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DIOPHANTINE REPRESENTATIONS OF LINEAR RECURRENCES. I
M. A. Vsemirnov UDC 511.216

Direct constructions of Diophanline representations of linear recurrent sequences are discussed. These con-
structions generalize already known resulls for second-order recurrences. Some connections of this problem
with the theory of units in rings of algebraic integers are shown. It is proved that the required representations
ezist only for second-, third-, and fourth-order sequences. In the two last-mentioned cases certain additional
restrictions on their coefficients must be imposed. Bibliography: 14 titles.

The construction of a Diophantine representation of the set {{n,u) : u = Fy, }, where F,, denotes the
Fibonacci sequence

Fn+l=Fn+Fn—~la
F0=0, F1:11

became the crucial step in the negative solution of Hilbert’s tenth problem (see [9, 12]).
We recall that the set 9 consisting of n-tuples of nonnegative integers is called Diophantine if there
exists a polynomial P(y1,...,Yn,Z1,-.-,Tm) With integer coefficients such that

(a1,...,8p) EM & 1. .ap[P(a1,. -, 8n, T1,y-- -, Zm) = 0]. (1)

(All variables z;, ... , £, range over the nonnegative integers.) The equivalence (1) is called a Diophantine
representation of 9.
One may replace F;, by second-order linear recurrences whose values are exactly all nonnegative solutions
of Pell’s equation
22 — (A - 1)y® =1, (2)

and obtain representations similar to that in [9]. For example, see [3, 8, 14].

This allows us to prove in a simple way that exponentiation is Diophantine, i.e., the set of triples
{(a,b,c) : a = b° } is Diophantine. The reader may find a detailed exposition of this technique in [3, 4, 8,
12, 13].

Up to now, all known ways of proving the fact that exponentiation is Diophantine are based on Dio-
phantine representations of second-order recurrences. But this is insufficient for some applications. Thus,
we have need for a larger collection of sequences of exponential growth that allow for direct constructions
of their Diophantine representations.

One might expect that some results of [3, 8, 12, Chap. 2, 14] are extended to higher order linear recurrent
sequences. As the first step in this direction we must find a Diophantine equation such that its solutions are
exactly all elements of a given sequence. (Note that we consider all integer solutions, and not just positive.)
This problem was stated in [12, open question 2.3]. More precisely, open question 2.3 is concerned with
certain equations obtained from matrix relations.

This article is the first one in the series of papers that contain a complete solution of the problem under
consideration.

Remark. A Diophantine representation of the 2k + 2-ary relation “v is the nth element of the linear
recurrence with coefficients by, ..., bx—; and initial values ao, ..., ak—1” (ai, b; € Z) was constructed in
[10]. But the technique of positional coding, which was used in this case, is also based on the Diophantine
representation of the exponential function. Therefore, this result is inapplicable to our purposes.
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Now, we give a formal statement of our problem. Let a sequence a,, be defined by the recurrent relation
Antk = bk—1@ntk—1 + - -+ boan (3)

with integer coefficients b; and by = +1 and by the initial conditions
ap=1, a_y=a9=---=a_p4 =0. (4)

In particular, a, is an integer for any positive value of n.
We assume that the polynomial

FO) =X — b M7 A — by (5)

is irreducible over Q. This case is most interesting for applications.
We extend our sequence to all negative values of the index n by the relation

an = (@ntk — bk—18ngk—1 — - — brans1)/bo (6)

that may be easily deduced from (3). Since by = +1, the sequence a, is an integer-valued sequence.

We observe that the restriction on the coefficient by is necessary for the method described below. This
restriction also occurs in all known Diophantine representations of second-order recurrences.

As the following lemma shows, the assumption (4) is not necessary but all of the remaining cases can be
reduced to this one.

Lemma 1. Let a, be an integer-valued sequence that satisfies the recurrent relation

Otk =bp_10n4k—1 4 -+ bpan. (7
Then there exist uniquely determined integers ly, Iy, ... , lr—1 such that
an =aplo +an1li +- -+ @npr—1le—1 (8)

for all n.

Proof. 1t is sufficient to find the [; that satisfy (8) for n = 0,1,...,k — 1. Then, by relations (3), (7), (6)
and the analog of (6) for oy, relation (8) holds for all n. Taking the initial conditions (4) into account we
get the following system of linear equations (in matrix form):

1 0 ... 0 lo \ Qg
1 ... 0 L ay
* P X 1 lk—l A1
As one may see, this system is uniquely solvable for any set aq, aq, ... , ax—1 and, if all of a; are integers,

then the [; are also integers. The proof is complete.

