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D I O P H A N T I N E  R E P R E S E N T A T I O N S  OF L I N E A R  R E C U R R E N T  
S E Q U E N C E S .  II 

M. A.  V s e m i r n o v  UDC 511.5 

Direct constructions of Diophant ine representations for linear recurrent sequences are considered. Dioph, antine 
representations of the sets of  values for third-order sequences with negative discriminants are found. As an 
auxiliary problem, we s tudy the structure of the multiplicative group of the ring Z[A], where ~ is an invertible 
algebraic integer (unit) in a real quadratic field or in a cubic field of negative discriminant. The index of the 
subgroup { •  ~ I n E Z } in the group (Z[A])* and the generator of(Z[A])* are evaluated explicitly. Bibliograph, y: 
14 titles. 

1. INTRODUCTION 

In the  present  paper,  we cont inue  to investigate the  problem of cons t ruc t ing  direct  Diophant ine  repre- 
sentations of linear recur ren t  sequences set up in [12, O p e n  question 2.3]. One can find the mot ivat ion of 
the problem and its de ta i led  se t t ing  in the author ' s  paper  [3]. For the h is tory  of this problem, see [12, 
Chapter  2]. Most of the  resul t s  of this series of papers  were announced  by the  au tho r  in [2, 4, 5]. 

Let us recall the main  defini t ions,  constructions,  and results  of [3] tha t  we need below. 

D e f i n i t i o n .  A set A,I o f  n - t u p l e s  o f  integers is called Diophan t ine  i f  there  exists  a p o l ynomia l  

P ( a l ,  . . . , a~, Xl ,  . . .  , x,~) w i t h  in teger  coetEeients such t h a t  

{al,... ,an)  C J ~ ' (  Y~Xl E N,. . .  ,3x,~ E N  [P(al,.. .  , a n , X 1 , . . .  , X m ) = 0 ] .  (1) 

W~ call equivalence (1) a D i o p h a n t i n e  representat ion o f  the  set  yt4. 

R e m a r k .  As was proved by Matiyasevich in his fundamen ta l  work [11], the  number- theore t ic  not ion of a 
Diophant ine  set coincides w i t h  the  not ion of a recursively enumerable  set. See also [12]. 

Tradit ionally,  in tile p r o b l e m s  of const ruct ing Diophan t ine  representat ions one speaks about  sets of n- 
tuples of posi t ive  'integers. In  our  case, it is more na tura l  to  consider sets of n- tuples  of integers, since the  
values of an arbi t rary l inear  recurrent  sequence can be b o t h  positive and negative.  For tile same reason, 
it will be convenient  to cons ider  Z-Diophant ine  representat ions,  i.e., representa t ions  analogous to (1), bu t  
with variables x l ,  x 2 , . . . ,  Xm ranging  over integers. 

It is well known tha t  t he  not ions  of Diophant ine  and Z-Diophant ine  sets coincide (for example, see 
[12, w More precisely, for a given Diophant ine  representa t ion  of a set one can find its Z-Diophant ine  
representa t ion and vice versa.  The  same technique allows us to show tha t  for a Diophant ine  set Y~4 C Z n, 
the sets M ' =  C M = I b l l ,  = Ib l]} and  M "  = M n N  are 
also Diophant ine .  

To avoid awkward formulas ,  we shall not t ransform Z-Diophant ine  representa t ions  into the corresponding 
Diophant ine  representa t ions .  For the same reason, we consider systems of Diophant ine  equations. If 
necessary, one can t r ans fo rm any such system into a single Diophant ine  equat ion.  In addition, we use 
simple relat ions such as divisibi l i ty  and inequalities which are obviously Diophant ine .  

2.  RECURRENT SEQUENCES AND THEIR PROPERTIES 

Let a sequence a,~ be def ined by the following recurrent  relation of order  k (i.e., each member  of the  
sequence is expressed as a l inear  combinat ion  of the k member s  directly preceding it): 

an+k = b k - l a n + k - 1  -~- �9 . .  -~- boa,~, (2) 

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 241, 1997, pp. 5-29. Original article submitted October 
10, 1997. 
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with the initial conditions 

a 0 = l ,  a-1 = a - 2  . . . . .  a - k + 1 = 0 .  (3) 

We assume the coefficients b~ to be integer. Furthermore,  we impose the additional restriction. 

b0 = :t:1. (4) 

This restriction allows us to define the given sequence for all negative values of n by the  relation 

an = ( a n + k  - -  b k - l  a n + k - 1  - - . . .  -- b lan+l  ) /bo ( 5 )  

and obtain an infinite (in both directions) in te9er-valued sequence. We restrict ourselves to such sequences. 
Below we consider the case that  is most interesting for applications, namely, the case where the polyno- 

mial 
f(A) = t k - bh:_lt k -1  - . . .  - b i t -  bo (6) 

is irreducible over Q. As we see later, in the cases under consideration, we can express the  irreducibility 
condition for f by a sys tem of Diophantine equations in the variables bo, b l , . . . ,  bk-1.  

A Diophantine representat ion of the linear recurrent  sequence (2)-(3) means for us a Diophantine rep- 
resentation of the set 

M =  {<u,n) lu = an}. (7) 

Consider one simple case. Let the polynomial f defined by (6) be t h e / t h  cyclotomic polynomial; then 
the sequence under consideration is a periodic sequence with period not exceeding 1. It is well known that  
for a polynomial f with k distinct roots A(1) = A, A(2), . . . ,  A(h:), there exist coefficients cj,  j = 1 , . . .  k, such 
that  

k 

an : E 
j = l  

For a cyclotomic polynomial,  all the A(j) are roots of unity. Hence, the sequence an is periodic�9 Bnt for a 
periodic sequence (with fixed b0, bl, . . .  , b~:-l), the  problem of constructing its Diophant ine  representation 
is trivial. Therefore, below we may exclude this case and assume that  f is not a eyclotomic polynonfial. 

Let us recall the main  construction introduced in [3]. Consider the following square matrices of size L ~, 
(E denotes the identity matrix):  

0 0 . . .  0 bo ) 
1 0 . . .  0 bl 

B =  0 1 . . .  0 b2 , 
�9 . �9 

0 0 . . �9  1 bk-1 

) A ( x o , x l , . . .  , x k - 1 )  = E x l  B l -  E b k - j B l - J  
/ = 0  j = l  

= x 0 E  + X l ( B  - -  b k - l E )  + . . .  -4- X k - l ( B  k - 1  - bk_l  B k - 2  - - . . .  -- b l E ) ,  

A*(n) = A ( a , ~ , a n - t , . . .  , a ~ - k + l ) .  

Define the following homogeneous polynomial of degree k in k variables: 

F B  (Xo, Xl ,  . . . , x k - 1  ) = det A(xo,  x l ,  . . . , x k - 1  ). 

