which is Lemma 1 from [1]: 314

1"(@:q")uB: Qiw (b:q)ooat; ¢ ) oo Zb"(C/b;q)n(t;q")n'

= (23)
= @5 dnEDm (G Doot:qMw o (@ @a(at;gh)n
Settinga = ¢ = 0,b = x,k = K,and t = ¢* in (23) gives 315
ni, K. K K. K Kn(y..
Fl.q) = ZX(q.,q o _ 4 L Joo N9 ISC,?{)M_ o
= @D (V@)oo =5 (@%:q%)n
6 “Lecture Hall” Statistics on Words 317

The following statistics arose in [10] in a more general context, but we specialize 3
them here to words. For a K-ary word w of length n, define the following statistics: 3

8

9

ASC(w) ={i|i =0andw; >0 or 1 <i <nandw; <w;41};
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asc(w) = |ASC(w)|;
Thp(w) = —(wy +wa +---+wy) + Z K1 —i):

i€ASC(w)

It follows from Theorem 5 in [10] that

Z Z gMxt = 2 velky g'mp(w) yase(w)
1_[:'1=0(1 — quz)

1>0 X€P(n.Kt)

where [K] = {0,1,..., K —1}.
As observed in [10], the inner sum on the left is a g-binomial coefficient, so we
get the identity:

Z n+ Kt o = ZWG[K]K qlhp(w)xasc(w)
n [Ti=o(1 —xg*)

>0
Multiplying both sides by (1 — x) and then setting x = 1 gives

Z n+Kt| |n+K@e—1) _ 2 welky g™
n n N '
q q

=0 (g:)n

The left-hand side above is just1/(g; ¢)x, the generating function for partitions into
at most n parts. So, simplifying,

n
Z Pl l—[(l gt + g2 e g KDY,
welK]" (=1

the same distribution'as ), iw; from Sect. 5.2 (!) We don’t have any nice combina-

torial explanation for this yet.
Experiments indicate that when K = 2, we can actually get the following
refinement:
qZ X = n i *
>0 i=0 ! 2 t—1 2 [Ti=o( = xq2)
(24)

To prove this, from the bijective proof of Theorem 5 in [10], it would suffice to verify
that the innermost summand on the left is the generating function for partitions in
an n by 2t box with i odd parts. This was done for us by Christian Krattenthaler as
follows, thereby proving (24):
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The g-binomial coefficient [”::'i?f]qz is the generating function for partitions consisting of
n — 1 even parts, all of which are at most 2¢. On the other hand, the g-binomial coefficient

[’il.J”'] is the generating function for partitions consisting of i even parts, all of which are
at most 2¢ — 2. Now add 1 to each of the i latter parts. Thereby you get i odd parts, all
of which at most 2¢. (This gives a contribution of ¢’ in the generating function.) Finally
shuffle the odd and even parts.

7 The Generating Function of the Terms
of a Closed Form ¢-Series

In trying to find the solution to a combinatorial problem, one often goes. through
the procedure of finding a recurrence, then a functional equation for the generating
function, then by iteration, the solution of that functional equation, and then, with
some luck, a nice product form for the coefficients that are of interest:

Here, let’s invert that process. Suppose we have a sequence ¢ (1, k) which satisfies

k k_ . a(qJ:)’
> 1(n.k)q ,-H:lb(fﬂ)

k>0

where a(t), b(t) are fixed polynomialsin z. In other words, we suppose that the
sum on the left is a g-hypergeometric term in n. What we would like to know is the
generating function

F(xiq) = t(n.k)x"q".

n.k

To do this, put f(n) =), .t(n, k)g*, and then we have

b(g") f(n) =a(g") f(n—1). (n=1:f(0) =1 (25)

To simplify the appearance of the following results, let R be the operator that
transforms x to xgq, i.e., Rf(x) = f(xq), and suppose our polynomials a, b are
a(ty.= ) a;t/ and b(t) = ) b;t’/. Further, take the generating function in the
form

F(x.q) = Y_ t(n.k)x"q".

n,k>0

Now multiply (25) by x” and sum over n > 1, to find that
(b(R) —xa(qR))F(x.q) =1 (26)

is the functional equation of the generating function.
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7.1 Examples

Example 1. In the case (19) above we have a(t) = 1 + ¢ and b(t) = 1. The
functional equation (26) now reads as

(I=x(1+gR)F(x.q) =1=(1-x)F(x.q) —xqF(xq.q),

in agreement with (17).

