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DIOPHANTINE REPRESENTATIONS OF LINEAR RECURRENT
SEQUENCES. II

M. A. Vsemirnov UDC 511.5

Direct constructions of Diophantine representations for linear recurrent sequences are considered. Diophantine
representations of the sets of wvalues for third-order sequences with negative discriminants are found. As an
auziliary problem, we study the structure of the multiplicative group of the ring Z[\], where X is an invertible
algebraic integer (unit) in a real quadratic field or in o cubic field of negative discriminant. The index of the
subgroup {£A" | n € Z } in the group (Z[A\])" and the generator of (Z[A])" are evaluated explicitly. Bibliography:
14 titles.

1. INTRODUCTION

In the present paper, we continue to investigate the problem of constructing direct Diophantine repre-
sentations of linear recurrent sequences set up in [12, Open question 2.3]. One can find the motivation of
the problem and its detailed setting in the author’s paper [3]. For the history of this problem, see [12,
Chapter 2]. Most of the results of this series of papers were announced by the author in [2, 4, 5].

Let us recall the main definitions, constructions, and results of [3] that we need below.

Definition. A set M of n-tuples of integers is called Diophantine if there exists a polynomial
Play,...,an,1,...,xm) wWith integer coefficients such that

{(a1,....6n) E M < dz1 € N,... 3z, e N[P(a1,... ,04n,Z1,... ;Zp) =0]. (1)

We call equivalence (1) a Diophantine representation of the set M.

Remark. As was proved by Matiyasevich in his fundamental work [11], the number-theoretic notion of a
Diophantine set coincides with the notion of a recursively enumerable set. See also [12].

Traditionally, in the problems of constructing Diophantine representations one speaks about sets of n-
tuples of positive integers. In our case, it is more natural to consider sets of n-tuples of integers, since the
values of an arbitrary linear recurrent sequence can be both positive and negative. For the same reason,
it will be convenient to consider Z-Diophantine representations, i.e., representations analogous to (1), but
with variables 1,22, ..., 2, ranging over integers.

It is well known that the notions of Diophantine and Z-Diophantine sets coincide (for example, see
[12, §1.3]). More precisely, for a given Diophantine representation of a set one can find its Z-Diophantine
representation and vice versa. The same technique allows us to show that for a Diophantine set M C Z",
the sets M’ = {{a1,... ,an) € N" : I(b1,... ,bn) € M [a1 = |b1],... ,an = |by]]} and M” = M N N" are
also Diophantine. ,

To avoid awkward formulas, we shall not transform Z-Diophantine representations into the corresponding
Diophantine representations. For the same reason, we consider systems of Diophantine equations. If
necessary, one can transform any such system into a single Diophantine equation. In addition, we use
simple relations such as divisibility and inequalities which are obviously Diophantine.

2. RECURRENT SEQUENCES AND THEIR PROPERTIES

Let a sequence a, be defined by the following recurrent relation of order k& (i.e., each member of the
sequence is expressed as a linear combination of the & members directly preceding it):

Anik = bp—1Gpyk—1 + ...+ boan, (2)
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with the initial conditions
apg = 1, a1 =0-2=...=0_f41 = 0. (3)

We assume the coeflicients b; to be integer. Furthermore, we impose the additional restriction
bo = +1. (4)
This restriction allows us to define the given sequence for all negative values of n by the relation

an = (@ngk — bk—10n1k—1 — ... — biany1)/bo (5)

and obtain an infinite (in both directions) integer-valued sequence. We restrict ourselves to such sequences.
Below we consider the case that is most interesting for applications, namely, the case where the polyno-

mial
FO) =t —bp 1 tF7  — — bt — by (6)

is irreducible over Q. As we see later, in the cases under consideration, we can express the irreducibility
condition for f by a system of Diophantine equations in the variables by, by, ...,br_1.

A Diophantine representation of the linear recurrent sequence (2)-(3) means for us a Diophantine rep-
resentation of the set

M= {{u,n) |u=a,}. (7)

Consider one simple case. Let the polynomial f defined by (6) be the ith cyclotomic polynomial; then
the sequence under consideration is a periodic sequence with period not exceeding I. It is well known that
for a polynomial f with k distinct roots A1y = A, A2y, ..., A, there exist coefficients ¢;, j = 1,... k, such

that
k
Ay = Z C])\Z])
j=1

For a cyclotomic polynomial, all the A(;y are roots of unity. Hence, the sequence a,, is periodic. But for a
periodic sequence (with fixed bg, b1, ..., by—_1), the problem of constructing its Diophantine representation
is trivial. Therefore, below we may exclude this case and assume that f is not a cyclotomic polynomial.