As was proved in [3], 

(8) 

(9) 

(1o) 

(11) 

- F B ( a n , a n - l , � 9  , a n - k + 1 )  = d e t B  n = ( + b 0 )  n = 4 -1 ,  

1 5 " B ( - - a n , - - a n - l , . . . , - - a n - k + 1 )  = d e t ( - B )  n = (-t-bo) n = -4-1. (]_2) 

The following problem natural ly  arises: when do these relations characterize the sequence under  consider- 
ation completely? 
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Def in i t ion  (see [3]). We say that the relation 

F ' B ( z 0 , x l , . . .  , X k _ l )  = -4-1 (13) 

is &aracteristic for sequence (2)-(3) K Eq. (13) has 1~o other integer solutions {xo, x l , .  . . , Z k - 1 }  than those 
listed in the following two series: 

( X 0 , : L ~ I , . . .  ,X/c- - I )  = (ar~.,an-1,... ,arz k-kl},  

{ .Z '0 ,2 ;1 , - - .  ,Z 'k--1} = ( - - ( t . l , , - - a n - - 1 , . . .  , - - a r~- -kq-1} .  

Classification of all sequences of the form (2)-(3) (in other words, of all sets of coefficients b0, bt, . . .  bk-1) 
for which relation (13) is characteristic is the first step towards the direct construction of a Diophantine 
representation of the set (7). In fact, if for a given set b0, bl, . . .  bk-1, relation (13) is characteristic for 
sequence (2) (3), then one can easily find a Z-Diophantine representation of the set 

Namely, 

M ,  = z 1 3 .  z = v = - a n ] }  

X E J ~ l  "( )" ~a;'l E Z , . . .  , ~ X k - 1  E Z [ ( f B ( X ,  X l , . . .  , 3 2 k _ 1 ) )  2 - -  1 = 0] .  

3. G E N E R A L  S C H E M E  

As is shown in [3, 4], the problem of d.escription of all sequences for which relation (13) is characteristic 
is closely related to properties of units (invertible elements) in orders of algebraic numbers. 

Let A be a root of the polynomial f defined by (6). Since we assume f to be irreducible over Q, the 
field Q(A) is an extension of Q of degree k, [Q(A) : Q] = k. Let (Z[A])* denote, as usual, the multiplicative 
group of order (Z[A]). Since b0 = +1, we have 

{ia'  : z} c (z[A])* 

The following representation of powers of A will be useful (see [3, Eq. (18)]). 

L e m m a  1. 
/~n = a n  Jr- a n - l  (,~ - -  b k - 1 )  q- . . .  q- a n - k + l  (/~ k - 1  - -  bk-lA k-2 - . . .  - b l ) .  (14) 

L e m m a  2. Relation (13) holds for integers xo, Z l ,  . . .  , Xk - -1  i f  a n d  o n l y  if" the number 

is invertible in Z[A]. 

07 0 -~-Xl( .~ --  bk_l) ~-...  ~-Xi_l(/~ k - 1  - -  b k _ l / ~  k - 2  - . . .  - -  b l )  

Note that  the mapping T : Q(A) --~ Mk(Q) defined by 

T ( x o  q - :~~  \ - b k - 1 )  + . . .  q- Z k - l ( / ~  k - 1  - b k - l A  k - 2  - . . .  - b l ) )  = A(zo, X l , . . .  , .32k--1) 

is an embedding of the field Q(A) into the matrix ring Mk(Q). In fact, for # E Q(A), the matrix T(#) is 
the matrix of the operator/2,/2(z) = #z, in the basis (1, k , . . . ,  Ak-1}. In particular, T(A) = B. Taking into 
account the definitions of the homomorphism T and of the polynomial FB, one can see that 

det T(xo + X l  (,'~ -- b k - 1 )  + . . .  q- X k - 1  ( ,~k -1  _ bk_lAk-2 - . . .  _ b l ) )  = F B ( x 0 ,  X l , . . .  , X k - 1 ) .  

Thus, Lemma 2 is a reformulation of the corollary to Lemma 2 in [3]. 
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T h e o r e m  1 [3]. Consider the sequence an def ined by relations (2)-(3). Let  the polynomiM f defined by  
(6) be irreducible over Q and let A be a root o f  f . Define a polynomial  F s  by (8), (9), and (11). Then  
relation (13) is characteristic for the sequence an i f  and only i f  

( z f a ] ) *  = : c z } .  ( 15 )  

R e m a r k .  In [3], this result was not stated explicitly, but it was obtained as a step in tile proof of the main 
result of [3] (see the proof of" Theorem 1 in [3] and,  in particular, Eq. (19)). 

It follows from Theorem 1 tha t  if relation (13) is characteristic, then the free rank of the group (Z[A])* 
does not exceed 1. Combining this s tatement  wi th  the Dirichlet theorem on units (see [1, Chapter  II, w 
Theorem 5]), we get the following corollary. 

C o r o l l a r y  1. I f  relation (13) is characteristic, then one of  the following conditions holds: 
(1) k = 2; 
(2) k = 3, and the polynomial  f has exactly one reat root; 
(3) k = 4, and the polynomial  f has no real roots.  

Note tha t  the conditions of Corollary 1 are not  sufficient. We call a sequence exceptional if it satisfies 
one of the conditions of Corollary 1 but relation (13) is not characteristic. Examples of such sequences will 
be given later. In addition, in this paper we wri te  explicitly all exceptional sequences of orders 2 and 3. 

For exceptional sequences, the group {=hA n : n E Z} is not the whole group (Z[A])*, but its subgroup of 
finite index. This allows us to amplify Eq. (13) to a characteristic system. 

4.  S E C O N D - O R D E R  SEQUENCES 

Second-order sequences have been investigated in [10, 14, 6]; see also [12, Chapter  II]. We consider this 
case from another  point of view. Furthermore,  this  case allows us to demonst ra te  the main ideas of the 
general scheme for a natural  simple example. 

First,  we find the restrictions on the coefficients b0, bl. Let us recall that ,  by our assumptions, b0 = i l ,  
and the polynomial 

f(A) = t 2 - bit  - bo (16) 

is irreducible over Q. As was noted above (see Sec. 2), we exclude the case of periodic sequences with a 
cyclotomic polynomial f .  For this reason, for second-order sequences we have to demand that  f has no 
complex roots, i.e., the inequality 

b 2 + 4bo _~ 0 (17) 

holds. The polynomial f is irreducible if and only if 

b 2 + 4bo is not  an integer square. (18) 

Obviously, conditions (4), (17), and (18) are equivalent  to the system 

b 0 = i l ,  b ~ 0 ,  b ~ + 4 b 0 > 0 .  

