DIOPHANTINE REPRESENTATIONS OF LINEAR RECURRENT SEQUENCES. II

M. A. Vsemirnov

Direct constructions of Diophantine representations for linear recurrent sequences are considered. Diophantine representations of the sets of values for third-order sequences with negative discriminants are found. As an auxiliary problem, we study the structure of the multiplicative group of the ring $\mathbf{Z}[\lambda]$, where λ is an invertible algebraic integer (unit) in a real quadratic field or in a cubic field of negative discriminant. The index of the subgroup $\{\pm \lambda^n \mid n \in \mathbf{Z}\}$ in the group $(\mathbf{Z}[\lambda])^*$ and the generator of $(\mathbf{Z}[\lambda])^*$ are evaluated explicitly. Bibliography: 14 titles.

1. INTRODUCTION

In the present paper, we continue to investigate the problem of constructing direct Diophantine representations of linear recurrent sequences set up in [12, Open question 2.3]. One can find the motivation of the problem and its detailed setting in the author's paper [3]. For the history of this problem, see [12, Chapter 2]. Most of the results of this series of papers were announced by the author in [2, 4, 5].

Let us recall the main definitions, constructions, and results of [3] that we need below.

Definition. A set \mathcal{M} of *n*-tuples of integers is called Diophantine if there exists a polynomial $P(a_1, \ldots, a_n, x_1, \ldots, x_m)$ with integer coefficients such that

$$\langle a_1, \dots, a_n \rangle \in \mathcal{M} \iff \exists x_1 \in \mathbf{N}, \dots, \exists x_m \in \mathbf{N} \ [P(a_1, \dots, a_n, x_1, \dots, x_m) = 0]. \tag{1}$$

We call equivalence (1) a Diophantine representation of the set \mathcal{M} .

Remark. As was proved by Matiyasevich in his fundamental work [11], the number-theoretic notion of a Diophantine set coincides with the notion of a recursively enumerable set. See also [12].

Traditionally, in the problems of constructing Diophantine representations one speaks about sets of *n*-tuples of *positive integers*. In our case, it is more natural to consider sets of *n*-tuples of integers, since the values of an arbitrary linear recurrent sequence can be both positive and negative. For the same reason, it will be convenient to consider **Z**-Diophantine representations, i.e., representations analogous to (1), but with variables x_1, x_2, \ldots, x_m ranging over integers.

It is well known that the notions of Diophantine and **Z**-Diophantine sets coincide (for example, see [12, §1.3]). More precisely, for a given Diophantine representation of a set one can find its **Z**-Diophantine representation and vice versa. The same technique allows us to show that for a Diophantine set $\mathcal{M} \subset \mathbf{Z}^n$, the sets $\mathcal{M}' = \{ \langle a_1, \ldots, a_n \rangle \in \mathbf{N}^n : \exists \langle b_1, \ldots, b_n \rangle \in \mathcal{M} \ [a_1 = |b_1|, \ldots, a_n = |b_n|] \}$ and $\mathcal{M}'' = \mathcal{M} \cap \mathbf{N}^n$ are also Diophantine.

To avoid awkward formulas, we shall not transform \mathbb{Z} -Diophantine representations into the corresponding Diophantine representations. For the same reason, we consider systems of Diophantine equations. If necessary, one can transform any such system into a single Diophantine equation. In addition, we use simple relations such as divisibility and inequalities which are obviously Diophantine.

2. Recurrent sequences and their properties

Let a sequence a_n be defined by the following recurrent relation of order k (i.e., each member of the sequence is expressed as a linear combination of the k members directly preceding it):

$$a_{n+k} = b_{k-1}a_{n+k-1} + \ldots + b_0a_n, \tag{2}$$

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 241, 1997, pp. 5–29. Original article submitted October 10, 1997.

1072-3374/00/9804-0427 \$25.00 (c)2000 Kluwer Academic/Plenum Publishers

UDC 511.5

with the initial conditions

$$a_0 = 1, \quad a_{-1} = a_{-2} = \ldots = a_{-k+1} = 0.$$
 (3)

We assume the coefficients b_i to be integer. Furthermore, we impose the additional restriction-

$$b_0 = \pm 1. \tag{4}$$

This restriction allows us to define the given sequence for all negative values of n by the relation

$$a_n = (a_{n+k} - b_{k-1}a_{n+k-1} - \dots - b_1a_{n+1})/b_0$$
(5)

and obtain an infinite (in both directions) integer-valued sequence. We restrict ourselves to such sequences.

Below we consider the case that is most interesting for applications, namely, the case where the polynomial

$$f(\lambda) = t^k - b_{k-1}t^{k-1} - \dots - b_1t - b_0$$
(6)

is irreducible over **Q**. As we see later, in the cases under consideration, we can express the irreducibility condition for f by a system of Diophantine equations in the variables $b_0, b_1, \ldots, b_{k-1}$.

A Diophantine representation of the linear recurrent sequence (2)-(3) means for us a Diophantine representation of the set

$$\mathcal{M} = \{ \langle u, n \rangle \, | \, u = a_n \}. \tag{7}$$

Consider one simple case. Let the polynomial f defined by (6) be the *l*th cyclotomic polynomial; then the sequence under consideration is a periodic sequence with period not exceeding l. It is well known that for a polynomial f with k distinct roots $\lambda_{(1)} = \lambda, \lambda_{(2)}, \ldots, \lambda_{(k)}$, there exist coefficients $c_j, j = 1, \ldots, k$, such that

$$a_n = \sum_{j=1}^k c_j \lambda_{(j)}^n.$$

For a cyclotomic polynomial, all the $\lambda_{(j)}$ are roots of unity. Hence, the sequence a_n is periodic. But for a periodic sequence (with fixed $b_0, b_1, \ldots, b_{k-1}$), the problem of constructing its Diophantine representation is trivial. Therefore, below we may exclude this case and assume that f is not a cyclotomic polynomial.

Let us recall the main construction introduced in [3]. Consider the following square matrices of size k (E denotes the identity matrix):

$$B = \begin{pmatrix} 0 & 0 & \dots & 0 & b_0 \\ 1 & 0 & \dots & 0 & b_1 \\ 0 & 1 & \dots & 0 & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & b_{k-1} \end{pmatrix},$$
(8)

$$A(x_0, x_1, \dots, x_{k-1}) = \sum_{l=0}^{k-1} x_l \left(B^l - \sum_{j=1}^l b_{k-j} B^{l-j} \right)$$
(9)

$$= x_0 E + x_1 (B - b_{k-1} E) + \dots + x_{k-1} (B^{k-1} - b_{k-1} B^{k-2} - \dots - b_1 E),$$

$$A^*(n) = A(a_n, a_{n-1}, \dots, a_{n-k+1}).$$
(10)

Define the following homogeneous polynomial of degree k in k variables:

$$F_B(x_0, x_1, \dots, x_{k-1}) = \det A(x_0, x_1, \dots, x_{k-1}).$$
(11)

As was proved in [3],

$$F_B(a_n, a_{n-1}, \dots, a_{n-k+1}) = \det B^n = (\pm b_0)^n = \pm 1,$$

$$F_B(-a_n, -a_{n-1}, \dots, -a_{n-k+1}) = \det(-B)^n = (\pm b_0)^n = \pm 1.$$
(12)