Example 2. Consider the case of the statistic o(w) of Sect.5.2 on K-ary words
when K = 3. (This has the same distribution as the statistic lhp from Sect.6.) Here
we have from (22) that a(t) = 1 + ¢ + ¢? and b(t) = 1. The functional equation
(26) takes the form F(x,q) = 1 + x(F(x,q) + qF (xq.q) + ¢* F(xq*.q))si.e.,

1
Iﬂnq%=Tj;(1+qu@%q)+XfF0ﬂ3q», 27)

in agreement with (21). We see by iteration that the solution of this equation is going
to be a sum of terms of the form
q°x"

—T—2 NG~ (28)
1_[?:11(1 — Xq%)

for some collection of «, B, s; to be defined. We want to identify exactly which
terms occur. The set T of such terms is defined inductively by the two rules

1
1—x

@) eT;
and

ay B

q- X
n—l—l—s.ET’
1_[,'=1(1_XC1’)

then both of the following terms must be in 7" :

(i) if

atpt1, p+l a+2f+2, f+1

! nt —, and K nt1 TN
(I=x)[[;iZ (1 —xg*h) (I =) [T/ (1 = xq%+?)

It is now straightforward to verify that the inductive rules define T to be:

qU(W)x‘W‘

{ ]‘[lWH’l (1 _ xqwi+"'+w‘w‘)

i=1

T =

‘w)e {1,2}*}
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The generating function is now 386
) Iwl
q°"x
F(x,q) = Z . 387
w|+1 Wi teetwr,
we{1,2}* 1_[1!1 (1 — xg"it )
Consequently we have the identity 388
Y et = Y [0 a4
=) x"[|A+q +497). (29
wl|+1 Wi AWy,
wel,2}* 1 (1 = xgrit o) n=0  j=1

We’re going to tweak the left side of (29) in the hope of making it prettier. 389
First we change the alphabet from {1, 2} to {0, 1}, just because it’s friendlier. To 390
do that, define new variables {v; }/_, by v; =w; —1 (i =1,...,n), wheren = |w|. 301
Then the gf becomes 392

qa(vv)xlvl

Z T ) 393

] >N
ve{0.1}* 1_[1‘11 (1 —xqvit—tu)

where we have temporarily used some v’s and some w’s. 394
Now introduce yet another set of variables, namely 395
w=w+--4+w,=v,+---4+v,+n—-i+1 (=1,...,n). 396

Then we have 397

n
o(w) = Ziwi = Wttt wy) + ot twp)+etwy =t Fup = 2(u), 308
i=1
399
say. The generating function now reads as 400

g = xlul

Z W 401

which is now entirely in terms of the u;’s, but we need to clarify the set of vectors u 402
over which the outer summation extends. 403

Say that a sequence {t;}/2 1 of nonnegative integers is slowly decreasing if 404
tv+1 =0, and we have t; — ;41 = 1 or 2 foralli = 1,...,n. Then the outer 405
sum above runs over all slowly decreasing sequences of all lengths, i.e., it is 406

E(u)x\u\—l

Z q—. 407

u€sd 1—1 )
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where sd is the set of all slowly decreasing sequences, X (1) is the sum of the entries
of u, and |u] is the length of u (including the mandatory O at the end).

7.2 A Generalization

In the same way we derived (29), we can use the functional equation (26) to derive
the following general result.
Suppose ¢ (n, k) satisfies

k k _ . a(q/:)
> tn.k)q j]:[lb(qj),

k>0

where a(t),b(t) are fixed polynomials in ¢, a(t) = tK:_Ol a;t"; and b(t) =

S K bit'. Then

Iwl iw;
\ awix l_bwi
F(x,q) = E Z(n,k)x"qk = E [Tizi( q )

wl+1 Wi et w '
nk WE{I,Z ..... K—l}* 1_[1=Jl (bo—aoxq i+t \w\)

This shows how the statistics iw; on ‘words arise naturally in g-series, with the
special case of o (w) appearing when the polynomial b is constant.

Acknowledgements We are grateful to the referees for their careful reading and helpful com-
ments. Thanks also to Christian Krattenthaler for supplying the argument to complete the proof of
the identity (24).
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Abstract We define a de Bruijn process with parameters n and L as a certain
continuous-time Markov chain on the de Bruijn graph with words of length L over
an n-letter alphabet as vertices. We determine explicitly its steady state distribution
and its characteristic polynomial, which turns out to decompose into linear factors.
In addition, we examine the stationary state of two specializations in detail. In
the first one, the de Bruijn-Bernoulli-process, this is a product measure. In the
second one, the Skin-deep de Bruin process, the distribution has constant density
but nontrivial correlation functions. The two point correlation function is determined
using generating function techniques:

1 Introduction

A de Bruijn sequence (or cycle) over an alphabet of n letters and of order L is a
cyclic word of length n” such that every possible word of length L over the alphabet
appears once-and exactly once. The existence of such sequences and their counting
was first given by Camille Flye Sainte-Marie in 1894 for the case n = 2, see [10]
and the acknowledgement by de Bruijn[8], although the earliest known example
comes from the Sanskrit prosodist Pingala’s Chandah Shaastra (some time between
the second century BCE and the fourth century CE [15,25]). This example is for
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n = 2 and L = 3 essentially contains the word 0111010001 as a mnemonic for
a rule in Sanskrit grammar. Omitting the last two letters (since they are repeating
the first two) gives a de Bruijn cycle. Methods for constructing de Bruijn cycles are
discussed by Knuth [14].