L e m m a  3. Let  k = 2, Co = •  cl E Z, cl ~ O, c~ + 4co > 0. Let # sat is fy  the equation 

#2  __ C I #  --  C0 = 0. (19) 

Let  A = #~ or A = - # "  for some  integer n. The  inclusion # E Z[AJ holds i f  and only i f  one of  the fol lowing 
conditions hoMs: 

(i) = 1; 
(ii) Irtl = 2, Icll = 1, and co = 1. 

Proof. Necessity. Note that  A E Z[#]. Hence, for # E Z[A] we have 

z [ , ]  = 
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In part icular ,  (1,/Z} and  {1, A} are bases  of  the  same modulus .  Therefore ,  the d i sc r iminan t s  of these bases 
are equal, D(1,/Z) = D(1,  A) (for example ,  see [1, Chap te r  2, w 

Let 

= + y. (2o) 

Then  D(1, A) = x2D(1,/Z). Hence,  x = :t:1. 

Taking the  no rm of' A, we have  N(A)  = N(x/Z + y) = :~2N(#) + xyTr ( / z )  + ~ = - c o x  2 + c l x y  + y-2. On 
the  other  hand ,  N ( s  = (N(+ /zn ) )  = ( N ( # " ) )  = (N(p))'" = ( - c o ) C  Therefoi'e, 

- c o x  2 + c~xy + y2 = (_co)~.  

Case t.  c0 = - 1 .  Since x = +1 ,  we have c l x y  q- y2 = 0, i.e., e i ther  y = 0 or y = - x c 1 .  If  y = 0, then  
A = x l * =  :k/z, a n d n  = 1. I f y  = - x c ~  then,  by (19) and  (20), A = x ( p - c ~ )  = xcop  - ~ . =  T/Z - ~ , a n d  
r z =  - 1 .  

Case 2. co = 1, n is odd.  Since z = + 1 ,  we get the same re la t ion  c l a y  + y') = 0 as above.  As in case 1, we 
have n = 4-1. 

Case 3. co = 1, n is even. T h e n  c l x y  J- y2 = ( _ c 0 ) n  "l- C0 x2 = 2. Taking into accoun t  t h a t  x, y, and cl 
are integers, one can list all the i r  poss ible  values (see Table 1). In addi t ion,  Table 1 con ta ins  the  values of 
g~,(t) (the min imal  po lynomia l  for # over  Q) and  the cor responding  values of A and  n.  

y X 

2 1 

2 - 1  
- 2  1 

- 2  - 1  

1 1 

1 - 1  
- 1  1 

- 1  - 1  

c1 
- 1  t 2 
1 t 2 

1 t 2 

- 1  t 2 

1 t 2 

--1 t 2 
- 1  t 2 
1 t 2 

TABLE 1. 

iq.(t) 
+ t - 1  

- t - 1  
- t - 1  

+ t - 1  

- t - 1  

+ t - 1  
+ t - 1  

- t - 1  

/Z + 2 = # - 2  - 2  

- #  + 2 = / Z - 2  - 2  
# - 2 = _ # - 2  - 2  

.# 2 = - # - 2  - 2  
# + 1 = #  2 2 

--# + 1 = #2 2 

# - 1 = _#2  2 
# 1 = _/1._9 2 

This completes  the  p roof  of necessi ty.  

Sufficiency. Cond i t ion  (i) is obv ious ly  sufficient,  since # C (Z[#])* if c0 = +1 .  As to  cond i t i on  (ii), one can 
direct ly check t h a t  it is sufficient (see t he  values of A in Table  1). This  completes the  proof.  

If # satisfies the  equa t ion  #2 _ # _ 1 = 0, then  A 2 - 3A + 1 is the  minimal  po lynomia l  for A = #2 and 
A = p-2 ,  and  A 2 + 3A + i is the  m i n i m a l  polynomial  for A = _/Z2 and  A = _ p - 2 .  We  ob ta in  the  same 
polynomials  if p satisfies the  e q u a t i o n  #2 + # _ I = 0, and  A = +p2 ,  A = :t:p -2. 

T h e o r e m  2. Let  k = 2, be = +1, bl E Z,  t)1 r O, b~ + 4b0 > 0. 

(1) I f  be = - 1 ,  bl --  4-3, then [(Z[A])* : {+A'~ln E Z}] = 2. 

(2) all the remaining c ses, (Z[a])* = Z}]. 

Proof. The  proof  is i m m e d i a t e  by  L e m m a  3. 
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T h e o r e m  3. L e t  k = 2, bo = +1 ,  bl E Z,  bl # O, bSl + 4b0 > 0. R e l a t i o n  (3) is charac t e r i s t i c  for s e q u e n c e  

(2)-(3) ir and only ir 
<bo,bl> ~ {(-1,3),<-1,-3}}. 

P r o @  The proof is immedia te  by  Theorems 1 and 2. 

R e m a r k  1. Consider the exceptional  sets (b o, bl ) in detail.  
Fi rs t  note that,  for second-order  sequences with b0 = - 1 ,  more careful analysis of (12) leads to the 

re la t ion 
F B ( - a n , - a , - l )  = F B ( a n , a n - 1 )  = ( d e t B )  ~' = 1 ~' = 1. 

Let  b0 = - 1 ,  bl = 3, and A2 _ 3A + 1 = 0. In this case, 

f B ( x 0 , 2 g l )  = XO 2 -- 3X0X 1 -~ 25 .2 " 

One can take # = A - 1 as a fundamental  unit of the  ring Z[~]. In addition, A = #2. By  L e m m a  2, 
all superfluous solutions of Eq. (13) correspond to numbers  of the form + # 2 n + l .  Namely, all superf luous 
solut ions  are given by (Yn, z~), ( - y ~ , - z n ) ,  where p2n+l = y~ + z~(A - bl). Note  that  #2~+1 = #A~ = 
(A - 1)A n = A ~+~ - An. By L e m m a  1, 

# 2 n + l  = a~.~+l -- a n  -~- ( a n  --  a,~_t) (A - bl),  

i.e., Yn = an+l  - a~,  zn = a~ - a n - 1 .  Taking into account  the recurrent relation (2) with bl = 3, we have 
y~ = 2a~ - a~_l.  A s t ra ightforward calculation shows tha t  

Y B ( y n ,  Zn )  = f B ( - - y n ,  - - Z n )  = - - F B ( a n ,  a n - l )  = --1.  

Thus ,  in this case one can take tile relation 

F B ( x 0 , x l )  = 1 (21) 

as a characterist ic relation ins tead of (13). 
For  the  same reasons, in the  case b0 = -1 ,  b l  = - 3 ,  one can take (21) as a characterist ic relation. 

R e m a r k  2. Let b0 = - 1 ,  ]bl] • 3, and b~ + 4b0 > 0. By Theorems 1 and 2, in this case relation 
(13) is characteristic, i.e., it has no superfluous solutions. But  for b0 = - 1  we have, as in R e m a r k  1, 
F B ( - - a n , - a ~ - l )  = F B ( a ~ , a n - 1 )  = 1. Therefore, the  equat ion 

F B ( x o . , z l )  = --1 

has no integer solutions. Hence,  if b0 = -1 ,  then we can consider a simpler characterist ic relat ion (21) 
ins tead  of (13). 