Let us recall the main construction introduced in [3]. Consider the following square matrices of size k
(£ denotes the identity matrix):

0 0 ... 0 b
10 0 b

B=10 1 0 b |, (8)
0 0 ... 1 b

k—1 l
l 1—7
Alxg,x1,... ,tp—1) = E x| B —Zbk_jB J

(9)
=20E+21(B—bp 1 E)+ ...+ 241 (B*¥ 1 —bp 1 B2 — .. b E),
A*(n) = Alan,n-1,... yGn—k+1)- . (10)
Define the following homogeneous polynomial of degree k in k variables:
Fp(zo,x1,... ,xp—1) =det A(zo, x1,... ,Tk—1)- (11)

As was proved in [3],
Fglan,an—1,-.. ,Qn—g+1) = det B" = (£bg)" = %1,
Fp(—an, —n-1,... ,—Opn_g+1) = det(—=B)" = (£bp)" = +1. (12)

The following problem naturally arises: when do these relations characterize the sequence under consider-
ation completely?
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Definition (see [3]). We say that the relation

Fp(zo,21,... ,2k—1) = =1 (13)
is characteristic for sequence (2)—(3) if Eq. (13) has no other integer solutions {(zg,71,...,Zr—1) than those
listed in the following two series:

(Zo,Z1,. .. Tr—1) = (@n,Qn-1, . ,Gn—k+1),
(X0, 15+ Th—1) = (—Qny —Cre1y- e v, —Qp—ft 1)

Classification of all sequences of the form (2)-(3) (in other words, of all sets of coefficients bg, b1, ... bg—1)
for which relation (13) is characteristic is the first step towards the direct construction of a Diophantine
representation of the set (7). In fact, if for a given set by, b1, ... bx—_1, relation (13) is characteristic for
sequence (2)—(3), then one can easily find a Z-Diophantine representation of the set

Mi={uecZ|InecZu=a,Vu=—-a,l}.

Namely,
reMy < 3dr €Z,... ,dxp_1€Z [(FB(.T,I'l,... ,CL‘k_l))z -1 20].

3. GENERAL SCHEME

As is shown in [3, 4], the problem of description of all sequences for which relation (13) is characteristic
is closely related to properties of units (invertible elements) in orders of algebraic numbers.

Let A be a root of the polynomial f defined by (6). Since we assume f to be irreducible over Q, the
field Q(A) is an extension of Q of degree k, [Q(\) : Q] = k. Let (Z[\])* denote, as usual, the multiplicative
group of order (Z[\]). Since by = %1, we have

{£\" i n € Z} C (Z]N])*

The following representation of powers of A will be useful (see [3, Eq. (18)]).

Lemma 1.
N =ap +an_1 (A —bp—1) + oo Fanpn N = b N2 — L —by). (14)
Lemma 2. Relation (13) holds for integers xq, 1, ... , Tx—1 if and only if the number
2o+ 1A —bs_1) + .. F i VT = b N2 by)

is invertible in Z[\].
Note that the mapping T : Q(A) — M (Q) defined by
T(x() 4+ v — b},;_l) “+ ...+ ﬂﬁk_l()\k_l — bk_l/\k_2 -, b])) = A(:co,:vl, - ,.iL'k_l)
is an embedding of the field Q()) into the matrix ring M (Q). In fact, for p € Q(A), the matrix T'(u) is
the matrix of the operator [, fi(z) = uz, in the basis (1, A,..., X*=1). In particular, T()\) = B. Taking into
account the definitions of the homomorphism 7" and of the polynomial F'g, one can see that
det T(Z’o + ()\ — b;;_l) 4+ ...+ zk*l()\k_l — bk_lx\k_2 —_ . — bl)) = FB(xQ,wl, e ,mk_l).

Thus, Lemma 2 is a reformulation of the corollary to Lemma 2 in [3].
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Theorem 1 [3|. Consider the sequence a,, defined by relations {2)—(3). Let the polynomial f defined by
(6) be irreducible over Q and let A\ be a root of f. Define a polynomial Fg by (8), (9), and (11). Then
relation (13) is characteristic for the sequence a,, if and only if

(ZIN)* = {2\ n € Z). (15)

Remark. In [3], this result was not stated explicitly, but it was obtained as a step in the proof of the main
result of [3] (see the proof of Theorem 1 in [3] and, in particular, Eq. (19)).

It follows fromn Theorem 1 that if relation (13) is characteristic, then the free rank of the group (Z{A])*
does not exceed 1. Combining this statement with the Dirichlet theorem on units (see [1, Chapter II, §4,
Theorem 5]), we get the following corollary.

Corollary 1. If relation (13) is characteristic, then one of the following conditions holds:
(1) k=2;

(2) k=3, and the polynomial f has exactly one real root;

(3) k=4, and the polynomial f has no real roots.

Note that the conditions of Corollary 1 are not sufhicient. We call a sequence exceptional if it satisfies
one of the conditions of Corollary 1 but relation (13) is not characteristic. Examples of such sequences will
be given later. In addition, in this paper we write explicitly all exceptional sequences of orders 2 and 3.

For exceptional sequences, the group {ZA" : n € Z} is not the whole group (Z[\])*, but its subgroup of
finite index. This allows us to amplify Eq. (13) to a characteristic system.

4. SECOND-ORDER SEQUENCES

Second-order sequences have been investigated in [10, 14, 6]; see also [12, Chapter II]. We consider this
case from another point of view. Furthermore, this case allows us to demonstrate the main ideas of the
general scheme for a natural simple example.