Consider the square k x k matrices (below E denotes the identity matrix)

0 0 ... 0 b
1 0 ... 0 b

B=|0 1 ... 0 b |, (9)
0 0 1 bx_y
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k—1 {
A(.’Eo,:l:l,...,a:k_l) = le(Bl _ Zbk—jBl—J) —
=0 J:]
=z0E+2;(B—bgE)+-- -+ 21 1(B*1 — b _1B¥2 — ... ~ ) E), (10)

A(n) = A(Gn,Gn-1,---,Qn—k+1)- (11)

We note that the characteristic polynomial of the matrix B is the polynomial f()) defined by (5). Thus,
B* —b_B*' —... - b;B—bE = 0. (12)
An easy computation based on the definitions (10), (11) and relations (3), (12) shows that
A(n)B = A(n+1).
In addition, A(0) = E by (4), (10) and (11). Therefore,
A(n) = B" (13)

and the latter relation holds for any integer n.
We define a homogeneous polynomial of kth degree in k variables:

Fp(zq,z1,...,25-1) = det A(zg,Z1,...,Zk—1)- (14)

We write the subscript B to show that the coefficients of this polynomial depend on the entries of the
matrix B, ie.,on b;,t =0,1,...,k—1.

Relations (11) and (13) imply that Fp(an,@n-1,...,0n-k4+1) = det B® = (4by)" = £1. Analogously,
Fp(—an,—Gn-1,...,—Qn—k+1) = £1.

The main problem. Under what restrictions on the coefficients b; does the relation

FB(:Z:D,.’El,...,:Ek_l)::}:l (15)
with integer numbers zo, 1, ..., k-1 imply that either 2o = a,, 21 = @n_1, ..., Th—1 = @n_gy; O
Tg = —Qpn, T] = —CGn—1, --- , Tk—1 = —Gn_k41 for some n? In this case we say that (15) is a characteristic

condition for the sequence under consideration.

Remark. We may examine another construction that is a more natural generalization of the method for

the second-order recurrences presented in {12, Chap. 2]. But it leads to the same polynomial Fg. Let

Qp—k+1 CQn—k42 .- Qn

e Gn—k+2 On—k+3 --- Qnil

A(n) = nokt neokt nt . (16)
an Qn+1 cer Onqk—1

Taking recurrent relations (3) into account, we may regard det Z(n) as a polynomial in the variables a,,
Gn-1, --- , Gn—k+1. After a formal substitution of zg, z;, ..., zx—y for an, an_1, ..., @n_g41, we obtain a
homogeneous polynomial

FB($0,$1,---,IL~—1)»

which will be examined along with Fg. It is easy to check that
A(n)B = A(n +1).
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Together with (13), this implies that Z(n +1) = Z(O)B" = .;{(O)A(n). But by (4) and (16), the matrix
A(0) has the following form:

0 0 1
0 1
1 * ... *
Thus, det A(n) and det /Z(n) have the same (up to sign) expressions in terms of an, @Gn—1, ... , Gn—ky1.
Therefore, _
Fp(zo,%1,---,%k-1) = £Fp(z0, 1, .,Tk—1)-

Two different matrix constructions lead to the same equation (15). It will be more convenient to deal with
the matrices A(n). For another definition of the polynomial Fig that is very sophisticated, see [6].

Below we show a relationship between our main problem and some properties of the invertible elements
(units) in orders of algebraic numbers.

Let X be a root of the polynomial f that is defined by (5). Since we assume that f is irreducible over Q,
the extension of Q generated by X is of degree k, [Q(A) : Q] = k. One may regard Q()) as a vector space
over the field Q. For any number p € Q()), let i be a linear transformation of this vector space that acts
as follows: fi(¢) = pf. We define (for example, see (2, §47, §23]) a ring monomorphism

T:Q(N) = M,(Q)

mapping any number u € Q(A) to the matrix of the transformation j in the basis (1,,...,A\*71} ie., the
jth column of the matrix T'(¢) contains the coefficients of the decomposition of uA?~! with respect to this
basis:
k-1
pM T =T ()5 A
=0

In particular, T(A) = B. Thus, by (10), (11) and (13), we have
T(an + @n-1(A = bpo1) + -+ + Gnkg 1 (A 71— b A2 — .. — b))
= A(n) = B® = T(A™). (17
Since T is a monomorphism, as a consequence we deduce that
A" =ap +an_1(A—bg_1)+---+ an—k+l(/\k_l D L - b1). (18)

This formula generalizes the representations of A™ already known in the following cases: X is a root of

a cubic irreducible polynomial with negative discriminant [6, Theorem 3|, or A is a root of polynomial
AZE 2R _107].
If p € Z[A], then T(p) € M .(Z). The converse is also true.

Lemma 2. Let p € Q(\). IfT(u) € Mn(Z), then p € Z[A].
Proof. Write p in the form g =t + ;A + - - - + tz_; A*~! with rational coefficients ¢;. Then

T(ﬂ) =tE+t1B+--- +tk—1Bk_1,

B _<O ... 0 1 x ... *)

(there are k — j — 1 zeros in the last row, and the unity is located at the (k — j)th place), we successively
conclude that tx_q, tx_2, ..., to are integers. The proof is complete.