The following problem naturally arises: when do these relations characterize the sequence under consideration completely? **Definition** (see [3]). We say that the relation

$$F_B(x_0, x_1, \dots, x_{k-1}) = \pm 1 \tag{13}$$

is characteristic for sequence (2)–(3) if Eq. (13) has no other integer solutions $\langle x_0, x_1, \ldots, x_{k-1} \rangle$ than those listed in the following two series:

$$\langle x_0, x_1, \dots, x_{k-1} \rangle = \langle a_n, a_{n-1}, \dots, a_{n-k+1} \rangle,$$
$$\langle x_0, x_1, \dots, x_{k-1} \rangle = \langle -a_n, -a_{n-1}, \dots, -a_{n-k+1} \rangle.$$

Classification of all sequences of the form (2)-(3) (in other words, of all sets of coefficients $b_0, b_1, \ldots, b_{k-1}$) for which relation (13) is characteristic is the first step towards the direct construction of a Diophantine representation of the set (7). In fact, if for a given set $b_0, b_1, \ldots, b_{k-1}$, relation (13) is characteristic for sequence (2)-(3), then one can easily find a **Z**-Diophantine representation of the set

$$\mathcal{M}_1 = \{ u \in \mathbf{Z} \mid \exists n \in \mathbf{Z} \mid u = a_n \lor u = -a_n \}$$

Namely,

$$x \in \mathcal{M}_1 \iff \exists x_1 \in \mathbf{Z}, \dots, \exists x_{k-1} \in \mathbf{Z} [(F_B(x, x_1, \dots, x_{k-1}))^2 - 1 = 0].$$

3. General scheme

As is shown in [3, 4], the problem of description of all sequences for which relation (13) is characteristic is closely related to properties of units (invertible elements) in orders of algebraic numbers.

Let λ be a root of the polynomial f defined by (6). Since we assume f to be irreducible over \mathbf{Q} , the field $\mathbf{Q}(\lambda)$ is an extension of \mathbf{Q} of degree k, $[\mathbf{Q}(\lambda) : \mathbf{Q}] = k$. Let $(\mathbf{Z}[\lambda])^*$ denote, as usual, the multiplicative group of order $(\mathbf{Z}[\lambda])$. Since $b_0 = \pm 1$, we have

$$\{\pm \lambda^n : n \in \mathbf{Z}\} \subseteq (\mathbf{Z}[\lambda])^*.$$

The following representation of powers of λ will be useful (see [3, Eq. (18)]).

Lemma 1.

$$\lambda^{n} = a_{n} + a_{n-1}(\lambda - b_{k-1}) + \dots + a_{n-k+1}(\lambda^{k-1} - b_{k-1}\lambda^{k-2} - \dots - b_{1}).$$
(14)

Lemma 2. Relation (13) holds for integers $x_0, x_1, \ldots, x_{k-1}$ if and only if the number

$$x_0 + x_1(\lambda - b_{k-1}) + \ldots + x_{k-1}(\lambda^{k-1} - b_{k-1}\lambda^{k-2} - \ldots - b_1)$$

is invertible in $\mathbf{Z}[\lambda]$.

Note that the mapping $T: \mathbf{Q}(\lambda) \to M_k(\mathbf{Q})$ defined by

$$T(x_0 + w_1^* \setminus -b_{k-1}) + \ldots + x_{k-1}(\lambda^{k-1} - b_{k-1}\lambda^{k-2} - \ldots - b_1)) = A(x_0, x_1, \ldots, x_{k-1})$$

is an embedding of the field $\mathbf{Q}(\lambda)$ into the matrix ring $M_k(\mathbf{Q})$. In fact, for $\mu \in \mathbf{Q}(\lambda)$, the matrix $T(\mu)$ is the matrix of the operator $\hat{\mu}$, $\hat{\mu}(x) = \mu x$, in the basis $\langle 1, \lambda, \dots, \lambda^{k-1} \rangle$. In particular, $T(\lambda) = B$. Taking into account the definitions of the homomorphism T and of the polynomial F_B , one can see that

$$\det T(x_0 + x_1(\lambda - b_{k-1}) + \dots + x_{k-1}(\lambda^{k-1} - b_{k-1}\lambda^{k-2} - \dots - b_1)) = F_B(x_0, x_1, \dots, x_{k-1}).$$

Thus, Lemma 2 is a reformulation of the corollary to Lemma 2 in [3].

Theorem 1 [3]. Consider the sequence a_n defined by relations (2)-(3). Let the polynomial f defined by (6) be irreducible over \mathbf{Q} and let λ be a root of f. Define a polynomial F_B by (8), (9), and (11). Then relation (13) is characteristic for the sequence a_n if and only if

$$(\mathbf{Z}[\lambda])^* = \{\pm \lambda^n : n \in \mathbf{Z}\}.$$
(15)

Remark. In [3], this result was not stated explicitly, but it was obtained as a step in the proof of the main result of [3] (see the proof of Theorem 1 in [3] and, in particular, Eq. (19)).

It follows from Theorem 1 that if relation (13) is characteristic, then the free rank of the group $(\mathbb{Z}[\lambda])^*$ does not exceed 1. Combining this statement with the Dirichlet theorem on units (see [1, Chapter II, §4, Theorem 5]), we get the following corollary.

Corollary 1. If relation (13) is characteristic, then one of the following conditions holds:

- (1) k = 2;
- (2) k = 3, and the polynomial f has exactly one real root;
- (3) k = 4, and the polynomial f has no real roots.

Note that the conditions of Corollary 1 are not sufficient. We call a sequence *exceptional* if it satisfies one of the conditions of Corollary 1 but relation (13) is not characteristic. Examples of such sequences will be given later. In addition, in this paper we write explicitly all exceptional sequences of orders 2 and 3.

For exceptional sequences, the group $\{\pm \lambda^n : n \in \mathbb{Z}\}$ is not the whole group $(\mathbb{Z}[\lambda])^*$, but its subgroup of finite index. This allows us to amplify Eq. (13) to a characteristic system.

4. Second-order sequences

Second-order sequences have been investigated in [10, 14, 6]; see also [12, Chapter II]. We consider this case from another point of view. Furthermore, this case allows us to demonstrate the main ideas of the general scheme for a natural simple example.

First, we find the restrictions on the coefficients b_0 , b_1 . Let us recall that, by our assumptions, $b_0 = \pm 1$, and the polynomial

$$f(\lambda) = t^2 - b_1 t - b_0 \tag{16}$$

is irreducible over \mathbf{Q} . As was noted above (see Sec. 2), we exclude the case of periodic sequences with a cyclotomic polynomial f. For this reason, for second-order sequences we have to demand that f has no complex roots, i.e., the inequality

$$b_1^2 + 4b_0 \ge 0 \tag{17}$$

holds. The polynomial f is irreducible if and only if

$$b_1^2 + 4b_0$$
 is not an integer square. (18)

Obviously, conditions (4), (17), and (18) are equivalent to the system

$$b_0 = \pm 1, \quad b_1 \neq 0, \quad b_1^2 + 4b_0 > 0$$

Lemma 3. Let $k = 2, c_0 = \pm 1, c_1 \in \mathbb{Z}, c_1 \neq 0, c_1^2 + 4c_0 > 0$. Let μ satisfy the equation

$$\mu^2 - c_1 \mu - c_0 = 0. \tag{19}$$

Let $\lambda = \mu^n$ or $\lambda = -\mu^n$ for some integer *n*. The inclusion $\mu \in \mathbb{Z}[\lambda]$ holds if and only if one of the following conditions holds:

- (i) |n| = 1;
- (ii) |n| = 2, $|c_1| = 1$, and $c_0 = 1$.

