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D I O P H A N T I N E  R E P R E S E N T A T I O N S  O F  L I N E A R  R E C U R R E N C E S .  I 

M. A. V s e m l r n o v  UDC 511.216 

Direct constructions of Diophantine representations of linear recurrent sequences are discussed. These con- 
structions generalize already known results for second-order recurrences. Some connections of this problem 
with the theory of units in rings of algebraic integers are shown. It is proved that the required representations 
erist only for second-, third-, and fourth-order sequences. In the two last-mentioned cases certain additional 
restrictions on their coefficients must  be imposed. Bibliography: 14 titles. 

The construction of a Diophantine representation of the set { ( n, u ) : u = F2n }, where Fn denotes  the  
Fibonacci sequence 

F n + l  = F n  "-I t- F n -  l , 

Fo=O, F~=I,  

became the crucial step in the negative solution of Hilbert 's tenth  problem (see [9, 12]). 
We recall that  the set 93I consisting of n-tuples of nonnegative integers is called Diophant ine if there  

exists a polynomial P ( y l , . . . ,  yn, x l , . . . ,  Xm) with integer coefficients such tha t  

{ a l , . . . , a n  ) C ~f3l C~ 3Xl . . . x m [ P ( a l , . . . , a n , ~ l , . . . , X m )  = O]. (1) 

(All variables X l ,  . . .  , X m  range over the nonnegative integers.) The  equivalence (1) is called a Diophant ine  
representation of 9Y~. 

One may replace F ,  by second-order linear recurrences whose values are exactly all nonnegative solutions 
of Pell's equation 

x 2 - ( A  2 -  1)y 2 = 1, (2) 

and obtain representations similar to that  in [9]. For example, see [3, 8, 14]. 
This allows us to prove in a simple way that  exponentiat ion is Diophantine,  i.e., the set of triples 

{ (a, b, c) : a = b c } is Diophantine. The  reader may find a detailed exposition of this technique in [3, 4, 8, 
12, 131. 

Up to now, all known ways of proving the fact that  exponentiat ion is Diophant ine are based on Dio- 
phantine representations of second-order recurrences. But this is insufficient for some applications. Thus ,  
we have need for a larger collection of sequences of exponential growth tha t  allow for direct construct ions  
of their Diophantine representations. 

One might expect that  some results of [3, 8, 12, Chap. 2, 14] are extended to higher order linear recurrent  
sequences. As the first step in this direction we must  find a Diophantine equat ion such that  its solutions are 
exactly all elements of a given sequence. (Note that  we consider all integer solutions, and not just  positive.) 
This problem was stated in [12, open question 2.3]. More precisely, open question 2.3 is concerned wi th  
certain equations obtained from matr ix  relations. 

This article is the first one in the series of papers that  contain a complete solution of the problem under  
consideration. 

R e m a r k .  A Diophantine representation of the 2k + 2-ary relation "v is the n th  element of the  l inear 
recurrence with coefficients bo, . . .  , bk-1 and initial values ao, . . .  , a k - l "  (ai ,  bi E Z) was const ructed  in 
[10]. But the technique of positional coding, which was used in this case, is also based on the Diophant ine  
representation of the exponential function. Therefore, this result is inapplicable to our purposes. 

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 227, 1995, pp. 52-60. Original ~rticle submitted M~rch 
3, 1995. 
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Now, we give a formal s t a t emen t  of our  problem. Let a sequence an be defined by the  recurrent  re la t ion 

a n + k  = b k - l a n + k - 1  -t- " '"  4- b o a .  (3) 

with integer coefficients bi and  b0 = =t=l and  by the initial condi t ions 

a o = 1, a _ l  = a - 2  = �9 . .  = a - k + l  -= O. (4) 

In particular,  an  is an integer for any posit ive value of n. 
We assume that  the po lynomia l  

f ( / k )  = A k --  b k _ l A  k - 1  . . . . .  b l•  - -  bo (5) 

is irreducible over Q. This  case is most  interest ing for applicat ions.  
We extend our  sequence to all negative values of the  index n by the  relat ion 

a n  -= ( a n + k  --  bk - - lan+k- -1  . . . . .  bl  a n + l  ) / bo  (6) 

that  may be easily deduced f rom (3). Since b0 = =t=l, the  sequence a ,  is an  integer-valued sequence. 
We observe that  the restr ic t ion on the coefficient b0 is necessary for the  m e t h o d  described below. This  

restriction also occurs in all known  Diophant ine  representat ions  of second-order recurrences.  
As the following l emma shows, the  assumpt ion  (4) is not  necessary bu t  all of the  remain ing  cases can be 

reduced to this one. 