5, T HIRD-ORDER SEQUENCES 

First ,  we find r,. .~ ~ictions on the  coefficients bi. B y  Corollary 1 to Theorem 1, it is necessary tha t  the 
cubic  polynomial  f defined for k = 3 by (6) has exact ly  one real root. It is well known (for example ,  see [8, 
w tha t  this condition holds if and only if the discriminant  of f is negative: 

2 2 + 4b31 _ 4bob~ - 27b~ - 18boblb2 < O. D = b I b 2 (22) 

Exclude  from these polynomials  the polynomials reducible over Q. Since b0 = i l ,  the real root  of f is 1 
or - 1 ,  and both its complex roots  are roots of uni ty  lying in some quadratic field (i.e., they are primit ive 
roo ts  of uni ty  of degree 3, 4, or 6). 
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T A B L E  2 .  

f 
x 3 - x  2 + x - 1 =  (x 2 + 1 ) ( x - 1 )  

x a + a : ' - ) + x + l =  (x 2 + 1 ) ( x + 1 )  
x a - l = ( x  2 + x + 1 ) ( x - 1 )  

x 3 + 2 z  2 + 2 1 + 1 = ( x  2 + x + 1 ) ( x + 1 )  
x 3 - 2 x  9 + 2 1 - 1 =  (x 2 - x + 1 ) ( x - 1 )  

: P  + i : (~ - :~. + 1)(~ + i) 

D 
- i 6  
- 1 6  
- 2 7  
- 3  
- 3  

- 2 7  

All reducible polynomials  f with b0 = --1 and D < 0 are listed in Table 2. 
Since the  diseriminant  of  an irreducible cubic polynomial  is not equal to - 3 ,  -16 ,  - 2 7  (see [8, p. 126]), 

to exclude the case of reducibi l i ty  we may impose the  following restriction along with relation (22): 

D r - a , - 1 < - 2 7 .  (2a) 

Later  we reduce the  problem of description of th i rd-order  exceptional sequences to the problem on the  
number  of representat ions  of 1 by a binary cubic form of negative discriminant.  Exact  estimates for the 
number  of such representa t ions  were found by Delone, see [8, Chapter VII. 

T h e o r e m  4 (Delone). Le t  Co = :t:1,  D = CLC22 2 + 4ca - 4coc'~ - 27e 2 - 18CoClC2 < o, n r - 3 , - 1 6 , - 2 r .  
Consider the equation 

1 3  - -  C 2 X 2 y  - -  C l X y  2 - -  e 0 y  3 = 1. (*) 

(1) I f D =  - 2 3 ,  then Eq. (*) has 5 integer solutions. 
(2) I f D  = - 3 1  or D = - 4 4 ,  then Eq. (,)  has 4 integer solutions. 
(3) In all the remaining cases, i.e., i f  D < -44 ,  Eq. (*) has at most 3 integer solutions: 

For a proof, see [8, Chap t e r  VI]. 

By Theorem 1 and Corol lary 1, to find all exceptional  third-order sequences we have to find all units A 
in cubic orders of negat ive  discriminant for which there  exists a unit 11 C Z[A] such tha t  A = +11~, Inl _> 2. 
Let us note tha t  we m a y  take  -11 instead 11. Since for their  norms we have N(11) = - N ( - 1 1 ) ,  without  loss 
of general i ty we may  assume tha t  N(11) = 1, i.e., the  constant  term of the minimal  polynomial for 11 equals 
- - 1 .  

First consider the case D < -44 .  

L e m m a 4 .  Let  k =  3, co = l, D =  9 cic 5 + 4c 3 - 4c 3 - 27 - 18CLC2 < -44 .  Let  11 satisfy the equation 

113 - -  C 2 1 1 2  - -  C111 - -  1 = 0, (24) 

and let A = IP or A = _11n for some integer n. The  inclusion p, E Z[A] holds i f  and only" i f  one o f  the 
following conditions is fulfilled: 

(i) I <  = 1; 
(ii) c l = O ,  c 2 > 2 ,  a n d l n l = 2 ;  

(iii) c 2 = 0 ,  cl___-2,  a n d l n l = 2 .  

Proof. Necessity. Since A = =t=11 n E ZIp] and # c Z[A] by our hypothesis, ,aTe have 

zb]  = z b ]  

In part icular ,  (1, #, #2) and  (1, A, A 2) are bases of the  same modulus. Let us consider, along with the first 
basis, the  following one: (1, ( ,  r/), where ( = # - c2 and r] = #s - c2# - c]. It easy to check the following 
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relat ions (let us recall  here  t'hat co = 1): 

p (  ~-- 7] "-~ C1, 

( 2  = C1 --  C2( -}- 7], 

#7] = 1, 

Q] = 1 - c27], 

7] 2 = ( - -  Cl'/]. 

Let  

B y  the above  relat ions,  we have 

A = z + x ( + y r ] .  (26) 

A 2 = Z 2 ~- C1 x2 @ 2Xy -~ (--C2 x2  • y2 + 2xz)( + (x 2 - -  c l y  2 -~- 2 y z  --  2c2xy)7] .  

The  t rans i t ion  ma t r ix  b e t w e e n  the bases  (1, ( ,  7]} and  (1, A, A 2} is 

c ( a )  = 
1 Z 
0 x 
0 y 

z 2 -~- c 1 x 2 -]- 2 x y  

__C23y2 _}_ y2 + 2XZ ] " 

X 2 -- Cly 2 + 2y z  -- 2 c 2 x y /  

Since the  t rans i t ion  m a t r i x  is unimodular ,  i.e., it is a mat r ix  wi th  in teger  entr ies  whose  d e t e r m i n a n t  is equal  
to •  (see [1, C h a p t e r  2, w Section 1]), we have  

det  C(A) = x 3 - c2x2y  - C l X y  2 - y 3  = •  

Since Z[A] = Z [ - k ] ,  the  numbers  ;~ and  - A  sa t i s fy  the hypo these s  of  our  lenllna s imul taneous ly .  There-  
fore, it is sufficient to  cons ider  one of the  n u m b e r s  A and -A.  Since 

= c ( A ) .  - 1  

0 

det  (]~(A) = - de t  C ( - A ) .  Therefore,  w i t h o u t  loss of  generali ty we m a y  assume tha t  de t  C(A)  = 1 and tha t  

X3 __ C 2 x 2 y  __ C l X y 2  _ y3 = 1 (27) 

(otherwise,  take  - A  in s t ead  of A). 