First, we find the restrictions on the coefficients bg, 1. Let us recall that, by our assumptions, by = £1,

and the polynomial
FO) =8 =it — b (16)

is irreducible over Q. As was noted above (see Sec. 2), we exclude the case of periodic sequences with a
cyclotomic polynomial f. For this reason, for second-order sequences we have to demand that f has no

complex roots, i.e., the inequality
b? 4 4bg > 0 (17)

holds. The polynomial f is irreducible if and only if
b2 +4by  is not an integer square. (18)
Obviously, conditions (4), (17), and (18) are equivalent to the system
bo =1, by #0, bf+4by>0.
Lemma 3. Let k=2, cy=+1,¢c1 €Z, c; # 0, 3 4+ 4cg > 0. Let u satisfy the equation
u? —cip—co = 0. (19)

Let A = u™ or A\ = —u™ for some integer n. The inclusion p € Z{\] holds if and only if one of the following

conditions holds:
() In| = 1;
(ii) In] =2, le1| = 1, and ¢ = 1.

Proof. Necessity. Note that A € Z[u]. Hence, for p € Z[\] we have
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In particular, (1,u) and (I, \) are bases of the same modulus. Therefore, the discriminants of these bases
are equal, D(1, 1) = D(1,\) (for example, see [1, Chapter 2, §2]).
Let

A=zp+y. (20)

Then D(1,\) = 22D(1, ). Hence, x = 1.
Taking the norm of A, we have N(A\) = N{(zp +y) = 2 N{(p) + 2y Tr(u) + 17 = —coz? + crzy + % On
the other hand, N(\) = (N(£p™)) = (N(u")) = (N(p))" = (—co)™. Therefore,

—co2® +crxy + 1y = (—co)™.

Case 1. ¢ = —1. Since z = +1, we have cizy +4° = 0, i.e., either y = 0 or y = —z¢;. If y = 0, then
A=uzap==xp, andn = 1. If y = —zcy then, by (19) and (20), A = z(pp — 1) = zcop™ = Fu~ !, and
n=—1.

Case 2. ¢p = 1, n is odd. Since x = £1, we get the same relation c;zy + 32 = 0 as above. As in case 1, we
have n = +1.

Case 3. ¢o = 1, nis even. Then ci1zy + y* = (—co)™ + cox? = 2. Taking into account that z, y, and ¢
are integers, one can list all their possible values (see Table 1). In addition, Table 1 contains the values of
g,.(t) (the minimal polynomial for p over Q) and the corresponding values of A and n.

TABLE 1.

y |z |a 9u(t) A n
2 11l -1]t?+t—-1] p+2=p"2% |2
2 [ =11 1 [#—t—-1| —p+2=p7% -2
21 1|1 [—t-1] p—2=—p2 |2
2| -1 -1 +t-1|-p—2=—p2| -2
111 ]|e-t=-1] p+1=p° 2
1|1 1] +t—1] —pu+1=p2 | 2
1] 1 [ -1|e+t-1] p—-1=—p2 2
1| =1 1 [=t—-1] —p—1=—=p2 | 2

This completes the proof of necessity.

Sufficiency. Condition (i) is obviously sufficient, since p € (Z{u])* if o = +1. As to condition (ii}, one can
directly check that it is sufficient (see the values of A in Table 1). This completes the proof.

If u satisfies the equation p? — p — 1 = 0, then A2 — 3\ + 1 is the minimal polynomial for A = p? and
A= p~2 and A2 43X\ + 1 is the minimal] polynomial for A = —p? and A = —p~2. We obtain the same
polynomials if ;s satisfies the equation p? + 4 —1=0, and A = £p% X\ = £u72.

Theorem 2. Let k=2,by = £1,b; € Z, by # 0, b? + 4by > 0.
(1) Ifbo = —1, by = &3, then [(Z[A\]))* : {£X*|n € Z}] = 2.
(2) In all the remaining cases, (Z[\])* = {£\"n € Z}].

Proof. The proof is immediate by Lemma 3.
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Theorem 3. Let k =2, by = £1, by € Z, by # 0, b? + 4bg > 0. Relation (3) is characteristic for sequence

(2)-(3) if and only if
(bo,b1) & {(—1,3),(-1,-3)}.
Proof. The proof is immediate by Theorems 1 and 2.

Remark 1. Consider the exceptional sets by, b1 ) in detail.
First note that, for second-order sequences with by = —1, more careful analysis of (12) leads to the
relation
Fp(—=an,—an—y1) = Fp(an,an—1) = (det B)" = 1" = 1.

Let bg = —1, by = 3, and A\> — 3X\ + 1 = 0. In this case,
Fg(xo, 1) = 2 — 3021 + 27

One can take 1 = A — 1 as a fundamental unit of the ring Z[\]. In addition, A = p?. By Lemma 2,
all superfluous solutions of Eq. (13) correspond to numbers of the form +x?"!. Namely, all superfluous
solutions are given by (yn,2n)s (~¥n, —2n), where p?"*t! = 4, + z,(XA — b;). Note that 2! = pA\" =
(A — DHA* = v — A7 By Lemma 1, '

P = a1 = an + (an — an-1) (A = by),

i.e., Yo = ani1 — Qn, 2n = Ay, — ap—1. Taking into account the recurrent relation (2) with b; = 3, we have
Yn = 205 — ap—1. A straightforward calculation shows that

Fp(Yn, 2n) = FB(—Yn, ~2n) = —Fplan,an-1) = —1.
Thus, in this case one can take the relation
Fp(zo,21) =1 (21)

as a characteristic relation instead of (13).
For the same reasons, in the case by = —1, by = —3, one can take (21) as a characteristic relation.