L e m m a  1. L e t  a ,  b e  a n  i n t e g e r - v a l u e d  sequence t h a t  sa t i s l qe s  t h e  r e c u r r e n t  r e l a t i o n  

O~n+k = b k - l O ~ n + k - 1  "4- ' ' "  q- boo~n. (7) 

T h e n  there e x i s t  u n i q u e l y  d e t e r m i n e d  i n t e g e r s  1o, I1, . . .  , I k - 1  s u c h  t h a t  

o~,~ = an lo  + a n - i l l  + " '"  + an+k - - l I k - -~  (8) 

f o r  a l l  n .  

P r o o f .  It is sufficient to f ind the  li tha t  satisfy (8) for n = 0, 1 , . . . ,  k - 1. Then ,  by relat ions (3), (7), (6) 
and  the analog of (6) for c~n, relat ion (8) holds for all n. Taking the  initial condi t ions  (4) into account  we 
get the following system of l inear equat ions (in matr ix  form): 

if0 0) t0 ) (0) 1 . . .  0 ll OL1 

. . .  �9 1 Ik 1 a - 1  

As one may see, this system is uniquely solvable for any set a0, OZl, . - -  , O t k - - 1  and~i f  all of a i  are integers, 
then the li a r e  also integers. The  proof  is complete.  

Consider the square k x k matr ices  (below E denotes the  ident i ty  matr ix)  

0 0 . . .  0 bo / 
1 0 . . .  0 bl 

B = 0 1 . . .  0 b2 , (9) 

0 0 . . .  1 bk-~ 
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k - I  1 

A(xo, X l , - - - ,  aTk--, ) ~--- ~ X,( /~ l  -- ~ b k _ j B  l - j )  ~-- 

l=O j = l  

= x o E  + x l ( B  - b k - l E )  + " "  + x k - l ( B  k -1  - b k - l B  k - 2  . . . . .  b l E ) ,  (10) 

A ( n )  = A ( a , ~ , a , , _ , , . . .  , a , ~ - k + ,  ). (11) 

We note  tha t  the characterist ic po lynomia l  of the  mat r ix  B is the  polynomia l  f(A) defined by (5). T hus ,  

B k - b k _ l B  k - 1  . . . . .  b i b  - b o E  = O. (12) 

An easy computa t ion  based on the  definit ions (10), (11) and  relat ions (3), (12) shows tha t  

A ( n ) B  = A ( n  + 1). 

In  addit ion,  A(0) = E by (4), (10) and  (11). Therefore,  

A ( n )  = B "  (13) 

and the lat ter  relation holds for any integer n. 
We define a homogeneous  polynomial  of k th  degree in k variables: 

FB(x0, x l , . . . ,  xk-1 ) = det  A(x0, x l , . . . ,  xk-1 ). (14) 

We write the subscript  B to show tha t  the  coefficients of this po lynomia l  depend  on the entr ies  of  the  
matr ix  B, i.e., on bi, i = O, 1 , . . . ,  k - 1. 

Relations (11) and (13) imply tha t  F B ( a n ,  a n - 1 , . . .  , a , - k + l )  = d e t B "  = (-t-b0)" = 4-1. Analogously,  
FB(--an,--an-l,...,--an-k+l) = =t=1. 

T h e  m a i n  p r o b l e m .  Under  wha t  restr ict ions on the  coefficients bi does the  relat ion 

F B ( X O , X l , . . . , X k - 1 )  = •  (15) 

with integer numbers Xo, X l ,  . . .  , X k - 1  imply that either x0 = a n ,  X l  = a n _ l ,  . . .  , X k _  1 = a , - k + l  o r  

XO = - -an ,  Xl  = - - a n - l ,  . . .  , Xk--1 = - - a n - k + l  for some n? In this case we say that  (15) is a character is t ic  
coadit ion for the sequence under  consideration.  