We consider  A -1  similarly.  Let  A -1 = r + p C + q T ] .  As aboye, let C(A -1)  be  the  t r a n s i t i o n  m a t r i x  be tween  
the bases  (1,( , r /} and  ( 1 , A - I , A - e ) :  

r r 2 + c lp  2 • 2pq 

p _c2p2 _[_ q2 _4_ 2pr  ) . 

q p2 _ c~q2 + 2qr  -- 2c2pq 

Now we prove that 

Note  tha t  A satisfies t h e  cubic  equat ion  

de t  C(A)  = - d e t  C ( . ~ - I )  . 

.X 3 - -  b 2 . X  2 - b l  .,k - bo  = O ,  

where  bi E Z and b0 = + 1  (since ~ is a un i t  o f  t he  ring Z[p]); in pa r t i cu la r ,  bo 1 = b0. Hence ,  

A -1 = boa 2 - bob2A - bob1, 

A -2  = - b l A  2 + (bib2 + bo)A + b21 - bob2. 
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Therefore, the  transition mat r ix  be tween the bases (1, A, A 2) and (1,/~--1,/~--2) is 

1 -bob1 b ~ - b o b 2 " ~  

C =  0 -bob2 b l b 2 + b o } .  

0 bo - b l  ] 

Since C(~  - t )  = C(A).  C, we have det  C(A -1) = det C(A) det  C = -bg det C(A) = - det  C(A) = - 1 .  
Consequently,  

p3 _ c2p'2q _ clpq2 _ q3 = --1. (2s) 

Thus, we reduce our problem to the analysis of representat ions of uni ty  by  binary  cubic forms. 
Let us indicate  other relations be tween  x, y, z, p, q, r tha t  we need below. Since ( z + x C + y r l ) ( r + p ~ + q r / )  =" 

.~,~ 1 = 1, we have, by the mult ipl icat ion table (25), 

z r  + c j x p  + x q  + yp  = 1, (29) 

z p  + x r  - c2xp + yq  = 0, (30) 

zq  + x p  - c2xq - c2yp + y i  ~ - c lyq  = 0. (31) 

By the hypotheses  of our lemma, D < - 4 4 .  Therefore, by  the Delone theorem (Theorem 4), Eq. (27) 
has at most  three integer solutions. It is easy to find two of them: 

x = 1, y = 0; 
= 0, y = - 1 .  (32) 

Denote the  third solution (if it exists) by (X, Y). If a pair (x, y) satisfies (27) and x = 0 or y = 0, then 
(x, y) is one of the two trivial solutions (32). Hence, 

x r  YCo. 

The solutions of Eq. (28) are ( - 1 ,  0), (0, 1), and (if the  third solution exists) ( - X ,  - Y ) .  
Let us consider possible combinat ions  of the values of x, y, p, q. Note tha t ,  in general, admissible values 

of x, y, p, q are not independent.  In fact, c = ~ + &-i ~ Z (otherwise A satisfies a quadrat ic  equation wi th  
integer coefficients, which is impossible).  Thus, we have to exclude the following three cases, where x = - p ,  
y = -q :  

x =  1, y = 0 ,  p = - l ,  q = 0 ,  

x = 0 ,  y = - l ,  p = 0 ,  q = l ,  

x = X ,  y = Y ,  p = - X ,  q = - Y .  

Consider the  remaining six cases. 

Case 1. x = 1, y = 0, p = 0, q = 1. By  (31), z = c2. It follows from (26) and from the definition of r / and  ~- 
that  A = c2 + ~ = #, i.e., n = 1 in this case. 

Case 2. x = 0, Y = - 1 ,  p = - 1 ,  q = 0. By (30), z = 0. It follows from (26) and from the definition of r/ 
and C that  )~ = - r / =  _(#2 _ c2# - cl) = _ # - 1 ,  i.e., n = - 1  in this case. 

We have already proved that  if Eq. (27) has only two integer solutions, then any )~ satisfying the hy- 
potheses of our  lemma admits only trivial values +#,  + # - 1 .  

Let us consider the cases where (27) has three solutions. 

Case 3. x = 1, y = 0, p = - X ,  q = - Y .  By (31), - z Y  - X + c2Y  = 0. In part icular ,  Y I X.  Since the pair  
(X, Y) satisfies (27), we conclude tha t  Y = +1. 
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(a) Y = 1. Subs t i tu t ing  this  into (27), we get  

X 3 - c 2 X  2 - c i X  - 1 = 1. (33) 

Therefore ,  X I 2, and  X takes  the values + 1 ,  •  We claim t h a t  in all these cases the values of  the  
d i sc r iminan t  D are not  smal ler  t h a n  - 4 4 ,  i.e., t h e y  do not  sa t is fy  the  hypo theses  of our  lemma.  

If  X = 1, then  Cl = - 1  - c 2 ,  by (33). Hence ,  D = c 4 - 6 c  3 + 7c~ + 6 c 2  - 31 = (c~ - 3c2 - 1) .). - 32 _ - 3 2 .  

x = - 1 ,  then = 3 + c2, by (33). Hence, D = 4 + + 27c  + 54c2 + 81 = + 3c2 + 9) .). > 0. 
I f X  = 2, then  cl = 3 - 2 c 2 ,  by (33). Hence,  D = 4 c . ~ - 4 8 c 2 3 + 1 8 9 c ~ - 2 7 0 c 2 + 8 1 =  (2c 2 - 1 2 c 2 +  

45/4)  2 - 729/16. Let  us e s t ima te  [2c~ - 12c2 + 45/41 = [2(c,) - 3) .). - 27 /4  I. For  integer c2, the m i n i m m n  of 
t he  above modulus  is a t t a i n e d  at  c2 = 1 or  c2 = 5. It equals 5/4.  Therefore ,  D > 25/16 - 729/16 = - 4 4 .  

If  X = - 2 ,  then Cl = 5 + 2c2, by (33). Hence ,  D = 4c~ + 48c~ + 229c~ + 510c2 + 473 = (2c 2 + 12c2 + 
85/4)  .). + 343/16 > 0. The  analysis  of case (a) is completed.  

(b) Y = - 1 .  As was n o t e d  above, X r 0. T h e n ,  by (27), X satisfies the  equa t ion  

2 .). -~- c 2 X  - -  C1 = 0.  (34) 

D e n o t e  its second solut ion by  X ' .  Since (1, 0), (0, - 1 ) ,  ( X , - 1 ) ,  and  ( X ' , - 1 )  sat isfy (27), and by the  Delone 
theo rem,  for D < -44 ,  Eq. (27) has at  m o s t  t h r ee  solutions, we have e i ther  X = X ~ or X ~ = 0. 

Le t  us show tha t  the  equa l i ty  X = X ~ is impossible .  If X = X ~, t h e n  c 2 + 4Cl =0, by (34). Moreover ,  
X = - c 2 / 2 .  S i n c e z  = 1, y = 0, p =  - X  = c2/2,  q = - Y  = 1, we have  z = c2/2, by (31). Therefore ,  
A = c2/2 + ~ = t z -  c2/2. B u t  A 2 = #2 _ c2# + c2/4  = #2 _ c2# - cl = # - 1 ,  which contradic ts  the  hypothes i s  
A = Jz# ~, where n is an  integer.  