The number of de Bruijn cycles for alphabet size n = 2 was (re-)proven to
be 22 ~L by de Bruijn [7], hence the name. The generalization to arbitrary
alphabet size n was first proven to be nin gL by de Bruijn and van Aardenne-
Ehrenfest. This result can be seen as an application of the famous BEST-theorem
[22-24], which relates the counting of Eulerian tours in digraphs to the evaluation
of a Kirchhoff (spanning-tree counting) determinant. The relevant determinant
evaluation for the case of de Bruijn graphs (see below) is due to Dawson and Good
[6], see also [13].

The (directed) de Bruijn graph G is defined over an alphabet X of cardinality
n. Its vertices are the words of u = uus ... u; € o, and there is an directed edge
or arc between any two nodes u = uju...u; and v = vvy... vy if and only if
tw) =up...uy = vy...v,—1 = h(v), where h(v) (¢(u) resp.) stands for the head
of v (tail of u, resp.). This arc is naturally labeled by the word w = u.v;, = u;.v,
so that 1(w) = u and ¢(v) = v. It is intuitively clear that Eulerian tours in the de
Bruijn graph G correspond to de Bruijn cycles for words over X of length L + 1.
de Bruijn graphs and cycles have applications in several fields, e.g. in networking
[12] and bioinformatics [17]. For an introduction to-de Bruijn graphs, see e.g. [18].

In this article we will study a natural continuous-time Markov chain on G
which exhibits a very rich algebraic structure. The transition probabilities are not
uniform since they depend on the structure of the vertices as words, and they are
symbolic in the sense that variables are attached to the edges as weights. We have
not found this in the literature, although there are studies of the uniform random
walk on the de Bruijn graph [9]. The hitting times [5] and covering times [16] of
this random walk have been studied, as has the structure of the covariance matrix for
the alphabet of size n = 2[2] and in general [1]. The spectrum for the undirected
de Bruijn graph has been found by Strok [21]. We have also found a similar Markov
chain whose spectrum is completely determined in the context of cryptography [11].

After describing our model on G™* for a de Bruijn process in detail in the next
section, we will determine its stationary distribution in Sect. 3 and its spectrum in
Sect. 4. In the last section we discuss two special cases, the de Bruijn-Bernoulli
process and the Skin-deep de Bruijn process.

2 The Model

We take the de Bruijn graph G™% as defined above. As alphabet we may take
Y =%,=1{1,2,...,n}. Matrices will then be indexed by words over X, taken in
lexicographical order. Since the alphabet size n will be fixed throughout the article,
we will occasionally drop n as super- or subscript if there is no danger of ambiguity.
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From each vertex u = wujuy...u; € XL there are n directed edges in GML
joining u with the vertices upus . ..u,.a = t(u).a fora € X.

We now give weights to the edges of the graph G"X. Let X = {x,4;a € X,
k > 1} be the set of weights, to be thought of as formal variables. We will work
over X1, the set of all nonempty words over the alphabet X (of size n). An a-block
is a word u € X1 which is the repetition of the single letter a so that u = a* for
some a € X and k > 1. Obviously, every word u has a unique decomposition into
blocks of maximal length,

U= b(l)b(2)...b(m)’ (1)

where each factor 5 is a block so that any two neighboring factors are blocks
of distinct letters. This is the canonical block factorization of u with a minimum
number of block-factors.

We now define the function 8 : ¥ — X as follows:

— For a block a* we set B(a*) = xux;
— For u € X¥* with canonical block factorization (1) we set B(u) = B(b™),
i.e., the B-value of the last block of u.

An edge from vertex u € X% to vertex v € XL, so0 that h(v) = t(u) with v =
t(u).a, say, will then be given the weight S(v). This means that

Xa,L if B(u) = Xa,L,
B() = { Xaprr fPW) = x.4 withk < L, 2
Xa.1 if B(u) = xpx for some b # a.

Our de Bruijn process will be a continuous time Markov chain derived from
the Markov chain represented by the directed de Bruijn graph G™% with edge
weights as defined above. The transition rates are S(v) for transitions represented
by edges ending in v. We note that these rates can be taken just as variables and not
necessarily probabilities. Similarly, expectation values of random variables in this
process will be functions in these variables.

The simplest nontrivial example occurs when n = L = 2. There are four
configurations and the relevant edges are given in the Fig. 1.

Before stating our notation for the transition matrix of a continuous-time Markov
chain, our de Bruijn process, we need a general notion.