R e m a r k .  We may  examine another  cons t ruc t ion  that  is a more  na tu ra l  general izat ion of the  m e t h o d  for 
the second-order recurrences presented m t,2,  "-.~*'*v- ~-l- ~"~ *~ leads to b ~ m  same po,ynornaat FB. Let  

a n - - k + l  an--k+2 . . .  a n  t 
A ( n )  = ~ a n - k + 2  a n - k + 3  . . .  a n + l  . 

k an  a n + l  . . .  an+k--1  

(16) 

Taking recurrent relations (3) into account ,  we may regard det  A(n)  as a polynomial  in the  variables a , ,  
a , - 1 ,  . . .  , a , - k + l .  After a formal subs t i tu t ion  of x0, xl ,  . . .  , xk-1 for a , ,  a,~-l,  . . .  , a,~-k+l, we ob ta in  a 
homogeneous polynomial  

F B ( X 0 ,  Z l ,  ---  , a :k -1) ,  

which will be examined along with F B .  It is easy to check that  

2( )u = J(n + 1). 
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Together with (13), this implies that  .4(n + 1) = A(0)B n = A ( O ) A ( n ) .  But by (4) and (16), the mat r ix  

A(0) has the following form: (0 0,) 
0 . . .  1 * 

1 * . . .  * 

Thus, act A ( n )  and det J~(n) have the same (up t o  sign) expressions in terms of a , ,  a , _~ ,  . . . ,  a , - k+ ~ .  
Therefore, 

FB(Xo ,X , , . . . ,Xk -1 )  = "I-FB(xO,Xl,... ,Xk--1). 

Two different matrix constructions lead to the same equation (15). It will be more convenient to deal with 
the matrices A ( n ) .  For another  definition of the polynomial FB tha t  is very sophisticated, see [6]. 

Below we show a relationship between our main problem and some properties of the invertible elements  
(units) in orders of algebraic numbers. 

Let ,k be a root of the polynomial  f that  is defined by (5). Since we assume tha t  f is irreducible over Q, 
the extension of Q generated by ,~ is of degree k, [Q(,~) : QI = k. One may regard Q(,~) as a vector space 
over the field Q. For any number /~  E Q(,k), let/2 be a linear t ransformation of this vector space tha t  acts 
as follows: /2(~) = gs We define (for example, see [2, w w a ring monomorphism 

T :  Q(,~) ~ M , ( Q )  

mapping any number # E Q(,~) to the matr ix of the transformation/2 in the basis ( 1, A , . . . ,  ,~k-~ }, i.e., the  
j t h  column of the matrix T(#)  contains the coefficients of the decomposit ion of #,~j-1 with  respect to this 
basis: 

k--1 

,~i- ,  = ~ T(,)ii~i. 
i = 0  

In particular, T(,~) = B. Thus,  by (10), (11) and (13), we have 

T ( a .  + a n - - l ( ) ~  - -  bk-1 )  -1 t - . . .  ~- an--k+l()~ k-1  -- bk--1 ~ k - 2  . . . . .  b l ) )  

= A ( n ) =  B " =  T( ) ," ) .  

Since T is a monomorphism, as a consequence we deduce tha t  

A" = an + a , - l ( . k  - b k - a )  + " "  + a , - k + ~ ( A  k - I  -- b k _ l A  k -2  . . . . .  bl). 

(17) 

(18) 

This formula generalizes the representations of ,~" already known in the following cases: A is a root  o f  
a cubic irreducible polynomial with negative discriminant [6, Theorem 3], or ,k is a root of polynomial  
)~2k _ ,~k _ 1 [7 ] .  

If # e Z[,~], then T(#) C M , ( Z ) .  T h e  converse is also true. 

L e m m a  2. Le t  # E Q(,k). / f T ( # )  C M , ( Z ) ,  t hen  t z e Z[A]. 

Proof. Write # in the form # = to + tl,k + - - -  + tk_lA k-1 with rat ional  coefficients t i .  Then  

T ( # )  = t o E  + t l B  -t- . ."  -t- t k - l B  k -1 .  

Since T(#) E M. (Z)  and 

. . . . . . . . . . . . . . . . . . .  0 , , )  

(there are k j 1 zeros in the last row, and the unity is located at the (k - j ) t h  place), we successively 
conclude that  tk-1, tk-2, . . .  , to are integers. The proof is complete. 

By (Z[A])* we denote, as usual, the multiplicative group of all invertible elements in the order Z[A]. 
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C o r o l l a r y .  For any # E Z[A] \ {0} we have p E (Z[A])* i f  and only i f  det T(#)  = 4-1. 

Proof. Since T (p )T (p  -a ) = T ( # #  -~ ) = E ,  we have, by Lemma 2, that  # is invertible in Z[A] if and  only if 
T(#)  is invertible in Mn(Z),  i.e., det T(t  z) = 4-1. The proof is complete. 

The following theorem yields a necessary condition for (15) to be characteristic.  

T h e o r e m  1. Let an be the sequence defined by the recurrent relation (3) and by the initial condition (4). 
Let the polynomial f that is defined by (5) be irreducible over Q. In order that relation (15) be characteristic 
for the sequence an it is necessary that one of  the following conditions hold: 

(1) k = 2; 
(2) k = 3 and the polynomiM f has exactly one real root; 
(3) k = 4 and the polynomiM f has no real roots. 