Le t  us consider the case X ~ = 0. T h e n  Cl = 0 by (34). Since X r 0, we have X = -c2.  Fi rs t ,  we f i n d  
the  admissible  values of c2. Since cl = 0, we have  D = -4c~ - 27 and,  by  the  hypothesis ,  D < - 4 4 ,  c2 >_ 2. 
F inal ly ,  we find n. Since x = 1, y = 0, p = - X  = c2, and q = - Y  = 1, we deduce from (31) t h a t  z = 0. 
Therefore ,  A = ( = # - c2. Since C 1 = 0, we have  #2A = #2(# _ c2) = 1 and  A = # - 2  i.e., n = - 2 .  

T h e  analysis  of case 3 is completed.  

Case  4. z = 0, y = - 1 ,  p = - X ,  q = - Y .  B y  (30), - z X  - Y = 0. In par t icular ,  X [ Y. Since the  pair  
(X,  Y) satisfies (27), we conclude tha t  X = +1 .  

(a) X = - 1 .  Subs t i tu t ing  this  in (27), We o b t a i n  

- - 1  - -  c 2 Y  + Cl Y 2  - y 3  : 1. (35) 

Therefore ,  Y [ 2, and  Y takes  the  values 4-1, +2 .  As in case 3(a),  we claim tha t  D _> - 4 4 ,  i.e., the  
hypo these s  of our l emma  are not  satisfied. 

I f Y  = - 1 ,  then  c2 = 1 - C l ,  by  (35) . Hence ,  D = Cl 4 + 6 c l  a + 7 c 1 2 - 6 c 1  - 31 = (c21 + 3 c l -  1) 2 -  32 _> - 3 2 .  
If  Y = 1, then  c2 = - 3  + cl ,  by  (35). Hence ,  D = Cl 4 - 6cl a + 27cl 2 - 54cj + 81 = (Cl 2 - 3cl + 9) 2 _> 0. 

If  Y = - 2 ,  then c2 = - 3  - 2c1, by  (35). Hence ,  D = 4c 4 + 48Cl a + 189c21 + 270c1 + 81 = (2c~ + 12cl + 
45 /4)  2 - 729/16. As above,  for integer Cl, t h e  m i n i m u m  of [2c 2 + 12cl + 45/41 = [2(cl + 3) 2 - 27/41 is 
a t t a i n e d  at  c1 = - 1  or cl = - 5 .  It is equal  t o  5 /4 .  Therefore,  D _> 25/16 - 729/16 = -44 .  

If  Y = 2, then  c2 = - 5  + 2cl,  by (35). Hence ,  D = 4Cl 4 - 48Cl 3 + 229c~ - 510Cl + 473 = (2Cl 2 - 12Cl  -1- 
85 /4)  2 + 343/16 > 0. T h e  analysis  of case (a) is completed.  

(b) X = 1. As was no ted  above, Y r 0. T h e n ,  by  (27), Y satisfies the  equa t ion  

y 2  _.1_ Cl y ._~ c2 - -  O. (36) 

D e n o t e  its second solut ion by  Y '  (Y '  is also an  integer) .  Since (1, 0), (0, - 1 ) ,  (1, Y),  and  (1, Y') sa t i s fy  (27), 
a n d  by  the  Delone theorem,  for D < - 4 4 ,  Eq.  (27) has at mos t  th ree  solutions,  we conclude t h a t  e i ther  
Y = Y~ or Y~ = O. 

Let  us show tha t  the  equa l i ty  Y = Y~ is imposs ib le .  I f Y  = Y~, t h e n  c 2 - 4 c 2  = 0 by (36). In addi t ion ,  Y = 
- c l / 2 .  Since z = 0, y = - 1 ,  p = - X  = - 1 ,  a n d  q = - Y  = c l / 2 ,  we have  z = - e l / 2  by (30). Therefore ,  
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.~ = --C1/2 -- 7] = _ ~ 2  .~_ C2~ -'~ C l / 2  = _ # - - 1  _ C1/2" B u t  A 2 = p - 2  + C l # - i  @ c21/4 : # - 2  _~_ c1~-1  @ c2 = ~1, 

which con t rad ic t s  the  h y p o t h e s i s  A = - b y  ', where  n is an  integer.  Hence,  Y # Y' .  
Let us cons ider  the  case Y '  = 0. Tt ien c2 = 0 by  (36). Since Y # 0, we have Y -- - C l .  F!rst ,  we find 

the admiss ible  values  of cl .  Since c2 = 0, we have D = 4Cl 3 - 27 and,  by  the hypo thes i s  D < - 4 4 ,  Cl < - 2 .  
Finally, we find n. Since x = 0, y = - 1 ,  p = - X  = - 1 ,  q = - Y  = Cl, we deduce  f rom (30) t ha t  z = - q .  
Therefore,  t = - c l  - 7] = _ p 2  (recall  t ha t  c2 = 0), i.e., n = 2. T he  analysis of case 4 is comple ted .  

Case 5. x = X ,  y = Y, p = - 1 ,  q = 0. Analysis  similar  to  t ha t  in case 3 (one should  cons ide r  - t  -1 = - r + ~  
instead of }~) shows tha t  cl = 0, c2 >_ 2, 14 ; 2. 

Case 6. z = x ,  y = Y, p = o, q = 1. Analys is  similar to  t ha t  in case 4 (one should cons ide r  - t  -1 = - r - 7 ] ,  
instead of A) shows  tha t  el _< - 2 ,  c2 = 0, bl = 2. 

This comple te s  the  p roof  of  necessi ty .  

Sufficiency. T h e  p roof  is s t r a igh t fo rward .  

Now we cons ider  the  case of  smal l  ID[. The  scheme is the  same  as in Lemlna  4. Le t  us note  tha t  it is 
sufficient to  t ake  a f u n d a m e n t a l  un i t  (say, e) of the  co r r e spond ing  ring and to find all t such  t ha t  t = =he n, 

I . . I ->  2, and  Z[ t ]  = Z[e]. 
The min imal  po lynomia l s  o f  f u n d a m e n t a l  units  of  cubic  orders  wi th  d iscr iminants  - 2 3 ,  - 3 1 ,  and - 4 4  

are listed in Tab le  3. These  f u n d a m e n t a l  units  are t a k e n  f rom [8, p. 230]. (In fact,  in [8] the i r  inverses are 
given.) 

TABLE 3. 