Proof. Necessity. Note that $\lambda \in \mathbf{Z}[\mu]$. Hence, for $\mu \in \mathbf{Z}[\lambda]$ we have

$$\mathbf{Z}[\mu] = \mathbf{Z}[\lambda]$$

In particular, $\langle 1, \mu \rangle$ and $\langle 1, \lambda \rangle$ are bases of the same modulus. Therefore, the discriminants of these bases are equal, $D(1, \mu) = D(1, \lambda)$ (for example, see [1, Chapter 2, §2]).

Let

$$\lambda = x\mu + y. \tag{20}$$

Then $D(1,\lambda) = x^2 D(1,\mu)$. Hence, $x = \pm 1$.

Taking the norm of λ , we have $N(\lambda) = N(x\mu + y) = x^2 N(\mu) + xy \operatorname{Tr}(\mu) + y^2 = -c_0 x^2 + c_1 xy + y^2$. On the other hand, $N(\lambda) = (N(\pm \mu^n)) = (N(\mu^n)) = (N(\mu))^n = (-c_0)^n$. Therefore,

$$-c_0x^2 + c_1xy + y^2 = (-c_0)^n.$$

Case 1. $c_0 = -1$. Since $x = \pm 1$, we have $c_1 xy + y^2 = 0$, i.e., either y = 0 or $y = -xc_1$. If y = 0, then $\lambda = x\mu = \pm \mu$, and n = 1. If $y = -xc_1$ then, by (19) and (20), $\lambda = x(\mu - c_1) = xc_0\mu^{-1} = \mp \mu^{-1}$, and n = -1.

Case 2. $c_0 = 1$, n is odd. Since $x = \pm 1$, we get the same relation $c_1 xy + y^2 = 0$ as above. As in case 1, we have $n = \pm 1$.

Case 3. $c_0 = 1$, *n* is even. Then $c_1xy + y^2 = (-c_0)^n + c_0x^2 = 2$. Taking into account that *x*, *y*, and c_1 are integers, one can list all their possible values (see Table 1). In addition, Table 1 contains the values of $g_{\mu}(t)$ (the minimal polynomial for μ over **Q**) and the corresponding values of λ and *n*.

TABLE 1.

y	x	c_1	$g_{\mu}(t)$	λ	n
2	1	-1	$t^2 + t - 1$	$\mu + 2 = \mu^{-2}$	-2
2	-1	1	$t^2 - t - 1$	$-\mu + 2 = \mu^{-2}$	-2
-2	1	1	$t^2 - t - 1$	$\mu - 2 = -\mu^{-2}$	-2
-2	-1	-1	$t^2 + t - 1$	$-\mu - 2 = -\mu^{-2}$	-2.
1	1	1	$t^2 - t - 1$	$\mu + 1 = \mu^2$	2
1	-1	-1	$t^2 + t - 1$	$-\mu + 1 = \mu^2$	2
-1	1	-1	$t^2 + t - 1$	$\mu - 1 = -\mu^2$	2
-1	-1	1	$t^2 - t - 1$	$-\mu - 1 = -\mu^2$	2

This completes the proof of necessity.

Sufficiency. Condition (i) is obviously sufficient, since $\mu \in (\mathbf{Z}[\mu])^*$ if $c_0 = \pm 1$. As to condition (ii), one can directly check that it is sufficient (see the values of λ in Table 1). This completes the proof.

If μ satisfies the equation $\mu^2 - \mu - 1 = 0$, then $\lambda^2 - 3\lambda + 1$ is the minimal polynomial for $\lambda = \mu^2$ and $\lambda = \mu^{-2}$, and $\lambda^2 + 3\lambda + 1$ is the minimal polynomial for $\lambda = -\mu^2$ and $\lambda = -\mu^{-2}$. We obtain the same polynomials if μ satisfies the equation $\mu^2 + \mu - 1 = 0$, and $\lambda = \pm \mu^2$, $\lambda = \pm \mu^{-2}$.

Theorem 2. Let k = 2, $b_0 = \pm 1$, $b_1 \in \mathbf{Z}$, $b_1 \neq 0$, $b_1^2 + 4b_0 > 0$. (1) If $b_0 = -1$, $b_1 = \pm 3$, then $[(\mathbf{Z}[\lambda])^* : \{\pm \lambda^n | n \in \mathbf{Z}\}] = 2$. (2) In all the remaining cases, $(\mathbf{Z}[\lambda])^* = \{\pm \lambda^n | n \in \mathbf{Z}\}]$.

Proof. The proof is immediate by Lemma 3.

Theorem 3. Let k = 2, $b_0 = \pm 1$, $b_1 \in \mathbb{Z}$, $b_1 \neq 0$, $b_1^2 + 4b_0 > 0$. Relation (3) is characteristic for sequence (2)-(3) if and only if

$$\langle b_0, b_1 \rangle \notin \{ \langle -1, 3 \rangle, \langle -1, -3 \rangle \}.$$

Proof. The proof is immediate by Theorems 1 and 2.

Remark 1. Consider the exceptional sets $\langle b_0, b_1 \rangle$ in detail.

First note that, for second-order sequences with $b_0 = -1$, more careful analysis of (12) leads to the relation

$$F_B(-a_n, -a_{n-1}) = F_B(a_n, a_{n-1}) = (\det B)^n = 1^n = 1.$$

Let $b_0 = -1$, $b_1 = 3$, and $\lambda^2 - 3\lambda + 1 = 0$. In this case,

$$F_B(x_0, x_1) = x_0^2 - 3x_0x_1 + x_1^2.$$

One can take $\mu = \lambda - 1$ as a fundamental unit of the ring $\mathbb{Z}[\lambda]$. In addition, $\lambda = \mu^2$. By Lemma 2, all superfluous solutions of Eq. (13) correspond to numbers of the form $\pm \mu^{2n+1}$. Namely, all superfluous solutions are given by $\langle y_n, z_n \rangle$, $\langle -y_n, -z_n \rangle$, where $\mu^{2n+1} = y_n + z_n(\lambda - b_1)$. Note that $\mu^{2n+1} = \mu\lambda^n = (\lambda - 1)\lambda^n = \lambda^{n+1} - \lambda^n$. By Lemma 1,

$$\mu^{2n+1} = a_{n+1} - a_n + (a_n - a_{n-1})(\lambda - b_1),$$

i.e., $y_n = a_{n+1} - a_n$, $z_n = a_n - a_{n-1}$. Taking into account the recurrent relation (2) with $b_1 = 3$, we have $y_n = 2a_n - a_{n-1}$. A straightforward calculation shows that

$$F_B(y_n, z_n) = F_B(-y_n, -z_n) = -F_B(a_n, a_{n-1}) = -1$$

Thus, in this case one can take the relation

$$F_B(x_0, x_1) = 1 \tag{21}$$

as a characteristic relation instead of (13).

For the same reasons, in the case $b_0 = -1$, $b_1 = -3$, one can take (21) as a characteristic relation.

Remark 2. Let $b_0 = -1$, $|b_1| \neq 3$, and $b_1^2 + 4b_0 > 0$. By Theorems 1 and 2, in this case relation (13) is characteristic, i.e., it has no superfluous solutions. But for $b_0 = -1$ we have, as in Remark 1, $F_B(-a_n, -a_{n-1}) = F_B(a_n, a_{n-1}) = 1$. Therefore, the equation

$$F_B(x_0, x_1) = -1$$

has no integer solutions. Hence, if $b_0 = -1$, then we can consider a simpler characteristic relation (21) instead of (13).