Proof. It is clear that  

( 1, A - bk -1 , . . .  ,A k-1 -- bk-aA k-2 . . . . .  b2A - bl ) 

is a basis of the order Z[A]. By our definition of the polynomial FB (see (14)) and by the corollary to 
Lemma 2, relation (15) holds for some integers x0, xl ,  . . .  , xk-1 if and only if the number  #, 

# = Xo + x 1 ( $  - b k - 1 )  + " "  + x k - l ( $  k -1  -- b k - l A  k - 2  . . . . .  bl), 

is invertible in Z[A]. Note that  T(#)  = A(xo,  x l , . . . ,  x k - , ) .  In accordance with the representation (18), the  
solutions 

( a n , a n - a , . . . , a n - k + l  ), ( - - a n , - - a n - a , . . . , - - a n _ k + l  ). 

correspond to the numbers ,V ~ and - A  n, respectively. Therefore, (15) is a characteristic condit ion if and  
only if 

(z[A])* = { + A n : n  C Z }. (19) 

Let U(A) be the multiplicative group of all roots of unity in Z[A]. By the Dirichlet theorem (see [1, Chap.  II, 
w Theorem 5]), G = (Z[A])*/U(A) is a free Abelian group. Moreover, if (19) holds, then the free rank  of 
G does not exceed 1. But, by the Dirichlet theorem, this is possible only in the three cases listed above. 
The proof is complete. 

R e m a r k  1. If k = 2 and the equation f(A) = 0 has no real roots (i.e., Q(A) is an imaginary quadra t ic  
extension of Q), then the group (Z[A])* is finite. In this case the second-order recurrence under considerat ion 
is periodic. Since the set of its values is finite, the Diophantine representat ion of this sequence can be easily 
constructed. 
R e m a r k  2. The problem on the existence of single-fold (or at least finite-fold) Diophantine representat ions 
was a reason that  st imulated the s ta tement  of open question 2.3 in [12]. (For definitions, see [5, 12, Chap.  
7].) Since single-fold exponential Diophantine representations are known to exist (see [11, 12]), this reduces 
the given problem to its partial case where we ask for single-fold (finite-fold) Diophantine representat ions 
for the exponential function. One might obtain such representations if it would be possible to find direct 
single-fold (finite-fold) Diophantine representations for linear recurrences of a special type. Unfortunately,  
for all such sequences the corresponding extensions of the field Q have at least two fundamental  units,  and  
by Theorem 1 the answer to open question 2.3 in [12] is negative in these cases. 

In conclusion, we present without proof a complete solution of our main problem for third-order  recur- 
rences. 

T h e o r e m  2. Let a ,  be the sequence defined by (3) and (4) with k = 3. Relation (15) is characteristic i f  
and only i f  the following two conditions are fulfilled: 

(1) 2 2 4ba3 4b0 - - bab2 O. b I b 2 + - b23 27b02 18b0 < 
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(2) The triple ( bo, bl, b2 } is not contained on the list 

(1,3,2), (1,-2,-3),  (-1,3,-2),  ( -1,-2,3) ,  
(1,5,6), (1,-6,-5),  (-1,5,-6),  ( -1,-6,5) ,  

(1,-4,5), (1,-5,4}, ( -1 , -4 , -5 ) ,  (--1,-5,-4),  
(1,-2,3}, (1,-3,2), ( -1 , -2 , -3 ) ,  ( -1 , -3 , -2 ) ,  
(1,-3,4}, (1,-4,3), ( -1 , -3 , -4 ) ,  ( -1 , -4 , -3} ,  
(1,-5,7), (1,-7,5), (-1,-5,-7),  (--1,--7,-5), 
(1,7,12), (1,--12,-7), (-1,7,-12), (-1,--12,7), 
(1,2t, t 2), (1,-t  2,-2t), (-1,2t,-t  2), (-1,--t2,2t), 

w h e r e t = - I  o r t  > 1. 

We observe that condition (1) in Theorem 2 means that the polynomial f has negative discriminant, i.e., 
f has exactly one real root (compare with condition 2 in Theorem 1). Thus, Theorem 1 yields a necessary 
(but not sufficient) condition for (15) to be characteristic. However, we may indicate all exceptional cases. 

The proof of Theorem 2 and a complete solution of the main problem for the fourth-order recurrences 
will be presented in further publications. 

Research described in this publication was made possible in part by Grant No. R43000 from the Inter- 
national Science Foundation. 

Translated by M. A. Vsemirnov. 
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