Remark 2. Let by = —1, |b1| # 3, and b3 + 4by > 0. By Theorems 1 and 2, in this case relation
(13) is characteristic, i.e., it has no superfluous solutions. But for by = —1 we have, as in Remark 1,
Fp(—an,—an—1) = Fg(an,an—1) = 1. Therefore, the equation

Fp(xo,21) = —1

has no integer solutions. Hence, if by = —1, then we can consider a simpler characteristic relation (21)
instead of (13).
5. THIRD-ORDER SEQUENCES

First, we find re* Jictions on the coefficients b;. By Corollary 1 to Theorem 1, it is necessary that the
cubic polynomial f defined for & = 3 by (6) has exactly one real root. It is well known (for exarmple, see [8,
§26]) that this condition holds if and only if the discriminant of f is negative:

D = b?b2 + 4b3 — 4bgb3 — 2763 — 18bgby by < 0. (22)
Exclude from these polynomials the polynomials reducible over Q. Since bg = %1, the real root of f is 1
or —1, and both its complex roots are roots of unity lying in some quadratic field (i.e., they are primitive

roots of unity of degree 3, 4, or 6).
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TABLE 2.

f D
B-r?t+r-1=@*+1D(x-1) -16
24 fr+l=(2?+1)(z+1) —16

P -1l=@E+z+1)(z-1) —27

422+ 2 +1= (22 +x+)(x+1)| -3
=202 +2r~-1=(22—xz+1)(x-1)| -3
24 l= (2> —z+1)(z+1) —27

All reducible polynomials f with by = £1 and D < 0 are listed in Table 2
Since the discriminant of an irreducible cubic polynomial is not equal to —3, —16, —27 (see [8,
to exclude the case of reducibility we may impose the following restriction along with relation (22

p. 126]),
):

D# —3,-16,-27. (23)

Later we reduce the problem of description of third-order exceptional sequences to the problem on the
number of representations of 1 by a binary cubic form of negative discriminant. FExact estimates for the
number of such representations were found by Delone, see [8, Chapter VI].

Theorem 4 (Delone). Let ¢y = £1, D = c2c3 + 4¢3 — 4eges — 27¢g — 18coeice < 0, D # —3,—16, —27.
Consider the equation
3

1* — oy — erxy® —coy® = 1. (%)
(1) If D = =23, then Eq. (x) has 5 integer solutions.

(2) If D = —31 or D = —44, then Eq. (%) has 4 integer solutions.

(3) In all the remaining cases, i.e., if D < —44, Eq. (%) has at most 3 integer solutions:

For a proof, see [8, Chapter VIJ.

By Theorem 1 and Corollary 1, to find all exceptional third-order sequences we have to find all units A
in cubic orders of negative discriminant for which there exists a unit p € Z[A] such that A = £u", |n| > 2.
Let us note that we may take —p instead u. Since for their norms we have N(u) = —N(—pu), without loss
of generality we may assume that N(u) = 1, i.e., the constant term of the minimal polynomial for p equals
—1.

First consider the case D < —44.

Lemma 4. Let k=3, co =1, D = c3c3 + 4¢3 — 4¢3 — 27 — 18ciea < —44. Let u satisfy the equation

P = —ep—1=0, (24)
and let A\ = p™ or A\ = —u™ for some integer n. The inclusion p € Z[\] holds if and only if one of the
following conditions is fulfilled:

(i) [n| =1

(ii) 1 =0, cg > 2, and |n| = 2;
(ili) c2 =0, ¢1 < =2, and |n| = 2.

Proof. Necessity. Since A = £pu™ € Z[u] and p € Z[\] by our hypothesis, we have

In particular, (1,p, #2) and (1, X\, A\?) are bases of the same modulus. Let us consider, along with the first
basis, the following one: (1,{,n), where ( =y — ¢ and n = u? — copr — ¢1. It easy to check the following
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relations (let us recall here that ¢o = 1):

pe =1+ c,
¢=c—al+n,
pn =1, (25)
Cn =1- Ca1y,
n?=(— c1).
Let
A=z+xC+yn. (26)

By the above relations, we have

N =22 e 4 22y + (—cox® +y° + 202)C + (2° — c1y? + 2yz — 2cazy)n .
The transition matrix between the bases (1,¢,n) and (1,,\?) is
z 22+ c12? + 22y
T —cax? + 4% + 222
Yy

22 — 19 + 2yz — 2cony

() =

o O

Since the transition matrix is unimodular, i.e., it is a matrix with integer entries whose determinant is equal
to £1 (see [1, Chapter 2, §2, Section 1]), we have

det C(\) = s — C2$2y —czy® — Y = +1.