5. Third-order sequences

First, we find reflections on the coefficients b_i . By Corollary 1 to Theorem 1, it is necessary that the cubic polynomial f defined for k = 3 by (6) has exactly one real root. It is well known (for example, see [8, §26]) that this condition holds if and only if the discriminant of f is negative:

$$D = b_1^2 b_2^2 + 4b_1^3 - 4b_0 b_2^3 - 27b_0^2 - 18b_0 b_1 b_2 < 0.$$
⁽²²⁾

Exclude from these polynomials the polynomials reducible over \mathbf{Q} . Since $b_0 = \pm 1$, the real root of f is 1 or -1, and both its complex roots are roots of unity lying in some quadratic field (i.e., they are primitive roots of unity of degree 3, 4, or 6).

TABLE 2.

f	D
$x^{3} - x^{2} + x - 1 = (x^{2} + 1)(x - 1)$	-16
$x^{3} + x^{2} + x + 1 = (x^{2} + 1)(x + 1)$	-16
$x^{3} - 1 = (x^{2} + x + 1)(x - 1)$	-27
$x^{3} + 2x^{2} + 2x + 1 = (x^{2} + x + 1)(x + 1)$	-3
$x^{3} - 2x^{2} + 2x - 1 = (x^{2} - x + 1)(x - 1)$	-3
$x^{3} + 1 = (x^{2} - x + 1)(x + 1)$	-27

All reducible polynomials f with $b_0 = \pm 1$ and D < 0 are listed in Table 2.

Since the discriminant of an irreducible cubic polynomial is not equal to -3, -16, -27 (see [8, p. 126]), to exclude the case of reducibility we may impose the following restriction along with relation (22):

$$D \neq -3, -16, -27. \tag{23}$$

Later we reduce the problem of description of third-order exceptional sequences to the problem on the number of representations of 1 by a binary cubic form of negative discriminant. Exact estimates for the number of such representations were found by Delone, see [8, Chapter VI].

Theorem 4 (Delone). Let $c_0 = \pm 1$, $D = c_1^2 c_2^2 + 4c_1^3 - 4c_0 c_2^3 - 27c_0^2 - 18c_0 c_1 c_2 < 0$, $D \neq -3, -16, -27$. Consider the equation

$$x_{\perp}^{3} - c_{2}x^{2}y - c_{1}xy^{2} - c_{0}y^{3} = 1.$$
(*)

- (1) If D = -23, then Eq. (*) has 5 integer solutions.
- (2) If D = -31 or D = -44, then Eq. (*) has 4 integer solutions.
- (3) In all the remaining cases, i.e., if D < -44, Eq. (*) has at most 3 integer solutions.

For a proof, see [8, Chapter VI].

By Theorem 1 and Corollary 1, to find all exceptional third-order sequences we have to find all units λ in cubic orders of negative discriminant for which there exists a unit $\mu \in \mathbb{Z}[\lambda]$ such that $\lambda = \pm \mu^n$, $|n| \ge 2$. Let us note that we may take $-\mu$ instead μ . Since for their norms we have $N(\mu) = -N(-\mu)$, without loss of generality we may assume that $N(\mu) = 1$, i.e., the constant term of the minimal polynomial for μ equals -1.

First consider the case D < -44.

Lemma 4. Let k = 3, $c_0 = 1$, $D = c_1^2 c_2^2 + 4c_1^3 - 4c_2^3 - 27 - 18c_1c_2 < -44$. Let μ satisfy the equation

$$\mu^3 - c_2 \mu^2 - c_1 \mu - 1 = 0, \tag{24}$$

and let $\lambda = \mu^n$ or $\lambda = -\mu^n$ for some integer *n*. The inclusion $\mu \in \mathbb{Z}[\lambda]$ holds if and only if one of the following conditions is fulfilled:

- (i) |n| = 1;
- (ii) $c_1 = 0, c_2 \ge 2, and |n| = 2;$
- (iii) $c_2 = 0, c_1 \le -2, and |n| = 2.$

Proof. Necessity. Since $\lambda = \pm \mu^n \in \mathbf{Z}[\mu]$ and $\mu \in \mathbf{Z}[\lambda]$ by our hypothesis, we have

$$\mathbf{Z}[\mu] = \mathbf{Z}[\lambda].$$

In particular, $\langle 1, \mu, \mu^2 \rangle$ and $\langle 1, \lambda, \lambda^2 \rangle$ are bases of the same modulus. Let us consider, along with the first basis, the following one: $\langle 1, \zeta, \eta \rangle$, where $\zeta = \mu - c_2$ and $\eta = \mu^2 - c_2\mu - c_1$. It easy to check the following

relations (let us recall here that $c_0 = 1$):

$$u\zeta = \eta + c_1,$$

$$\zeta^2 = c_1 - c_2\zeta + \eta,$$

$$u\eta = 1,$$

$$\zeta\eta = 1 - c_2\eta,$$

$$\eta^2 = \zeta - c_1\eta.$$

(25)

Let

$$\lambda = z + x\zeta + y\eta. \tag{26}$$

By the above relations, we have

 $\lambda^{2} = z^{2} + c_{1}x^{2} + 2xy + (-c_{2}x^{2} + y^{2} + 2xz)\zeta + (x^{2} - c_{1}y^{2} + 2yz - 2c_{2}xy)\eta.$

The transition matrix between the bases $\langle 1, \zeta, \eta \rangle$ and $\langle 1, \lambda, \lambda^2 \rangle$ is

$$C(\lambda) = \begin{pmatrix} 1 & z & z^2 + c_1 x^2 + 2xy \\ 0 & x & -c_2 x^2 + y^2 + 2xz \\ 0 & y & x^2 - c_1 y^2 + 2yz - 2c_2 xy \end{pmatrix}.$$

Since the transition matrix is unimodular, i.e., it is a matrix with integer entries whose determinant is equal to ± 1 (see [1, Chapter 2, §2, Section 1]), we have

$$\det C(\lambda) = x^3 - c_2 x^2 y - c_1 x y^2 - y^3 = \pm 1.$$

Since $\mathbf{Z}[\lambda] = \mathbf{Z}[-\lambda]$, the numbers λ and $-\lambda$ satisfy the hypotheses of our lemma simultaneously. Therefore, it is sufficient to consider one of the numbers λ and $-\lambda$. Since

$$C(-\lambda) = C(\lambda) \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

det $\tilde{C}(\lambda) = -\det C(-\lambda)$. Therefore, without loss of generality we may assume that det $C(\lambda) = 1$ and that

$$x^{3} - c_{2}x^{2}y - c_{1}xy^{2} - y^{3} = 1$$
(27)

(otherwise, take $-\lambda$ instead of λ).