Definition 1. For any k x k matrix M, let VM denote the matrix where the sum of
each column is subtracted from the corresponding diagonal element,

YM = M — diag(1 - M), (3)

where 1; denotes the all-one row vector of length k and diag(my,...,my) is a
diagonal matrix with entries m, ..., mj on the diagonal.
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Fig. 1 An example of a de 11
Bruijn graph in two letters
and words of length 2 O
11

121

221 122
22
222

In graph theoretic terms YM is the (negative of) the Kirchhoff matrix or
Laplacian matrix of G, if M is the weighted adjacency matrix of a directed graph G.
In case M is a matrix representing transitions of ‘@ Markov chain, the column
(or right) eigenvector of VM for eigenvalue zero properly normalized gives the
stationary probability distribution of the continuous-time Markov chain.

We note that the graphs G"-* are both itreducible and recurrent, so that the
stationary distribution is unique (up to normalization). We will use M™% to denote
the transition matrix of our Markov chain,

M,f"’ML = rate(u — v) = B(v). 4

VML is then precisely the transition matrix,

Bv) foru # v,
VM,Z;AL =<{— Z Bw) foru=wv. (5)
WE#E.L

For the example in Fig. 1, with lexicographic ordering of the states,

—X2.1 0 X1,2 0
V22 — | X2 TXu T X2o X2.1 0 ©)
X1,1 —X12 — X2 X1,

0 X22 0 —X1,1

93
94
95
96
97
98
99
100

101

102

103



Editor's Proof

Stationary Distribution and Eigenvalues for a de Bruijn Process 105

The stationary distribution is given by probabilities of words, which are to be taken
as rational functions in the variables x,,. It is the column vector with eigenvalue
zero, which after normalization is then given by

X1.1X12 X2,1X1,1
Pr[l,1] = — , Prll,2] = T ;
(x12 +x2.1) (X110 + x2.1) (x11 + x22) (X110 + x2.1)
X2,1X11 X22X2,1 7
P2, 1] 101, Pr2,2] = 272,

C (i 4 x2) (vip + x20) (x11 + X22) (X1, + x2.1)

Notice that the probabilities consist of a product of two monomials in the numerator
and two factors in the denominator, and that each factor contains two terms. Also,
notice that not all the denominators are the same, otherwise the steady state would
be a true product measure. Of course, the sums of these probabilities is 1, which is
not completely obvious.

It is also interesting to note that the eigenvalues of YM>? are linear in the
variables. Other than zero, the eigenvalues are given by

— X101 —X22, —X11—Xz21, and —Xj = X2 1. (8)

Another way of saying this is that the characteristic polynomial of the transition
matrix factorizes into linear parts.

3 Stationary Distribution

In this section we determine an explicit expression for the steady state distribution
of the de Bruijn process on G"-*. Before we do that we will have to set down some
notation.

For convenience, we introduce operators which denote the transitions of our
Markov chain. Let d, be the operator that adds the letter a to the end of a word
and removes the first letter,

0y tur>t(u).a. )

With B as introduced we introduce the shorthand notation

Bam = B@a") =Xam+ D Xn1. (10)

bex beX b#a

Note that 8, = Zbe 5 Xp,1 does not depend on a. We now define the valuation
w(u) foru e X+ as

B(u)
u) = 11
p(u) 5 (11)

aes Bdau)’
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Note that the restriction of u on the alphabet ¥ is (formally) a probability 126
distribution. Finally, we define the valuation ji, also on >t as 127

L
a(u) = l—[,u(uluz o) = pu)p(uyug) -+ w(uguy .. oug), (12)

i=1

if u = wujuy ... ur. The following result is the key to understanding the stationary 128

distribution. 129
Proposition 1. Forallue ¥ + 130
> ila) = fiw). (13)
acey
Proof. As in (1), let us write w in block factorized form: 131
u=>bWp@...pm =g pm, (14)
where it = bV .. p™" =V if m > 1, and i is the empty word if m = 1. 132
If b = g* then 133
Xak i = 1,5el, if u is a block,
:Ba,k
wu(u) = (15)
Xa .k .
. ifm>1,
,Ba,k+l
and thus 134
Xa,j . . . .
l_[ B ifm = 1,1.e., if u is a block,
_ =1 PaJ
p) =771 (16)
A - [] =2 ifm> 1.

j=1 :Ba,j+1

We will define another valuation on X closely related to fi, which we call p. 135

Referring to the factorization (14) we put 136
LI
7 L ifm = 1,ie., if u = a* is a block,
By = Ji=1 P! (17)

[[p@®) iftm>1.
=1
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This new valuation is related to i1 by the following properties: 137
— For blocks u = a* we have 138
_ Ba1
pla*) = Z=—f(a"), (18)
IBa,k-H
— For u with factorization (14) we have 139
) = (@) - p(b™), (19)
— Which, by the obvious induction, implies 140
m
) = p®™) - TTae"). (20)
=2