-23 c 3 1 ~ l 1 

-31 e 3 - c 2 - 1 

-44 c a-c ')-c-I 

L e m m a  5. (1) A s s u m e  t h a t  D = - 2 3 .  L e t  e sa t i s f y  t h e  e q u a t i o n  ~ - e - 1 = 0 a n d  le t  A = c n or A = - c  ~ 

for  s o m e  i n t e g e r  n .  T h e  i n c l u s i o n  e E Z[A] holds  i f  a n d  o n l y  i f  n E {• 4-3, •  4-9}. 
(2) A s s u m e  t h a t  D = - 3 1 .  L e t  c s a t i s f y  t he  e q u a t i o n  ~ - e ~ - 1 = 0 and  le t  A = e n or  A = - s  '~ for  

s o m e  i n t eger  n .  T h e  i nc lu s ion  s E Z[I]  ho lds  i f  and  o n l y  i f  n E {+1,  +2 ,  +3,  +5} .  
(3) A s s u m e  t h a t  D = - 4 4 .  L e t  a s a t i s f y  the  e q u a t i o n  c 3 - c 2 - e - 1 = 0 and  le t  t = a ~ or  A = - e  n for 

s o m e  i n t eger  n .  T h e  i n c l u s i o n  s E Z[A] ho lds  i f  and  o n l y  i f  n E {•  •  

Proof. Necessi ty.  Let  D = - 2 3 .  As in the  proof  of L e m m a  
units A = z + xc  + y(e  2 - 1) such  t h a t  

x 3 _ xy2  _ y3 = 

4, we reduce the p r o b l e m  to  de te rmina t ion  of  

1. 

All solut ions of  this  equa t i on  are  t h e  following pairs (see [8, C h a p t e r  VI, p. 317]): 

{1,0}, { 0 , - 1 ) ,  {1 , -1} ,  ( - 1 , - 1 } ,  (4,3}. 

Since A is a uni t  in Z[c], its n o r m  equa ls  -t-1, i.e., 

z - y  y x / 
N ( z + x c §  = d e t  x z z + y  = + 1 .  

y x z 

Subs t i tu t ing  the  admiss ib le  va lues  of  x and  y, we ob ta in  cubic  equa t ions  in the  var iable  z. All solut ions wi th  
integer z, t he  co r re spond ing  va lues  of  A, and ga( t )  ( the  min ima l  polynomia ls  for I )  a re  l is ted in Table 4. 
(We refer to  these  values be low.)  
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T A B L E  4 .  

z x y a g (t) 

0 1 0 c t 3 - t - 1  

- 1  1 '0 s - 4  t 3 + 3t 2 + 2t - 1 

1 1 0 c 3 t a - 3t 2 + 2t - 1 

1 0 - 1  c - 5  t a - 4 t  2 + 5 t - 1  

- 1  0 - 1  - c  ") t 3 + 2t ') + t + 1 

0 0 - 1  - e  -1  t 3 - t  2 + 1  
0 1 - 1  c - 2  t 3 - t 2 + 2t - 1 

- 1  1 - 1  - c  3 t 3 + 2t ~ + 3t + 1 

- 2  - 1  - 1  - c  ~ t 3 + 5 t  2 + 4 t + 1  

- 1  - 1  - 1  - c  4 t a + 2 t  2 - 3 t + 1  

2 - 1  - 1  - c  - 9  t a - 7 t  2 + 1 2 t + 1  

5 4 3 c 9 t 3 - -  12t 2 - 7t - 1 

Le t  D =  - 3 1 .  Similar ly ,  we r educe  the  p r o b l e m  to  d e t e r m i n a t i o n  of un i t s  A = z + x (c  - 1) + y (c  2 - c) 
s u c h  t h a t  

X 3 _ x 2 y  _ y 3  = 1. 

All  in teger  solut ions  o f t h i s  e q u a t i o n  are the  fo l lowing pa i r s  (see [8, C h a p t e r  VI ,  p. 317]): 

(1 ,0) ,  ( 0 , - 1 ) ,  ( - 1 , - 1 ) ,  (3,2).  

S ince  A is a uni t  in Z[e], we h a v e  

N ( z  + x ( c  - 1) + y ( ~  - . c ) )  : de t  x - y - x  + z : •  

y x 

As  above ,  s u b s t i t u t i n g  t h e  admis s ib l e  values  of  x a n d  y, we find z. All the  so lu t ions  are  l i s ted  in T a b l e  5. 

T A B L E  5.  

z x y A g)~(t) 

0 1 0 c - 2  t 3 + 2t 2 + t - 1 

1 1 0 c t 3 - t 2 - ] 

1 0 - 1  e - 3  t a - 3 t  2 + 4 t - 1  

0 0 - 1  I ~ - 1 t 3 + t + 1 

- 2  - 1  - 1  - c  3 t 3 + 4 t  2 + 3 t + 1  

- 1  - 1  - 1  - c  -2  t 3 - 2 t  2 + t + 1  

1 - 1  - 1  - c  - s  t 3 - 5 t  2 + 6 t + 1  

4 3 2 e ~ t ~ - 6t 2 - 5t - 1 

Le t  D = - 4 4 .  Similar ly ,  we r educe  the  p r o b l e m  to  d e t e r m i n a t i o n  of un i t s  A = z + x (c  - 1) + y ( c  2 - c - 1) 
s u c h  t h a t  

x 3 _ x 2 y  _ x y 2  _ y3 = 1. 

All  in t ege r  so lu t ions  of  th i s  e q u a t i o n  are  the  fo l lowing pa i r s  (see [8, C h a p t e r  VI ,  p. 317]): 

(1,oI, (o,-1), (2,1), (-lO3,- 61. 
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Since A is a uni t  in Z[c], we have 

- x - y + z  y x ) 
det x - y  - x + z  x + y  = + 1 .  

y x z 

Subst i tu t ing  the  admissible  values of x and y, we find z. All the  solutions are l isted in Table 6. 

T A B L E  6. 

x y ,x g~( t )  
1 1 0 c t :~ - t 2 - t - 1 

- 1  1 0 - c  -~ t 3 + 5t 2 + 7t + 1 
0 0 - 1  - c  -1 t 3 - t  2 + t + 1  
4 2 1 c 3 t 3 -- 7 t  2 -}- 5 t  --  1 

This completes  the  proof  of necessity. 

Sufficiency. One can direct ly check tha t ,  for all values of n listed in our lemma, the  d iscr iminant  of order 
Z[+A] is equal to the  discr iminant  of max ima l  order (i.e., it is equal  to -23 ,  - 3 1 ,  and  - 4 4 ,  respectively). 
Therefore, Z[+A] coincides with the max ima l  order  of the corresponding field, and  z E Z[+A]. This com- 
pletes the proof. 