We consider λ^{-1} similarly. Let $\lambda^{-1} = r + p\zeta + q\eta$. As above, let $C(\lambda^{-1})$ be the transition matrix between the bases $\langle 1, \zeta, \eta \rangle$ and $\langle 1, \lambda^{-1}, \lambda^{-2} \rangle$:

$$C(\lambda^{-1}) = \begin{pmatrix} 1 & r & r^2 + c_1 p^2 + 2pq \\ 0 & p & -c_2 p^2 + q^2 + 2pr \\ 0 & q & p^2 - c_1 q^2 + 2qr - 2c_2 pq \end{pmatrix}.$$

Now we prove that

$$\det C(\lambda) = -\det C(\lambda^{-1}).$$

Note that λ satisfies the cubic equation

$$\lambda^3 - b_2 \lambda^2 - b_1 \lambda - b_0 = 0 \,,$$

where $b_i \in \mathbf{Z}$ and $b_0 = \pm 1$ (since λ is a unit of the ring $\mathbf{Z}[\mu]$); in particular, $b_0^{-1} = b_0$. Hence,

$$\lambda^{-1} = b_0 \lambda^2 - b_0 b_2 \lambda - b_0 b_1,$$

$$\lambda^{-2} = -b_1 \lambda^2 + (b_1 b_2 + b_0) \lambda + b_1^2 - b_0 b_2.$$

Therefore, the transition matrix between the bases $\langle 1, \lambda, \lambda^2 \rangle$ and $\langle 1, \lambda^{-1}, \lambda^{-2} \rangle$ is

$$C = \begin{pmatrix} 1 & -b_0b_1 & b_1^2 - b_0b_2 \\ 0 & -b_0b_2 & b_1b_2 + b_0 \\ 0 & b_0 & -b_1 \end{pmatrix}.$$

Since $C(\lambda^{-1}) = C(\lambda) \cdot C$, we have det $C(\lambda^{-1}) = \det C(\lambda) \det C = -b_0^2 \det C(\lambda) = -\det C(\lambda) = -1$. Consequently,

$$p^{3} - c_{2}p^{2}q - c_{1}pq^{2} - q^{3} = -1.$$
(28)

Thus, we reduce our problem to the analysis of representations of unity by binary cubic forms.

Let us indicate other relations between x, y, z, p, q, r that we need below. Since $(z+x\zeta+y\eta)(r+p\zeta+q\eta) = \lambda\lambda^{-1} = 1$, we have, by the multiplication table (25),

$$zr + c_1 xp + xq + yp = 1, (29)$$

$$zp + xr - c_2 xp + yq = 0, (30)$$

$$zq + xp - c_2xq - c_2yp + y\dot{r} - c_1yq = 0.$$
(31)

By the hypotheses of our lemma, D < -44. Therefore, by the Delone theorem (Theorem 4), Eq. (27) has at most three integer solutions. It is easy to find two of them:

Denote the third solution (if it exists) by (X, Y). If a pair (x, y) satisfies (27) and x = 0 or y = 0, then (x, y) is one of the two trivial solutions (32). Hence,

$$X \neq 0, \qquad Y \neq 0.$$

The solutions of Eq. (28) are (-1,0), (0,1), and (if the third solution exists) (-X,-Y).

Let us consider possible combinations of the values of x, y, p, q. Note that, in general, admissible values of x, y, p, q are not independent. In fact, $c = \lambda + \lambda^{-1} \notin \mathbb{Z}$ (otherwise λ satisfies a quadratic equation with integer coefficients, which is impossible). Thus, we have to exclude the following three cases, where x = -p, y = -q:

$$x = 1, y = 0, p = -1, q = 0,$$

 $x = 0, y = -1, p = 0, q = 1,$
 $x = X, y = Y, p = -X, q = -Y$

Consider the remaining six cases.

Case 1. x = 1, y = 0, p = 0, q = 1. By (31), $z = c_2$. It follows from (26) and from the definition of η and ζ that $\lambda = c_2 + \zeta = \mu$, i.e., n = 1 in this case.

Case 2. x = 0, y = -1, p = -1, q = 0. By (30), z = 0. It follows from (26) and from the definition of η and ζ that $\lambda = -\eta = -(\mu^2 - c_2\mu - c_1) = -\mu^{-1}$, i.e., n = -1 in this case.

We have already proved that if Eq. (27) has only two integer solutions, then any λ satisfying the hypotheses of our lemma admits only trivial values $\pm \mu$, $\pm \mu^{-1}$.

Let us consider the cases where (27) has three solutions.

Case 3. x = 1, y = 0, p = -X, q = -Y. By (31), $-zY - X + c_2Y = 0$. In particular, $Y \mid X$. Since the pair (X, Y) satisfies (27), we conclude that $Y = \pm 1$.

(a) Y = 1. Substituting this into (27), we get

$$X^3 - c_2 X^2 - c_1 X - 1 = 1. (33)$$

Therefore, $X \mid 2$, and X takes the values ± 1 , ± 2 . We claim that in all these cases the values of the discriminant D are not smaller than -44, i.e., they do not satisfy the hypotheses of our lemma.

If X = 1, then $c_1 = -1 - c_2$, by (33). Hence, $D = c_2^4 - 6c_2^3 + 7c_2^2 + 6c_2 - 31 = (c_2^2 - 3c_2 - 1)^2 - 32 \ge -32$. If X = -1, then $c_1 = 3 + c_2$, by (33). Hence, $D = c_2^4 + 6c_2^3 + 27c_2^2 + 54c_2 + 81 = (c_2^2 + 3c_2 + 9)^2 \ge 0$.

If X = 2, then $c_1 = 3 - 2c_2$, by (33). Hence, $D = 4c_2^4 - 48c_2^3 + 189c_2^2 - 270c_2 + 81 = (2c_2^2 - 12c_2 + 45/4)^2 - 729/16$. Let us estimate $|2c_2^2 - 12c_2 + 45/4| = |2(c_2 - 3)^2 - 27/4|$. For integer c_2 , the minimum of the above modulus is attained at $c_2 = 1$ or $c_2 = 5$. It equals 5/4. Therefore, $D \ge 25/16 - 729/16 = -44$.

If X = -2, then $c_1 = 5 + 2c_2$, by (33). Hence, $D = 4c_2^4 + 48c_2^3 + 229c_2^2 + 510c_2 + 473 = (2c_2^2 + 12c_2 + 85/4)^2 + 343/16 > 0$. The analysis of case (a) is completed.

(b) Y = -1. As was noted above, $X \neq 0$. Then, by (27), X satisfies the equation

$$X^2 + c_2 X - c_1 = 0. (34)$$

Denote its second solution by X'. Since (1,0), (0,-1), (X,-1), and (X',-1) satisfy (27), and by the Delone theorem, for D < -44, Eq. (27) has at most three solutions, we have either X = X' or X' = 0.

Let us show that the equality X = X' is impossible. If X = X', then $c_2^2 + 4c_1 = 0$, by (34). Moreover, $X = -c_2/2$. Since x = 1, y = 0, $p = -X = c_2/2$, q = -Y = 1, we have $z = c_2/2$, by (31). Therefore, $\lambda = c_2/2 + \zeta = \mu - c_2/2$. But $\lambda^2 = \mu^2 - c_2\mu + c_2^2/4 = \mu^2 - c_2\mu - c_1 = \mu^{-1}$, which contradicts the hypothesis $\lambda = \pm \mu^n$, where n is an integer.

Let us consider the case X' = 0. Then $c_1 = 0$ by (34). Since $X \neq 0$, we have $X = -c_2$. First, we find the admissible values of c_2 . Since $c_1 = 0$, we have $D = -4c_2^3 - 27$ and, by the hypothesis, D < -44, $c_2 \ge 2$. Finally, we find n. Since x = 1, y = 0, $p = -X = c_2$, and q = -Y = 1, we deduce from (31) that z = 0. Therefore, $\lambda = \zeta = \mu - c_2$. Since $c_1 = 0$, we have $\mu^2 \lambda = \mu^2(\mu - c_2) = 1$ and $\lambda = \mu^{-2}$, i.e., n = -2.

The analysis of case 3 is completed.

Case 4. x = 0, y = -1, p = -X, q = -Y. By (30), -zX - Y = 0. In particular, $X \mid Y$. Since the pair (X, Y) satisfies (27), we conclude that $X = \pm 1$.

(a) X = -1. Substituting this in (27), we obtain

$$-1 - c_2 Y + c_1 Y^2 - Y^3 = 1. (35)$$

Therefore, $Y \mid 2$, and Y takes the values ± 1 , ± 2 . As in case 3(a), we claim that $D \geq -44$, i.e., the hypotheses of our lemma are not satisfied.