We are now in a position to prove identity (13). First consider the case where 141

u = a* is a block. 142
D Ab-dh) = i@t + Y Tk - db)
bex b#a
Xak+1l =, k - -k
= a’) + b)-pla
B, M) };;t pa*)
Xa Xak+l — Xb1 —, k
= (@) + p(a®)
Bairt Z “ B @D
Xak+1 Xb,1

=7+ | A

Bak+1 Pyl Bak+1

= fi(d").
where we used (18) in the last-but-one step. 143
The general case is then proven by a simple induction on m. 144

> @b Mp? by =" @b Vb by (b ™)

aexy aex

— A(BOBD | pmDy . 5 22)
— ’a(b(l)b(Z) o b(m))’
where we have used property (19) of p in the last step. O

As a consequence of Proposition 1, we have the following result, which is an 145
easy exercise in induction. The case L = 1 was already mentioned immediately 146
after (11). 147
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Corollary 2. For any fixed length L of words over the alphabet X,

> aw) =1. (23)

wexL

Therefore, the column vector £"* = [ji(u)],cxr can be a seen as a formal
probability distribution on X*. We now look at the transition matrix M™% more
closely.

ME = Shwy=i( B(V). (24)

where §, is the indicator function for x, i.e., it is 1 if the statement x is true and
0 otherwise. Thus the matrix M™% is very sparse. It has just n non-zero entries
per row and per column. More precisely, the row indexed by v _has the entry 8(v)
for the no-preimages of v, and the column indexed by u contains B(d,u) as the
only nonzero entries. In particular, the column sum for the column indexed by u is
3,5 B(d4(u)). Define the diagonal matrix A™L as one with precisely these column
sums as entries, i.e.

AL — Zaez BOu) v =u,
v
' 0 otherwise.

(25)
Theorem 3. The vector i is the stationary vector for the de Bruijn process on
G"L e,

Mn,Lﬁn,L — An’Lﬁ,n’L. (26)

Proof. Consider the row corresponding to word v = vjvy ... v v = h(v).vg in
the equation

Mu=AR. 27)

On the Lh.s. of (27) we have to consider the summation ), .. M, , (1), where
only those # € X with ¢(u).v;, = v contribute. This latter condition can be written
as u = b.h(v) for some b € ¥, so that this summation can be written as

Z M, , t(u) = Z My by (b h(v))

ueyL bex

= B(v) Y _T(b.h(v)) = B) T(h(v)),

bex

(28)

where the last equality follows from Lemma 6.
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On the r.h.s. of (27) we have for the row entry corresponding to the word v:

Avy (V) = ) B(0av) ()

aexy

=Y B(0av) - T(h(v)) w(v) = B(v) L(h(v))

aexy

(29)

in view of the inductive definition of & in (12) and the definition of w in (11). |

Let Z"% denote the common denominator of the stationary probabilities of
configurations. This is often called, with some abuse of terminology, the partition
function [4]. The abuse comes from the fact that this terminology is strictly
applicable in the sense of statistical mechanics while considering Markov-chains
only when they are reversible. The de Bruijn process definitely does not fall into
this category. Since the probabilities are given by products of & in (12), one arrives
at the following product formula.

Corollary 4. The partition function of the de Bruijn process on G™* is given by

L—1 n

2"t = Bua- [ ] Bawns (30)

m=2a=1

Physicists are often interested in properties of the stationary distribution rather
than the full distribution itself. One natural quantity of interest in this context is the
so-called density distribution of a particular letter, say a, in the alphabet. In other
words, they would like to know, for example, how likely it is that a is present at the
first site rather than the last site. We can make this precise by defining occupation
variables. Let n°' denote the occupation variable of species a at site i : it is a random
variable which is 1' when site i is occupied by a and zero otherwise. We define
the probability in"the stationary distribution by the symbol { - ). Then ( 5%’ )
gives the density of a at site i. Similarly, one can ask for joint distributions, such as
( n**n>7 ), whichis the probability that site i is occupied by a and simultaneously
that site j is occupied by b. Such joint distributions are known as correlation
functions.

We will not be able to obtain detailed information about arbitrary correlation
functions in full generality, but there is one case in which we can easily give the
answer. This is the correlation function for any letters ay,...,a;,a; at the last k
sites.

Corollary 5. Letu = ay ...aza;. Then

(et ) = ). G1)
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Proof. By definition of the stationary state,

L R Sy () (32)
vexLl—k
Using Proposition 1 repeatedly L — k times, we arrive at the desired result. O

In particular, Corollary 5 says that the density of species a at the last site is simply

a,L Xa,1
Y= —. 33
(n*") B (33)

Formulas for densities at other locations are much more complicated. It would be
interesting to find a uniform formula for the density of species a atsite k.