Since Z[A] = Z[—]], the numbers A and —\ satisfy the hypotheses of our lemma simultaneously. There-
fore, it is sufficient to consider one of the numbers A and —\. Since

1 0 0
C=x=c\-lo -1 o],
0 0 1

det C(A) = — det C(—A). Therefore, without loss of generality we may assume that det C/(\) =1 and that

3 — cox?y — cayt —yP =1 (27)

(otherwise, take —\ instead of \).
We consider A~* similarly. Let A™! = r+p( +gn. As above, let C(A™1) be the transition matrix between
the bases (1,(,n) and (1, A7, A72):

1 r r? + c1p® 4 2pg
CA =10 p —cop? + ¢% + 2pr
0 ¢ p*—cag®+2qr —2capq

Now we prove that
det C(A) = —detC(A™1).

Note that A satisfies the cubic equation
AP —baA* — b A=y =0,
where b; € Z and by = %1 (since X is a unit of the ring Z[u]); in particular, by ' = by. Hence,

AL =bpA? — bobao ) — bobr,
A2 = —bl)\z + <b1b2 + b0)>\ + b% — bobs.
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Therefore, the transition matrix between the bases (1, A\, A\?) and (1, A7}, A72) is

1 —boby b2 — bobs
C={0 —boby bibs+ b
0 b —by

Since C(A™1) = C()\) - C, we have det C(A71) = det C(\) det C = —b3 det C(\) = —det C(A\) = —1.
Consequently,
P’ —cp’q—cpg® —¢* = —1. (28)

Thus, we reduce our problem to the analysis of representations of unity by binary cubic forms.
Let us indicate other relations between z, y, z, p, g, r that we need below. Since (z4+z{+yn)(r+pl+qn) =
A1 =1, we have, by the multiplication table (25),

2r+cxp+xq+yp =1, (29)
zp 4+ xr — coxp+ yq =0, (30)
z2q +xp — caxq —coyp + yr — cryqg = 0. (31)

By the hypotheses of our lemma, D < —44. Therefore, by the Delone theorem (Theorem 4), Eq. (27)
has at most three integer solutions. It is easy to find two of them:

(32)

Denote the third solution (if it exists) by (X,Y). If a pair (z,y) satisfies (27) and x = 0 or y = 0, then
(x,y) is one of the two trivial solutions (32). Hence,

X#0, Y #0.

The solutions of Eq. (28) are (—1,0), (0,1), and (if the third solution exists) (=X, -Y).

Let us consider possible combinations of the values of z, y, p, ¢. Note that, in general, admissible values
of z, y, p, q are not independent. In fact, c = A+ A™! ¢ Z (otherwise X satisfies a quadratic equation with
integer coefficients, which is impossible). Thus, we have to exclude the following three cases, where z = —p,

y=-q

z=1, ?J:Oa p=-1, qZO,
:07 y:_la pzoa q:17
r=X, y=Y, p=-X, ¢=-Y

Consider the remaining six cases.

Casel. z=1,y=0,p=0,q=1. By (31), z = &. It follows from (26) and from the definition of 7 and ¢
that A =co + (=, i.e.,, n =1 in this case.

Case 2. x =0,y=-1,p=—1,¢g=0. By (30), 2 = 0. It follows from (26) and from the definition of 5
and ¢ that A = —n = —(u* — cou — ¢1) = —p~ %, i.e., n = —1 in this case.

We have already proved that if Eq. (27) has only two integer solutions, then any A satisfying the hy-
potheses of our lemma admits only trivial values 4y, p~!.

Let us consider the cases where (27) has three solutions.

Case3. z=1,y=0,p=—-X,q=-Y. By 31), =2Y — X + Y = 0. In particular, Y | X. Since the pair
(X,Y) satisfies (27), we conclude that Y = +1.
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(a) Y = 1. Substituting this into (27), we get

X3-—CQX2-61X—1=1. (33)

Therefore, X | 2, and X takes the values £1, £2. We claim that in all these cases the values of the
discriminant D are not smaller than —44, i.e., they do not satisfy the hypotheses of our lemma.

If X =1, then ¢; = —1 — ¢z, by (33). Hence, D = ¢} — 6¢3 +7c3+6c2 — 31 = (¢2 —3cg —1)2 - 32 > —32.

If X = —1, then ¢; = 3 + ¢a, by (33). Hence, D = ¢ + 6¢3 + 27c¢2 + 54cy + 81 = (2 + 3co + 9)2 > 0.

If X =2, then ¢; = 3 — 2¢9, by (33). Hence, D = 4c} — 48¢3 + 189¢5 — 270cy + 81 = (2¢3 — 12¢5 +
45/4)% — 729/16. Let us estimate |2¢2 — 12¢o + 45/4] = |2(cy — 3)? — 27/4|. For integer c», the minimum of
the above modulus is attained at ¢, = 1 or ¢ = 5. It equals 5/4. Therefore, D > 25/16 — 729/16 = —44.