T h e o r e m  5. Let A satisfy the equation X a - b2A 2 - blA - b0 = 0, where bo = :kl, D = b~b~ + 4631 - 4bob 3 - 
27b~ - 18boblb2 < 0, D r - 3 , - 1 6 , - 2 7 .  
(1) I f  (bo,bl,b2) is one of the tlqples 

(1 , -2 ,1} ,  ( 1 , - 1 , 2 } ,  ( - 1 , - 2 , - 1 > ,  ( - 1 , - 1 , - 2 ) ,  

(1,2,1}, ( 1 , - 1 , - 2 > ,  ( - 1 , 2 , - 1 } ,  ( - 1 , - 1 , 2 } ,  

(1,2t, t2), ( 1 , - t 2 , - 2 t ) ,  ( - 1 , 2 t , - t 2 ) ,  ( - 1 , - t 2 , 2 t } ,  

where t >_ 2, then [(Z[/~])* " {-t-M~ l n E Z}] = 2. 
(2) I f  (bo, bl, b2) is one of the triples 

{1,-2,3}, (1,-3,2}, {-1,-2,-3}, {-1,-3,-2}, 
(1,-3,4), 0,-4,3),  (-1,-3,-4),  {-1,-4,-3}, 
(1,-5,7), (1,-7,5}, (-1,-5,-7),  (-1,-7,-5),  

(3) I f  (b0, b l ,  b2} is  o n e  o f  the triples 

(1, 3, 2}, ( 1 , - 2 , - 3 } ,  ( - 1 , 3 , - 2 } ,  ( -1 ,  - 2 ,  3}, 

tt~en [(Z[a])* �9 { •  I ~ ~ Z}] = 4. 
(4) //c (b0, b l ,  b2} is  one o f  the triples 

(1,5,6), (1,-6,-5), (-1,~,-6), (-1,-6,5), 
(1,-4,5}, (1,-5,4), {-1,-4,-5}, (-1,-5 - 4}, 

t hen  [(Z[~])* : { + a ~  I ~, e Z}] = 5. 
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(5) I f  (bo, bl, b2) is one of the triples 

{1,7,12), { 1 , - 1 2 , - 7 } ,  < - 1 , 7 , - 1 2 } ,  < - 1 , - 1 2 , 7 > ,  

then [(Z[A])* : {+)d~ I n E Z}] = 9. 
(6) the remaining c ses, = I ' ,  Z}. 

Proof. A l l t h e  triples {b0, bl, b2) listed in i tems (1)-(5)  are coefficients of the  min imal  polynomials for uni ts  
A such t h a t  A = + j ~ ,  Inl > 2, and # E Z[A] (see Lemmas  4 and 5). C o m p u t a t i o n  of indices of the  
corresponding subgroups is s t raightforward.  

'2 2 + 4b31 _ 4bob~ - 27b02 - T h e o r e m  6. Let k = 3 and let the sequence a,~ be defined by (2)-(3). Let D = bib 2 
18boblb2 < 0, D r - 3 ,  -16 ,  - 27 .  Relation (13) is characteristic for the sequence a~ K a n d  only if the triple 
{ bo, bl, b2 ) is not listed in i tems (1)-(5) of  Theorem 5. 

P'rv@ This  follows immediate ly  f rom Theorems  1 and  5. 

Now we can construct  Z-Diophant ine  represen ta t ions  of the sets of values of th i rd-order  sequences. 
For k = 3 and fixed coefficients b0, bl, b2 of the  recur ren t  relation, define the  sets 

Ad(bo,bl,b2) = { (Yo,Yl,y2} : ~ e Z [Yi = an- i ,  i = 0, 1,2]} (37) 

and 

�9 / ~ + ( b o , b l , b 2 )  = {(yO, y l , y 2 }  : ~7~ E N [Yi = a~- i ,  i = 0, 1,2]}. (38) 

T h e o r e m  7. Let bo, bl; b2 be the same as in Theorem 5. Let the sequence a~ = a~(bo,bl,b.2) be deffned 
by (2)-(3) and let the sets A4 and Ad + be defined by (37), (38). 
(1) (Yo, y l ,  Y2} E A/l(bo, hi, b2) i f  and only i f  there exist  integers Xo, Xl, x2 such that (13) holds a~d 

360 

V {A(yo,Yl ,Y2)  = Bi (A(xo ,x l , x2) )3a~ (39) 
i = 1  

where the matrices B and A(xo,  x l ,  x2) are defined by (8) and (9), respectively. 
(2) (yo, y l ,  y2) E Ad+(bo, bl, b~) i f  and only i f  there exist integers xo, x l ,  x2 such that (13) and (39) hold, 

and 
de t ( (A2(yo ,y l , y2)  - E ) ( B  2 - E)) > 0. (40) 

Proof. Take  the  same A as in Theo rem 5. Let ~ E (Z[A])*. We first prove t ha t  ~ = A n for some integer n if 
and only if there  exist # E (Z[A])* and i E { 1, 2 , . . . ,  360 } such tha t  

= /~i ~ 3 6 0 .  (41) 

Let such  i and # exist. By T h e o r e m  5, the  index  of the  subgroup (A n I n E Z} in the group (Z[A])* 
divides 360. Hence, #360 E {A n ] n C Z} and ~ E {A ~ ] n E Z}. Conversely, if { = A ~, then  it is sufficient to  

t a k e i = n  (rood360) ,  1 < i < 3 6 0 ,  a n d # = A ~ .  
Write ~ = y0 + Y~ (A - b2) + Y2 (A 2 - b2 A - b l ) and  > = x0 + z l (A - b2) + z2 (A2 _ b2 A - b l  ). Applying the  

m o n o m o r p h i s m  T defined in Sec. 3 to  relation (41), we prove the first claim. 
To prove the  second claim, note  tha t  A is an e igenvalue of the matr ix  B and ~ = Y0 + y l ( A  -b2)  + y 2 ( k  2 - 

b2.~  - b l )  is an  eigenvalue of the  mat r ix  A(y0, Yl, Y2). Moreover,  each of these mat r ices  has exactly one real 
eigenvalue. By the first assertion, condit ions (39) and  (40) hold if and only if ~ = A n for some integer n. 
Condi t ion  (40) means tha t  real eigenvalues of the  mat r ices  A(yo,y~, Y2) and B ei ther  both  lie inside the  
interval ( - 1 ,  1) or both lie outs ide the  interval [ -1 ,  1]. This  is equivalent to  the  fact tha t  n > 0. Th is  
completes  the  proof. 
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R e m a r k .  If we restrict ourselves to sequences for which relation (13) is characteristic, we can find simpler 
Diophantine representations of the sets 3A(bo,bl,b2) and Ad+(bo,bl,b2). Indeed, since [(Z[A])* : {A~ In E 
Z}] = [{+A~ In E Z}:  {A~ In E Z}] = 2 in this case, one can replace the constant 360 by 2 in Theorem 7. 
On the other hand, the above formulation included all possible cases. 

This research was supported in part by the ISSEP, grants a96-1965 and a97-2261. 

Translated by M. A. Vsemirnov. 
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