4 Characteristic Polynomial of Y M ™.

We will prove a formula for the characteristic polynomial of VM " in the following.
In particular, we will show that it factorizes completely into linear parts. In order
to do so, we need to understand the structure of the transition matrices better. We
denote by y(M ; 1) the characteristic polynomial of a matrix M in the variable A.

To begin with, let us recall from the previous section that the transition matrices
M"™L, taken as mappings defined on row and column indices, are defined by

M"E BE X BE X (v, u) b Shwy=rw - BOV). (34)

Lemma 6. The matrix M™% can be written as

M™M= A AR A ] (n copies of AT, (35)
where A™E is a matrix of size n* x n*~! given by
ALyl LTl X U0} s (v, u) - Spy=u - B(V). (36)
We have
X11 AIILL—I onL=1 ... gnL-1 BiLL—l
-x2,l on-L—1 AZsL—l ... onLl-l B;LL—I
An,l — .’ , An,L — ) ) ) . = . s (37)
x);l On,'L—l On,'L—l An,.L—l Bn,'L—l

where AZ’L_I is like A”L~!, but with x; ;_; replaced by x; ;, and where 0L~ is
the zero matrix of size n/~! x nt~2. The matrices B-L~! are square matrices of
size nL™1 x nL =1, where for each ¢ € X the matrix B is defined by
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B(’}’L XEx x5 x U0} (vu) — 8ahw)=u - Bla.v). (38)

With these matrices at hand we can finally define the matrix B"L = 3" _. B"L of
size nt x nt, so that

Byl x 3yt 5 xU {0} : (v, u) = Bpy=i(u) * B(ur.v). (39)

Lemma 7. M"! — B"L is a diagonal matrix.

Proof. We have
M"Ew,u) # B"L(v,u) < h(v) = t(u) and B(u;.v) # B(v) (40)
But B(u;.v) # B(v) can only happen if the last block of u;.v is different from the

last block of v, which only happens if v itself is a block, v = at,andu, = a, in
which case B(v) = x,.1 and B(u;.v) = X4.1+1. So we have

Xa,L+1 — Xa,L ifv=u= aL,

(Bn,L _ Mn’L)(U, I/l) — (41)
otherwise.
|
We state as an equivalent assertion:
Corollary 8. For the Kirchhoff matrices of M- and B™* we have equality:
VM}‘[,L :V Bl‘l,L. (42)

We now prove a very general result about the characteristic polynomial of a
matrix with a certain kind-of block structure. This will be the key to finding the
characteristic polynomial of our transition matrices.

Lemma9. Let Py,..., Py, Q be any k X k matrices, P = P, + ---+ P, and

P+0Q P - P
P, P, + Q P,
rR=| o 3)
Pm Pm Pm + Q
Then
X(R:A) = x(Q: )" x(P + Q:4). (44)

Proof. Multiply R by the block lower-triangular matrix of unit determinant shown
to get
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1 00---0 o 0 0- Py
-1 10---0 -0 0 0. P,
R-| 0 —11 0l=| O Q Q P (45)
0 00---1 0 O O---Pm+Q

which has the same determinant as R. Now perform the block row operations which
replace row j by the sum of rows 1 through j to get

Q00 - P,

00Q0- P+ P

00 Q P1+P1+P3 (46)
000 P+0

Since this is now a block upper triangular matrix, the characteristic polynomials is
the product of those of the diagonal blocks. O

We will now apply this lemma to the block matrix

B* — Dt LBf'L B{”i
Byt~ Byt—prt ... B
M = : y . . : (47
B~ Byt ... Byt —pnt

where DL is the (n’x n’)-diagonal matrix with the column sums of A”X*! on
the main diagonal.

Proposition 10. The characteristic polynomials y(YM™": z) satisfy the recursion
X(VMn’L+l; Z) — X(—Dn'L; Z)n—l . X(VMn’L; Z)- (48)

Proof. From Corollary 8, Lemma 9, and the easily checked fact VB"-* = B"L —
D"E we get:

ACMPELR) = y (=D )" (D ges Bt — D" 2)
= x(=D"*; )" " x(B"* — D"E;2)
= x(=D"E Ay x (VB2
= x(=D"E )" (M),

(49)

As a final step, we need a formula for y(—D™L, ).
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Lemma 11. The characteristic polynomial of — D™ is given by

A+ Bia if L =0,

x=D"t =1,
[TITR+ B ] 0+ Barsr) ifL>o.

m=2a€X aexy
(50)

Proof. The case L = 0 follows directly from the definition of A™! in (37). For
general L, recall that A" *! contains n copies of A"l with one factor containing
X4, removed and one factor containing x, 7 +; added instead, foreacha € X. Thus,

n L . A+ B
1(=D"E.2) = [y(=D" ' 1] E(Tﬂjzl) ey

which proves the result. O

We can now put everything together and get from Proposition 10, Lemma 11 and
checking the initial case for L = 1:

Theorem 12. The characteristic polynomial of the de Bruijn process on G™X is
given by

L
A M2 =20 praf - [T [T G+ o™ 62

m=2ag€X

5 Special Cases

We now consider special cases of the rates where something interesting happens in
the de Bruijn process.