If X = -2, then ¢; = 5+ 2cy, by (33). Hence, D = 4c} + 48c3 + 229¢3 + 510cs + 473 = (2¢3 + 12¢2 +
85/4)? + 343/16 > 0. The analysis of case (a) is completed.

(b) Y = —1. As was noted above, X # 0. Then, by (27), X satisfies the equation

X2+ X —e =0. (34)

Denote its second solution by X'. Since (1,0), (0, —1), (X, —1), and (X', —1) satisfy (27), and by the Delone
theorem, for D < —44, Eq. (27) has at most three solutions, we have either X = X’ or X’ = 0.

Let us show that the equality X = X’ is impossible. If X = X, then c3 + 4c; = 0, by (34). Moreover,
X = —c3/2. Sincez =1,y =0,p=—-X = ¢3/2, g = -Y =1, we have z = ¢3/2, by (31). Therefore,
A=1c/24+(=p—co/2. But A2 = p? —cop+c3/4 = p?—cop—cy = p~ !, which contradicts the hypothesis
A = 4£u", where n is an integer.

Let us consider the case X' = 0. Then ¢; = 0 by (34). Since X # 0, we have X = —c,. First, we find.
the admissible values of co. Since ¢; = 0, we have D = —4c3 — 27 and, by the hypothesis, D < —44, ¢3 > 2.
Finally, we find n. Sincex =1,y =0, p = —X = ¢9, and ¢ = =Y = 1, we deduce from (31) that z = 0.
Therefore, A = ( = y — ¢3. Since ¢; = 0, we have A = p2( —c2) =1 and A = p~2, ie,n=—2.

The analysis of case 3 is completed.

Cased. z=0,y=-1,p=—-X,q=-Y. By (30), —2X =Y = 0. In particular, X | Y. Since the pair
(X,Y) satisfies (27), we conclude that X = +1.
(a) X = —1. Substituting this in (27), we obtain

1Y +Y?-V3i=1. (35)

Therefore, Y | 2, and Y takes the values £1, £2. As in case 3(a), we claim that D > —44, i.e., the
hypotheses of our lemma are not satisfied.

Y = —1,then cg = 1~ ¢y, by (35) . Hence, D = ¢} +6¢} +7c3 —6c1 — 31 = (2 +3c; — 1) —32 > —32.

If Y =1, then ¢c; = —3 + ¢1, by (35). Hence, D = ¢} — 6¢? + 27¢? — 5dcy + 81 = (¢ — 3¢y +9)2 > 0.

If Y = -2, then cg = —3 — 2¢1, by (35). Hence, D = 4c} + 48¢} + 189¢? + 270¢; + 81 = (2¢? + 12¢; +
45/4)? — 729/16. As above, for integer c1, the minimum of |2¢? + 12¢; + 45/4] = [2(c1 + 3)2 — 27/4| is
attained at ¢; = —1 or ¢; = —5. It is equal to 5/4. Therefore, D > 25/16 — 729/16 = —44.

If Y = 2, then ¢; = —5 + 2¢1, by (35). Hence, D = 4c} — 48¢3 + 229¢2 — 510¢; + 473 = (2¢? — 12¢; +
85/4)% + 343/16 > 0. The analysis of case (a) is completed.

(b) X = 1. As was noted above, Y 5 0. Then, by (27), Y satisfies the equation

Y2+ Y +c0=0. (36)

Denote its second solution by Y’ (Y” is also an integer). Since (1,0), (0,—1), (1,Y), and (1,Y”) satisfy (27),
and by the Delone theorem, for D < —44, Eq. (27) has at most three solutions, we conclude that either
Y=Y orY =0.

Let us show that the equality Y = Y” is impossible. If Y = Y, then ¢ —4cs = 0 by (36). In addition, Y =
—c1/2. Sincex =0,y = -1, p=—-X = —1, and ¢ = —Y = ¢1/2, we have z = —¢;/2 by (30). Therefore,
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A=—c1/2-n=—p’+cop+ec/2=—pt—c/2. But = pu2tcput+d/A=p? +ep e =t
which contradicts the hypothesis A = £u™, where n is an integer. Hence, Y #£ Y.

Let us consider the case Y’ = 0. Then ¢y = 0 by (36). Since Y # 0, we have Y = —¢;. First, we find
the admissible values of ¢;. Since cp = 0, we have D = 4¢3 — 27 and, by the hypothesis D < —44, ¢; < —2.
Finally, we find n. Since x =0, y = -1, p=—-X = —1, ¢ = =Y = ¢1, we deduce from (30) that z = —¢;.
Therefore, A = —c; — = —p? (recall that co = 0), i.e., n = 2. The analysis of case 4 is completed.

Case5. r =X, y=Y,p=-1,g=0. Analysis similar to that in case 3 (one should consider —A=! = —r+(
instead of A) shows that ¢; =0, c2 > 2, |n| = 2.

Case6. z= X,y =Y, p=0, g = 1. Analysis similar to that in case 4 (one should consider —\=! = —r -1,
instead of A) shows that ¢; < =2, ¢ =0, [n| =2.
This completes the proof of necessity.

Sufficiency. The proof is straightforward.