Since T(u) € M,(Z) and

By (Z[A])* we denote, as usual, the multiplicative group of all invertible elements in the order Z[)\].
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Corollary. For any u € Z[A\]\ {0} we have p € (Z[A])* if and only if det T'(p) = +1.

Proof. Since T(u)T(p~ ') = T(pp~"') = E, we have, by Lemma 2, that y is invertible in Z[)] if and only if
T(u) is invertible in M,,(Z), i.e., det T(¢) = £1. The proof is complete.

The following theorem yields a necessary condition for (15) to be characteristic.

Theorem 1. Let a, be the sequence defined by the recurrent relation (3) and by the initial condition (4).
Let the polynomial f that is defined by (5) be irreducible over Q. In order that relation (15) be characteristic
for the sequence a,, it is necessary that one of the following conditions hold:

(1) k=2;

(2) k =3 and the polynomial f has exactly one real root;

(3) k£ =4 and the polynomial f has no real roots.

Proof. 1t is clear that
(1A —br—g, . A b X2 A — b))

is a basis of the order Z[\]. By our definition of the polynomial Fg (see (14)) and by the corollary to
Lemma 2, relation (15) holds for some integers zo, 21, ..., Tx—1 if and only if the number g,

p= 04 1A= bet) 4+ e (A = B A b)),

is invertible in Z[A]. Note that T(u) = A(zo,z1,...,Zk-1). In accordance with the representation (18), the
solutions

(an, Ap—1y--+38n—k+1 ), ( ~Qp, —Qp—1y---3—0n—k+1 )

correspond to the numbers A" and —A", respectively. Therefore, (15) is a characteristic condition if and
only if
ZM) ={£A":n€Z}. (19)

Let U()) be the multiplicative group of all roots of unity in Z[A]. By the Dirichlet theorem (see [1, Chap. II,
§4, Theorem 5]), G = (Z[A])*/U(X) is a free Abelian group. Moreover, if (19) holds, then the free rank of
G does not exceed 1. But, by the Dirichlet theorem, this is possible only in the three cases listed above.
The proof is complete.

Remark 1. If k¥ = 2 and the equation f(A) = 0 has no real roots (i.e., Q(\) is an imaginary quadratic
extension of Q), then the group (Z[A])* is finite. In this case the second-order recurrence under consideration
is periodic. Since the set of its values is finite, the Diophantine representation of this sequence can be easily
constructed.
Remark 2. The problem on the existence of single-fold (or at least finite-fold) Diophantine representations
was a reason that stimulated the statement of open question 2.3 in [12]. (For definitions, see [5, 12, Chap.
7].) Since single-fold exponential Diophantine representations are known to exist (see [11, 12]), this reduces
the given problem to its partial case where we ask for single-fold (finite-fold) Diophantine representations
for the exponential function. One might obtain such representations if it would be possible to find direct
single-fold (finite-fold) Diophantine representations for linear recurrences of a spectal type. Unfortunately,
for all such sequences the corresponding extensions of the field Q have at least two fundamental units, and
by Theorem 1 the answer to open question 2.3 in [12] is negative in these cases.

In conclusion, we present without proof a complete solution of our main problem for third-order recur-
rences.

Theorem 2. Let a, be the sequence defined by (3) and (4) with k = 3. Relation (15) is characteristic if
and only if the following two conditions are fulfilled:

(1) 5202 + 463 — 4bob3 — 27b% — 18byby b, < 0.
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(2) The triple (bo,b1, b2 ) is not contained on the list

(1,3,2), (1,-2,-3), (-1,3,-2), (-1,-2,3),
(1,5,6), (1,-6,-5), (-1,5,—6), (—1,—6,5),
(1,-4,5), (1,-5,4), (-1,—4,-5), (—1,—5,—4),
(1,-2,3), (1,-3,2), (-1,-2,-3), (~-1,-3,-2),
(1,-3,4), (1,-4,3), (-1,-3,-4), (-1,—4,-3),
(1,-5,7), (1,-7,5), (-1,-5,-7), (—-1,-7,-5),
(1,7,12), (1,-12,-7), {(-1,7,—-12), (-1,-12,7),
(1,2¢,¢2), (1,—t%,-2t), (—1,2t,—¢2), (-1,—12,2t),

wheret = -1 ort > 1.

We observe that condition (1) in Theorem 2 means that the polynomial f has negative discriminant, i.e.,

f has exactly one real root (compare with condition 2 in Theorem 1). Thus, Theorem 1 yields a necessary
(but not sufficient) condition for (15) to be characteristic. However, we may indicate all exceptional cases.

The proof of Theorem 2 and a complete solution of the main problem for the fourth-order recurrences

will be presented in further publications.

Research described in this publication was made possible in part by Grant No. R43000 from the Inter-

national Science Foundation.

W N

11.

12.
13.

14

Translated by M. A. Vsemirnov.
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