5.1 The de Bruijn-Bernoulli Process

There turns out to be a special case of the rates x, ; for which the stationary
distribution is a Bernoulli measure. That is to say, the probability of finding species
a at site i in stationarity is independent, not only of any other site, but also of i itself.
This is not obvious because the dynamics at any given site is certainly a priori not
independent from what happens at any other site. Since the measure is so simple, all
correlation functions are trivial. We denote the single site measure in (11) for this
specialized process to be iy, and the stationary measure (12) as ji,.
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Corollary 13. Under the choice of rates x, j = y, independent of j, the stationary
distribution of the Markov chain with transition matrix YM"™" is Bernoulli with
density

p — L
Zbex Vb

Proof. The choice of rates simply mean that species a is added with a rate
independent of the current configuration. From (11), it follows that for u =
uiuy...uy,

(53)

Yur
U) = —=———— = Py, , (54)
) =y~ P

and using the definition of the stationary distribution f in (12),

L
ﬁy(”):l—[puiv (55)

i=1

which is exactly the definition of a Bernoulli distribution. O

5.2 The Skin-Deep de Bruijn Process

Another tractable version of the de Bruijn process is one where the rate for
transforming the word u = wujuy ... uy into du = t(u).a = uy...up.a fora € ¥
only depends on the occupation of the last site, u; . Hence, the rates are only skin-
deep. An additional simplification comes by choosing the rate to be x whena = uy
and 1 otherwise. Namely,

x forj =1,
Xaj = / (56)
1 forj > 1.

We first summarize the results. It turns out that any letter in the alphabet is equally
likely to be at any site in the skin-deep de Bruijn process. This is an enormous
simplification compared to the original process where we do not have a general
formula for the density. Further, we have the property that all correlation functions
are independent of the length of the words. This is not obvious because the Markov
chain on words of length L is not reducible in any obvious way to the one on words
of length L — 1. This property is quite rare and very few examples are known of
such families of Markov chains. One such example is the asymmetric annihilation
process [3].
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The intuition is as follows. By choosing x < 1 one prefers to add the same letter
as uy, and similarly, for x > 1, one prefers to add any letter in X' other than u; .
Of course, x = 1 corresponds to the uniform distribution. Therefore, one expects
the average word to be qualitatively different in these two cases. In the former case,
one expects the average word to be the same letter repeated L times, whereas in the
latter case, one would expect no two neighboring letters to be the same on average.
Our final result, a simple formula for the two-point correlation function, exemplifies
the different in these two cases.

We begin with a formula for the stationary distribution, which we will denote in
this specialization by fi,. We will always work with the alphabet X' on n letters.

Lemma 14. The stationary probability for a word u = wuy...up € Xlis
given by

-1
n(l 4+ (n—Dx)L—1’

fx () = (57)

where y(u) is the number of blocks of u.

Proof. Analogous to the notation for the stationary distribution, we denote the block
function by f. From the definition of the model,

o Jx ifke=1,
(@) = 58
Pl {1 itk > 1. e

and thus, for any word u the value B, («) is x if the length of the last block in its
block decomposition is 1,7and is 1 otherwise. The denominator in (57) is easily
explained. For any word u of length L,

I+(n—1x L>1,
nx L =1,

Y Bi(t(w).a) = (59)

a€exy

because for all but one letter in X, the size of the last block in #(u).a is going to be
1. The only exception to this argument is, L = 1, when #(«) is empty. From (12),
we get

B () Bx(uiuz) -+ By ... ur) '

nx(1+ (n—1)x)L-1 (60)

P (u) =

The numerator is x”“), since we pick up a factor of x every time a new block starts.
One factor x is cancelled because B (1) = x. O

The formula for the density is essentially an argument about the symmetry of the
de Bruijn graph G™L.
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Corollary 15. The probability in the stationary state of G™* that site i is occupied
by letter a is uniform, i.e., for anyi s.th. 1 <i < L we have

; 1
(n"") = —(a e X). (61)
n
Proof. Indeed, by Lemma 14 the stationary distribution /i, is invariant under any
permutation of the letters of the alphabet X. Hence (%) does not dependona € X
and we have uniformity. O

Since the de Bruijn-Bernoulli process has a product measure, the density of @ at
site i is also independent of 7, but the density is not uniform since it is given by p,
(53). The behavior of higher correlation functions here is more complicated than the
de Bruijn-Bernoulli process. There is, however, one aspect in which it resembles the
former, namely:

Lemma 16. Correlation functions of G™* in this model are independent of the
length L of the words and they are shift-invariant.