Now we consider the case of small |D|. The scheme is the same as in Lemma 4. Let us note that it is
sufficient to take a fundamental unit (say, €) of the corresponding ring and to find all A such that A = %™,
|n| > 2, and Z[\] = Zle].

The minimal polynomials of fundamental units of cubic orders with discriminants —23, —31, and —44
are listed in Table 3. These fundamental units are taken from [8, p. 230]. (In fact, in [8] their inverses are
given.)

TABLE 3.

—-23 B —e—1
-31 e —eg? -1
—44 e =2 — e —

Lemma 5. (1) Assume that D = —23. Let ¢ satisfy the equation & —e—1 =0 and let A\ = &" or A\ = —¢"
for some integer n. The inclusion € € Z[\| holds if and only if n € {1, 42,43, +4, +5, £9}.

(2) Assume that D = —31. Let ¢ satisfy the equation €2 — ¢> —1 =0 and let A\ = " or A = —¢" for
some integer n. The inclusion € € Z[\] holds if and only if n € {£1,+2,+3,+5}.
(3) Assume that D = —44. Let € satisfy the equation €2 —e? —& —1 =0 and let A = ™ or A = —" for

some integer n. The inclusion ¢ € Z[\] holds if and only if n € {£1,+£3}.

Proof. Necessity. Let D = —23. As in the proof of Lemma 4, we reduce the problem to determination of
units A = z + ze + y(e? — 1) such that
:I:S—myQ-y?’:l.

All solutions of this equation are the following pairs (see [8, Chapter VI, p. 317]):
(1,0), (0,—-1), (1,-1), (=1,-1), (4,3).

Since A is a unit in Ze], its norm equals +£1, i.e.,

z—y y oz
N(z+ze +y(e2 — 1)) = det x z x4y | ==+L
y oz

Substituting the admissible values of z and y, we obtain cubic equations in the variable z. All solutions with
integer z, the corresponding values of A, and g,(t) (the minimal polynomials for A) are listed in Table 4.
(We refer to these values below.)
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TABLE 4.

zlx ly | A (1)

0] 1]0 € B —t—1
-1l 110 ] e* | £+3°+20-1
1] 1710 e3 -3t +2t—1
1|0 =1] e® | B—aZ+5t-1
110 | =1] =2 | ¥ +22+1t+1
0|0 ]—-1]—-¢" B —t2+1
0|1 |=1] &2 | B2-t+20-1
-1 1 | =1] =% | t3+22+3t+1
—2| =1 1] —° | 3452 +4t+1
—1] =1 =1] —* | 3+22-3t+1
2 | =1 |-1| -9 —-72+12t+1

4

3 9 B -1t -Tt—1

Let D = —31. Similarly, we reduce the problem to determination of units A = z + z(¢ — 1) + y(&* — ¢)

such that

x3—x2y—y3:1.

All integer solutions of this equation are the following pairs (see [8, Chapter VI, p. 317]):
<1>O>7 <07_1>7 <_17_1>7 <3a2>
Since A is a unit in Z[e], we have

—x+z Y T
Niz+z(e—1)+yle —€))=det| 22—y —z+2 y|==1
Yy z z

As above, substituting the admissible values of x and y, we find z. All the solutions are listed in Table 5.

TABLE 5.
z x|y | M gx(t)
010 e? | EB+22+t—-1
11 1]0 £ -2 -1
110 | —1] 3 [-32+4t-1
0] 0 [—=1]-=¢1 BHt+1

2 =1]-1] =& [ +42+3t+1
1| =1 -1 =2 3 -22 11 +1
1 | ~1| 1] =% —52+6t+1
4 1 312 e [P —6t2-5t—1

Let D = —44. Similarly, we reduce the problem to determination of units A = z +z(e — 1) + y(e® —e — 1)

such that
3

z ~:v2y—a:y2 -y =1.
All integer solutions of this equation are the following pairs (see [8, Chapter VI, p. 317]):
(1,0), (0,-1), (2,1), (—103,-56).
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Since A is a unit in Z[e], we have

—x—y+=z Y x
det T -y —r+z z+y | ==L
Y x z

Substituting the admissible values of & and y, we find z. All the solutions are listed in Table 6.

TABLE 6.
z x|y | A gr (1)
11} 0 € -2 —t—1
—111] 0 | =2 |3 4+5t2+7t+1
0 10]-1)—-ct] £-2+t+1
41211 e | TP +5t—1

This completes the proof of necessity.

Sufficiency. One can directly check that, for all values of n listed in our lemma, the discriminant of order
Z]+)] is equal to the discriminant of maximal order (i.e., it is equal to —23, —31, and —44, respectively).
Therefore, Z[£A] coincides with the maximal order of the corresponding field, and € € Z[£+A]. This com-
pletes the proof.