If Y = -1, then $c_2 = 1 - c_1$, by (35). Hence, $D = c_1^4 + 6c_1^3 + 7c_1^2 - 6c_1 - 31 = (c_1^2 + 3c_1 - 1)^2 - 32 \ge -32$. If Y = 1, then $c_2 = -3 + c_1$, by (35). Hence, $D = c_1^4 - 6c_1^3 + 27c_1^2 - 54c_1 + 81 = (c_1^2 - 3c_1 + 9)^2 \ge 0$.

If Y = -2, then $c_2 = -3 - 2c_1$, by (35). Hence, $D = 4c_1^4 + 48c_1^3 + 189c_1^2 + 270c_1 + 81 = (2c_1^2 + 12c_1 + 45/4)^2 - 729/16$. As above, for integer c_1 , the minimum of $|2c_1^2 + 12c_1 + 45/4| = |2(c_1 + 3)^2 - 27/4|$ is attained at $c_1 = -1$ or $c_1 = -5$. It is equal to 5/4. Therefore, $D \ge 25/16 - 729/16 = -44$.

If Y = 2, then $c_2 = -5 + 2c_1$, by (35). Hence, $D = 4c_1^4 - 48c_1^3 + 229c_1^2 - 510c_1 + 473 = (2c_1^2 - 12c_1 + 85/4)^2 + 343/16 > 0$. The analysis of case (a) is completed.

(b) X = 1. As was noted above, $Y \neq 0$. Then, by (27), Y satisfies the equation

$$Y^2 + c_1 Y + c_2 = 0. (36)$$

Denote its second solution by Y'(Y') is also an integer). Since (1,0), (0,-1), (1,Y), and (1,Y') satisfy (27), and by the Delone theorem, for D < -44, Eq. (27) has at most three solutions, we conclude that either Y = Y' or Y' = 0.

Let us show that the equality Y = Y' is impossible. If Y = Y', then $c_1^2 - 4c_2 = 0$ by (36). In addition, $Y = -c_1/2$. Since x = 0, y = -1, p = -X = -1, and $q = -Y = c_1/2$, we have $z = -c_1/2$ by (30). Therefore,

 $\lambda = -c_1/2 - \eta = -\mu^2 + c_2\mu + c_1/2 = -\mu^{-1} - c_1/2$. But $\lambda^2 = \mu^{-2} + c_1\mu^{-1} + c_1^2/4 = \mu^{-2} + c_1\mu^{-1} + c_2 = \mu^1$, which contradicts the hypothesis $\lambda = \pm \mu^n$, where n is an integer. Hence, $Y \neq Y'$.

Let us consider the case Y' = 0. Then $c_2 = 0$ by (36). Since $Y \neq 0$, we have $Y = -c_1$. First, we find the admissible values of c_1 . Since $c_2 = 0$, we have $D = 4c_1^3 - 27$ and, by the hypothesis D < -44, $c_1 \leq -2$. Finally, we find *n*. Since x = 0, y = -1, p = -X = -1, $q = -Y = c_1$, we deduce from (30) that $z = -c_1$. Therefore, $\lambda = -c_1 - \eta = -\mu^2$ (recall that $c_2 = 0$), i.e., n = 2. The analysis of case 4 is completed.

Case 5. x = X, y = Y, p = -1, q = 0. Analysis similar to that in case 3 (one should consider $-\lambda^{-1} = -r + \zeta$ instead of λ) shows that $c_1 = 0$, $c_2 \ge 2$, |n| = 2.

Case 6. x = X, y = Y, p = 0, q = 1. Analysis similar to that in case 4 (one should consider $-\lambda^{-1} = -r - \eta$, instead of λ) shows that $c_1 \leq -2$, $c_2 = 0$, |n| = 2.

This completes the proof of necessity.

Sufficiency. The proof is straightforward.

Now we consider the case of small |D|. The scheme is the same as in Lemma 4. Let us note that it is sufficient to take a fundamental unit (say, ε) of the corresponding ring and to find all λ such that $\lambda = \pm \varepsilon^n$, $|n| \ge 2$, and $\mathbf{Z}[\lambda] = \mathbf{Z}[\varepsilon]$.

The minimal polynomials of fundamental units of cubic orders with discriminants -23, -31, and -44 are listed in Table 3. These fundamental units are taken from [8, p. 230]. (In fact, in [8] their inverses are given.)

TABLE 3.

-23	$\varepsilon^3 - \varepsilon - 1$
-31	$\varepsilon^3 - \varepsilon^2 - 1$
-44	$\varepsilon^3 - \varepsilon^2 - \varepsilon - 1$

Lemma 5. (1) Assume that D = -23. Let ε satisfy the equation $\varepsilon^3 - \varepsilon - 1 = 0$ and let $\lambda = \varepsilon^n$ or $\lambda = -\varepsilon^n$ for some integer *n*. The inclusion $\varepsilon \in \mathbb{Z}[\lambda]$ holds if and only if $n \in \{\pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 9\}$.

(2) Assume that D = -31. Let ε satisfy the equation $\varepsilon^3 - \varepsilon^2 - 1 = 0$ and let $\lambda = \varepsilon^n$ or $\lambda = -\varepsilon^n$ for some integer *n*. The inclusion $\varepsilon \in \mathbb{Z}[\lambda]$ holds if and only if $n \in \{\pm 1, \pm 2, \pm 3, \pm 5\}$.

(3) Assume that D = -44. Let ε satisfy the equation $\varepsilon^3 - \varepsilon^2 - \varepsilon - 1 = 0$ and let $\lambda = \varepsilon^n$ or $\lambda = -\varepsilon^n$ for some integer *n*. The inclusion $\varepsilon \in \mathbb{Z}[\lambda]$ holds if and only if $n \in \{\pm 1, \pm 3\}$.

Proof. Necessity. Let D = -23. As in the proof of Lemma 4, we reduce the problem to determination of units $\lambda = z + x\varepsilon + y(\varepsilon^2 - 1)$ such that

$$x^3 - xy^2 - y^3 = 1.$$

All solutions of this equation are the following pairs (see [8, Chapter VI, p. 317]):

$$\langle 1,0
angle, \langle 0,-1
angle, \langle 1,-1
angle, \langle -1,-1
angle, \langle 4,3
angle.$$

Since λ is a unit in $\mathbf{Z}[\varepsilon]$, its norm equals ± 1 , i.e.,

$$N(z + x\varepsilon + y(\varepsilon^2 - 1)) = \det \begin{pmatrix} z - y & y & x \\ x & z & x + y \\ y & x & z \end{pmatrix} = \pm 1.$$

Substituting the admissible values of x and y, we obtain cubic equations in the variable z. All solutions with integer z, the corresponding values of λ , and $g_{\lambda}(t)$ (the minimal polynomials for λ) are listed in Table 4. (We refer to these values below.)

z	x	y	λ	$g_{\lambda}(t)$
0	1	0	ε	$t^3 - t - 1$
-1	1) 0	ε^{-4}	$t^3 + 3t^2 + 2t - 1$
1	1	0	ε^3	$t^3 - 3t^2 + 2t - 1$
1	0	-1	ε^{-5}	$t^3 - 4t^2 + 5t - 1$
-1	0	-1	$-\varepsilon^2$	$t^3 + 2t^2 + t + 1$
0	0	-1	$-\varepsilon^{-1}$	$t^3 - t^2 + 1$
0	1	-1	ε^{-2}	$t^3 - t^2 + 2t - 1$
-1	1	-1	$-\varepsilon^3$	$t^3 + 2t^2 + 3t + 1$
-2	-1	-1	$-\varepsilon^5$	$t^3 + 5t^2 + 4t + 1$
-1	-1	-1	$-\varepsilon^4$	$t^3 + 2t^2 - 3t + 1$
2	-1	-1	$-\varepsilon^{-9}$	$t^3 - 7t^2 + 12t + 1$
5	4	3	ε^9	$t^3 - 12t^2 - 7t - 1$

TABLE 4.