Proof. We can represent an arbitrary correlation function in the de Bruijn graph

G™L as
(nrit gty = Z ﬁx(w(o)alw(l) . W(k—l)akw(k))’ (62)
w© . wk)
where we have sites 1 < i} < iy < ... < iy < L and letters a;,a,,...,a; € X,
and where the sum runs over all (W@, w . w®) with wl) e Xi+1=i5-1 for
s €{0,...,k}, and where we put iy = 0 and ix+; = L + 1. Now note that we have
from Proposition 1 for any u € X*
D ) = jic(w). (63)
wex’L
Since f[i,, as given in Lemma 14, is also invariant under reversal of words, we
also have
D fx(uw) = fic(w). (64)
wexL

As a consequence, we can forget about the outermost summations in (62) and get

(pi gy =

Z A (awV L owkDg) = (yhe ey, iy, (65)

W) &=
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where j; = iy —i; + 1 (1 <s < k). Shift-invariance in the sense that
(nal,il ‘”nak,ik>L — (nal,i1+1___nak,ik+l)L (66)
is an immediate consequence. O

We now proceed to compute the two-point correlation function. This is an easy
exercise in generating functions for words according to the number of blocks. The
technique is known as “transfer-matrix method”, see, e.g., Sect. 4.7 in [20].

Fora,b € ¥ and k > 1 we define the generating polynomial in the variable x

aprlabix)y =Y X7 (67)

w€a.Xk—1p

where, as before, y(w) denotes the number of blocks in the block factorization of
w € X (so that y(w) — 1 is the number of pairs of adjacent distinet letters in w).
Note that

wala by =) Ta=D (68)
x cifa # b.

The following statement is folklore:

Lemma 17. Let I, denote the identity matrix and J, denote the all-one matrix,
both of size n x n, and let K, (s,t) ‘= s -1, + t - I, for parameters s, t. Then

1
=1
K,(s;t)7 = —s(s nt) K, (s + nt,—t). (69)

Indeed, this is a very special case of what is known as the Sherman-Morrison
formula, see [19, 26].
Consider now the matrix

An(x) = [eni(a,b;3) ] pex = (1 =x) -1, + x - Jy = Ky (1 = x, x) (70)

which encodes transition in the alphabet X. Then, for k > 1, 4, (x)* is an (n x n)-
matrix which in position (a, b) contains the generating polynomial «, ¢ (a, b; x):

A () = [anp(@,b;x)], pes - (71)

We can get generating functions by summing the geometric series and using
Lemma 17:
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ZA,,(x)kzk = [, —z- Ay (x)7"
k>0
= K,(1 —z 4 xz,—x2)”"
_ Ky(1—z—(n—1)xz,x2)
C (l—z4+x0)(1—z—m—1xz)’

which means that for any two distinct letters a, b € X'

l—z—(—2)xz
1—z4+xx)(1—z—@m—1)x2)

Y anila,aix)? =
k>0
1 1 n—1 1
= — + )
nl—z—m-—1)xz n l—z+xz
Xz

(1—z4+x2)(1—z—@m=1)x2)

Y anrla,bix) =

k=1
1 1 1 1
nl—z—(m—-Dxz nl—z+xz7

or equivalently,

(1= =1Dx) + @ -1 -x)F),

anila,a;x) =

(1= —Dx)F = (1 -x)%).

(@, b;x) =

S|= S| =

We thus arrive at expressions for the two-point correlation functions:
Proposition 18. Fora,b € X witha #band1 <i < j <L,

. 1 n-1 1—x i
aiajy —
Gty 2t e (1+(n—1)x) '

- 11 1—x =i
aibjy — — )
(™) n? n2(1+(n—1)x)

(72)

(73)

(74)

(75)

Proof. By Lemma 16 we may assume i = | and j = L. Comparing Lemma 14

with the definition of the o, x(a, b; x) in (67) we see that fora, b € X

_apr—i(a,b;x)
on(l 4 (n—x)L=1’

)

so that the assertion follows from 74.

(76)
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The formula (75) is quite interesting because the first term, 1/n2, has a
significance. From the formula for the density in Corollary 15, we get

ety — ey ety = ( — )H (77)
n?> \1+ (n—1)x '

The object on the left hand side is called the truncated two point correlation function
in the physics literature, and its value is an indication of how far the stationary
distribution is from a product measure. In the case of a product measure, the right
hand side would be zero. Setting

1—x
0 =— (78)
1+ @m—1)x

we see that (o] < 1, and so the truncated correlation function goes exponentially to
zero as L — oo. Thus, the stationary measure [i, behaveslike a product measure
if we do not look for observables which are close to each other. We can use (77) to
understand one of the differences between the values x < 1 and x > 1, namely in
the way this quantity converges. In the former case, the convergence is monotonic,
and in the latter, oscillatory.
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