Theorem 5. Let \ satisfy the equation A3 —baA\? — by A —by = 0, where by = £1, D = b3b3 + 4b3 — 4bob3 —
27b3 — 18bob1ba < 0, D # —3,—16, —27.
(1) If (b, b1,b2) is one of the triples

D, (1,-1,2), (=1,-2,-1), (=1,-1,-2),
(1,2,1), (1,-1,-2), (-1,2,-1), (=1,-1,2),
(1,2t,8%), (1,—1%,=2t), (=1,2t,—t?), (=1,—t%,2¢),

where t > 2, then [(Z[A])* : {£\" |n € Z}] = 2.
(2) If (by, b1, b2) is one of the triples

(1,-2,3), (1,-3,2), (-1,-2,-3), (—1,-3,-2),
<17_3a4>7 <17"473> :
(1,=5,7), (1,-7,5), (-1,-5,=7), (-—1,-7,-5),

then [(ZIA\])* : {£A\" | n € Z}] = 3.
(3) If (by,b1,ba) is one of the triples

<173a2>7 (17-23 —"3>7 <“1737—2>7 <—17_27 3>7

then [(Z[A]))* : {£A\" | n € Z}] = 4.
(4) If (bo,b1,b2) is one of the triples

(1,5,6), (1,—6,=5), (=1,5,—6), (—1,—6,5),
(1,-4,5), (1,-5,4), (=1,-4,—5), (—1,-5—4),

then [(Z{A\])* : {£A" | n € Z}] = 5.
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(5) If (bo, b1,ba) is one of the triples
<1,7, 12>, (1,—12, —7>, <—1,7,—-12>, <—1,—1277>,

then [(Z[N])" : {£A\" | n € Z}] = 9.
(6) In all the remaining cases, (Z|\])* = {£\" | n € Z}.

Proof. All the triples (by, b1, b2) listed in items (1)—(5) are coefficients of the minimal polynomials for units
A such that A = ", |n| > 2, and p € Z[\] (see Lemmas 4 and 5). Computation of indices of the
corresponding subgroups is straightforward.

Theorem 6. Let k =3 and let the sequence a,, be defined by (2)-(3). Let D = V2b2 + 4b3 — dbyb3 — 2703 —
18bobi1be < 0, D # —3,—16, —27. Relation (13) is characteristic for the sequence ay, if and only if the triple
{bg,b1,be ) is not listed in items (1)—(5) of Theorem 5.

Proof. This follows immediately from Theorems 1 and 5.

Now we can construct Z-Diophantine representations of the sets of values of third-order sequences.
For k = 3 and fixed coeflicients by, b1, by of the recurrent relation, define the sets

M(bo,b1,b2) = {{yo, y1,%2) : INn€Z [y = an_s, 1 =0,1,2]} (37)

and
M+(bo,b1,b2) = {<y0,y1,y2> : Eln S N [y,' = Qn—i, 1= O, 1,2]}. (38)

Theorem 7. Let by, by, by be the same as in Theorem 5. Let the sequence a,, = ay(bo,b1,b2) be defined
by (2)—(3) and let the sets M and M™ be defined by (37), (38).

7

(1) (vo,y1,y2) € M(bo,b1,b2) if and only if there exist integers o, x1,x2 such that (13) holds and

360
V {A®Wo,y1,92) = B*(A(zo,71,22))*}, (39)

=1

where the matrices B and A(xg,x1,22) are defined by (8) and (9), respectively.
(2) (Yo,y1,vy2) € M™(bo,b1,bs) if and only if there exist integers zq,x1, T such that (13) and (39) hold,
and
det((A*(yo, 91, 42) — E)(B* - E)) > 0. (40)

Proof. Take the same X as in Theorem 5. Let £ € (Z[\])*. We first prove that £ = A" for some integer n if
and only if there exist p € (Z[A])* and ¢ € {1,2,...,360} such that

é- — )\i’u360' (41)

Let such ¢ and p exist. By Theorem 5, the index of the subgroup (A" | n € Z) in the group (Z[\])*
divides 360. Hence, 3% € {A\" | n € Z} and £ € {\" | n € Z}. Conversely, if £ = A", then it is sufficient to
take i = n (mod 360), 1 <14 < 360, and p = A3,

Write € = yo + y1(A — b2) + y2(A2 —be X —b1) and p = 29 + 21 (A — by) + 22(A? — b A — by). Applying the
monomorphism 7" defined in Sec. 3 to relation (41), we prove the first claim.

To prove the second claim, note that A is an eigenvalue of the matrix B and &€ = yg +y1(A—b2) +y2 (A2 —
baA — b1) is an eigenvalue of the matrix A(yo,y1,y2). Moreover, each of these matrices has exactly one real
eigenvalue. By the first assertion, conditions (39) and (40) hold if and only if £ = A™ for some integer n.
Condition (40) means that real eigenvalues of the matrices A(yp,%1,y2) and B either both lie inside the
interval (—1,1) or both lie outside the interval [—1,1]. This is equivalent to the fact that n > 0. This
completes the proof.
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Remark. If we restrict ourselves to sequences for which relation (13) is characteristic, we can find simpler
Diophantine representations of the sets M(bg, by, b2) and M (bg, by, b2). Indeed, since [(Z[N])* : {\*|n €
Z} = [{£A"|n € Z} : {\"|n € Z}] = 2 in this case, one can replace the constant 360 by 2 in Theorem 7.
On the other hand, the above formulation included all possible cases.
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