Let D = -31. Similarly, we reduce the problem to determination of units $\lambda = z + x(\varepsilon - 1) + y(\varepsilon^2 - \varepsilon)$ such that

$$x^3 - x^2y - y^3 = 1.$$

All integer solutions of this equation are the following pairs (see [8, Chapter VI, p. 317]):

$$\langle 1,0\rangle, \quad \langle 0,-1\rangle, \quad \langle -1,-1\rangle, \quad \langle 3,2\rangle.$$

Since λ is a unit in $\mathbf{Z}[\varepsilon]$, we have

$$N(z + x(\varepsilon - 1) + y(\varepsilon^{2} - \varepsilon)) = \det \begin{pmatrix} -x + z & y & x \\ x - y & -x + z & y \\ y & x & z \end{pmatrix} = \pm 1$$

As above, substituting the admissible values of x and y, we find z. All the solutions are listed in Table 5.

TABLE	5.
-------	----

z	x	y	λ -	$g_{\lambda}(t)$
0	1	0	ε^{-2}	$t^3 + 2t^2 + t - 1$
1	1	0	ε	$t^3 - t^2 - 1$
1	0	-1	ε^{-3}	$t^3 - 3t^2 + 4t - 1$
0	0	-1	$-\varepsilon^{-1}$	$t^3 + t + 1$
-2	-1	-1	$-\varepsilon^3$	$t^3 + 4t^2 + 3t + 1$
-1	-1	-1	$-\varepsilon^{-2}$	$t^3 - 2t^2 + t + 1$
1	-1	-1	$-\varepsilon^{-5}$	$t^3 - 5t^2 + 6t + 1$
4	3	2	ε^5	$t^3 - 6t^2 - 5t - 1$

Let D = -44. Similarly, we reduce the problem to determination of units $\lambda = z + x(\varepsilon - 1) + y(\varepsilon^2 - \varepsilon - 1)$ such that

$$x^3 - x^2y - xy^2 - y^3 = 1.$$

All integer solutions of this equation are the following pairs (see [8, Chapter VI, p. 317]):

$$\langle 1,0\rangle, \quad \langle 0,-1\rangle, \quad \langle 2,1\rangle, \quad \langle -103,-56\rangle.$$

Since λ is a unit in $\mathbf{Z}[\varepsilon]$, we have

$$\det \begin{pmatrix} -x - y + z & y & x \\ x - y & -x + z & x + y \\ y & x & z \end{pmatrix} = \pm 1$$

Substituting the admissible values of x and y, we find z. All the solutions are listed in Table 6.

TABLE 6.

z	x	y	λ	$g_{\lambda}(t)$
1	1	0	ε	$t^3 - t^2 - t - 1$
-1	1	0	$-\varepsilon^{-3}$	$t^3 + 5t^2 + 7t + 1$
0	0	-1	$-\varepsilon^{-1}$	$t^3 - t^2 + t + 1$
4	2	1	ε^3	$t^3 - 7t^2 + 5t - 1$

This completes the proof of necessity.

Sufficiency. One can directly check that, for all values of n listed in our lemma, the discriminant of order $\mathbf{Z}[\pm \lambda]$ is equal to the discriminant of maximal order (i.e., it is equal to -23, -31, and -44, respectively). Therefore, $\mathbf{Z}[\pm \lambda]$ coincides with the maximal order of the corresponding field, and $\varepsilon \in \mathbf{Z}[\pm \lambda]$. This completes the proof.

Theorem 5. Let λ satisfy the equation $\lambda^3 - b_2\lambda^2 - b_1\lambda - b_0 = 0$, where $b_0 = \pm 1$, $D = b_1^2b_2^2 + 4b_1^3 - 4b_0b_2^3 - 27b_0^2 - 18b_0b_1b_2 < 0$, $D \neq -3, -16, -27$. (1) If $\langle b_0, b_1, b_2 \rangle$ is one of the triples

$$\begin{array}{ll} \langle 1,-2,1\rangle, & \langle 1,-1,2\rangle, & \langle -1,-2,-1\rangle, & \langle -1,-1,-2\rangle, \\ \langle 1,2,1\rangle, & \langle 1,-1,-2\rangle, & \langle -1,2,-1\rangle, & \langle -1,-1,2\rangle, \\ \langle 1,2t,t^2\rangle, & \langle 1,-t^2,-2t\rangle, & \langle -1,2t,-t^2\rangle, & \langle -1,-t^2,2t\rangle, \end{array}$$

where $t \ge 2$, then $[(\mathbf{Z}[\lambda])^* : \{\pm \lambda^n \mid n \in \mathbf{Z}\}] = 2$. (2) If $\langle b_0, b_1, b_2 \rangle$ is one of the triples

$$\begin{array}{lll} \langle 1,-2,3\rangle, & \langle 1,-3,2\rangle, & \langle -1,-2,-3\rangle, & \langle -1,-3,-2\rangle, \\ \langle 1,-3,4\rangle, & \langle 1,-4,3\rangle, & \langle -1,-3,-4\rangle, & \langle -1,-4,-3\rangle, \\ \langle 1,-5,7\rangle, & \langle 1,-7,5\rangle, & \langle -1,-5,-7\rangle, & \langle -1,-7,-5\rangle, \end{array}$$

then $[(\mathbf{Z}[\lambda])^* : \{\pm \lambda^n \mid n \in \mathbf{Z}\}] = 3.$ (3) If $\langle b_0, b_1, b_2 \rangle$ is one of the triples

$$\langle 1,3,2\rangle, \quad \langle 1,-2,-3\rangle, \quad \langle -1,3,-2\rangle, \quad \langle -1,-2,3\rangle,$$

then $[(\mathbf{Z}[\lambda])^* : \{\pm \lambda^n \mid n \in \mathbf{Z}\}] = 4.$ (4) If $\langle b_0, b_1, b_2 \rangle$ is one of the triples

$$\langle 1,5,6
angle, \quad \langle 1,-6,-5
angle, \quad \langle -1,5,-6
angle, \quad \langle -1,-6,5
angle, \ \langle 1,-4,5
angle, \quad \langle 1,-5,4
angle, \quad \langle -1,-4,-5
angle, \quad \langle -1,-5-4
angle,$$

then $[(\mathbf{Z}[\lambda])^* : \{\pm \lambda^n \mid n \in \mathbf{Z}\}] = 5.$

 $\langle 1, 7, 12 \rangle$, $\langle 1, -12, -7 \rangle$, $\langle -1, 7, -12 \rangle$, $\langle -1, -12, 7 \rangle$,

then $[(\mathbf{Z}[\lambda])^* : \{\pm \lambda^n \mid n \in \mathbf{Z}\}] = 9.$ (6) In all the remaining cases, $(\mathbf{Z}[\lambda])^* = \{\pm \lambda^n \mid n \in \mathbf{Z}\}.$

Proof. All the triples $\langle b_0, b_1, b_2 \rangle$ listed in items (1)–(5) are coefficients of the minimal polynomials for units λ such that $\lambda = \pm \mu^n$, $|n| \ge 2$, and $\mu \in \mathbb{Z}[\lambda]$ (see Lemmas 4 and 5). Computation of indices of the corresponding subgroups is straightforward.

Theorem 6. Let k = 3 and let the sequence a_n be defined by (2)–(3). Let $D = b_1^2 b_2^2 + 4b_1^3 - 4b_0 b_2^3 - 27b_0^2 - 18b_0 b_1 b_2 < 0$, $D \neq -3, -16, -27$. Relation (13) is characteristic for the sequence a_n if and only if the triple $\langle b_0, b_1, b_2 \rangle$ is not listed in items (1)–(5) of Theorem 5.

Proof. This follows immediately from Theorems 1 and 5.

Now we can construct **Z**-Diophantine representations of the sets of values of third-order sequences. For k = 3 and fixed coefficients b_0 , b_1 , b_2 of the recurrent relation, define the sets

$$\mathcal{M}(b_0, b_1, b_2) = \{ \langle y_0, y_1, y_2 \rangle : \exists n \in \mathbf{Z} \ [y_i = a_{n-i}, \ i = 0, 1, 2] \}$$
(37)

and

$$\mathcal{M}^+(b_0, b_1, b_2) = \{ \langle y_0, y_1, y_2 \rangle : \exists n \in \mathbf{N} \ [y_i = a_{n-i}, \ i = 0, 1, 2] \}.$$
(38)

Theorem 7. Let b_0 , b_1 , b_2 be the same as in Theorem 5. Let the sequence $a_n = a_n(b_0, b_1, b_2)$ be defined by (2)–(3) and let the sets \mathcal{M} and \mathcal{M}^+ be defined by (37), (38).

(1) $\langle y_0, y_1, y_2 \rangle \in \mathcal{M}(b_0, b_1, b_2)$ if and only if there exist integers x_0, x_1, x_2 such that (13) holds and

$$\bigvee_{i=1}^{360} \{A(y_0, y_1, y_2) = B^i (A(x_0, x_1, x_2))^{360}\},\tag{39}$$

where the matrices B and $A(x_0, x_1, x_2)$ are defined by (8) and (9), respectively.

(2) $\langle y_0, y_1, y_2 \rangle \in \mathcal{M}^+(b_0, b_1, b_2)$ if and only if there exist integers x_0, x_1, x_2 such that (13) and (39) hold, and

$$\det((A^2(y_0, y_1, y_2) - E)(B^2 - E)) > 0.$$
(40)

Proof. Take the same λ as in Theorem 5. Let $\xi \in (\mathbb{Z}[\lambda])^*$. We first prove that $\xi = \lambda^n$ for some integer n if and only if there exist $\mu \in (\mathbb{Z}[\lambda])^*$ and $i \in \{1, 2, ..., 360\}$ such that

$$\xi = \lambda^i \mu^{360}.\tag{41}$$

Let such *i* and μ exist. By Theorem 5, the index of the subgroup $\langle \lambda^n \mid n \in \mathbf{Z} \rangle$ in the group $(\mathbf{Z}[\lambda])^*$ divides 360. Hence, $\mu^{360} \in \{\lambda^n \mid n \in \mathbf{Z}\}$ and $\xi \in \{\lambda^n \mid n \in \mathbf{Z}\}$. Conversely, if $\xi = \lambda^n$, then it is sufficient to take $i \equiv n \pmod{360}$, $1 \leq i \leq 360$, and $\mu = \lambda^{\frac{n-i}{360}}$.

Write $\xi = y_0 + y_1(\lambda - b_2) + y_2(\lambda^2 - b_2\lambda - b_1)$ and $\mu = x_0 + x_1(\lambda - b_2) + x_2(\lambda^2 - b_2\lambda - b_1)$. Applying the monomorphism T defined in Sec. 3 to relation (41), we prove the first claim.

To prove the second claim, note that λ is an eigenvalue of the matrix B and $\xi = y_0 + y_1(\lambda - b_2) + y_2(\lambda^2 - b_2\lambda - b_1)$ is an eigenvalue of the matrix $A(y_0, y_1, y_2)$. Moreover, each of these matrices has exactly one real eigenvalue. By the first assertion, conditions (39) and (40) hold if and only if $\xi = \lambda^n$ for some integer n. Condition (40) means that real eigenvalues of the matrices $A(y_0, y_1, y_2)$ and B either both lie inside the interval (-1, 1) or both lie outside the interval [-1, 1]. This is equivalent to the fact that n > 0. This completes the proof.

Remark. If we restrict ourselves to sequences for which relation (13) is characteristic, we can find simpler Diophantine representations of the sets $\mathcal{M}(b_0, b_1, b_2)$ and $\mathcal{M}^+(b_0, b_1, b_2)$. Indeed, since $[(\mathbf{Z}[\lambda])^* : \{\lambda^n \mid n \in \mathbf{Z}\}] = [\{\pm \lambda^n \mid n \in \mathbf{Z}\} : \{\lambda^n \mid n \in \mathbf{Z}\}] = 2$ in this case, one can replace the constant 360 by 2 in Theorem 7. On the other hand, the above formulation included all possible cases.

This research was supported in part by the ISSEP, grants a96-1965 and a97-2261.

Translated by M. A. Vsemirnov.

REFERENCES

- 1. Z. I. Borevich and I. R. Shafarevich, *Theory of Numbers* [in Russian], Moscow (1972).
- M. A. Vsemirnov, "On Diophantine representations of linear recurrent sequences," in: II International Conference: Algebraic, Probabilistic, Geometric, Combinatorial, and Functional Methods in Number Theory. Abstracts [in Russian], Voronezh (1995), p. 36.
- M. A. Vsemirnov, "Diophantine representations of linear recurrent sequences. I," Zap. Nauchn. Semin. POMI, 227, 52–60 (1995).
- 4. M. A. Vsemirnov, "Direct constructions of Diophantine representations of linear recurrent sequences," in: Materials of International Conference and Chebyshev's Readings, Dedicated to the 175th Anniversary of P. L. Chebyshev's Birth [in Russian], Moscow, 1 (1996), pp. 101–103.
- 5. M. A. Vsemirnov, "Diophantine representations of linear recurrent sequences of small orders," in: Number Theory Conference, Abstracts, Eger (1996), pp. 40–41.
- M. Davis, "An explicit Diophantine definition of the exponential function," Comm. Pure Appl. Math., 24, 137–145 (1971).
- M. Davis, H. Putnam, and J. Robinson, "The decision problem for exponential Diophantine equations," Ann. Math., 74, 425–436 (1961).
- 8. B. N. Delone and D. K. Faddeev, "Theory of irrationalities of third degree," *Trudy Mat. Inst. Akad. Nauk SSSR*, **11** (1940).
- 9. P. Kiss, "On some properties of linear recurrences," Publ. Math., 30, 273–281 (1983).
- N. K. Kossovskii, "Diophantine representation of the sequence of solutions of the Pell equation," Zap. Nauchn. Semin. LOMI, 20, 49–59 (1971).
- 11. Yu. V. Matiyasevich, "Enumerable sets are Diophantine," Dokl. Akad. Nauk SSSR, 191, 278-282 (1970).
- 12. Yu. V. Matiyasevich, Hilbert's Tenth Problem [in Russian], Moscow (1993).
- 13. Yu. V. Matiyasevich (Yu. V. Matijasevič) and J. Robinson, "Reduction of an arbitrary Diophantine equation to one in 13 unknowns," Acta Arithmetica, 27, 521–553 (1975).
- 14. G.V. Chudnovskii, "Diophantine predicates," Usp. Mat. Nauk, 25, 185–186 (1970).